Science.gov

Sample records for advanced reciprocating gait

  1. Advanced Prosthetic Gait Training Tool

    DTIC Science & Technology

    2011-09-01

    AD_________________ Award Number: W81XWH-10-1-0870 TITLE: Advanced Prosthetic Gait Training Tool...Advanced Prosthetic Gait Training Tool 5b. GRANT NUMBER W81XWH-10-1-0870 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Rajankumar...produce a computer-based Advanced Prosthetic Gait Training Tool to aid in the training of clinicians at military treatment facilities providing care for

  2. Advanced Prosthetic Gait Training Tool

    DTIC Science & Technology

    2015-12-01

    study is to produce a computer-based Advanced Prosthetic Gait Training Tool to aid in the training of clinicians at military treatment facilities...providing care for wounded service members. In Phase I of the effort, significant work was completed at the University of Iowa Center for Computer- Aided ...Gait Training Tool Introduction The objective of our study is to produce a computer-based Advanced Prosthetic Gait Training Tool (APGTT) to aid in

  3. Modeling effects of sagittal-plane hip joint stiffness on reciprocating gait orthosis-assisted gait.

    PubMed

    Johnson, William Brett; Fatone, Stefania; Gard, Steven A

    2013-01-01

    Upright ambulation is believed to improve quality of life for persons with lower-limb paralysis (LLP). However, ambulatory orthoses for persons with LLP, like reciprocating gait orthoses (RGOs), result in a slow, exhausting gait. Increasing the hip joint stiffness of these devices may improve the efficiency of RGO-assisted gait. The small, diverse population of RGO users makes subject recruitment challenging for clinical investigations. Therefore, we developed a lower-limb paralysis simulator (LLPS) that enabled nondisabled persons to exhibit characteristics of RGO-assisted gait, thereby serving as surrogate models for research. For this study, tests were conducted to determine the effects of increased hip joint stiffness on gait of nondisabled persons walking with the LLPS. A motion capture system, force plates, and spirometer were used to measure the hip flexion, crutch ground reaction forces (GRFs), and oxygen consumption of subjects as they walked with four different hip joint stiffness settings. Increasing the hip joint stiffness decreased hip flexion during ambulation but did not appear to affect the crutch GRFs. Walking speed was observed to initially increase with increases in hip joint stiffness, and then decrease. These findings suggest that increasing hip joint stiffness may increase walking speed for RGO users.

  4. Ergonomy of paraplegic patients working with a reciprocating gait orthosis.

    PubMed

    Bernardi, M; Canale, I; Felici, F; Macaluso, A; Marchettoni, P; Sproviero, E

    1995-08-01

    A reciprocating gait orthosis (RGO) is, among others, the most widely adopted device to restore the standing and walking capability of paraplegic patients. The aim of the present study was the evaluation of the energy demand (VO2), and cardiopulmonary load (HR and VE) imposed on the subject by different working tasks while sitting in a wheelchair or standing using a RGO. In addition, a comparison with the performance of normal subjects was also attempted. The RGO use allowed a dramatic improvement of patients' mobility and reach space in the workplace. A further advantage provided by the use of the RGO was represented by the increased mobility of the subjects with respect to the wheelchair confined situation. The energy demand and the cardiorespiratory load imposed on the subjects by the use of the RGO were not different from those observed both in the same subjects sitting in a wheelchair and in the controls. The energy demand slightly exceeded the values typical of light work and was, thus, compatible with the normal duration of a working day. On the other hand, the cardiac load corresponded to that typical of moderate activity, thus limiting the duration of the working task to 5-8 h. Based on the ergometry test, all of the working activities considered can be classified as aerobic activities, energy demand being under the ventilatory threshold.

  5. ADVANCED RECIPROCATING COMPRESSION TECHNOLOGY (ARCT)

    SciTech Connect

    Danny M. Deffenbaugh; Klaus Brun; Ralph E. Harris; J. Pete Harrell; Robert J. Mckee; J. Jeffrey Moore; Steven J. Svedeman; Anthony J. Smalley; Eugene L. Broerman; Robert A Hart; Marybeth G. Nored; Ryan S. Gernentz; Shane P. Siebenaler

    2005-12-01

    The U.S. natural gas pipeline industry is facing the twin challenges of increased flexibility and capacity expansion. To meet these challenges, the industry requires improved choices in gas compression to address new construction and enhancement of the currently installed infrastructure. The current fleet of installed reciprocating compression is primarily slow-speed integral machines. Most new reciprocating compression is and will be large, high-speed separable units. The major challenges with the fleet of slow-speed integral machines are: limited flexibility and a large range in performance. In an attempt to increase flexibility, many operators are choosing to single-act cylinders, which are causing reduced reliability and integrity. While the best performing units in the fleet exhibit thermal efficiencies between 90% and 92%, the low performers are running down to 50% with the mean at about 80%. The major cause for this large disparity is due to installation losses in the pulsation control system. In the better performers, the losses are about evenly split between installation losses and valve losses. The major challenges for high-speed machines are: cylinder nozzle pulsations, mechanical vibrations due to cylinder stretch, short valve life, and low thermal performance. To shift nozzle pulsation to higher orders, nozzles are shortened, and to dampen the amplitudes, orifices are added. The shortened nozzles result in mechanical coupling with the cylinder, thereby, causing increased vibration due to the cylinder stretch mode. Valve life is even shorter than for slow speeds and can be on the order of a few months. The thermal efficiency is 10% to 15% lower than slow-speed equipment with the best performance in the 75% to 80% range. The goal of this advanced reciprocating compression program is to develop the technology for both high speed and low speed compression that will expand unit flexibility, increase thermal efficiency, and increase reliability and integrity

  6. Advanced Prosthetic Gait Training Tool

    DTIC Science & Technology

    2014-10-01

    capture sequences was provided by MPL to CCAD and OGAL. CCAD’s work focused on imposing these sequences on the SantosTM digital human avatar . An...capture sequences was provided by MPL to CCAD and OGAL. CCAD’s work focused on imposing these sequences on the Santos digital human avatar . An initial...levels of the patients. In addition, the differences in ability to detect variations in gait conditions for skinned avatar vs. line-skeletal avatar

  7. Advanced Prosthetic Gait Training Tool

    DTIC Science & Technology

    2013-10-01

    or unclothed  avatars ,  stick figures, or even skeletal models to support their analyses. The system will also allow trainees to  isolate specific...CCAD’s work focused on imposing these sequences on the Santos digital  human  avatar . An initial user interface for the training application was also...ability to detect variations in gait conditions for  skinned  avatar  vs. line‐skeletal  avatar , concurrent (side‐by‐side) image representation vs

  8. Advanced Natural Gas Reciprocating Engine(s)

    SciTech Connect

    Kwok, Doris; Boucher, Cheryl

    2009-09-30

    Energy independence and fuel savings are hallmarks of the nation’s energy strategy. The advancement of natural gas reciprocating engine power generation technology is critical to the nation’s future. A new engine platform that meets the efficiency, emissions, fuel flexibility, cost and reliability/maintainability targets will enable American manufacturers to have highly competitive products that provide substantial environmental and economic benefits in the US and in international markets. Along with Cummins and Waukesha, Caterpillar participated in a multiyear cooperative agreement with the Department of Energy to create a 50% efficiency natural gas powered reciprocating engine system with a 95% reduction in NOx emissions by the year 2013. This platform developed under this agreement will be a significant contributor to the US energy strategy and will enable gas engine technology to remain a highly competitive choice, meeting customer cost of electricity targets, and regulatory environmental standard. Engine development under the Advanced Reciprocating Engine System (ARES) program was divided into phases, with the ultimate goal being approached in a series of incremental steps. This incremental approach would promote the commercialization of ARES technologies as soon as they emerged from development and would provide a technical and commercial foundation of later-developing technologies. Demonstrations of the Phase I and Phase II technology were completed in 2004 and 2008, respectively. Program tasks in Phase III included component and system development and testing from 2009-2012. Two advanced ignition technology evaluations were investigated under the ARES program: laser ignition and distributed ignition (DIGN). In collaboration with Colorado State University (CSU), a laser ignition system was developed to provide ignition at lean burn and high boost conditions. Much work has been performed in Caterpillar’s DIGN program under the ARES program. This work

  9. Advanced Natural Gas Reciprocating Engines(s)

    SciTech Connect

    Zurlo, James

    2012-04-05

    The ARES program was initiated in 2001 to improve the overall brake thermal efficiency of stationary, natural gas, reciprocating engines. The ARES program is a joint award that is shared by Dresser, Inc., Caterpillar and Cummins. The ARES program was divided into three phases; ARES I (achieve 44% BTE), ARES II (achieve 47% BTE) and ARES III (achieve 50% BTE). Dresser, Inc. completed ARES I in March 2005 which resulted in the commercialization of the APG1000 product line. ARES II activities were completed in September 2010 and the technology developed is currently being integrated into products. ARES III activities began in October 2010. The ARES program goal is to improve the efficiency of natural gas reciprocating engines. The ARES project is structured in three phases with higher efficiency goals in each phase. The ARES objectives are as follows: 1. Achieve 44% (ARES I), 47% (ARES II), and 50% brake thermal efficiency (BTE) as a final ARES III objective 2. Achieve 0.1 g/bhp-hr NOx emissions (with after-treatment) 3. Reduce the cost of the produced electricity by 10% 4. Improve or maintain reliability, durability and maintenance costs

  10. Advanced Natural Gas Reciprocating Engine(s)

    SciTech Connect

    Pike, Edward

    2014-03-31

    The objective of the Cummins ARES program, in partnership with the US Department of Energy (DOE), is to develop advanced natural gas engine technologies that increase engine system efficiency at lower emissions levels while attaining lower cost of ownership. The goals of the project are to demonstrate engine system achieving 50% Brake Thermal Efficiency (BTE) in three phases, 44%, 47% and 50% (starting baseline efficiency at 36% BTE) and 0.1 g/bhp-hr NOx system out emissions (starting baseline NOx emissions at 2 – 4 g/bhp-hr NOx). Primary path towards above goals include high Brake Mean Effective Pressure (BMEP), improved closed cycle efficiency, increased air handling efficiency and optimized engine subsystems. Cummins has successfully demonstrated each of the phases of this program. All targets have been achieved through application of a combined set of advanced base engine technologies and Waste Heat Recovery from Charge Air and Exhaust streams, optimized and validated on the demonstration engine and other large engines. The following architectures were selected for each Phase: Phase 1: Lean Burn Spark Ignited (SI) Key Technologies: High Efficiency Turbocharging, Higher Efficiency Combustion System. In production on the 60/91L engines. Over 500MW of ARES Phase 1 technology has been sold. Phase 2: Lean Burn Technology with Exhaust Waste Heat Recovery (WHR) System Key Technologies: Advanced Ignition System, Combustion Improvement, Integrated Waste Heat Recovery System. Base engine technologies intended for production within 2 to 3 years Phase 3: Lean Burn Technology with Exhaust and Charge Air Waste Heat Recovery System Key Technologies: Lower Friction, New Cylinder Head Designs, Improved Integrated Waste Heat Recovery System. Intended for production within 5 to 6 years Cummins is committed to the launch of next generation of large advanced NG engines based on ARES technology to be commercialized worldwide.

  11. Energy consumption in children with myelomeningocele: a comparison between reciprocating gait orthosis and hip-knee-ankle-foot orthosis ambulators.

    PubMed

    Cuddeford, T J; Freeling, R P; Thomas, S S; Aiona, M D; Rex, D; Sirolli, H; Elliott, J; Magnusson, M

    1997-04-01

    This study compared the differences in energy efficiency (energy cost) in children with myelomeningocele ambulating with either reciprocating gait orthoses (RGOs) or hip-knee-ankle-foot orthoses (HKAFOs). There were 15 children who ambulated with RGOs and 11 children braced and ambulating in HKAFOs. Velocity was measured in m/s, energy consumption was measured in mL/kg/min, and energy cost (energy consumption/velocity) was measured in mL/kg/m. Children in HKAFOs had a significantly higher energy consumption rate than children in RGOs. However, children who swing through in a HKAFO have a significantly faster velocity than children who ambulate with the RGO using a reciprocating pattern. The increased energy cost in the RGO group is influenced by their slower velocity, just as the decreased energy cost in the HKAFO group is influenced by their increased velocity. Therefore it appears that children in HKAFOs are more energy efficient than children in RGOs.

  12. Accelerometer based analysis of gait initiation failure in advanced juvenile parkinsonism: a single subject study

    PubMed Central

    Ishii, Mitsuaki; Mashimo, Hideaki

    2016-01-01

    [Purpose] This study used an accelerometer placed close to the center of gravity to quantitatively investigate whether unexpected gait initiation aggravates start hesitation (freezing of gait in gait initiation). [Subject and Methods] The subject was a 53-year-old female who had been suffering from juvenile parkinsonism since she was aged 21 years. An alternating-treatment design was used to compare acceleration characteristics under two gait initiation conditions, which were 1) deliberate gait initiation and 2) gait initiation on a sudden “go” verbal command (sudden gait initiation), in the “on” state of the medication cycle. [Results] In six out of eight sessions, a combination of reduced peak positive anterior accelerations and large power percentage in the high frequency band was consistently observed in the sudden gait initiation compared with deliberate gait initiation. In the other two sessions, although a large acceleration just after the “go” signal was observed, subsequent acceleration signals were blocked by sudden gait initiation. [Conclusion] The results suggest that, even in the “on” state, start hesitation is apparent without increased reliance on frontal cortical attentional mechanisms to compensate for impaired automaticity. In advanced juvenile parkinsonism, sudden gait initiation may be an effective paradigm as a provoking test for start hesitation. PMID:27942160

  13. Technological Advances in Interventions to Enhance Post-Stroke Gait

    PubMed Central

    Sheffler, Lynne R.; Chae, John

    2012-01-01

    Synopsis This article provides a comprehensive review of specific rehabilitation interventions used to enhance hemiparetic gait following stroke. Neurologic rehabilitation interventions may be either therapeutic resulting in enhanced motor recovery or compensatory whereby assistance or substitution for neurological deficits results in improved functional performance. Included in this review are lower extremity functional electrical stimulation (FES), body-weight supported treadmill training (BWSTT), and lower extremity robotic-assisted gait training. These post-stroke gait training therapies are predicated on activity-dependent neuroplasticity which is the concept that cortical reorganization following central nervous system injury may be induced by repetitive, skilled, and cognitively engaging active movement. All three interventions have been trialed extensively in both research and clinical settings to demonstrate a positive effect on various gait parameters and measures of walking performance. However, more evidence is necessary to determine if specific technology-enhanced gait training methods are superior to conventional gait training methods. This review provides an overview of evidence-based research which supports the efficacy of these three interventions to improve gait, as well as provide perspective on future developments to enhance post-stroke gait in neurologic rehabilitation. PMID:23598265

  14. Performance of spinal cord injury individuals while standing with the Mohammad Taghi Karimi reciprocal gait orthosis (MTK-RGO).

    PubMed

    Karimi, Mohammad Taghi; Amiri, Pouya; Esrafilian, Amir; Sedigh, Jafar; Fatoye, Francis

    2013-03-01

    Most patients with spinal cord injury use a wheelchair to transfer from place to place, however they need to stand and walk with orthosis to improve their health status. Although many orthoses have been designed for paraplegic patients, they have experienced various problems while in use. A new type of reciprocal gait orthosis was designed in the Bioengineering Unit of Strathclyde University to solve the problems of the available orthoses. Since there was no research undertaken regarding testing of the new orthosis on paraplegic subjects, this study was aimed to evaluate the new orthosis during standing of paraplegic subjects. Five paraplegic patients with lesion level between T12 and L1 and aged matched normal subjects were recruited into this study. The stability of subjects was evaluated during quiet standing and while undertaking hand tasks during standing with the new orthosis and the knee ankle foot orthosis (KAFO). The difference between the performances of paraplegic subjects while standing with both orthoses, and between the function of normal and paraplegic subjects were compared using the paired t test and independent sample t test, respectively. The stability of paraplegic subjects in standing with the new orthosis was better than that of the KAFO orthosis (p < 0.05). Moreover, the force applied on the crutch differed between the orthoses. The functional performance of paraplegic subjects was better with the new orthosis compared with normal subjects. The performance of paraplegic subjects while standing with the new orthosis was better than the KAFO. Therefore, the new orthosis may be useful to improve standing and walking in patients with paraplegia.

  15. Longitudinal assessment of oxygen cost and velocity in children with myelomeningocele: comparison of the hip-knee-ankle-foot orthosis and the reciprocating gait orthosis.

    PubMed

    Thomas, S S; Buckon, C E; Melchionni, J; Magnusson, M; Aiona, M D

    2001-01-01

    Oxygen consumption and cost and velocity were evaluated over time in 23 children with myelomeningocele to determine whether differences exist when children walk with hip-knee-ankle-foot orthoses (HKAFOs) versus reciprocating gait orthoses (RGOs). Children using HKAFOs had similar oxygen cost as children using RGOs while achieving a faster velocity. Children walking with HKAFOs into adolescence had a faster velocity and lower oxygen cost than children who discontinued use of their HKAFOs. No significant differences in velocity or oxygen cost were found between children who continued to walk with RGOs and those who discontinued use of their RGOs. Upright ambulation may progress from ambulation with an RGO, when the child's upper extremity strength to mass ratio is low, to an HKAFO when upper extremity strength improves and velocity or keeping up with peers is of concern. Wheelchair mobility should be offered when speed and an energy-efficient method of community mobility are desired.

  16. Comparative study of conventional hip-knee-ankle-foot orthoses versus reciprocating-gait orthoses for children with high-level paraparesis.

    PubMed

    Katz, D E; Haideri, N; Song, K; Wyrick, P

    1997-01-01

    We evaluated eight children with thoracic or high lumbar-level paraparesis for metabolic performance while ambulating with custom fabricated thermoplastic hip-knee-ankle-foot orthoses (HKAFOs) and reciprocating-gait orthoses (RGOs). Seven of the eight children had myelomeningocele. Each patient was tested in both systems at self-selected speeds in a crossover study design. At self-selected speeds, the level of exercise intensity for both thoracic and high-lumbar patients with either orthosis was lower than that for normal children. The average metabolic cost of walking in the RGO was twice that of normal children, as compared with six times normal in HKAFOs. For the four thoracic-level patients, there was a significantly higher oxygen cost of ambulation in using HKAFOs versus RGOs. No significant difference in metabolic performance was found for the high-lumbar patients. Velocity of ambulation was faster in the RGOs than in the HKAFOs. For thoracic-level patients, our data suggest that an RGO will provide a faster, more energy-efficient gait than a statically locked HKAFO. For high-lumbar patients, no significant difference was found between the two orthoses. Seven of eight children preferred the RGO over the HKAFO.

  17. Improvement of gait by chronic, high doses of methylphenidate in patients with advanced Parkinson's disease

    PubMed Central

    Devos, D; Krystkowiak, P; Clement, F; Dujardin, K; Cottencin, O; Waucquier, N; Ajebbar, K; Thielemans, B; Kroumova, M; Duhamel, A; Destée, A; Bordet, R; Defebvre, L

    2007-01-01

    Background Therapeutic management of gait disorders in patients with advanced Parkinson's disease (PD) can sometimes be disappointing, since dopaminergic drug treatments and subthalamic nucleus (STN) stimulation are more effective for limb‐related parkinsonian signs than for gait disorders. Gait disorders could also be partly related to norepinephrine system impairment, and the pharmacological modulation of both dopamine and norepinephrine pathways could potentially improve the symptomatology. Aim To assess the clinical value of chronic, high doses of methylphenidate (MPD) in patients with PD having gait disorders, despite their use of optimal dopaminergic doses and STN stimulation parameters. Methods Efficacy was blindly assessed on video for 17 patients in the absence of l‐dopa and again after acute administration of the drug, both before and after a 3‐month course of MPD, using a Stand–Walk–Sit (SWS) Test, the Tinetti Scale, the Unified Parkinson's Disease Rating Scale (UPDRS) part III score and the Dyskinesia Rating Scale. Results An improvement was observed in the number of steps and time in the SWS Test, the number of freezing episodes, the Tinetti Scale score and the UPDRS part III score in the absence of l‐dopa after 3 months of taking MPD. The l‐dopa‐induced improvement in these various scores was also stronger after the 3‐month course of MPD than before. The Epworth Sleepiness Scale score fell dramatically in all patients. No significant induction of adverse effects was found. Interpretation Chronic, high doses of MPD improved gait and motor symptoms in the absence of l‐dopa and increased the intensity of response of these symptoms to l‐dopa in a population with advanced PD. PMID:17098845

  18. Gait analysis in patients with advanced Parkinson disease: different or additive effects on gait induced by levodopa and chronic STN stimulation.

    PubMed

    Lubik, S; Fogel, W; Tronnier, V; Krause, M; König, J; Jost, W H

    2006-02-01

    The aim of our study was to observe the effects on gait parameters induced by STN stimulation and levodopa medication in patients with advanced Parkinson's disease in order to determine different or additive effects. Therefore we examined 12 patients with advanced Parkinson disease after bilateral implantation of DBS into the STN. We assessed the motor score of the UPDRS and quantitative gait analysis under 4 treatment conditions: with and without stimulation as well as with and without levodopa. The mean improvement of the UPDRS motor score was almost the same with levodopa and DBS. Combining both therapies we saw a further improvement of the motor score. Gait parameters of patients with PD treated either with levodopa or STN stimulation were greatly improved. A significant difference between levodopa and STN stimulation could only be shown for the parameters velocity and step length. These parameters improved more with levodopa than with stimulation. The combination of both therapeutic methods showed the best results on the UPDRS motor score and gait parameters.

  19. Oxygen costs using a reciprocating gait orthosis in a paraplegic (T9) patient with a bilateral below-knee amputation: case report.

    PubMed

    Smith, W E; Clark, P F; MacArthur, D; Allatt, R D; Hayes, K C; Cunningham, D A

    1997-02-01

    The Reciprocating Gait Orthosis (RGO) is a useful aid to ambulation for patients with paraplegia. Its use has been described previously though not in conjunction with limb prostheses. We report here the energy costs of ambulation of a patient, disabled by paraplegia at T9 and bilateral below-knee amputations, walking at her preferred rate using an RGO while gas exchange was measured by the Douglas bag method. Oxygen uptake (VO2) rose from 0.198 1 min-1 at rest to 0.582 1 min-1 in the last minute of exercise, representing a VO2 of 14.3 ml kg-1 min-1. During the fourth minute of ambulation, energy consumption was 30.44 J kg-1 s-1 with an energy cost of 4.17 J kg-1 m-1 at a velocity of 0.13 m s-1, Ambulation with this combination of disability is possible with the aid of limb prostheses and an RGO though it is slow and the energy expenditure as consumption per second and cost per metre are high.

  20. Gait analysis.

    PubMed

    Chester, Victoria L; Biden, Edmund N; Tingley, Maureen

    2005-01-01

    Gait analysis, or the study of locomotion, has changed dramatically over the last few decades. Advances in computer technology and data analysis techniques have contributed greatly to the progress of this field. Gait analysis has become a valuable tool in the clinical setting. The ability to objectively quantify motion is essential to our understanding of normal and abnormal movement patterns and the evaluation of treatment effectiveness. This paper will discuss the various experimental and analytical techniques currently used for performing clinical gait analyses at the University of New Brunswick, Fredericton, New Brunswick, Canada.

  1. Supracondylar femoral extension osteotomy and patellar tendon advancement in the management of persistent crouch gait in cerebral palsy

    PubMed Central

    Das, Sakti Prasad; Pradhan, Sudhakar; Ganesh, Shankar; Sahu, Pabitra Kumar; Mohanty, Ram Narayan; Das, Sanjay Kumar

    2012-01-01

    Background: Severe crouch gait in adolescent cerebral palsy is a difficult problem to manage. The patients develop loading of patellofemoral joint, leading to pain, gait deviation, excessive energy expenditure and progressive loss of function. Patella alta and avulsion of patella are the other complications. Different treatment options have been described in the literature to deal with this difficult problem. We evaluated outcome of supracondylar femoral extension osteotomy (SCFEO) and patellar tendon advancement (PTA) in the treatment of crouch gait in patients with cerebral palsy. Materials and Methods: Fourteen adolescents with crouch gait were operated by SCFEO and PTA. All subjects were evaluated pre and postoperatively. Clinical, radiographic, observational gait analysis and functional measures were included to assess the changes in knee function. Results: Cases were followed up to 3 years. The patients walked with increased knee extension and improvement in quadriceps muscle strength. Knee pain was decreased and improvements in functional mobility and radiologic improvement were found. Conclusion: SCFEO and PTA for adolescent crouch gait is effective in improving knee extensor strength, reducing knee pain and improving function. PMID:22448063

  2. Neural substrates of levodopa-responsive gait disorders and freezing in advanced Parkinson's disease: a kinesthetic imagery approach.

    PubMed

    Maillet, Audrey; Thobois, Stéphane; Fraix, Valérie; Redouté, Jérôme; Le Bars, Didier; Lavenne, Franck; Derost, Philippe; Durif, Franck; Bloem, Bastiaan R; Krack, Paul; Pollak, Pierre; Debû, Bettina

    2015-03-01

    Gait disturbances, including freezing of gait, are frequent and disabling symptoms of Parkinson's disease. They often respond poorly to dopaminergic treatments. Although recent studies have shed some light on their neural correlates, their modulation by dopaminergic treatment remains quite unknown. Specifically, the influence of levodopa on the networks involved in motor imagery (MI) of parkinsonian gait has not been directly studied, comparing the off and on medication states in the same patients. We therefore conducted an [H2 (15) 0] Positron emission tomography study in eight advanced parkinsonian patients (mean disease duration: 12.3 ± 3.8 years) presenting with levodopa-responsive gait disorders and FoG, and eight age-matched healthy subjects. All participants performed three tasks (MI of gait, visual imagery and a control task). Patients were tested off, after an overnight withdrawal of all antiparkinsonian treatment, and on medication, during consecutive mornings. The order of conditions was counterbalanced between subjects and sessions. Results showed that imagined gait elicited activations within motor and frontal associative areas, thalamus, basal ganglia and cerebellum in controls. Off medication, patients mainly activated premotor-parietal and pontomesencephalic regions. Levodopa increased activation in motor regions, putamen, thalamus, and cerebellum, and reduced premotor-parietal and brainstem involvement. Areas activated when patients are off medication may represent compensatory mechanisms. The recruitment of these accessory circuits has also been reported for upper-limb movements in Parkinson's disease, suggesting a partly overlapping pathophysiology between imagined levodopa-responsive gait disorders and appendicular signs. Our results also highlight a possible cerebellar contribution in the pathophysiology of parkinsonian gait disorders through kinesthetic imagery.

  3. Advanced Reciprocating Engine Systems (ARES): Raising the Bar on Engine Technology with Increased Efficiency and Reduced Emissions, at Attractive Costs

    SciTech Connect

    2009-02-01

    This is a fact sheet on the U.S. Department of Energy's (DOE) Advanced Reciprocating Engine Systems program (ARES), which is designed to promote separate, but parallel engine development between the major stationary, gaseous fueled engine manufacturers in the United States.

  4. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    SciTech Connect

    Victor W. Wong; Tian Tian; Grant Smedley; Jeffrey Jocsak

    2004-09-30

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston/ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and emissions. An iterative process of simulation, experimentation and analysis, are being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston/ring dynamic and friction models have been developed and applied that illustrated the fundamental relationships between design parameters and friction losses. Various low-friction strategies and ring-design concepts have been explored, and engine experiments have been done on a full-scale Waukesha VGF F18 in-line 6 cylinder power generation engine rated at 370 kW at 1800 rpm. Current accomplishments include designing and testing ring-packs using a subtle top-compression-ring profile (skewed barrel design), lowering the tension of the oil-control ring, employing a negative twist to the scraper ring to control oil consumption. Initial test data indicate that piston ring-pack friction was reduced by 35% by lowering the oil-control ring tension alone, which corresponds to a 1.5% improvement in fuel efficiency. Although small in magnitude, this improvement represents a first step towards anticipated aggregate improvements from other strategies. Other ring-pack design strategies to lower friction have been identified, including reduced axial distance between the top two rings, tilted top-ring groove. Some of these configurations have been tested and some await further evaluation. Colorado State University performed the tests and Waukesha Engine Dresser, Inc. provided technical support. Key elements of the continuing work include optimizing the engine piston design, application of surface and material developments in conjunction with improved lubricant properties, system modeling and analysis, and continued technology

  5. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    SciTech Connect

    Victor W. Wong; Tian Tian; Grant Smedley

    2003-08-28

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston/ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and emissions. A detailed set of piston/ring dynamic and friction models have been developed and applied that illustrated the fundamental relationships between design parameters and friction losses. Various low-friction strategies and concepts have been explored, and engine experiments will validate these concepts. An iterative process of experimentation, simulation and analysis, will be followed with the goal of demonstrating a complete optimized low-friction engine system. As planned, MIT has developed guidelines for an initial set of low-friction piston-ring-pack designs. Current recommendations focus on subtle top-piston-ring and oil-control-ring characteristics. A full-scale Waukesha F18 engine has been installed at Colorado State University and testing of the baseline configuration is in progress. Components for the first design iteration are being procured. Subsequent work includes examining the friction and engine performance data and extending the analyses to other areas to evaluate opportunities for further friction improvement and the impact on oil consumption/emission and wear, towards demonstrating an optimized reduced-friction engine system.

  6. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    SciTech Connect

    Victor Wong; Tian Tian; Luke Moughon; Rosalind Takata; Jeffrey Jocsak

    2006-03-31

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis is being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston and piston-ring dynamic and friction models have been developed and applied that illustrate the fundamental relationships among mechanical, surface/material and lubricant design parameters and friction losses. Demonstration of low-friction ring-pack designs in the Waukesha VGF 18GL engine confirmed total engine FEMP (friction mean effective pressure) reduction of 7-10% from the baseline configuration without significantly increasing oil consumption or blow-by flow. This represents a substantial (30-40%) reduction of the ringpack friction alone. The measured FMEP reductions were in good agreement with the model predictions. Further improvements via piston, lubricant, and surface designs offer additional opportunities. Tests of low-friction lubricants are in progress and preliminary results are very promising. The combined analysis of lubricant and surface design indicates that low-viscosity lubricants can be very effective in reducing friction, subject to component wear for extremely thin oils, which can be mitigated with further lubricant formulation and/or engineered surfaces. Hence a combined approach of lubricant design and appropriate wear reduction offers improved potential for minimum engine friction loss. Piston friction studies indicate that a flatter piston with a more flexible skirt, together with optimizing the waviness and film thickness on the piston skirt offer significant friction reduction. Combined with low-friction ring-pack, material and lubricant parameters, a total power cylinder friction

  7. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    SciTech Connect

    Victor Wong; Tian Tian; Luke Moughon; Rosalind Takata; Jeffrey Jocsak

    2005-09-30

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis is being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston and piston-ring dynamic and friction models have been developed and applied that illustrate the fundamental relationships between design parameters and friction losses. Low friction ring designs have already been recommended in a previous phase, with full-scale engine validation partially completed. Current accomplishments include the addition of several additional power cylinder design areas to the overall system analysis. These include analyses of lubricant and cylinder surface finish and a parametric study of piston design. The Waukesha engine was found to be already well optimized in the areas of lubricant, surface skewness and honing cross-hatch angle, where friction reductions of 12% for lubricant, and 5% for surface characteristics, are projected. For the piston, a friction reduction of up to 50% may be possible by controlling waviness alone, while additional friction reductions are expected when other parameters are optimized. A total power cylinder friction reduction of 30-50% is expected, translating to an engine efficiency increase of two percentage points from its current baseline towards the goal of 50% efficiency. Key elements of the continuing work include further analysis and optimization of the engine piston design, in-engine testing of recommended lubricant and surface designs, design iteration and optimization of previously recommended technologies, and full-engine testing of a complete, optimized, low-friction power cylinder system.

  8. Low-Engine-Friction Technology for Advanced Natural-Gas Reciprocating Engines

    SciTech Connect

    Victor Wong; Tian Tian; G. Smedley; L. Moughon; Rosalind Takata; J. Jocsak

    2006-11-30

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis has been followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. In this program, a detailed set of piston and piston-ring dynamic and friction models have been adapted and applied that illustrate the fundamental relationships among mechanical, surface/material and lubricant design parameters and friction losses. Demonstration of low-friction ring-pack designs in the Waukesha VGF 18GL engine confirmed ring-pack friction reduction of 30-40%, which translates to total engine FEMP (friction mean effective pressure) reduction of 7-10% from the baseline configuration without significantly increasing oil consumption or blow-by flow. The study on surface textures, including roughness characteristics, cross hatch patterns, dimples and grooves have shown that even relatively small-scale changes can have a large effect on ring/liner friction, in some cases reducing FMEP by as much as 30% from a smooth surface case. The measured FMEP reductions were in good agreement with the model predictions. The combined analysis of lubricant and surface design indicates that low-viscosity lubricants can be very effective in reducing friction, subject to component wear for extremely thin oils, which can be mitigated with further lubricant formulation and/or engineered surfaces. Hence a combined approach of lubricant design and appropriate wear reduction offers improved potential for minimum engine friction loss. Testing of low-friction lubricants showed that total engine FMEP reduced by up to {approx}16.5% from the commercial reference oil without significantly increasing oil consumption or blow-by flow. Piston friction studies

  9. Advanced Natural Gas Reciprocating Engine: Parasitic Loss Control through Surface Modification

    SciTech Connect

    Farshid Sadeghi; Chin-Pei Wang

    2008-12-31

    This report presents results of our investigation on parasitic loss control through surface modification in reciprocating engine. In order to achieve the objectives several experimental and corresponding analytical models were designed and developed to corroborate our results. Four different test rigs were designed and developed to simulate the contact between the piston ring and cylinder liner (PRCL) contact. The Reciprocating Piston Test Rig (RPTR) is a novel suspended liner test apparatus which can be used to accurately measure the friction force and side load at the piston-cylinder interface. A mixed lubrication model for the complete ring-pack and piston skirt was developed to correlate with the experimental measurements. Comparisons between the experimental and analytical results showed good agreement. The results revealed that in the reciprocating engines higher friction occur near TDC and BDC of the stroke due to the extremely low piston speed resulting in boundary lubrication. A Small Engine Dynamometer Test Rig was also designed and developed to enable testing of cylinder liner under motored and fired conditions. Results of this study provide a baseline from which to measure the effect of surface modifications. The Pin on Disk Test Rig (POD) was used in a flat-on-flat configuration to study the friction effect of CNC machining circular pockets and laser micro-dimples. The results show that large and shallow circular pockets resulted in significant friction reduction. Deep circular pockets did not provide much load support. The Reciprocating Liner Test Rig (RLTR) was designed to simplifying the contact at the PRCL interface. Accurate measurement of friction was obtained using 3-axis piezoelectric force transducer. Two fiber optic sensors were used to measure the film thickness precisely. The results show that the friction force is reduced through the use of modified surfaces. The Shear Driven Test Rig (SDTR) was designed to simulate the mechanism of the

  10. Advanced Reciprocating Engine Systems (ARES) Research at Argonne National Laboratory. A Report

    SciTech Connect

    Gupta, Sreenath; Biruduganti, Muni; Bihari, Bipin; Sekar, Raj

    2014-08-01

    The goals of these experiments were to determine the potential of employing spectral measurements to deduce combustion metrics such as HRR, combustion temperatures, and equivalence ratios in a natural gas-fired reciprocating engine. A laser-ignited, natural gas-fired single-cylinder research engine was operated at various equivalence ratios between 0.6 and 1.0, while varying the EGR levels between 0% and maximum to thereby ensure steady combustion. Crank angle-resolved spectral signatures were collected over 266-795 nm, encompassing chemiluminescence emissions from OH*, CH*, and predominantly by CO2* species. Further, laser-induced gas breakdown spectra were recorded under various engine operating conditions.

  11. Temporal and spatial gait parameters in patients dependent on walking assistance after stroke: reliability and agreement between simple and advanced methods of assessment.

    PubMed

    Høyer, Ellen; Opheim, Arve; Strand, Liv Inger; Moe-Nilssen, Rolf

    2014-01-01

    The aim of this study was to investigate the reliability of temporal and spatial gait parameters in patients dependent on walking assistance after severe stroke, and to examine agreement between simple and advanced methods. Twenty-one patients, admitted for in-patient multidisciplinary rehabilitation, were assessed repeatedly for walking function, both in a test corridor and a gait laboratory (3D camera system) before and after 11 weeks of rehabilitation. The test-retest reliability was examined using intraclass correlation (ICC1.1), and measurement error was reported by within-subject standard deviation (Sw). The agreement between different methods for assessing walking speed, cadence and step length was explored by Bland-Altman plots. High to excellent test-retest reliability was found between trials, both when assessed in the corridor (ICC: 0.93-0.99) and in the laboratory (ICC: 0.88-0.99). Agreement between methods was satisfactory at baseline and was higher after the rehabilitation period. Agreement was found to be slightly better at lower walking speeds and for shorter step lengths. The results implicate that temporal-spatial gait parameters may be measured reliably by both simple and advanced methods in dependent walkers after stroke. A high level of agreement was found between the two methods for walking speed, cadence and average step length at both test points.

  12. Electromagnetic Reciprocity.

    SciTech Connect

    Aldridge, David F.

    2014-11-01

    A reciprocity theorem is an explicit mathematical relationship between two different wavefields that can exist within the same space - time configuration. Reciprocity theorems provi de the theoretical underpinning for mod ern full waveform inversion solutions, and also suggest practical strategies for speed ing up large - scale numerical modeling of geophysical datasets . In the present work, several previously - developed electromagnetic r eciprocity theorems are generalized to accommodate a broader range of medi um, source , and receiver types. Reciprocity relations enabling the interchange of various types of point sources and point receivers within a three - dimensional electromagnetic model are derived. Two numerical modeling algorithms in current use are successfully tested for adherence to reciprocity. Finally, the reciprocity theorem forms the point of departure for a lengthy derivation of electromagnetic Frechet derivatives. These mathe matical objects quantify the sensitivity of geophysical electromagnetic data to variatio ns in medium parameters, and thus constitute indispensable tools for solution of the full waveform inverse problem. ACKNOWLEDGEMENTS Sandia National Labor atories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000. Signif icant portions of the work reported herein were conducted under a Cooperative Research and Development Agreement (CRADA) between Sandia National Laboratories (SNL) and CARBO Ceramics Incorporated. The author acknowledges Mr. Chad Cannan and Mr. Terry Pa lisch of CARBO Ceramics, and Ms. Amy Halloran, manager of SNL's Geophysics and Atmospheric Sciences Department, for their interest in and encouragement of this work. Special thanks are due to Dr . Lewis C. Bartel ( recently retired from Sandia National Labo ratories and now a

  13. Reciprocal translocations

    SciTech Connect

    1993-12-31

    Chapter 26, describes reciprocal translocations of chromosomes: their occurrence, breakpoints, and multiple rearrangements. In addition, phenotypes of balanced and unbalanced translocation carriers and fetal death are discussed. Examples of translocation families are given. Meiosis and genetic risk in translocation carriers is presented. Finally, sperm chromosomes in meiotic segregation analysis is mentioned. 39 refs., 3 figs., 1 tab.

  14. Integrated Combined Heat and Power/Advanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications

    SciTech Connect

    2009-02-01

    Gas Technology Institute will collaborate with Integrated CHP Systems Corporation, West Virginia University, Vronay Engineering Services, KAR Engineering Associates, Pioneer Air Systems, and Energy Concepts Company to recover waste heat from reciprocating engines. The project will integrate waste heat recovery along with gas clean-up technology system improvements. This will address fuel quality issues that have hampered expanded use of opportunity fuels such as landfill gas, digester biogas, and coal mine methane. This will enable increased application of CHP using renewable and domestically derived opportunity fuels.

  15. Improved gait recognition by gait dynamics normalization.

    PubMed

    Liu, Zongyi; Sarkar, Sudeep

    2006-06-01

    Potential sources for gait biometrics can be seen to derive from two aspects: gait shape and gait dynamics. We show that improved gait recognition can be achieved after normalization of dynamics and focusing on the shape information. We normalize for gait dynamics using a generic walking model, as captured by a population Hidden Markov Model (pHMM) defined for a set of individuals. The states of this pHMM represent gait stances over one gait cycle and the observations are the silhouettes of the corresponding gait stances. For each sequence, we first use Viterbi decoding of the gait dynamics to arrive at one dynamics-normalized, averaged, gait cycle of fixed length. The distance between two sequences is the distance between the two corresponding dynamics-normalized gait cycles, which we quantify by the sum of the distances between the corresponding gait stances. Distances between two silhouettes from the same generic gait stance are computed in the linear discriminant analysis space so as to maximize the discrimination between persons, while minimizing the variations of the same subject under different conditions. The distance computation is constructed so that it is invariant to dilations and erosions of the silhouettes. This helps us handle variations in silhouette shape that can occur with changing imaging conditions. We present results on three different, publicly available, data sets. First, we consider the HumanlD Gait Challenge data set, which is the largest gait benchmarking data set that is available (122 subjects), exercising five different factors, i.e., viewpoint, shoe, surface, carrying condition, and time. We significantly improve the performance across the hard experiments involving surface change and briefcase carrying conditions. Second, we also show improved performance on the UMD gait data set that exercises time variations for 55 subjects. Third, on the CMU Mobo data set, we show results for matching across different walking speeds. It is worth

  16. Diabetic Foot Biomechanics and Gait Dysfunction

    PubMed Central

    Wrobel, James S.; Najafi, Bijan

    2010-01-01

    Background Diabetic foot complications represent significant morbidity and precede most of the lower extremity amputations performed. Peripheral neuropathy is a frequent complication of diabetes shown to affect gait. Glycosylation of soft tissues can also affect gait. The purpose of this review article is to highlight the changes in gait for persons with diabetes and highlight the effects of glycosylation on soft tissues at the foot–ground interface. Methods PubMed, the Cochrane Library, and EBSCOhost® on-line databases were searched for articles pertaining to diabetes and gait. Bibliographies from relevant manuscripts were also searched. Findings Patients with diabetes frequently exhibit a conservative gait strategy where there is slower walking speed, wider base of gait, and prolonged double support time. Glycosylation affects are observed in the lower extremities. Initially, skin thickness decreases and skin hardness increases; tendons thicken; muscles atrophy and exhibit activation delays; bones become less dense; joints have limited mobility; and fat pads are less thick, demonstrate fibrotic atrophy, migrate distally, and may be stiffer. Interpretation In conclusion, there do appear to be gait changes in patients with diabetes. These changes, coupled with local soft tissue changes from advanced glycosylated end products, also alter a patient’s gait, putting them at risk of foot ulceration. Better elucidation of these changes throughout the entire spectrum of diabetes disease can help design better treatments and potentially reduce the unnecessarily high prevalence of foot ulcers and amputation. PMID:20663446

  17. 32 CFR 148.1 - Intergency reciprocal acceptance .

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... security systems, preserve vitality of the U.S. industrial base, and advance national security objectives. ... reciprocal acceptance of security policies and procedures for approving, accrediting, and maintaining...

  18. 32 CFR 148.1 - Intergency reciprocal acceptance .

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... security systems, preserve vitality of the U.S. industrial base, and advance national security objectives. ... reciprocal acceptance of security policies and procedures for approving, accrediting, and maintaining...

  19. Reciprocating pellet press

    DOEpatents

    Jones, Charles W.

    1981-04-07

    A machine for pressing loose powder into pellets using a series of reciprocating motions has an interchangeable punch and die as its only accurately machines parts. The machine reciprocates horizontally between powder receiving and pressing positions. It reciprocates vertically to press, strip and release a pellet.

  20. Functional Neuroanatomy for Posture and Gait Control.

    PubMed

    Takakusaki, Kaoru

    2017-01-01

    Here we argue functional neuroanatomy for posture-gait control. Multi-sensory information such as somatosensory, visual and vestibular sensation act on various areas of the brain so that adaptable posture-gait control can be achieved. Automatic process of gait, which is steady-state stepping movements associating with postural reflexes including headeye coordination accompanied by appropriate alignment of body segments and optimal level of postural muscle tone, is mediated by the descending pathways from the brainstem to the spinal cord. Particularly, reticulospinal pathways arising from the lateral part of the mesopontine tegmentum and spinal locomotor network contribute to this process. On the other hand, walking in unfamiliar circumstance requires cognitive process of postural control, which depends on knowledges of self-body, such as body schema and body motion in space. The cognitive information is produced at the temporoparietal association cortex, and is fundamental to sustention of vertical posture and construction of motor programs. The programs in the motor cortical areas run to execute anticipatory postural adjustment that is optimal for achievement of goal-directed movements. The basal ganglia and cerebellum may affect both the automatic and cognitive processes of posturegait control through reciprocal connections with the brainstem and cerebral cortex, respectively. Consequently, impairments in cognitive function by damages in the cerebral cortex, basal ganglia and cerebellum may disturb posture-gait control, resulting in falling.

  1. Functional Neuroanatomy for Posture and Gait Control

    PubMed Central

    Takakusaki, Kaoru

    2017-01-01

    Here we argue functional neuroanatomy for posture-gait control. Multi-sensory information such as somatosensory, visual and vestibular sensation act on various areas of the brain so that adaptable posture-gait control can be achieved. Automatic process of gait, which is steady-state stepping movements associating with postural reflexes including headeye coordination accompanied by appropriate alignment of body segments and optimal level of postural muscle tone, is mediated by the descending pathways from the brainstem to the spinal cord. Particularly, reticulospinal pathways arising from the lateral part of the mesopontine tegmentum and spinal locomotor network contribute to this process. On the other hand, walking in unfamiliar circumstance requires cognitive process of postural control, which depends on knowledges of self-body, such as body schema and body motion in space. The cognitive information is produced at the temporoparietal association cortex, and is fundamental to sustention of vertical posture and construction of motor programs. The programs in the motor cortical areas run to execute anticipatory postural adjustment that is optimal for achievement of goal-directed movements. The basal ganglia and cerebellum may affect both the automatic and cognitive processes of posturegait control through reciprocal connections with the brainstem and cerebral cortex, respectively. Consequently, impairments in cognitive function by damages in the cerebral cortex, basal ganglia and cerebellum may disturb posture-gait control, resulting in falling. PMID:28122432

  2. 1st International Symposium on Gait and Balance in MS: Gait and Balance Measures in the Evaluation of People with MS

    PubMed Central

    Cameron, Michelle; Wagner, Joanne; Zackowski, Kathleen; Spain, Rebecca

    2012-01-01

    Gait and balance measures have particular potential as outcome measures in Multiple Sclerosis (MS) because, of the many hallmarks of MS disability, gait and balance dysfunction are present throughout the course of the disease, impact many aspects of a person's life, and progress over time. To highlight the importance and relevance of gait and balance measures in MS, explore novel measurements of gait and balance in MS, and discuss how gait, balance, and fall measures can best be used and developed in clinical and research settings, the 1st International Symposium on Gait and Balance in Multiple Sclerosis was held in Portland, Oregon, USA on October 1, 2011. This meeting brought together nearly 100 neurologists, physiatrists, physical therapists, occupational therapists, nurses, engineers, and others to discuss the current status and recent advances in the measurement of gait and balance in MS. Presentations focused on clinician-administered, self-administered, and instrumented measures of gait, balance, and falls in MS. PMID:22762000

  3. Cerebral Palsy Gait, Clinical Importance

    PubMed Central

    TUGUI, Raluca Dana; ANTONESCU, Dinu

    2013-01-01

    ABSTRACT Cerebral palsy refers to a lesion on an immature brain, that determines permanent neurological disorders. Knowing the exact cause of the disease does not alter the treatment management. The etiology is 2-2.5/1000 births and the rate is constant in the last 40-50 years because advances in medical technologies have permitted the survival of smaller and premature new born children. Gait analysis has four directions: kinematics (represents body movements analysis without calculating the forces), kinetics (represents body moments and forces), energy consumption (measured by oximetry), and neuromuscular activity (measured by EMG). Gait analysis can observe specific deviations in a patient, allowing us to be more accurate in motor diagnoses and treatment solutions: surgery intervention, botulinum toxin injection, use of orthosis, physical kinetic therapy, oral medications, baclofen pump. PMID:24790675

  4. Gait analysis: clinical facts.

    PubMed

    Baker, Richard; Esquenazi, Alberto; Benedetti, Maria G; Desloovere, Kaat

    2016-08-01

    Gait analysis is a well-established tool for the quantitative assessment of gait disturbances providing functional diagnosis, assessment for treatment planning, and monitoring of disease progress. There is a large volume of literature on the research use of gait analysis, but evidence on its clinical routine use supports a favorable cost-benefit ratio in a limited number of conditions. Initially gait analysis was introduced to clinical practice to improve the management of children with cerebral palsy. However, there is good evidence to extend its use to patients with various upper motor neuron diseases, and to lower limb amputation. Thereby, the methodology for properly conducting and interpreting the exam is of paramount relevance. Appropriateness of gait analysis prescription and reliability of data obtained are required in the clinical environment. This paper provides an overview on guidelines for managing a clinical gait analysis service and on the principal clinical domains of its application: cerebral palsy, stroke, traumatic brain injury and lower limb amputation.

  5. Reciprocity in directed networks

    NASA Astrophysics Data System (ADS)

    Yin, Mei; Zhu, Lingjiong

    2016-04-01

    Reciprocity is an important characteristic of directed networks and has been widely used in the modeling of World Wide Web, email, social, and other complex networks. In this paper, we take a statistical physics point of view and study the limiting entropy and free energy densities from the microcanonical ensemble, the canonical ensemble, and the grand canonical ensemble whose sufficient statistics are given by edge and reciprocal densities. The sparse case is also studied for the grand canonical ensemble. Extensions to more general reciprocal models including reciprocal triangle and star densities will likewise be discussed.

  6. Biofeedback for robotic gait rehabilitation

    PubMed Central

    Lünenburger, Lars; Colombo, Gery; Riener, Robert

    2007-01-01

    Background Development and increasing acceptance of rehabilitation robots as well as advances in technology allow new forms of therapy for patients with neurological disorders. Robot-assisted gait therapy can increase the training duration and the intensity for the patients while reducing the physical strain for the therapist. Optimal training effects during gait therapy generally depend on appropriate feedback about performance. Compared to manual treadmill therapy, there is a loss of physical interaction between therapist and patient with robotic gait retraining. Thus, it is difficult for the therapist to assess the necessary feedback and instructions. The aim of this study was to define a biofeedback system for a gait training robot and test its usability in subjects without neurological disorders. Methods To provide an overview of biofeedback and motivation methods applied in gait rehabilitation, previous publications and results from our own research are reviewed. A biofeedback method is presented showing how a rehabilitation robot can assess the patients' performance and deliver augmented feedback. For validation, three subjects without neurological disorders walked in a rehabilitation robot for treadmill training. Several training parameters, such as body weight support and treadmill speed, were varied to assess the robustness of the biofeedback calculation to confounding factors. Results The biofeedback values correlated well with the different activity levels of the subjects. Changes in body weight support and treadmill velocity had a minor effect on the biofeedback values. The synchronization of the robot and the treadmill affected the biofeedback values describing the stance phase. Conclusion Robot-aided assessment and feedback can extend and improve robot-aided training devices. The presented method estimates the patients' gait performance with the use of the robot's existing sensors, and displays the resulting biofeedback values to the patients and

  7. Reciprocating Linear Electric Motor

    NASA Technical Reports Server (NTRS)

    Goldowsky, M. P.

    1984-01-01

    Features include structural simplicity and good force/displacement characteristics. Reciprocating motor has simple, rugged construction, relatively low reciprocating weight, improved power delivery, and improved force control. Wear reduced by use of magnetic bearings. Intended to provide drivers for long-lived Stirling-cycle cryogenic refrigerators, concept has less exotic applications, such as fuel pumps.

  8. Reciprocal NUT spacetimes

    NASA Astrophysics Data System (ADS)

    Momeni, Davood; Chattopadhyay, Surajit; Myrzakulov, Ratbay

    2015-05-01

    In this paper, we study the Ehlers' transformation (sometimes called gravitational duality rotation) for reciprocal static metrics. First, we introduce the concept of reciprocal metric. We prove a theorem which shows how we can construct a certain new static solution of Einstein field equations using a seed metric. Later, we investigate the family of stationary spacetimes of such reciprocal metrics. The key here is a theorem from Ehlers', which relates any static vacuum solution to a unique stationary metric. The stationary metric has a magnetic charge. The spacetime represents Newman-Unti-Tamburino (NUT) solutions. Since any stationary spacetime can be decomposed into a 1 + 3 time-space decomposition, Einstein field equations for any stationary spacetime can be written in the form of Maxwell's equations for gravitoelectromagnetic fields. Further, we show that this set of equations is invariant under reciprocal transformations. An additional point is that the NUT charge changes the sign. As an instructive example, by starting from the reciprocal Schwarzschild as a spherically symmetric solution and reciprocal Morgan-Morgan disk model as seed metrics we find their corresponding stationary spacetimes. Starting from any static seed metric, performing the reciprocal transformation and by applying an additional Ehlers' transformation we obtain a family of NUT spaces with negative NUT factor (reciprocal NUT factors).

  9. The Value of Reciprocity

    ERIC Educational Resources Information Center

    Molm, Linda D.; Schaefer, David R.; Collett, Jessica L.

    2007-01-01

    The value of reciprocity in social exchange potentially comprises both instrumental value (the value of the actual benefits received from exchange) and communicative or symbolic value (the expressive and uncertainty reduction value conveyed by features of the act of reciprocity itself). While all forms of exchange provide instrumental value, we…

  10. The Structure of Reciprocity

    ERIC Educational Resources Information Center

    Molm, Linda D.

    2010-01-01

    Reciprocity is one of the defining features of social exchange and social life, yet exchange theorists have tended to take it for granted. Drawing on work from a decade-long theoretical research program, I argue that reciprocity is structured and variable across different forms of exchange, that these variations in the structure of reciprocity…

  11. Reciprocity of weighted networks

    PubMed Central

    Squartini, Tiziano; Picciolo, Francesco; Ruzzenenti, Franco; Garlaschelli, Diego

    2013-01-01

    In directed networks, reciprocal links have dramatic effects on dynamical processes, network growth, and higher-order structures such as motifs and communities. While the reciprocity of binary networks has been extensively studied, that of weighted networks is still poorly understood, implying an ever-increasing gap between the availability of weighted network data and our understanding of their dyadic properties. Here we introduce a general approach to the reciprocity of weighted networks, and define quantities and null models that consistently capture empirical reciprocity patterns at different structural levels. We show that, counter-intuitively, previous reciprocity measures based on the similarity of mutual weights are uninformative. By contrast, our measures allow to consistently classify different weighted networks according to their reciprocity, track the evolution of a network's reciprocity over time, identify patterns at the level of dyads and vertices, and distinguish the effects of flux (im)balances or other (a)symmetries from a true tendency towards (anti-)reciprocation. PMID:24056721

  12. [Antibiotics and gait disorders].

    PubMed

    Gomez-Porro, P; Vinagre-Aragon, A; Zabala-Goiburu, J A

    2016-12-01

    The neurological toxicity of many antibiotics has been reported in a number of articles and clinical notes. In this review antibiotics are classified according to the physiopathogenic mechanism that can give rise to a gait disorder, taking both clinical and experimental data into account. An exhaustive search was conducted in Google Scholar and PubMed with the aim of finding reviews, articles and clinical cases dealing with gait disorders secondary to different antibiotics. The different antibiotics were separated according to the physiopathogenic mechanism that could cause them to trigger a gait disorder. They were classified into antibiotics capable of producing cerebellar ataxia, vestibular ataxia, sensitive ataxia or an extrapyramidal gait disorder. The main aim was to group all the drugs that can give rise to a gait disorder, in order to facilitate the clinical suspicion and, consequently, the management of patients.

  13. Recognition using gait.

    SciTech Connect

    Koch, Mark William

    2007-09-01

    Gait or an individual's manner of walking, is one approach for recognizing people at a distance. Studies in psychophysics and medicine indicate that humans can recognize people by their gait and have found twenty-four different components to gait that taken together make it a unique signature. Besides not requiring close sensor contact, gait also does not necessarily require a cooperative subject. Using video data of people walking in different scenarios and environmental conditions we develop and test an algorithm that uses shape and motion to identify people from their gait. The algorithm uses dynamic time warping to match stored templates against an unknown sequence of silhouettes extracted from a person walking. While results under similar constraints and conditions are very good, the algorithm quickly degrades with varying conditions such as surface and clothing.

  14. Animal Gaits and Symmetry

    NASA Astrophysics Data System (ADS)

    Golubitsky, Martin

    2012-04-01

    Many gaits of four-legged animals are described by symmetry. For example, when a horse paces it moves both left legs in unison and then both right legs and so on. The motion is described by two symmetries: Interchange front and back legs, and swap left and right legs with a half-period phase shift. Biologists postulate the existence of a central pattern generator (CPG) in the neuronal system that sends periodic signals to the legs. CPGs can be thought of as electrical circuits that produce periodic signals and can be modeled by systems with symmetry. In this lecture we discuss animal gaits; use gait symmetries to construct a simplest CPG architecture that naturally produces quadrupedal gait rhythms; and make several testable predictions about gaits.

  15. Gait Analysis Methods for Rodent Models of Osteoarthritis

    PubMed Central

    Jacobs, Brittany Y.; Kloefkorn, Heidi E.; Allen, Kyle D.

    2014-01-01

    Patients with osteoarthritis (OA) primarily seek treatment due to pain and disability, yet the primary endpoints for rodent OA models tend to be histological measures of joint destruction. The discrepancy between clinical and preclinical evaluations is problematic, given that radiographic evidence of OA in humans does not always correlate to the severity of patient-reported symptoms. Recent advances in behavioral analyses have provided new methods to evaluate disease sequelae in rodents. Of particular relevance to rodent OA models are methods to assess rodent gait. While obvious differences exist between quadrupedal and bipedal gait sequences, the gait abnormalities seen in humans and in rodent OA models reflect similar compensatory behaviors that protect an injured limb from loading. The purpose of this review is to describe these compensations and current methods used to assess rodent gait characteristics, while detailing important considerations for the selection of gait analysis methods in rodent OA models. PMID:25160712

  16. A Grassmann graph embedding framework for gait analysis

    NASA Astrophysics Data System (ADS)

    Connie, Tee; Goh, Michael Kah Ong; Teoh, Andrew Beng Jin

    2014-12-01

    Gait recognition is important in a wide range of monitoring and surveillance applications. Gait information has often been used as evidence when other biometrics is indiscernible in the surveillance footage. Building on recent advances of the subspace-based approaches, we consider the problem of gait recognition on the Grassmann manifold. We show that by embedding the manifold into reproducing kernel Hilbert space and applying the mechanics of graph embedding on such manifold, significant performance improvement can be obtained. In this work, the gait recognition problem is studied in a unified way applicable for both supervised and unsupervised configurations. Sparse representation is further incorporated in the learning mechanism to adaptively harness the local structure of the data. Experiments demonstrate that the proposed method can tolerate variations in appearance for gait identification effectively.

  17. Gait analysis methods for rodent models of osteoarthritis.

    PubMed

    Jacobs, Brittany Y; Kloefkorn, Heidi E; Allen, Kyle D

    2014-10-01

    Patients with osteoarthritis (OA) primarily seek treatment due to pain and disability, yet the primary endpoints for rodent OA models tend to be histological measures of joint destruction. The discrepancy between clinical and preclinical evaluations is problematic, given that radiographic evidence of OA in humans does not always correlate to the severity of patient-reported symptoms. Recent advances in behavioral analyses have provided new methods to evaluate disease sequelae in rodents. Of particular relevance to rodent OA models are methods to assess rodent gait. While obvious differences exist between quadrupedal and bipedal gait sequences, the gait abnormalities seen in humans and in rodent OA models reflect similar compensatory behaviors that protect an injured limb from loading. The purpose of this review is to describe these compensations and current methods used to assess rodent gait characteristics, while detailing important considerations for the selection of gait analysis methods in rodent OA models.

  18. Gait or Walking Problems

    MedlinePlus

    ... a device is justified,” says Dr. Aisen. Gait Research & Technology At present, people with walking limitations related to ... independent through physical therapy, exercise, medication, and assistive ... is optimistic that research being done in other conditions, such as spinal ...

  19. Importance of Gait Training

    MedlinePlus

    ... that the prosthetist and therapist remain in close communication when gait train- ing is occurring since any ... of these strategies to get the best outcome. Communication and teamwork between prosthetists and physical thera- pists ...

  20. Symmetrical gait descriptions

    NASA Astrophysics Data System (ADS)

    Dunajewski, Adam; Dusza, Jacek J.; Rosado Muñoz, Alfredo

    2014-11-01

    The article presents a proposal for the description of human gait as a periodic and symmetric process. Firstly, the data for researches was obtained in the Laboratory of Group SATI in the School of Engineering of University of Valencia. Then, the periodical model - Mean Double Step (MDS) was made. Finally, on the basis of MDS, the symmetrical models - Left Mean Double Step and Right Mean Double Step (LMDS and RMDS) could be created. The method of various functional extensions was used. Symmetrical gait models can be used to calculate the coefficients of asymmetry at any time or phase of the gait. In this way it is possible to create asymmetry, function which better describes human gait dysfunction. The paper also describes an algorithm for calculating symmetric models, and shows exemplary results based on the experimental data.

  1. Inertial Sensor-Based Gait Recognition: A Review

    PubMed Central

    Sprager, Sebastijan; Juric, Matjaz B.

    2015-01-01

    With the recent development of microelectromechanical systems (MEMS), inertial sensors have become widely used in the research of wearable gait analysis due to several factors, such as being easy-to-use and low-cost. Considering the fact that each individual has a unique way of walking, inertial sensors can be applied to the problem of gait recognition where assessed gait can be interpreted as a biometric trait. Thus, inertial sensor-based gait recognition has a great potential to play an important role in many security-related applications. Since inertial sensors are included in smart devices that are nowadays present at every step, inertial sensor-based gait recognition has become very attractive and emerging field of research that has provided many interesting discoveries recently. This paper provides a thorough and systematic review of current state-of-the-art in this field of research. Review procedure has revealed that the latest advanced inertial sensor-based gait recognition approaches are able to sufficiently recognise the users when relying on inertial data obtained during gait by single commercially available smart device in controlled circumstances, including fixed placement and small variations in gait. Furthermore, these approaches have also revealed considerable breakthrough by realistic use in uncontrolled circumstances, showing great potential for their further development and wide applicability. PMID:26340634

  2. Inertial Sensor-Based Gait Recognition: A Review.

    PubMed

    Sprager, Sebastijan; Juric, Matjaz B

    2015-09-02

    With the recent development of microelectromechanical systems (MEMS), inertial sensors have become widely used in the research of wearable gait analysis due to several factors, such as being easy-to-use and low-cost. Considering the fact that each individual has a unique way of walking, inertial sensors can be applied to the problem of gait recognition where assessed gait can be interpreted as a biometric trait. Thus, inertial sensor-based gait recognition has a great potential to play an important role in many security-related applications. Since inertial sensors are included in smart devices that are nowadays present at every step, inertial sensor-based gait recognition has become very attractive and emerging field of research that has provided many interesting discoveries recently. This paper provides a thorough and systematic review of current state-of-the-art in this field of research. Review procedure has revealed that the latest advanced inertial sensor-based gait recognition approaches are able to sufficiently recognise the users when relying on inertial data obtained during gait by single commercially available smart device in controlled circumstances, including fixed placement and small variations in gait. Furthermore, these approaches have also revealed considerable breakthrough by realistic use in uncontrolled circumstances, showing great potential for their further development and wide applicability.

  3. Gait Analysis Using Wearable Sensors

    PubMed Central

    Tao, Weijun; Liu, Tao; Zheng, Rencheng; Feng, Hutian

    2012-01-01

    Gait analysis using wearable sensors is an inexpensive, convenient, and efficient manner of providing useful information for multiple health-related applications. As a clinical tool applied in the rehabilitation and diagnosis of medical conditions and sport activities, gait analysis using wearable sensors shows great prospects. The current paper reviews available wearable sensors and ambulatory gait analysis methods based on the various wearable sensors. After an introduction of the gait phases, the principles and features of wearable sensors used in gait analysis are provided. The gait analysis methods based on wearable sensors is divided into gait kinematics, gait kinetics, and electromyography. Studies on the current methods are reviewed, and applications in sports, rehabilitation, and clinical diagnosis are summarized separately. With the development of sensor technology and the analysis method, gait analysis using wearable sensors is expected to play an increasingly important role in clinical applications. PMID:22438763

  4. Gait analysis using wearable sensors.

    PubMed

    Tao, Weijun; Liu, Tao; Zheng, Rencheng; Feng, Hutian

    2012-01-01

    Gait analysis using wearable sensors is an inexpensive, convenient, and efficient manner of providing useful information for multiple health-related applications. As a clinical tool applied in the rehabilitation and diagnosis of medical conditions and sport activities, gait analysis using wearable sensors shows great prospects. The current paper reviews available wearable sensors and ambulatory gait analysis methods based on the various wearable sensors. After an introduction of the gait phases, the principles and features of wearable sensors used in gait analysis are provided. The gait analysis methods based on wearable sensors is divided into gait kinematics, gait kinetics, and electromyography. Studies on the current methods are reviewed, and applications in sports, rehabilitation, and clinical diagnosis are summarized separately. With the development of sensor technology and the analysis method, gait analysis using wearable sensors is expected to play an increasingly important role in clinical applications.

  5. View Invariant Gait Recognition

    NASA Astrophysics Data System (ADS)

    Seely, Richard D.; Goffredo, Michela; Carter, John N.; Nixon, Mark S.

    Recognition by gait is of particular interest since it is the biometric that is available at the lowest resolution, or when other biometrics are (intentionally) obscured. Gait as a biometric has now shown increasing recognition capability. There are many approaches and these show that recognition can achieve excellent performance on current large databases. The majority of these approaches are planar 2D, largely since the early large databases featured subjects walking in a plane normal to the camera view. To extend deployment capability, we need viewpoint invariant gait biometrics. We describe approaches where viewpoint invariance is achieved by 3D approaches or in 2D. In the first group, the identification relies on parameters extracted from the 3D body deformation during walking. These methods use several video cameras and the 3D reconstruction is achieved after a camera calibration process. On the other hand, the 2D gait biometric approaches use a single camera, usually positioned perpendicular to the subject’s walking direction. Because in real surveillance scenarios a system that operates in an unconstrained environment is necessary, many of the recent gait analysis approaches are orientated toward view-invariant gait recognition.

  6. Evolution of cooperation by generalized reciprocity

    PubMed Central

    Pfeiffer, Thomas; Rutte, Claudia; Killingback, Timothy; Taborsky, Michael; Bonhoeffer, Sebastian

    2005-01-01

    The evolution of cooperation by direct reciprocity requires that individuals recognize their present partner and remember the outcome of their last encounter with that specific partner. Direct reciprocity thus requires advanced cognitive abilities. Here, we demonstrate that if individuals repeatedly interact within small groups with different partners in a two person Prisoner's Dilemma, cooperation can emerge and also be maintained in the absence of such cognitive capabilities. It is sufficient for an individual to base their decision of whether or not to cooperate on the outcome of their last encounter—even if it was with a different partner. PMID:16024372

  7. Toward Pervasive Gait Analysis With Wearable Sensors: A Systematic Review.

    PubMed

    Chen, Shanshan; Lach, John; Lo, Benny; Yang, Guang-Zhong

    2016-11-01

    After decades of evolution, measuring instruments for quantitative gait analysis have become an important clinical tool for assessing pathologies manifested by gait abnormalities. However, such instruments tend to be expensive and require expert operation and maintenance besides their high cost, thus limiting them to only a small number of specialized centers. Consequently, gait analysis in most clinics today still relies on observation-based assessment. Recent advances in wearable sensors, especially inertial body sensors, have opened up a promising future for gait analysis. Not only can these sensors be more easily adopted in clinical diagnosis and treatment procedures than their current counterparts, but they can also monitor gait continuously outside clinics - hence providing seamless patient analysis from clinics to free-living environments. The purpose of this paper is to provide a systematic review of current techniques for quantitative gait analysis and to propose key metrics for evaluating both existing and emerging methods for qualifying the gait features extracted from wearable sensors. It aims to highlight key advances in this rapidly evolving research field and outline potential future directions for both research and clinical applications.

  8. Climbing favours the tripod gait over alternative faster insect gaits

    NASA Astrophysics Data System (ADS)

    Ramdya, Pavan; Thandiackal, Robin; Cherney, Raphael; Asselborn, Thibault; Benton, Richard; Ijspeert, Auke Jan; Floreano, Dario

    2017-02-01

    To escape danger or catch prey, running vertebrates rely on dynamic gaits with minimal ground contact. By contrast, most insects use a tripod gait that maintains at least three legs on the ground at any given time. One prevailing hypothesis for this difference in fast locomotor strategies is that tripod locomotion allows insects to rapidly navigate three-dimensional terrain. To test this, we computationally discovered fast locomotor gaits for a model based on Drosophila melanogaster. Indeed, the tripod gait emerges to the exclusion of many other possible gaits when optimizing fast upward climbing with leg adhesion. By contrast, novel two-legged bipod gaits are fastest on flat terrain without adhesion in the model and in a hexapod robot. Intriguingly, when adhesive leg structures in real Drosophila are covered, animals exhibit atypical bipod-like leg coordination. We propose that the requirement to climb vertical terrain may drive the prevalence of the tripod gait over faster alternative gaits with minimal ground contact.

  9. Exercises to Improve Gait Abnormalities

    MedlinePlus

    ... Home About iChip Articles Directories Videos Resources Contact Exercises to Improve Gait Abnormalities Home » Article Categories » Exercise and Fitness Font Size: A A A A Exercises to Improve Gait Abnormalities Next Page The manner ...

  10. Objective Biomarkers of Balance and Gait for Parkinson’s Disease using Body-worn Sensors

    PubMed Central

    Horak, Fay B; Mancini, Martina

    2014-01-01

    Balance and gait impairments characterize progression of Parkinson’s disease (PD), predict fall risk, and are important contributors to reduced quality of life. Advances in technology of small, body-worn inertial sensors have made it possible to develop quick, objective measures of balance and gait impairments in the clinic for research trials and clinical practice. Objective balance and gait metrics may eventually provide useful biomarkers for PD. In fact, objective balance and gait measures are already being used as surrogate end-points for demonstrating clinical efficacy of new treatments, in place of counting falls from diaries, using stop-watch measures of gait speed, or clinical balance rating scales. This review summarizes the types of objective measures available from body-worn sensors. We organize the metrics based on the neural control system for mobility affected by PD: postural stability in stance, postural responses, gait initiation, gait (temporal-spatial lower and upper body coordination and dynamic equilibrium), postural transitions, and freezing of gait. However, the explosion of metrics derived by wearable sensors during prescribed balance and gait tasks that are abnormal in people with PD do not yet qualify as behavioral biomarkers because many balance and gait impairments observed in PD are not specific to the disease, nor shown to be related to specific pathophysiologic biomarkers. In the future, the most useful balance and gait biomarkers for PD will be those that are sensitive and specific for early PD and related to the underlying disease process. PMID:24132842

  11. Objective biomarkers of balance and gait for Parkinson's disease using body-worn sensors.

    PubMed

    Horak, Fay B; Mancini, Martina

    2013-09-15

    Balance and gait impairments characterize the progression of Parkinson's disease (PD), predict the risk of falling, and are important contributors to reduced quality of life. Advances in technology of small, body-worn, inertial sensors have made it possible to develop quick, objective measures of balance and gait impairments in the clinic for research trials and clinical practice. Objective balance and gait metrics may eventually provide useful biomarkers for PD. In fact, objective balance and gait measures are already being used as surrogate endpoints for demonstrating clinical efficacy of new treatments, in place of counting falls from diaries, using stop-watch measures of gait speed, or clinical balance rating scales. This review summarizes the types of objective measures available from body-worn sensors. The metrics are organized based on the neural control system for mobility affected by PD: postural stability in stance, postural responses, gait initiation, gait (temporal-spatial lower and upper body coordination and dynamic equilibrium), postural transitions, and freezing of gait. However, the explosion of metrics derived by wearable sensors during prescribed balance and gait tasks, which are abnormal in individuals with PD, do not yet qualify as behavioral biomarkers, because many balance and gait impairments observed in PD are not specific to the disease, nor have they been related to specific pathophysiologic biomarkers. In the future, the most useful balance and gait biomarkers for PD will be those that are sensitive and specific for early PD and are related to the underlying disease process.

  12. Reciprocal Predicates in Japanese.

    ERIC Educational Resources Information Center

    Ishii, Yasuo

    A study of reciprocals in Japanese compares two kinds: (1) a verbal suffix "aw"; and (2) an NP argument "otagai." Although "otagai" appears to be taken care of by syntactic binding theory, it is proposed that there is no evidence for the existence of a syntactic position of the object NP in the case of "aw." The suffix can be characterized as…

  13. Series of Reciprocal Triangular Numbers

    ERIC Educational Resources Information Center

    Bruckman, Paul; Dence, Joseph B.; Dence, Thomas P.; Young, Justin

    2013-01-01

    Reciprocal triangular numbers have appeared in series since the very first infinite series were summed. Here we attack a number of subseries of the reciprocal triangular numbers by methodically expressing them as integrals.

  14. Reversible improvement in severe freezing of gait from Parkinson's disease with unilateral interleaved subthalamic brain stimulation.

    PubMed

    Brosius, Stephanie N; Gonzalez, Christopher L; Shuresh, Joshita; Walker, Harrison C

    2015-12-01

    Freezing of gait causes considerable morbidity in patients with Parkinson's disease and is often refractory to conventional treatments. In this double-blind, randomized evaluation, unilateral interleaved deep brain stimulation in the subthalamic nucleus/substantia nigra pars reticulata region significantly improved freezing of gait in a patient with advanced Parkinson's disease.

  15. Gait and balance disorders.

    PubMed

    Masdeu, Joseph C

    2016-01-01

    This chapter focuses on one of the most common types of neurologic disorders: altered walking. Walking impairment often reflects disease of the neurologic structures mediating gait, balance or, most often, both. These structures are distributed along the neuraxis. For this reason, this chapter is introduced by a brief description of the neurobiologic underpinning of walking, stressing information that is critical for imaging, namely, the anatomic representation of gait and balance mechanisms. This background is essential not only in order to direct the relevant imaging tools to the regions more likely to be affected but also to interpret correctly imaging findings that may not be related to the walking deficit object of clinical study. The chapter closes with a discussion on how to image some of the most frequent etiologies causing gait or balance impairment. However, it focuses on syndromes not already discussed in other chapters of this volume, such as Parkinson's disease and other movement disorders, already discussed in Chapter 48, or cerebellar ataxia, in Chapter 23, in the previous volume. As regards vascular disease, the spastic hemiplegia most characteristic of brain disease needs little discussion, while the less well-understood effects of microvascular disease are extensively reviewed here, together with the imaging approach.

  16. Temporal and spatial organization of gait-related electrocortical potentials.

    PubMed

    Knaepen, Kristel; Mierau, Andreas; Tellez, Helio Fernandez; Lefeber, Dirk; Meeusen, Romain

    2015-07-10

    To advance gait rehabilitation research it is of great importance to understand the supraspinal control of walking. In this study, the temporal and spatial characteristics of averaged electrocortical activity during treadmill walking in healthy subjects was assessed. Electroencephalography data were recorded from 32 scalp locations, averaged across trials, and related to phases of the gait cycle based on the detection of left heel strike. A characteristic temporal pattern of positive and negative potentials, similar to movement-related cortical potentials, and related to the gait cycle was observed over the cortical leg representation area. Source localization analysis revealed that mainly the primary somatosensory, somatosensory association, primary motor and cingulate cortex were activated during walking. The negative peaks of the gait-related cortical potential were associated with activity predominantly in the cingulate and prefrontal cortex, while the primary motor, primary somatosensory and somatosensory association cortex were mainly active during the positive peaks. This study identified gait-related cortical potentials during walking. The results indicate a widely distributed cortical network involved in gait control.

  17. Reciprocating magnetic refrigerator

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1985-01-01

    A 4 to 15 K magnetic refrigerator to test as an alternative to the Joule-Thomson circuit as the low temperature stage of a 4 to 300 K closed-cycle refrigerator was developed. The reciprocating magnetic refrigerator consists of two matrices of gadolinium gallium garnet spheres located in tandem on a single piston which alternately moves each matrix into a 7 telsa magnetic field. A separate helium gas circuit is used as the heat exchange mechanism for the low and the high temperature extremes of the magnetic refrigerator. Details of the design and results of the initial refrigerator component tests are presented.

  18. High pressure reciprocating pump

    SciTech Connect

    Besic, D.

    1990-05-01

    This patent describes an improvement in a reciprocating pump having a plunger and a pumping chamber. It comprises: the plunger having a bore communicating with an intersection opening and wherein the plunger incudes a central axis; a suction valve and a discharge valve, each having an axis of actuation parallel to a central axis of the plunger; the suction valve comprising a cylindrical core having a central passageway, and the core is slidably received by a seating member and resiliently biased to the seating member.

  19. Climbing favours the tripod gait over alternative faster insect gaits

    PubMed Central

    Ramdya, Pavan; Thandiackal, Robin; Cherney, Raphael; Asselborn, Thibault; Benton, Richard; Ijspeert, Auke Jan; Floreano, Dario

    2017-01-01

    To escape danger or catch prey, running vertebrates rely on dynamic gaits with minimal ground contact. By contrast, most insects use a tripod gait that maintains at least three legs on the ground at any given time. One prevailing hypothesis for this difference in fast locomotor strategies is that tripod locomotion allows insects to rapidly navigate three-dimensional terrain. To test this, we computationally discovered fast locomotor gaits for a model based on Drosophila melanogaster. Indeed, the tripod gait emerges to the exclusion of many other possible gaits when optimizing fast upward climbing with leg adhesion. By contrast, novel two-legged bipod gaits are fastest on flat terrain without adhesion in the model and in a hexapod robot. Intriguingly, when adhesive leg structures in real Drosophila are covered, animals exhibit atypical bipod-like leg coordination. We propose that the requirement to climb vertical terrain may drive the prevalence of the tripod gait over faster alternative gaits with minimal ground contact. PMID:28211509

  20. Vertically reciprocating auger

    NASA Technical Reports Server (NTRS)

    Etheridge, Mark; Morgan, Scott; Fain, Robert; Pearson, Jonathan; Weldi, Kevin; Woodrough, Stephen B., Jr.

    1988-01-01

    The mathematical model and test results developed for the Vertically Reciprocating Auger (VRA) are summarized. The VRA is a device capable of transporting cuttings that result from below surface drilling. It was developed chiefly for the lunar surface, where conventional fluid flushing while drilling would not be practical. The VRA uses only reciprocating motion and transports material through reflections with the surface above. Particles are reflected forward and land ahead of radially placed fences, which prevent the particles from rolling back down the auger. Three input wave forms are considered to drive the auger. A modified sawtooth wave form was chosen for testing, over a modified square wave or sine wave, due to its simplicity and effectiveness. The three-dimensional mathematical model predicted a sand throughput rate of 0.2667 pounds/stroke, while the actual test setup transported 0.075 pounds/stroke. Based on this result, a correction factor of 0.281 is suggested for a modified sawtooth input.

  1. Reciprocal relations in electroacoustics

    SciTech Connect

    Chassagne, C.; Bedeaux, D.

    2014-07-28

    In a colloidal suspension, one can generate sound waves by the application of an alternating electric field (Electrokinetic Sonic Amplitude, i.e., ESA). Another phenomenon is electrophoresis (Electrophoretic Mobility, i.e., EM) where a colloidal particle moves relative to the solvent in an electric field. Vice versa one can generate electric fields or electric currents by sound waves (Colloid Vibration Potential/Current, i.e., CVP/CVI). In 1988 and 1990, O’Brien [J. Fluid Mech. 190, 71–86 (1988) and O’Brien, J. Fluid Mech. 212, 81–93 (1990)] derived a reciprocal relation between the proportionality coefficients of the EM and CVI phenomena. In this paper, we will generalize his proof by constructing the relevant entropy production from which the linear force-flux relations follow. General relations are derived for electrolyte solutions, of which colloidal suspensions are a particular case. The relations between CVI, CVP, EM, and ESA are discussed. O’Brien's reciprocal relation then follows as an Onsager relation. The relation is valid for any applied electric field frequency, particle surface charge and particle concentration (even in the presence of particle-particle interactions) provided the system is isotropic.

  2. Expressing gait-line symmetry in able-bodied gait

    PubMed Central

    Jeleń, Piotr; Wit, Andrzej; Dudziński, Krzysztof; Nolan, Lee

    2008-01-01

    Background Gait-lines, or the co-ordinates of the progression of the point of application of the vertical ground reaction force, are a commonly reported parameter in most in-sole measuring systems. However, little is known about what is considered a "normal" or "abnormal" gait-line pattern or level of asymmetry. Furthermore, no reference databases on healthy young populations are available for this parameter. Thus the aim of this study is to provide such reference data in order to allow this tool to be better used in gait analysis. Methods Vertical ground reaction force data during several continuous gait cycles were collected using a Computer Dyno Graphy in-sole system® for 77 healthy young able-bodied subjects. A curve (termed gait-line) was obtained from the co-ordinates of the progression of the point of application of the force. An Asymmetry Coefficient Curve (AsC) was calculated between the mean gait-lines for the left and right foot for each subject. AsC limits of ± 1.96 and 3 standard deviations (SD) from the mean were then calculated. Gait-line data from 5 individual subjects displaying pathological gait due to disorders relating to the discopathy of the lumbar spine (three with considerable plantarflexor weakness, two with considerable dorsiflexor weakness) were compared to the AsC results from the able-bodied group. Results The ± 1.96 SD limit suggested that non-pathological gait falls within 12–16% asymmetry for gait-lines. Those exhibiting pathological gait fell outside both the ± 1.96 and ± 3SD limits at several points during stance. The subjects exhibiting considerable plantarflexor weakness all fell outside the ± 1.96SD limit from 30–50% of foot length to toe-off while those exhibiting considerable dorsiflexor weakness fell outside the ± 1.96SD limit between initial contact to 25–40% of foot length, and then surpassed the ± 3SD limit after 55–80% of foot length. Conclusion This analysis of gait-line asymmetry provides a reference

  3. Gait phenotype from MCI to moderate dementia: results from the GOOD initiative

    PubMed Central

    Allali, Gilles; Annweiler, Cédric; Blumen, Helena M.; Callisaya, Michele L.; De Cock, Anne-Marie; Kressig, Reto W.; Srikanth, Velandai; Steinmetz, Jean-Paul; Verghese, Joe; Beauchet, Olivier

    2015-01-01

    Background The differences in gait abnormalities from the earliest to the latter stages of dementia and in the different subtypes of dementia have not been fully examined. This study aims to compare spatio-temporal gait parameters in cognitively healthy individuals, patients with amnestic (aMCI) and non-amnestic (naMCI) MCI, and patients with mild and moderate stages of Alzheimer’s disease (AD) and non-Alzheimer’s disease (non-AD). Methods Based on a cross-sectional design, 1719 participants (77.4±7.3 years, 53.9% female) were recruited from cohorts from seven countries participating in the “Gait, cOgnitiOn & Decline” initiative. Mean values and coefficients of variation of spatio-temporal gait parameters were measured during normal pace walking with the GAITRite system at all sites. Results Performance of spatio-temporal gait parameters declined in parallel to the stage of cognitive decline from MCI status to moderate dementia. Gait parameters of patients with naMCI were more disturbed compared to patients with aMCI, and MCI subgroups performed better than demented patients. Patients with non-AD dementia had worse gait performance than those with AD dementia. This degradation of the gait parameters was similar between mean values and coefficients of variation of spatio-temporal gait parameters in the earliest stages of cognitive decline, but different in the most advanced stages, especially in the non-AD subtypes. Conclusions Spatio-temporal gait parameters were more disturbed in the advanced stages of dementia, and more affected in the non-AD dementias than in AD. These findings suggest that quantitative gait parameters could be used as a surrogate marker for improving the diagnosis of dementia. PMID:26662508

  4. Toward a Behavior of Reciprocity

    PubMed Central

    Gernsbacher, Morton Ann

    2014-01-01

    It is frequently believed that autism is characterized by a lack of social or emotional reciprocity. In this article, I question that assumption by demonstrating how many professionals—researchers and clinicians—and likewise many parents, have neglected the true meaning of reciprocity. Reciprocity is “a relation of mutual dependence or action or influence,” or “a mode of exchange in which transactions take place between individuals who are symmetrically placed.” Assumptions by clinicians and researchers suggest that they have forgotten that reciprocity needs to be mutual and symmetrical—that reciprocity is a two-way street. Research is reviewed to illustrate that when professionals, peers, and parents are taught to act reciprocally, autistic children become more responsive. In one randomized clinical trial of “reciprocity training” to parents, their autistic children's language developed rapidly and their social engagement increased markedly. Other demonstrations of how parents and professionals can increase their behavior of reciprocity are provided. PMID:25598865

  5. Trust, Respect, and Reciprocity

    PubMed Central

    Phong, Tran Viet; Nhan, Le Nguyen Thanh; Dung, Nguyen Thanh; Ngan, Ta Thi Dieu; Kinh, Nguyen Van; Parker, Michael; Bull, Susan

    2015-01-01

    International science funders and publishers are driving a growing trend in data sharing. There is mounting pressure on researchers in low- and middle-income settings to conform to new sharing policies, despite minimal empirically grounded accounts of the ethical challenges of implementing the policies in these settings. This study used in-depth interviews and focus group discussions with 48 stakeholders in Vietnam to explore the experiences, attitudes, and expectations that inform ethical and effective approaches to sharing clinical research data. Distinct views on the role of trust, respect, and reciprocity were among those that emerged to inform culturally appropriate best practices. We conclude by discussing the challenges that authors of data-sharing policies should consider in this unique context. PMID:26297747

  6. Reciprocating linear motor

    NASA Technical Reports Server (NTRS)

    Goldowsky, Michael P. (Inventor)

    1987-01-01

    A reciprocating linear motor is formed with a pair of ring-shaped permanent magnets having opposite radial polarizations, held axially apart by a nonmagnetic yoke, which serves as an axially displaceable armature assembly. A pair of annularly wound coils having axial lengths which differ from the axial lengths of the permanent magnets are serially coupled together in mutual opposition and positioned with an outer cylindrical core in axial symmetry about the armature assembly. One embodiment includes a second pair of annularly wound coils serially coupled together in mutual opposition and an inner cylindrical core positioned in axial symmetry inside the armature radially opposite to the first pair of coils. Application of a potential difference across a serial connection of the two pairs of coils creates a current flow perpendicular to the magnetic field created by the armature magnets, thereby causing limited linear displacement of the magnets relative to the coils.

  7. Effects of acceleration on gait measures in three horse gaits.

    PubMed

    Nauwelaerts, Sandra; Zarski, Lila; Aerts, Peter; Clayton, Hilary

    2015-05-01

    Animals switch gaits according to locomotor speed. In terrestrial locomotion, gaits have been defined according to footfall patterns or differences in center of mass (COM) motion, which characterizes mechanisms that are more general and more predictive than footfall patterns. This has generated different variables designed primarily to evaluate steady-speed locomotion, which is easier to standardize in laboratory conditions. However, in the ecology of an animal, steady-state conditions are rare and the ability to accelerate, decelerate and turn is essential. Currently, there are no data available that have tested whether COM variables can be used in accelerative or decelerative conditions. This study used a data set of kinematics and kinetics of horses using three gaits (walk, trot, canter) to evaluate the effects of acceleration (both positive and negative) on commonly used gait descriptors. The goal was to identify variables that distinguish between gaits both at steady state and during acceleration/deceleration. These variables will either be unaffected by acceleration or affected by it in a predictable way. Congruity, phase shift and COM velocity angle did not distinguish between gaits when the dataset included trials in unsteady conditions. Work (positive and negative) and energy recovery distinguished between gaits and showed a clear relationship with acceleration. Hodographs are interesting graphical representations to study COM mechanics, but they are descriptive rather than quantitative. Force angle, collision angle and collision fraction showed a U-shaped relationship with acceleration and seem promising tools for future research in unsteady conditions.

  8. Powered lower limb orthoses for gait rehabilitation

    PubMed Central

    Ferris, Daniel P.; Sawicki, Gregory S.; Domingo, Antoinette

    2006-01-01

    Bodyweight supported treadmill training has become a prominent gait rehabilitation method in leading rehabilitation centers. This type of locomotor training has many functional benefits but the labor costs are considerable. To reduce therapist effort, several groups have developed large robotic devices for assisting treadmill stepping. A complementary approach that has not been adequately explored is to use powered lower limb orthoses for locomotor training. Recent advances in robotic technology have made lightweight powered orthoses feasible and practical. An advantage to using powered orthoses as rehabilitation aids is they allow practice starting, turning, stopping, and avoiding obstacles during overground walking. PMID:16568153

  9. GaitKeeper: A System for Measuring Canine Gait.

    PubMed

    Ladha, Cassim; O'Sullivan, Jack; Belshaw, Zoe; Asher, Lucy

    2017-02-08

    It is understood gait has the potential to be used as a window into neurodegenerative disorders, identify markers of subclinical pathology, inform diagnostic algorithms of disease progression and measure the efficacy of interventions. Dogs' gaits are frequently assessed in a veterinary setting to detect signs of lameness. Despite this, a reliable, affordable and objective method to assess lameness in dogs is lacking. Most described canine lameness assessments are subjective, unvalidated and at high risk of bias. This means reliable, early detection of canine gait abnormalities is challenging, which may have detrimental implications for dogs' welfare. In this paper, we draw from approaches and technologies used in human movement science and describe a system for objectively measuring temporal gait characteristics in dogs (step-time, swing-time, stance-time). Asymmetries and variabilities in these characteristics are of known clinical significance when assessing lameness but presently may only be assessed on coarse scales or under highly instrumented environments. The system consists an inertial measurement unit, containing a 3-axis accelerometer and gyroscope coupled with a standardized walking course. The measurement unit is attached to each leg of the dog under assessment before it is walked around the course. The data by the measurement unit is then processed to identify steps and subsequently, micro-gait characteristics. This method has been tested on a cohort of 19 healthy dogs of various breeds ranging in height from 34.2 cm to 84.9 cm. We report the system as capable of making precise step delineations with detections of initial and final contact times of foot-to-floor to a mean precision of 0.011 s and 0.048 s, respectively. Results are based on analysis of 12,678 foot falls and we report a sensitivity, positive predictive value and F-score of 0.81, 0.83 and 0.82 respectively. To investigate the effect of gait on system performance, the approach was tested

  10. Terminology and forensic gait analysis.

    PubMed

    Birch, Ivan; Vernon, Wesley; Walker, Jeremy; Young, Maria

    2015-07-01

    The use of appropriate terminology is a fundamental aspect of forensic gait analysis. The language used in forensic gait analysis is an amalgam of that used in clinical practice, podiatric biomechanics and the wider field of biomechanics. The result can often be a lack of consistency in the language used, the definitions used and the clarity of the message given. Examples include the use of 'gait' and 'walking' as synonymous terms, confusion between 'step' and 'stride', the mixing of anatomical, positional and pathological descriptors, and inability to describe appropriately movements of major body segments such as the torso. The purpose of this paper is to share the well-established definitions of the fundamental parameters of gait, common to all professions, and advocate their use in forensic gait analysis to establish commonality. The paper provides guidance on the selection and use of appropriate terminology in the description of gait in the forensic context. This paper considers the established definitions of the terms commonly used, identifies those terms which have the potential to confuse readers, and suggests a framework of terminology which should be utilised in forensic gait analysis.

  11. Prediction of human gait parameters from temporal measures of foot-ground contact

    NASA Technical Reports Server (NTRS)

    Breit, G. A.; Whalen, R. T.

    1997-01-01

    Investigation of the influence of human physical activity on bone functional adaptation requires long-term histories of gait-related ground reaction force (GRF). Towards a simpler portable GRF measurement, we hypothesized that: 1) the reciprocal of foot-ground contact time (1/tc); or 2) the reciprocal of stride-period-normalized contact time (T/tc) predict peak vertical and horizontal GRF, loading rates, and horizontal speed during gait. GRF data were collected from 24 subjects while they walked and ran at a variety of speeds. Linear regression and ANCOVA determined the dependence of gait parameters on 1/tc and T/tc, and prediction SE. All parameters were significantly correlated to 1/tc and T/tc. The closest pooled relationship existed between peak running vertical GRF and T/tc (r2 = 0.896; SE = 3.6%) and improved with subject-specific regression (r2 = 0.970; SE = 2.2%). We conclude that temporal measures can predict force parameters of gait and may represent an alternative to direct GRF measurements for determining daily histories of habitual lower limb loading quantities necessary to quantify a bone remodeling stimulus.

  12. Implementation An image processing technique for video motion analysis during the gait cycle canine

    NASA Astrophysics Data System (ADS)

    López, G.; Hernández, J. O.

    2017-01-01

    Nowadays the analyses of human movement, more specifically of the gait have ceased to be a priority for our species. Technological advances and implementations engineering have joined to obtain data and information regarding the gait cycle in another animal species. The aim of this paper is to analyze the canine gait in order to get results that describe the behavior of the limbs during the gait cycle. The research was performed by: 1. Dog training, where it is developed the step of adaptation and trust; 2. Filming gait cycle; 3. Data acquisition, in order to obtain values that describe the motion cycle canine and 4. Results, obtaining the kinematics variables involved in the march. Which are essential to determine the behavior of the limbs, as well as for the development of prosthetic or orthotic. This project was carried out with conventional equipment and using computational tools easily accessible.

  13. Gait analysis of elderly women after total knee arthroplasty.

    PubMed

    Lee, Aenon; Park, Junhyuck; Lee, Seungwon

    2015-03-01

    [Purpose] The purpose of this study was to investigate ability and muscle activities of elderly women after total knee arthroplasty (TKA) and compare them with those of healthy ones. [Subjects and Methods] Fifteen female patients with TKA due to advanced degenerative arthritis of the measured on knee joint and 19 healthy elderly females participated. Tibiofemoral angles of TKA patients were using a gait analysis system anterioposterior X-rays of the weight-bearing knee. The knee flexion angle and gait parameters were measured. Muscle activities and prolongation time were EMG system. The gait of the treated limb of each participant was evaluated in three consecutive trials at fast speed and comfortable speed. [Results] The knee flexion angle %stance phase, stride length, step length, speed, cadence, and gait cycle significantly decreased at both the fast speed and comfortable speeds, and the onset and duration time of rectus femoris activity was significantly increased at the comfortable speed in the TKA group. [Conclusion] In conclusion, elderly women who received TKA showed decreased gait ability and muscle activity compared to the healthy elderly women.

  14. Dynamic markers of altered gait rhythm in amyotrophic lateral sclerosis

    NASA Technical Reports Server (NTRS)

    Hausdorff, J. M.; Lertratanakul, A.; Cudkowicz, M. E.; Peterson, A. L.; Kaliton, D.; Goldberger, A. L.

    2000-01-01

    Amyotrophic lateral sclerosis (ALS) is a disorder marked by loss of motoneurons. We hypothesized that subjects with ALS would have an altered gait rhythm, with an increase in both the magnitude of the stride-to-stride fluctuations and perturbations in the fluctuation dynamics. To test for this locomotor instability, we quantitatively compared the gait rhythm of subjects with ALS with that of normal controls and with that of subjects with Parkinson's disease (PD) and Huntington's disease (HD), pathologies of the basal ganglia. Subjects walked for 5 min at their usual pace wearing an ankle-worn recorder that enabled determination of the duration of each stride and of stride-to-stride fluctuations. We found that the gait of patients with ALS is less steady and more temporally disorganized compared with that of healthy controls. In addition, advanced ALS, HD, and PD were associated with certain common, as well as apparently distinct, features of altered stride dynamics. Thus stride-to-stride control of gait rhythm is apparently compromised with ALS. Moreover, a matrix of markers based on gait dynamics may be useful in characterizing certain pathologies of motor control and, possibly, in quantitatively monitoring disease progression and evaluating therapeutic interventions.

  15. Gait analysis of elderly women after total knee arthroplasty

    PubMed Central

    Lee, Aenon; Park, Junhyuck; Lee, Seungwon

    2015-01-01

    [Purpose] The purpose of this study was to investigate ability and muscle activities of elderly women after total knee arthroplasty (TKA) and compare them with those of healthy ones. [Subjects and Methods] Fifteen female patients with TKA due to advanced degenerative arthritis of the measured on knee joint and 19 healthy elderly females participated. Tibiofemoral angles of TKA patients were using a gait analysis system anterioposterior X-rays of the weight-bearing knee. The knee flexion angle and gait parameters were measured. Muscle activities and prolongation time were EMG system. The gait of the treated limb of each participant was evaluated in three consecutive trials at fast speed and comfortable speed. [Results] The knee flexion angle %stance phase, stride length, step length, speed, cadence, and gait cycle significantly decreased at both the fast speed and comfortable speeds, and the onset and duration time of rectus femoris activity was significantly increased at the comfortable speed in the TKA group. [Conclusion] In conclusion, elderly women who received TKA showed decreased gait ability and muscle activity compared to the healthy elderly women. PMID:25931687

  16. Simpler valve for reciprocating engines

    NASA Technical Reports Server (NTRS)

    Akkerman, J. W.

    1978-01-01

    Simpler design eliminating camshafts, cams, and mechanical springs should improve reliability of hydrazine powered reciprocating engines. Valve is expected to improve efficiency, and reduce weight of engines in range up to 50 horsepower.

  17. Group formation through indirect reciprocity

    NASA Astrophysics Data System (ADS)

    Oishi, Koji; Shimada, Takashi; Ito, Nobuyasu

    2013-03-01

    The emergence of group structure of cooperative relations is studied in an agent-based model. It is proved that specific types of reciprocity norms lead individuals to split into two groups only inside of which they are cooperative. The condition for the evolutionary stability of the norms is also obtained. This result suggests reciprocity norms, which usually promote cooperation, can cause society's separation into multiple groups.

  18. Reciprocating piston engine

    SciTech Connect

    White, A.

    1986-09-02

    This patent describes a reciprocating piston engine wherein there is included the combination of one or more pistons individually reciprocatably mounted each within a cylinder, an intake valve located within a cylinder through which fuel and air can be admitted into the cylinder, compressed and the fuel burned to drive a piston during a power stroke, an exhaust valve located within a cylinder through which burned fuel can be exhausted by movement of a piston to expell the burned gases during an exhaust stroke, a piston having a crown side and a side opposite the crown side to which a piston shaft is attached, the crown side of the piston facing into the cylinder wherein the intake and exhaust valves are located, an elongated roller gear to which the piston shaft is attached, the elongated roller gear is open centered and has an inside face thereof provided with a continuous array of teeth, a drive shaft, a roller gear pinion operatively engaged with the drive shaft, rotation of which produces rotation of the drive shaft, the roller gear pinion being provided with a continuous array of teeth for continuous meshing engagement with the teeth on the inside face of the elongated roller gear, movement of a piston acting through a piston shaft and elongated roller gear producing rotation of the drive shaft via action upon roller gear pinion, the impovement comprising, in the combination, a pair of rails, one each of which is disposed on opposite sides of the teeth of the elongated roller gear, a pair of rollers, one each of which is disposed on opposite sides adjacent and parallel to the teeth of roller gear pinion, the rollers of the roller gear pinion contacting and rolling along the rails of the elongated roller gear to maintain a proper relationship and root clearance between the meshing teeth of an elongated roller gear and a roller gear pinion for effecting the continuous rolling and meshing engagement.

  19. Gait disturbances in dystrophic hamsters.

    PubMed

    Hampton, Thomas G; Kale, Ajit; Amende, Ivo; Tang, Wenlong; McCue, Scott; Bhagavan, Hemmi N; VanDongen, Case G

    2011-01-01

    The delta-sarcoglycan-deficient hamster is an excellent model to study muscular dystrophy. Gait disturbances, important clinically, have not been described in this animal model. We applied ventral plane videography (DigiGait) to analyze gait in BIO TO-2 dystrophic and BIO F1B control hamsters walking on a transparent treadmill belt. Stride length was ∼13% shorter (P < .05) in TO-2 hamsters at 9 months of age compared to F1B hamsters. Hindlimb propulsion duration, an indicator of muscle strength, was shorter in 9-month-old TO-2 (247 ± 8 ms) compared to F1B hamsters (272 ± 11 ms; P < .05). Braking duration, reflecting generation of ground reaction forces, was delayed in 9-month-old TO-2 (147 ± 6 ms) compared to F1B hamsters (126 ± 8 ms; P < .05). Hindpaw eversion, evidence of muscle weakness, was greater in 9-month-old TO-2 than in F1B hamsters (17.7 ± 1.2° versus 8.7 ± 1.6°; P < .05). Incline and decline walking aggravated gait disturbances in TO-2 hamsters at 3 months of age. Several gait deficits were apparent in TO-2 hamsters at 1 month of age. Quantitative gait analysis demonstrates that dystrophic TO-2 hamsters recapitulate functional aspects of human muscular dystrophy. Early detection of gait abnormalities in a convenient animal model may accelerate the development of therapies for muscular dystrophy.

  20. Amantadine improves gait in PD patients with STN stimulation.

    PubMed

    Chan, Hiu-Fai; Kukkle, Prashanth L; Merello, Marcelo; Lim, Shen-Yang; Poon, Yu-Yan; Moro, Elena

    2013-03-01

    In advanced Parkinson's disease (PD), axial symptoms such as speech, gait, and balance impairment often become levodopa-unresponsive and they are difficult to manage, even in patients with subthalamic nucleus deep brain stimulation (STN-DBS). We anecdotally observed that oral administration of amantadine was very effective in treating both residual and stimulation-induced axial symptoms after bilateral STN-DBS in one PD patient. Therefore, we conducted a prospective multicenter observational study to evaluate the effects of amantadine on speech, gait and balance in PD patients with STN-DBS and incomplete axial benefit. Primary outcomes were changes in speech (UPDRS III, item 18), gait (item 29) and postural stability (item 30) with amantadine treatment compared to baseline. Secondary outcome was the patients' subjective scoring of axial symptoms with amantadine compared to baseline. Forty-six PD patients with STN-DBS were enrolled in the study and followed for 10.35 ± 8.21 months (median: 9.00; range: 1-31). The mean daily dose of amantadine was 273.44 ± 47.49 mg. Gait scores significantly improved (from 1.51 ± 0.89 to 1.11 ± 0.92, P = 0.015) with amantadine treatment, whereas postural stability and speech scores were similar before and after treatment. Thirty-five (76.1%) patients reported subjective improvement in speech, gait or balance with amantadine, whereas thirty (65.2%) patients reported improvement in gait and balance. In conclusion, our data suggest that amantadine may have new beneficial effects on axial symptoms in PD patients with STN-DBS.

  1. Differences in implementation of gait analysis recommendations based on affiliation with a gait laboratory.

    PubMed

    Wren, Tishya A L; Elihu, Koorosh J; Mansour, Shaun; Rethlefsen, Susan A; Ryan, Deirdre D; Smith, Michelle L; Kay, Robert M

    2013-02-01

    This study examined the extent to which gait analysis recommendations are followed by orthopedic surgeons with varying degrees of affiliation with the gait laboratory. Surgical data were retrospectively examined for 95 patients with cerebral palsy who underwent lower extremity orthopedic surgery following gait analysis. Thirty-three patients were referred by two surgeons directly affiliated with the gait laboratory (direct affiliation), 44 were referred by five surgeons from the same institution but not directly affiliated with the gait laboratory (institutional affiliation), and 18 were referred by 10 surgeons from other institutions (no affiliation). Data on specific surgeries were collected from the gait analysis referral, gait analysis report, and operative notes. Adherence to the gait analysis recommendations was calculated by dividing the number of procedures where the surgery followed the gait analysis recommendation (numerator) by the total number of procedures initially planned, recommended by gait analysis, or done (denominator). Adherence with the gait analysis recommendations was 97%, 94%, and 77% for the direct, institutional, and no affiliation groups, respectively. Procedures recommended for additions to the surgical plan were added 98%, 87%, and 77% of the time. Procedures recommended for elimination were dropped 100%, 89%, and 88% of the time. Of 81 patients who had specific surgical plans prior to gait analysis, changes were implemented in 84% (68/81) following gait analysis recommendations. Gait analysis influences the treatment decisions of surgeons regardless of affiliation with the gait laboratory, although the influence is stronger for surgeons who practice within the same institution as the gait laboratory.

  2. Direct reciprocity in structured populations

    PubMed Central

    van Veelen, Matthijs; García, Julián; Rand, David G.; Nowak, Martin A.

    2012-01-01

    Reciprocity and repeated games have been at the center of attention when studying the evolution of human cooperation. Direct reciprocity is considered to be a powerful mechanism for the evolution of cooperation, and it is generally assumed that it can lead to high levels of cooperation. Here we explore an open-ended, infinite strategy space, where every strategy that can be encoded by a finite state automaton is a possible mutant. Surprisingly, we find that direct reciprocity alone does not lead to high levels of cooperation. Instead we observe perpetual oscillations between cooperation and defection, with defection being substantially more frequent than cooperation. The reason for this is that “indirect invasions” remove equilibrium strategies: every strategy has neutral mutants, which in turn can be invaded by other strategies. However, reciprocity is not the only way to promote cooperation. Another mechanism for the evolution of cooperation, which has received as much attention, is assortment because of population structure. Here we develop a theory that allows us to study the synergistic interaction between direct reciprocity and assortment. This framework is particularly well suited for understanding human interactions, which are typically repeated and occur in relatively fluid but not unstructured populations. We show that if repeated games are combined with only a small amount of assortment, then natural selection favors the behavior typically observed among humans: high levels of cooperation implemented using conditional strategies. PMID:22665767

  3. Indirect Reciprocity; A Field Experiment

    PubMed Central

    van Apeldoorn, Jacobien; Schram, Arthur

    2016-01-01

    Indirect reciprocity involves cooperative acts towards strangers, either in response to their kindness to third parties (downstream) or after receiving kindness from others oneself (upstream). It is considered to be important for the evolution of cooperative behavior amongst humans. Though it has been widely studied theoretically, the empirical evidence of indirect reciprocity has thus far been limited and based solely on behavior in laboratory experiments. We provide evidence from an online environment where members can repeatedly ask and offer services to each other, free of charge. For the purpose of this study we created several new member profiles, which differ only in terms of their serving history. We then sent out a large number of service requests to different members from all over the world. We observe that a service request is more likely to be rewarded for those with a profile history of offering the service (to third parties) in the past. This provides clear evidence of (downstream) indirect reciprocity. We find no support for upstream indirect reciprocity (in this case, rewarding the service request after having previously received the service from third parties), however. Our evidence of downstream indirect reciprocity cannot be attributed to reputational effects concerning one’s trustworthiness as a service user. PMID:27043712

  4. Stability in skipping gaits

    PubMed Central

    Blickhan, Reinhard

    2016-01-01

    As an alternative to walking and running, humans are able to skip. However, adult humans avoid it. This fact seems to be related to the higher energetic costs associated with skipping. Still, children, some birds, lemurs and lizards use skipping gaits during daily locomotion. We combined experimental data on humans with numerical simulations to test whether stability and robustness motivate this choice. Parameters for modelling were obtained from 10 male subjects. They locomoted using unilateral skipping along a 12 m runway. We used a bipedal spring loaded inverted pendulum to model and to describe the dynamics of skipping. The subjects displayed higher peak ground reaction forces and leg stiffness in the first landing leg (trailing leg) compared to the second landing leg (leading leg). In numerical simulations, we found that skipping is stable across an amazing speed range from skipping on the spot to fast running speeds. Higher leg stiffness in the trailing leg permits longer strides at same system energy. However, this strategy is at the same time less robust to sudden drop perturbations than skipping with a stiffer leading leg. A slightly higher stiffness in the leading leg is most robust, but might be costlier. PMID:28018651

  5. Stability in skipping gaits

    NASA Astrophysics Data System (ADS)

    Andrada, Emanuel; Müller, Roy; Blickhan, Reinhard

    2016-11-01

    As an alternative to walking and running, humans are able to skip. However, adult humans avoid it. This fact seems to be related to the higher energetic costs associated with skipping. Still, children, some birds, lemurs and lizards use skipping gaits during daily locomotion. We combined experimental data on humans with numerical simulations to test whether stability and robustness motivate this choice. Parameters for modelling were obtained from 10 male subjects. They locomoted using unilateral skipping along a 12 m runway. We used a bipedal spring loaded inverted pendulum to model and to describe the dynamics of skipping. The subjects displayed higher peak ground reaction forces and leg stiffness in the first landing leg (trailing leg) compared to the second landing leg (leading leg). In numerical simulations, we found that skipping is stable across an amazing speed range from skipping on the spot to fast running speeds. Higher leg stiffness in the trailing leg permits longer strides at same system energy. However, this strategy is at the same time less robust to sudden drop perturbations than skipping with a stiffer leading leg. A slightly higher stiffness in the leading leg is most robust, but might be costlier.

  6. Stability in skipping gaits.

    PubMed

    Andrada, Emanuel; Müller, Roy; Blickhan, Reinhard

    2016-11-01

    As an alternative to walking and running, humans are able to skip. However, adult humans avoid it. This fact seems to be related to the higher energetic costs associated with skipping. Still, children, some birds, lemurs and lizards use skipping gaits during daily locomotion. We combined experimental data on humans with numerical simulations to test whether stability and robustness motivate this choice. Parameters for modelling were obtained from 10 male subjects. They locomoted using unilateral skipping along a 12 m runway. We used a bipedal spring loaded inverted pendulum to model and to describe the dynamics of skipping. The subjects displayed higher peak ground reaction forces and leg stiffness in the first landing leg (trailing leg) compared to the second landing leg (leading leg). In numerical simulations, we found that skipping is stable across an amazing speed range from skipping on the spot to fast running speeds. Higher leg stiffness in the trailing leg permits longer strides at same system energy. However, this strategy is at the same time less robust to sudden drop perturbations than skipping with a stiffer leading leg. A slightly higher stiffness in the leading leg is most robust, but might be costlier.

  7. GaitKeeper: A System for Measuring Canine Gait

    PubMed Central

    Ladha, Cassim; O’Sullivan, Jack; Belshaw, Zoe; Asher, Lucy

    2017-01-01

    It is understood gait has the potential to be used as a window into neurodegenerative disorders, identify markers of subclinical pathology, inform diagnostic algorithms of disease progression and measure the efficacy of interventions. Dogs’ gaits are frequently assessed in a veterinary setting to detect signs of lameness. Despite this, a reliable, affordable and objective method to assess lameness in dogs is lacking. Most described canine lameness assessments are subjective, unvalidated and at high risk of bias. This means reliable, early detection of canine gait abnormalities is challenging, which may have detrimental implications for dogs’ welfare. In this paper, we draw from approaches and technologies used in human movement science and describe a system for objectively measuring temporal gait characteristics in dogs (step-time, swing-time, stance-time). Asymmetries and variabilities in these characteristics are of known clinical significance when assessing lameness but presently may only be assessed on coarse scales or under highly instrumented environments. The system consists an inertial measurement unit, containing a 3-axis accelerometer and gyroscope coupled with a standardized walking course. The measurement unit is attached to each leg of the dog under assessment before it is walked around the course. The data by the measurement unit is then processed to identify steps and subsequently, micro-gait characteristics. This method has been tested on a cohort of 19 healthy dogs of various breeds ranging in height from 34.2 cm to 84.9 cm. We report the system as capable of making precise step delineations with detections of initial and final contact times of foot-to-floor to a mean precision of 0.011 s and 0.048 s, respectively. Results are based on analysis of 12,678 foot falls and we report a sensitivity, positive predictive value and F-score of 0.81, 0.83 and 0.82 respectively. To investigate the effect of gait on system performance, the approach was

  8. Gait analysis in forensic medicine

    NASA Astrophysics Data System (ADS)

    Larsen, Peter K.; Simonsen, Erik B.; Lynnerup, Niels

    2007-01-01

    We have combined the basic human ability to recognize other individuals with functional anatomical and biomechanical knowledge, in order to analyze the gait of perpetrators as recorded on surveillance video. The perpetrators are then compared with similar analyses of suspects. At present we give a statement to the police as to whether the perpetrator has a characteristic gait pattern compared to normal gait, and if a suspect has a comparable gait pattern. We have found agreements such as: limping, varus instability in the knee at heel strike, larger lateral flexion of the spinal column to one side than the other, inverted ankle during stance, pronounced sagittal head-movements, and marked head-shoulder posture. Based on these characteristic features, we state whether suspect and perpetrator could have the same identity but it is not possible to positively identify the perpetrator. Nevertheless, we have been involved in several cases where the court has found that this type of gait analysis, especially combined with photogrammetry, was a valuable tool. The primary requisites are surveillance cameras recording with sufficient frequency, ideally about 15 Hz, which are positioned in frontal and preferably also in profile view.

  9. Skeleton-Based Abnormal Gait Detection.

    PubMed

    Nguyen, Trong-Nguyen; Huynh, Huu-Hung; Meunier, Jean

    2016-10-26

    Human gait analysis plays an important role in musculoskeletal disorder diagnosis. Detecting anomalies in human walking, such as shuffling gait, stiff leg or unsteady gait, can be difficult if the prior knowledge of such a gait pattern is not available. We propose an approach for detecting abnormal human gait based on a normal gait model. Instead of employing the color image, silhouette, or spatio-temporal volume, our model is created based on human joint positions (skeleton) in time series. We decompose each sequence of normal gait images into gait cycles. Each human instant posture is represented by a feature vector which describes relationships between pairs of bone joints located in the lower body. Such vectors are then converted into codewords using a clustering technique. The normal human gait model is created based on multiple sequences of codewords corresponding to different gait cycles. In the detection stage, a gait cycle with normality likelihood below a threshold, which is determined automatically in the training step, is assumed as an anomaly. The experimental results on both marker-based mocap data and Kinect skeleton show that our method is very promising in distinguishing normal and abnormal gaits with an overall accuracy of 90.12%.

  10. Skeleton-Based Abnormal Gait Detection

    PubMed Central

    Nguyen, Trong-Nguyen; Huynh, Huu-Hung; Meunier, Jean

    2016-01-01

    Human gait analysis plays an important role in musculoskeletal disorder diagnosis. Detecting anomalies in human walking, such as shuffling gait, stiff leg or unsteady gait, can be difficult if the prior knowledge of such a gait pattern is not available. We propose an approach for detecting abnormal human gait based on a normal gait model. Instead of employing the color image, silhouette, or spatio-temporal volume, our model is created based on human joint positions (skeleton) in time series. We decompose each sequence of normal gait images into gait cycles. Each human instant posture is represented by a feature vector which describes relationships between pairs of bone joints located in the lower body. Such vectors are then converted into codewords using a clustering technique. The normal human gait model is created based on multiple sequences of codewords corresponding to different gait cycles. In the detection stage, a gait cycle with normality likelihood below a threshold, which is determined automatically in the training step, is assumed as an anomaly. The experimental results on both marker-based mocap data and Kinect skeleton show that our method is very promising in distinguishing normal and abnormal gaits with an overall accuracy of 90.12%. PMID:27792181

  11. Gait Stability in Children with Cerebral Palsy

    ERIC Educational Resources Information Center

    Bruijn, Sjoerd M.; Millard, Matthew; van Gestel, Leen; Meyns, Pieter; Jonkers, Ilse; Desloovere, Kaat

    2013-01-01

    Children with unilateral Cerebral Palsy (CP) have several gait impairments, amongst which impaired gait stability may be one. We tested whether a newly developed stability measure (the foot placement estimator, FPE) which does not require long data series, can be used to asses gait stability in typically developing (TD) children as well as…

  12. A mechanical energy analysis of gait initiation

    NASA Technical Reports Server (NTRS)

    Miller, C. A.; Verstraete, M. C.

    1999-01-01

    The analysis of gait initiation (the transient state between standing and walking) is an important diagnostic tool to study pathologic gait and to evaluate prosthetic devices. While past studies have quantified mechanical energy of the body during steady-state gait, to date no one has computed the mechanical energy of the body during gait initiation. In this study, gait initiation in seven normal male subjects was studied using a mechanical energy analysis to compute total body energy. The data showed three separate states: quiet standing, gait initiation, and steady-state gait. During gait initiation, the trends in the energy data for the individual segments were similar to those seen during steady-state gait (and in Winter DA, Quanbury AO, Reimer GD. Analysis of instantaneous energy of normal gait. J Biochem 1976;9:253-257), but diminished in amplitude. However, these amplitudes increased to those seen in steady-state during the gait initiation event (GIE), with the greatest increase occurring in the second step due to the push-off of the foundation leg. The baseline level of mechanical energy was due to the potential energy of the individual segments, while the cyclic nature of the data was indicative of the kinetic energy of the particular leg in swing phase during that step. The data presented showed differences in energy trends during gait initiation from those of steady state, thereby demonstrating the importance of this event in the study of locomotion.

  13. Nonstandard Gaits in Unsteady Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Fairchild, Michael; Rowley, Clarence

    2016-11-01

    Marine biology has long inspired the design and engineering of underwater vehicles. The literature examining the kinematics and dynamics of fishes, ranging from undulatory anguilliform swimmers to oscillatory ostraciiform ones, is vast. Past numerical studies of these organisms have principally focused on gaits characterized by sinusoidal pitching and heaving motions. It is conceivable that more sophisticated gaits could perform better in some respects, for example as measured by thrust generation or by cost of transport. This work uses an unsteady boundary-element method to numerically investigate the hydrodynamics and propulsive efficiency of high-Reynolds-number swimmers whose gaits are encoded by Fourier series or by Jacobi elliptic functions. Numerical results are presented with an emphasis on identifying particular wake structures and modes of motion that are associated with optimal swimming. This work was supported by the Office of Naval Research through MURI Grant N00014-14-1-0533.

  14. Biomechanics of Gait during Pregnancy

    PubMed Central

    Vieira, Filomena

    2014-01-01

    Introduction. During pregnancy women experience several changes in the body's physiology, morphology, and hormonal system. These changes may affect the balance and body stability and can cause discomfort and pain. The adaptations of the musculoskeletal system due to morphological changes during pregnancy are not fully understood. Few studies clarify the biomechanical changes of gait that occur during pregnancy and in postpartum period. Purposes. The purpose of this review was to analyze the available evidence on the biomechanical adaptations of gait that occur throughout pregnancy and in postpartum period, specifically with regard to the temporal, spatial, kinematic, and kinetic parameters of gait. Methods. Three databases were searched and 9 studies with a follow-up design were retrieved for analysis. Results. Most studies performed temporal, spatial, and kinematic analysis. Only three studies performed kinetic analysis. Conclusion. The adaptation strategies to the anatomical and physiological changes throughout pregnancy are still unclear, particularly in a longitudinal perspective and regarding kinetic parameters. PMID:25587566

  15. Pneumatic interactive gait rehabilitation orthosis: design and preliminary testing.

    PubMed

    Belforte, G; Eula, G; Appendino, S; Sirolli, S

    2011-02-01

    Motor rehabilitation techniques based on passive movement of the lower limbs have been developed over the past 15 years. Gait training automation is the latest innovation in these techniques. This paper describes the design and development of a pneumatic interactive gait rehabilitation orthosis (PIGRO), as well as the first experimental results obtained with healthy subjects. PIGRO consists of a modular and size-adaptable exoskeleton, pneumatic actuation systems for the six actuated degrees of freedom (DoF), and a control unit. The foot orthosis and ankle actuation can be removed and/or replaced with orthopaedic shoes so as to permit gait rehabilitation while advancing between parallel bars with ground contact and partial body weight support (i.e. not walking in place). Control logic provides closed-loop position control independently on each joint, with position feedback for each joint in real time. Imposed curves are physiological joint angles: it is also possible to choose between activating one or both legs and to modify curves to obtain different gait patterns if required. The paper concludes with a presentation of experimental results for the device's performance.

  16. Gait biomechanics in the era of data science.

    PubMed

    Ferber, Reed; Osis, Sean T; Hicks, Jennifer L; Delp, Scott L

    2016-12-08

    Data science has transformed fields such as computer vision and economics. The ability of modern data science methods to extract insights from large, complex, heterogeneous, and noisy datasets is beginning to provide a powerful complement to the traditional approaches of experimental motion capture and biomechanical modeling. The purpose of this article is to provide a perspective on how data science methods can be incorporated into our field to advance our understanding of gait biomechanics and improve treatment planning procedures. We provide examples of how data science approaches have been applied to biomechanical data. We then discuss the challenges that remain for effectively using data science approaches in clinical gait analysis and gait biomechanics research, including the need for new tools, better infrastructure and incentives for sharing data, and education across the disciplines of biomechanics and data science. By addressing these challenges, we can revolutionize treatment planning and biomechanics research by capitalizing on the wealth of knowledge gained by gait researchers over the past decades and the vast, but often siloed, data that are collected in clinical and research laboratories around the world.

  17. Reciprocity and Humility in Wonderland

    ERIC Educational Resources Information Center

    Harry, Beth

    2011-01-01

    This article supports the perspective of Jan Valle regarding the importance of recognizing the subjectivity inherent in decisions about Learning Disabilities. The author argues that the perspectives of both parents and professionals are informed by subjective judgments that must be taken into account in decision making. A reciprocal approach to…

  18. Reciprocity theory of homogeneous reactions

    NASA Astrophysics Data System (ADS)

    Agbormbai, Adolf A.

    1990-03-01

    The reciprocity formalism is applied to the homogeneous gaseous reactions in which the structure of the participating molecules changes upon collision with one another, resulting in a change in the composition of the gas. The approach is applied to various classes of dissociation, recombination, rearrangement, ionizing, and photochemical reactions. It is shown that for the principle of reciprocity to be satisfied it is necessary that all chemical reactions exist in complementary pairs which consist of the forward and backward reactions. The backward reaction may be described by either the reverse or inverse process. The forward and backward processes must satisfy the same reciprocity equation. Because the number of dynamical variables is usually unbalanced on both sides of a chemical equation, it is necessary that this balance be established by including as many of the dynamical variables as needed before the reciprocity equation can be formulated. Statistical transformation models of the reactions are formulated. The models are classified under the titles free exchange, restricted exchange and simplified restricted exchange. The special equations for the forward and backward processes are obtained. The models are consistent with the H theorem and Le Chatelier's principle. The models are also formulated in the context of the direct simulation Monte Carlo method.

  19. Thermal-powered reciprocating pump

    NASA Technical Reports Server (NTRS)

    Sabelman, E. E.

    1972-01-01

    Waste heat from radioisotope thermal generators in spacecraft is transported to keep instruments warm by two-cylinder reciprocating pump powered by energy from warm heat exchange fluid. Each cylinder has thermally nonconductive piston, heat exchange coil, and heat sink surface.

  20. [Gait Analysis in Patients with Hip Disorders].

    PubMed

    Urbášek, K; Poul, J

    2016-01-01

    Recent studies have shown that the evaluation of both conservative and surgical therapy cannot do without gait analysis. Orthopaedic textbooks, with some exceptions, deal in great detail with a thorough clinical examination of the patient but gait assessment is mentioned only marginally. More attention is paid to gait analysis in rehabilitation medicine. Motion and gait analysis laboratories equipped with optoelectronic cameras and force platforms were first developed for cerebral palsy children. Recently, several studies have been published on the use of these methods in disorders of hip and knee joints or spine diseases. Key words: gait analysis, hip joint.

  1. Influence of Reciprocal Links in Social Networks

    PubMed Central

    Zhu, Yu-Xiao; Zhang, Xiao-Guang; Sun, Gui-Quan; Tang, Ming; Zhou, Tao; Zhang, Zi-Ke

    2014-01-01

    How does reciprocal links affect the function of real social network? Does reciprocal link and non-reciprocal link play the same role? Previous researches haven't displayed a clear picture to us until now according to the best of our knowledge. Motivated by this, in this paper, we empirically study the influence of reciprocal links in two representative real datasets, Sina Weibo and Douban. Our results demonstrate that the reciprocal links play a more important role than non-reciprocal ones in information diffusion process. In particular, not only coverage but also the speed of the information diffusion can be significantly enhanced by considering the reciprocal effect. We give some possible explanations from the perspectives of network connectivity and efficiency. This work may shed some light on the in-depth understanding and application of the reciprocal effect in directed online social networks. PMID:25072242

  2. Hierarchical Classification by Multi-Level Reciprocity

    ERIC Educational Resources Information Center

    McQuitty, Louis L.

    1970-01-01

    A method is developed and illustrated which relaxes the principle of reciprocity in relation to characteristics of data and classifies in terms of successive levels of reciprocity, using two versions: (a) successive linkages, and (b) core assignments. (Author/RF)

  3. Influence of reciprocal links in social networks.

    PubMed

    Zhu, Yu-Xiao; Zhang, Xiao-Guang; Sun, Gui-Quan; Tang, Ming; Zhou, Tao; Zhang, Zi-Ke

    2014-01-01

    How does reciprocal links affect the function of real social network? Does reciprocal link and non-reciprocal link play the same role? Previous researches haven't displayed a clear picture to us until now according to the best of our knowledge. Motivated by this, in this paper, we empirically study the influence of reciprocal links in two representative real datasets, Sina Weibo and Douban. Our results demonstrate that the reciprocal links play a more important role than non-reciprocal ones in information diffusion process. In particular, not only coverage but also the speed of the information diffusion can be significantly enhanced by considering the reciprocal effect. We give some possible explanations from the perspectives of network connectivity and efficiency. This work may shed some light on the in-depth understanding and application of the reciprocal effect in directed online social networks.

  4. On using gait in forensic biometrics.

    PubMed

    Bouchrika, Imed; Goffredo, Michaela; Carter, John; Nixon, Mark

    2011-07-01

    Given the continuing advances in gait biometrics, it appears prudent to investigate the translation of these techniques for forensic use. We address the question as to the confidence that might be given between any two such measurements. We use the locations of ankle, knee, and hip to derive a measure of the match between walking subjects in image sequences. The Instantaneous Posture Match algorithm, using Harr templates, kinematics, and anthropomorphic knowledge is used to determine their location. This is demonstrated using real CCTV recorded at Gatwick International Airport, laboratory images from the multiview CASIA-B data set, and an example of real scene of crime video. To access the measurement confidence, we study the mean intra- and inter-match scores as a function of database size. These measures converge to constant and separate values, indicating that the match measure derived from individual comparisons is considerably smaller than the average match measure from a population.

  5. Nonlinear dynamical model of human gait

    NASA Astrophysics Data System (ADS)

    West, Bruce J.; Scafetta, Nicola

    2003-05-01

    We present a nonlinear dynamical model of the human gait control system in a variety of gait regimes. The stride-interval time series in normal human gait is characterized by slightly multifractal fluctuations. The fractal nature of the fluctuations becomes more pronounced under both an increase and decrease in the average gait. Moreover, the long-range memory in these fluctuations is lost when the gait is keyed on a metronome. Human locomotion is controlled by a network of neurons capable of producing a correlated syncopated output. The central nervous system is coupled to the motocontrol system, and together they control the locomotion of the gait cycle itself. The metronomic gait is simulated by a forced nonlinear oscillator with a periodic external force associated with the conscious act of walking in a particular way.

  6. 47 CFR 51.221 - Reciprocal compensation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Reciprocal compensation. 51.221 Section 51.221... Obligations of All Local Exchange Carriers § 51.221 Reciprocal compensation. The rules governing reciprocal compensation are set forth in subpart H of this part....

  7. 47 CFR 51.221 - Reciprocal compensation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 3 2014-10-01 2014-10-01 false Reciprocal compensation. 51.221 Section 51.221... Obligations of All Local Exchange Carriers § 51.221 Reciprocal compensation. The rules governing reciprocal compensation are set forth in subpart H of this part....

  8. 47 CFR 51.221 - Reciprocal compensation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 3 2013-10-01 2013-10-01 false Reciprocal compensation. 51.221 Section 51.221... Obligations of All Local Exchange Carriers § 51.221 Reciprocal compensation. The rules governing reciprocal compensation are set forth in subpart H of this part....

  9. 47 CFR 51.221 - Reciprocal compensation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Reciprocal compensation. 51.221 Section 51.221... Obligations of All Local Exchange Carriers § 51.221 Reciprocal compensation. The rules governing reciprocal compensation are set forth in subpart H of this part....

  10. 47 CFR 51.221 - Reciprocal compensation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 3 2012-10-01 2012-10-01 false Reciprocal compensation. 51.221 Section 51.221... Obligations of All Local Exchange Carriers § 51.221 Reciprocal compensation. The rules governing reciprocal compensation are set forth in subpart H of this part....

  11. Reciprocal Teaching: Critical Reflection on Practice

    ERIC Educational Resources Information Center

    McAllum, Ruth

    2014-01-01

    This paper highlights reciprocal teaching as an inclusive instructional strategy that has been shown to improve reading comprehension and metacognitive skills. It provides a conceptual background to reciprocal teaching and examines its purpose, strengths and weaknesses. The notion of reciprocal teaching as an evidence-based practice is also…

  12. 46 CFR 8.120 - Reciprocity.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Reciprocity. 8.120 Section 8.120 Shipping COAST GUARD... § 8.120 Reciprocity. (a) The Commandant may delegate authority to a classification society that has... determine reciprocity on a “case-by-case” basis. (b) In order to demonstrate that the conditions...

  13. 78 FR 53792 - Draft Guidance for Reciprocity

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-30

    ... COMMISSION Draft Guidance for Reciprocity AGENCY: Nuclear Regulatory Commission. ACTION: Draft NUREG; request... for reciprocity. The NRC is requesting public comment on draft NUREG-1556, Volume 19, Revision 1... (Reciprocity).'' The document has been updated from the previous revision to include safety culture,...

  14. Capuchin Monkeys Judge Third-Party Reciprocity

    ERIC Educational Resources Information Center

    Anderson, James R.; Takimoto, Ayaka; Kuroshima, Hika; Fujita, Kazuo

    2013-01-01

    Increasing interest is being shown in how children develop an understanding of reciprocity in social exchanges and fairness in resource distribution, including social exchanges between third parties. Although there are descriptions of reciprocity on a one-to-one basis in other species, whether nonhumans detect reciprocity and violations of…

  15. 46 CFR 8.120 - Reciprocity.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Reciprocity. 8.120 Section 8.120 Shipping COAST GUARD... § 8.120 Reciprocity. (a) The Commandant may delegate authority to a classification society that has... determine reciprocity on a “case-by-case” basis. (b) In order to demonstrate that the conditions...

  16. An Inquiry into Relationship Suicides and Reciprocity

    ERIC Educational Resources Information Center

    Davis, Mark S.; Callanan, Valerie J.; Lester, David; Haines, Janet

    2009-01-01

    Few theories on suicide have been grounded in the norm of reciprocity. There is literature on suicide, however, describing motivations such as retaliation and retreat which can be interpreted as modes of adaptation to the norm of reciprocity. We propose a reciprocity-based theory to explain suicides associated with relationship problems. Employing…

  17. 30 CFR 955.16 - Reciprocity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Reciprocity. 955.16 Section 955.16 Mineral... AND ON INDIAN LANDS § 955.16 Reciprocity. (a) Grant of certificate. OSM shall grant an OSM blaster certificate through reciprocity to any qualified applicant who demonstrates that he or she, and whom OSM...

  18. 30 CFR 955.16 - Reciprocity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Reciprocity. 955.16 Section 955.16 Mineral... AND ON INDIAN LANDS § 955.16 Reciprocity. (a) Grant of certificate. OSM shall grant an OSM blaster certificate through reciprocity to any qualified applicant who demonstrates that he or she, and whom OSM...

  19. Reciprocity of Interpersonal Attraction: A Confirmed Hypothesis.

    ERIC Educational Resources Information Center

    La Voie, Lawrence; Kenny, David A.

    An increase in reciprocity of interpersonal attraction during the early acquaintance period followed by continuing social reciprocity are propositions that are central principles of several social psychological viewpoints. However, there is little empirical evidence of increasing reciprocity of interpersonal attraction over time. Two potential…

  20. Computational intelligence in gait research: a perspective on current applications and future challenges.

    PubMed

    Lai, Daniel T H; Begg, Rezaul K; Palaniswami, Marimuthu

    2009-09-01

    Our mobility is an important daily requirement so much so that any disruption to it severely degrades our perceived quality of life. Studies in gait and human movement sciences, therefore, play a significant role in maintaining the well-being of our mobility. Current gait analysis involves numerous interdependent gait parameters that are difficult to adequately interpret due to the large volume of recorded data and lengthy assessment times in gait laboratories. A proposed solution to these problems is computational intelligence (CI), which is an emerging paradigm in biomedical engineering most notably in pathology detection and prosthesis design. The integration of CI technology in gait systems facilitates studies in disorders caused by lower limb defects, cerebral disorders, and aging effects by learning data relationships through a combination of signal processing and machine learning techniques. Learning paradigms, such as supervised learning, unsupervised learning, and fuzzy and evolutionary algorithms, provide advanced modeling capabilities for biomechanical systems that in the past have relied heavily on statistical analysis. CI offers the ability to investigate nonlinear data relationships, enhance data interpretation, design more efficient diagnostic methods, and extrapolate model functionality. These are envisioned to result in more cost-effective, efficient, and easy-to-use systems, which would address global shortages in medical personnel and rising medical costs. This paper surveys current signal processing and CI methodologies followed by gait applications ranging from normal gait studies and disorder detection to artificial gait simulation. We review recent systems focusing on the existing challenges and issues involved in making them successful. We also examine new research in sensor technologies for gait that could be combined with these intelligent systems to develop more effective healthcare solutions.

  1. Attempt toward a development of aquatic exercise device for gait disorders.

    PubMed

    Miyoshi, Tasuku; Komatsu, Fumie; Takagi, Motoki; Kawashima, Noritaka

    2014-05-23

    Abstract Purpose: To develop an aquatic exercise device to facilitate locomotive motor output and achieve repetitive physiological gait patterns to improve movement dysfunctions. Methods: A custom designed leg movement apparatus (LMA) consisted of closed 4-linkage mechanisms and one-length changeable link using a spring. Three-dimensional motions and electromyographic (EMG) activities were recorded in eight healthy subjects to evaluate the reproducibility of the physiological gait patterns using the LMA with or without a spring apparatus in water. Results: Using the LMA with a spring apparatus compared to walking in water, the foot trajectories and the time course of the elevation angles in each lower limb joint kinematics were preserved. The time-series of the EMG showed reciprocal modulation between agonist and antagonist muscle groups in the hip and ankle joints. However, the amplitudes of the tibialis anterior muscle in the first half and rectus femoris in the last half of the movement cycle were reduced using the LMA with a spring apparatus. Conclusion: We developed a novel aquatic exercise device to reproduce physiological gait patterns. The LMA with a spring apparatus would be particularly valuable in therapy for movement dysfunctions to facilitate locomotive motor outputs. Implications for Rehabilitation The leg movement apparatus with spring for underwater use (LMA) would be effective gait training to induce the locomotor-like EMG activities. Hydrotherapy with the LMA has advantages over the partial body weight support treadmill training on land with a robotic device; (1) the LMA is electrically and mechanically safe, and (2) the LMA would require self-effort to generate the gait pattern for movement disorders, or also enable passive gait training by the physiotherapists.

  2. Contributions to the understanding of gait control.

    PubMed

    Simonsen, Erik Bruun

    2014-04-01

    considered an important energy conserving feature of human walking. The gating of sensory input to the spinal cord during walking and running was investigated by use of the Hoffmann (H) reflex in m. soleus and m. gastrocnemius medialis. This reflex expresses the central component of the stretch reflex, i.e. the transmission from Ia afferents to α-motoneurones in the spinal cord. The soleus H-reflex was shown to be strongly modulated during the gait cycle. In general, it was facilitated in the stance phase and suppressed in the swing phase. However, as it was the case with the biomechanical parameters, inter-individual H-reflex modulations were found and they were highly reproducible between days. One group of subjects had an almost completely suppressed H-reflex during the entire swing phase, while another group showed a gradually increasing reflex excitability during the swing phase. This group also walked with a lower extensor moment about the knee joint and higher plantar flexor moment about the ankle joint and it is speculated that this gait pattern highly relies on reflexes to deal with unexpected perturbations. The subjects with the suppressed reflex during the swing phase also showed a higher EMG activity in the anterior tibial muscle, so it is likely that the suppression of the H-reflex was at least partly due to reciprocal antagonist inhibition. All subjects showed complete suppression of the H-reflex at toeoff. This seems necessary to avoid a stretch reflex being elicited in the soleus muscle as the ankle joint undergoes a fast dorsiflexion just after toeoff. The reflex modulation is clearly an integrated part of the human gait pattern and is absolutely necessary for normal gait function with smoothe movements. Furthermore, it is anticipated that the afferent input from the muscle spindles is used to drive the motor output from the α-motoneurones together with descending activity from the motor cortex. During running the H-reflex increased in both the soleus and

  3. Development Aspects of a Robotised Gait Trainer for Neurological Rehabilitation

    DTIC Science & Technology

    2001-10-25

    of the robotised gait training machine. Keywords - gait rehabilitation, gait trainer, gait analysis , robot, compliance control I. INTRODUCTION...pp. 423-428, 2000. [6] D.A. Winter, Biomechanics and motor control of human movement, 2 nd ed., John Wiley & Sons, 1990. [7] J. Perry, Gait Analysis , Slack

  4. Marmoset monkeys evaluate third-party reciprocity

    PubMed Central

    Kawai, Nobuyuki; Yasue, Miyuki; Banno, Taku; Ichinohe, Noritaka

    2014-01-01

    Many non-human primates have been observed to reciprocate and to understand reciprocity in one-to-one social exchanges. A recent study demonstrated that capuchin monkeys are sensitive to both third-party reciprocity and violation of reciprocity; however, whether this sensitivity is a function of general intelligence, evidenced by their larger brain size relative to other primates, remains unclear. We hypothesized that highly pro-social primates, even with a relatively smaller brain, would be sensitive to others' reciprocity. Here, we show that common marmosets discriminated between human actors who reciprocated in social exchanges with others and those who did not. Monkeys accepted rewards less frequently from non-reciprocators than they did from reciprocators when the non-reciprocators had retained all food items, but they accepted rewards from both actors equally when they had observed reciprocal exchange between the actors. These results suggest that mechanisms to detect unfair reciprocity in third-party social exchanges do not require domain-general higher cognitive ability based on proportionally larger brains, but rather emerge from the cooperative and pro-social tendencies of species, and thereby suggest this ability evolved in multiple primate lineages. PMID:24850892

  5. Reciprocal food sharing in the vampire bat

    NASA Astrophysics Data System (ADS)

    Wilkinson, Gerald S.

    1984-03-01

    Behavioural reciprocity can be evolutionarily stable1-3. Initial increase in frequency depends, however, on reciprocal altruists interacting predominantly with other reciprocal altruists either by associating within kin groups or by having sufficient memory to recognize and not aid nonreciprocators. Theory thus suggests that reciprocity should evolve more easily among animals which live in kin groups. Data are available separating reciprocity from nepotism only for unrelated nonhuman animals4. Here, I show that food sharing by regurgitation of blood among wild vampire bats (Desmodus rotundus) depends equally and independently on degree of relatedness and an index of opportunity for recipro cation. That reciprocity operates within groups containing both kin and nonkin is supported further with data on the availability of blood-sharing occasions, estimates of the economics of shar ing blood, and experiments which show that unrelated bats will reciprocally exchange blood in captivity.

  6. Reciprocating orthoses for children with myelomeningocele. A comparison of two types.

    PubMed

    Phillips, D L; Field, R E; Broughton, N S; Menelaus, M B

    1995-01-01

    Since 1987, 22 children with myelomeningocele have been fitted with reciprocating orthoses. The level of the spinal lesions ranged from T10 to L4 and 13 had associated spinal deformities. Twelve of the patients currently use a Reciprocating Gait Orthosis, seven use a Hip Guidance Orthosis or Parawalker, one has progressed to a Knee Ankle Foot Orthosis, one has died and one has been lost to follow-up. The reciprocating orthoses are worn for a mean of 3.5 hours per day (1 to 6.5); daily usage by girls is almost twice that by boys. The mean daily usage by community walkers is 4.2 hours (13 children) as against 2.8 hours by household ambulators (8 children). Active hip flexion is not essential and fixed-flexion contractures up to 35 degrees can be accommodated. The average breakdown rate is 0.45 per year with an average of 1.5 adjustments each year. The average annual cost of a reciprocating orthosis is Aus$750 (375 pounds, US$570); this includes fabrication, adjustments and repairs.

  7. Coaction versus reciprocity in continuous-time models of cooperation.

    PubMed

    van Doorn, G Sander; Riebli, Thomas; Taborsky, Michael

    2014-09-07

    Cooperating animals frequently show closely coordinated behaviours organized by a continuous flow of information between interacting partners. Such real-time coaction is not captured by the iterated prisoner's dilemma and other discrete-time reciprocal cooperation games, which inherently feature a delay in information exchange. Here, we study the evolution of cooperation when individuals can dynamically respond to each other's actions. We develop continuous-time analogues of iterated-game models and describe their dynamics in terms of two variables, the propensity of individuals to initiate cooperation (altruism) and their tendency to mirror their partner's actions (coordination). These components of cooperation stabilize at an evolutionary equilibrium or show oscillations, depending on the chosen payoff parameters. Unlike reciprocal altruism, cooperation by coaction does not require that those willing to initiate cooperation pay in advance for uncertain future benefits. Correspondingly, we show that introducing a delay to information transfer between players is equivalent to increasing the cost of cooperation. Cooperative coaction can therefore evolve much more easily than reciprocal cooperation. When delays entirely prevent coordination, we recover results from the discrete-time alternating prisoner's dilemma, indicating that coaction and reciprocity are connected by a continuum of opportunities for real-time information exchange.

  8. Towards Pervasive Gait Analysis for Medicine with Wearable Sensors: A Systematic Review for Clinicians and Medical Researchers.

    PubMed

    Chen, Shanshan; Lach, John; Lo, Benny; Yang, Guang-Zhong

    2016-09-22

    After decades of evolution, measuring instruments for quantitative gait analysis have become an important clinical tool for assessing pathologies manifested by gait abnormalities. However, such instruments tend to be expensive and require expert operation and maintenance besides their high cost, thus limiting them to only a small number of specialized centers. Consequently, gait analysis in most clinics today still relies on observation-based assessment. Recent advances in wearable sensors, especially inertial body sensors, have opened up a promising future for gait analysis. Not only can these sensors be more easily adopted in clinical diagnosis and treatment procedures than their current counterparts, but they can also monitor gait continuously outside clinics - hence providing seamless patient analysis from clinics to free-living environments. The purpose of this paper is to provide a systematic review of current techniques for quantitative gait analysis and to propose key metrics for evaluating the existing, as well as emerging methods for qualifying the gait features extracted from wearable sensors. It aims to highlight key advances in this rapidly evolving research field and outline potential future directions for both research and clinical applications.

  9. Lever arm dysfunction in cerebral palsy gait.

    PubMed

    Theologis, Tim

    2013-11-01

    Skeletal structures act as lever arms during walking. Muscle activity and the ground reaction against gravity exert forces on the skeleton, which generate torque (moments) around joints. These lead to the sequence of movements which form normal human gait. Skeletal deformities in cerebral palsy (CP) affect the function of bones as lever arms and compromise gait. Lever arm dysfunction should be carefully considered when contemplating treatment to improve gait in children with CP.

  10. The Pathomechanics Of Calcaneal Gait

    NASA Astrophysics Data System (ADS)

    Sutherland, David H.; Cooper, Les

    1980-07-01

    The data acquisition system employed in our laboratory includes optical, electronic and computer subsystems. Three movie camera freeze the motion for analysis. The film is displayed on a motion analyzer, and the body segment positions are recorded in a three dimensional coordinate system with Graf/pen sonic digitizer. The angular rotations are calculated by computer and automatically plotted. The force plate provides measurements of vertical force, foreaft shear, medial-lateral shear, torque, and center of pressure. Electromyograms are superimposed upon gait movies to permit measurement of muscle phasic activity. The Hycam movie camera si-multaneously films (through separate lens) the subject and oscilloscope. Movement measurements, electromyograms, and floor reaction forces provide the data base for analysis. From a study of the gait changes in five normal subjects following tibial nerve block, and from additional studies of patients with paralysis of the ankle plantar flexors, the pathomechanics of calcaneal gait can be described. Inability to transfer weight to the forward part of the foot produces ankle instability and reduction of contralateral step length. Excessive drop of the center of mass necessitates com-pensatory increased lift energy output through the sound limb to restore the height of the center of mass. Excessive stance phase ankle dorsiflexion produces knee instability requiring prolonged quadriceps muscle phasic activity.

  11. Mixed gaits in small avian terrestrial locomotion

    PubMed Central

    Andrada, Emanuel; Haase, Daniel; Sutedja, Yefta; Nyakatura, John A.; M. Kilbourne, Brandon; Denzler, Joachim; Fischer, Martin S.; Blickhan, Reinhard

    2015-01-01

    Scientists have historically categorized gaits discretely (e.g. regular gaits such as walking, running). However, previous results suggest that animals such as birds might mix or regularly or stochastically switch between gaits while maintaining a steady locomotor speed. Here, we combined a novel and completely automated large-scale study (over one million frames) on motions of the center of mass in several bird species (quail, oystercatcher, northern lapwing, pigeon, and avocet) with numerical simulations. The birds studied do not strictly prefer walking mechanics at lower speeds or running mechanics at higher speeds. Moreover, our results clearly display that the birds in our study employ mixed gaits (such as one step walking followed by one step using running mechanics) more often than walking and, surprisingly, maybe as often as grounded running. Using a bio-inspired model based on parameters obtained from real quails, we found two types of stable mixed gaits. In the first, both legs exhibit different gait mechanics, whereas in the second, legs gradually alternate from one gait mechanics into the other. Interestingly, mixed gaits parameters mostly overlap those of grounded running. Thus, perturbations or changes in the state induce a switch from grounded running to mixed gaits or vice versa. PMID:26333477

  12. Gait recognition based on integral outline

    NASA Astrophysics Data System (ADS)

    Ming, Guan; Fang, Lv

    2017-02-01

    Biometric identification technology replaces traditional security technology, which has become a trend, and gait recognition also has become a hot spot of research because its feature is difficult to imitate and theft. This paper presents a gait recognition system based on integral outline of human body. The system has three important aspects: the preprocessing of gait image, feature extraction and classification. Finally, using a method of polling to evaluate the performance of the system, and summarizing the problems existing in the gait recognition and the direction of development in the future.

  13. Mixed gaits in small avian terrestrial locomotion.

    PubMed

    Andrada, Emanuel; Haase, Daniel; Sutedja, Yefta; Nyakatura, John A; Kilbourne, Brandon M; Denzler, Joachim; Fischer, Martin S; Blickhan, Reinhard

    2015-09-03

    Scientists have historically categorized gaits discretely (e.g. regular gaits such as walking, running). However, previous results suggest that animals such as birds might mix or regularly or stochastically switch between gaits while maintaining a steady locomotor speed. Here, we combined a novel and completely automated large-scale study (over one million frames) on motions of the center of mass in several bird species (quail, oystercatcher, northern lapwing, pigeon, and avocet) with numerical simulations. The birds studied do not strictly prefer walking mechanics at lower speeds or running mechanics at higher speeds. Moreover, our results clearly display that the birds in our study employ mixed gaits (such as one step walking followed by one step using running mechanics) more often than walking and, surprisingly, maybe as often as grounded running. Using a bio-inspired model based on parameters obtained from real quails, we found two types of stable mixed gaits. In the first, both legs exhibit different gait mechanics, whereas in the second, legs gradually alternate from one gait mechanics into the other. Interestingly, mixed gaits parameters mostly overlap those of grounded running. Thus, perturbations or changes in the state induce a switch from grounded running to mixed gaits or vice versa.

  14. Optics in gait analysis and anthropometry

    NASA Astrophysics Data System (ADS)

    Silva Moreno, Alejandra Alicia

    2013-11-01

    Since antiquity, human gait has been studied to understand human movement, the kind of gait, in some cases, can cause musculoskeletal disorders or other health problems; in addition, also from antiquity, anthropometry has been important for the design of human items such as workspaces, tools, garments, among others. Nowadays, thanks to the development of optics and electronics, more accurate studies of gait and anthropometry can be developed. This work will describe the most important parameters for gait analysis, anthropometry and the optical systems used.

  15. Gait-related cerebral alterations in patients with Parkinson's disease with freezing of gait.

    PubMed

    Snijders, Anke H; Leunissen, Inge; Bakker, Maaike; Overeem, Sebastiaan; Helmich, Rick C; Bloem, Bastiaan R; Toni, Ivan

    2011-01-01

    Freezing of gait is a common, debilitating feature of Parkinson's disease. We have studied gait planning in patients with freezing of gait, using motor imagery of walking in combination with functional magnetic resonance imaging. This approach exploits the large neural overlap that exists between planning and imagining a movement. In addition, it avoids confounds introduced by brain responses to altered motor performance and somatosensory feedback during actual freezing episodes. We included 24 patients with Parkinson's disease: 12 patients with freezing of gait, 12 matched patients without freezing of gait and 21 matched healthy controls. Subjects performed two previously validated tasks--motor imagery of gait and a visual imagery control task. During functional magnetic resonance imaging scanning, we quantified imagery performance by measuring the time required to imagine walking on paths of different widths and lengths. In addition, we used voxel-based morphometry to test whether between-group differences in imagery-related activity were related to structural differences. Imagery times indicated that patients with freezing of gait, patients without freezing of gait and controls engaged in motor imagery of gait, with matched task performance. During motor imagery of gait, patients with freezing of gait showed more activity than patients without freezing of gait in the mesencephalic locomotor region. Patients with freezing of gait also tended to have decreased responses in mesial frontal and posterior parietal regions. Furthermore, patients with freezing of gait had grey matter atrophy in a small portion of the mesencephalic locomotor region. The gait-related hyperactivity of the mesencephalic locomotor region correlated with clinical parameters (freezing of gait severity and disease duration), but not with the degree of atrophy. These results indicate that patients with Parkinson's disease with freezing of gait have structural and functional alterations in the

  16. Directional excitation without breaking reciprocity

    NASA Astrophysics Data System (ADS)

    Ramezani, Hamidreza; Dubois, Marc; Wang, Yuan; Shen, Y. Ron; Zhang, Xiang

    2016-09-01

    We propose a mechanism for directional excitation without breaking reciprocity. This is achieved by embedding an impedance matched parity-time symmetric potential in a three-port system. The amplitude distribution within the gain and loss regions is strongly influenced by the direction of the incoming field. Consequently, the excitation of the third port is contingent on the direction of incidence while transmission in the main channel is immune. Our design improves the four-port directional coupler scheme, as there is no need to implement an anechoic termination to one of the ports.

  17. Application of the Gillette Gait Index, Gait Deviation Index and Gait Profile Score to multiple clinical pediatric populations.

    PubMed

    McMulkin, Mark L; MacWilliams, Bruce A

    2015-02-01

    Gait indices are now commonly used to assess overall pathology and outcomes from studies with instrumented gait analyses. There are differences in how these indices are calculated and therefore inherent differences in their sensitivities to detect changes or differences between groups. The purpose of the current study was to examine the three most commonly used gait indices, Gillette Gait Index (GGI), Gait Deviation Index (GDI), and Gait Profile Score (GPS), comparing the statistical sensitivity and the ability to make meaningful interpretations of the clinical results. In addition, the GDI*, a log transformed and scaled version of the GPS score which closely matches the GDI was examined. For seven previous or ongoing studies representing varying gait pathologies seen in clinical laboratories, the GGI, GDI, and GPS/GDI* were calculated retrospectively. The GDI and GPS/GDI* proved to be the most sensitive measures in assessing differences pre/post-treatment or from a control population. A power analysis revealed the GDI and GDI* to be the most sensitive statistical measures (lowest sample sizes required). Subjectively, the GDI and GDI* interpretation seemed to be the most intuitive measure for assessing clinical changes. However, the gait variable sub-scores of the GPS determined several statistical differences which were not previously noted and was the only index tool for quantifying the relative contributions of specific joints or planes of motion. The GGI did not offer any advantages over the other two indices.

  18. Underwater gait analysis in Parkinson's disease.

    PubMed

    Volpe, Daniele; Pavan, Davide; Morris, Meg; Guiotto, Annamaria; Iansek, Robert; Fortuna, Sofia; Frazzitta, Giuseppe; Sawacha, Zimi

    2017-02-01

    Although hydrotherapy is one of the physical therapies adopted to optimize gait rehabilitation in people with Parkinson disease, the quantitative measurement of gait-related outcomes has not been provided yet. This work aims to document the gait improvements in a group of parkinsonians after a hydrotherapy program through 2D and 3D underwater and on land gait analysis. Thirty-four parkinsonians and twenty-two controls were enrolled, divided into two different cohorts. In the first one, 2 groups of patients underwent underwater or land based walking training; controls underwent underwater walking training. Hence pre-treatment 2D underwater and on land gait analysis were performed, together with post-treatment on land gait analysis. Considering that current literature documented a reduced movement amplitude in parkinsonians across all lower limb joints in all movement planes, 3D underwater and on land gait analysis were performed on a second cohort of subjects (10 parkinsonians and 10 controls) who underwent underwater gait training. Baseline land 2D and 3D gait analysis in parkinsonians showed shorter stride length and slower speed than controls, in agreement with previous findings. Comparison between underwater and on land gait analysis showed reduction in stride length, cadence and speed on both parkinsonians and controls. Although patients who underwent underwater treatment exhibited significant changes on spatiotemporal parameters and sagittal plane lower limb kinematics, 3D gait analysis documented a significant (p<0.05) improvement in all movement planes. These data deserve attention for research directions promoting the optimal recovery and maintenance of walking ability.

  19. Comparison of Upright Gait with Supine Bungee-Cord Gait

    NASA Technical Reports Server (NTRS)

    Boda, Wanda L.; Hargens, Alan R.; Campbell, J. A.; Yang, C.; Holton, Emily M. (Technical Monitor)

    1998-01-01

    Running on a treadmill with bungee-cord resistance is currently used on the Russian space station MIR as a countermeasure for the loss of bone and muscular strength which occurs during spaceflight. However, it is unknown whether ground reaction force (GRF) at the feet using bungee-cord resistance is similar to that which occurs during upright walking and running on Earth. We hypothesized-that the DRAMs generated during upright walking and running are greater than the DRAMs generated during supine bungee-cord gait. Eleven healthy subjects walked (4.8 +/- 0.13 km/h, mean +/- SE) and ran (9.1 +/- 0.51 km/h) during upright and supine bungee-cord exercise on an active treadmill. Subjects exercised for 3 min in each condition using a resistance of 1 body weight calibrated during an initial, stationary standing position. Data were sampled at a frequency of 500Hz and the mean of 3 trials was analyzed for each condition. A repeated measures analysis of variance tested significance between the conditions. Peak DRAMs during upright walking were significantly greater (1084.9 +/- 111.4 N) than during supine bungee-cord walking (770.3 +/- 59.8 N; p less than 0.05). Peak GRFs were also significantly greater for upright running (1548.3 +/- 135.4 N) than for supine bungee-cord running (1099.5 +/- 158.46 N). Analysis of GRF curves indicated that forces decreased throughout the stance phase for bungee-cord gait but not during upright gait. These results indicate that bungee-cord exercise may not create sufficient loads at the feet to counteract the loss of bone and muscular strength that occurs during long-duration exposure to microgravity.

  20. Gait kinematics and kinetics are affected more by peripheral arterial disease than age

    PubMed Central

    Myers, Sara A.; Applequist, Bryon C.; Huisinga, Jessie M.; Pipinos, Iraklis I.; Johanning, Jason M.

    2016-01-01

    Peripheral arterial disease (PAD) produces abnormal gait and disproportionately affects older individuals. The current study investigated PAD gait biomechanics in young and older subjects. Sixty-one (31 < 65 years, age: 57.4 ± 5.3 years and 30 ≥ 65 years; age: 72.2 ± 5.4 years) patients with PAD and 52 healthy age matched controls were included. Patients with PAD were tested during pain free walking and compared to matched healthy controls. Joint kinematics and kinetics (torques) were compared using a 2 × 2 ANOVA (Groups: PAD vs. Control, Age: Younger vs. Older). Patients with PAD had significantly increased ankle and decreased hip range of motion during the stance phase as well as decreased ankle dorsiflexor torque compared to controls. Gait changes in older individuals are largely constrained to time-distance parameters. Joint kinematics and kinetics are significantly altered in patients with PAD during pain free ambulation. Symptomatic PAD produces a consistent ambulatory deficit across ages definable by advanced biomechanical analysis. The most important finding of the current study is that gait, in the absence of PAD and other ambulatory comorbidities, does not decline significantly with age based on advanced biomechanical analysis. Therefore, previous studies must be examined in the context of potential PAD patients being present in the population and future ambulatory studies must include PAD as a confounding factor when assessing the gait function of elderly individuals. PMID:27149635

  1. Bipropellant propulsion with reciprocating pumps

    NASA Astrophysics Data System (ADS)

    Whitehead, John C.

    1993-06-01

    A pressure regulated gas generator rocket cycle with alternately pressurized pairs of reciprocating pumps offers thrust-on-demand operation with significantly lower inert mass than conventional spacecraft liquid propulsion systems. The operation of bipropellant feed systems with reciprocating pumps is explained, with consideration for both short and long term missions. There are several methods for startup and shutdown of this self-starting pump-fed system, with preference determined by thrust duty cycle and mission duration. Progress to date includes extensive development testing of components unique to this type of system, and several live tests with monopropellant hydrazine. Pneumatic pump control valves which render pistons and bellows automatically responsive to downstream liquid demand are significantly simpler than those described previously. A compact pumpset mounted to central liquid manifolds has a pair of oxidizer pumps pneumatically slaved to a pair of fuel pumps to reduce vibration. A warm gas pressure reducer for tank expulsion can eliminate any remaining need for inert gas storage.

  2. Indirect reciprocity with trinary reputations.

    PubMed

    Tanabe, Shoma; Suzuki, Hideyuki; Masuda, Naoki

    2013-01-21

    Indirect reciprocity is a reputation-based mechanism for cooperation in social dilemma situations when individuals do not repeatedly meet. The conditions under which cooperation based on indirect reciprocity occurs have been examined in great details. Most previous theoretical analysis assumed for mathematical tractability that an individual possesses a binary reputation value, i.e., good or bad, which depends on their past actions and other factors. However, in real situations, reputations of individuals may be multiple valued. Another puzzling discrepancy between the theory and experiments is the status of the so-called image scoring, in which cooperation and defection are judged to be good and bad, respectively, independent of other factors. Such an assessment rule is found in behavioral experiments, whereas it is known to be unstable in theory. In the present study, we fill both gaps by analyzing a trinary reputation model. By an exhaustive search, we identify all the cooperative and stable equilibria composed of a homogeneous population or a heterogeneous population containing two types of players. Some results derived for the trinary reputation model are direct extensions of those for the binary model. However, we find that the trinary model allows cooperation under image scoring under some mild conditions.

  3. Gait Analysis by High School Students

    ERIC Educational Resources Information Center

    Heck, Andre; van Dongen, Caroline

    2008-01-01

    Human walking is a complicated motion. Movement scientists have developed various research methods to study gait. This article describes how a high school student collected and analysed high quality gait data in much the same way that movement scientists do, via the recording and measurement of motions with a video analysis tool and via…

  4. Research on gait-based human identification

    NASA Astrophysics Data System (ADS)

    Li, Youguo

    Gait recognition refers to automatic identification of individual based on his/her style of walking. This paper proposes a gait recognition method based on Continuous Hidden Markov Model with Mixture of Gaussians(G-CHMM). First, we initialize a Gaussian mix model for training image sequence with K-means algorithm, then train the HMM parameters using a Baum-Welch algorithm. These gait feature sequences can be trained and obtain a Continuous HMM for every person, therefore, the 7 key frames and the obtained HMM can represent each person's gait sequence. Finally, the recognition is achieved by Front algorithm. The experiments made on CASIA gait databases obtain comparatively high correction identification ratio and comparatively strong robustness for variety of bodily angle.

  5. Network Homophily and the Evolution of the Pay-It-Forward Reciprocity

    PubMed Central

    Chiang, Yen-Sheng; Takahashi, Nobuyuki

    2011-01-01

    The pay-it-forward reciprocity is a type of cooperative behavior that people who have benefited from others return favors to third parties other than the benefactors, thus pushing forward a cascade of kindness. The phenomenon of the pay-it-forward reciprocity is ubiquitous, yet how it evolves to be part of human sociality has not been fully understood. We develop an evolutionary dynamics model to investigate how network homophily influences the evolution of the pay-it-forward reciprocity. Manipulating the extent to which actors carrying the same behavioral trait are linked in networks, the computer simulation model shows that strong network homophily helps consolidate the adaptive advantage of cooperation, yet introducing some heterophily to the formation of network helps advance cooperation's scale further. Our model enriches the literature of inclusive fitness theory by demonstrating the conditions under which cooperation or reciprocity can be selected for in evolution when social interaction is not confined exclusively to relatives. PMID:22195019

  6. Reciprocal Tutoring: Design with Cognitive Load Sharing

    ERIC Educational Resources Information Center

    Chou, Chih-Yueh; Chan, Tak-Wai

    2016-01-01

    "Reciprocal tutoring," as reported in "Exploring the design of computer supports for reciprocal tutoring" (Chan and Chou 1997), has extended the meaning and scope of "intelligent tutoring" originally implemented in stand alone computers. This research is a follow-up to our studies on a "learning companion…

  7. What is Reciprocal Understanding in Virtual Interaction?

    ERIC Educational Resources Information Center

    Byman, Arja; Jarvela, Sanna; Hakkinen, Paivi

    2005-01-01

    The aim of this study is to investigate what is reciprocal understanding in virtual web-based interaction and what does it consist of. The context of this study was an international web-based pre-service teacher education (N=116) course. The study is based on an idea of shared cognition and reciprocal understanding, in particular. It is assumed…

  8. 49 CFR 384.214 - Reciprocity.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Reciprocity. 384.214 Section 384.214 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY... Reciprocity. The State must allow any person to operate a CMV in the State who is not disqualified...

  9. 33 CFR 173.17 - Reciprocity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Reciprocity. 173.17 Section 173.17 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY VESSEL NUMBERING AND CASUALTY AND ACCIDENT REPORTING Numbering § 173.17 Reciprocity. (a)...

  10. 49 CFR 384.214 - Reciprocity.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Reciprocity. 384.214 Section 384.214 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY... Reciprocity. The State shall allow any person to operate a CMV in the State who is not disqualified...

  11. Education, Gift and Reciprocity: A Preliminary Discussion

    ERIC Educational Resources Information Center

    Sabourin, Eric

    2013-01-01

    This paper analyzes the importance and role of the reciprocity relationship in education. It presents a review on the mobilization of the principle of reciprocity--in the anthropological but also sociological and economic senses--in educational processes, especially in adult education. The study is divided into three parts. The first part analyzes…

  12. 23 CFR 1235.8 - Reciprocity.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Reciprocity. 1235.8 Section 1235.8 Highways NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION AND FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GUIDELINES UNIFORM SYSTEM FOR PARKING FOR PERSONS WITH DISABILITIES § 1235.8 Reciprocity. The State...

  13. 33 CFR 173.17 - Reciprocity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Reciprocity. 173.17 Section 173.17 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY VESSEL NUMBERING AND CASUALTY AND ACCIDENT REPORTING Numbering § 173.17 Reciprocity. (a)...

  14. 23 CFR 1235.8 - Reciprocity.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false Reciprocity. 1235.8 Section 1235.8 Highways NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION AND FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GUIDELINES UNIFORM SYSTEM FOR PARKING FOR PERSONS WITH DISABILITIES § 1235.8 Reciprocity. The State...

  15. 36 CFR 251.63 - Reciprocity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Reciprocity. 251.63 Section 251.63 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE LAND USES Special Uses § 251.63 Reciprocity. If it is determined that a right-of-way shall be needed by the United...

  16. 36 CFR 251.63 - Reciprocity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Reciprocity. 251.63 Section 251.63 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE LAND USES Special Uses § 251.63 Reciprocity. If it is determined that a right-of-way shall be needed by the United...

  17. The Effects of Reciprocal Teaching on Comprehension.

    ERIC Educational Resources Information Center

    Frances, Shannon M.; Eckart, Joyce A.

    An action research project investigated the effect of reciprocal teaching instruction and use on the comprehension of seventh-grade general English students. Reciprocal teaching is a form of dialogue structured around four skills--question generation, summarization, clarification, and prediction. These techniques are used in small group…

  18. Implementing Reciprocal Teaching: Was It Effective?

    ERIC Educational Resources Information Center

    Al-Hilawani, Yasser A.; And Others

    This study was conducted to explore the relationship between teaching methods and students' grades at the college level. Subjects, 58 undergraduate students enrolled in 2 introductory education courses, were organized into groups and exposed to one of two teaching methods: the lecture format and reciprocal teaching. Reciprocal teaching engages…

  19. An Introduction to the Onsager Reciprocal Relations

    ERIC Educational Resources Information Center

    Monroe, Charles W.; Newman, John

    2007-01-01

    The Onsager reciprocal relations are essential to multicomponent transport theory. A discussion of the principles that should be used to derive flux laws for coupled diffusion is presented here. Fluctuation theory is employed to determine the reciprocal relation for transport coefficients that characterize coupled mass and heat transfer in binary…

  20. Competition among cooperators: Altruism and reciprocity

    PubMed Central

    Danielson, Peter

    2002-01-01

    Levine argues that neither self-interest nor altruism explains experimental results in bargaining and public goods games. Subjects' preferences appear also to be sensitive to their opponents' perceived altruism. Sethi and Somanathan provide a general account of reciprocal preferences that survive under evolutionary pressure. Although a wide variety of reciprocal strategies pass this evolutionary test, Sethi and Somanthan conjecture that fewer are likely to survive when reciprocal strategies compete with each other. This paper develops evolutionary agent-based models to test their conjecture in cases where reciprocal preferences can differ in a variety of games. We confirm that reciprocity is necessary but not sufficient for optimal cooperation. We explore the theme of competition among reciprocal cooperators and display three interesting emergent organizations: racing to the “moral high ground,” unstable cycles of preference change, and, when we implement reciprocal mechanisms, hierarchies resulting from exploiting fellow cooperators. If reciprocity is a basic mechanism facilitating cooperation, we can expect interaction that evolves around it to be complex, non-optimal, and resistant to change. PMID:12011403

  1. Multiplicative noise enhances spatial reciprocity

    NASA Astrophysics Data System (ADS)

    Yao, Yao; Chen, Shen-Shen

    2014-11-01

    Recent research has identified the heterogeneity as crucial for the evolution of cooperation in spatial population. However, the influence of heterogeneous noise is still lacking. Inspired by this interesting question, in this work, we try to incorporate heterogeneous noise into the evaluation of utility, where only a proportion of population possesses noise, whose range can also be tuned. We find that increasing heterogeneous noise monotonously promotes cooperation and even translates the full defection phase (of the homogeneous version) into the complete cooperation phase. Moreover, the promotion effect of this mechanism can be attributed to the leading role of cooperators who have the heterogeneous noise. These type of cooperators can attract more agents penetrating into the robust cooperator clusters, which is beyond the text of traditional spatial reciprocity. We hope that our work may shed light on the understanding of the cooperative behavior in the society.

  2. Quantum coherence: Reciprocity and distribution

    NASA Astrophysics Data System (ADS)

    Kumar, Asutosh

    2017-03-01

    Quantum coherence is the outcome of the superposition principle. Recently, it has been theorized as a quantum resource, and is the premise of quantum correlations in multipartite systems. It is therefore interesting to study the coherence content and its distribution in a multipartite quantum system. In this work, we show analytically as well as numerically the reciprocity between coherence and mixedness of a quantum state. We find that this trade-off is a general feature in the sense that it is true for large spectra of measures of coherence and of mixedness. We also study the distribution of coherence in multipartite systems by looking at monogamy-type relation-which we refer to as additivity relation-between coherences of different parts of the system. We show that for the Dicke states, while the normalized measures of coherence violate the additivity relation, the unnormalized ones satisfy the same.

  3. Gait transitions in simulated reduced gravity.

    PubMed

    Ivanenko, Yuri P; Labini, Francesca Sylos; Cappellini, Germana; Macellari, Velio; McIntyre, Joseph; Lacquaniti, Francesco

    2011-03-01

    Gravity has a strong effect on gait and the speed of gait transitions. A gait has been defined as a pattern of locomotion that changes discontinuously at the transition to another gait. On Earth, during gradual speed changes, humans exhibit a sudden discontinuous switch from walking to running at a specific speed. To study the effects of altered gravity on both the stance and swing legs, we developed a novel unloading exoskeleton that allows a person to step in simulated reduced gravity by tilting the body relative to the vertical. Using different simulation techniques, we confirmed that at lower gravity levels the transition speed is slower (in accordance with the previously reported Froude number ∼0.5). Surprisingly, however, we found that at lower levels of simulated gravity the transition between walking and running was generally gradual, without any noticeable abrupt change in gait parameters. This was associated with a significant prolongation of the swing phase, whose duration became virtually equal to that of stance in the vicinity of the walk-run transition speed, and with a gradual shift from inverted-pendulum gait (walking) to bouncing gait (running).

  4. Freezing of gait in Parkinson's disease: current treatments and the potential role for cognitive training.

    PubMed

    Walton, Courtney C; Shine, James M; Mowszowski, Loren; Naismith, Sharon L; Lewis, Simon J G

    2014-01-01

    Freezing of gait (FOG) is a complex motor symptom of Parkinson's disease that manifests as an inability to generate effective gait, leading to a significant falls risk and a severe impact on quality of life. Research into effective treatment options has provided relatively limited benefits and is often hindered by substantial limitations. In this article, current treatment and research options are briefly discussed and a proposal for the further exploration of non-invasive therapeutic approaches is given. Recent advances in the literature continue to identify a pattern of selective executive dysfunction in patients with freezing of gait and such findings highlight a possible common underlying pathophysiology. Therefore, cognitive training is of particular interest as it may be able to improve executive processes thus reducing the manifestation of FOG. This article focuses on the existing evidence for such intervention strategies and proposes that targeted cognitive training may offer a novel treatment option for FOG that is worthy of an increased research focus.

  5. Biomechanics and analysis of running gait.

    PubMed

    Dugan, Sheila A; Bhat, Krishna P

    2005-08-01

    Physical activity, including running, is important to general health by way of prevention of chronic illnesses and their precursors. To keep runners healthy, it is paramount that one has sound knowledge of the biomechanics of running and assessment of running gait. More so, improving performance in competitive runners is based in sound training and rehabilitation practices that are rooted firmly in biomechanical principles. This article summarized the biomechanics of running and the means with which one can evaluate running gait. The gait assessment techniques for collecting and analyzing kinetic and kinematic data can provide insights into injury prevention and treatment and performance enhancement.

  6. Robust Gait Recognition by Integrating Inertial and RGBD Sensors.

    PubMed

    Zou, Qin; Ni, Lihao; Wang, Qian; Li, Qingquan; Wang, Song

    2017-03-29

    Gait has been considered as a promising and unique biometric for person identification. Traditionally, gait data are collected using either color sensors, such as a CCD camera, depth sensors, such as a Microsoft Kinect, or inertial sensors, such as an accelerometer. However, a single type of sensors may only capture part of the dynamic gait features and make the gait recognition sensitive to complex covariate conditions, leading to fragile gait-based person identification systems. In this paper, we propose to combine all three types of sensors for gait data collection and gait recognition, which can be used for important identification applications, such as identity recognition to access a restricted building or area. We propose two new algorithms, namely EigenGait and TrajGait, to extract gait features from the inertial data and the RGBD (color and depth) data, respectively. Specifically, EigenGait extracts general gait dynamics from the accelerometer readings in the eigenspace and TrajGait extracts more detailed subdynamics by analyzing 3-D dense trajectories. Finally, both extracted features are fed into a supervised classifier for gait recognition and person identification. Experiments on 50 subjects, with comparisons to several other state-of-the-art gait-recognition approaches, show that the proposed approach can achieve higher recognition accuracy and robustness.

  7. Variations in kinematics during clinical gait analysis in stroke patients.

    PubMed

    Boudarham, Julien; Roche, Nicolas; Pradon, Didier; Bonnyaud, Céline; Bensmail, Djamel; Zory, Raphael

    2013-01-01

    In addition to changes in spatio-temporal and kinematic parameters, patients with stroke exhibit fear of falling as well as fatigability during gait. These changes could compromise interpretation of data from gait analysis. The aim of this study was to determine if the gait of hemiplegic patients changes significantly over successive gait trials. Forty two stroke patients and twenty healthy subjects performed 9 gait trials during a gait analysis session. The mean and variability of spatio-temporal and kinematic joint parameters were analyzed during 3 groups of consecutive gait trials (1-3, 4-6 and 7-9). Principal component analysis was used to reduce the number of variables from the joint kinematic waveforms and to identify the parts of the gait cycle which changed during the gait analysis session. The results showed that i) spontaneous gait velocity and the other spatio-temporal parameters significantly increased, and ii) gait variability decreased, over the last 6 gait trials compared to the first 3, for hemiplegic patients but not healthy subjects. Principal component analysis revealed changes in the sagittal waveforms of the hip, knee and ankle for hemiplegic patients after the first 3 gait trials. These results suggest that at the beginning of the gait analysis session, stroke patients exhibited phase of adaptation,characterized by a "cautious gait" but no fatigue was observed.

  8. Reciprocity and Ethical Tuberculosis Treatment and Control.

    PubMed

    Silva, Diego S; Dawson, Angus; Upshur, Ross E G

    2016-03-01

    This paper explores the notion of reciprocity in the context of active pulmonary and laryngeal tuberculosis (TB) treatment and related control policies and practices. We seek to do three things: First, we sketch the background to contemporary global TB care and suggest that poverty is a key feature when considering the treatment of TB patients. We use two examples from TB care to explore the role of reciprocity: isolation and the use of novel TB drugs. Second, we explore alternative means of justifying the use of reciprocity through appeal to different moral and political theoretical traditions (i.e., virtue ethics, deontology, and consequentialism). We suggest that each theory can be used to provide reasons to take reciprocity seriously as an independent moral concept, despite any other differences. Third, we explore general meanings and uses of the concept of reciprocity, with the primary intention of demonstrating that it cannot be simply reduced to other more frequently invoked moral concepts such as beneficence or justice. We argue that reciprocity can function as a mid-level principle in public health, and generally, captures a core social obligation arising once an individual or group is burdened as a result of acting for the benefit of others (even if they derive a benefit themselves). We conclude that while more needs to be explored in relation to the theoretical justification and application of reciprocity, sufficient arguments can be made for it to be taken more seriously as a key principle within public health ethics and bioethics more generally.

  9. Gait recognition based on Gabor wavelets and modified gait energy image for human identification

    NASA Astrophysics Data System (ADS)

    Huang, Deng-Yuan; Lin, Ta-Wei; Hu, Wu-Chih; Cheng, Chih-Hsiang

    2013-10-01

    This paper proposes a method for recognizing human identity using gait features based on Gabor wavelets and modified gait energy images (GEIs). Identity recognition by gait generally involves gait representation, extraction, and classification. In this work, a modified GEI convolved with an ensemble of Gabor wavelets is proposed as a gait feature. Principal component analysis is then used to project the Gabor-wavelet-based gait features into a lower-dimension feature space for subsequent classification. Finally, support vector machine classifiers based on a radial basis function kernel are trained and utilized to recognize human identity. The major contributions of this paper are as follows: (1) the consideration of the shadow effect to yield a more complete segmentation of gait silhouettes; (2) the utilization of motion estimation to track people when walkers overlap; and (3) the derivation of modified GEIs to extract more useful gait information. Extensive performance evaluation shows a great improvement of recognition accuracy due to the use of shadow removal, motion estimation, and gait representation using the modified GEIs and Gabor wavelets.

  10. Modification of spastic gait through mechanical damping.

    PubMed

    Maki, B E; Rosen, M J; Simon, S R

    1985-01-01

    The effect of dissipative mechanical loads on spastic gait has been studied, to evaluate the feasibility of using mechanically damped orthoses to effect functional improvements in the gait of spastic patients. This concept is based on a hypothesis citing uninhibited, velocity-dependent stretch reflexes as a possible causal factor in spastic gait abnormalities, such as equinus and back-kneeing. In order to screen potential experimental subjects and to quantify velocity-dependent reflex behaviour, ankle rotation experiments and filmed gait analysis were performed. The results supported the existence of a velocity threshold. Orthosis simulation experiments were performed with one spastic subject, using a wearable, computer-controlled, electromechanical, below-knee orthosis simulator to apply a variety of damping loads to the ankle as the subject walked. Results indicated that appropriate damping can improve local joint kinematics. The damping causes a reduction in muscle stretch velocity which apparently results in reduced spastic reflex activity.

  11. Toward understanding the limits of gait recognition

    NASA Astrophysics Data System (ADS)

    Liu, Zongyi; Malave, Laura; Osuntogun, Adebola; Sudhakar, Preksha; Sarkar, Sudeep

    2004-08-01

    Most state of the art video-based gait recognition algorithms start from binary silhouettes. These silhouettes, defined as foreground regions, are usually detected by background subtraction methods, which results in holes or missed parts due to similarity of foreground and background color, and boundary errors due to video compression artifacts. Errors in low-level representation make it hard to understand the effect of certain conditions, such as surface and time, on gait recognition. In this paper, we present a part-level, manual silhouette database consisting of 71 subjects, over one gait cycle, with differences in surface, shoe-type, carrying condition, and time. We have a total of about 11,000 manual silhouette frames. The purpose of this manual silhouette database is twofold. First, this is a resource that we make available at http://www.GaitChallenge.org for use by the gait community to test and design better silhouette detection algorithms. These silhouettes can also be used to learn gait dynamics. Second, using the baseline gait recognition algorithm, which was specified along with the HumanID Gait Challenge problem, we show that performance from manual silhouettes is similar and only sometimes better than that from automated silhouettes detected by statistical background subtraction. Low performances when comparing sequences with differences in walking surfaces and time-variation are not fully explained by silhouette quality. We also study the recognition power in each body part and show that recognition based on just the legs is equal to that from the whole silhouette. There is also significant recognition power in the head and torso shape.

  12. Altered vision destabilizes gait in older persons.

    PubMed

    Helbostad, Jorunn L; Vereijken, Beatrix; Hesseberg, Karin; Sletvold, Olav

    2009-08-01

    This study assessed the effects of dim light and four experimentally induced changes in vision on gait speed and footfall and trunk parameters in older persons walking on level ground. Using a quasi-experimental design, gait characteristics were assessed in full light, dim light, and in dim light combined with manipulations resulting in reduced depth vision, double vision, blurred vision, and tunnel vision, respectively. A convenience sample of 24 home-dwelling older women and men (mean age 78.5 years, SD 3.4) with normal vision for their age and able to walk at least 10 m without assistance participated. Outcome measures were gait speed and spatial and temporal parameters of footfall and trunk acceleration, derived from an electronic gait mat and accelerometers. Dim light alone had no effect. Vision manipulations combined with dim light had effect on most footfall parameters but few trunk parameters. The largest effects were found regarding double and tunnel vision. Men increased and women decreased gait speed following manipulations (p=0.017), with gender differences also in stride velocity variability (p=0.017) and inter-stride medio-lateral trunk acceleration variability (p=0.014). Gender effects were related to differences in body height and physical functioning. Results indicate that visual problems lead to a more cautious and unstable gait pattern even under relatively simple conditions. This points to the importance of assessing vision in older persons and correcting visual impairments where possible.

  13. Gait Partitioning Methods: A Systematic Review

    PubMed Central

    Taborri, Juri; Palermo, Eduardo; Rossi, Stefano; Cappa, Paolo

    2016-01-01

    In the last years, gait phase partitioning has come to be a challenging research topic due to its impact on several applications related to gait technologies. A variety of sensors can be used to feed algorithms for gait phase partitioning, mainly classifiable as wearable or non-wearable. Among wearable sensors, footswitches or foot pressure insoles are generally considered as the gold standard; however, to overcome some inherent limitations of the former, inertial measurement units have become popular in recent decades. Valuable results have been achieved also though electromyography, electroneurography, and ultrasonic sensors. Non-wearable sensors, such as opto-electronic systems along with force platforms, remain the most accurate system to perform gait analysis in an indoor environment. In the present paper we identify, select, and categorize the available methodologies for gait phase detection, analyzing advantages and disadvantages of each solution. Finally, we comparatively examine the obtainable gait phase granularities, the usable computational methodologies and the optimal sensor placements on the targeted body segments. PMID:26751449

  14. Gait Recognition Using Wearable Motion Recording Sensors

    NASA Astrophysics Data System (ADS)

    Gafurov, Davrondzhon; Snekkenes, Einar

    2009-12-01

    This paper presents an alternative approach, where gait is collected by the sensors attached to the person's body. Such wearable sensors record motion (e.g. acceleration) of the body parts during walking. The recorded motion signals are then investigated for person recognition purposes. We analyzed acceleration signals from the foot, hip, pocket and arm. Applying various methods, the best EER obtained for foot-, pocket-, arm- and hip- based user authentication were 5%, 7%, 10% and 13%, respectively. Furthermore, we present the results of our analysis on security assessment of gait. Studying gait-based user authentication (in case of hip motion) under three attack scenarios, we revealed that a minimal effort mimicking does not help to improve the acceptance chances of impostors. However, impostors who know their closest person in the database or the genders of the users can be a threat to gait-based authentication. We also provide some new insights toward the uniqueness of gait in case of foot motion. In particular, we revealed the following: a sideway motion of the foot provides the most discrimination, compared to an up-down or forward-backward directions; and different segments of the gait cycle provide different level of discrimination.

  15. The Communications Satellite - Vehicle for a New Kind of Reciprocal Interdependence in International Adult Education

    ERIC Educational Resources Information Center

    Wedemeyer, Charles A.

    1971-01-01

    Adult education by means of communication satellites is stressed as a key to reciprocal interdependence. The author states that technological advances such as communications satellites can be used effectively to diffuse knowledge and offer options for choice in evolving societies. (RR)

  16. Static non-reciprocity in mechanical metamaterials

    NASA Astrophysics Data System (ADS)

    Coulais, Corentin; Sounas, Dimitrios; Alù, Andrea

    2017-02-01

    Reciprocity is a general, fundamental principle governing various physical systems, which ensures that the transfer function—the transmission of a physical quantity, say light intensity—between any two points in space is identical, regardless of geometrical or material asymmetries. Breaking this transmission symmetry offers enhanced control over signal transport, isolation and source protection. So far, devices that break reciprocity (and therefore show non-reciprocity) have been mostly considered in dynamic systems involving electromagnetic, acoustic and mechanical wave propagation associated with fields varying in space and time. Here we show that it is possible to break reciprocity in static systems, realizing mechanical metamaterials that exhibit vastly different output displacements under excitation from different sides, as well as one-way displacement amplification. This is achieved by combining large nonlinearities with suitable geometrical asymmetries and/or topological features. In addition to extending non-reciprocity and isolation to statics, our work sheds light on energy propagation in nonlinear materials with asymmetric crystalline structures and topological properties. We anticipate that breaking reciprocity will open avenues for energy absorption, conversion and harvesting, soft robotics, prosthetics and optomechanics.

  17. Static non-reciprocity in mechanical metamaterials.

    PubMed

    Coulais, Corentin; Sounas, Dimitrios; Alù, Andrea

    2017-02-23

    Reciprocity is a general, fundamental principle governing various physical systems, which ensures that the transfer function-the transmission of a physical quantity, say light intensity-between any two points in space is identical, regardless of geometrical or material asymmetries. Breaking this transmission symmetry offers enhanced control over signal transport, isolation and source protection. So far, devices that break reciprocity (and therefore show non-reciprocity) have been mostly considered in dynamic systems involving electromagnetic, acoustic and mechanical wave propagation associated with fields varying in space and time. Here we show that it is possible to break reciprocity in static systems, realizing mechanical metamaterials that exhibit vastly different output displacements under excitation from different sides, as well as one-way displacement amplification. This is achieved by combining large nonlinearities with suitable geometrical asymmetries and/or topological features. In addition to extending non-reciprocity and isolation to statics, our work sheds light on energy propagation in nonlinear materials with asymmetric crystalline structures and topological properties. We anticipate that breaking reciprocity will open avenues for energy absorption, conversion and harvesting, soft robotics, prosthetics and optomechanics.

  18. Gait dynamics in Parkinson's disease: common and distinct behavior among stride length, gait variability, and fractal-like scaling.

    PubMed

    Hausdorff, Jeffrey M

    2009-06-01

    Parkinson's disease (PD) is a common, debilitating neurodegenerative disease. Gait disturbances are a frequent cause of disability and impairment for patients with PD. This article provides a brief introduction to PD and describes the gait changes typically seen in patients with this disease. A major focus of this report is an update on the study of the fractal properties of gait in PD, the relationship between this feature of gait and stride length and gait variability, and the effects of different experimental conditions on these three gait properties. Implications of these findings are also briefly described. This update highlights the idea that while stride length, gait variability, and fractal scaling of gait are all impaired in PD, distinct mechanisms likely contribute to and are responsible for the regulation of these disparate gait properties.

  19. Gait dynamics in Parkinson's disease: Common and distinct behavior among stride length, gait variability, and fractal-like scaling

    NASA Astrophysics Data System (ADS)

    Hausdorff, Jeffrey M.

    2009-06-01

    Parkinson's disease (PD) is a common, debilitating neurodegenerative disease. Gait disturbances are a frequent cause of disability and impairment for patients with PD. This article provides a brief introduction to PD and describes the gait changes typically seen in patients with this disease. A major focus of this report is an update on the study of the fractal properties of gait in PD, the relationship between this feature of gait and stride length and gait variability, and the effects of different experimental conditions on these three gait properties. Implications of these findings are also briefly described. This update highlights the idea that while stride length, gait variability, and fractal scaling of gait are all impaired in PD, distinct mechanisms likely contribute to and are responsible for the regulation of these disparate gait properties.

  20. Reciprocating clamp apparatus for thermoforming plastic containers

    SciTech Connect

    Beck, M.H.; Harry, I.L.; Krishnakumar, S.M.

    1984-03-06

    This relates to the forming of containers and like hollow articles from sheets or webs of thermoplastic material. Two webs or sheets are simultaneously acted upon by way of a forming apparatus which includes a reciprocating clamp first cooperable with one outer platen and then the other in sequence wherein, while a first web or sheet is being formed within a plurality of mold cavities to define a plurality of hollow articles such as containers, the other sheet or web may be stripped from its respective mold set and a new sheet or a new portion of a sheet or web may be advanced into position for molding. The forming apparatus may be constructed in a manner wherein the web portions which are to be formed may be billowed away from the mold cavities as an initial step in the stretching and orientation of the thermoplastic material. The thermoplastic material may be heated to the desired forming temperature using separate sets of rf electrodes so that only those portions of the thermoplastic material which are to be formed need be heated. Two sets of containers of different sizes may be formed from the webs or sheets, and then internested to form double wall containers wherein the walls may be formed of different materials and wherein the outer material may be a barrier material, or wherein the walls of the containers are spaced apart to form an insulated container. This abstract forms no part of the specification of this application and is not to be construed as limiting the claims of the application.

  1. Changes in Post-Stroke Gait Biomechanics Induced by One Session of Gait Training.

    PubMed

    Kesar, T M; Reisman, D S; Higginson, J S; Awad, L N; Binder-Macleod, S A

    2015-01-01

    The objective of this study was to determine whether one session of targeted locomotor training can induce measurable improvements in the post-stroke gait impairments. Thirteen individuals with chronic post-stroke hemiparesis participated in one locomotor training session combining fast treadmill training and functional electrical stimulation (FES) of ankle dorsi- and plantar-flexor muscles. Three dimensional gait analysis was performed to assess within-session changes (after versus before training) in gait biomechanics at the subject's self-selected speed without FES. Our results showed that one session of locomotor training resulted in significant improvements in peak anterior ground reaction force (AGRF) and AGRF integral for the paretic leg. Additionally, individual subject data showed that a majority of study participants demonstrated improvements in the primary outcome variables following the training session. This study demonstrates, for the first time, that a single session of intense, targeted post-stroke locomotor retraining can induce significant improvements in post-stroke gait biomechanics. We posit that the within-session changes induced by a single exposure to gait training can be used to predict whether an individual is responsive to a particular gait intervention, and aid with the development of individualized gait retraining strategies. Future studies are needed to determine whether these single-session improvements in biomechanics are accompanied by short-term changes in corticospinal excitability, and whether single-session responses can serve as predictors for the longer-term effects of the intervention with other targeted gait interventions.

  2. Modulation of gait coordination by subthalamic stimulation improves freezing of gait.

    PubMed

    Fasano, Alfonso; Herzog, Jan; Seifert, Elena; Stolze, Henning; Falk, Daniela; Reese, René; Volkmann, Jens; Deuschl, Günther

    2011-04-01

    The effect of subthalamic deep brain stimulation on gait coordination and freezing of gait in patients with Parkinson's disease is incompletely understood. The purpose of this study was to investigate the extent to which modulation of symmetry and coordination between legs by subthalamic deep brain stimulation alters the frequency and duration of freezing of gait in patients with Parkinson's disease. We recruited 13 post-subthalamic deep brain stimulation patients with Parkinson's disease with off freezing of gait and evaluated them in the following 4 conditions: subthalamic deep brain stimulation on (ON) and stimulation off (OFF), 50% reduction of stimulation voltage for the leg with shorter step length (worse side reduction) and for the leg with longer step length (better side reduction). Gait analysis was performed on a treadmill and recorded by an optoelectronic analysis system. We measured frequency and duration of freezing of gait episodes. Bilateral coordination of gait was assessed by the Phase Coordination Index, quantifying the ability to generate antiphase stepping. From the OFF to the ON state, freezing of gait improved in frequency (2.0 ± 0.4 to 1.4 ± 0.5 episodes) and duration (12.2 ± 2.6 to 2.6 ± 0.8 seconds; P = .005). Compared with the ON state, only better side reduction further reduced freezing of gait frequency (0.2 ± 0.2) and duration of episodes (0.2 ± 0.2 seconds; P = .03); worse side reduction did not change frequency (1.3 ± 0.4) but increased freezing of gait duration (5.2 ± 2.1 seconds). The better side reduction-associated improvements were accompanied by normalization of gait coordination, as measured by phase coordination index (16.5% ± 6.0%), which was significantly lower than in the other 3 conditions. Reduction of stimulation voltage in the side contralateral to the leg with longer step length improves frequency and duration of freezing of gait through normalization of gait symmetry and coordination in subthalamic deep brain

  3. Intra-individual gait pattern variability in specific situations: Implications for forensic gait analysis.

    PubMed

    Ludwig, Oliver; Dillinger, Steffen; Marschall, Franz

    2016-07-01

    In this study, inter- and intra-individual gait pattern differences are examined in various gait situations by means of phase diagrams of the extremity angles (cyclograms). 8 test subjects walked along a walking distance of 6m under different conditions three times each: barefoot, wearing sneakers, wearing combat boots, after muscular fatigue, and wearing a full-face motorcycle helmet restricting vision. The joint angles of foot, knee, and hip were recorded in the sagittal plane. The coupling of movements was represented by time-adjusted cyclograms, and the inter- and intra-individual differences were captured by calculating the similarity between different gait patterns. Gait pattern variability was often greater between the defined test situations than between the individual test subjects. The results have been interpreted considering neurophysiological regulation mechanisms. Footwear, masking, and fatigue were interpreted as disturbance parameters, each being a cause for gait pattern variability and complicating the inference of identity of persons in video recordings.

  4. A Validated Smartphone-Based Assessment of Gait and Gait Variability in Parkinson’s Disease

    PubMed Central

    Ellis, Robert J.; Ng, Yee Sien; Zhu, Shenggao; Tan, Dawn M.; Anderson, Boyd; Schlaug, Gottfried; Wang, Ye

    2015-01-01

    Background A well-established connection exists between increased gait variability and greater fall likelihood in Parkinson’s disease (PD); however, a portable, validated means of quantifying gait variability (and testing the efficacy of any intervention) remains lacking. Furthermore, although rhythmic auditory cueing continues to receive attention as a promising gait therapy for PD, its widespread delivery remains bottlenecked. The present paper describes a smartphone-based mobile application (“SmartMOVE”) to address both needs. Methods The accuracy of smartphone-based gait analysis (utilizing the smartphone’s built-in tri-axial accelerometer and gyroscope to calculate successive step times and step lengths) was validated against two heel contact–based measurement devices: heel-mounted footswitch sensors (to capture step times) and an instrumented pressure sensor mat (to capture step lengths). 12 PD patients and 12 age-matched healthy controls walked along a 26-m path during self-paced and metronome-cued conditions, with all three devices recording simultaneously. Results Four outcome measures of gait and gait variability were calculated. Mixed-factorial analysis of variance revealed several instances in which between-group differences (e.g., increased gait variability in PD patients relative to healthy controls) yielded medium-to-large effect sizes (eta-squared values), and cueing-mediated changes (e.g., decreased gait variability when PD patients walked with auditory cues) yielded small-to-medium effect sizes—while at the same time, device-related measurement error yielded small-to-negligible effect sizes. Conclusion These findings highlight specific opportunities for smartphone-based gait analysis to serve as an alternative to conventional gait analysis methods (e.g., footswitch systems or sensor-embedded walkways), particularly when those methods are cost-prohibitive, cumbersome, or inconvenient. PMID:26517720

  5. Modeling and simulation of normal and hemiparetic gait

    NASA Astrophysics Data System (ADS)

    Luengas, Lely A.; Camargo, Esperanza; Sanchez, Giovanni

    2015-09-01

    Gait is the collective term for the two types of bipedal locomotion, walking and running. This paper is focused on walking. The analysis of human gait is of interest to many different disciplines, including biomechanics, human-movement science, rehabilitation and medicine in general. Here we present a new model that is capable of reproducing the properties of walking, normal and pathological. The aim of this paper is to establish the biomechanical principles that underlie human walking by using Lagrange method. The constraint forces of Rayleigh dissipation function, through which to consider the effect on the tissues in the gait, are included. Depending on the value of the factor present in the Rayleigh dissipation function, both normal and pathological gait can be simulated. First of all, we apply it in the normal gait and then in the permanent hemiparetic gait. Anthropometric data of adult person are used by simulation, and it is possible to use anthropometric data for children but is necessary to consider existing table of anthropometric data. Validation of these models includes simulations of passive dynamic gait that walk on level ground. The dynamic walking approach provides a new perspective of gait analysis, focusing on the kinematics and kinetics of gait. There have been studies and simulations to show normal human gait, but few of them have focused on abnormal, especially hemiparetic gait. Quantitative comparisons of the model predictions with gait measurements show that the model can reproduce the significant characteristics of normal gait.

  6. On the imitation of CP gait patterns by healthy subjects.

    PubMed

    Rezgui, Taysir; Megrot, Fabrice; Fradet, Laetitia; Marin, Frédéric

    2013-09-01

    The comparison of gait imitated by healthy subjects with real pathological CP gaits is expected to contribute to a better distinction between primary deviations directly induced by neurological troubles and secondary compensatory deviations in relation with the biomechanics of the pathological gait. However, the ability of healthy subjects for imitating typical CP gaits such as "jump" or "crouch" gaits still remains to be determined. The present study proposes to investigate healthy subjects imitating these typical CP gait patterns. 10 healthy adult subjects performed three types of gait: one "normal" and two imitated "jump" and "crouch" gaits. Kinematics and kinetics of the hip, knee and ankle were computed in the sagittal plane. Rectified normalized EMG was also analysed. Our data were compared with reference data. For the statistical analysis, the coefficient of multicorrelation has been used. It has been demonstrated that healthy subjects were able to voluntarily modify their gait pattern with a high level of intra-session and inter-subject reproducibility as quantified by a CMC values higher than 0.76 for all parameters. The comparison with literature reference data showed that healthy subjects not could perfectly reproduce a CP gait, however could only simulate the main characteristics of "crouch" and "jump" gaits pattern. As a perspective, pathological gaits imitated by healthy subjects could be used as valuable additional material to analyse the relationship between a voluntarily modified posture and the altered muscle activation to explore a new paradigm on pathological gait pattern analysis and musculoskeletal modelling.

  7. Role of Body-Worn Movement Monitor Technology for Balance and Gait Rehabilitation

    PubMed Central

    King, Laurie; Mancini, Martina

    2015-01-01

    This perspective article will discuss the potential role of body-worn movement monitors for balance and gait assessment and treatment in rehabilitation. Recent advances in inexpensive, wireless sensor technology and smart devices are resulting in an explosion of miniature, portable sensors that can quickly and accurately quantify body motion. Practical and useful movement monitoring systems are now becoming available. It is critical that therapists understand the potential advantages and limitations of such emerging technology. One important advantage of obtaining objective measures of balance and gait from body-worn sensors is impairment-level metrics characterizing how and why functional performance of balance and gait activities are impaired. Therapy can then be focused on the specific physiological reasons for difficulty in walking or balancing during specific tasks. A second advantage of using technology to measure balance and gait behavior is the increased sensitivity of the balance and gait measures to document mild disability and change with rehabilitation. A third advantage of measuring movement, such as postural sway and gait characteristics, with body-worn sensors is the opportunity for immediate biofeedback provided to patients that can focus attention and enhance performance. In the future, body-worn sensors may allow therapists to perform telerehabilitation to monitor compliance with home exercise programs and the quality of their natural mobility in the community. Therapists need technological systems that are quick to use and provide actionable information and useful reports for their patients and referring physicians. Therapists should look for systems that provide measures that have been validated with respect to gold standard accuracy and to clinically relevant outcomes such as fall risk and severity of disability. PMID:25504484

  8. Neuroimaging of Freezing of Gait

    PubMed Central

    Fasano, Alfonso; Herman, Talia; Tessitore, Alessandro; Strafella, Antonio P.; Bohnen, Nicolaas I.

    2015-01-01

    Abstract Functional brain imaging techniques appear ideally suited to explore the pathophysiology of freezing of gait (FOG). In the last two decades, techniques based on magnetic resonance or nuclear medicine imaging have found a number of structural changes and functional disconnections between subcortical and cortical regions of the locomotor network in patients with FOG. FOG seems to be related in part to disruptions in the “executive-attention” network along with regional tissue loss including the premotor area, inferior frontal gyrus, precentral gyrus, the parietal and occipital areas involved in visuospatial functions of the right hemisphere. Several subcortical structures have been also involved in the etiology of FOG, principally the caudate nucleus and the locomotor centers in the brainstem. Maladaptive neural compensation may present transiently in the presence of acute conflicting motor, cognitive or emotional stimulus processing, thus causing acute network overload and resulting in episodic impairment of stepping. In this review we will summarize the state of the art of neuroimaging research for FOG. We will also discuss the limitations of current approaches and delineate the next steps of neuroimaging research to unravel the pathophysiology of this mysterious motor phenomenon. PMID:25757831

  9. Gait synchronization in Caenorhabditis elegans

    PubMed Central

    Yuan, Jinzhou; Raizen, David M.; Bau, Haim H.

    2014-01-01

    Collective motion is observed in swarms of swimmers of various sizes, ranging from self-propelled nanoparticles to fish. The mechanisms that govern interactions among individuals are debated, and vary from one species to another. Although the interactions among relatively large animals, such as fish, are controlled by their nervous systems, the interactions among microorganisms, which lack nervous systems, are controlled through physical and chemical pathways. Little is known, however, regarding the mechanism of collective movements in microscopic organisms with nervous systems. To attempt to remedy this, we studied collective swimming behavior in the nematode Caenorhabditis elegans, a microorganism with a compact nervous system. We evaluated the contributions of hydrodynamic forces, contact forces, and mechanosensory input to the interactions among individuals. We devised an experiment to examine pair interactions as a function of the distance between the animals and observed that gait synchronization occurred only when the animals were in close proximity, independent of genes required for mechanosensation. Our measurements and simulations indicate that steric hindrance is the dominant factor responsible for motion synchronization in C. elegans, and that hydrodynamic interactions and genotype do not play a significant role. We infer that a similar mechanism may apply to other microscopic swimming organisms and self-propelled particles. PMID:24778261

  10. Gait rehabilitation machines based on programmable footplates

    PubMed Central

    Schmidt, Henning; Werner, Cordula; Bernhardt, Rolf; Hesse, Stefan; Krüger, Jörg

    2007-01-01

    Background Gait restoration is an integral part of rehabilitation of brain lesioned patients. Modern concepts favour a task-specific repetitive approach, i.e. who wants to regain walking has to walk, while tone-inhibiting and gait preparatory manoeuvres had dominated therapy before. Following the first mobilization out of the bed, the wheelchair-bound patient should have the possibility to practise complex gait cycles as soon as possible. Steps in this direction were treadmill training with partial body weight support and most recently gait machines enabling the repetitive training of even surface gait and even of stair climbing. Results With treadmill training harness-secured and partially relieved wheelchair-mobilised patients could practise up to 1000 steps per session for the first time. Controlled trials in stroke and SCI patients, however, failed to show a superior result when compared to walking exercise on the floor. Most likely explanation was the effort for the therapists, e.g. manually setting the paretic limbs during the swing phase resulting in a too little gait intensity. The next steps were gait machines, either consisting of a powered exoskeleton and a treadmill (Lokomat, AutoAmbulator) or an electromechanical solution with the harness secured patient placed on movable foot plates (Gait Trainer GT I). For the latter, a large multi-centre trial with 155 non-ambulatory stroke patients (DEGAS) revealed a superior gait ability and competence in basic activities of living in the experimental group. The HapticWalker continued the end effector concept of movable foot plates, now fully programmable and equipped with 6 DOF force sensors. This device for the first time enables training of arbitrary walking situations, hence not only the simulation of floor walking but also for example of stair climbing and perturbations. Conclusion Locomotor therapy is a fascinating new tool in rehabilitation, which is in line with modern principles of motor relearning

  11. Predisability And Gait Patterns In Older Adults

    PubMed Central

    Verghese, Joe; Xue, Xiaonan

    2010-01-01

    Presence of performance inconsistency during repeated assessments of gait may reflect underlying subclinical disease, and help shed light on the earliest stages of disablement. We studied inter-session fluctuations on three selected gait measures (velocity, stride length, and stride length variability) during normal pace walking as well as during a cognitively demanding ‘walking while talking’ condition using a repeated measurement burst design (six sessions within a 2-week period) in 71 nondisabled and nondemented community residing older adults, 40 with predisability (does activities of daily living unassisted but with difficulty). Subjects with predisability had slower gait velocity and shorter stride length on both the normal and walking while talking conditions at baseline compared to nondisabled subjects. However, there was no significant pattern of fluctuations across the six sessions on the three selected gait variables comparing the two groups during normal walking as well as on the walking while talking conditions. Our findings support consistency of gait measurements during the earliest stages of disability. PMID:21050762

  12. Gait information flow indicates complex motor dysfunction.

    PubMed

    Hoyer, Dirk; Kletzin, Ulf; Adler, Daniela; Adler, Steffen; Meissner, Winfried; Blickhan, Reinhard

    2005-08-01

    Gait-related back movements require coordination of multiple extremities including the flexible trunk. Ageing and chronic back pain influence these adjustments. These complex coordinations can advantageously be quantified by information theoretically based communication measures such as the gait information flow (GIF). Nine back pain patients (aged 61+/-10 yr) and 12 controls (aged 38+/-10 yr) were investigated during normal walking across a distance of 300 m. The back movements were measured as distances between characteristic points (cervical spine CS, thoracic spine TS, lumbar spine LS) by the sonoSens Monitor, a system for mobile motion analysis. Gait information flow and regularity indices (RI1: short prediction horizon of 100 ms, RI2: longer prediction horizon of walking period) were assessed as communication characteristics. All indices were non-parametrically tested for group differences. Sensitivity and specificity were assessed by bivariate logistic regression models. We found regularity indices systematically dependent on measurement points, information flow horizon and groups. In the patients RI1 was increased, but RI2 was decreased in comparison to the control group. These results quantitatively characterize the altered complex communication in the patients. We conclude that ageing and/or chronic back pain related dysfunctions of gait can advantageously be monitored by gait information flow characteristics of back movements measured as distances between characteristics points at the back surface.

  13. The asymmetric gait toenail unit sign.

    PubMed

    Zaias, Nardo; Rebell, Gerbert; Casal, German; Appel, Jason

    2012-01-01

    The aim of this investigation was to resolve a diagnostic problem and report toenail unit changes attributable to shoe friction that resemble onychomycosis, but that are fungus-negative, and identify common skeletal causes in patients with an asymmetric walking gait. X-ray and clinical feet inspections were performed to evaluate skeletal components that change normal foot biodynamics. Forty-nine patients, all dermatophyte-negative, were reviewed. All patients were those seen in our private practice who demonstrated skeletal and toenail unit abnormalities such as onycholysis, nail bed keratosis resembling distal subungual onychomycosis, nail plate surface abnormalities, distal toe skin keratosis, a diagnostic nail plate shape, as well as several skeletal abnormalities. The clinical abnormalities of the asymmetric gait syndrome include onycholysis, nail bed keratosis, nail plate surface abnormalities, and a diagnostic nail plate shape. By the patient's history, the skeletal findings that were present worsened with age and, in many patients, they were familial. Onychomycosis does not lead to an asymmetric gait nail problem, asymmetric gait toenail does not favor dermatophyte infection, and not all nail dystrophies are the result of an asymmetric walking gait.

  14. Scrunching: a novel escape gait in planarians.

    PubMed

    Cochet-Escartin, Olivier; Mickolajczyk, Keith J; Collins, Eva-Maria S

    2015-09-10

    The ability to escape a predator or other life-threatening situations is central to animal survival. Different species have evolved unique strategies under anatomical and environmental constraints. In this study, we describe a novel musculature-driven escape gait in planarians, 'scrunching', which is quantitatively different from other planarian gaits, such as gliding and peristalsis. We show that scrunching is a conserved gait among different flatworm species, underlying its importance as an escape mechanism. We further demonstrate that it can be induced by a variety of physical stimuli, including amputation, high temperature, electric shock and low pH. We discuss the functional basis for scrunching as the preferential gait when gliding is impaired due to a disruption of mucus production. Finally, we show that the key mechanical features of scrunching are adequately captured by a simple biomechanical model that is solely based on experimental data from traction force microscopy and tissue rheology without fit parameters. Together, our results form a complete description of this novel form of planarian locomotion. Because scrunching has distinct dynamics, this gait can serve as a robust behavioral readout for studies of motor neuron and muscular functions in planarians and in particular the restoration of these functions during regeneration.

  15. Multidirectional transparent support for overground gait training.

    PubMed

    Vallery, H; Lutz, P; von Zitzewitz, J; Rauter, G; Fritschi, M; Everarts, C; Ronsse, R; Curt, A; Bolliger, M

    2013-06-01

    Gait and balance training is an essential ingredient for locomotor rehabilitation of patients with neurological impairments. Robotic overhead support systems may help these patients train, for example by relieving them of part of their body weight. However, there are only very few systems that provide support during overground gait, and these suffer from limited degrees of freedom and/or undesired interaction forces due to uncompensated robot dynamics, namely inertia. Here, we suggest a novel mechanical concept that is based on cable robot technology and that allows three-dimensional gait training while reducing apparent robot dynamics to a minimum. The solution does not suffer from the conventional drawback of cable robots, which is a limited workspace. Instead, displaceable deflection units follow the human subject above a large walking area. These deflection units are not actuated, instead they are implicitly displaced by means of the forces in the cables they deflect. This leads to an underactuated design, because the deflection units cannot be moved arbitrarily. However, the design still allows accurate control of a three-dimensional force vector acting on a human subject during gait. We describe the mechanical concept, the control concept, and we show first experimental results obtained with the device, including the force control performance during robot-supported overground gait of five human subjects without motor impairments.

  16. Scrunching: a novel escape gait in planarians

    NASA Astrophysics Data System (ADS)

    Cochet-Escartin, Olivier; Mickolajczyk, Keith J.; Collins, Eva-Maria S.

    2015-10-01

    The ability to escape a predator or other life-threatening situations is central to animal survival. Different species have evolved unique strategies under anatomical and environmental constraints. In this study, we describe a novel musculature-driven escape gait in planarians, ‘scrunching’, which is quantitatively different from other planarian gaits, such as gliding and peristalsis. We show that scrunching is a conserved gait among different flatworm species, underlying its importance as an escape mechanism. We further demonstrate that it can be induced by a variety of physical stimuli, including amputation, high temperature, electric shock and low pH. We discuss the functional basis for scrunching as the preferential gait when gliding is impaired due to a disruption of mucus production. Finally, we show that the key mechanical features of scrunching are adequately captured by a simple biomechanical model that is solely based on experimental data from traction force microscopy and tissue rheology without fit parameters. Together, our results form a complete description of this novel form of planarian locomotion. Because scrunching has distinct dynamics, this gait can serve as a robust behavioral readout for studies of motor neuron and muscular functions in planarians and in particular the restoration of these functions during regeneration.

  17. Effects of elastic-band resistance exercise on balance, mobility and gait function, flexibility and fall efficacy in elderly people

    PubMed Central

    Kwak, Cheol-Jin; Kim, You Lim; Lee, Suk Min

    2016-01-01

    [Purpose] The purpose of this study was to analyze the effects of elastic-band resistance exercise on balance, gait function, flexibility and fall efficacy in the elderly people of rural community. [Subjects and Methods] It is selected by 45 outpatients. They have come into the clinic continually to treat of physical therapy at least 1–2 times for a week. A group treated with both general physical therapy and elastic-band resistance exercise (23 patients), and the other group treated with only general physical therapy (22 patients). Elastic-band resistance exercise is composed of 8 movements of lower extremity joints. It is performed for 30 minutes during 8 weeks by 3 times for a week. It is measured and recorded at the pre and post test that sit and reach test (SRT), functional reach test (FRT), timed up and go test (TUG) for every subjects by measurement equipments. And, subjects performed for the form of performance and question as its rated scale by Berg’s balance scale (BBS), dynamic gait index (DGI), activities-specific balance confidence scale (ABC). [Results] In the study, both the elastic-band exercise group and the general physical therapy group showed a significant improvement in balance, gait function, flexibility and fall efficacy. And the group with elastic-band resistance exercise showed more effectiveness than the contrast group in value of variation. [Conclusion] From this study, it was confirmed that elastic-band resistance exercise has influence on balance, gait function, flexibility and fall efficacy are working for agriculture of elderly people of rural community. Based on this result, elastic-band resistance exercise can be better instrument and easier to elderly people of rural community for the improvement in balance, gait function, flexibility and fall efficacy as it performing along with and reciprocal physical therapy. PMID:27942147

  18. Practical approach to freezing of gait in Parkinson's disease.

    PubMed

    Okuma, Yasuyuki

    2014-08-01

    Freezing of gait in Parkinson's disease and related disorders is common and very disabling. It usually occurs in the advanced stages, although mild forms may develop earlier. Freezing can occur on turning, in narrow spaces, immediately before reaching a destination, and in stressful situations. Dual tasking (motor or cognitive load) aggravates the problem. Freezing of gait in Parkinson's disease usually occurs in the 'off' rather than in the 'on' state. It is, therefore, not entirely drug-resistant; the first step in medical treatment is to ensure adequate dopaminergic stimulation to reduce the 'off' state. There is no good evidence for any specific drug to alleviate freezing. Visual or auditory cues are very helpful as behavioural therapy. Assistive devices, such as a wheeled walker sometimes help. Deep brain stimulation of the subthalamic nucleus may alleviate freezing in the 'off' state. Because of the complexity of freezing, individual patients need a careful assessment-particularly in relation to motor fluctuation-to optimise their treatment.

  19. Computational intelligent gait-phase detection system to identify pathological gait.

    PubMed

    Senanayake, Chathuri M; Senanayake, S M N Arosha

    2010-09-01

    An intelligent gait-phase detection algorithm based on kinematic and kinetic parameters is presented in this paper. The gait parameters do not vary distinctly for each gait phase; therefore, it is complex to differentiate gait phases with respect to a threshold value. To overcome this intricacy, the concept of fuzzy logic was applied to detect gait phases with respect to fuzzy membership values. A real-time data-acquisition system was developed consisting of four force-sensitive resistors and two inertial sensors to obtain foot-pressure patterns and knee flexion/extension angle, respectively. The detected gait phases could be further analyzed to identify abnormality occurrences, and hence, is applicable to determine accurate timing for feedback. The large amount of data required for quality gait analysis necessitates the utilization of information technology to store, manage, and extract required information. Therefore, a software application was developed for real-time acquisition of sensor data, data processing, database management, and a user-friendly graphical-user interface as a tool to simplify the task of clinicians. The experiments carried out to validate the proposed system are presented along with the results analysis for normal and pathological walking patterns.

  20. Afferent control of human stance and gait: evidence for blocking of group I afferents during gait.

    PubMed

    Dietz, V; Quintern, J; Berger, W

    1985-01-01

    The cerebral potentials (c.p.) evoked by electrical stimulation of the tibial nerve during stance and in the various phases of gait of normal subjects were compared with the c.p. and leg muscle e.m.g. responses evoked by perturbations of stance and gait. Over the whole step cycle of gait the c.p. evoked by an electrical stimulus were of smaller amplitude (3 microV and 9 microV, respectively) than that seen in the stance condition, and appeared with a longer latency (mean times to first positive peak: 63 and 43 ms, respectively). When the electrical stimulus was applied during stance after ischaemic blockade of group I afferents, the c.p. were similar to those evoked during gait. The c.p. evoked by perturbations were larger in amplitude than those produced by the electrical stimulus, but similar in latencies in both gait and stance (mean 26 microV and 40 microV; 65 ms and 42 ms, respectively) and configurations. The large gastrocnemius e.m.g. responses evoked by the stance and gait perturbations arose with a latency of 65 to 70 ms. Only in the stance condition was a smaller, shorter latency (40 ms) response seen. It is concluded that during gait the signals of group I afferents are blocked at both segmental and supraspinal levels which was tested by tibial nerve stimulation. It is suggested that the e.m.g. responses induced in the leg by gait perturbations are evoked by group II afferents and mediated via a spinal pathway. The c.p. evoked during gait most probably reflect the processing of this group II input by supraspinal motor centres for the coordination of widespread arm and trunk muscle activation, necessary to restablish body equilibrium.

  1. Human Odometry Verifies the Symmetry Perspective on Bipedal Gaits

    ERIC Educational Resources Information Center

    Turvey, M. T.; Harrison, Steven J.; Frank, Till D.; Carello, Claudia

    2012-01-01

    Bipedal gaits have been classified on the basis of the group symmetry of the minimal network of identical differential equations (alias "cells") required to model them. Primary gaits are characterized by dihedral symmetry, whereas secondary gaits are characterized by a lower, cyclic symmetry. This fact was used in a test of human…

  2. Recordkeeping alters economic history by promoting reciprocity.

    PubMed

    Basu, Sudipta; Dickhaut, John; Hecht, Gary; Towry, Kristy; Waymire, Gregory

    2009-01-27

    We experimentally demonstrate a causal link between recordkeeping and reciprocal exchange. Recordkeeping improves memory of past interactions in a complex exchange environment, which promotes reputation formation and decision coordination. Economies with recordkeeping exhibit a beneficially altered economic history where the risks of exchanging with strangers are substantially lessened. Our findings are consistent with prior assertions that complex and extensive reciprocity requires sophisticated memory to store information on past transactions. We offer insights on this research by scientifically demonstrating that reciprocity can be facilitated by information storage external to the brain. This is consistent with the archaeological record, which suggests that prehistoric transaction records and the invention of writing for recordkeeping were linked to increased complexity in human interaction.

  3. Recordkeeping alters economic history by promoting reciprocity

    PubMed Central

    Basu, Sudipta; Dickhaut, John; Hecht, Gary; Towry, Kristy; Waymire, Gregory

    2009-01-01

    We experimentally demonstrate a causal link between recordkeeping and reciprocal exchange. Recordkeeping improves memory of past interactions in a complex exchange environment, which promotes reputation formation and decision coordination. Economies with recordkeeping exhibit a beneficially altered economic history where the risks of exchanging with strangers are substantially lessened. Our findings are consistent with prior assertions that complex and extensive reciprocity requires sophisticated memory to store information on past transactions. We offer insights on this research by scientifically demonstrating that reciprocity can be facilitated by information storage external to the brain. This is consistent with the archaeological record, which suggests that prehistoric transaction records and the invention of writing for recordkeeping were linked to increased complexity in human interaction. PMID:19147843

  4. Theory of reciprocating contact for viscoelastic solids

    NASA Astrophysics Data System (ADS)

    Putignano, Carmine; Carbone, Giuseppe; Dini, Daniele

    2016-04-01

    A theory of reciprocating contacts for linear viscoelastic materials is presented. Results are discussed for the case of a rigid sphere sinusoidally driven in sliding contact with a viscoelastic half-space. Depending on the size of the contact, the frequency and amplitude of the reciprocating motion, and on the relaxation time of the viscoelastic body, we establish that the contact behavior may range from the steady-state viscoelastic solution, in which traction forces always oppose the direction of the sliding rigid punch, to a more elaborate trend, which is due to the strong interaction between different regions of the path covered during the reciprocating motion. Practical implications span a number of applications, ranging from seismic engineering to biotechnology.

  5. Reciprocation and altruism in social cooperation.

    PubMed

    Safin, Vasiliy; Arfer, Kodi B; Rachlin, Howard

    2015-07-01

    Altruistic behavior benefits other individuals at a cost to oneself. The purpose of the present experiment was to study altruistic behavior by players (P) in 2-person iterated prisoner's dilemma games in which reciprocation by the other player (OP) was impossible, and this impossibility was clear to P. Altruism by P could not therefore be attributed to expectation of reciprocation. The cost to P of altruistic behavior was constant throughout the study, but the benefit to OP from P's cooperation differed between groups and conditions. Rate of cooperation was higher when benefit to OP was higher. Thus altruism (not attributable to expectation of reciprocation) can be a significant factor in interpersonal relationships as studied in iterated prisoner's dilemma games, and needs to be taken into account in their analysis.

  6. Gauge invariance and reciprocity in quantum mechanics

    SciTech Connect

    Leung, P. T.; Young, K.

    2010-03-15

    Reciprocity in wave propagation usually refers to the symmetry of the Green's function under the interchange of the source and the observer coordinates, but this condition is not gauge invariant in quantum mechanics, a problem that is particularly significant in the presence of a vector potential. Several possible alternative criteria are given and analyzed with reference to different examples with nonzero magnetic fields and/or vector potentials, including the case of a multiply connected spatial domain. It is shown that the appropriate reciprocity criterion allows for specific phase factors separable into functions of the source and observer coordinates and that this condition is robust with respect to the addition of any scalar potential. In the Aharonov-Bohm effect, reciprocity beyond monoenergetic experiments holds only because of subsidiary conditions satisfied in actual experiments: the test charge is in units of e and the flux is produced by a condensate of particles with charge 2e.

  7. Five-Year-Old Preschoolers’ Sharing is Influenced by Anticipated Reciprocation

    PubMed Central

    Xiong, Mingrui; Shi, Jiannong; Wu, Zhen; Zhang, Zhen

    2016-01-01

    Whether children share in anticipation of future benefits returned by a partner is an interesting question. In this study, 5-year-old children and an adult partner played a sharing game, in which children donated first and the partner donated afterward. In Experiment 1, the partner’s resources were more attractive than the child’s. In the reciprocal condition, the child was told that s/he would be a recipient when the partner played as a donor. In the non-reciprocal condition, however, the child was told that an anonymous child would be the recipient when the partner donated. Results showed that children shared more with the partner when they knew that they would be a recipient later. In Experiment 2, the child was always the recipient when the partner donated, but the partner’s resources were more desirable than the child’s in the high-value condition, and less desirable in the low-value condition. We found that children were more generous when the partner’s resources were valued higher. These findings demonstrate that 5-year-old preschoolers’ sharing choices take into account the anticipated reciprocity of the recipient, suggesting either self-interested tactical sharing or direct reciprocity in advance of receiving. Specifically, they adjust their sharing behavior depending on whether a partner has the potential to reciprocate, and whether it is worth sharing relative to the value of the payback. PMID:27064475

  8. Freezing of gait in Parkinson's disease: from pathophysiology to emerging therapies.

    PubMed

    Cucca, Alberto; Biagioni, Milton C; Fleisher, Jori E; Agarwal, Shashank; Son, Andre; Kumar, Pawan; Brys, Miroslaw; Di Rocco, Alessandro

    2016-10-01

    Freezing of gait (FOG) is 'an episodic inability to generate effective stepping in the absence of any known cause other than parkinsonism or high level gait disorders'. FOG is one of the most disabling symptoms in Parkinson's disease, especially in its more advanced stages. Early recognition is important as FOG is related to higher fall risk and poorer prognosis. Although specific treatments are still elusive, there have been recent advances in the development of new therapeutic approaches. The aim of this review is to present the latest knowledge regarding the phenomenology, pathogenesis, diagnostic assessment and conventional treatment of FOG in Parkinson's disease. A review of the evidence supporting noninvasive brain stimulation will follow to highlight the potential of these strategies.

  9. Online Gait Learning for Modular Robots with Arbitrary Shapes and Sizes.

    PubMed

    Weel, Berend; D'Angelo, M; Haasdijk, Evert; Eiben, A E

    2017-01-01

    Evolutionary robotics using real hardware is currently restricted to evolving robot controllers, but the technology for evolvable morphologies is advancing quickly. Rapid prototyping (3D printing) and automated assembly are the main enablers of robotic systems where robot offspring can be produced based on a blueprint that specifies the morphologies and the controllers of the parents. This article addresses the problem of gait learning in newborn robots whose morphology is unknown in advance. We investigate a reinforcement learning method and conduct simulation experiments using robot morphologies with different size and complexity. We establish that reinforcement learning does the job well and that it outperforms two alternative algorithms. The experiments also give insights into the online dynamics of gait learning and into the influence of the size, shape, and morphological complexity of the modular robots. These insights can potentially be used to predict the viability of modular robotic organisms before they are constructed.

  10. Footwear Decreases Gait Asymmetry during Running

    PubMed Central

    Hoerzer, Stefan; Federolf, Peter A.; Maurer, Christian; Baltich, Jennifer; Nigg, Benno M.

    2015-01-01

    Previous research on elderly people has suggested that footwear may improve neuromuscular control of motion. If footwear does in fact improve neuromuscular control, then such an influence might already be present in young, healthy adults. A feature that is often used to assess neuromuscular control of motion is the level of gait asymmetry. The objectives of the study were (a) to develop a comprehensive asymmetry index (CAI) that is capable of detecting gait asymmetry changes caused by external boundary conditions such as footwear, and (b) to use the CAI to investigate whether footwear influences gait asymmetry during running in a healthy, young cohort. Kinematic and kinetic data were collected for both legs of 15 subjects performing five barefoot and five shod over-ground running trials. Thirty continuous gait variables including ground reaction forces and variables of the hip, knee, and ankle joints were computed for each leg. For each individual, the differences between the variables for the right and left leg were calculated. Using this data, a principal component analysis was conducted to obtain the CAI. This study had two main outcomes. First, a sensitivity analysis suggested that the CAI had an improved sensitivity for detecting changes in gait asymmetry caused by external boundary conditions. The CAI may, therefore, have important clinical applications such as monitoring the progress of neuromuscular diseases (e.g. stroke or cerebral palsy). Second, the mean CAI for shod running (131.2 ± 48.5; mean ± standard deviation) was significantly lower (p = 0.041) than the CAI for barefoot running (155.7 ± 39.5). This finding suggests that in healthy, young adults gait asymmetry is reduced when running in shoes compared to running barefoot, which may be a result of improved neuromuscular control caused by changes in the afferent sensory feedback. PMID:26488484

  11. Footwear Decreases Gait Asymmetry during Running.

    PubMed

    Hoerzer, Stefan; Federolf, Peter A; Maurer, Christian; Baltich, Jennifer; Nigg, Benno M

    2015-01-01

    Previous research on elderly people has suggested that footwear may improve neuromuscular control of motion. If footwear does in fact improve neuromuscular control, then such an influence might already be present in young, healthy adults. A feature that is often used to assess neuromuscular control of motion is the level of gait asymmetry. The objectives of the study were (a) to develop a comprehensive asymmetry index (CAI) that is capable of detecting gait asymmetry changes caused by external boundary conditions such as footwear, and (b) to use the CAI to investigate whether footwear influences gait asymmetry during running in a healthy, young cohort. Kinematic and kinetic data were collected for both legs of 15 subjects performing five barefoot and five shod over-ground running trials. Thirty continuous gait variables including ground reaction forces and variables of the hip, knee, and ankle joints were computed for each leg. For each individual, the differences between the variables for the right and left leg were calculated. Using this data, a principal component analysis was conducted to obtain the CAI. This study had two main outcomes. First, a sensitivity analysis suggested that the CAI had an improved sensitivity for detecting changes in gait asymmetry caused by external boundary conditions. The CAI may, therefore, have important clinical applications such as monitoring the progress of neuromuscular diseases (e.g. stroke or cerebral palsy). Second, the mean CAI for shod running (131.2 ± 48.5; mean ± standard deviation) was significantly lower (p = 0.041) than the CAI for barefoot running (155.7 ± 39.5). This finding suggests that in healthy, young adults gait asymmetry is reduced when running in shoes compared to running barefoot, which may be a result of improved neuromuscular control caused by changes in the afferent sensory feedback.

  12. Feasibility analysis of reciprocating magnetic heat pumps

    NASA Technical Reports Server (NTRS)

    Larson, A. V.; Hartley, J. G.; Shelton, Sam V.; Smith, M. M.

    1989-01-01

    A reciprocating gadolinium core in a regeneration fluid column in the warm bore of a superconducting solenoidal magnet is considered for magnetic refrigeration in 3.517 MW (1000 ton) applications. A procedure is presented to minimize the amount of superconducting cable needed in the magnet design. Estimated system capital costs for an ideal magnetic refrigerator of this type become comparable to conventional chillers as the frequency of reciprocation approaches 10 Hertz. A 1-D finite difference analysis of a regenerator cycling at 0.027 Hertz is presented which exhibits some of the features seen in the experiments of G. V. Brown.

  13. A stochastic model of human gait dynamics

    NASA Astrophysics Data System (ADS)

    Ashkenazy, Yosef; M. Hausdorff, Jeffrey; Ch. Ivanov, Plamen; Eugene Stanley, H.

    2002-12-01

    We present a stochastic model of gait rhythm dynamics, based on transitions between different “neural centers”, that reproduces distinctive statistical properties of normal human walking. By tuning one model parameter, the transition (hopping) range, the model can describe alterations in gait dynamics from childhood to adulthood-including a decrease in the correlation and volatility exponents with maturation. The model also generates time series with multifractal spectra whose broadness depends only on this parameter. Moreover, we find that the volatility exponent increases monotonically as a function of the width of the multifractal spectrum, suggesting the possibility of a change in multifractality with maturation.

  14. Periodic gaits for the CMU ambler

    NASA Technical Reports Server (NTRS)

    Mahalingam, Swaminathan; Dwivedi, Suren N.

    1989-01-01

    The configuration of the Carnegie Mellon University Ambler, a six legged autonomous walking vehicle for exploring Mars, enables the recovery of a trailing leg past the leading leg to reduce the energy expenditure in terrain interactions. Gaits developed for this unprecedented configuration are described. A stability criterion was developed which ensures stability of the vehicle in the event of failure of any one of the supporting legs. Periodic gaits developed for the Ambler utilize the Ambler's unique abilities, and continuously satisfy the stability criterion.

  15. Gait analysis by high school students

    NASA Astrophysics Data System (ADS)

    Heck, André; van Dongen, Caroline

    2008-05-01

    Human walking is a complicated motion. Movement scientists have developed various research methods to study gait. This article describes how a high school student collected and analysed high quality gait data in much the same way that movement scientists do, via the recording and measurement of motions with a video analysis tool and via electromyography, i.e., the measurement of muscle activity. Physics, biology, and mathematics come together in this practical investigation work at a rather high level. It shows that science learning at school can resemble science practice in research laboratories, provided that students have adequate tools.

  16. Parkinson's disease classification using gait analysis via deterministic learning.

    PubMed

    Zeng, Wei; Liu, Fenglin; Wang, Qinghui; Wang, Ying; Ma, Limin; Zhang, Yu

    2016-10-28

    Gait analysis plays an important role in maintaining the well-being of human mobility and health care, and is a valuable tool for obtaining quantitative information on motor deficits in Parkinson's disease (PD). In this paper, we propose a method to classify (diagnose) patients with PD and healthy control subjects using gait analysis via deterministic learning theory. The classification approach consists of two phases: a training phase and a classification phase. In the training phase, gait characteristics represented by the gait dynamics are derived from the vertical ground reaction forces under the usual and self-selected paces of the subjects. The gait dynamics underlying gait patterns of healthy controls and PD patients are locally accurately approximated by radial basis function (RBF) neural networks. The obtained knowledge of approximated gait dynamics is stored in constant RBF networks. The gait patterns of healthy controls and PD patients constitute a training set. In the classification phase, a bank of dynamical estimators is constructed for all the training gait patterns. Prior knowledge of gait dynamics represented by the constant RBF networks is embedded in the estimators. By comparing the set of estimators with a test gait pattern of a certain PD patient to be classified (diagnosed), a set of classification errors are generated. The average L1 norms of the errors are taken as the classification measure between the dynamics of the training gait patterns and the dynamics of the test PD gait pattern according to the smallest error principle. When the gait patterns of 93 PD patients and 73 healthy controls are classified with five-fold cross-validation method, the accuracy, sensitivity and specificity of the results are 96.39%, 96.77% and 95.89%, respectively. Based on the results, it may be claimed that the features and the classifiers used in the present study could effectively separate the gait patterns between the groups of PD patients and healthy

  17. Prediction of Freezing of Gait in Parkinson's From Physiological Wearables: An Exploratory Study.

    PubMed

    Mazilu, Sinziana; Calatroni, Alberto; Gazit, Eran; Mirelman, Anat; Hausdorff, Jeffrey M; Tröster, Gerhard

    2015-11-01

    Freezing of gait (FoG) is a common gait impairment among patients with advanced Parkinson's disease. FoG is associated with falls and negatively impacts the patient's quality of life. Wearable systems that detect FoG in real time have been developed to help patients resume walking by means of rhythmic cueing. Current methods focus on detection, which require FoG events to happen first, while their prediction opens the road to preemptive cueing, which might help subjects to avoid freeze altogether. We analyzed electrocardiography (ECG) and skin-conductance (SC) data from 11 subjects who experience FoG in daily life, and found statistically significant changes in ECG and SC data just before the FoG episodes, compared to normal walking. Based on these findings, we developed an anomaly-based algorithm for predicting gait freeze from relevant SC features. We were able to predict 71.3% from 184 FoG with an average of 4.2 s before a freeze episode happened. Our findings enable the possibility of wearable systems, which predict with few seconds before an upcoming FoG from SC, and start external cues to help the user avoid the gait freeze.

  18. Gait analysis in lower-limb amputation and prosthetic rehabilitation.

    PubMed

    Esquenazi, Alberto

    2014-02-01

    Gait analysis combined with sound clinical judgment plays an important role in elucidating the factors involved in the pathologic prosthetic gait and the selection and effects of available interventions to optimize it. Detailed clinical evaluation of walking contributes to the analysis of the prosthetic gait, but evaluation in the gait laboratory using kinetic and kinematic data is often necessary to quantify and identify the particular contributions of the variables impacting the gait with confidence and assess the results of such intervention. The same approach can be considered when selecting prosthetic components and assessing leg length in this patient population.

  19. Fluctuation and synchronization of gait intervals and gait force profiles distinguish stages of Parkinson's disease

    PubMed Central

    Bartsch, Ronny; Plotnik, Meir; Kantelhardt, Jan W.; Havlin, Shlomo; Giladi, Nir; Hausdorff, Jeffrey M.

    2007-01-01

    We study the effects of Parkinson's disease (PD) on the long-term fluctuation and phase synchronization properties of gait timing (series of interstride intervals) as well as gait force profiles (series characterizing the morphological changes between the steps). We find that the fluctuations in the gait timing are significantly larger for PD patients and early PD patients, who were not treated yet with medication, compared to age-matched healthy controls. Simultaneously, the long-term correlations and the phase synchronization of right and left leg are significantly reduced in both types of PD patients. Surprisingly, long-term correlations of the gait force profiles are relatively weak for treated PD patients and healthy controls, while they are significantly larger for early PD patients. The results support the idea that timing and morphology of recordings obtained from a complex system can contain complementary information. PMID:18163154

  20. Fluctuation and synchronization of gait intervals and gait force profiles distinguish stages of Parkinson's disease

    NASA Astrophysics Data System (ADS)

    Bartsch, Ronny; Plotnik, Meir; Kantelhardt, Jan W.; Havlin, Shlomo; Giladi, Nir; Hausdorff, Jeffrey M.

    2007-09-01

    We study the effects of Parkinson's disease (PD) on the long-term fluctuation and phase synchronization properties of gait timing (series of interstride intervals) as well as gait force profiles (series characterizing the morphological changes between the steps). We find that the fluctuations in the gait timing are significantly larger for PD patients and early PD patients, who were not treated yet with medication, compared to age-matched healthy controls. Simultaneously, the long-term correlations and the phase synchronization of right and left leg are significantly reduced in both types of PD patients. Surprisingly, long-term correlations of the gait force profiles are relatively weak for treated PD patients and healthy controls, while they are significantly larger for early PD patients. The results support the idea that timing and morphology of recordings obtained from a complex system can contain complementary information.

  1. Estimates of gastrocnemius muscle length during simulated pathological gait.

    PubMed

    Rao, Smita; Dietz, Fred; Yack, H John

    2013-04-01

    The purpose of this study was to compare estimates of gastrocnemius muscle length (GML) obtained using a segmented versus straight-line model in children. Kinematic data were acquired on eleven typically developing children as they walked under the following conditions: normal gait, crouch gait, equinus gait, and crouch with equinus gait. Maximum and minimum GML, and GML change were calculated using two models: straight-line and segmented. A two-way RMANOVA was used to compare GML characteristics. Results indicated that maximum GML and GML change during simulated pathological gait patterns were influenced by model used to calculate gastrocnemius muscle length (interaction: P = .004 and P = .026). Maximum GML was lower in the simulated gait patterns compared with normal gait (P < .001). Maximum GML was higher with the segmented model compared with the straight-line model (P = .030). Using either model, GML change in equinus gait and crouch with equinus gait was lower compared with normal gait (P < .001). Overall, minimum GML estimated with the segmented model was higher compared with the straight-line model (P < .01). The key findings of our study indicate that GML is significantly affected by both gait pattern and method of estimation. The GML estimates tended to be lower with the straight-line model versus the segmented model.

  2. [Three-Dimensional Ultrasonic Gait Analysis in Schizophrenic Patients

    PubMed

    Putzhammer, Albert; Heindl, Bernhard; Müller, Jürgen; Broll, Karin; Pfeiff, Liane; Perfahl, Maria; Hess, Linda; Koch, Horst

    2003-05-01

    Schizophrenic disorders as well as neuroleptic treatment can affect locomotion. The study assessed the influence of neuroleptic treatment on human gait via ultrasonic topometric gait analysis. In a control sample the test system proved high test-retest-reliability. Spatial and temporal gait parameters were assessed in schizophrenic patients without neuroleptic treatment (n = 12) and under treatment with conventional neuroleptics (n = 14) and re-assessed after treatment change to the atypical neuroleptic olanzapine in a repeated measures design. After switch from conventional neuroleptics to olanzapine patients showed an increase of gait velocity (p gait is affected by conventional neuroleptic treatment. The degree of impairment can be objectively measured by testing spatio-temporal and kinematic gait parameters via three-dimensional ultrasonic gait analysis.

  3. Basic gait analysis based on continuous wave radar.

    PubMed

    Zhang, Jun

    2012-09-01

    A gait analysis method based on continuous wave (CW) radar is proposed in this paper. Time-frequency analysis is used to analyze the radar micro-Doppler echo from walking humans, and the relationships between the time-frequency spectrogram and human biological gait are discussed. The methods for extracting the gait parameters from the spectrogram are studied in depth and experiments on more than twenty subjects have been performed to acquire the radar gait data. The gait parameters are calculated and compared. The gait difference between men and women are presented based on the experimental data and extracted features. Gait analysis based on CW radar will provide a new method for clinical diagnosis and therapy.

  4. Wireless accelerometer iPod application for quantifying gait characteristics.

    PubMed

    LeMoyne, Robert; Mastroianni, Timothy; Grundfest, Warren

    2011-01-01

    The capability to quantify gait characteristics through a wireless accelerometer iPod application in an effectively autonomous environment may alleviate the progressive strain on highly specific medical resources. The iPod consists of the inherent attributes imperative for robust gait quantification, such as a three dimensional accelerometer, data storage, flexible software, and the capacity for wireless transmission of the gait data through email. Based on the synthesis of the integral components of the iPod, a wireless accelerometer iPod application for quantifying gait characteristics has been tested and evaluated in an essentially autonomous environment. The quantified gait acceleration waveforms were wirelessly transmitted using email for postprocessing. The site for the gait experiment occurred in a remote location relative to the location where the postprocessing was conducted. The wireless accelerometer iPod application for quantifying gait characteristics demonstrated sufficient accuracy and consistency.

  5. Gait identification from invisible shadows

    NASA Astrophysics Data System (ADS)

    Iwashita, Yumi; Uchino, Koji; Kurazume, Ryo; Stoica, Adrian

    2012-06-01

    This paper introduces a person identification system that uses as input the shadow images of a walking person, as projected by multiple lights(in this application invisible/infrared lights); the system uses a database of examples of shadows images of a number of people who walk. While it is accepted that personal identification has a higher correct classification rate if views from multiple cameras are used, most systems use only one camera, mainly because (i) Installation in real-world environments is easier, less cameras and no need to synchronize cameras, (ii) Computational cost is reduced. In the proposed system, we obtain the advantages of multiple viewpoints with a single camera and additional light sources. More specific, we install multiple infrared lights to project shadows of a subject on the ground and a camera with an infrared transmitting filter mounted in the ceiling inside of a building. Shadow areas, which are projections of one's body on the ground by multiple lights, can be considered as body areas captured from different viewpoints; thus, the proposed system is able to capture multiple projections of the body from a single camera. We explored in other papers the use of sunproduced shadow for identification of people walking freely in the outdoor. In this paper the application scenario is a system installed at the airport in the areas that precedes the immigration checkpoint. Japan already has health monitoring cameras focused on approaching individuals, to determine their health condition; the here described system would also be installed in such a controlled area with restricted walk corridors of walk and controlled lighting. Gait is a remote biometrics and can provide early warning; on another hand it can be used as corroborating evidence in a multi-modal biometrics system. A database of images including shadows for a set of 28 walking people was collected, and the features extracted from shadow areas by affine moment invariants, after which

  6. 37 CFR 11.24 - Reciprocal discipline.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Reciprocal discipline. 11.24... discipline. (a) Notification of OED Director. Within thirty days of being publicly censured, publicly... USPTO Director. The OED Director shall, in addition, without Committee on Discipline authorization,...

  7. Tuition Reciprocity in the United States

    ERIC Educational Resources Information Center

    Stewart, Gregory; Wright, Dianne Brown; Kennedy, Angelica

    2008-01-01

    Reciprocity agreements are contracts between two or more parties whereby students pay reduced tuition rates. The rate of reduction is determined by the parameters set forth in each individual state's agreement but may range from a modest reduction in fees to a waiver of full non-resident tuition. In addition to providing tuition relief,…

  8. Development of Trust and Reciprocity in Adolescence

    ERIC Educational Resources Information Center

    van den Bos, Wouter; Westenberg, Michiel; van Dijk, Eric; Crone, Eveline A.

    2010-01-01

    We investigate the development of two types of prosocial behavior, trust and reciprocity, as defined using a game-theoretical task that allows investigation of real-time social interaction, among 4 age groups from 9 to 25 years. By manipulating the possible outcome alternatives, we could distinguish among important determinants of trust and…

  9. Students' Confusions with Reciprocal and Inverse Functions

    ERIC Educational Resources Information Center

    Kontorovich, Igor'

    2017-01-01

    These classroom notes are focused on undergraduate students' understanding of the polysemous symbol of superscript (-1), which can be interpreted as a reciprocal or an inverse function. Examination of 240 scripts in a mid-term test identified that some first-year students struggle with choosing the contextually correct interpretation and there are…

  10. Reciprocal Teaching. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2013

    2013-01-01

    "Reciprocal teaching" is an instructional method designed to help teach reading comprehension skills to students with adequate decoding proficiency. During initial instructional sessions, the teacher introduces four comprehension strategies: summarizing, questioning, clarifying, and predicting. Then, the teacher and student read several…

  11. Weak reciprocity alone cannot explain peer punishment.

    PubMed

    Casari, Marco

    2012-02-01

    The claims about (1) the lack of empirical support for a model of strong reciprocation and (2) the irrelevant empirical role of costly punishment to support cooperation in the field need qualifications. The interpretation of field evidence is not straightforward, and other-regarding preferences are also likely to play a role in the field.

  12. 46 CFR 8.120 - Reciprocity.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... § 8.120 Reciprocity. (a) The Commandant may delegate authority to a classification society that has... in paragraph (a) of this section are satisfied, a classification society must provide to the Coast Guard an affidavit, from the government of the country that the classification society is...

  13. Cooperation under Indirect Reciprocity and Imitative Trust

    PubMed Central

    Saavedra, Serguei; Smith, David; Reed-Tsochas, Felix

    2010-01-01

    Indirect reciprocity, a key concept in behavioral experiments and evolutionary game theory, provides a mechanism that allows reciprocal altruism to emerge in a population of self-regarding individuals even when repeated interactions between pairs of actors are unlikely. Recent empirical evidence show that humans typically follow complex assessment strategies involving both reciprocity and social imitation when making cooperative decisions. However, currently, we have no systematic understanding of how imitation, a mechanism that may also generate negative effects via a process of cumulative advantage, affects cooperation when repeated interactions are unlikely or information about a recipient's reputation is unavailable. Here we extend existing evolutionary models, which use an image score for reputation to track how individuals cooperate by contributing resources, by introducing a new imitative-trust score, which tracks whether actors have been the recipients of cooperation in the past. We show that imitative trust can co-exist with indirect reciprocity mechanisms up to a threshold and then cooperation reverses -revealing the elusive nature of cooperation. Moreover, we find that when information about a recipient's reputation is limited, trusting the action of third parties towards her (i.e. imitating) does favor a higher collective cooperation compared to random-trusting and share-alike mechanisms. We believe these results shed new light on the factors favoring social imitation as an adaptive mechanism in populations of cooperating social actors. PMID:21048950

  14. Evolving the ingredients for reciprocity and spite

    PubMed Central

    Hauser, Marc; McAuliffe, Katherine; Blake, Peter R.

    2009-01-01

    Darwin never provided a satisfactory account of altruism, but posed the problem beautifully in light of the logic of natural selection. Hamilton and Williams delivered the necessary satisfaction by appealing to kinship, and Trivers showed that kinship was not necessary as long as the originally altruistic act was conditionally reciprocated. From the late 1970s to the present, the kinship theories in particular have been supported by considerable empirical data and elaborated to explore a number of other social interactions such as cooperation, selfishness and punishment, giving us what is now a rich description of the nature of social relationships among organisms. There are, however, two forms of theoretically possible social interactions—reciprocity and spite—that appear absent or nearly so in non-human vertebrates, despite considerable research efforts on a wide diversity of species. We suggest that the rather weak comparative evidence for these interactions is predicted once we consider the requisite socioecological pressures and psychological mechanisms. That is, a consideration of ultimate demands and proximate prerequisites leads to the prediction that reciprocity and spite should be rare in non-human animals, and common in humans. In particular, reciprocity and spite evolved in humans because of adaptive demands on cooperation among unrelated individuals living in large groups, and the integrative capacities of inequity detection, future-oriented decision-making and inhibitory control. PMID:19805432

  15. Primary and secondary gait deviations of stroke survivors and their association with gait performance

    PubMed Central

    Kim, Hyung-Sik; Chung, Soon-Cheol; Choi, Mi-Hyun; Gim, Seon-Young; Kim, Woo-Ram; Tack, Gye-Rae; Lim, Dae-Woon; Chun, Sung-Kuk; Kim, Jin-Wook; Mun, Kyung-Ryoul

    2016-01-01

    [Purpose] Stroke survivors exhibit abnormal pelvic motion and significantly deteriorated gait performance. Although the gait of stroke survivors has been evaluated at the primary level pertaining to ankle, knee, and hip motions, secondary deviations involving the pelvic motions are strongly related to the primary level. Therefore, the aim of this study was to identify the kinematic differences of the primary and secondary joints and to identify mechanism differences that alter the gait performance of stroke survivors. [Subjects and Methods] Five healthy subjects and five stroke survivors were recruited. All the subjects were instructed to walk at a self-selected speed. The joint kinematics and gait parameters were calculated. [Results] For the stroke survivors, the range of motion of the primary-joint motions were significantly reduced, and the secondary-joint motions were significantly increased. Additionally, for the healthy subjects, the primary joint kinematics were the main factors ensuring gait performance, whereas for the stoke survivors, the secondary-joint motions were the main factors. [Conclusion] The results indicate that while increasing the range of motion of primary-joint movements is the main target to achieve, there is a strong need to constrain and support pelvic motions in order to improve the outcome of gait rehabilitation. PMID:27799710

  16. Orthotic devices and gait in polio patients.

    PubMed

    Genêt, F; Schnitzler, A; Mathieu, S; Autret, K; Théfenne, L; Dizien, O; Maldjian, A

    2010-02-01

    Polio survivors are aging and facing multiple pathologies. With age, walking becomes more difficult, partly due to locomotor deficits but also as a result of weight gain, osteoarticular degeneration, pain, cardiorespiratory problems or even post polio syndrome (PPS). These additional complications increase the risk of falls in this population where the risk of fractures is already quite high. The key joint is the knee. The muscles stabilizing this joint are often weak and patients develop compensatory gait strategies, which could be harmful to the locomotor system at medium or long term. Classically, knee recurvatum is used to lock the knee during weight bearing; however, if it exceeds 10 degrees , the knee becomes unstable and walking is unsafe. Thus, regular medical monitoring is necessary. Orthoses play an important role in the therapeutic care of polio survivors. The aim is usually to secure the knee, preventing excessive recurvatum while respecting the patient's own gait. Orthoses must be light and pressure-free if they are to be tolerated and therefore effective. Other joints present fewer problems and orthoses are rarely indicated just for them. The main issue lies in the prior evaluation of treatments' impact. Some deformities may be helpful for the patients' gait and, therefore, corrections may worsen their gait, especially if a realignment of segments is attempted. It is therefore essential to carefully pre-assess any change brought to the orthoses as well as proper indications for corrective surgery. In addition, it is essential for the patient to be monitored by a specialized team.

  17. The gait of unilateral transfemoral amputees.

    PubMed

    Boonstra, A M; Schrama, J; Fidler, V; Eisma, W H

    1994-12-01

    The aim of this study was to describe the gait of persons with a unilateral transfemoral amputation by means of a questionnaire, gait analysis and measurement of energy expenditure, and to find correlations among the variables studied. The study included 29 transfemoral amputees amputated for other reasons than a chronic vascular disease. The patients were assessed using the following methods: 1) A questionnaire rating the walking distance and walking difficulty in different circumstances. 2) Gait analysis measuring temporal variables and goniometry of hips and knees. 3) Measurement of energy expenditure during sitting and walking. Scores on the questionnaire showed a correlation with socket design, a negative correlation with age and energy expenditure, and a positive correlation with fast speed. The gait of transfemoral amputees was asymmetrical as far as temporal variables were concerned, and for most amputees also for the range of motion of hip and knee. The walking speed of the amputees was lower than that of non-amputees and showed a positive correlation with hip extension-flexion range of motion and a negative correlation with age and stride time. The energy expenditure of the amputees during ambulation was higher than that of non-amputees, and seemed to correlate with residual limb length and the hip abduction-adduction range of motion.

  18. Automated Gait Analysis Through Hues and Areas (AGATHA): A Method to Characterize the Spatiotemporal Pattern of Rat Gait.

    PubMed

    Kloefkorn, Heidi E; Pettengill, Travis R; Turner, Sara M F; Streeter, Kristi A; Gonzalez-Rothi, Elisa J; Fuller, David D; Allen, Kyle D

    2017-03-01

    While rodent gait analysis can quantify the behavioral consequences of disease, significant methodological differences exist between analysis platforms and little validation has been performed to understand or mitigate these sources of variance. By providing the algorithms used to quantify gait, open-source gait analysis software can be validated and used to explore methodological differences. Our group is introducing, for the first time, a fully-automated, open-source method for the characterization of rodent spatiotemporal gait patterns, termed Automated Gait Analysis Through Hues and Areas (AGATHA). This study describes how AGATHA identifies gait events, validates AGATHA relative to manual digitization methods, and utilizes AGATHA to detect gait compensations in orthopaedic and spinal cord injury models. To validate AGATHA against manual digitization, results from videos of rodent gait, recorded at 1000 frames per second (fps), were compared. To assess one common source of variance (the effects of video frame rate), these 1000 fps videos were re-sampled to mimic several lower fps and compared again. While spatial variables were indistinguishable between AGATHA and manual digitization, low video frame rates resulted in temporal errors for both methods. At frame rates over 125 fps, AGATHA achieved a comparable accuracy and precision to manual digitization for all gait variables. Moreover, AGATHA detected unique gait changes in each injury model. These data demonstrate AGATHA is an accurate and precise platform for the analysis of rodent spatiotemporal gait patterns.

  19. 47 CFR 51.711 - Symmetrical reciprocal compensation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Symmetrical reciprocal compensation. 51.711... (CONTINUED) INTERCONNECTION Reciprocal Compensation for Transport and Termination of Telecommunications Traffic § 51.711 Symmetrical reciprocal compensation. (a) Rates for transport and termination...

  20. 47 CFR 51.711 - Symmetrical reciprocal compensation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Symmetrical reciprocal compensation. 51.711... (CONTINUED) INTERCONNECTION Reciprocal Compensation for Transport and Termination of Telecommunications Traffic § 51.711 Symmetrical reciprocal compensation. (a) Rates for transport and termination...

  1. 32 CFR 634.16 - Reciprocal state-military action.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and direct the installation law enforcement officer to pursue reciprocity with state or host nation... formal military reciprocity, the procedures below will be adopted: (1) Commanders will recognize official... agreement concerning reciprocity may be permitted at a particular overseas installation, the commander...

  2. Short-Term Reciprocity in Late Parent-Child Relationships

    ERIC Educational Resources Information Center

    Leopold, Thomas; Raab, Marcel

    2011-01-01

    Long-term concepts of parent-child reciprocity assume that the amount of support given and received is only balanced in a generalized fashion over the life course. We argue that reciprocity in parent-child relationships also operates in the short term. Our analysis of short-term reciprocity focuses on concurrent exchange in its main upward and…

  3. 32 CFR 634.16 - Reciprocal state-military action.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and direct the installation law enforcement officer to pursue reciprocity with state or host nation... formal military reciprocity, the procedures below will be adopted: (1) Commanders will recognize official... agreement concerning reciprocity may be permitted at a particular overseas installation, the commander...

  4. Familial Reciprocity and Subjective Well-Being in Ghana

    ERIC Educational Resources Information Center

    Tsai, Ming-Chang; Dzorgbo, Dan-Bright S.

    2012-01-01

    The authors investigated variations in reciprocity and the impact of reciprocity on well-being in a West African society. They hypothesized that household size and income diversity encourage reciprocity, which in turn enhances subjective well-being. In empirical testing of these hypotheses the authors used the data of the Core Welfare Indicators…

  5. Gait-Based Human Recognition by Classification of Cyclostationary Processes on Nonlinear Shape Manifolds

    DTIC Science & Technology

    2006-05-01

    IDENTIFICATION USING GAIT ANALYSIS In this section we present a statistical framework for per- forming gait analysis and its use in human recognition. Human gait...EXPERIMENTAL RESULTS 5.1 Experimental Setup As an application of gait analysis , we used a night-vision or infrared, (IR) video camera to observe human gait. In

  6. Effect of bilateral subthalamic nucleus stimulation on gait in Parkinson's disease.

    PubMed

    Faist, M; Xie, J; Kurz, D; Berger, W; Maurer, C; Pollak, P; Lücking, C H

    2001-08-01

    The fundamental disturbance of the parkinsonian gait is the reduction in walking velocity. This is mainly due to reduction in stride length, while cadence (steps/min) is slightly enhanced. Treatment with L-dopa increases stride length while cadence is unchanged. Chronic stimulation of the thalamus has no effect on Parkinsonian gait. The efficacy of electrical stimulation of the subthalamic nucleus (STN) on gait in advanced Parkinson's disease has been clearly demonstrated clinically. The aim of the present study was to quantify the changes in gait measures induced by STN stimulation and L-dopa and to assess possible differential or additive effects. Eight Parkinson's disease patients (mean +/- SD age 48.1 +/- 7.3 years) with chronic bilateral STN stimulation (mean duration of disease 13.3 +/- 2.4 years, mean stimulation time 15.4 +/- 10.6 months) and 12 age-matched controls were investigated. Subjects walked on a special treadmill with a closed-loop ultrasound control system that used the subject's position to adjust treadmill speed continuously for the actual walking velocity. In an appropriate crossover design, spatiotemporal gait measures and leg joint angle movements were assessed for at least 120 stride cycles in four treatment conditions: with and without stimulation and with and without a suprathreshold dose of L-dopa. With STN stimulation, there were increases of almost threefold in mean walking velocity (from 0.35 to 0.96 m/s) and stride length (from 0.34 to 0.99 m). Cadence remained constant. The range of motion of the major leg joints also increased. L-Dopa alone had a slightly weaker effect, with an increase in walking velocity to 0.94 m/s and in stride length to 0.92 m at a similar cadence. These increased values were in the range of those for healthy age-matched subjects performing the same task. The combination of both treatments further increased the mean walking velocity to 1.19 m/s and stride length to 1.20 m at an unchanged cadence. However, not

  7. Gait in 5-year-old children with idiopathic clubfoot

    PubMed Central

    Lööf, Elin; Andriesse, Hanneke; André, Marie; Böhm, Stephanie; Broström, Eva W

    2016-01-01

    Background and purpose Idiopathic clubfoot can be bilateral or unilateral; however, most studies of gait have assessed clubfoot cases as one uniform group. The contralateral foot in children with unilateral clubfoot has shown deviations in pedobarographic measurements, but it is seldom included in studies of gait. We evaluated gait in children with idiopathic clubfoot, concentrating on foot involvement. Patients and methods Three-dimensional gait analyses of 59 children, mean age 5.4 years, with bilateral (n = 30) or unilateral (n = 29) idiopathic clubfoot were stratified into groups of bilateral, unilateral, or contralateral feet. Age-matched controls (n = 28) were evaluated for comparison. Gait assessment included: (1) discrete kinematic and kinetic parameters, and (2) gait deviation index for kinematics (GDI) and kinetics (GDI-k). Results No differences in gait were found between bilateral and unilateral idiopathic clubfoot, but both groups deviated when compared to controls. Compared to control feet, contralateral feet showed no deviations in discrete gait parameters, but discrepancies were evident in relation to unilateral clubfoot, causing gait asymmetries in children with unilateral involvement. However, all groups deviated significantly from control feet according to GDI and GDI-k. Interpretation Bilateral and unilateral idiopathic clubfoot cases show the same persistent deviations in gait, mainly regarding reduced plantarflexion. Nevertheless, knowledge of foot involvement is important as children with unilateral clubfoot show gait asymmetries, which might give an impression of poorer deviations. The results of GDI/GDI-k indicate global gait adaptations of the contralateral foot, so the foot should preferably not be used as a reference for gait. PMID:27331243

  8. Kinematic Analysis Quantifies Gait Abnormalities Associated with Lameness in Broiler Chickens and Identifies Evolutionary Gait Differences

    PubMed Central

    Caplen, Gina; Hothersall, Becky; Murrell, Joanna C.; Nicol, Christine J.; Waterman-Pearson, Avril E.; Weeks, Claire A.; Colborne, G. Robert

    2012-01-01

    This is the first time that gait characteristics of broiler (meat) chickens have been compared with their progenitor, jungle fowl, and the first kinematic study to report a link between broiler gait parameters and defined lameness scores. A commercial motion-capturing system recorded three-dimensional temporospatial information during walking. The hypothesis was that the gait characteristics of non-lame broilers (n = 10) would be intermediate to those of lame broilers (n = 12) and jungle fowl (n = 10, tested at two ages: immature and adult). Data analysed using multi-level models, to define an extensive range of baseline gait parameters, revealed inter-group similarities and differences. Natural selection is likely to have made jungle fowl walking gait highly efficient. Modern broiler chickens possess an unbalanced body conformation due to intense genetic selection for additional breast muscle (pectoral hypertrophy) and whole body mass. Together with rapid growth, this promotes compensatory gait adaptations to minimise energy expenditure and triggers high lameness prevalence within commercial flocks; lameness creating further disruption to the gait cycle and being an important welfare issue. Clear differences were observed between the two lines (short stance phase, little double-support, low leg lift, and little back displacement in adult jungle fowl; much double-support, high leg lift, and substantial vertical back movement in sound broilers) presumably related to mass and body conformation. Similarities included stride length and duration. Additional modifications were also identified in lame broilers (short stride length and duration, substantial lateral back movement, reduced velocity) presumably linked to musculo-skeletal abnormalities. Reduced walking velocity suggests an attempt to minimise skeletal stress and/or discomfort, while a shorter stride length and time, together with longer stance and double-support phases, are associated with

  9. Orbits of the Kepler problem via polar reciprocals

    NASA Astrophysics Data System (ADS)

    Davis, E. D.

    2011-12-01

    Polar reciprocals of trajectories are an elegant alternative to hodographs for motion in a central force field. Their principal advantage is that the transformation from a trajectory to its polar reciprocal is its own inverse. The form of the polar reciprocals of Kepler orbits is established, and a geometrical construction is presented for the orbits of the Kepler problem starting from their polar reciprocals. No obscure knowledge of conics is required to demonstrate the validity of the method. Unlike a graphical procedure suggested by Feynman and extended by Derbes, the method based on polar reciprocals works without changes for elliptical, parabolic, and hyperbolic trajectories.

  10. A microfluidic reciprocating intracochlear drug delivery system with reservoir and active dose control.

    PubMed

    Kim, Ernest S; Gustenhoven, Erich; Mescher, Mark J; Pararas, Erin E Leary; Smith, Kim A; Spencer, Abigail J; Tandon, Vishal; Borenstein, Jeffrey T; Fiering, Jason

    2014-02-21

    Reciprocating microfluidic drug delivery, as compared to steady or pulsed infusion, has unique features which may be advantageous in many therapeutic applications. We have previously described a device, designed for wearable use in small animal models, that periodically infuses and then withdraws a sub-microliter volume of drug solution to and from the endogenous fluid of the inner ear. This delivery approach results in zero net volume of liquid transfer while enabling mass transport of compounds to the cochlea by means of diffusion and mixing. We report here on an advanced wearable delivery system aimed at further miniaturization and complex dosing protocols. Enhancements to the system include the incorporation of a planar micropump to generate reciprocating flow and a novel drug reservoir that maintains zero net volume delivery and permits programmable modulation of the drug concentration in the infused bolus. The reciprocating pump is fabricated from laminated polymer films and employs a miniature electromagnetic actuator to meet the size and weight requirements of a head-mounted in vivo guinea pig testing system. The reservoir comprises a long microchannel in series with a micropump, connected in parallel with the reciprocating flow network. We characterized in vitro the response and repeatability of the planar pump and compared the results with a lumped element simulation. We also characterized the performance of the reservoir, including repeatability of dosing and range of dose modulation. Acute in vivo experiments were performed in which the reciprocating pump was used to deliver a test compound to the cochlea of anesthetized guinea pigs to evaluate short-term safety and efficacy of the system. These advances are key steps toward realization of an implantable device for long-term therapeutic applications in humans.

  11. Interdependent network reciprocity in evolutionary games

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Szolnoki, Attila; Perc, Matjaž

    2013-01-01

    Besides the structure of interactions within networks, also the interactions between networks are of the outmost importance. We therefore study the outcome of the public goods game on two interdependent networks that are connected by means of a utility function, which determines how payoffs on both networks jointly influence the success of players in each individual network. We show that an unbiased coupling allows the spontaneous emergence of interdependent network reciprocity, which is capable to maintain healthy levels of public cooperation even in extremely adverse conditions. The mechanism, however, requires simultaneous formation of correlated cooperator clusters on both networks. If this does not emerge or if the coordination process is disturbed, network reciprocity fails, resulting in the total collapse of cooperation. Network interdependence can thus be exploited effectively to promote cooperation past the limits imposed by isolated networks, but only if the coordination between the interdependent networks is not disturbed.

  12. Sorting by reciprocal translocations via reversals theory.

    PubMed

    Ozery-Flato, Michal; Shamir, Ron

    2007-05-01

    The understanding of genome rearrangements is an important endeavor in comparative genomics. A major computational problem in this field is finding a shortest sequence of genome rearrangements that transforms, or sorts, one genome into another. In this paper we focus on sorting a multi-chromosomal genome by translocations. We reveal new relationships between this problem and the well studied problem of sorting by reversals. Based on these relationships, we develop two new algorithms for sorting by reciprocal translocations, which mimic known algorithms for sorting by reversals: a score-based method building on Bergeron's algorithm, and a recursive procedure similar to the Berman-Hannenhalli method. Though their proofs are more involved, our procedures for reciprocal translocations match the complexities of the original ones for reversals.

  13. Reciprocity in Adolescent and Caregiver Violence

    PubMed Central

    Bartle-Haring, Suzanne; Slesnick, Natasha; Carmona, Jasmin

    2014-01-01

    Over a 2-year period, with assessments every six months, the reciprocity in violent behaviors (verbal and physical) was investigated in a sample of 161 adolescents, who met the criteria for substance or alcohol abuse or dependence, and their caregivers, who participated in a clinical trial for family treatment for adolescent substance abuse. Using observed variables in a structural equation model with panel data, there was very little stability in violent behaviors across time from the perspectives of both the adolescents and caregivers. Evidence for violence reciprocity between adolescent and caregiver was demonstrated toward the end of the study period. The results are discussed in the context of previous literature about adolescent-to-parent violence. PMID:25684856

  14. [Paroxysmal junctional reciprocal tachycardia and fetoplacental anasarca].

    PubMed

    Maurier, F; Delisle, G; Guay, M

    1985-02-01

    Foeto-placental anasarca was diagnosed at 34 weeks gestation in a patient with acute hydramnios. Foetal tachycardia at 300 bpm was recorded. This obstetrical problem led to the birth of a premature baby with generalised oedema, for which the only apparent cause was the tachycardia. This was identified as a paroxysmal junctional reciprocating tachycardia, initiating on atrial extrasystolic echos, terminating on R waves, with lengthening of the PR interval at the onset of tachycardia, without acceleration of the sinus rate and P'R = RP'. Paroxysmal junctional reciprocating tachycardia in utero was responsible for congestive cardiac failure and foeto-placental anasarca. The cardiac failure was treated by foetal delivery, artificial respiration and digoxin. The association of digoxin-disopyramide reduces the frequency of attacks of tachycardia and treatment may be stopped after one year's follow-up.

  15. Dynamic Reciprocity in the Wound Microenvironment

    PubMed Central

    Schultz, Gregory S.; Davidson, Jeffrey M.; Kirsner, Robert S.; Bornstein, Paul; Herman, Ira M.

    2011-01-01

    Here, we define dynamic reciprocity (DR) as an ongoing, bidirectional interaction amongst cells and their surrounding microenvironment. In the review, we posit that DR is especially meaningful during wound healing as the DR-driven biochemical, biophysical and cellular responses to injury play pivotal roles in regulating tissue regenerative responses. Such cell-extracellular matrix interactions not only guide and regulate cellular morphology, but cellular differentiation, migration, proliferation, and survival during tissue development, including e.g. embryogenesis, angiogenesis, as well as during pathologic processes including cancer diabetes, hypertension and chronic wound healing. Herein, we examine DR within the wound microenvironment while considering specific examples across acute and chronic wound healing. This review also considers how a number of hypotheses that attempt to explain chronic wound pathophysiology, which may be understood within the DR framework. The implications of applying the principles of dynamic reciprocity to optimize wound care practice and future development of innovative wound healing therapeutics are also briefly considered. PMID:21362080

  16. Microelectromechanical reciprocating-tooth indexing apparatus

    DOEpatents

    Allen, James J.

    1999-01-01

    An indexing apparatus is disclosed that can be used to rotate a gear or move a rack in a precise, controllable manner. The indexing apparatus, based on a reciprocating shuttle driven by one or more actuators, can be formed either as a micromachine, or as a millimachine. The reciprocating shuttle of the indexing apparatus can be driven by a thermal, electrostatic or electromagnetic actuator, with one or more wedge-shaped drive teeth of the shuttle being moveable to engage and slide against indexing teeth on the gear or rack, thereby moving the gear or rack. The indexing apparatus can be formed by either surface micromachining processes or LIGA processes, depending on the size of the apparatus that is to be formed.

  17. Reciprocity as a Foundation of Financial Economics.

    PubMed

    Johnson, Timothy C

    This paper argues that the subsistence of the fundamental theorem of contemporary financial mathematics is the ethical concept 'reciprocity'. The argument is based on identifying an equivalence between the contemporary, and ostensibly 'value neutral', Fundamental Theory of Asset Pricing with theories of mathematical probability that emerged in the seventeenth century in the context of the ethical assessment of commercial contracts in a framework of Aristotelian ethics. This observation, the main claim of the paper, is justified on the basis of results from the Ultimatum Game and is analysed within a framework of Pragmatic philosophy. The analysis leads to the explanatory hypothesis that markets are centres of communicative action with reciprocity as a rule of discourse. The purpose of the paper is to reorientate financial economics to emphasise the objectives of cooperation and social cohesion and to this end, we offer specific policy advice.

  18. Experimental realization of optomechanically induced non-reciprocity

    NASA Astrophysics Data System (ADS)

    Shen, Zhen; Zhang, Yan-Lei; Chen, Yuan; Zou, Chang-Ling; Xiao, Yun-Feng; Zou, Xu-Bo; Sun, Fang-Wen; Guo, Guang-Can; Dong, Chun-Hua

    2016-10-01

    Non-reciprocal devices, such as circulators and isolators, are indispensable components in classical and quantum information processing in integrated photonic circuits. Aside from these applications, the non-reciprocal phase shift is of fundamental interest for exploring exotic topological photonics, such as the realization of chiral edge states and topological protection. However, incorporating low-optical-loss magnetic materials into a photonic chip is technically challenging. In this study we experimentally demonstrate non-magnetic non-reciprocity using optomechanical interactions in a whispering gallery microresonator, as proposed in a previous work. Optomechanically induced non-reciprocal transparency and amplification are observed and a non-reciprocal phase shift of up to 40° is also demonstrated. The underlying mechanism of optomechanically induced non-reciprocity has great potential for all-optical controllable isolators and circulators, as well as non-reciprocal phase shifters in integrated photonic chips.

  19. Condition monitoring of reciprocating seal based on FBG sensors

    NASA Astrophysics Data System (ADS)

    Zhao, Xiuxu; Zhang, Shuanshuan; Wen, Pengfei; Zhen, Wenhan; Ke, Wei

    2016-07-01

    The failure of hydraulic reciprocating seals will seriously affect the normal operation of hydraulic reciprocating machinery, so the potential fault condition monitoring of reciprocating seals is very important. However, it is extremely difficult because of the limitation of reciprocating motion and the structure constraints of seal groove. In this study, an approach using fiber Bragg grating (FBG) sensors is presented. Experimental results show that the contact strain changes of a reciprocating seal can be detected by FBG sensors in the operation process of the hydraulic cylinders. The failure condition of the reciprocating seal can be identified by wavelet packet energy entropy, and the center frequency of power spectrum analysis. It can provide an effective solution for the fault prevention and health management of reciprocating hydraulic rod seals.

  20. [Quantitative gait analysis in patients with advanced Parkinson's disease].

    PubMed

    Villadoniga, M; San Millan, A; Cabanes-Martinez, L; Aviles-Olmos, I; Del Alamo-De Pedro, M; Regidor, I

    2016-08-01

    Objetivo. Describir las alteraciones de la marcha e inestabilidad postural en un grupo de pacientes con enfermedad de Parkinson (EP) avanzada. Pacientes y metodos. Se analizo la marcha de pacientes con EP en estadio avanzado on medicacion. Por medio de un sistema de analisis computarizado del movimiento, se estudiaron las variables cinematicas: cadencia, numero de ciclos con apoyo correcto (ciclos HFPS), numero de ciclos totales, duracion de las fases del ciclo, electromiografia, y goniometria de rodilla y tobillo. La valoracion clinica del equilibrio y la inestabilidad postural se completo con los tests Tinetti y Timed Up and Go. Resultados. El analisis mostro alteraciones en los parametros espaciotemporales con respecto a los rangos de normalidad: disminucion de los ciclos HFPS, aumento del numero total de ciclos y alteracion de la cadencia en muchos pacientes, y conservacion de la cadencia media dentro de los limites de la normalidad, aumento de la duracion de la fase de apoyo, disminucion del apoyo monopodal y alteracion del rango articular de la rodilla y el tobillo. Asimismo, se observo una alteracion en las puntuaciones obtenidas en las escalas clinicas, que mostraban un aumento del factor de riesgo de caidas y dependencia leve. Conclusion. La cuantificacion mediante analisis objetivo de las variables cineticas y cinematicas en los pacientes con EP puede emplearse como herramienta para establecer la influencia de las distintas alternativas terapeuticas en el trastorno de la marcha.

  1. Hardware Development and Locomotion Control Strategy for an Over-Ground Gait Trainer: NaTUre-Gaits

    PubMed Central

    Low, Kin Huat; Qu, Xingda; Lim, Hup Boon; Hoon, Kay Hiang

    2014-01-01

    Therapist-assisted body weight supported (TABWS) gait rehabilitation was introduced two decades ago. The benefit of TABWS in functional recovery of walking in spinal cord injury and stroke patients has been demonstrated and reported. However, shortage of therapists, labor-intensiveness, and short duration of training are some limitations of this approach. To overcome these deficiencies, robotic-assisted gait rehabilitation systems have been suggested. These systems have gained attentions from researchers and clinical practitioner in recent years. To achieve the same objective, an over-ground gait rehabilitation system, NaTUre-gaits, was developed at the Nanyang Technological University. The design was based on a clinical approach to provide four main features, which are pelvic motion, body weight support, over-ground walking experience, and lower limb assistance. These features can be achieved by three main modules of NaTUre-gaits: 1) pelvic assistance mechanism, mobile platform, and robotic orthosis. Predefined gait patterns are required for a robotic assisted system to follow. In this paper, the gait pattern planning for NaTUre-gaits was accomplished by an individual-specific gait pattern prediction model. The model generates gait patterns that resemble natural gait patterns of the targeted subjects. The features of NaTUre-gaits have been demonstrated by walking trials with several subjects. The trials have been evaluated by therapists and doctors. The results show that 10-m walking trial with a reduction in manpower. The task-specific repetitive training approach and natural walking gait patterns were also successfully achieved. PMID:27170876

  2. Feasibility analysis of reciprocating magnetic heat pumps

    NASA Technical Reports Server (NTRS)

    Larson, A. V.; Hartley, J. G.; Shelton, S. V.; Smith, M. M.

    1986-01-01

    The conceptual design selected for detailed system analysis and optimization is the reciprocating gadolinium core in a regenerative fluid column within the bore of a superconducting magnet. The thermodynamic properties of gadolinium are given. A computerized literature search for relevant papers was conducted and is being analyzed. Contact was made with suppliers of superconducting magnets and accessories, magnetic materials, and various types of hardware. A description of the model for the thermal analysis of the core and regenerator fluids is included.

  3. The golden ratio of gait harmony: repetitive proportions of repetitive gait phases.

    PubMed

    Iosa, Marco; Fusco, Augusto; Marchetti, Fabio; Morone, Giovanni; Caltagirone, Carlo; Paolucci, Stefano; Peppe, Antonella

    2013-01-01

    In nature, many physical and biological systems have structures showing harmonic properties. Some of them were found related to the irrational number φ known as the golden ratio that has important symmetric and harmonic properties. In this study, the spatiotemporal gait parameters of 25 healthy subjects were analyzed using a stereophotogrammetric system with 25 retroreflective markers located on their skin. The proportions of gait phases were compared with φ, the value of which is about 1.6180. The ratio between the entire gait cycle and stance phase resulted in 1.620 ± 0.058, that between stance and the swing phase was 1.629 ± 0.173, and that between swing and the double support phase was 1.684 ± 0.357. All these ratios did not differ significantly from each other (F = 0.870, P = 0.422, repeated measure analysis of variance) or from φ (P = 0.670, 0.820, 0.422, resp., t-tests). The repetitive gait phases of physiological walking were found in turn in repetitive proportions with each other, revealing an intrinsic harmonic structure. Harmony could be the key for facilitating the control of repetitive walking. Harmony is a powerful unifying factor between seemingly disparate fields of nature, including human gait.

  4. The Golden Ratio of Gait Harmony: Repetitive Proportions of Repetitive Gait Phases

    PubMed Central

    Iosa, Marco; Marchetti, Fabio; Morone, Giovanni; Caltagirone, Carlo; Paolucci, Stefano; Peppe, Antonella

    2013-01-01

    In nature, many physical and biological systems have structures showing harmonic properties. Some of them were found related to the irrational number ϕ known as the golden ratio that has important symmetric and harmonic properties. In this study, the spatiotemporal gait parameters of 25 healthy subjects were analyzed using a stereophotogrammetric system with 25 retroreflective markers located on their skin. The proportions of gait phases were compared with ϕ, the value of which is about 1.6180. The ratio between the entire gait cycle and stance phase resulted in 1.620 ± 0.058, that between stance and the swing phase was 1.629 ± 0.173, and that between swing and the double support phase was 1.684 ± 0.357. All these ratios did not differ significantly from each other (F = 0.870, P = 0.422, repeated measure analysis of variance) or from ϕ (P = 0.670, 0.820, 0.422, resp., t-tests). The repetitive gait phases of physiological walking were found in turn in repetitive proportions with each other, revealing an intrinsic harmonic structure. Harmony could be the key for facilitating the control of repetitive walking. Harmony is a powerful unifying factor between seemingly disparate fields of nature, including human gait. PMID:23862161

  5. Changes in Gait Variability From First Steps to Adulthood: Normative Data for the Gait Variability Index.

    PubMed

    Gouelle, Arnaud; Leroux, Julien; Bredin, Jonathan; Mégrot, Fabrice

    2016-01-01

    The process of learning to walk is ongoing throughout childhood. The Gait Variability Index (GVI; A. Gouelle et al., 2013) has been proposed to quantify the variability of spatiotemporal parameters (STP) during gait. The authors' aim was to evaluate the GVI and STP of healthy children and teenagers to (a) determine changes in the GVI with age and to derive normal values in children and (b) to evaluate the influence of STP on the GVI. A total of 140 typically developing children from 1 to 17 years old were categorized into 7 groups of 20 based on age. Spatiotemporal gait parameters were recorded using an electronic walkway. GVI increased and STP changed with age. In the children-teenagers group, the GVI was positively related to step length, speed, and negatively to cadence. Following normalization by lower limb length, correlations were no longer significant. In contrast, raw base of support was not correlated with the GVI but normalized base of support was. A multiple linear regression showed that only age had a direct impact on the GVI, indicating that gait continues to change after 6-7 years. These changes were only demonstrated by the GVI, highlighting its usefulness for the evaluation of gait in young populations.

  6. Gait analysis in prosthetics: opinions, ideas and conclusions.

    PubMed

    Rietman, J S; Postema, K; Geertzen, J H B

    2002-04-01

    A review was performed of the literature of the last eleven years (1990-2000) with the topic: "clinical use of instrumented gait analysis in patients wearing a prosthesis of the lower limb". To this end a literature search was performed in Embase, Medline and Recal. Forty-five (45) articles were identified for study from which 34 were reviewed. The reviews were divided into five subtopics: 1) adaptive strategies in gait (12 studies); 2) the influence of different parts of the prosthesis on gait (12 studies); 3) pressure measurements in the socket in gait studies (4 studies); 4) the influence of the mass of the prostheses on gait (5 studies); 5) energy considerations in gait (2 studies). A considerable part of the studies concerned the adaptive strategies of the amputee in walking and running and the evaluation of different prosthetic feet. All aspects and outcomes were reviewed concerning the clinical relevance.

  7. Estimated ground reaction force in normal and pathological gait.

    PubMed

    Winiarski, Sławomir; Rutkowska-Kucharska, Alicja

    2009-01-01

    In clinical gait analysis, ground reaction force (GRF) is the gait parameter which can validate the state of disorder of the patient's movement. The purpose of this study was to explore the possibilities of employing the GRF derived from kinematics of the center of gravity (COG) in the study of dynamics of human gait. Gait data was collected for healthy able-bodied men and women and patients after ACL reconstruction who use larger lateral COG excursions during gait. Reasonable agreement between methods was found in fore-aft and vertical directions, where the methods differed by an average of less than 10% in either direction. Based on model predictions of the body's COG trajectory during walking, algorithms were developed to determine spatio-temporal gait parameters related to GRF characteristics. The suitability of calculating ground reaction forces using COG displacement in a patient population is questioned.

  8. Autonomous Evolution of Dynamic Gaits with Two Quadruped Robots

    NASA Technical Reports Server (NTRS)

    Hornby, Gregory S.; Takamura, Seichi; Yamamoto, Takashi; Fujita, Masahiro

    2004-01-01

    A challenging task that must be accomplished for every legged robot is creating the walking and running behaviors needed for it to move. In this paper we describe our system for autonomously evolving dynamic gaits on two of Sony's quadruped robots. Our evolutionary algorithm runs on board the robot and uses the robot's sensors to compute the quality of a gait without assistance from the experimenter. First we show the evolution of a pace and trot gait on the OPEN-R prototype robot. With the fastest gait, the robot moves at over 10/min/min., which is more than forty body-lengths/min. While these first gaits are somewhat sensitive to the robot and environment in which they are evolved, we then show the evolution of robust dynamic gaits, one of which is used on the ERS-110, the first consumer version of AIBO.

  9. Stability of an underactuated bipedal gait.

    PubMed

    Mukherjee, S; Sangwan, V; Taneja, A; Seth, B

    2007-01-01

    A self-excited biped walking mechanism consisting of two legs that are connected in series at the hip joint through a servomotor is studied as a cyclic system with collisions. A torque proportional to angle between the shank of the swinging leg and the vertical is seen to sustain a gait. Each leg has a thigh and a shank connected at a passive knee joint that has a knee stopper restricting hyperextension similar to the human knee. A mathematical model for the dynamics of the system including the impact equations is used to analyse the stability of the system through examination of phase plane plots. Attractor lines along which the system approaches stability have been identified. A leg length for optimal stability has been identified. The biological basis for the proposed system has been identified by comparison with human gait.

  10. A polynomial function of gait performance.

    PubMed

    Giaquinto, Salvatore; Galli, Manuela; Nolfe, Giuseppe

    2007-01-01

    A mathematical data processing method is presented that represents a further step in gait analysis. The proposed polynomial regression analysis is reliable in assessing differences in the same patient and even on the same day. The program also calculates the confidence interval of the whole curve. The procedure was applied to normal subjects in order to collect normative data. When a new subject is tested, the polynomial function obtained is graphically superimposed on control data. Should the new curve fall within the limits described by normative data, it is considered to be equivalent. The procedure can be applied to the same subject, either normal or pathological, for retesting kinematic characteristics. The gait cycle is analyzed as a whole, not point-by-point. Ten normal subjects and two patients, one with recent- and the other with late-onset hemiplegia, were tested. Multiple baseline evaluation is recommended before the start of a rehabilitation program.

  11. Locomotion gaits of a rotating cylinder pair

    NASA Astrophysics Data System (ADS)

    van Rees, Wim M.; Novati, Guido; Koumoutsakos, Petros; Mahadevan, L.

    2015-11-01

    Using 2D numerical simulations of the Navier-Stokes equations, we demonstrate that a simple pair of rotating cylinders can display a range of locomotion patterns of biological and engineering interest. Steadily counter-rotating the cylinders causes the pair to move akin to a vortex dipole for low rotation rates, but as the rotational velocity is increased the direction of motion reverses. Unsteady rotations lead to different locomotion gaits that resemble jellyfish (for in-phase rotations) and undulating swimmers (for out-of-phase rotations). The small number of parameters for this simple system allows us to systematically map the phase space of these gaits, and allows us to understand the underlying physical mechanisms using a minimal model with implications for biological locomotion and engineered analogs.

  12. Neglected Alkaptonuric Patient Presenting with Steppage Gait

    PubMed Central

    Mirzashahi, Babak; Tafakhori, Abbas; Najafi, Arvin; Farzan, Mahmoud

    2016-01-01

    Even though intervertebral disc degeneration can be found in the natural course of alkaptonuria, detection of the disease by black disc color change in a patient without any other presentation of alkaptonuria is an exceptionally rare condition. We have reported a very rare case of alkaptonuria presented with low back pain and steppage gait in a 51-year-old male with a complaint of chronic low-back pain and steppage gait who was operated on for prolapsed lumbar disc herniation. Intraoperatively his lumbar disk was discovered to be black. The alkaptonuria diagnosis was considered after histopathological examination of the black disc material and elevated urinary concentration of homogentisic acid confirmed the diagnosis. To our knowledge, this presentation has not been reported previously in literature. PMID:27200402

  13. Extraction and Classification of Human Gait Features

    NASA Astrophysics Data System (ADS)

    Ng, Hu; Tan, Wooi-Haw; Tong, Hau-Lee; Abdullah, Junaidi; Komiya, Ryoichi

    In this paper, a new approach is proposed for extracting human gait features from a walking human based on the silhouette images. The approach consists of six stages: clearing the background noise of image by morphological opening; measuring of the width and height of the human silhouette; dividing the enhanced human silhouette into six body segments based on anatomical knowledge; applying morphological skeleton to obtain the body skeleton; applying Hough transform to obtain the joint angles from the body segment skeletons; and measuring the distance between the bottom of right leg and left leg from the body segment skeletons. The angles of joints, step-size together with the height and width of the human silhouette are collected and used for gait analysis. The experimental results have demonstrated that the proposed system is feasible and achieved satisfactory results.

  14. Treatment of gait ignition failure with ropinirole.

    PubMed

    Cohen-Oram, Alexis N; Stewart, Jonathan T; Bero, Kim; Hoffmann, Michael W

    2014-10-01

    Gait ignition failure (GIF) is a syndrome characterized by hesitation or inability to initiate gait from a static position. It may occur in a variety of conditions, including normal pressure hydrocephalus, subcortical vascular disease, parkinsonian syndromes and a variety of focal lesions. Previous information on the treatment of GIF has been primarily anecdotal, but there have been a few reports of response to dopamine agonists. We report a 63-year-old man with anoxic encephalopathy who developed GIF nine years after the initial anoxic insult. The patient's GIF responded robustly, albeit transiently, to ropinirole. MRI was unrevealing, but a positron emission tomography scan showed hypometabolism in the deep frontal ACA/MCA watershed area; this may have disconnected the basal ganglia from the motor cortex and/or interrupted dopaminergic mesocortical transmission. Our understanding of the pathophysiology and the treatment of GIF remains limited, but there may be at least a limited therapeutic role for dopamine agonists.

  15. Treatment of Gait Ignition Failure with Ropinirole

    PubMed Central

    Cohen-Oram, Alexis N.; Stewart, Jonathan T.; Bero, Kim; Hoffmann, Michael W.

    2014-01-01

    Gait ignition failure (GIF) is a syndrome characterized by hesitation or inability to initiate gait from a static position. It may occur in a variety of conditions, including normal pressure hydrocephalus, subcortical vascular disease, parkinsonian syndromes and a variety of focal lesions. Previous information on the treatment of GIF has been primarily anecdotal, but there have been a few reports of response to dopamine agonists. We report a 63-year-old man with anoxic encephalopathy who developed GIF nine years after the initial anoxic insult. The patient’s GIF responded robustly, albeit transiently, to ropinirole. MRI was unrevealing, but a positron emission tomography scan showed hypometabolism in the deep frontal ACA/MCA watershed area; this may have disconnected the basal ganglia from the motor cortex and/or interrupted dopaminergic mesocortical transmission. Our understanding of the pathophysiology and the treatment of GIF remains limited, but there may be at least a limited therapeutic role for dopamine agonists. PMID:25360234

  16. Effects of conventional overground gait training and a gait trainer with partial body weight support on spatiotemporal gait parameters of patients after stroke

    PubMed Central

    Park, Byoung-Sun; Kim, Mee-Young; Lee, Lim-Kyu; Yang, Seung-Min; Lee, Won-Deok; Noh, Ji-Woong; Shin, Yong-Sub; Kim, Ju-Hyun; Lee, Jeong-Uk; Kwak, Taek-Yong; Lee, Tae-Hyun; Kim, Ju-Young; Kim, Junghwan

    2015-01-01

    [Purpose] The purpose of this study was to confirm the effects of both conventional overground gait training (CGT) and a gait trainer with partial body weight support (GTBWS) on spatiotemporal gait parameters of patients with hemiparesis following chronic stroke. [Subjects and Methods] Thirty stroke patients were alternately assigned to one of two treatment groups, and both groups underwent CGT and GTBWS. [Results] The functional ambulation classification on the affected side improved significantly in the CGT and GTBWS groups. Walking speed also improved significantly in both groups. [Conclusion] These results suggest that the GTBWS in company with CGT may be, in part, an effective method of gait training for restoring gait ability in patients after a stroke. PMID:26157272

  17. Pilot demonstration of energy-efficient membrane bioreactor (MBR) using reciprocating submerged membrane.

    PubMed

    Ho, Jaeho; Smith, Shaleena; Patamasank, Jaren; Tontcheva, Petia; Kim, Gyu Dong; Roh, Hyung Keun

    2015-03-01

    Membrane bioreactor (MBR) is becoming popular for advanced wastewater treatment and water reuse. Air scouring to "shake" the membrane fibers is most suitable and applicable to maintain filtration without severe and rapidfouling. However, membrane fouling mitigating technologies are energy intensive. The goal of this research is to develop an alternative energy-saving MBR system to reduce energy consumption; a revolutionary system that will directly compete with air scouring technologies currently in the membrane water reuse market. The innovative MBR system, called reciprocation MBR (rMBR), prevents membrane fouling without the use of air scouring blowers. The mechanism featured is a mechanical reciprocating membrane frame that uses inertia to prevent fouling. Direct strong agitation of the fiber is also beneficial for the constant removal of solids built up on the membrane surface. The rMBR pilot consumes less energy than conventional coarse air scouring MBR systems. Specific energy consumption for membrane reciprocation for the pilot rMBR system was 0.072 kWh/m3 permeate produced at 40 LMH, which is 75% less than the conventional air scouring in an MBR system (0.29 kWh/m3). Reciprocation of the hollow-fiber membrane can overcome the hydrodynamic limitations of air scouring or cross-flow membrane systems with less energy consumption and/or higher energy efficiency.

  18. Gait patterns associated with thyroid function: The Rotterdam Study

    PubMed Central

    Bano, Arjola; Chaker, Layal; Darweesh, Sirwan K. L.; Korevaar, Tim I. M.; Mattace-Raso, Francesco U. S.; Dehghan, Abbas; Franco, Oscar H.; van der Geest, Jos N.; Ikram, M. Arfan; Peeters, Robin P.

    2016-01-01

    Gait is an important health indicator and poor gait is strongly associated with disability and risk of falls. Thyroid dysfunction is suggested as a potential determinant of gait deterioration, but this has not been explored in a population-based study. We therefore investigated the association of thyroid function with gait patterns in 2645 participants from the Rotterdam Study with data available on TSH (thyroid-stimulating hormone), FT4 (free thyroxine) and gait, without known thyroid disease or dementia. The primary outcome was Global gait (standardized Z-score), while secondary outcomes included gait domains (Rhythm, Variability, Phases, Pace, Base of support, Tandem, Turning) and velocity. Gait was assessed by electronic walkway. Multivariable regression models revealed an inverted U-shaped association of TSH (p < 0.001), but no association of FT4 concentrations with Global gait (p = 0.2). TSH levels were positively associated with Base of support (p = 0.01) and followed an inverted U-shaped curve with Tandem (p = 0.002) and velocity (p = 0.02). Clinical and subclinical hypothyroidism were associated with worse Global gait than euthyroidism (β = −0.61; CI = −1.03, −0.18; p = 0.004 and β = −0.13; CI = −0.26, −0.00; p = 0.04, respectively). In euthyroid participants, higher thyroid function was associated with worse gait patterns. In conclusion, both low and high thyroid function are associated with alterations in Global gait, Tandem, Base of support and velocity. PMID:27966590

  19. Evaluating alternative gait strategies using evolutionary robotics.

    PubMed

    Sellers, William I; Dennis, Louise A; W -J, Wang; Crompton, Robin H

    2004-05-01

    Evolutionary robotics is a branch of artificial intelligence concerned with the automatic generation of autonomous robots. Usually the form of the robot is predefined and various computational techniques are used to control the machine's behaviour. One aspect is the spontaneous generation of walking in legged robots and this can be used to investigate the mechanical requirements for efficient walking in bipeds. This paper demonstrates a bipedal simulator that spontaneously generates walking and running gaits. The model can be customized to represent a range of hominoid morphologies and used to predict performance parameters such as preferred speed and metabolic energy cost. Because it does not require any motion capture data it is particularly suitable for investigating locomotion in fossil animals. The predictions for modern humans are highly accurate in terms of energy cost for a given speed and thus the values predicted for other bipeds are likely to be good estimates. To illustrate this the cost of transport is calculated for Australopithecus afarensis. The model allows the degree of maximum extension at the knee to be varied causing the model to adopt walking gaits varying from chimpanzee-like to human-like. The energy costs associated with these gait choices can thus be calculated and this information used to evaluate possible locomotor strategies in early hominids.

  20. Gait recognition and walking exercise intensity estimation.

    PubMed

    Lin, Bor-Shing; Liu, Yu-Ting; Yu, Chu; Jan, Gene Eu; Hsiao, Bo-Tang

    2014-04-04

    Cardiovascular patients consult doctors for advice regarding regular exercise, whereas obese patients must self-manage their weight. Because a system for permanently monitoring and tracking patients' exercise intensities and workouts is necessary, a system for recognizing gait and estimating walking exercise intensity was proposed. For gait recognition analysis, αβ filters were used to improve the recognition of athletic attitude. Furthermore, empirical mode decomposition (EMD) was used to filter the noise of patients' attitude to acquire the Fourier transform energy spectrum. Linear discriminant analysis was then applied to this energy spectrum for training and recognition. When the gait or motion was recognized, the walking exercise intensity was estimated. In addition, this study addressed the correlation between inertia and exercise intensity by using the residual function of the EMD and quadratic approximation to filter the effect of the baseline drift integral of the acceleration sensor. The increase in the determination coefficient of the regression equation from 0.55 to 0.81 proved that the accuracy of the method for estimating walking exercise intensity proposed by Kurihara was improved in this study.

  1. Gait patterns for crime fighting: statistical evaluation

    NASA Astrophysics Data System (ADS)

    Sulovská, Kateřina; Bělašková, Silvie; Adámek, Milan

    2013-10-01

    The criminality is omnipresent during the human history. Modern technology brings novel opportunities for identification of a perpetrator. One of these opportunities is an analysis of video recordings, which may be taken during the crime itself or before/after the crime. The video analysis can be classed as identification analyses, respectively identification of a person via externals. The bipedal locomotion focuses on human movement on the basis of their anatomical-physiological features. Nowadays, the human gait is tested by many laboratories to learn whether the identification via bipedal locomotion is possible or not. The aim of our study is to use 2D components out of 3D data from the VICON Mocap system for deep statistical analyses. This paper introduces recent results of a fundamental study focused on various gait patterns during different conditions. The study contains data from 12 participants. Curves obtained from these measurements were sorted, averaged and statistically tested to estimate the stability and distinctiveness of this biometrics. Results show satisfactory distinctness of some chosen points, while some do not embody significant difference. However, results presented in this paper are of initial phase of further deeper and more exacting analyses of gait patterns under different conditions.

  2. Gait Signal Analysis with Similarity Measure

    PubMed Central

    Shin, Seungsoo

    2014-01-01

    Human gait decision was carried out with the help of similarity measure design. Gait signal was selected through hardware implementation including all in one sensor, control unit, and notebook with connector. Each gait signal was considered as high dimensional data. Therefore, high dimensional data analysis was considered via heuristic technique such as the similarity measure. Each human pattern such as walking, sitting, standing, and stepping up was obtained through experiment. By the results of the analysis, we also identified the overlapped and nonoverlapped data relation, and similarity measure analysis was also illustrated, and comparison with conventional similarity measure was also carried out. Hence, nonoverlapped data similarity analysis provided the clue to solve the similarity of high dimensional data. Considered high dimensional data analysis was designed with consideration of neighborhood information. Proposed similarity measure was applied to identify the behavior patterns of different persons, and different behaviours of the same person. Obtained analysis can be extended to organize health monitoring system for specially elderly persons. PMID:25110724

  3. Managing variability in the summary and comparison of gait data

    PubMed Central

    Chau, Tom; Young, Scott; Redekop, Sue

    2005-01-01

    Variability in quantitative gait data arises from many potential sources, including natural temporal dynamics of neuromotor control, pathologies of the neurological or musculoskeletal systems, the effects of aging, as well as variations in the external environment, assistive devices, instrumentation or data collection methodologies. In light of this variability, unidimensional, cycle-based gait variables such as stride period should be viewed as random variables and prototypical single-cycle kinematic or kinetic curves ought to be considered as random functions of time. Within this framework, we exemplify some practical solutions to a number of commonly encountered analytical challenges in dealing with gait variability. On the topic of univariate gait variables, robust estimation is proposed as a means of coping with contaminated gait data, and the summary of non-normally distributed gait data is demonstrated by way of empirical examples. On the summary of gait curves, we discuss methods to manage undesirable phase variation and non-robust spread estimates. To overcome the limitations of conventional comparisons among curve landmarks or parameters, we propose as a viable alternative, the combination of curve registration, robust estimation, and formal statistical testing of curves as coherent units. On the basis of these discussions, we provide heuristic guidelines for the summary of gait variables and the comparison of gait curves. PMID:16053523

  4. Hölder exponent spectra for human gait

    NASA Astrophysics Data System (ADS)

    Scafetta, N.; Griffin, L.; West, B. J.

    2003-10-01

    The stride interval time series in normal human gait is not strictly constant, but fluctuates from step to step in a complex manner. More precisely, it has been shown that the control process for human gait is a fractal random phenomenon, that is, one with a long-term memory. Herein we study the Hölder exponent spectra for the slow, normal and fast gaits of 10 young healthy men in both free and metronomically triggered conditions and establish that the stride interval time series is more complex than a monofractal phenomenon. A slightly multifractal and non-stationary time series under the three different gait conditions emerges.

  5. Enhanced data consistency of a portable gait measurement system

    NASA Astrophysics Data System (ADS)

    Lin, Hsien-I.; Chiang, Y. P.

    2013-11-01

    A gait measurement system is a useful tool for rehabilitation applications. Such a system is used to conduct gait experiments in large workplaces such as laboratories where gait measurement equipment can be permanently installed. However, a gait measurement system should be portable if it is to be used in clinics or community centers for aged people. In a portable gait measurement system, the workspace is limited and landmarks on a subject may not be visible to the cameras during experiments. Thus, we propose a virtual-marker function to obtain positions of unseen landmarks for maintaining data consistency. This work develops a portable clinical gait measurement system consisting of lightweight motion capture devices, force plates, and a walkway assembled from plywood boards. We evaluated the portable clinic gait system with 11 normal subjects in three consecutive days in a limited experimental space. Results of gait analysis based on the verification of within-day and between-day coefficients of multiple correlations show that the proposed portable gait system is reliable.

  6. Reliability of gait in multiple sclerosis over 6 months.

    PubMed

    Sosnoff, Jacob J; Klaren, Rachel E; Pilutti, Lara A; Dlugonski, Deirdre; Motl, Robert W

    2015-03-01

    Gait impairment is ubiquitous in multiple sclerosis (MS) and is often characterized by alterations in spatiotemporal parameters of gait. There is limited information concerning reliability of spatiotemporal gait parameters over clinical timescales (e.g. 6 months). The current report provides novel evidence that gait parameters of 74 ambulatory persons with MS with mild-to-moderate disability are reliable over 6-months (ICC's for overall sample range from 0.56 to 0.91) in the absence of any intervention above and beyond standard care. Such data can inform clinical decision-making and power analyses for designing RCTs (i.e., sample size estimates) involving persons with MS.

  7. Detection of abnormalities in a human gait using smart shoes

    NASA Astrophysics Data System (ADS)

    Kong, Kyoungchul; Bae, Joonbum; Tomizuka, Masayoshi

    2008-03-01

    Health monitoring systems require a means for detecting and quantifying abnormalities from measured signals. In this paper, a new method for detecting abnormalities in a human gait is proposed for an improved gait monitoring system for patients with walking problems. In the previous work, we introduced a fuzzy logic algorithm for detecting phases in a human gait based on four foot pressure sensors for each of the right and left foot. The fuzzy logic algorithm detects the gait phases smoothly and continuously, and retains all information obtained from sensors. In this paper, a higher level algorithm for detecting abnormalities in the gait phases obtained from the fuzzy logic is discussed. In the proposed algorithm, two major abnormalities are detected 1) when the sensors measure improper foot pressure patterns, and 2) when the human does not follow a natural sequence of gait phases. For mathematical realization of the algorithm, the gait phases are dealt with by a vector analysis method. The proposed detection algorithm is verified by experiments on abnormal gaits as well as normal gaits. The experiment makes use of the Smart Shoes that embeds four bladders filled with air, the pressure changes in which are detected by pressure transducers.

  8. Crouched gait in myelomeningocele: a comparison between the degree of knee flexion contracture in the clinical examination and during gait.

    PubMed

    Moen, Todd; Gryfakis, Nicholas; Dias, Luciano; Lemke, Laura

    2005-01-01

    The purpose of this study was to quantitatively evaluate, in patients with low lumbar and sacral level myelomeningocele who have knee flexion contractures, whether there are significant differences between the degree of knee flexion contracture measured clinically and the degree of actual knee flexion during gait, measured by computerized gait analysis. Patients were divided into two groups, those who walked with ankle-foot orthoses (AFOs) alone and those who walked with AFOs and crutches. In both groups, the patient's knee flexion contractures were measured clinically, and the degree of knee flexion was measured dynamically at two representative points in the gait cycle. In both groups and at both points of the gait cycle, the degree of knee flexion during gait was significantly greater than the degree of clinical knee flexion contracture. This should be taken into account when evaluating the crouch gait of children with myelomeningocele and planning the proper treatment.

  9. Exploring effects of different treadmill interventions on walking onset and gait patterns in infants with Down syndrome.

    PubMed

    Wu, Jianhua; Looper, Julia; Ulrich, Beverly D; Ulrich, Dale A; Angulo-Barroso, Rosa M

    2007-11-01

    Two cohorts of participants were included to investigate the effects of different treadmill interventions on walking onset and gait patterns in infants with Down syndrome (DS). The first cohort included 30 infants with DS (17 males, 13 females; mean age 10 mo [SD 1.9 mo]) who were randomly assigned to either a lower-intensity-generalized (LG) training group, or a higher-intensity-individualized (HI) training group. A control (C) group from another study, who did not receive treadmill training, served as the control (eight males, seven females; mean age 10.4 mo [SD 2.2 mo]). Mean age at walking onset was 19.2, 21.4, and 23.9 months for the HI, LG, and C groups respectively. At walking onset the HI group was significantly younger than the C group (p=0.011). At the gait follow-up that was conducted between 1 and 3 months after walking onset, three groups significantly different in overall gait patterns (p=0.037) were examined by six basic gait parameters including average velocity, stride length, step width, stride time, stance time, and dynamic base. Post-hoc analyses demonstrated that stride length was the gait parameter largely contributing to this overall group difference (p=0.033), and the HI group produced a significantly longer stride length than the C group (p=0.030). In conclusion, the HI treadmill intervention significantly promoted earlier walking onset and elicited more advanced gait patterns (particularly in stride length) in infants with DS.

  10. Gait patterns comparison of children with Duchenne muscular dystrophy to those of control subjects considering the effect of gait velocity.

    PubMed

    Gaudreault, Nathaly; Gravel, Denis; Nadeau, Sylvie; Houde, Sylvie; Gagnon, Denis

    2010-07-01

    3D analysis of the gait of children with Duchenne muscular dystrophy (DMD) was the topic of only a few studies and none of these considered the effect of gait velocity on the gait parameters of children with DMD. Gait parameters of 11 children with DMD were compared to those of 14 control children while considering the effect of gait velocity using 3D biomechanical analysis. Kinematic and kinetic gait parameters were measured using an Optotrak motion analysis system and AMTI force plates embedded in the floor. The data profiles of children with DMD walking at natural gait velocity were compared to those of the control children who walked at both natural and slow gait velocities. When both groups walked at similar velocity, children with DMD had higher cadence and shorter step length. They demonstrated a lower hip extension moment as well as a minimal or absent knee extension moment. At the ankle, a dorsiflexion moment was absent at heel strike due to the anterior location of the center of pressure. The magnitude of the medio-lateral ground reaction force was higher in children with DMD. Despite this increase, the hip abductor moment was lower. Hip power generation was also observed at the mid-stance in DMD children. These results suggest that most of the modifications observed are strategies used by children with DMD to cope with possible muscle weakness in order to provide support, propulsion and balance of the body during gait.

  11. Realizing total reciprocity violation in the phase for photon scattering.

    PubMed

    Deák, László; Bottyán, László; Fülöp, Tamás; Merkel, Dániel Géza; Nagy, Dénes Lajos; Sajti, Szilárd; Schulze, Kai Sven; Spiering, Hartmut; Uschmann, Ingo; Wille, Hans-Christian

    2017-02-22

    Reciprocity is when wave or quantum scattering satisfies a symmetry property, connecting a scattering process with the reversed one. While reciprocity involves the interchange of source and detector, it is fundamentally different from rotational invariance, and is a generalization of time reversal invariance, occurring in absorptive media as well. Due to its presence at diverse areas of physics, it admits a wide variety of applications. For polarization dependent scatterings, reciprocity is often violated, but violation in the phase of the scattering amplitude is much harder to experimentally observe than violation in magnitude. Enabled by the advantageous properties of nuclear resonance scattering of synchrotron radiation, we have measured maximal, i.e., 180-degree, reciprocity violation in the phase. For accessing phase information, we introduced a new version of stroboscopic detection. The scattering setting was devised based on a generalized reciprocity theorem that opens the way to construct new types of reciprocity related devices.

  12. Realizing total reciprocity violation in the phase for photon scattering

    PubMed Central

    Deák, László; Bottyán, László; Fülöp, Tamás; Merkel, Dániel Géza; Nagy, Dénes Lajos; Sajti, Szilárd; Schulze, Kai Sven; Spiering, Hartmut; Uschmann, Ingo; Wille, Hans-Christian

    2017-01-01

    Reciprocity is when wave or quantum scattering satisfies a symmetry property, connecting a scattering process with the reversed one. While reciprocity involves the interchange of source and detector, it is fundamentally different from rotational invariance, and is a generalization of time reversal invariance, occurring in absorptive media as well. Due to its presence at diverse areas of physics, it admits a wide variety of applications. For polarization dependent scatterings, reciprocity is often violated, but violation in the phase of the scattering amplitude is much harder to experimentally observe than violation in magnitude. Enabled by the advantageous properties of nuclear resonance scattering of synchrotron radiation, we have measured maximal, i.e., 180-degree, reciprocity violation in the phase. For accessing phase information, we introduced a new version of stroboscopic detection. The scattering setting was devised based on a generalized reciprocity theorem that opens the way to construct new types of reciprocity related devices. PMID:28225031

  13. Realizing total reciprocity violation in the phase for photon scattering

    NASA Astrophysics Data System (ADS)

    Deák, László; Bottyán, László; Fülöp, Tamás; Merkel, Dániel Géza; Nagy, Dénes Lajos; Sajti, Szilárd; Schulze, Kai Sven; Spiering, Hartmut; Uschmann, Ingo; Wille, Hans-Christian

    2017-02-01

    Reciprocity is when wave or quantum scattering satisfies a symmetry property, connecting a scattering process with the reversed one. While reciprocity involves the interchange of source and detector, it is fundamentally different from rotational invariance, and is a generalization of time reversal invariance, occurring in absorptive media as well. Due to its presence at diverse areas of physics, it admits a wide variety of applications. For polarization dependent scatterings, reciprocity is often violated, but violation in the phase of the scattering amplitude is much harder to experimentally observe than violation in magnitude. Enabled by the advantageous properties of nuclear resonance scattering of synchrotron radiation, we have measured maximal, i.e., 180-degree, reciprocity violation in the phase. For accessing phase information, we introduced a new version of stroboscopic detection. The scattering setting was devised based on a generalized reciprocity theorem that opens the way to construct new types of reciprocity related devices.

  14. Multipathing, reciprocal traveltime fields and raylets

    NASA Astrophysics Data System (ADS)

    Rawlinson, N.; Sambridge, M.; Hauser, J.

    2010-05-01

    A new theory for the calculation of later seismic arrivals in heterogeneous media is presented. We introduce the concept of a `raylet', which is a segment of a later arriving ray path between source and receiver defined by joint properties of forward and reciprocal traveltime fields. We show that all rays between a single source and receiver in arbitrary heterogeneous media can be divided into a unique set of raylets, any one of which can be used to construct the complete two-point path. A particularly useful property of raylets is that they correspond to stationary curves in the summed (forward and reciprocal) traveltime fields, i.e. adding the first (or second, or even later) arriving traveltime field from some point A to the first (or second, or even later) arriving traveltime field from some point B. We show that many raylets, each corresponding to a later arriving phase, require only earlier arrival traveltime fields for their construction. The theory describing the properties of raylets is the primary result of the paper. One practical consequence is that many later arrivals between source and receiver in heterogeneous media can be found from just two first-arrival traveltime fields, one from the source and the other (the reciprocal field) from the receiver. The theory and a method for constructing later arrivals is demonstrated though numerical experiments in 2-D but holds without change in 3-D. We use a simple grid-based eikonal solver to compute forward and reciprocal first-arrival traveltime fields, and validate our results with a ray-based wave front construction (WFC) technique. In one test involving a simple wave front triplication (or swallowtail), all three arrivals are retrieved. In another example featuring severe velocity heterogeneities, 16 out of a total of 37 arrivals are found. The theory shows that combining second and higher order traveltime fields from source and receiver yields all raylets and hence all later arrivals. In practice only

  15. Neural correlate of human reciprocity in social interactions

    PubMed Central

    Sakaiya, Shiro; Shiraito, Yuki; Kato, Junko; Ide, Hiroko; Okada, Kensuke; Takano, Kouji; Kansaku, Kenji

    2013-01-01

    Reciprocity plays a key role maintaining cooperation in society. However, little is known about the neural process that underpins human reciprocity during social interactions. Our neuroimaging study manipulated partner identity (computer, human) and strategy (random, tit-for-tat) in repeated prisoner's dilemma games and investigated the neural correlate of reciprocal interaction with humans. Reciprocal cooperation with humans but exploitation of computers by defection was associated with activation in the left amygdala. Amygdala activation was also positively and negatively correlated with a preference change for human partners following tit-for-tat and random strategies, respectively. The correlated activation represented the intensity of positive feeling toward reciprocal and negative feeling toward non-reciprocal partners, and so reflected reciprocity in social interaction. Reciprocity in social interaction, however, might plausibly be misinterpreted and so we also examined the neural coding of insight into the reciprocity of partners. Those with and without insight revealed differential brain activation across the reward-related circuitry (i.e., the right middle dorsolateral prefrontal cortex and dorsal caudate) and theory of mind (ToM) regions [i.e., ventromedial prefrontal cortex (VMPFC) and precuneus]. Among differential activations, activation in the precuneus, which accompanied deactivation of the VMPFC, was specific to those without insight into human partners who were engaged in a tit-for-tat strategy. This asymmetric (de)activation might involve specific contributions of ToM regions to the human search for reciprocity. Consequently, the intensity of emotion attached to human reciprocity was represented in the amygdala, whereas insight into the reciprocity of others was reflected in activation across the reward-related and ToM regions. This suggests the critical role of mentalizing, which was not equated with reward expectation during social interactions

  16. Neural correlate of human reciprocity in social interactions.

    PubMed

    Sakaiya, Shiro; Shiraito, Yuki; Kato, Junko; Ide, Hiroko; Okada, Kensuke; Takano, Kouji; Kansaku, Kenji

    2013-01-01

    Reciprocity plays a key role maintaining cooperation in society. However, little is known about the neural process that underpins human reciprocity during social interactions. Our neuroimaging study manipulated partner identity (computer, human) and strategy (random, tit-for-tat) in repeated prisoner's dilemma games and investigated the neural correlate of reciprocal interaction with humans. Reciprocal cooperation with humans but exploitation of computers by defection was associated with activation in the left amygdala. Amygdala activation was also positively and negatively correlated with a preference change for human partners following tit-for-tat and random strategies, respectively. The correlated activation represented the intensity of positive feeling toward reciprocal and negative feeling toward non-reciprocal partners, and so reflected reciprocity in social interaction. Reciprocity in social interaction, however, might plausibly be misinterpreted and so we also examined the neural coding of insight into the reciprocity of partners. Those with and without insight revealed differential brain activation across the reward-related circuitry (i.e., the right middle dorsolateral prefrontal cortex and dorsal caudate) and theory of mind (ToM) regions [i.e., ventromedial prefrontal cortex (VMPFC) and precuneus]. Among differential activations, activation in the precuneus, which accompanied deactivation of the VMPFC, was specific to those without insight into human partners who were engaged in a tit-for-tat strategy. This asymmetric (de)activation might involve specific contributions of ToM regions to the human search for reciprocity. Consequently, the intensity of emotion attached to human reciprocity was represented in the amygdala, whereas insight into the reciprocity of others was reflected in activation across the reward-related and ToM regions. This suggests the critical role of mentalizing, which was not equated with reward expectation during social interactions.

  17. Detection of the onset of gait initiation using kinematic sensors and EMG in transfemoral amputees.

    PubMed

    Wentink, E C; Schut, V G H; Prinsen, E C; Rietman, J S; Veltink, P H

    2014-01-01

    In this study we determined if detection of the onset of gait initiation in transfemoral amputees can be useful for voluntary control of upper leg prostheses. From six transfemoral amputees inertial sensor data and EMG were measured at the prosthetic leg during gait initiation. First, initial movement was detected from the inertial sensor data. Subsequently it was determined whether EMG could predict initial movement before detection based on the inertial sensors with comparable consistency as the inertial sensors. From the inertial sensors the initial movement can be determined. If the prosthetic leg leads, the upper leg accelerometer data was able to detect initial movement best. If the intact leg leads the upper leg gyroscope data performed best. Inertial sensors at the upper leg in general showed detections at the same time or earlier than those at the lower leg. EMG can predict initial movement up to a 138 ms in advance, when the prosthetic leg leads. One subject showed consistent EMG onset up to 248 ms before initial movement in the intact leg leading condition. A new method to detect initial movement from inertial sensors was presented and can be useful for additional prosthetic control. EMG measured at the prosthetic leg can be used for prediction of gait initiation when the prosthetic leg is leading, but for the intact leg leading condition this will not be of additional value.

  18. Quantitative Gait Measurement With Pulse-Doppler Radar for Passive In-Home Gait Assessment

    PubMed Central

    Skubic, Marjorie; Rantz, Marilyn; Cuddihy, Paul E.

    2014-01-01

    In this paper, we propose a pulse-Doppler radar system for in-home gait assessment of older adults. A methodology has been developed to extract gait parameters including walking speed and step time using Doppler radar. The gait parameters have been validated with a Vicon motion capture system in the lab with 13 participants and 158 test runs. The study revealed that for an optimal step recognition and walking speed estimation, a dual radar set up with one radar placed at foot level and the other at torso level is necessary. An excellent absolute agreement with intraclass correlation coefficients of 0.97 was found for step time estimation with the foot level radar. For walking speed, although both radars show excellent consistency they all have a system offset compared to the ground truth due to walking direction with respect to the radar beam. The torso level radar has a better performance (9% offset on average) in the speed estimation compared to the foot level radar (13%–18% offset). Quantitative analysis has been performed to compute the angles causing the systematic error. These lab results demonstrate the capability of the system to be used as a daily gait assessment tool in home environments, useful for fall risk assessment and other health care applications. The system is currently being tested in an unstructured home environment. PMID:24771566

  19. Quantitative gait measurement with pulse-Doppler radar for passive in-home gait assessment.

    PubMed

    Wang, Fang; Skubic, Marjorie; Rantz, Marilyn; Cuddihy, Paul E

    2014-09-01

    In this paper, we propose a pulse-Doppler radar system for in-home gait assessment of older adults. A methodology has been developed to extract gait parameters including walking speed and step time using Doppler radar. The gait parameters have been validated with a Vicon motion capture system in the lab with 13 participants and 158 test runs. The study revealed that for an optimal step recognition and walking speed estimation, a dual radar set up with one radar placed at foot level and the other at torso level is necessary. An excellent absolute agreement with intraclass correlation coefficients of 0.97 was found for step time estimation with the foot level radar. For walking speed, although both radars show excellent consistency they all have a system offset compared to the ground truth due to walking direction with respect to the radar beam. The torso level radar has a better performance (9% offset on average) in the speed estimation compared to the foot level radar (13%-18% offset). Quantitative analysis has been performed to compute the angles causing the systematic error. These lab results demonstrate the capability of the system to be used as a daily gait assessment tool in home environments, useful for fall risk assessment and other health care applications. The system is currently being tested in an unstructured home environment.

  20. The use of laboratory gait analysis for understanding gait deterioration in people with multiple sclerosis.

    PubMed

    Cofré Lizama, L Eduardo; Khan, Fary; Lee, Peter Vs; Galea, Mary P

    2016-12-01

    Laboratory gait analysis or three-dimensional gait analysis (3DGA), which uses motion capture, force plates and electromyography (EMG), has allowed a better understanding of the underlying mechanisms of gait deterioration in patients with multiple sclerosis (PwMS). This review will summarize the current knowledge on multiple sclerosis (MS)-related changes in kinematics (angles), kinetics (forces) and electromyographic (muscle activation) patterns and how these measures can be used as markers of disease progression. We will also discuss the potential causes of slower walking in PwMS and the implications for 3DGA. Finally, we will describe new technologies and methods that will increase precision and clinical utilization of 3DGA in PwMS. Overall, 3DGA studies have shown that functionality of the ankle joint is the most affected during walking and that compensatory actions to maintain a functional speed may be insufficient in PwMS. However, altered gait patterns may be a strategy to increase stability as balance is also affected in PwMS.

  1. Institutionalize Reciprocity to Overcome the Public Goods Provision Problem

    PubMed Central

    2016-01-01

    Cooperation is fundamental to human societies, and one of the important paths for its emergence and maintenance is reciprocity. In prisoner’s dilemma (PD) experiments, reciprocal strategies are often effective at attaining and maintaining high cooperation. In many public goods (PG) games or n-person PD experiments, however, reciprocal strategies are not successful at engendering cooperation. In the present paper, we attribute this difficulty to a coordination problem against free riding among reciprocators: Because it is difficult for the reciprocators to coordinate their behaviors against free riders, this may lead to inequality among players, which will demotivate them from cooperating in future rounds. We propose a new mechanism, institutionalized reciprocity (IR), which refers to embedding the reciprocal strategy as an institution (i.e., institutionalizing the reciprocal strategy). We experimentally demonstrate that IR can prevent groups of reciprocators from falling into coordination failure and achieve high cooperation in PG games. In conclusion, we argue that a natural extension of the present study will be to investigate the possibility of IR to serve as a collective punishment system. PMID:27248493

  2. Alternative energy efficient membrane bioreactor using reciprocating submerged membrane.

    PubMed

    Ho, J; Smith, S; Roh, H K

    2014-01-01

    A novel membrane bioreactor (MBR) pilot system, using membrane reciprocation instead of air scouring, was operated at constant high flux and daily fluctuating flux to demonstrate its application under peak and diurnal flow conditions. Low and stable transmembrane pressure was achieved at 40 l/m(2)/h (LMH) by use of repetitive membrane reciprocation. The results reveal that the inertial forces acting on the membrane fibers effectively propel foulants from the membrane surface. Reciprocation of the hollow fiber membrane is beneficial for the constant removal of solids that may build up on the membrane surface and inside the membrane bundle. The membrane reciprocation in the reciprocating MBR pilot consumed less energy than coarse air scouring used in conventional MBR systems. Specific energy consumption for the membrane reciprocation was 0.072 kWh/m(3) permeate produced at 40 LMH flux, which is 75% less than for a conventional air scouring system as reported in literature without consideration of energy consumption for biological aeration (0.29 kWh/m(3)). The daily fluctuating flux test confirmed that the membrane reciprocation is effective to handle fluctuating flux up to 50 LMH. The pilot-scale reciprocating MBR system successfully demonstrated that fouling can be controlled via 0.43 Hz membrane reciprocation with 44 mm or higher amplitude.

  3. 78 FR 59293 - Airworthiness Directives; Continental Motors, Inc. Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-26

    ... Motors, Inc. Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of... our proposed airworthiness directive (AD) for certain Continental Motors, Inc., engines with...

  4. Instrumenting gait with an accelerometer: A system and algorithm examination

    PubMed Central

    Godfrey, A.; Del Din, S.; Barry, G.; Mathers, J.C.; Rochester, L.

    2015-01-01

    Gait is an important clinical assessment tool since changes in gait may reflect changes in general health. Measurement of gait is a complex process which has been restricted to the laboratory until relatively recently. The application of an inexpensive body worn sensor with appropriate gait algorithms (BWM) is an attractive alternative and offers the potential to assess gait in any setting. In this study we investigated the use of a low-cost BWM, compared to laboratory reference using a robust testing protocol in both younger and older adults. We observed that the BWM is a valid tool for estimating total step count and mean spatio-temporal gait characteristics however agreement for variability and asymmetry results was poor. We conducted a detailed investigation to explain the poor agreement between systems and determined it was due to inherent differences between the systems rather than inability of the sensor to measure the gait characteristics. The results highlight caution in the choice of reference system for validation studies. The BWM used in this study has the potential to gather longitudinal (real-world) spatio-temporal gait data that could be readily used in large lifestyle-based intervention studies, but further refinement of the algorithm(s) is required. PMID:25749552

  5. Adaptive impedance control of a robotic orthosis for gait rehabilitation.

    PubMed

    Hussain, Shahid; Xie, Sheng Q; Jamwal, Prashant K

    2013-06-01

    Intervention of robotic devices in the field of physical gait therapy can help in providing repetitive, systematic, and economically viable training sessions. Interactive or assist-as-needed (AAN) gait training encourages patient voluntary participation in the robotic gait training process which may aid in rapid motor function recovery. In this paper, a lightweight robotic gait training orthosis with two actuated and four passive degrees of freedom (DOFs) is proposed. The actuated DOFs were powered by pneumatic muscle actuators. An AAN gait training paradigm based on adaptive impedance control was developed to provide interactive robotic gait training. The proposed adaptive impedance control scheme adapts the robotic assistance according to the disability level and voluntary participation of human subjects. The robotic orthosis was operated in two gait training modes, namely, inactive mode and active mode, to evaluate the performance of the proposed control scheme. The adaptive impedance control scheme was evaluated on ten neurologically intact subjects. The experimental results demonstrate that an increase in voluntary participation of human subjects resulted in a decrease of the robotic assistance and vice versa. Further clinical evaluations with neurologically impaired subjects are required to establish the therapeutic efficacy of the adaptive-impedance-control-based AAN gait training strategy.

  6. Dependence of gait parameters on height in typically developing children.

    PubMed

    Agostini, Valentina; Nascimbeni, Alberto; Di Nardo, Francesco; Fioretti, Sandro; Burattini, Laura; Knaflitz, Marco

    2015-01-01

    In clinical gait analysis is fundamental to have access to normative data, to be used as a reference in the interpretation of pathological walking. In a paediatric population this may be complicated by the dependence of gait parameters on child growth. The aim of this work is to provide the correlations of spatial-temporal gait parameters with children's height. We obtained the regression lines of cadence, double support, and gait phases, with respect to height, from a sample of 85 normally typically developing children aged 6 to 11. Our analysis of gait phases was not limited to the traditional analysis of stance and swing, but rather focused on the sub-phases of stance - heel contact, flat foot contact, push off - which proved to be an innovative approach to gait analysis. Heel contact decreased, flat foot contact increased and push off remained essentially unchanged with respect to children's height. These results may be useful in the interpretation of gait data in developing children, and the regression lines obtained may be used to normalize their gait parameters.

  7. DRAG: a database for recognition and analasys of gait

    NASA Astrophysics Data System (ADS)

    Kuchi, Prem; Hiremagalur, Raghu Ram V.; Huang, Helen; Carhart, Michael; He, Jiping; Panchanathan, Sethuraman

    2003-11-01

    A novel approach is proposed for creating a standardized and comprehensive database for gait analysis. The field of gait analysis is gaining increasing attention for applications such as visual surveillance, human-computer interfaces, and gait recognition and rehabilitation. Numerous algorithms have been developed for analyzing and processing gait data; however, a standard database for their systematic evaluation does not exist. Instead, existing gait databases consist of subsets of kinematic, kinetic, and electromyographic activity recordings by different investigators, at separate laboratories, and under varying conditions. Thus, the existing databases are neither homogenous nor sufficiently populated to statistically validate the algorithms. In this paper, a methodology for creating a database is presented, which can be used as a common ground to test the performance of algorithms that rely upon external marker data, ground reaction loading data, and/or video images. The database consists of: (1) synchronized motion-capture data (3D marker data) obtained using external markers, (2) computed joint angles, and (3) ground reaction loading acquired with plantar pressure insoles. This database could be easily expanded to include synchronized video, which will facilitate further development of video-based algorithms for motion tracking. This eventually could lead to the realization of markerless gait tracking. Such a system would have extensive applications in gait recognition, as well as gait rehabilitation. The entire database (marker, angle, and force data) will be placed in the public domain, and made available for downloads over the World Wide Web.

  8. Inter-Trial Gait Variability Reduction Using Continous Curve Registration

    DTIC Science & Technology

    2001-10-25

    curves. This is an important consideration. Using multivariate analysis in able-bodied gait analysis , Vardaxis et al. [11] have shown that subjects...examination of data from gait analysis of persons with stroke. Phys Ther 1998; 78: 814-28. [3] Eng JJ and Winter DA. Kinetic analysis of the lower limb

  9. Reciprocating piston pump system with screw drive

    NASA Technical Reports Server (NTRS)

    Perkins, Gerald S. (Inventor); Moore, Nicholas R. (Inventor)

    1981-01-01

    A pump system of the reciprocating piston type is described, which facilitates direct motor drive and cylinder sealing. A threaded middle potion of the piston is engaged by a nut connected to rotate with the rotor of an electric motor, in a manner that minimizes loading on the rotor by the use of a coupling that transmits torque to the nut but permits it to shift axially and radially with respect to the rotor. The nut has a threaded hydrostatic bearing for engaging the threaded piston portion, with an oil-carrying groove in the nut being interrupted. A fluid emitting seal located at the entrance to each cylinder, can serve to center the piston within the cylinder, wash the piston, and to aid in sealing. The piston can have a long stroke to diameter ratio to minimize reciprocations and wear on valves at high pressures. The voltage applied to the motor can be reversed prior to the piston reaching the end of its stroke, to permit pressure on the piston to aid in reversing the motor.

  10. Effect of private information on indirect reciprocity.

    PubMed

    Uchida, Satoshi

    2010-09-01

    Indirect reciprocity is one of the key mechanisms for the evolution of cooperation. It relies on mutual monitoring and assessments, i.e., individuals collect information about the past behavior of others and judge whether that behavior is "good" or "bad." A player will not be helped if labeled with a bad image. There are many ways for assessing others, each of which can be interpreted as an elementary form of a moral sense (i.e., a view on what is good or bad). The information can be either public or private: private information can lead to mismatches between the opinions of individuals even when they share the same moral sense. In this paper, the effect of private information on the best-known assessment rules is investigated. In order to calculate payoffs, the concept of an image matrix is introduced. It describes who is good in the eyes of whom, and its time evolution is given by a probabilistic Boolean automaton. In contrast to the public information case, private information leads to the collapse of the sterner assessment rule. Alternatively, stable polymorphisms may subsist, with the milder rule and a more simple-minded rule coexisting together with unconditional cooperators; thus, cooperation can be sustained by indirect reciprocity even in the absence of public information.

  11. Reciprocating pump with partial flow reversal

    SciTech Connect

    Frazier, T.L.; Dozier, J.D.

    1986-01-21

    This patent describes a reciprocating type pump for lifting fluid from wells and for other similar applications where operating conditions make its actions subject to blockage by mobile fines. The pump consists of a number of interactive components. The first component described in the patent is a pump barrel with a standing check valve at the bottom. The next components detailed are a pump plunger with a traveling check valve at the bottom and a mechanism for reciprocating the plunger in the barrel over a predetermined stroke distance with upper and lower limits on the motion. A principal feature of the patent which is discussed at length is the existence of a port in the barrel which is located above the middle of the stroke distance. Similarly, a means associated with the plunger for closing the port during that portion of the stroke distance when the plunger is below the level of the port is elucidated upon. The final component modality which is represented in the patent is a mechanism for biasing the traveling check valve closed against back pressure of less than a predetermined value such that the fluid is pumped back to reverse flow and thus effects the unblocking of the mobile fines during a portion of the stroke distance of each cycle.

  12. Effect of private information on indirect reciprocity

    NASA Astrophysics Data System (ADS)

    Uchida, Satoshi

    2010-09-01

    Indirect reciprocity is one of the key mechanisms for the evolution of cooperation. It relies on mutual monitoring and assessments, i.e., individuals collect information about the past behavior of others and judge whether that behavior is “good” or “bad.” A player will not be helped if labeled with a bad image. There are many ways for assessing others, each of which can be interpreted as an elementary form of a moral sense (i.e., a view on what is good or bad). The information can be either public or private: private information can lead to mismatches between the opinions of individuals even when they share the same moral sense. In this paper, the effect of private information on the best-known assessment rules is investigated. In order to calculate payoffs, the concept of an image matrix is introduced. It describes who is good in the eyes of whom, and its time evolution is given by a probabilistic Boolean automaton. In contrast to the public information case, private information leads to the collapse of the sterner assessment rule. Alternatively, stable polymorphisms may subsist, with the milder rule and a more simple-minded rule coexisting together with unconditional cooperators; thus, cooperation can be sustained by indirect reciprocity even in the absence of public information.

  13. Is adult gait less susceptible than paediatric gait to hip joint centre regression equation error?

    PubMed

    Kiernan, D; Hosking, J; O'Brien, T

    2016-03-01

    Hip joint centre (HJC) regression equation error during paediatric gait has recently been shown to have clinical significance. In relation to adult gait, it has been inferred that comparable errors with children in absolute HJC position may in fact result in less significant kinematic and kinetic error. This study investigated the clinical agreement of three commonly used regression equation sets (Bell et al., Davis et al. and Orthotrak) for adult subjects against the equations of Harrington et al. The relationship between HJC position error and subject size was also investigated for the Davis et al. set. Full 3-dimensional gait analysis was performed on 12 healthy adult subjects with data for each set compared to Harrington et al. The Gait Profile Score, Gait Variable Score and GDI-kinetic were used to assess clinical significance while differences in HJC position between the Davis and Harrington sets were compared to leg length and subject height using regression analysis. A number of statistically significant differences were present in absolute HJC position. However, all sets fell below the clinically significant thresholds (GPS <1.6°, GDI-Kinetic <3.6 points). Linear regression revealed a statistically significant relationship for both increasing leg length and increasing subject height with decreasing error in anterior/posterior and superior/inferior directions. Results confirm a negligible clinical error for adult subjects suggesting that any of the examined sets could be used interchangeably. Decreasing error with both increasing leg length and increasing subject height suggests that the Davis set should be used cautiously on smaller subjects.

  14. [A modular method for automated evaluation of gait analysis data].

    PubMed

    Loose, T; Malberg, H; Mikut, R; Dieterle, J; Schablowski, M; Wolf, S; Abel, R; Döderlein, L; Rupp, R

    2002-01-01

    A modular methodology for automated gait data evaluation: The aim of Instrumented Gait Analysis is to measure data such as joint kinematics or kinetics during gait in a quantitative way. The data evaluation for clinical purposes is often performed by experienced physicians (diagnosis of specific motion dysfunction, planning and validation of therapy). Due to subjective evaluation and complexity of the pathologies, there exists no objective, standardized data analysis method for these tasks. This article covers the development of a modular, computer-based methodology to quantify the degree of pathological gait in comparison to normal behavior, as well as to automatically search for interpretable gait abnormalities and to visualize the results. The outcomes are demonstrated with two different patient groups.

  15. Summary measures for clinical gait analysis: a literature review.

    PubMed

    Cimolin, Veronica; Galli, Manuela

    2014-04-01

    Instrumented 3D-gait analysis (3D-GA) is an important method used to obtain information that is crucial for establishing the level of functional limitation due to pathology, observing its evolution over time and evaluating rehabilitative intervention effects. However, a typical 3D-GA evaluation produces a vast amount of data, and despite its objectivity, its use is complicated, and the data interpretation is difficult. It is even more difficult to obtain an overview on patient cohorts for a comparison. Moreover, there is a growing awareness of the need for a concise index, specifically, a single measure of the 'quality' of a particular gait pattern. Several gait summary measures, which have been used in conjunction with 3D-GA, have been proposed to objectify clinical impression, quantify the degree of gait deviation from normal, stratify the severity of pathology, document the changes in gait patterns over time and evaluate interventions.

  16. Connectivity of the pedunculopontine nucleus in parkinsonian freezing of gait.

    PubMed

    Schweder, Patrick M; Hansen, Peter C; Green, Alex L; Quaghebeur, Gerardine; Stein, John; Aziz, Tipu Z

    2010-10-06

    Parkinson's disease (PD) may involve sudden unintended arrests in gait or failure to initiate gait, known as gait freezing. Deep brain stimulation of the pedunculopontine nucleus (PPN) has been found to be an effective therapy for this phenomenon. In this study, we characterized the connectivity of the PPN freezing of gait (FOG) patients, compared with non-FOG PD and healthy controls using diffusion tensor imaging techniques. Differences in PPN connectivity profiles of the study groups were shown in the cerebellum and pons. The PPN showed connectivity with the cerebellum in controls and non-FOG PD. FOG patients showed absence of cerebellar connectivity, and increased visibility of the decussation of corticopontine fibres in the anterior pons. The findings suggest that corticopontine projections, which cross at the pons are increased in gait freezing, highlighting the importance and role of corticopontine-cerebellar pathways in the pathophysiology of this phenomenon.

  17. Gait dynamics in Parkinson’s disease: Common and distinct behavior among stride length, gait variability, and fractal-like scaling

    PubMed Central

    Hausdorff, Jeffrey M.

    2009-01-01

    Parkinson’s disease (PD) is a common, debilitating neurodegenerative disease. Gait disturbances are a frequent cause of disability and impairment for patients with PD. This article provides a brief introduction to PD and describes the gait changes typically seen in patients with this disease. A major focus of this report is an update on the study of the fractal properties of gait in PD, the relationship between this feature of gait and stride length and gait variability, and the effects of different experimental conditions on these three gait properties. Implications of these findings are also briefly described. This update highlights the idea that while stride length, gait variability, and fractal scaling of gait are all impaired in PD, distinct mechanisms likely contribute to and are responsible for the regulation of these disparate gait properties. PMID:19566273

  18. Gait analysis and validation using voxel data.

    PubMed

    Wang, Fang; Stone, Erik; Dai, Wenqing; Skubic, Marjorie; Keller, James

    2009-01-01

    In this paper, we present a method for extracting gait parameters including walking speed, step time and step length from a three-dimensional voxel reconstruction, which is built from two calibrated camera views. These parameters are validated with a GAITRite Electronic mat and a Vicon motion capture system. Experiments were conducted in which subjects walked across the GAITRite mat at various speeds while the Vicon cameras recorded the motion of reflective markers attached to subjects' shoes, and our two calibrated cameras captured the images. Excellent agreements were found for walking speed. Step time and step length were also found to have good agreement given the limitation of frame rate and voxel resolution.

  19. Crowd-Sourced Amputee Gait Data: A Feasibility Study Using YouTube Videos of Unilateral Trans-Femoral Gait

    PubMed Central

    Gardiner, James; Gunarathne, Nuwan; Howard, David; Kenney, Laurence

    2016-01-01

    Collecting large datasets of amputee gait data is notoriously difficult. Additionally, collecting data on less prevalent amputations or on gait activities other than level walking and running on hard surfaces is rarely attempted. However, with the wealth of user-generated content on the Internet, the scope for collecting amputee gait data from alternative sources other than traditional gait labs is intriguing. Here we investigate the potential of YouTube videos to provide gait data on amputee walking. We use an example dataset of trans-femoral amputees level walking at self-selected speeds to collect temporal gait parameters and calculate gait asymmetry. We compare our YouTube data with typical literature values, and show that our methodology produces results that are highly comparable to data collected in a traditional manner. The similarity between the results of our novel methodology and literature values lends confidence to our technique. Nevertheless, clear challenges with the collection and interpretation of crowd-sourced gait data remain, including long term access to datasets, and a lack of validity and reliability studies in this area. PMID:27764226

  20. DMRT3 is associated with gait type in Mangalarga Marchador horses, but does not control gait ability.

    PubMed

    Patterson, L; Staiger, E A; Brooks, S A

    2015-04-01

    The Mangalarga Marchador (MM) is a Brazilian horse breed known for a uniquely smooth gait. A recent publication described a mutation in the DMRT3 gene that the authors claim controls the ability to perform lateral patterned gaits (Andersson et al. 2012). We tested 81 MM samples for the DMRT3 mutation using extracted DNA from hair bulbs using a novel RFLP. Horses were phenotypically categorized by their gait type (batida or picada), as recorded by the Brazilian Mangalarga Marchador Breeders Association (ABCCMM). Statistical analysis using the plink toolset (Purcell, 2007) revealed significant association between gait type and the DMRT3 mutation (P = 2.3e-22). Deviation from Hardy-Weinberg equilibrium suggests that selective pressure for gait type is altering allele frequencies in this breed (P = 1.00e-5). These results indicate that this polymorphism may be useful for genotype-assisted selection for gait type within this breed. As both batida and picada MM horses can perform lateral gaits, the DMRT3 mutation is not the only locus responsible for the lateral gait pattern.

  1. Wearable Device-Based Gait Recognition Using Angle Embedded Gait Dynamic Images and a Convolutional Neural Network

    PubMed Central

    Zhao, Yongjia; Zhou, Suiping

    2017-01-01

    The widespread installation of inertial sensors in smartphones and other wearable devices provides a valuable opportunity to identify people by analyzing their gait patterns, for either cooperative or non-cooperative circumstances. However, it is still a challenging task to reliably extract discriminative features for gait recognition with noisy and complex data sequences collected from casually worn wearable devices like smartphones. To cope with this problem, we propose a novel image-based gait recognition approach using the Convolutional Neural Network (CNN) without the need to manually extract discriminative features. The CNN’s input image, which is encoded straightforwardly from the inertial sensor data sequences, is called Angle Embedded Gait Dynamic Image (AE-GDI). AE-GDI is a new two-dimensional representation of gait dynamics, which is invariant to rotation and translation. The performance of the proposed approach in gait authentication and gait labeling is evaluated using two datasets: (1) the McGill University dataset, which is collected under realistic conditions; and (2) the Osaka University dataset with the largest number of subjects. Experimental results show that the proposed approach achieves competitive recognition accuracy over existing approaches and provides an effective parametric solution for identification among a large number of subjects by gait patterns. PMID:28264503

  2. Overground robot assisted gait trainer for the treatment of drug-resistant freezing of gait in Parkinson disease.

    PubMed

    Pilleri, Manuela; Weis, Luca; Zabeo, Letizia; Koutsikos, Konstantinos; Biundo, Roberta; Facchini, Silvia; Rossi, Simonetta; Masiero, Stefano; Antonini, Angelo

    2015-08-15

    Freezing of Gait (FOG) is a frequent and disabling feature of Parkinson disease (PD). Gait rehabilitation assisted by electromechanical devices, such as training on treadmill associated with sensory cues or assisted by gait orthosis have been shown to improve FOG. Overground robot assisted gait training (RGT) has been recently tested in patients with PD with improvement of several gait parameters. We here evaluated the effectiveness of RGT on FOG severity and gait abnormalities in PD patients. Eighteen patients with FOG resistant to dopaminergic medications were treated with 15 sessions of RGT and underwent an extensive clinical evaluation before and after treatment. The main outcome measures were FOG questionnaire (FOGQ) global score and specific tasks for gait assessment, namely 10 meter walking test (10 MWT), Timed Up and Go test (TUG) and 360° narrow turns (360 NT). Balance was also evaluated through Fear of Falling Efficacy Scale (FFES), assessing self perceived stability and Berg Balance Scale (BBS), for objective examination. After treatment, FOGQ score was significantly reduced (P=0.023). We also found a significant reduction of time needed to complete TUG, 10 MWT, and 360 NT (P=0.009, 0.004 and 0.04, respectively). By contrast the number of steps and the number of freezing episodes recorded at each gait task did not change. FFES and BBS scores also improved, with positive repercussions on performance on daily activity and quality of life. Our results indicate that RGT is a useful strategy for the treatment of drug refractory FOG.

  3. Probabilistic Gait Classification in Children with Cerebral Palsy: A Bayesian Approach

    ERIC Educational Resources Information Center

    Van Gestel, Leen; De Laet, Tinne; Di Lello, Enrico; Bruyninckx, Herman; Molenaers, Guy; Van Campenhout, Anja; Aertbelien, Erwin; Schwartz, Mike; Wambacq, Hans; De Cock, Paul; Desloovere, Kaat

    2011-01-01

    Three-dimensional gait analysis (3DGA) generates a wealth of highly variable data. Gait classifications help to reduce, simplify and interpret this vast amount of 3DGA data and thereby assist and facilitate clinical decision making in the treatment of CP. CP gait is often a mix of several clinically accepted distinct gait patterns. Therefore,…

  4. Gait analysis methods for rodent models of arthritic disorders: reviews and recommendations.

    PubMed

    Lakes, E H; Allen, K D

    2016-11-01

    Gait analysis is a useful tool to understand behavioral changes in preclinical arthritis models. While observational scoring and spatiotemporal gait parameters are the most widely performed gait analyses in rodents, commercially available systems can now provide quantitative assessments of spatiotemporal patterns. However, inconsistencies remain between testing platforms, and laboratories often select different gait pattern descriptors to report in the literature. Rodent gait can also be described through kinetic and kinematic analyses, but systems to analyze rodent kinetics and kinematics are typically custom made and often require sensitive, custom equipment. While the use of rodent gait analysis rapidly expands, it is important to remember that, while rodent gait analysis is a relatively modern behavioral assay, the study of quadrupedal gait is not new. Nearly all gait parameters are correlated, and a collection of gait parameters is needed to understand a compensatory gait pattern used by the animal. As such, a change in a single gait parameter is unlikely to tell the full biomechanical story; and to effectively use gait analysis, one must consider how multiple different parameters contribute to an altered gait pattern. The goal of this article is to review rodent gait analysis techniques and provide recommendations on how to use these technologies in rodent arthritis models, including discussions on the strengths and limitations of observational scoring, spatiotemporal, kinetic, and kinematic measures. Recognizing rodent gait analysis is an evolving tool, we also provide technical recommendations we hope will improve the utility of these analyses in the future.

  5. Gait Patterns in Twins with Cerebral Palsy: Similarities and Development over Time after Multilevel Surgery

    ERIC Educational Resources Information Center

    van Drongelen, Stefan; Dreher, Thomas; Heitzmann, Daniel W. W.; Wolf, Sebastian I.

    2013-01-01

    To examine gait patterns and gait quality, 7 twins with cerebral palsy were measured preoperatively and after surgical intervention. The aim was to study differences and/or similarities in gait between twins, the influence of personal characteristics and birth conditions, and to describe the development of gait over time after single event…

  6. Gait Patterns in Hemiplegic Children with Cerebral Palsy: Comparison of Right and Left Hemiplegia

    ERIC Educational Resources Information Center

    Galli, Manuela; Cimolin, Veronica; Rigoldi, Chiara; Tenore, Nunzio; Albertini, Giorgio

    2010-01-01

    The aims of this study are to compare quantitatively the gait strategy of the right and left hemiplegic children with Cerebral Palsy (CP) using gait analysis. The gait strategy of 28 right hemiparetic CP (RHG) and 23 left hemiparetic CP (LHG) was compared using gait analysis (spatio-temporal and kinematic parameters) and considering the hemiplegic…

  7. Effects of robot-assisted gait training on the balance and gait of chronic stroke patients: focus on dependent ambulators.

    PubMed

    Cho, Duk Youn; Park, Si-Woon; Lee, Min Jin; Park, Dae Sung; Kim, Eun Joo

    2015-10-01

    [Purpose] The purpose of this study was to confirm the effect of robot-assisted gait training on the balance and gait ability of stroke patients who were dependent ambulators. [Subjects and Methods] Twenty stroke patients participated in this study. The participants were allocated to either group 1, which received robot-assisted gait training for 4 weeks followed by conventional physical therapy for 4 weeks, or group 2, which received the same treatments in the reverse order. Robot-assisted gait training was conducted for 30 min, 3 times a week for 4 weeks. The Berg Balance Scale, Modified Functional Reach Test, Functional Ambulation Category, Modified Ashworth Scale, Fugl-Meyer Assessment, Motricity Index, and Modified Barthel Index were assessed before and after treatment. To confirm the characteristics of patients who showed a significant increase in Berg Balance Scale after robot-assisted gait training as compared with physical therapy, subgroup analysis was conducted. [Results] Only lateral reaching and the Functional Ambulation Category were significantly increased following robot-assisted gait training. Subscale analyses identified 3 patient subgroups that responded well to robot-assisted gait training: a subgroup with hemiplegia, a subgroup in which the guidance force needed to be decreased to needed to be decreased to ≤45%, and a subgroup in which weight bearing was decreased to ≤21%. [Conclusion] The present study showed that robot-assisted gait training is not only effective in improving balance and gait performance but also improves trunk balance and motor skills required by high-severity stroke patients to perform activities daily living. Moreover, subscale analyses identified subgroups that responded well to robot-assisted gait training.

  8. Effects of robot-assisted gait training on the balance and gait of chronic stroke patients: focus on dependent ambulators

    PubMed Central

    Cho, Duk Youn; Park, Si-Woon; Lee, Min Jin; Park, Dae Sung; Kim, Eun Joo

    2015-01-01

    [Purpose] The purpose of this study was to confirm the effect of robot-assisted gait training on the balance and gait ability of stroke patients who were dependent ambulators. [Subjects and Methods] Twenty stroke patients participated in this study. The participants were allocated to either group 1, which received robot-assisted gait training for 4 weeks followed by conventional physical therapy for 4 weeks, or group 2, which received the same treatments in the reverse order. Robot-assisted gait training was conducted for 30 min, 3 times a week for 4 weeks. The Berg Balance Scale, Modified Functional Reach Test, Functional Ambulation Category, Modified Ashworth Scale, Fugl-Meyer Assessment, Motricity Index, and Modified Barthel Index were assessed before and after treatment. To confirm the characteristics of patients who showed a significant increase in Berg Balance Scale after robot-assisted gait training as compared with physical therapy, subgroup analysis was conducted. [Results] Only lateral reaching and the Functional Ambulation Category were significantly increased following robot-assisted gait training. Subscale analyses identified 3 patient subgroups that responded well to robot-assisted gait training: a subgroup with hemiplegia, a subgroup in which the guidance force needed to be decreased to needed to be decreased to ≤45%, and a subgroup in which weight bearing was decreased to ≤21%. [Conclusion] The present study showed that robot-assisted gait training is not only effective in improving balance and gait performance but also improves trunk balance and motor skills required by high-severity stroke patients to perform activities daily living. Moreover, subscale analyses identified subgroups that responded well to robot-assisted gait training. PMID:26644642

  9. Reciprocal Pronouns Binding within Psych-Verb Constructions

    ERIC Educational Resources Information Center

    Epoge, Napoleon

    2015-01-01

    This paper aims at giving an analysis of certain syntactic peculiarities of reciprocal pronouns within verbs of psychological state, commonly known as psych-verbs. The analysis reveal that psych-verbs constructions have a peculiar property in that the binding conditions of reciprocal pronouns are satisfied in Experiencer-Subject (ES) psychverbs…

  10. An Analysis of Direct Reciprocal Borrowing among Quebec University Libraries

    ERIC Educational Resources Information Center

    Duy, Joanna C.; Lariviere, Vincent

    2013-01-01

    An analysis of Quebec academic libraries' direct reciprocal borrowing statistics from 2005 to 2010 reveals that the physical distance separating universities plays an important role in determining the amount of direct reciprocal borrowing activity conducted between institutions. Significant statistical correlations were also seen between the…

  11. Transient nature of cooperation by pay-it-forward reciprocity

    PubMed Central

    Horita, Yutaka; Takezawa, Masanori; Kinjo, Takuji; Nakawake, Yo; Masuda, Naoki

    2016-01-01

    Humans often forward kindness received from others to strangers, a phenomenon called the upstream or pay-it-forward indirect reciprocity. Some field observations and laboratory experiments found evidence of pay-it-forward reciprocity in which chains of cooperative acts persist in social dilemma situations. Theoretically, however, cooperation based on pay-it-forward reciprocity is not sustainable. We carried out laboratory experiments of a pay-it-forward indirect reciprocity game (i.e., chained gift-giving game) on a large scale in terms of group size and time. We found that cooperation consistent with pay-it-forward reciprocity occurred only in a first few decisions per participant and that cooperation originated from inherent pro-sociality of individuals. In contrast, the same groups of participants showed persisting chains of cooperation in a different indirect reciprocity game in which participants earned reputation by cooperating. Our experimental results suggest that pay-it-forward reciprocity is transient and disappears when a person makes decisions repeatedly, whereas the reputation-based reciprocity is stable in the same situation. PMID:26786178

  12. Contingency in the evolutionary emergence of reciprocal cooperation.

    PubMed

    André, Jean-Baptiste

    2015-03-01

    Reciprocity is characterized by individuals actively making it beneficial for others to cooperate by responding to them. This makes it a particularly powerful generator of mutual interest, because the benefits accrued by an individual can be redistributed to another. However, reciprocity is a composite biological function, entailing at least two subfunctions: (i) a behavioral ability to provide fitness benefits to others and (ii) a cognitive ability to evaluate the benefits received from others. For reciprocity to evolve, these two subfunctions must appear together, which raises an evolutionary problem of bootstrapping. In this article, I develop mathematical models to study the necessary conditions for the gradual emergence of reciprocity in spite of this bootstrapping problem. I show that the evolution of reciprocity is based on three conditions. First, there must be some variability in behavior. Second, cooperation must pre-evolve for reasons independent of reciprocity. Third, and most significantly, selection favors conditional cooperation only if the cooperation expressed by others is already conditional, that is, if some reciprocity is already present in the first place. In the discussion, I show that these three conditions help explain the specific features of the instances in which reciprocity does occur in the wild. For instance, it accounts for the role of spatial symmetry (as in ungulate allogrooming), the importance of synergistic benefits (as in nuptial gifts), the facilitating role of collective actions (as in many instances of human cooperation), and the potential role of kinship (as in primate grooming).

  13. 77 FR 9837 - Airworthiness Directives; Lycoming Engines Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-21

    ...; AD 2012-03-07] RIN 2120-AA64 Airworthiness Directives; Lycoming Engines Reciprocating Engines AGENCY... airworthiness directive (AD) for certain Lycoming Engines reciprocating engines. This AD was prompted by a... carburetor with one eligible for installation. We are issuing this AD to prevent engine in-flight...

  14. Instructional Guidance in Reciprocal Peer Tutoring With Task Cards

    ERIC Educational Resources Information Center

    Iserbyt, Peter; Elen, Jan; Behets, Daniel

    2010-01-01

    This article addresses the issue of instructional guidance in reciprocal peer tutoring with task cards as learning tools. Eighty-six Kinesiology students (age 17-19 years) were randomized across four reciprocal peer tutoring settings, differing in quality and quantity of guidance, to learn Basic Life Support (BLS) with task cards. The separate and…

  15. Solving boundary-value electrostatics problems using Green's reciprocity theorem

    NASA Astrophysics Data System (ADS)

    Hu, Ben Yu-Kuang

    2001-12-01

    Formal solutions to electrostatics boundary-value problems are derived using Green's reciprocity theorem. This method provides a more transparent interpretation of the solutions than the standard Green's function derivation. An energy-based argument for the reciprocity theorem is also presented.

  16. 24 CFR 3282.11 - Preemption and reciprocity.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Preemption and reciprocity. 3282.11 Section 3282.11 Housing and Urban Development Regulations Relating to Housing and Urban Development... and reciprocity. (a) No State manufactured home standard regarding manufactured home construction...

  17. 24 CFR 3282.11 - Preemption and reciprocity.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Preemption and reciprocity. 3282.11 Section 3282.11 Housing and Urban Development Regulations Relating to Housing and Urban Development... and reciprocity. (a) No State manufactured home standard regarding manufactured home construction...

  18. A Survey of Reciprocal Borrowers at Nichols Library, Naperville, Illinois.

    ERIC Educational Resources Information Center

    Strack, Nancy C.

    This paper presents results of a survey that examined the spending activities of patrons from other libraries while in Naperville (Illinois) using their reciprocal borrowing privileges at Nichols Library, the local public library. Results of a questionnaire from 100 of the 7,540 registered reciprocal borrowers provide information on: home…

  19. Reciprocal Borrowing Patterns in the North Suburban Library System.

    ERIC Educational Resources Information Center

    Able Consultants, DeKalb, IL.

    During a 5-day period in 1990, a total of 1,401 reciprocal borrowers in the North Suburban Library System (NSLS) received questionnaires asking about their choice of library and other aspects of borrowing behavior to provide data on the reciprocal borrowing characteristics and patterns within the system. This survey was designed to identify the…

  20. Reciprocal Ontological Models Show Indeterminism Comparable to Quantum Theory

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Somshubhro; Banik, Manik; Bhattacharya, Some Sankar; Ghosh, Sibasish; Kar, Guruprasad; Mukherjee, Amit; Roy, Arup

    2017-02-01

    We show that within the class of ontological models due to Harrigan and Spekkens, those satisfying preparation-measurement reciprocity must allow indeterminism comparable to that in quantum theory. Our result implies that one can design quantum random number generator, for which it is impossible, even in principle, to construct a reciprocal deterministic model.

  1. Hands-On Reciprocal Teaching: A Comprehension Technique

    ERIC Educational Resources Information Center

    Stricklin, Kelley

    2011-01-01

    Reciprocal teaching is a researched-based technique that utilizes the comprehension strategies of predicting, clarifying, questioning, and summarizing. This article provides methods of incorporating characters, props, and visual and hands-on tools to encourage and motivate students to learn through reciprocal teaching. Teachers are given…

  2. Reciprocal and unidirectional scattering of parity-time symmetric structures

    PubMed Central

    Jin, L.; Zhang, X. Z.; Zhang, G.; Song, Z.

    2016-01-01

    Parity-time symmetry is of great interest. The reciprocal and unidirectional features are intriguing besides the symmetry phase transition. Recently, the reciprocal transmission, unidirectional reflectionless and invisibility are intensively studied. Here, we show the reciprocal reflection/transmission in -symmetric system is closely related to the type of symmetry, that is, the axial (reflection) symmetry leads to reciprocal reflection (transmission). The results are further elucidated by studying the scattering of rhombic ring form coupled resonators with enclosed synthetic magnetic flux. The nonreciprocal phase shift induced by the magnetic flux and gain/loss break the parity and time-reversal symmetry but keep the parity-time symmetry. The reciprocal reflection (transmission) and unidirectional transmission (reflection) are found in the axial (reflection) -symmetric ring centre. The explorations of symmetry and asymmetry from symmetry may shed light on novel one-way optical devices and application of -symmetric metamaterials. PMID:26876806

  3. Does food sharing in vampire bats demonstrate reciprocity?

    PubMed

    Carter, Gerald; Wilkinson, Gerald

    2013-11-01

    Claims of reciprocity (or reciprocal altruism) in animal societies often ignite controversy because authors disagree over definitions, naturalistic studies tend to demonstrate correlation not causation, and controlled experiments often involve artificial conditions. Food sharing among common vampire bats has been a classic textbook example of reciprocity, but this conclusion has been contested by alternative explanations. Here, we review factors that predict food sharing in vampire bats based on previously published and unpublished data, validate previous published results with more precise relatedness estimates, and describe current evidence for and against alternative explanations for its evolutionary stability. Although correlational evidence indicates a role for both direct and indirect fitness benefits, unequivocally demonstrating reciprocity in vampire bats still requires testing if and how bats respond to non-reciprocation.

  4. Balancing mechanism for reciprocating piston engine

    SciTech Connect

    Murata, N.; Ogino, T.

    1987-04-14

    This patent describes a balancing mechanism for a reciprocating piston internal combustion engine which includes a cylinder, a piston reciprocatable in the cylinder, a crankcase, a crankshaft mounted in the crankshaft, a crankpin connected to the piston, and a pair of crank arms bridging the crankshaft and crankpin. The crank arms and crankpin rotate with the crankshaft during operation and form a rotating mass. The balancing mechanism comprises at least one rotating counterweight attached to and rotating with the crankshaft, and eccentric journal means on the crankshaft adjacent the crank arms, rotating with the crankshaft. The journal means has an axis spaced to the side of the crankshaft axis which is opposite from the crankpin. The rotating counterweight and the eccentric journal means counterbalancing the rotating mass.

  5. Reciprocating down-hole sand pump

    SciTech Connect

    Ruhle, J.L.

    1987-04-28

    This patent describes the invention of a continuously-operated reciprocating down-hole sand pump comprising: a steel polished plunger pipe that strokes back and forth within a steel honed pump barrel, and is equipped with a self-lubricating fluorocarbon V-ring system that is pressure-actuated during compression strokes; the self-lubricating fluorocarbon V-ring system also is self-actuated by means of coil springs to provide wiping action to the polished plunger pipe during suction strokes; the self-lubricating fluorocarbons V-ring system also self-adjusts by means of coil springs located adjacent the fluorocarbon V-ring so as to automatically compensate for V-ring wear; and the self-lubricating fluorocarbon V-ring system also is designed in such a manner so as to eliminate voids and discourage the extrusion of V-rings in high temperature and high-pressure applications.

  6. Reciprocity, passivity and causality in Willis materials.

    PubMed

    Muhlestein, Michael B; Sieck, Caleb F; Alù, Andrea; Haberman, Michael R

    2016-10-01

    Materials that require coupling between the stress-strain and momentum-velocity constitutive relations were first proposed by Willis (Willis 1981 Wave Motion3, 1-11. (doi:10.1016/0165-2125(81)90008-1)) and are now known as elastic materials of the Willis type, or simply Willis materials. As coupling between these two constitutive equations is a generalization of standard elastodynamic theory, restrictions on the physically admissible material properties for Willis materials should be similarly generalized. This paper derives restrictions imposed on the material properties of Willis materials when they are assumed to be reciprocal, passive and causal. Considerations of causality and low-order dispersion suggest an alternative formulation of the standard Willis equations. The alternative formulation provides improved insight into the subwavelength physical behaviour leading to Willis material properties and is amenable to time-domain analyses. Finally, the results initially obtained for a generally elastic material are specialized to the acoustic limit.

  7. Reciprocity Calibration in a Plane Wave Resonator.

    DTIC Science & Technology

    1985-12-01

    7I D-W4 149 RECIPROCITY CLIBRTION IN A PLNE AVE RESONRTOR(U) / NAVAL POSTGRADUATE SCHOOL MONTEREY CA C L DURNISTER DEC 05 NPS61-86-006 UNCLSSIFIED...34’ .’ , C, 1 . 5 37 date = 1.E. May 1984- N F’H F’N ’.. * . VOL T $ 11 1 59 ’B I - 2 1’q 0341E-[ C4 - 1 .554 1 - 6 9 :6840E-005 1 557 34.71 1 7 65E- 05 ...percent fractional error STfor measued separation vs. • 66387 05 07 calculated separation at .......... the eighth interval. ’STRPT IT’.’= 14.5

  8. Reciprocity, passivity and causality in Willis materials

    NASA Astrophysics Data System (ADS)

    Muhlestein, Michael B.; Sieck, Caleb F.; Alù, Andrea; Haberman, Michael R.

    2016-10-01

    Materials that require coupling between the stress-strain and momentum-velocity constitutive relations were first proposed by Willis (Willis 1981 Wave Motion 3, 1-11. (doi:10.1016/0165-2125(81)90008-1)) and are now known as elastic materials of the Willis type, or simply Willis materials. As coupling between these two constitutive equations is a generalization of standard elastodynamic theory, restrictions on the physically admissible material properties for Willis materials should be similarly generalized. This paper derives restrictions imposed on the material properties of Willis materials when they are assumed to be reciprocal, passive and causal. Considerations of causality and low-order dispersion suggest an alternative formulation of the standard Willis equations. The alternative formulation provides improved insight into the subwavelength physical behaviour leading to Willis material properties and is amenable to time-domain analyses. Finally, the results initially obtained for a generally elastic material are specialized to the acoustic limit.

  9. A reciprocating rotating-block engine

    SciTech Connect

    O`Connor, L.

    1995-06-01

    This article describes the Newbold power plant, a lightweight, clean burning, and efficient engine that is designed to be used in a variety of small-engine applications, from ultralight planes to wheelchairs. A new turbo rotary-power engine brings together different design concepts from engine technology, including the rotary motion of a block, which is applied in a rotary engine, and the reciprocating motion of pistons. The new power plant also uses an air delivery system that operates similar to a turbojet engine. The turbo rotary-power engine, developed by Vernon Newbold, founder of Newbold and Associates, in Lyons, CO, produces power from the heat generated by combustion of most liquid or gaseous fuels. Production engines, expected to be built in August, will be optimized to operate using diesel fuel.

  10. Sleep and exercise: a reciprocal issue?

    PubMed

    Chennaoui, Mounir; Arnal, Pierrick J; Sauvet, Fabien; Léger, Damien

    2015-04-01

    Sleep and exercise influence each other through complex, bilateral interactions that involve multiple physiological and psychological pathways. Physical activity is usually considered as beneficial in aiding sleep although this link may be subject to multiple moderating factors such as sex, age, fitness level, sleep quality and the characteristics of the exercise (intensity, duration, time of day, environment). It is therefore vital to improve knowledge in fundamental physiology in order to understand the benefits of exercise on the quantity and quality of sleep in healthy subjects and patients. Conversely, sleep disturbances could also impair a person's cognitive performance or their capacity for exercise and increase the risk of exercise-induced injuries either during extreme and/or prolonged exercise or during team sports. This review aims to describe the reciprocal fundamental physiological effects linking sleep and exercise in order to improve the pertinent use of exercise in sleep medicine and prevent sleep disorders in sportsmen.

  11. Permanent junctional reciprocating tachycardia in a dog.

    PubMed

    Santilli, Roberto A; Santos, Luis F N; Perego, Manuela

    2013-09-01

    A 5-year-old male English Bulldog was presented with a 1-year history of paroxysmal supraventricular tachycardia (SVT) partially responsive to amiodarone. At admission the surface ECG showed sustained runs of a narrow QRS complex tachycardia, with a ventricular cycle length (R-R interval) of 260 ms, alternating with periods of sinus rhythm. Endocardial mapping identified the electrogenic mechanism of the SVT as a circus movement tachycardia with retrograde and decremental conduction along a concealed postero-septal atrioventricular pathway (AP) and anterograde conduction along the atrioventricular node. These characteristics were indicative of a permanent junctional reciprocating tachycardia (PJRT). Radiofrequency catheter ablation of the AP successfully terminated the PJRT, with no recurrence of tachycardia on Holter monitoring at 12 months follow-up.

  12. An experimental reciprocating expander for cryocooler application

    NASA Technical Reports Server (NTRS)

    Minta, M.; Smith, J. L., Jr.

    1985-01-01

    An experimental reciprocating expander was designed with features appropriate for cryocooler cycles. The expander has a displacer piston, simple valves, and a hydraulic/pneumatic stroking mechanism. The expander has a valve in head configuration with the valves extending out the bottom of the vacuum enclosure while the piston extends out the top. The expander was tested using a CTI 1400 liquefier to supply 13 atm in the temperature range 4.2 to 12 K. Expander efficiency was measured in the range 84 to 93% while operating the apparatus as a supercritical wet expander and in the range 91 to 93% aa a single phase expander. The apparatus can also be modified to operate as a compressor for saturated helium vapor.

  13. Thermal Powered Reciprocating-Force Motor

    NASA Technical Reports Server (NTRS)

    Tatum, III, Paul F. (Inventor); McDow Elliott, Amelia (Inventor)

    2015-01-01

    A thermal-powered reciprocating-force motor includes a shutter switchable between a first position that passes solar energy and a second position that blocks solar energy. A shape memory alloy (SMA) actuator is coupled to the shutter to control switching thereof between the shutter's first and second position. The actuator is positioned with respect to the shutter such that (1) solar energy impinges on the SMA when the shutter is in its first position so that the SMA experiences contraction in length until the shutter is switched to its second position, and (2) solar energy is impeded from impingement on the SMA when the shutter is in its second position so that the SMA experiences extension in length. Elastic members coupled to the actuator apply a force to the SMA that aids in its extension in length until the shutter is switched to its first position.

  14. 77 FR 60341 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion... Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines to..., ``National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion......

  15. Turtle mimetic soft robot with two swimming gaits.

    PubMed

    Song, Sung-Hyuk; Kim, Min-Soo; Rodrigue, Hugo; Lee, Jang-Yeob; Shim, Jae-Eul; Kim, Min-Cheol; Chu, Won-Shik; Ahn, Sung-Hoon

    2016-05-04

    This paper presents a biomimetic turtle flipper actuator consisting of a shape memory alloy composite structure for implementation in a turtle-inspired autonomous underwater vehicle. Based on the analysis of the Chelonia mydas, the flipper actuator was divided into three segments containing a scaffold structure fabricated using a 3D printer. According to the filament stacking sequence of the scaffold structure in the actuator, different actuating motions can be realized and three different types of scaffold structures were proposed to replicate the motion of the different segments of the flipper of the Chelonia mydas. This flipper actuator can mimic the continuous deformation of the forelimb of Chelonia mydas which could not be realized in previous motor based robot. This actuator can also produce two distinct motions that correspond to the two different swimming gaits of the Chelonia mydas, which are the routine and vigorous swimming gaits, by changing the applied current sequence of the SMA wires embedded in the flipper actuator. The generated thrust and the swimming efficiency in each swimming gait of the flipper actuator were measured and the results show that the vigorous gait has a higher thrust but a relatively lower swimming efficiency than the routine gait. The flipper actuator was implemented in a biomimetic turtle robot, and its average swimming speed in the routine and vigorous gaits were measured with the vigorous gait being capable of reaching a maximum speed of 11.5 mm s(-1).

  16. Gait biometrics under spoofing attacks: an experimental investigation

    NASA Astrophysics Data System (ADS)

    Hadid, Abdenour; Ghahramani, Mohammad; Kellokumpu, Vili; Feng, Xiaoyi; Bustard, John; Nixon, Mark

    2015-11-01

    Gait is a relatively biometric modality which has a precious advantage over other modalities, such as iris and voice, in that it can be easily captured from a distance. Although it has recently become a topic of great interest in biometric research, there has been little investigation into gait spoofing attacks where a person tries to imitate the clothing or walking style of someone else. We recently analyzed for the first time the effects of spoofing attacks on silhouette-based gait biometric systems and showed that it was indeed possible to spoof gait biometric systems by clothing impersonation and the deliberate selection of a target that has a similar build to the attacker. To gain deeper insight into the performance of current gait biometric systems under spoofing attacks, we provide a thorough investigation on how clothing can be used to spoof a target and evaluate the performance of two state-of-the-art recognition methods on a gait spoofing database recorded at the University of Southampton. Furthermore, we describe and evaluate an initial solution coping with gait spoofing attacks. The obtained results are very promising and point out interesting findings which can be used for future investigations.

  17. Assessment of gait after bilateral hip replacement. Case study.

    PubMed

    Winiarski, Sławomir; Aleksandrowicz, Krzysztof; Jarząb, Sławomir; Pozowski, Andrzej; Rutkowska-Kucharska, Alicja

    2014-01-01

    Total hip arthroplasty (THA) is one of the most effective methods of treatment of severe hip osteoarthritis (HOA). In many cases pathological gait patterns persist despite properly conducted surgery and disturb the normal wear of the artificial joint surfaces. The aim of the study was to conduct functional and biomechanical assessment of gait in a patient after bilateral THA due to severe degenerative changes in the hip. The assessment focused on the gait parameters which significantly deviate from a normal gait pattern at various stages of treatment. Physiotherapeutic assessment of the patient included measurements of the range of motion in lower limb joints, the Timed Up and Go test, and pain assessment. Biomechanical assessment involved measurements of spatiotemporal gait parameters and the dynamic range of motion using BTS Smart-E motion analysis system. Although clinical examinations after both the first and second procedure suggested recovery of the patient's physical function, biomechanical assessment of her gait after the second procedure indicated the presence of deviations from a normal gait pattern. Secondary to a limited range of internal/external hip rotation, extension, and abduction, corresponding indices were still in the pathological range.

  18. Gait deviations in children with autism spectrum disorders: a review.

    PubMed

    Kindregan, Deirdre; Gallagher, Louise; Gormley, John

    2015-01-01

    In recent years, it has become clear that children with autism spectrum disorders (ASDs) have difficulty with gross motor function and coordination, factors which influence gait. Knowledge of gait abnormalities may be useful for assessment and treatment planning. This paper reviews the literature assessing gait deviations in children with ASD. Five online databases were searched using keywords "gait" and "autism," and 11 studies were found which examined gait in childhood ASD. Children with ASD tend to augment their walking stability with a reduced stride length, increased step width and therefore wider base of support, and increased time in the stance phase. Children with ASD have reduced range of motion at the ankle and knee during gait, with increased hip flexion. Decreased peak hip flexor and ankle plantar flexor moments in children with ASD may imply weakness around these joints, which is further exhibited by a reduction in ground reaction forces at toe-off in children with ASD. Children with ASD have altered gait patterns to healthy controls, widened base of support, and reduced range of motion. Several studies refer to cerebellar and basal ganglia involvement as the patterns described suggest alterations in those areas of the brain. Further research should compare children with ASD to other clinical groups to improve assessment and treatment planning.

  19. The efficient interaction of indirect reciprocity and costly punishment.

    PubMed

    Rockenbach, Bettina; Milinski, Manfred

    2006-12-07

    Human cooperation in social dilemmas challenges researchers from various disciplines. Here we combine advances in experimental economics and evolutionary biology that separately have shown that costly punishment and reputation formation, respectively, induce cooperation in social dilemmas. The mechanisms of punishment and reputation, however, substantially differ in their means for 'disciplining' non-cooperators. Direct punishment incurs salient costs for both the punisher and the punished, whereas reputation mechanisms discipline by withholding action, immediately saving costs for the 'punisher'. Consequently, costly punishment may become extinct in environments in which effective reputation building--for example, through indirect reciprocity--provides a cheaper and powerful way to sustain cooperation. Unexpectedly, as we show here, punishment is maintained when a combination with reputation building is available, however, at a low level. Costly punishment acts are markedly reduced although not simply substituted by appreciating reputation. Indeed, the remaining punishment acts are concentrated on free-riders, who are most severely punished in the combination. When given a choice, subjects even prefer a combination of reputation building with costly punishment. The interaction between punishment and reputation building boosts cooperative efficiency. Because punishment and reputation building are omnipresent interacting forces in human societies, costly punishing should appear less destructive without losing its deterring force.

  20. Gait variability and basal ganglia disorders: stride-to-stride variations of gait cycle timing in Parkinson's disease and Huntington's disease

    NASA Technical Reports Server (NTRS)

    Hausdorff, J. M.; Cudkowicz, M. E.; Firtion, R.; Wei, J. Y.; Goldberger, A. L.

    1998-01-01

    The basal ganglia are thought to play an important role in regulating motor programs involved in gait and in the fluidity and sequencing of movement. We postulated that the ability to maintain a steady gait, with low stride-to-stride variability of gait cycle timing and its subphases, would be diminished with both Parkinson's disease (PD) and Huntington's disease (HD). To test this hypothesis, we obtained quantitative measures of stride-to-stride variability of gait cycle timing in subjects with PD (n = 15), HD (n = 20), and disease-free controls (n = 16). All measures of gait variability were significantly increased in PD and HD. In subjects with PD and HD, gait variability measures were two and three times that observed in control subjects, respectively. The degree of gait variability correlated with disease severity. In contrast, gait speed was significantly lower in PD, but not in HD, and average gait cycle duration and the time spent in many subphases of the gait cycle were similar in control subjects, HD subjects, and PD subjects. These findings are consistent with a differential control of gait variability, speed, and average gait cycle timing that may have implications for understanding the role of the basal ganglia in locomotor control and for quantitatively assessing gait in clinical settings.

  1. Identity Recognition Algorithm Using Improved Gabor Feature Selection of Gait Energy Image

    NASA Astrophysics Data System (ADS)

    Chao, LIANG; Ling-yao, JIA; Dong-cheng, SHI

    2017-01-01

    This paper describes an effective gait recognition approach based on Gabor features of gait energy image. In this paper, the kernel Fisher analysis combined with kernel matrix is proposed to select dominant features. The nearest neighbor classifier based on whitened cosine distance is used to discriminate different gait patterns. The approach proposed is tested on the CASIA and USF gait databases. The results show that our approach outperforms other state of gait recognition approaches in terms of recognition accuracy and robustness.

  2. Stepping strategies for regulating gait adaptability and stability.

    PubMed

    Hak, Laura; Houdijk, Han; Steenbrink, Frans; Mert, Agali; van der Wurff, Peter; Beek, Peter J; van Dieën, Jaap H

    2013-03-15

    Besides a stable gait pattern, gait in daily life requires the capability to adapt this pattern in response to environmental conditions. The purpose of this study was to elucidate the anticipatory strategies used by able-bodied people to attain an adaptive gait pattern, and how these strategies interact with strategies used to maintain gait stability. Ten healthy subjects walked in a Computer Assisted Rehabilitation ENvironment (CAREN). To provoke an adaptive gait pattern, subjects had to hit virtual targets, with markers guided by their knees, while walking on a self-paced treadmill. The effects of walking with and without this task on walking speed, step length, step frequency, step width and the margins of stability (MoS) were assessed. Furthermore, these trials were performed with and without additional continuous ML platform translations. When an adaptive gait pattern was required, subjects decreased step length (p<0.01), tended to increase step width (p=0.074), and decreased walking speed while maintaining similar step frequency compared to unconstrained walking. These adaptations resulted in the preservation of equal MoS between trials, despite the disturbing influence of the gait adaptability task. When the gait adaptability task was combined with the balance perturbation subjects further decreased step length, as evidenced by a significant interaction between both manipulations (p=0.012). In conclusion, able-bodied people reduce step length and increase step width during walking conditions requiring a high level of both stability and adaptability. Although an increase in step frequency has previously been found to enhance stability, a faster movement, which would coincide with a higher step frequency, hampers accuracy and may consequently limit gait adaptability.

  3. Energy consumption and gait analysis in children with myelomeningocele.

    PubMed

    Galli, M; Crivellini, M; Fazzi, E; Motta, F

    2000-01-01

    The aim of this study was to determine, in children with different levels of myelomeningocele (MMC), the gait pattern and energy cost of walking with and without ankle-foot orthoses (AFOs). We found that each MMC level was characterised by recognisable gait patterns and that the abnormalities closely reflected the muscle deficits present. Furthermore, the study also introduces new indices for evaluating the energy cost of locomotion and demonstrates that the energy required for walking is increased in children with MMC compared with non disabled children. With respect to barefoot conditions, the use of AFOs leads to an improvement in gait and reduced energy consumption.

  4. Effects of Aging on Arm Swing during Gait: The Role of Gait Speed and Dual Tasking.

    PubMed

    Mirelman, Anat; Bernad-Elazari, Hagar; Nobel, Tomer; Thaler, Avner; Peruzzi, Agnese; Plotnik, Meir; Giladi, Nir; Hausdorff, Jeffrey M

    2015-01-01

    Healthy walking is characterized by pronounced arm swing and axial rotation. Aging effects on gait speed, stride length and stride time variability have been previously reported, however, less is known about aging effects on arm swing and axial rotation and their relationship to age-associated gait changes during usual walking and during more challenging conditions like dual tasking. Sixty healthy adults between the ages of 30-77 were included in this study designed to address this gap. Lightweight body fixed sensors were placed on each wrist and lower back. Participants walked under 3 walking conditions each of 1 minute: 1) comfortable speed, 2) walking while serially subtracting 3's (Dual Task), 3) walking at fast speed. Aging effects on arm swing amplitude, range, symmetry, jerk and axial rotation amplitude and jerk were compared between decades of age (30-40; 41-50; 51-60; 61-77 years). As expected, older adults walked slower (p = 0.03) and with increased stride variability (p = 0.02). Arm swing amplitude decreased with age under all conditions (p = 0.04). In the oldest group, arm swing decreased during dual task and increased during the fast walking condition (p<0.0001). Similarly, arm swing asymmetry increased during the dual task in the older groups (p<0.004), but not in the younger groups (p = 0.67). Significant differences between groups and within conditions were observed in arm swing jerk (p<0.02), axial rotation amplitude (p<0.02) and axial jerk (p<0.001). Gait speed, arm swing amplitude of the dominant arm, arm swing asymmetry and axial rotation jerk were all independent predictors of age in a multivariate model. These findings suggest that the effects of gait speed and dual tasking on arm swing and axial rotation during walking are altered among healthy older adults. Follow-up work is needed to examine if these effects contribute to reduced stability in aging.

  5. Effectiveness of physical therapy for improving gait and balance in ambulatory individuals with traumatic brain injury: a systematic review of the literature

    PubMed Central

    Bland, Daniel C.; Zampieri-Gallagher, Cristiane; Damiano, Diane L.

    2012-01-01

    Primary objective Given the major impact of traumatic brain injury (TBI) on society and the fact that effective therapies for common deficits in balance and gait are not known, the purpose of this review was to investigate the efficacy or effectiveness of non-aerobic exercise interventions to improve balance and gait in functionally mild to moderate individuals with TBI (those who demonstrate the ability or capacity to ambulate) and to provide evidence-based guidelines for clinical practice. Methods We searched eight databases (limits: January 1980 to December 2009) for papers including exercise interventions to improve gait and balance post TBI. Out of 984 unique citations, 20 fully met inclusion criteria. The methodological quality of studies was determined by the Physiotherapy Evidence Database (PEDro) scale and strength by Sackett's Levels of Evidence. Results We found limited evidence of the positive effects of balance, gait, or the combination of both interventions, in TBI rehabilitation. Most studies included small sample sizes with heterogeneous groups, and the interventions were variable and lacked standardization. The outcome measures were variable and low in quality. These limitations make it difficult to draw useful evidence-based recommendations for clinical practice. Conclusions The state of evidence for gait and balance interventions in patients with mild to moderate TBI is surprisingly poor. Greater consideration and conformity in the choice of outcome measures and attention in the design and standardization treatment approaches are essential in future research to advance practice. PMID:21561297

  6. A robust real-time gait event detection using wireless gyroscope and its application on normal and altered gaits.

    PubMed

    Gouwanda, Darwin; Gopalai, Alpha Agape

    2015-02-01

    Gait events detection allows clinicians and biomechanics researchers to determine timing of gait events, to estimate duration of stance phase and swing phase and to segment gait data. It also aids biomedical engineers to improve the design of orthoses and FES (functional electrical stimulation) systems. In recent years, researchers have resorted to using gyroscopes to determine heel-strike (HS) and toe-off (TO) events in gait cycles. However, these methods are subjected to significant delays when implemented in real-time gait monitoring devices, orthoses, and FES systems. Therefore, the work presented in this paper proposes a method that addresses these delays, to ensure real-time gait event detection. The proposed algorithm combines the use of heuristics and zero-crossing method to identify HS and TO. Experiments involving: (1) normal walking; (2) walking with knee brace; and (3) walking with ankle brace for overground walking and treadmill walking were designed to verify and validate the identified HS and TO. The performance of the proposed method was compared against the established gait detection algorithms. It was observed that the proposed method produced detection rate that was comparable to earlier reported methods and recorded reduced time delays, at an average of 100 ms.

  7. The effect of gait training with shoe inserts on the improvement of pain and gait in sacroiliac joint patients.

    PubMed

    Cho, Byung-Yun; Yoon, Jung-Gyu

    2015-08-01

    [Purpose] The purpose of the current research was to identify how gait training with shoe inserts affects the pain and gait of sacroiliac joint dysfunction patients. [Subjects and Methods] Thirty subjects were randomly selected and assigned to be either the experimental group (gait training with shoe insert group) or control group. Each group consisted of 15 patients. Pain was measured by Visual Analogue Scale, and foot pressure in a standing position and during gait was measured with a Gateview AFA-50 system (Alpus, Seoul, Republic of Korea). A paired sample t-test was used to compare the pain and gait of the sacroiliac joint before and after the intervention. Correlation between pain and walking after gait training with shoe inserts was examined by Pearson test. The level of significance was set at α=0.05. [Results] It was found that application of the intervention to the experimental group resulted in a significant decrease in sacroiliac joint pain. It was also found that there was a significant correlation between Visual Analogue Scale score and dynamic asymmetric index (r= 0.796) and that there was a negative correlation between Visual Analogue Scale score and forefoot/rear foot peak pressure ratio (r=-0.728). [Conclusion] The results of our analysis lead us to conclude that the intervention with shoe inserts had a significant influence on the pain and gait of sacroiliac joint patients.

  8. The effect of Tai Chi exercise on gait initiation and gait performance in persons with Parkinson's disease.

    PubMed

    Amano, Shinichi; Nocera, Joe R; Vallabhajosula, Srikant; Juncos, Jorge L; Gregor, Robert J; Waddell, Dwight E; Wolf, Steven L; Hass, Chris J

    2013-11-01

    Gait dysfunction and postural instability are two debilitating symptoms in persons with Parkinson's disease (PD). Tai Chi exercise has recently gained attention as an attractive intervention for persons with PD because of its known potential to reduce falls and improve postural control, walking abilities, and safety at a low cost. The purpose of this report is to investigate the effect of Tai Chi exercise on dynamic postural control during gait initiation and gait performance in persons with idiopathic PD, and to determine whether these benefits could be replicated in two different environments, as complementary projects. In these two separate projects, a total of 45 participants with PD were randomly assigned to either a Tai Chi group or a control group. The Tai Chi groups in both projects completed a 16-week Tai Chi exercise session, while the control groups consisted of either a placebo (i.e., Qi-Gong) or non-exercise group. Tai Chi did not significantly improve Unified Parkinson's Disease Rating Scale Part III score, selected gait initiation parameters or gait performance in either project. Combined results from both projects suggest that 16 weeks of class-based Tai Chi were ineffective in improving either gait initiation, gait performance, or reducing parkinsonian disability in this subset of persons with PD. Thus the use of short-term Tai Chi exercise should require further study before being considered a valuable therapeutic intervention for these domains in PD.

  9. Balanced reciprocal translocation at amniocentesis: cytogenetic detection and implications for genetic counseling.

    PubMed

    Zhang, H G; Zhang, X Y; Zhang, H Y; Tian, T; Xu, S B; Liu, R Z

    2016-08-19

    Balanced translocation is a common structural chromosomal rearrangement in humans. Carriers can be phenotypically normal but have an increased risk of pregnancy loss, fetal death, and the transmission of chromosomal abnormalities to their offspring. Existing prenatal screening technologies and diagnostic procedures fail to detect balanced translocation, so genetic counseling for carriers remains a challenge. Here, we report the characteristics of chromosomal reciprocal translocation in 3807 amniocentesis cases. Of the 16 detected cases of fetal reciprocal translocation, 8 cases (50%) showed positive biochemical marker screening; 3 cases (18.75%) were the parental carriers of a chromosomal abnormality; 2 (12.5%) were of advanced maternal age, 2 (12.5%) had a previous history of children with genetic disorders, and 1 case (6.25%) was associated with positive soft markers in obstetric ultrasound. Chromosomes 5 and 19 were the most commonly involved chromosomes in balanced translocations. Of the 13 cases with fetal balanced translocations, 8 (61.5%) were inherited from a paternal chromosome, 3 (23.1%) from a maternal chromosome, and 2 (15.4%) cases were de novo. The incidence of balanced translocation at amniocentesis was 0.42%. Male carriers of reciprocal chromosome translocation appear to have a higher chance of becoming a parent of a child born by normal childbirth than female carriers.

  10. Apical Extrusion of Debris Produced during Continuous Rotating and Reciprocating Motion

    PubMed Central

    Nevares, Giselle; Xavier, Felipe; Gominho, Luciana; Cavalcanti, Flávia; Cassimiro, Marcely; Romeiro, Kaline; Alvares, Pamella; Queiroz, Gabriela; Sobral, Ana Paula; Gerbi, Marleny; Silveira, Marcia; Albuquerque, Diana

    2015-01-01

    This study aimed to analyse and compare apical extrusion of debris in canals instrumented with systems used in reciprocating and continuous motion. Sixty mandibular premolars were randomly divided into 3 groups (n = 20): the Reciproc (REC), WaveOne (WO), and HyFlex CM (HYF) groups. One Eppendorf tube per tooth was weighed in advance on an analytical balance. The root canals were instrumented according to the manufacturer's instructions, and standardised irrigation with 2.5% sodium hypochlorite was performed to a total volume of 9 mL. After instrumentation, the teeth were removed from the Eppendorf tubes and incubated at 37°C for 15 days to evaporate the liquid. The tubes were weighed again, and the difference between the initial and final weight was calculated to determine the weight of the debris. The data were statistically analysed using the Shapiro-Wilk, Wilcoxon, and Mann-Whitney tests (α = 5%). All systems resulted in the apical extrusion of debris. Reciproc produced significantly more debris than WaveOne (p < 0.05), and both systems produced a greater apical extrusion of debris than HyFlex CM (p < 0.001). Cross section and motion influenced the results, despite tip standardization. PMID:26543896

  11. Reciprocal Markov modeling of feedback mechanisms between emotion and dietary choice using experience sampling data

    PubMed Central

    Lu, Ji; Pan, Junhao; Zhang, Qiang; Dubé, Laurette; Ip, Edward H.

    2015-01-01

    With intensively collected longitudinal data, recent advances in Experience Sampling Method (ESM) benefit social science empirical research, but also pose important methodological challenges. As traditional statistical models are not generally well-equipped to analyze a system of variables that contain feedback loops, this paper proposes the utility of an extended hidden Markov model to model reciprocal relationship between momentary emotion and eating behavior. This paper revisited an ESM data set (Lu, Huet & Dube, 2011) that observed 160 participants’ food consumption and momentary emotions six times per day in 10 days. Focusing on the analyses on feedback loop between mood and meal healthiness decision, the proposed Reciprocal Markov Model (RMM) can accommodate both hidden (“general” emotional states: positive vs. negative state) and observed states (meal: healthier, same or less healthy than usual) without presuming independence between observations and smooth trajectories of mood or behavior changes. The results of RMM analyses illustrated the reciprocal chains of meal consumption and mood as well as the effect of contextual factors that moderate the interrelationship between eating and emotion. A simulation experiment that generated data consistent to the empirical study further demonstrated that the procedure is promising in terms of recovering the parameters. PMID:26717120

  12. Motion based markerless gait analysis using standard events of gait and ensemble Kalman filtering.

    PubMed

    Vishnoi, Nalini; Mitra, Anish; Duric, Zoran; Gerber, Naomi Lynn

    2014-01-01

    We present a novel approach to gait analysis using ensemble Kalman filtering which permits markerless determination of segmental movement. We use image flow analysis to reliably compute temporal and kinematic measures including the translational velocity of the torso and rotational velocities of the lower leg segments. Detecting the instances where velocity changes direction also determines the standard events of a gait cycle (double-support, toe-off, mid-swing and heel-strike). In order to determine the kinematics of lower limbs, we model the synergies between the lower limb motions (thigh-shank, shank-foot) by building a nonlinear dynamical system using CMUs 3D motion capture database. This information is fed into the ensemble Kalman Filter framework to estimate the unobserved limb (upper leg and foot) motion from the measured lower leg rotational velocity. Our approach does not require calibrated cameras or special markers to capture movement. We have tested our method on different gait sequences collected from the sagttal plane and presented the estimated kinematics overlaid on the original image frames. We have also validated our approach by manually labeling the videos and comparing our results against them.

  13. Brain Activity during Mental Imagery of Gait Versus Gait-Like Plantar Stimulation: A Novel Combined Functional MRI Paradigm to Better Understand Cerebral Gait Control.

    PubMed

    Labriffe, Matthieu; Annweiler, Cédric; Amirova, Liubov E; Gauquelin-Koch, Guillemette; Ter Minassian, Aram; Leiber, Louis-Marie; Beauchet, Olivier; Custaud, Marc-Antoine; Dinomais, Mickaël

    2017-01-01

    Human locomotion is a complex sensorimotor behavior whose central control remains difficult to explore using neuroimaging method due to technical constraints, notably the impossibility to walk with a scanner on the head and/or to walk for real inside current scanners. The aim of this functional Magnetic Resonance Imaging (fMRI) study was to analyze interactions between two paradigms to investigate the brain gait control network: (1) mental imagery of gait, and (2) passive mechanical stimulation of the plantar surface of the foot with the Korvit boots. The Korvit stimulator was used through two different modes, namely an organized ("gait like") sequence and a destructured (chaotic) pattern. Eighteen right-handed young healthy volunteers were recruited (mean age, 27 ± 4.7 years). Mental imagery activated a broad neuronal network including the supplementary motor area-proper (SMA-proper), pre-SMA, the dorsal premotor cortex, ventrolateral prefrontal cortex, anterior insula, and precuneus/superior parietal areas. The mechanical plantar stimulation activated the primary sensorimotor cortex and secondary somatosensory cortex bilaterally. The paradigms generated statistically common areas of activity, notably bilateral SMA-proper and right pre-SMA, highlighting the potential key role of SMA in gait control. There was no difference between the organized and chaotic Korvit sequences, highlighting the difficulty of developing a walking-specific plantar stimulation paradigm. In conclusion, this combined-fMRI paradigm combining mental imagery and gait-like plantar stimulation provides complementary information regarding gait-related brain activity and appears useful for the assessment of high-level gait control.

  14. Brain Activity during Mental Imagery of Gait Versus Gait-Like Plantar Stimulation: A Novel Combined Functional MRI Paradigm to Better Understand Cerebral Gait Control

    PubMed Central

    Labriffe, Matthieu; Annweiler, Cédric; Amirova, Liubov E.; Gauquelin-Koch, Guillemette; Ter Minassian, Aram; Leiber, Louis-Marie; Beauchet, Olivier; Custaud, Marc-Antoine; Dinomais, Mickaël

    2017-01-01

    Human locomotion is a complex sensorimotor behavior whose central control remains difficult to explore using neuroimaging method due to technical constraints, notably the impossibility to walk with a scanner on the head and/or to walk for real inside current scanners. The aim of this functional Magnetic Resonance Imaging (fMRI) study was to analyze interactions between two paradigms to investigate the brain gait control network: (1) mental imagery of gait, and (2) passive mechanical stimulation of the plantar surface of the foot with the Korvit boots. The Korvit stimulator was used through two different modes, namely an organized (“gait like”) sequence and a destructured (chaotic) pattern. Eighteen right-handed young healthy volunteers were recruited (mean age, 27 ± 4.7 years). Mental imagery activated a broad neuronal network including the supplementary motor area-proper (SMA-proper), pre-SMA, the dorsal premotor cortex, ventrolateral prefrontal cortex, anterior insula, and precuneus/superior parietal areas. The mechanical plantar stimulation activated the primary sensorimotor cortex and secondary somatosensory cortex bilaterally. The paradigms generated statistically common areas of activity, notably bilateral SMA-proper and right pre-SMA, highlighting the potential key role of SMA in gait control. There was no difference between the organized and chaotic Korvit sequences, highlighting the difficulty of developing a walking-specific plantar stimulation paradigm. In conclusion, this combined-fMRI paradigm combining mental imagery and gait-like plantar stimulation provides complementary information regarding gait-related brain activity and appears useful for the assessment of high-level gait control. PMID:28321186

  15. Near optimal graphene terahertz non-reciprocal isolator.

    PubMed

    Tamagnone, Michele; Moldovan, Clara; Poumirol, Jean-Marie; Kuzmenko, Alexey B; Ionescu, Adrian M; Mosig, Juan R; Perruisseau-Carrier, Julien

    2016-04-06

    Isolators, or optical diodes, are devices enabling unidirectional light propagation by using non-reciprocal optical materials, namely materials able to break Lorentz reciprocity. The realization of isolators at terahertz frequencies is a very important open challenge made difficult by the intrinsically lossy propagation of terahertz radiation in current non-reciprocal materials. Here we report the design, fabrication and measurement of a terahertz non-reciprocal isolator for circularly polarized waves based on magnetostatically biased monolayer graphene, operating in reflection. The device exploits the non-reciprocal optical conductivity of graphene and, in spite of its simple design, it exhibits almost 20 dB of isolation and only 7.5 dB of insertion loss at 2.9 THz. Operation with linearly polarized light can be achieved using quarter-wave plates as polarization converters. These results demonstrate the superiority of graphene with respect to currently used terahertz non-reciprocal materials and pave the way to a novel class of optimal non-reciprocal devices.

  16. The evolution of reciprocity: social types or social incentives?

    PubMed

    André, Jean-Baptiste

    2010-02-01

    The vast majority of human beings regularly engage in reciprocal cooperation with nonrelated conspecifics, and yet the current evolutionary understanding of these behaviors is insufficient. Intuitively, reciprocity should evolve if past behavior conveys information about future behavior. But it is not straightforward to understand why this should be an outcome of evolution. Most evolutionary models assume that individuals' past behavior informs others about their stable social type (defector, cooperator, reciprocator, etc.), which makes it sensible to reciprocate. In this article, after describing the central source of difficulty in the evolutionary understanding of reciprocity, I put forward an alternative explanation based on a work by O. Leimar. It consists of taking into account the fact that the payoffs to individuals in social interactions can change through time. This offers a solution because individuals' past behavior then signals their payoffs, which also makes it sensible to reciprocate. Even though the overwhelming majority of evolutionary models implicitly endorse the social types mechanism, I argue that the social incentives mechanism may underlie reciprocity in humans.

  17. Near optimal graphene terahertz non-reciprocal isolator

    NASA Astrophysics Data System (ADS)

    Tamagnone, Michele; Moldovan, Clara; Poumirol, Jean-Marie; Kuzmenko, Alexey B.; Ionescu, Adrian M.; Mosig, Juan R.; Perruisseau-Carrier, Julien

    2016-04-01

    Isolators, or optical diodes, are devices enabling unidirectional light propagation by using non-reciprocal optical materials, namely materials able to break Lorentz reciprocity. The realization of isolators at terahertz frequencies is a very important open challenge made difficult by the intrinsically lossy propagation of terahertz radiation in current non-reciprocal materials. Here we report the design, fabrication and measurement of a terahertz non-reciprocal isolator for circularly polarized waves based on magnetostatically biased monolayer graphene, operating in reflection. The device exploits the non-reciprocal optical conductivity of graphene and, in spite of its simple design, it exhibits almost 20 dB of isolation and only 7.5 dB of insertion loss at 2.9 THz. Operation with linearly polarized light can be achieved using quarter-wave plates as polarization converters. These results demonstrate the superiority of graphene with respect to currently used terahertz non-reciprocal materials and pave the way to a novel class of optimal non-reciprocal devices.

  18. Near optimal graphene terahertz non-reciprocal isolator

    PubMed Central

    Tamagnone, Michele; Moldovan, Clara; Poumirol, Jean-Marie; Kuzmenko, Alexey B.; Ionescu, Adrian M.; Mosig, Juan R.; Perruisseau-Carrier, Julien

    2016-01-01

    Isolators, or optical diodes, are devices enabling unidirectional light propagation by using non-reciprocal optical materials, namely materials able to break Lorentz reciprocity. The realization of isolators at terahertz frequencies is a very important open challenge made difficult by the intrinsically lossy propagation of terahertz radiation in current non-reciprocal materials. Here we report the design, fabrication and measurement of a terahertz non-reciprocal isolator for circularly polarized waves based on magnetostatically biased monolayer graphene, operating in reflection. The device exploits the non-reciprocal optical conductivity of graphene and, in spite of its simple design, it exhibits almost 20 dB of isolation and only 7.5 dB of insertion loss at 2.9 THz. Operation with linearly polarized light can be achieved using quarter-wave plates as polarization converters. These results demonstrate the superiority of graphene with respect to currently used terahertz non-reciprocal materials and pave the way to a novel class of optimal non-reciprocal devices. PMID:27048760

  19. Understanding the complexity of human gait dynamics.

    PubMed

    Scafetta, Nicola; Marchi, Damiano; West, Bruce J

    2009-06-01

    Time series of human gait stride intervals exhibit fractal and multifractal properties under several conditions. Records from subjects walking at normal, slow, and fast pace speed are analyzed to determine changes in the fractal scalings as a function of the stress condition of the system. Records from subjects with different age from children to elderly and patients suffering from neurodegenerative disease are analyzed to determine changes in the fractal scalings as a function of the physical maturation or degeneration of the system. A supercentral pattern generator model is presented to simulate the above two properties that are typically found in dynamical network performance: that is, how a dynamical network responds to stress and to evolution.

  20. Understanding the complexity of human gait dynamics

    NASA Astrophysics Data System (ADS)

    Scafetta, Nicola; Marchi, Damiano; West, Bruce J.

    2009-06-01

    Time series of human gait stride intervals exhibit fractal and multifractal properties under several conditions. Records from subjects walking at normal, slow, and fast pace speed are analyzed to determine changes in the fractal scalings as a function of the stress condition of the system. Records from subjects with different age from children to elderly and patients suffering from neurodegenerative disease are analyzed to determine changes in the fractal scalings as a function of the physical maturation or degeneration of the system. A supercentral pattern generator model is presented to simulate the above two properties that are typically found in dynamical network performance: that is, how a dynamical network responds to stress and to evolution.

  1. Fractal and Multifractal Analysis of Human Gait

    NASA Astrophysics Data System (ADS)

    Muñoz-Diosdado, A.; del Río Correa, J. L.; Angulo-Brown, F.

    2003-09-01

    We carried out a fractal and multifractal analysis of human gait time series of young and old individuals, and adults with three illnesses that affect the march: The Parkinson's and Huntington's diseases and the amyotrophic lateral sclerosis (ALS). We obtained cumulative plots of events, the correlation function, the Hurst exponent and the Higuchi's fractal dimension of these time series and found that these fractal markers could be a factor to characterize the march, since we obtained different values of these quantities for youths and adults and they are different also for healthy and ill persons and the most anomalous values belong to ill persons. In other physiological signals there is complexity lost related with the age and the illness, in the case of the march the opposite occurs. The multifractal analysis could be also a useful tool to understand the dynamics of these and other complex systems.

  2. [Gait disorders in Parkinson disease. Clinical description, analysis of posture, initiation of stabilized gait].

    PubMed

    Kemoun, G; Defebvre, L

    2001-03-10

    A WELL INFORMED DESCRIPTION: The parkinsonian posture is generally described as a stooped one. At the beginning of the disease, the gait troubles remain moderate; gradually the gait is composed of small steps without a wide base; the patient tends to run after his centre of gravity by accelerating the step (festination phenomenon). Difficulties occurs for starting up (delay of gait initiation), for about-turn or for clearing obstacles. Kinetic jammings and standing around (freezing) can last several seconds and be responsible for falls. POSTURAL INSTABILITY, A MAJOR SYMPTOM IN PARKINSON'S DISEASE: This symptom is little improved by therapies and is responsible for serious disability. Postural instability induces a disequilibrium and is partially due to a simultaneous antagonist muscles contraction and to the impossibility of modifying postural responses to changing support conditions. The passive viscoelastic properties of muscles and tendons constitute a first line of defence against the disequilibrium and contribute to postural stability in the case of medium disturbances. Automatic and voluntary postural responses which come into play in the case of major disturbances can also be impaired (delay or defect of the responses). GAIT INITIATION FAILURE ARE FREQUENT: They result from an increase of the postural phase and a decrease of the propulsion forces, depending on a deficit of the postural anticipation mechanisms and also the sequential organization and the integration of two different motor programs, postural and locomotor. They can be controlled partially with sensory stimuli, notably visual inputs. DATA CONCERNING STABILIZED WALKING AND ITS PATHOPHYSIOLOGY REMAINS TO BE CLARIFIED: Spatial and temporal parameters are impaired: speed, step length and swing phase are reduced, while cadence increases to compensate these troubles. These modifications are the consequence of an incapacity to produce internal marks to generate regular steps. When the parkinsonian

  3. Predicting postoperative gait in cerebral palsy.

    PubMed

    Galarraga C, Omar A; Vigneron, Vincent; Dorizzi, Bernadette; Khouri, Néjib; Desailly, Eric

    2016-11-09

    In this work, postoperative lower limb kinematics are predicted with respect to preoperative kinematics, physical examination and surgery data. Data of 115 children with cerebral palsy that have undergone single-event multilevel surgery were considered. Preoperative data dimension was reduced utilizing principal component analysis. Then, multiple linear regressions with 80% confidence intervals were performed between postoperative kinematics and bilateral preoperative kinematics, 36 physical examination variables and combinations of 9 different surgical procedures. The mean prediction errors on test vary from 4° (pelvic obliquity and hip adduction) to 10° (hip rotation and foot progression), depending on the kinematic angle. The unilateral mean sizes of the confidence intervals vary from 5° to 15°. Frontal plane angles are predicted with the lowest errors, however the same performance is achieved when considering the postoperative average signals. Sagittal plane angles are better predicted than transverse plane angles, with statistical differences with respect to the average postoperative kinematics for both plane's angles except for ankle dorsiflexion. The mean prediction errors are smaller than the variability of gait parameters in cerebral palsy. The performance of the system is independent of the preoperative state severity of the patient. Even if the system is not yet accurate enough to define a surgery plan, it shows an unbiased estimation of the most likely outcome, which can be useful for both the clinician and the patient. More patients' data are necessary for improving the precision of the model in order to predict the kinematic outcome of a large number of possible surgeries and gait patterns.

  4. A wireless gait analysis system by digital textile sensors.

    PubMed

    Yang, Chang-Ming; Chou, Chun-Mei; Hu, Jwu-Sheng; Hung, Shu-Hui; Yang, Chang-Hwa; Wu, Chih-Chung; Hsu, Ming-Yang; Yang, Tsi-Lin

    2009-01-01

    This paper studies the feasibility of spatio-temporal gait analysis based upon digital textile sensors. Digitized legs and feet patterns of healthy subjects and their relations with spatio-temporal gait parameters were analyzed. In the first experiment, spatio-temporal gait parameters were determined during over ground walking. In the second experiment, predicted running, backward walking, walking up stairs and walking down stairs parameters were determined. From the results of the experiments, it is concluded that, for healthy subjects, the duration of subsequent stride cycles and left/right steps, the estimations of step length, cadence, walking speed, central of pressure and central of mass trajectory, can be obtained by analyzing the digital signals from the textile sensors on pants and socks. These parameters are easily displayed in several different graphs allowing the user to view the parameters during gait. Finally, the digital data are easily to analyze the feature of activity recognition.

  5. Freezing of gait: a practical approach to management.

    PubMed

    Nonnekes, Jorik; Snijders, Anke H; Nutt, John G; Deuschl, Günter; Giladi, Nir; Bloem, Bastiaan R

    2015-07-01

    Freezing of gait is a common and disabling symptom in patients with parkinsonism, characterised by sudden and brief episodes of inability to produce effective forward stepping. These episodes typically occur during gait initiation or turning. Treatment is important because freezing of gait is a major risk factor for falls in parkinsonism, and a source of disability to patients. Various treatment approaches exist, including pharmacological and surgical options, as well as physiotherapy and occupational therapy, but evidence is inconclusive for many approaches, and clear treatment protocols are not available. To address this gap, we review medical and non-medical treatment strategies for freezing of gait and present a practical algorithm for the management of this disorder, based on a combination of evidence, when available, and clinical experience of the authors. Further research is needed to formally establish the merits of our proposed treatment protocol.

  6. Interpolation function for approximating knee joint behavior in human gait

    NASA Astrophysics Data System (ADS)

    Toth-Taşcǎu, Mirela; Pater, Flavius; Stoia, Dan Ioan

    2013-10-01

    Starting from the importance of analyzing the kinematic data of the lower limb in gait movement, especially the angular variation of the knee joint, the paper propose an approximation function that can be used for processing the correlation among a multitude of knee cycles. The approximation of the raw knee data was done by Lagrange polynomial interpolation on a signal acquired using Zebris Gait Analysis System. The signal used in approximation belongs to a typical subject extracted from a lot of ten investigated subjects, but the function domain of definition belongs to the entire group. The study of the knee joint kinematics plays an important role in understanding the kinematics of the gait, this articulation having the largest range of motion in whole joints, in gait. The study does not propose to find an approximation function for the adduction-abduction movement of the knee, this being considered a residual movement comparing to the flexion-extension.

  7. Low Power Shoe Integrated Intelligent Wireless Gait Measurement System

    NASA Astrophysics Data System (ADS)

    Wahab, Y.; Mazalan, M.; Bakar, N. A.; Anuar, A. F.; Zainol, M. Z.; Hamzah, F.

    2014-04-01

    Gait analysis measurement is a method to assess and identify gait events and the measurements of dynamic, motion and pressure parameters involving the lowest part of the body. This significant analysis is widely used in sports, rehabilitation as well as other health diagnostic towards improving the quality of life. This paper presents a new system empowered by Inertia Measurement Unit (IMU), ultrasonic sensors, piezoceramic sensors array, XBee wireless modules and Arduino processing unit. This research focuses on the design and development of a low power ultra-portable shoe integrated wireless intelligent gait measurement using MEMS and recent microelectronic devices for foot clearance, orientation, error correction, gait events and pressure measurement system. It is developed to be cheap, low power, wireless, real time and suitable for real life in-door and out-door environment.

  8. Coherent optical non-reciprocity in axisymmetric resonators.

    PubMed

    Lenferink, Erik J; Wei, Guohua; Stern, Nathaniel P

    2014-06-30

    We describe an approach to optical non-reciprocity that exploits the local helicity of evanescent electric fields in axisymmetric resonators. By interfacing an optical cavity to helicity-sensitive transitions, such as Zeeman levels in a quantum dot, light transmission through a waveguide becomes direction-dependent when the state degeneracy is lifted. Using a linearized quantum master equation, we analyze the configurations that exhibit non-reciprocity, and we show that reasonable parameters from existing cavity QED experiments are sufficient to demonstrate a coherent non-reciprocal optical isolator operating at the level of a single photon.

  9. Optomechanically induced non-reciprocity in microring resonators.

    PubMed

    Hafezi, Mohammad; Rabl, Peter

    2012-03-26

    We describe a new approach for on-chip optical non-reciprocity which makes use of strong optomechanical interaction in microring resonators. By optically pumping the ring resonator in one direction, the optomechanical coupling is only enhanced in that direction, and consequently, the system exhibits a non-reciprocal response. For different configurations, this system can function either as an optical isolator or a coherent non-reciprocal phase shifter. We show that the operation of such a device on the level of single-photon could be achieved with existing technology.

  10. Verifying of reciprocal relations for nonlinear quadripole in unsteady mode

    NASA Astrophysics Data System (ADS)

    Bardin, Alexey; Ignatjev, Vyacheslav; Orlov, Andrey; Perchenko, Sergey

    This paper deals with experimental verification of reciprocal relations of nonlinear quadripole for unsteady mode in external magnetic field. We find out transients of measured voltages in the quadripole after current switch. These transients are caused by changing of current-voltage characteristics (CVC) of quadripole. We propose the reciprocal relations for linear part of full resistance matrix and its experimental verification method based on algorithm of separation of resistance matrix linear part. It is shown that the proposed reciprocal relations are valid with 10-3 relatively accuracy even for non-stationary case in external magnetic field.

  11. Skeletal and Clinical Effects of Exoskeleton-Assisted Gait

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0611 TITLE: Skeletal and Clinical Effects of Exoskeleton-Assisted Gait PRINCIPAL INVESTIGATOR: Paolo Bonato, PhD...AND SUBTITLE 5a. CONTRACT NUMBER Skeletal and Clinical Effects of Exoskeleton-Assisted Gait 5b. GRANT NUMBER W81XWH-14-1-0611 5c. PROGRAM ELEMENT...with high-resolution peripheral quantitative computed tomography data and with clinical measures (e.g. biomarkers of inflammation such as C-reactive

  12. Gait Trainer for Children with Spastic Cerebral Palsy

    DTIC Science & Technology

    2001-10-25

    teachers. Keywords - Gait Trainer, Celebral Force Measurement, Biofeedback T I. INTRODU Cerebral Palsy (CP) is a phys brain damage. Cerebral...means a palsy refers to faulty links betw nerves. Generally brain damage is variety of causes before and durin birth. Some of the variety causes...carbon monoxide poisoning, smok and tumors of the brain. W The University GAIT TRAINER FOR CHILDREN ITH SPASTIC CEREBRAL PALSY Oğuzhan URHAN, Hasan

  13. Gait Patterns in Patients with Hereditary Spastic Paraparesis

    PubMed Central

    Ranavolo, Alberto; Lacquaniti, Francesco; Martino, Giovanni; Leonardi, Luca; Conte, Carmela; Varrecchia, Tiwana; Draicchio, Francesco; Coppola, Gianluca; Casali, Carlo; Pierelli, Francesco

    2016-01-01

    Background Spastic gait is a key feature in patients with hereditary spastic paraparesis, but the gait characterization and the relationship between the gait impairment and clinical characteristics have not been investigated. Objectives To describe the gait patterns in hereditary spastic paraparesis and to identify subgroups of patients according to specific kinematic features of walking. Methods We evaluated fifty patients by computerized gait analysis and compared them to healthy participants. We computed time-distance parameters of walking and the range of angular motion at hip, knee, and ankle joints, and at the trunk and pelvis. Lower limb joint moments and muscle co-activation values were also evaluated. Results We identified three distinct subgroups of patients based on the range of motion values. Subgroup one was characterized by reduced hip, knee, and ankle joint range of motion. These patients were the most severely affected from a clinical standpoint, had the highest spasticity, and walked at the slowest speed. Subgroup three was characterized by an increased hip joint range of motion, but knee and ankle joint range of motion values close to control values. These patients were the most mildly affected and had the highest walking speed. Finally, subgroup two showed reduced knee and ankle joint range of motion, and hip range of motion values close to control values. Disease severity and gait speed in subgroup two were between those of subgroups one and three. Conclusions We identified three distinctive gait patterns in patients with hereditary spastic paraparesis that correlated robustly with clinical data. Distinguishing specific features in the gait patterns of these patients may help tailor pharmacological and rehabilitative treatments and may help evaluate therapeutic effects over time. PMID:27732632

  14. Investigation of factors impacting mobility and gait in Parkinson disease.

    PubMed

    Christofoletti, Gustavo; McNeely, Marie E; Campbell, Meghan C; Duncan, Ryan P; Earhart, Gammon M

    2016-10-01

    Mobility and gait limitations are major issues for people with Parkinson disease (PD). Identification of factors that contribute to these impairments may inform treatment and intervention strategies. In this study we investigated factors that predict mobility and gait impairment in PD. Participants with mild to moderate PD and without dementia (n=114) were tested in one session 'off' medication. Mobility measures included the 6-Minute Walk test and Timed-Up-and-Go. Gait velocity was collected in four conditions: forward preferred speed, forward dual task, forward fast as possible and backward walking. The predictors analyzed were age, gender, disease severity, balance, balance confidence, fall history, self-reported physical activity, and executive function. Multiple regression models were used to assess the relationships between predictors and outcomes. The predictors, in different combinations for each outcome measure, explained 55.7% to 66.9% of variability for mobility and 39.5% to 52.8% for gait velocity. Balance was the most relevant factor (explaining up to 54.1% of variance in mobility and up to 45.6% in gait velocity). Balance confidence contributed to a lesser extent (2.0% to 8.2% of variance) in all models. Age explained a small percentage of variance in mobility and gait velocity (up to 2.9%). Executive function explained 3.0% of variance during forward walking only. The strong predictive relationships between balance deficits and mobility and gait impairment suggest targeting balance deficits may be particularly important for improving mobility and gait in people with PD, regardless of an individual's age, disease severity, fall history, or other demographic features.

  15. Use of gait sandals for measuring rearfoot and shank motion during running.

    PubMed

    Barnes, Andrew; Wheat, Jonathan; Milner, Clare E

    2010-05-01

    Gait sandals may be used as an alternative to shoes in gait analysis. However, their similarity to running shoes remains unclear. This study aimed to compare rearfoot and shank kinematics between barefoot, running shoes and gait sandal conditions during running. We hypothesised that gait sandals would more closely replicate the kinematics seen when wearing running shoes than when barefoot. Rearfoot and shank kinematics were measured in 14 male participants as they ran in three footwear conditions (barefoot, gait sandals and running shoes) at 3.5m/s. Both barefoot and gait sandals resulted in greater peak rearfoot eversion compared to running shoes. Gait sandals were similar to running shoes for all other variables. These findings suggest that gait sandals can be used in place of running shoes during gait analysis to study rearfoot and shank kinematics.

  16. Differences in Gait Performance, Quadriceps Strength, and Physical Activity Between Fallers and Nonfallers in Women with Osteoporosis.

    PubMed

    Stief, Felix; Schäfer, Anna; Vogt, Lutz; Kirchner, Marietta; Hübscher, Markus; Thiel, Christian; Banzer, Winfried; Meurer, Andrea

    2016-07-01

    The present study should reveal differences in gait performance, quadriceps strength, and physical activity (PA) between fallers and nonfallers in women with osteoporosis. Forty-one women with osteoporosis (17 fallers, 24 nonfallers) participated. Gait analysis shows that fallers were walking with a slower walking speed (-9%, p = .033) and had a shorter stride length (-7%, p = .039). Moreover, fallers showed a decreased ankle power generation (-18%, p = .045). The quadriceps strength was decreased by 24% for fallers (p = .005) while PA showed no significant differences. Although a decrease in ankle power generation could have an effect on floor clearance for limb advancement in the swing phase, the causal relationship between spatiotemporal parameters (walking speed, stride length) and walking ankle joint power generation remains unknown and warrants further investigation. In conclusion, walking speed, stride length, ankle power generation, and quadriceps strength can be used to differentiate between fallers and nonfallers in women with osteoporosis.

  17. A reinforcement learning approach to gait training improves retention

    PubMed Central

    Hasson, Christopher J.; Manczurowsky, Julia; Yen, Sheng-Che

    2015-01-01

    Many gait training programs are based on supervised learning principles: an individual is guided towards a desired gait pattern with directional error feedback. While this results in rapid adaptation, improvements quickly disappear. This study tested the hypothesis that a reinforcement learning approach improves retention and transfer of a new gait pattern. The results of a pilot study and larger experiment are presented. Healthy subjects were randomly assigned to either a supervised group, who received explicit instructions and directional error feedback while they learned a new gait pattern on a treadmill, or a reinforcement group, who was only shown whether they were close to or far from the desired gait. Subjects practiced for 10 min, followed by immediate and overnight retention and over-ground transfer tests. The pilot study showed that subjects could learn a new gait pattern under a reinforcement learning paradigm. The larger experiment, which had twice as many subjects (16 in each group) showed that the reinforcement group had better overnight retention than the supervised group (a 32% vs. 120% error increase, respectively), but there were no differences for over-ground transfer. These results suggest that encouraging participants to find rewarding actions through self-guided exploration is beneficial for retention. PMID:26379524

  18. A reinforcement learning approach to gait training improves retention.

    PubMed

    Hasson, Christopher J; Manczurowsky, Julia; Yen, Sheng-Che

    2015-01-01

    Many gait training programs are based on supervised learning principles: an individual is guided towards a desired gait pattern with directional error feedback. While this results in rapid adaptation, improvements quickly disappear. This study tested the hypothesis that a reinforcement learning approach improves retention and transfer of a new gait pattern. The results of a pilot study and larger experiment are presented. Healthy subjects were randomly assigned to either a supervised group, who received explicit instructions and directional error feedback while they learned a new gait pattern on a treadmill, or a reinforcement group, who was only shown whether they were close to or far from the desired gait. Subjects practiced for 10 min, followed by immediate and overnight retention and over-ground transfer tests. The pilot study showed that subjects could learn a new gait pattern under a reinforcement learning paradigm. The larger experiment, which had twice as many subjects (16 in each group) showed that the reinforcement group had better overnight retention than the supervised group (a 32% vs. 120% error increase, respectively), but there were no differences for over-ground transfer. These results suggest that encouraging participants to find rewarding actions through self-guided exploration is beneficial for retention.

  19. FreeWalker: a smart insole for longitudinal gait analysis.

    PubMed

    Wang, Baitong; Rajput, Kuldeep Singh; Tam, Wing-Kin; Tung, Anthony K H; Yang, Zhi

    2015-08-01

    Gait analysis is an important diagnostic measure to investigate the pattern of walking. Traditional gait analysis is generally carried out in a gait lab, with equipped force and body tracking sensors, which needs a trained medical professional to interpret the results. This procedure is tedious, expensive, and unreliable and makes it difficult to track the progress across multiple visits. In this paper, we present a smart insole called FreeWalker, which provides quantitative gait analysis outside the confinement of traditional lab, at low- cost. The insole consists of eight pressure sensors and two motion tracking sensors, i.e. 3-axis accelerometer and 3-axis gyroscope. This enables measurement of under-foot pressure distribution and motion sequences in real-time. The insole is enabled with onboard SD card as well as wireless data transmission, which help in continuous gait-cycle analysis. The data is then sent to a gateway, for analysis and interpretation of data, using a user interface where gait features are graphically displayed. We also present validation result of a subject's left foot, who was asked to perform a specific task. Experiment results show that we could achieve a data-sampling rate of over 1 KHz, transmitting data up to a distance of 20 meter and maintain a battery life of around 24 hours. Taking advantage of these features, FreeWalker can be used in various applications, like medical diagnosis, rehabilitation, sports and entertainment.

  20. Validity of the Kinect for Gait Assessment: A Focused Review

    PubMed Central

    Springer, Shmuel; Yogev Seligmann, Galit

    2016-01-01

    Gait analysis may enhance clinical practice. However, its use is limited due to the need for expensive equipment which is not always available in clinical settings. Recent evidence suggests that Microsoft Kinect may provide a low cost gait analysis method. The purpose of this report is to critically evaluate the literature describing the concurrent validity of using the Kinect as a gait analysis instrument. An online search of PubMed, CINAHL, and ProQuest databases was performed. Included were studies in which walking was assessed with the Kinect and another gold standard device, and consisted of at least one numerical finding of spatiotemporal or kinematic measures. Our search identified 366 papers, from which 12 relevant studies were retrieved. The results demonstrate that the Kinect is valid only for some spatiotemporal gait parameters. Although the kinematic parameters measured by the Kinect followed the trend of the joint trajectories, they showed poor validity and large errors. In conclusion, the Kinect may have the potential to be used as a tool for measuring spatiotemporal aspects of gait, yet standardized methods should be established, and future examinations with both healthy subjects and clinical participants are required in order to integrate the Kinect as a clinical gait analysis tool. PMID:26861323

  1. Gait analysis and cerebral volumes in Down's syndrome.

    PubMed

    Rigoldi, C; Galli, M; Condoluci, C; Carducci, F; Onorati, P; Albertini, G

    2009-01-01

    The aim of this study was to look for a relationship between cerebral volumes computed using a voxel-based morphometry algorithm and walking patterns in individuals with Down's syndrome (DS), in order to investigate the origin of the motor problems in these subjects with a view to developing appropriate rehabilitation programmes. Nine children with DS underwent a gait analysis (GA) protocol that used a 3D motion analysis system, force plates and a video system, and magnetic resonance imaging (MRI). Analysis of GA graphs allowed a series of parameters to be defined and computed in order to quantify gait patterns. By combining some of the parameters it was possible to obtain a 3D description of gait in terms of distance from normal values. Finally, the results of cerebral volume analysis were compared with the gait patterns found. A strong relationship emerged between cerebellar vermis volume reduction and quality of gait and also between grey matter volume reduction of some cerebral areas and asymmetrical gait. An evaluation of high-level motor deficits, reflected in a lack or partial lack of proximal functions, is important in order to define a correct rehabilitation programme.

  2. A Multiple Regression Approach to Normalization of Spatiotemporal Gait Features.

    PubMed

    Wahid, Ferdous; Begg, Rezaul; Lythgo, Noel; Hass, Chris J; Halgamuge, Saman; Ackland, David C

    2016-04-01

    Normalization of gait data is performed to reduce the effects of intersubject variations due to physical characteristics. This study reports a multiple regression normalization approach for spatiotemporal gait data that takes into account intersubject variations in self-selected walking speed and physical properties including age, height, body mass, and sex. Spatiotemporal gait data including stride length, cadence, stance time, double support time, and stride time were obtained from healthy subjects including 782 children, 71 adults, 29 elderly subjects, and 28 elderly Parkinson's disease (PD) patients. Data were normalized using standard dimensionless equations, a detrending method, and a multiple regression approach. After normalization using dimensionless equations and the detrending method, weak to moderate correlations between walking speed, physical properties, and spatiotemporal gait features were observed (0.01 < |r| < 0.88), whereas normalization using the multiple regression method reduced these correlations to weak values (|r| <0.29). Data normalization using dimensionless equations and detrending resulted in significant differences in stride length and double support time of PD patients; however the multiple regression approach revealed significant differences in these features as well as in cadence, stance time, and stride time. The proposed multiple regression normalization may be useful in machine learning, gait classification, and clinical evaluation of pathological gait patterns.

  3. Cerebral correlates of motor imagery of normal and precision gait.

    PubMed

    Bakker, M; De Lange, F P; Helmich, R C; Scheeringa, R; Bloem, B R; Toni, I

    2008-07-01

    We have examined the cerebral structures involved in motor imagery of normal and precision gait (i.e., gait requiring precise foot placement and increased postural control). We recorded cerebral activity with functional magnetic resonance imaging while subjects imagined walking along paths of two different widths (broad, narrow) that required either normal gait, or exact foot placement and increased postural control. We used a matched visual imagery (VI) task to assess the motor specificity of the effects, and monitored task performance by recording imagery times, eye movements, and electromyography during scanning. In addition, we assessed the effector specificity of MI of gait by comparing our results with those of a previous study on MI of hand movements. We found that imagery times were longer for the narrow path during MI, but not during VI, suggesting that MI was sensitive to the constraints imposed by a narrow walking path. Moreover, MI of precision gait resulted in increased cerebral activity and effective connectivity within a network involving the superior parietal lobules, the dorsal precentral gyri, and the right middle occipital gyrus. Finally, the cerebral responses to MI of gait were contiguous to but spatially distinct from regions involved in MI of hand movements. These results emphasize the role of cortical structures outside primary motor regions in imagining locomotion movements when accurate foot positioning and increased postural control is required.

  4. Gait Deviations in Children with Autism Spectrum Disorders: A Review

    PubMed Central

    Kindregan, Deirdre; Gallagher, Louise; Gormley, John

    2015-01-01

    In recent years, it has become clear that children with autism spectrum disorders (ASDs) have difficulty with gross motor function and coordination, factors which influence gait. Knowledge of gait abnormalities may be useful for assessment and treatment planning. This paper reviews the literature assessing gait deviations in children with ASD. Five online databases were searched using keywords “gait” and “autism,” and 11 studies were found which examined gait in childhood ASD. Children with ASD tend to augment their walking stability with a reduced stride length, increased step width and therefore wider base of support, and increased time in the stance phase. Children with ASD have reduced range of motion at the ankle and knee during gait, with increased hip flexion. Decreased peak hip flexor and ankle plantar flexor moments in children with ASD may imply weakness around these joints, which is further exhibited by a reduction in ground reaction forces at toe-off in children with ASD. Children with ASD have altered gait patterns to healthy controls, widened base of support, and reduced range of motion. Several studies refer to cerebellar and basal ganglia involvement as the patterns described suggest alterations in those areas of the brain. Further research should compare children with ASD to other clinical groups to improve assessment and treatment planning. PMID:25922766

  5. Validity of the Kinect for Gait Assessment: A Focused Review.

    PubMed

    Springer, Shmuel; Yogev Seligmann, Galit

    2016-02-04

    Gait analysis may enhance clinical practice. However, its use is limited due to the need for expensive equipment which is not always available in clinical settings. Recent evidence suggests that Microsoft Kinect may provide a low cost gait analysis method. The purpose of this report is to critically evaluate the literature describing the concurrent validity of using the Kinect as a gait analysis instrument. An online search of PubMed, CINAHL, and ProQuest databases was performed. Included were studies in which walking was assessed with the Kinect and another gold standard device, and consisted of at least one numerical finding of spatiotemporal or kinematic measures. Our search identified 366 papers, from which 12 relevant studies were retrieved. The results demonstrate that the Kinect is valid only for some spatiotemporal gait parameters. Although the kinematic parameters measured by the Kinect followed the trend of the joint trajectories, they showed poor validity and large errors. In conclusion, the Kinect may have the potential to be used as a tool for measuring spatiotemporal aspects of gait, yet standardized methods should be established, and future examinations with both healthy subjects and clinical participants are required in order to integrate the Kinect as a clinical gait analysis tool.

  6. Visual analysis of the effects of load carriage on gait

    NASA Astrophysics Data System (ADS)

    Wittman, Michael G.; Ward, James M.; Flynn, Patrick J.

    2005-03-01

    As early as the 1970's it was determined that gait, or the "manner of walking" is an identifying feature of a human being. Since then, extensive research has been done in the field of computer vision to determine how accurately a subject can be identified by gait characteristics. This has necessarily led to the study of how various data collection conditions, such as terrain type, varying camera angles, or a carried briefcase, may affect the identifying features of gait. However, little or no research has been done to question whether such conditions may be inferred from gait analysis. For example, is it possible to determine characteristics of the walking surface simply by looking at statistics derived from the subject's gait? The question to be addressed is whether significant concealed weight distributed on the subject's torso can be discovered through analysis of his gait. Individual trends in subjects in response to increasing concealed weight will be explored, with the objective of finding universal trends that would have obvious security purposes.

  7. Efficacy of clinical gait analysis: A systematic review.

    PubMed

    Wren, Tishya A L; Gorton, George E; Ounpuu, Sylvia; Tucker, Carole A

    2011-06-01

    The aim of this systematic review was to evaluate and summarize the current evidence base related to the clinical efficacy of gait analysis. A literature review was conducted to identify references related to human gait analysis published between January 2000 and September 2009 plus relevant older references. The references were assessed independently by four reviewers using a hierarchical model of efficacy adapted for gait analysis, and final scores were agreed upon by at least three of the four reviewers. 1528 references were identified relating to human instrumented gait analysis. Of these, 116 original articles addressed technical accuracy efficacy, 89 addressed diagnostic accuracy efficacy, 11 addressed diagnostic thinking and treatment efficacy, seven addressed patient outcomes efficacy, and one addressed societal efficacy, with some of the articles addressing multiple levels of efficacy. This body of literature provides strong evidence for the technical, diagnostic accuracy, diagnostic thinking and treatment efficacy of gait analysis. The existing evidence also indicates efficacy at the higher levels of patient outcomes and societal cost-effectiveness, but this evidence is more sparse and does not include any randomized controlled trials. Thus, the current evidence supports the clinical efficacy of gait analysis, particularly at the lower levels of efficacy, but additional research is needed to strengthen the evidence base at the higher levels of efficacy.

  8. Knee Joint Dysfunctions That Influence Gait in Cerebrovascular Injury

    PubMed Central

    Lucareli, Paulo Roberto Garcia; Greve, Julia Maria D’Andrea

    2008-01-01

    INTRODUCTION There is still no consensus among different specialists on the subject of kinematic variation during the hemiparetic gait, including the main changes that take place during the gait cycle and whether the gait velocity changes the patterns of joint mobility. One of the most frequently discussed joints is the knee. OBJECTIVES This study aims to evaluate the variables found in the angular kinematics of knee joint, and to describe the alterations found in the hemiparetic gait resulting from cerebrovascular injury. METHODS This study included 66 adult patients of both genders with a diagnosis of either right or left hemiparesis resulting from ischemic cerebrovascular injury. All the participants underwent three-dimensional gait evaluation, an the angular kinematics of the joint knee were selected for analysis. RESULTS The results were distributed into four groups formed based on the median of the gait speed and the side of hemiparesis. CONCLUSIONS The relevant clinical characteristics included the important mechanisms of loading response in the stance, knee hyperextension in single stance, and reduction of the peak flexion and movement amplitude of the knee in the swing phase. These mechanisms should be taken into account when choosing the best treatment. We believe that the findings presented here may aid in preventing the occurrence of the problems found, and also in identifying the origin of these problems. PMID:18719753

  9. Focal plane scanner with reciprocating spatial window

    NASA Technical Reports Server (NTRS)

    Mao, Chengye (Inventor)

    2000-01-01

    A focal plane scanner having a front objective lens, a spatial window for selectively passing a portion of the image therethrough, and a CCD array for receiving the passed portion of the image. All embodiments have a common feature whereby the spatial window and CCD array are mounted for simultaneous relative reciprocating movement with respect to the front objective lens, and the spatial window is mounted within the focal plane of the front objective. In a first embodiment, the spatial window is a slit and the CCD array is one-dimensional, and successive rows of the image in the focal plane of the front objective lens are passed to the CCD array by an image relay lens interposed between the slit and the CCD array. In a second embodiment, the spatial window is a slit, the CCD array is two-dimensional, and a prism-grating-prism optical spectrometer is interposed between the slit and the CCD array so as to cause the scanned row to be split into a plurality of spectral separations onto the CCD array. In a third embodiment, the CCD array is two-dimensional and the spatial window is a rectangular linear variable filter (LVF) window, so as to cause the scanned rows impinging on the LVF to be bandpass filtered into spectral components onto the CCD array through an image relay lens interposed between the LVF and the CCD array.

  10. Experimental Assessment of the Reciprocating Feed System

    NASA Technical Reports Server (NTRS)

    Eddleman, David E.; Blackmon, James B.; Morton, Christopher D.

    2006-01-01

    The primary goal of this project was to design, construct, and test a full scale, high pressure simulated propellant feed system test bed that could evaluate the ability of the Reciprocating Feed System (RFS) to provide essentially constant flow rates and pressures to a rocket engine. The two key issues addressed were the effects of the transition of the drain cycle from tank to tank and the benefits of other hardware such as accumulators to provide a constant pressure flow rate out of the RFS. The test bed provided 500 psi flow at rates of the order of those required for engines in the 20,000 lbf thrust class (e.g., 20 to 40 lb/sec). A control system was developed in conjunction with the test article and automated system operation was achieved. Pre-test planning and acceptance activities such as a documented procedure and hazard analysis were conducted and the operation of the test article was approved by, and conducted in coordination with, appropriate NASA Marshall Space Flight Center personnel under a Space Act Agreement. Tests demonstrated successful control of flow rates and pressures.

  11. Gait Analysis and the Cumulative Gait Index (CGI): Translational Tools to Assess Impairments Exhibited by Rats with Olivocerebellar Ataxia

    PubMed Central

    Lambert, C.S.; Philpot, R.M.; Engberg, M.E.; Johns, B.E.; Kim, S.H.; Wecker, L.

    2014-01-01

    Deviations from ‘normal’ locomotion exhibited by humans and laboratory animals may be determined using automated systems that capture both temporal and spatial gait parameters. Although many measures generated by these systems are unrelated and independent, some may be related and dependent, representing redundant assessments of function. To investigate this possibility, a treadmill-based system was used to capture gait parameters from normal and ataxic rats, and a multivariate analysis was conducted to determine deviations from normal. Rats were trained on the treadmill at two speeds, and gait parameters were generated prior to and following lesions of the olivocerebellar pathway. Control (non-lesioned) animals exhibited stable hindlimb gait parameters across assessments at each speed. Lesioned animals exhibited alterations in multiple hindlimb gait parameters, characterized by significant increases in stride frequency, braking duration, stance width, step angle, and paw angle and decreases in stride, stance, swing and propulsion durations, stride length and paw area. A principal component analysis of initial hindlimb measures indicated 3 uncorrelated factors mediating performance, termed rhythmicity, thrust and contact. Deviation in the performance of each animal from the group mean was determined for each factor and values summed to yield the Cumulative Gait Index (CGI), a single value reflecting variation within the group. The CGI for lesioned animals increased 2.3-fold relative to unlesioned animals. This study characterizes gait alterations in laboratory rats rendered ataxic by destruction of the climbing fiber pathway innervating Purkinje cells and demonstrates that a single index can be used to describe overall gait impairments. PMID:25116252

  12. Novel characterization of gait impairments in people with multiple sclerosis by means of the gait profile score.

    PubMed

    Pau, Massimiliano; Coghe, Giancarlo; Atzeni, Claudia; Corona, Federica; Pilloni, Giuseppina; Marrosu, Maria Giovanna; Cocco, Eleonora; Galli, Manuela

    2014-10-15

    The assessment of gait abnormalities in individuals with multiple sclerosis (MS) represents a key factor in evaluating the effectiveness of rehabilitation treatments. Despite the availability of sophisticated equipment to objectively evaluate the kinematic aspects of gait, there are still some difficulties in processing the large and complex amount of data they produce in the daily clinical routine. On the basis of the above-mentioned considerations we propose a novel characterization of gait kinematics in individuals with MS, based on a single measure (gait profile score, GPS) obtained from a quantitative three-dimensional analysis of gait performed using an opto-electronic system. We also investigated the correlation between GPS and the Expanded Disability Status Scale (EDSS) values. Thirty-four patients suffering from relapsing-remitting MS (13 female, 21 male, mean age 46.7 years) with an EDSS score of ≤6 underwent a gait analysis from which the GPS index was calculated. Their results were compared with those of a control group of healthy age- and gender-matched subjects. The GPS of individuals with MS was found significantly higher with respect to controls (9.12° vs. 5.67°, p<0.001) as the result of kinematic differences in gait patterns referring to pelvic tilt and rotation, hip flexion-extension and rotation, knee flexion-extension and ankle dorsi- and plantar-flexion. A moderate correlation was also found between the EDSS score of the participants and their GPS values (r = 0.63, p < 0.001). The GPS index thus appears suitable to represent gait deviations from physiological patterns in individuals affected by MS and potentially useful in assessing the outcomes related both to rehabilitation programs and pharmacologic/physical therapies.

  13. 19. View northwest of Tropic Chamber reciprocal compressors (typical), in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. View northwest of Tropic Chamber reciprocal compressors (typical), in machine area. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  14. Educational Psychology and Technology: A Matter of Reciprocal Relations.

    ERIC Educational Resources Information Center

    Salomon, Gavriel; Almog, Tamar

    1998-01-01

    Describes the reciprocity of relationships between recent educationally relevant psychological conceptions and educationally oriented usages of technologies, analyzing recent theory and methodological developments in educational technology and psychology; showing how technology helps realize psychologically guided pedagogical conceptions; and…

  15. RESEARCH PAPERS : The reciprocity properties of geometrical spreading

    NASA Astrophysics Data System (ADS)

    Snieder, Roel; Chapman, Chris

    1998-01-01

    Reciprocity is an important property of acoustic and elastic waves. In this work it is explicity verified that acoustic waves also satisfy the reciprocity theorem in a ray-geometric approximation. This is achieved by deriving a reciprocity relation for the geometric spreading. The analysis is based on integrating the equations of dynamic ray tracing from the source to a receiver and in the reverse direction. It is shown that for a point source the geometric spreading for rays travelling in opposite directions differs by a factor depending on the velocities at the endpoints of the ray. This factor depends on the number of dimensions that one considers. Since the equations of kinematic and dynamic ray tracing are the same for elastic waves and acoustic waves, the derived reciprocity relations for the geometrical spreading hold for elastic waves as well. The results obtained are used to correct some errors in the derivation of an averaging theorem by Snieder & Lomax (1996).

  16. Drift stabilizer for reciprocating free-piston devices

    DOEpatents

    Ward, William C.; Corey, John A.; Swift, Gregory W.

    2003-05-20

    A free-piston device has a stabilized piston drift. A piston having a frequency of reciprocation over a stroke length and with first and second sides facing first and second variable volumes, respectively, for containing a working fluid defining an acoustic wavelength at the frequency of reciprocation. A bypass tube waveguide connects the first and second variable volumes at all times during reciprocation of the piston. The waveguide has a relatively low impedance for steady flow and a relatively high impedance for oscillating flow at the frequency of reciprocation of the piston, so that steady flow returns fluid leakage from about the piston between the first and second volumes while oscillating flow is not diverted through the waveguide. Thus, net leakage about the piston is returned during each stroke of the piston while oscillating leakage is not allowed and pressure buildup on either the first or second side of the piston is avoided to provide a stable piston location.

  17. Extraction of human gait signatures: an inverse kinematic approach using Groebner basis theory applied to gait cycle analysis

    NASA Astrophysics Data System (ADS)

    Barki, Anum; Kendricks, Kimberly; Tuttle, Ronald F.; Bunker, David J.; Borel, Christoph C.

    2013-05-01

    This research highlights the results obtained from applying the method of inverse kinematics, using Groebner basis theory, to the human gait cycle to extract and identify lower extremity gait signatures. The increased threat from suicide bombers and the force protection issues of today have motivated a team at Air Force Institute of Technology (AFIT) to research pattern recognition in the human gait cycle. The purpose of this research is to identify gait signatures of human subjects and distinguish between subjects carrying a load to those subjects without a load. These signatures were investigated via a model of the lower extremities based on motion capture observations, in particular, foot placement and the joint angles for subjects affected by carrying extra load on the body. The human gait cycle was captured and analyzed using a developed toolkit consisting of an inverse kinematic motion model of the lower extremity and a graphical user interface. Hip, knee, and ankle angles were analyzed to identify gait angle variance and range of motion. Female subjects exhibited the most knee angle variance and produced a proportional correlation between knee flexion and load carriage.

  18. Breaking reciprocity in nanophotonics: optomechanical interactions (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Alù, Andrea

    2016-09-01

    Lorentz reciprocity refers to a fundamental symmetry relation that governs several physical systems. In this talk, we will discuss our recent theoretical, design, experimental, and commercialization efforts in the area of non-reciprocal photonics, using temporal modulation of metamaterial elements to realize isolation for guided waves in nanophotonic systems and radio-frequency circuits, and for propagating waves in free-space, as well as to break the symmetry between emission and absorption in optical and radio-frequency open systems.

  19. Reciprocal cooperation in avian mobbing: playing nice pays.

    PubMed

    Wheatcroft, David J; Price, Trevor D

    2008-08-01

    Unrelated passerine birds often join together while mobbing, a widespread antipredator behavior during which birds harass a predator. Although previous analyses concluded that mobbing could not have evolved via reciprocity, Krams and colleagues' field experiments show that birds preferentially join mobs with neighbors that have aided them previously, suggesting that these birds utilize reciprocity-based strategies involving individual recognition and recollection of previous interactions with others. This implies a level of sophistication in bird communities greater than had previously been realized.

  20. Reciprocity relations in transmission electron microscopy: A rigorous derivation.

    PubMed

    Krause, Florian F; Rosenauer, Andreas

    2017-01-01

    A concise derivation of the principle of reciprocity applied to realistic transmission electron microscopy setups is presented making use of the multislice formalism. The equivalence of images acquired in conventional and scanning mode is thereby rigorously shown. The conditions for the applicability of the found reciprocity relations is discussed. Furthermore the positions of apertures in relation to the corresponding lenses are considered, a subject which scarcely has been addressed in previous publications.

  1. Preschool children's behavioral tendency toward social indirect reciprocity.

    PubMed

    Kato-Shimizu, Mayuko; Onishi, Kenji; Kanazawa, Tadahiro; Hinobayashi, Toshihiko

    2013-01-01

    Social indirect reciprocity seems to be crucial in enabling large-scale cooperative networks among genetically unrelated individuals in humans. However, there are relatively few studies on social indirect reciprocity in children compared to adults. Investigating whether young children have a behavioral tendency toward social indirect reciprocity will help us understand how and when the fundamental ability to form cooperative relationships among adults is acquired. Using naturalistic observation at a nursery school, this study examined whether 5- to 6-year-olds show a behavioral tendency to engage in social indirect reciprocity in response to their peers' prosocial behavior toward a third party. The results revealed that bystander children tended to display prosocial behavior toward their peers more frequently after observing these peers' prosocial behavior toward third-party peers, compared with control situations; this suggests that 5- to 6-year-olds may have an essential behavioral tendency to establish social indirect reciprocity when interacting with peers in their daily lives. In addition, bystanders tended to display affiliative behavior after observing focal children's prosocial behavior. In other words, observing peers' prosocial behavior toward third-party peers evoked bystanders' positive emotions toward the helpers. Considering both the present results and previous findings, we speculate that in preschoolers, such positive emotions might mediate the increase in the bystander's prosocial behavior toward the helper. In addition, an intuitional emotional process plays an important role in the preschooler's behavioral tendency toward social indirect reciprocity in natural interactions with peers.

  2. Reciprocity in the electronic stopping of slow ions in matter

    NASA Astrophysics Data System (ADS)

    Sigmund, P.

    2008-04-01

    The principle of reciprocity, i.e., the invariance of the inelastic excitation in ion-atom collisions against interchange of projectile and target, has been applied to the electronic stopping cross section of low-velocity ions and tested empirically on ion-target combinations supported by a more or less adequate amount of experimental data. Reciprocity is well obeyed (within ~10%) for many systems studied, and deviations exceeding ~20% are exceptional. Systematic deviations such as gas-solid or metal-insulator differences have been looked for but not identified on the present basis. A direct consequence of reciprocity is the equivalence of Z1 with Z2 structure for random slowing down. This feature is reasonably well supported empirically for ion-target combinations involving carbon, nitrogen, aluminium and argon. Reciprocity may be utilized as a criterion to reject questionable experimental data. In cases where a certain stopping cross section has not been or cannot be measured, the stopping cross section for the inverted system may be available and serve as a first estimate. It is suggested to build in reciprocity as a fundamental requirement into empirical interpolation schemes directed at the stopping of low-velocity ions. Examination of the SRIM and MSTAR codes reveals cases where reciprocity is obeyed accurately, but deviations of up to a factor of two are common. In case of heavy ions such as gold, electronic stopping cross sections predicted by SRIM are asserted to be almost an order of magnitude too high.

  3. Reciprocity on Demand : Sharing and Exchanging Food in Northwestern Namibia.

    PubMed

    Schnegg, Michael

    2015-09-01

    Two competing models concerning food transfers prominent in the anthropological literature conceptualize such transfers either as sharing or as exchange. Sharing is understood as situational transactions formed through demands and unconditional giving, whereas reciprocal exchange is understood in terms of networking and keeping score. I propose that the picture is more complicated than these classifications suggests. Drawing on data collected in Northwestern Namibia, I show that sharing and reciprocal exchange are dynamically interrelated in actual food transfers. As a local norm, people can demand food from anyone, and they are typically given food in response to a demand. However, in practice, food transfer networks emerge (N = 62) that are highly reciprocal and fit the exchange model much better. Although the sharing norm makes no restrictions on whom to ask, in practice people often turn to their neighbors. Interpersonal dynamics account for why some of those ties become strongly reciprocal and others do not. Under these circumstances, unconditional sharing, a norm that has been viewed as an alternative to exchange, can lead to reciprocity via reciprocity on demand.

  4. Working dogs cooperate among one another by generalised reciprocity

    PubMed Central

    Gfrerer, Nastassja; Taborsky, Michael

    2017-01-01

    Cooperation by generalised reciprocity implies that individuals apply the decision rule “help anyone if helped by someone”. This mechanism has been shown to generate evolutionarily stable levels of cooperation, but as yet it is unclear how widely this cooperation mechanism is applied among animals. Dogs (Canis familiaris) are highly social animals with considerable cognitive potential and the ability to differentiate between individual social partners. But although dogs can solve complex problems, they may use simple rules for behavioural decisions. Here we show that dogs trained in an instrumental cooperative task to provide food to a social partner help conspecifics more often after receiving help from a dog before. Remarkably, in so doing they show no distinction between partners that had helped them before and completely unfamiliar conspecifics. Apparently, dogs use the simple decision rule characterizing generalised reciprocity, although they are probably capable of using the more complex decision rule of direct reciprocity: “help someone who has helped you”. However, generalized reciprocity involves lower information processing costs and is therefore a cheaper cooperation strategy. Our results imply that generalised reciprocity might be applied more commonly than direct reciprocity also in other mutually cooperating animals. PMID:28262722

  5. Asymmetric reproductive isolation during simultaneous reciprocal mating in pulmonates

    PubMed Central

    Wiwegweaw, Amporn; Seki, Keiichi; Mori, Hiroshi; Asami, Takahiro

    2009-01-01

    The generality of asymmetric reproductive isolation between reciprocal crosses suggests that the evolution of isolation mechanisms often proceeds in reciprocal asymmetry. In hermaphroditic snails that copulate simultaneously and reciprocally, asymmetry in premating isolation may not be readily detectable because the failure of the symmetric performance of courtship would prevent copulation from occurring. On the other hand, through their prolonged copulation, snails discriminate among mates when exchanging spermatophores for their benefit and thus may exhibit asymmetric reproductive isolation during interspecific mating. However, no clear case of reciprocal asymmetry has been found in reproductive isolation between snail species. Here we show a discrete difference in hybridization success between simultaneous reciprocal copulations between two species of pulmonate snails. Premating isolation of Bradybaena pellucida (BP) and Bradybaena similaris (BS) is incomplete in captivity. In interspecific copulation, BP removes its penis without transferring a spermatophore, while BS sires hybrids by inseminating BP. Thus, ‘male’ BP or ‘female’ BS rejects the other individual, while female BP and male BS accept each other, so that the two sexes of either BP or BS oppose each other in mate discrimination. Our results are a clear example of asymmetry in reproductive isolation during simultaneous reciprocal mating between hermaphroditic animals. PMID:19141413

  6. Reciprocating flow-based centrifugal microfluidics mixer

    NASA Astrophysics Data System (ADS)

    Noroozi, Zahra; Kido, Horacio; Micic, Miodrag; Pan, Hansheng; Bartolome, Christian; Princevac, Marko; Zoval, Jim; Madou, Marc

    2009-07-01

    Proper mixing of reagents is of paramount importance for an efficient chemical reaction. While on a large scale there are many good solutions for quantitative mixing of reagents, as of today, efficient and inexpensive fluid mixing in the nanoliter and microliter volume range is still a challenge. Complete, i.e., quantitative mixing is of special importance in any small-scale analytical application because the scarcity of analytes and the low volume of the reagents demand efficient utilization of all available reaction components. In this paper we demonstrate the design and fabrication of a novel centrifugal force-based unit for fast mixing of fluids in the nanoliter to microliter volume range. The device consists of a number of chambers (including two loading chambers, one pressure chamber, and one mixing chamber) that are connected through a network of microchannels, and is made by bonding a slab of polydimethylsiloxane (PDMS) to a glass slide. The PDMS slab was cast using a SU-8 master mold fabricated by a two-level photolithography process. This microfluidic mixer exploits centrifugal force and pneumatic pressure to reciprocate the flow of fluid samples in order to minimize the amount of sample and the time of mixing. The process of mixing was monitored by utilizing the planar laser induced fluorescence (PLIF) technique. A time series of high resolution images of the mixing chamber were analyzed for the spatial distribution of light intensities as the two fluids (suspension of red fluorescent particles and water) mixed. Histograms of the fluorescent emissions within the mixing chamber during different stages of the mixing process were created to quantify the level of mixing of the mixing fluids. The results suggest that quantitative mixing was achieved in less than 3 min. This device can be employed as a stand alone mixing unit or may be integrated into a disk-based microfluidic system where, in addition to mixing, several other sample preparation steps may be

  7. Analytical Assessment of the Reciprocating Feed System

    NASA Technical Reports Server (NTRS)

    Eddleman, David E.; Blackmon, James B.; Morton, Christopher D.

    2006-01-01

    A preliminary analysis tool has been created in Microsoft Excel to determine deliverable payload mass, total system mass, and performance of spacecraft systems using various types of propellant feed systems. These mass estimates are conducted by inserting into the user interface the basic mission parameters (e.g., thrust, burn time, specific impulse, mixture ratio, etc.), system architecture (e.g., propulsion system type and characteristics, propellants, pressurization system type, etc.), and design properties (e.g., material properties, safety factors, etc.). Different propellant feed and pressurization systems are available for comparison in the program. This gives the user the ability to compare conventional pressure fed, reciprocating feed system (RFS), autogenous pressurization thrust augmentation (APTA RFS), and turbopump systems with the deliverable payload, inert mass, and total system mass being the primary comparison metrics. Analyses of several types of missions and spacecraft were conducted and it was found that the RFS offers a performance improvement, especially in terms of delivered payload, over conventional pressure fed systems. Furthermore, it is competitive with a turbopump system at low to moderate chamber pressures, up to approximately 1,500 psi. Various example cases estimating the system mass and deliverable payload of several types of spacecraft are presented that illustrate the potential system performance advantages of the RFS. In addition, a reliability assessment of the RFS was conducted, comparing it to simplified conventional pressure fed and turbopump systems, based on MIL-STD 756B; these results showed that the RFS offers higher reliability, and thus substantially longer periods between system refurbishment, than turbopump systems, and is competitive with conventional pressure fed systems. This is primarily the result of the intrinsic RFS fail-operational capability with three run tanks, since the system can operate with just two run

  8. The mental representation of the human gait in young and older adults

    PubMed Central

    Stöckel, Tino; Jacksteit, Robert; Behrens, Martin; Skripitz, Ralf; Bader, Rainer; Mau-Moeller, Anett

    2015-01-01

    The link between mental representation (MREP) structures and motor performance has been evidenced for a great variety of movement skills, but not for the human gait. Therefore the present study sought to investigate the cognitive memory structures underlying the human gait in young and older adults. In a first experiment, gait parameters at comfortable gait speed (OptoGait) were compared with gait-specific MREPs (structural dimensional analysis of MREP; SDA-M) in 36 young adults. Participants were divided into a slow- and fast-walking group. The proven relationship between gait speed and executive functions such as working memory led to the hypothesis that gait pattern and MREP differ between slow- and fast-walking adults. In a second experiment, gait performance and MREPs were compared between 24 young (27.9 years) and 24 elderly (60.1 years) participants. As age-related declines in gait performance occur from the seventh decade of life onward, we hypothesized that gait parameters would not be affected until the age of 60 years accompanied by unchanged MREP. Data of experiment one revealed that gait parameters and MREPs differed significantly between slow and fast walkers. Notably, eleven previously incurred musculoskeletal injuries were documented for the slow walkers but only two injuries and one disorder for fast walkers. Experiment two revealed no age-related differences in gait parameters or MREPs between healthy young and older adults. In conclusion, the differences in gait parameters associated with lower comfortable gait speeds are reflected by differences in MREPs, whereby SDA-M data indicate that the single limb support phase may serve as a critical functional period. These differences probably resulted from previously incurred musculoskeletal injuries. Our data further indicate that the human gait and its MREP are stable until the age of 60. SDA-M may be considered as a valuable clinical tool for diagnosis of gait abnormalities and monitoring of

  9. Gait patterns in twins with cerebral palsy: similarities and development over time after multilevel surgery.

    PubMed

    van Drongelen, Stefan; Dreher, Thomas; Heitzmann, Daniel W W; Wolf, Sebastian I

    2013-05-01

    To examine gait patterns and gait quality, 7 twins with cerebral palsy were measured preoperatively and after surgical intervention. The aim was to study differences and/or similarities in gait between twins, the influence of personal characteristics and birth conditions, and to describe the development of gait over time after single event multilevel surgery. A standardized clinical exam and a three-dimensional gait analysis were performed. Gait patterns were classified according to Sutherland and Davids, and the Gillette Gait Index was calculated as a global measure of the gait impairment. Next to subject characteristics at time of first measurement, and at time of birth, birth conditions were collected. Gait patterns were determined as crouch gait in 13 legs, as stiff gait in 6 legs and as jump gait in 8 legs. One leg showed a normal gait pattern. The knee flexion-extension angle correlated most constant with the knee flexion-extension angle of the contralateral leg (range 0.91-0.99). Correlations with the legs of the sibling showed variable correlations (range 0.44-0.99); with all other legs medium to high correlations of 0.73-0.91 were found. The Gillette Gait Index was found to initially decrease after surgical intervention. Similar correlations were found between twins or between legs for the gait pattern expressed by the knee flexion-extension angle, and the Gillette Gait Index improved after surgery. It seems that gait quality in twins with cerebral palsy is characterized predominantly by the traumatic disorder: genetic dispositions and personal characteristics only play a negligible role.

  10. Gait Phase Recognition for Lower-Limb Exoskeleton with Only Joint Angular Sensors

    PubMed Central

    Liu, Du-Xin; Wu, Xinyu; Du, Wenbin; Wang, Can; Xu, Tiantian

    2016-01-01

    Gait phase is widely used for gait trajectory generation, gait control and gait evaluation on lower-limb exoskeletons. So far, a variety of methods have been developed to identify the gait phase for lower-limb exoskeletons. Angular sensors on lower-limb exoskeletons are essential for joint closed-loop controlling; however, other types of sensors, such as plantar pressure, attitude or inertial measurement unit, are not indispensable.Therefore, to make full use of existing sensors, we propose a novel gait phase recognition method for lower-limb exoskeletons using only joint angular sensors. The method consists of two procedures. Firstly, the gait deviation distances during walking are calculated and classified by Fisher’s linear discriminant method, and one gait cycle is divided into eight gait phases. The validity of the classification results is also verified based on large gait samples. Secondly, we build a gait phase recognition model based on multilayer perceptron and train it with the phase-labeled gait data. The experimental result of cross-validation shows that the model has a 94.45% average correct rate of set (CRS) and an 87.22% average correct rate of phase (CRP) on the testing set, and it can predict the gait phase accurately. The novel method avoids installing additional sensors on the exoskeleton or human body and simplifies the sensory system of the lower-limb exoskeleton. PMID:27690023

  11. Gait Phase Recognition for Lower-Limb Exoskeleton with Only Joint Angular Sensors.

    PubMed

    Liu, Du-Xin; Wu, Xinyu; Du, Wenbin; Wang, Can; Xu, Tiantian

    2016-09-27

    Gait phase is widely used for gait trajectory generation, gait control and gait evaluation on lower-limb exoskeletons. So far, a variety of methods have been developed to identify the gait phase for lower-limb exoskeletons. Angular sensors on lower-limb exoskeletons are essential for joint closed-loop controlling; however, other types of sensors, such as plantar pressure, attitude or inertial measurement unit, are not indispensable.Therefore, to make full use of existing sensors, we propose a novel gait phase recognition method for lower-limb exoskeletons using only joint angular sensors. The method consists of two procedures. Firstly, the gait deviation distances during walking are calculated and classified by Fisher's linear discriminant method, and one gait cycle is divided into eight gait phases. The validity of the classification results is also verified based on large gait samples. Secondly, we build a gait phase recognition model based on multilayer perceptron and train it with the phase-labeled gait data. The experimental result of cross-validation shows that the model has a 94.45% average correct rate of set (CRS) and an 87.22% average correct rate of phase (CRP) on the testing set, and it can predict the gait phase accurately. The novel method avoids installing additional sensors on the exoskeleton or human body and simplifies the sensory system of the lower-limb exoskeleton.

  12. General tensor discriminant analysis and gabor features for gait recognition.

    PubMed

    Tao, Dacheng; Li, Xuelong; Wu, Xindong; Maybank, Stephen J

    2007-10-01

    The traditional image representations are not suited to conventional classification methods, such as the linear discriminant analysis (LDA), because of the under sample problem (USP): the dimensionality of the feature space is much higher than the number of training samples. Motivated by the successes of the two dimensional LDA (2DLDA) for face recognition, we develop a general tensor discriminant analysis (GTDA) as a preprocessing step for LDA. The benefits of GTDA compared with existing preprocessing methods, e.g., principal component analysis (PCA) and 2DLDA, include 1) the USP is reduced in subsequent classification by, for example, LDA; 2) the discriminative information in the training tensors is preserved; and 3) GTDA provides stable recognition rates because the alternating projection optimization algorithm to obtain a solution of GTDA converges, while that of 2DLDA does not. We use human gait recognition to validate the proposed GTDA. The averaged gait images are utilized for gait representation. Given the popularity of Gabor function based image decompositions for image understanding and object recognition, we develop three different Gabor function based image representations: 1) the GaborD representation is the sum of Gabor filter responses over directions, 2) GaborS is the sum of Gabor filter responses over scales, and 3) GaborSD is the sum of Gabor filter responses over scales and directions. The GaborD, GaborS and GaborSD representations are applied to the problem of recognizing people from their averaged gait images.A large number of experiments were carried out to evaluate the effectiveness (recognition rate) of gait recognition based on first obtaining a Gabor, GaborD, GaborS or GaborSD image representation, then using GDTA to extract features and finally using LDA for classification. The proposed methods achieved good performance for gait recognition based on image sequences from the USF HumanID Database. Experimental comparisons are made with nine

  13. Does anxiety cause freezing of gait in Parkinson's disease?

    PubMed

    Ehgoetz Martens, Kaylena A; Ellard, Colin G; Almeida, Quincy J

    2014-01-01

    Individuals with Parkinson's disease (PD) commonly experience freezing of gait under time constraints, in narrow spaces, and in the dark. One commonality between these different situations is that they may all provoke anxiety, yet anxiety has never been directly examined as a cause of FOG. In this study, virtual reality was used to induce anxiety and evaluate whether it directly causes FOG. Fourteen patients with PD and freezing of gait (Freezers) and 17 PD without freezing of gait (Non-Freezers) were instructed to walk in two virtual environments: (i) across a plank that was located on the ground (LOW), (ii) across a plank above a deep pit (HIGH). Multiple synchronized motion capture cameras updated participants' movement through the virtual environment in real-time, while their gait was recorded. Anxiety levels were evaluated after each trial using self-assessment manikins. Freezers performed the experiment on two separate occasions (in their ON and OFF state). Freezers reported higher levels of anxiety compared to Non-Freezers (p < 0.001) and all patients reported greater levels of anxiety when walking across the HIGH plank compared to the LOW (p < 0.001). Freezers experienced significantly more freezing of gait episodes (p = 0.013) and spent a significantly greater percentage of each trial frozen (p = 0.005) when crossing the HIGH plank. This finding was even more pronounced when comparing Freezers in their OFF state. Freezers also had greater step length variability in the HIGH compared to the LOW condition, while the step length variability in Non-Freezers did not change. In conclusion, this was the first study to directly compare freezing of gait in anxious and non-anxious situations. These results present strong evidence that anxiety is an important mechanism underlying freezing of gait and supports the notion that the limbic system may have a profound contribution to freezing in PD.

  14. Positive force feedback in bouncing gaits?

    PubMed Central

    Geyer, Hartmut; Seyfarth, Andre; Blickhan, Reinhard

    2003-01-01

    During bouncing gaits (running, hopping, trotting), passive compliant structures (e.g. tendons, ligaments) store and release part of the stride energy. Here, active muscles must provide the required force to withstand the developing tendon strain and to compensate for the inevitable energy losses. This requires an appropriate control of muscle activation. In this study, for hopping, the potential involvement of afferent information from muscle receptors (muscle spindles, Golgi tendon organs) is investigated using a two-segment leg model with one extensor muscle. It is found that: (i) positive feedbacks of muscle-fibre length and muscle force can result in periodic bouncing; (ii) positive force feedback (F+) stabilizes bouncing patterns within a large range of stride energies (maximum hopping height of 16.3 cm, almost twofold higher than the length feedback); and (iii) when employing this reflex scheme, for moderate hopping heights (up to 8.8 cm), an overall elastic leg behaviour is predicted (hopping frequency of 1.4-3 Hz, leg stiffness of 9-27 kN m(-1)). Furthermore, F+ could stabilize running. It is suggested that, during the stance phase of bouncing tasks, the reflex-generated motor control based on feedbacks might be an efficient and reliable alternative to central motor commands. PMID:14561282

  15. Finger movement improves ankle control for gait initiation in patients with Parkinson's disease.

    PubMed

    Hiraoka, K; Kamata, N; Iwata, A; Minamida, F; Abe, K

    2008-01-01

    The purpose of this study was to investigate the effect of finger movement on ankle control for gait initiation in patients with Parkinson's disease (PD patients). The subjects were 13 PD patients and 6 age-matched healthy adults. The subjects moved fingers before or after gait initiation, or initiated gait without finger movement. Ankle joint movement in the stance leg was recorded to estimate the duration of ankle dorsiflexion (DIF duration), which reflects the degree of disturbance in ankle control for gait initiation in PD patients. In the PD patients with prolonged D/F duration, finger movement that preceded gait initiation shortened the D/F duration, but in the PD patients without prolonged D/F duration and in healthy subjects, the effect was not found. Accordingly, finger movement that precedes gait initiation improves ankle control for gait initiation in PD patients who suffer disturbance in ankle control for gait initiation.

  16. Use of osteopathic manipulative treatment to manage compensated trendelenburg gait caused by sacroiliac somatic dysfunction.

    PubMed

    Gilliss, Adam C; Swanson, Randel L; Janora, Deanna; Venkataraman, Venkat

    2010-02-01

    Gait dysfunctions are commonly encountered in the primary care setting. Compensated Trendelenburg gait is a gait dysfunction that was originally described in patients with weakness of ipsilateral hip abduction. This condition is thought to result from neuronal injury or myopathy. No treatment modalities currently exist for compensated Trendelenburg gait. The authors present a case in which osteopathic manipulative treatment may have improved a Trendelenburg gait dysfunction in a man aged 65 years with multiple sclerosis. Evidence of this improvement was obtained with the GaitMat II system for measuring numerous gait parameters. Based on the results reported in the present case, the authors propose that compensated Trendelenburg gait may arise from somatic dysfunction and may be corrected by osteopathic manipulative treatment.

  17. Effect of Rhythmic Auditory Stimulation on Gait in Parkinsonian Patients with and without Freezing of Gait

    PubMed Central

    Arias, Pablo; Cudeiro, Javier

    2010-01-01

    Freezing of gait (FOG) in Parkinson's disease (PD) rises in prevalence when the effect of medications decays. It is known that auditory rhythmic stimulation improves gait in patients without FOG (PD-FOG), but its putative effect on patients with FOG (PD+FOG) at the end of dose has not been evaluated yet. This work evaluates the effect of auditory rhythmic stimulation on PD+FOG at the end of dose. 10 PD+FOG and 9 PD-FOG patients both at the end of dose periods, and 10 healthy controls were asked to perform several walking tasks. Tasks were performed in the presence and absence of auditory sensory stimulation. All PD+FOG suffered FOG during the task. The presence of auditory rhythmic stimulation (10% above preferred walking cadence) led PD+FOG to significantly reduce FOG. Velocity and cadence were increased, and turn time reduced in all groups. We conclude that auditory stimulation at the frequency proposed may be useful to avoid freezing episodes in PD+FOG. PMID:20339591

  18. Combined robotic-aided gait training and 3D gait analysis provide objective treatment and assessment of gait in children and adolescents with Acquired Hemiplegia.

    PubMed

    Molteni, Erika; Beretta, Elena; Altomonte, Daniele; Formica, Francesca; Strazzer, Sandra

    2015-08-01

    To evaluate the feasibility of a fully objective rehabilitative and assessment process of the gait abilities in children suffering from Acquired Hemiplegia (AH), we studied the combined employment of robotic-aided gait training (RAGT) and 3D-Gait Analysis (GA). A group of 12 patients with AH underwent 20 sessions of RAGT in addition to traditional manual physical therapy (PT). All the patients were evaluated before and after the training by using the Gross Motor Function Measures (GMFM), the Functional Assessment Questionnaire (FAQ), and the 6 Minutes Walk Test. They also received GA before and after RAGT+PT. Finally, results were compared with those obtained from a control group of 3 AH children who underwent PT only. After the training, the GMFM and FAQ showed significant improvement in patients receiving RAGT+PT. GA highlighted significant improvement in stance symmetry and step length of the affected limb. Moreover, pelvic tilt increased, and hip kinematics on the sagittal plane revealed statistically significant increase in the range of motion during the hip flex-extension. Our data suggest that the combined program RAGT+PT induces improvements in functional activities and gait pattern in children with AH, and it demonstrates that the combined employment of RAGT and 3D-GA ensures a fully objective rehabilitative program.

  19. Effects of Gait Speed of Femoroacetabular Joint Forces

    PubMed Central

    Irmischer, Bobbie S.; Sievert, Zachary A.

    2017-01-01

    Alterations in hip joint loading have been associated with diseases such as arthritis and osteoporosis. Understanding the relationship between gait speed and hip joint loading in healthy hips may illuminate changes in gait mechanics as walking speed deviates from preferred. The purpose of this study was to quantify hip joint loading during the gait cycle and identify differences with varying speed using musculoskeletal modeling. Ten, healthy, physically active individuals performed walking trials at their preferred speed, 10% faster, and 10% slower. Kinematic, kinetic, and electromyographic data were collected and used to estimate hip joint force via a musculoskeletal model. Vertical ground reaction forces, hip joint force planar components, and the resultant hip joint force were compared between speeds. There were significant increases in vertical ground reaction forces and hip joint forces as walking speed increased. Furthermore, the musculoskeletal modeling approach employed yielded hip joint forces that were comparable to previous simulation studies and in vivo measurements and was able to detect changes in hip loading due to small deviations in gait speed. Applying this approach to pathological and aging populations could identify specific areas within the gait cycle where force discrepancies may occur which could help focus management of care. PMID:28260849

  20. Secure and privacy enhanced gait authentication on smart phone.

    PubMed

    Hoang, Thang; Choi, Deokjai

    2014-01-01

    Smart environments established by the development of mobile technology have brought vast benefits to human being. However, authentication mechanisms on portable smart devices, particularly conventional biometric based approaches, still remain security and privacy concerns. These traditional systems are mostly based on pattern recognition and machine learning algorithms, wherein original biometric templates or extracted features are stored under unconcealed form for performing matching with a new biometric sample in the authentication phase. In this paper, we propose a novel gait based authentication using biometric cryptosystem to enhance the system security and user privacy on the smart phone. Extracted gait features are merely used to biometrically encrypt a cryptographic key which is acted as the authentication factor. Gait signals are acquired by using an inertial sensor named accelerometer in the mobile device and error correcting codes are adopted to deal with the natural variation of gait measurements. We evaluate our proposed system on a dataset consisting of gait samples of 34 volunteers. We achieved the lowest false acceptance rate (FAR) and false rejection rate (FRR) of 3.92% and 11.76%, respectively, in terms of key length of 50 bits.

  1. An adaptive gyroscope-based algorithm for temporal gait analysis.

    PubMed

    Greene, Barry R; McGrath, Denise; O'Neill, Ross; O'Donovan, Karol J; Burns, Adrian; Caulfield, Brian

    2010-12-01

    Body-worn kinematic sensors have been widely proposed as the optimal solution for portable, low cost, ambulatory monitoring of gait. This study aims to evaluate an adaptive gyroscope-based algorithm for automated temporal gait analysis using body-worn wireless gyroscopes. Gyroscope data from nine healthy adult subjects performing four walks at four different speeds were then compared against data acquired simultaneously using two force plates and an optical motion capture system. Data from a poliomyelitis patient, exhibiting pathological gait walking with and without the aid of a crutch, were also compared to the force plate. Results show that the mean true error between the adaptive gyroscope algorithm and force plate was -4.5 ± 14.4 ms and 43.4 ± 6.0 ms for IC and TC points, respectively, in healthy subjects. Similarly, the mean true error when data from the polio patient were compared against the force plate was -75.61 ± 27.53 ms and 99.20 ± 46.00 ms for IC and TC points, respectively. A comparison of the present algorithm against temporal gait parameters derived from an optical motion analysis system showed good agreement for nine healthy subjects at four speeds. These results show that the algorithm reported here could constitute the basis of a robust, portable, low-cost system for ambulatory monitoring of gait.

  2. Muscle Activation during Gait in Children with Duchenne Muscular Dystrophy

    PubMed Central

    Vuillerot, Carole; Tiffreau, Vincent; Peudenier, Sylviane; Cuisset, Jean-Marie; Pereon, Yann; Leboeuf, Fabien; Delporte, Ludovic; Delpierre, Yannick; Gross, Raphaël

    2016-01-01

    The aim of this prospective study was to investigate changes in muscle activity during gait in children with Duchenne muscular Dystrophy (DMD). Dynamic surface electromyography recordings (EMGs) of 16 children with DMD and pathological gait were compared with those of 15 control children. The activity of the rectus femoris (RF), vastus lateralis (VL), medial hamstrings (HS), tibialis anterior (TA) and gastrocnemius soleus (GAS) muscles was recorded and analysed quantitatively and qualitatively. The overall muscle activity in the children with DMD was significantly different from that of the control group. Percentage activation amplitudes of RF, HS and TA were greater throughout the gait cycle in the children with DMD and the timing of GAS activity differed from the control children. Significantly greater muscle coactivation was found in the children with DMD. There were no significant differences between sides. Since the motor command is normal in DMD, the hyper-activity and co-contractions likely compensate for gait instability and muscle weakness, however may have negative consequences on the muscles and may increase the energy cost of gait. Simple rehabilitative strategies such as targeted physical therapies may improve stability and thus the pattern of muscle activity. PMID:27622734

  3. Secure and Privacy Enhanced Gait Authentication on Smart Phone

    PubMed Central

    Choi, Deokjai

    2014-01-01

    Smart environments established by the development of mobile technology have brought vast benefits to human being. However, authentication mechanisms on portable smart devices, particularly conventional biometric based approaches, still remain security and privacy concerns. These traditional systems are mostly based on pattern recognition and machine learning algorithms, wherein original biometric templates or extracted features are stored under unconcealed form for performing matching with a new biometric sample in the authentication phase. In this paper, we propose a novel gait based authentication using biometric cryptosystem to enhance the system security and user privacy on the smart phone. Extracted gait features are merely used to biometrically encrypt a cryptographic key which is acted as the authentication factor. Gait signals are acquired by using an inertial sensor named accelerometer in the mobile device and error correcting codes are adopted to deal with the natural variation of gait measurements. We evaluate our proposed system on a dataset consisting of gait samples of 34 volunteers. We achieved the lowest false acceptance rate (FAR) and false rejection rate (FRR) of 3.92% and 11.76%, respectively, in terms of key length of 50 bits. PMID:24955403

  4. Emotion recognition using Kinect motion capture data of human gaits

    PubMed Central

    Li, Shun; Cui, Liqing; Zhu, Changye; Li, Baobin

    2016-01-01

    Automatic emotion recognition is of great value in many applications, however, to fully display the application value of emotion recognition, more portable, non-intrusive, inexpensive technologies need to be developed. Human gaits could reflect the walker’s emotional state, and could be an information source for emotion recognition. This paper proposed a novel method to recognize emotional state through human gaits by using Microsoft Kinect, a low-cost, portable, camera-based sensor. Fifty-nine participants’ gaits under neutral state, induced anger and induced happiness were recorded by two Kinect cameras, and the original data were processed through joint selection, coordinate system transformation, sliding window gauss filtering, differential operation, and data segmentation. Features of gait patterns were extracted from 3-dimentional coordinates of 14 main body joints by Fourier transformation and Principal Component Analysis (PCA). The classifiers NaiveBayes, RandomForests, LibSVM and SMO (Sequential Minimal Optimization) were trained and evaluated, and the accuracy of recognizing anger and happiness from neutral state achieved 80.5% and 75.4%. Although the results of distinguishing angry and happiness states were not ideal in current study, it showed the feasibility of automatically recognizing emotional states from gaits, with the characteristics meeting the application requirements. PMID:27672492

  5. Analysis of foot load during ballet dancers' gait.

    PubMed

    Prochazkova, Marketa; Tepla, Lucie; Svoboda, Zdenek; Janura, Miroslav; Cieslarová, Miloslava

    2014-01-01

    Ballet is an art that puts extreme demands on the dancer's musculoskeletal system and therefore significantly affects motor behavior of the dancers. The aim of our research was to compare plantar pressure distribution during stance phase of gait between a group of professional ballet dancers and non-dancers. Thirteen professional dancers (5 men, 8 women; mean age of 24.1 ± 3.8 years) and 13 nondancers (5 men, 8 women; mean age of 26.1 ± 5.3 years) participated in this study. Foot pressure analysis during gait was collected using a 2 m pressure plate. The participants were instructed to walk across the platform at a self-selected pace barefoot. Three gait cycles were necessary for the data analysis. The results revealed higher (p < 0.05) pressure peaks in medial edge of forefoot during gait for dancers in comparison with nondancers. Furthermore, differences in total foot loading and foot loading duration of rearfoot was higher (p < 0.05) in dancers as well. We can attribute these differences to long-term and intensive dancing exercises that can change the dancer's gait stereotype.

  6. Robust Gait-Based Person Identification against Walking Speed Variations

    NASA Astrophysics Data System (ADS)

    Aqmar, Muhammad Rasyid; Shinoda, Koichi; Furui, Sadaoki

    Variations in walking speed have a strong impact on gait-based person identification. We propose a method that is robust against walking-speed variations. It is based on a combination of cubic higher-order local auto-correlation (CHLAC), gait silhouette-based principal component analysis (GSP), and a statistical framework using hidden Markov models (HMMs). The CHLAC features capture the within-phase spatio-temporal characteristics of each individual, the GSP features retain more shape/phase information for better gait sequence alignment, and the HMMs classify the ID of each gait even when walking speed changes nonlinearly. We compared the performance of our method with other conventional methods using five different databases, SOTON, USF-NIST, CMU-MoBo, TokyoTech A and TokyoTech B. The proposed method was equal to or better than the others when the speed did not change greatly, and it was significantly better when the speed varied across and within a gait sequence.

  7. Emotion recognition using Kinect motion capture data of human gaits.

    PubMed

    Li, Shun; Cui, Liqing; Zhu, Changye; Li, Baobin; Zhao, Nan; Zhu, Tingshao

    2016-01-01

    Automatic emotion recognition is of great value in many applications, however, to fully display the application value of emotion recognition, more portable, non-intrusive, inexpensive technologies need to be developed. Human gaits could reflect the walker's emotional state, and could be an information source for emotion recognition. This paper proposed a novel method to recognize emotional state through human gaits by using Microsoft Kinect, a low-cost, portable, camera-based sensor. Fifty-nine participants' gaits under neutral state, induced anger and induced happiness were recorded by two Kinect cameras, and the original data were processed through joint selection, coordinate system transformation, sliding window gauss filtering, differential operation, and data segmentation. Features of gait patterns were extracted from 3-dimentional coordinates of 14 main body joints by Fourier transformation and Principal Component Analysis (PCA). The classifiers NaiveBayes, RandomForests, LibSVM and SMO (Sequential Minimal Optimization) were trained and evaluated, and the accuracy of recognizing anger and happiness from neutral state achieved 80.5% and 75.4%. Although the results of distinguishing angry and happiness states were not ideal in current study, it showed the feasibility of automatically recognizing emotional states from gaits, with the characteristics meeting the application requirements.

  8. A comparative collision-based analysis of human gait.

    PubMed

    Lee, David V; Comanescu, Tudor N; Butcher, Michael T; Bertram, John E A

    2013-11-22

    This study compares human walking and running, and places them within the context of other mammalian gaits. We use a collision-based approach to analyse the fundamental dynamics of the centre of mass (CoM) according to three angles derived from the instantaneous force and velocity vectors. These dimensionless angles permit comparisons across gait, species and size. The collision angle Φ, which is equivalent to the dimensionless mechanical cost of transport CoTmech, is found to be three times greater during running than walking of humans. This threefold difference is consistent with previous studies of walking versus trotting of quadrupeds, albeit tends to be greater in the gaits of humans and hopping bipeds than in quadrupeds. Plotting the collision angle Φ together with the angles of the CoM force vector Θ and velocity vector Λ results in the functional grouping of bipedal and quadrupedal gaits according to their CoM dynamics-walking, galloping and ambling are distinguished as separate gaits that employ collision reduction, whereas trotting, running and hopping employ little collision reduction and represent more of a continuum that is influenced by dimensionless speed. Comparable with quadrupedal mammals, collision fraction (the ratio of actual to potential collision) is 0.51 during walking and 0.89 during running, indicating substantial collision reduction during walking, but not running, of humans.

  9. Quality of Life and Gait in Elderly Group

    PubMed Central

    Taguchi, Carlos Kazuo; Teixeira, Jacqueline Pitanga; Alves, Lucas Vieira; Oliveira, Priscila Feliciano; Raposo, Oscar Felipe Falcão

    2015-01-01

    Introduction  The process of aging could lead to seniors being more prone to falls, which affects their quality of life. Objective  The objective of this study is to investigate the relationship between quality of life and gait in the elderly. Methods  We used World Health Organization Quality of Life-Brief (WHOQOL-Brief) Brazilian version and the Dynamic Gait Index to assess fifty-six volunteers from the northeast of Brazil. Ages ranged from 60 to 85 years. Results  The Dynamic Gait Index, which indicates the probability of falls, resulted in 36.3% of the sample presenting abnormal results. There was correlation between domain 2 (psychological) and domain 4 (environment) with domain 1(Physical) and domain 3 (Social); a negative correlation between age and Domain 2; correlation between Question 1 (How would you rate your quality of life?) and domains 1, 2, and 4 and no correlation between questions 1 and 2 (How satisfied are you with your health?). Question 2 was correlated with all of the domains. There was negative association between question 1 and falls, and a slight correlation between the Dynamic Gait Index scores and Question 1. Conclusion  The self-perception of the study group about their quality of life was either good or very good, even though a considerable percentage of individuals had suffered falls or reported gait disturbances. PMID:27413405

  10. Perception of gait patterns that deviate from normal and symmetric biped locomotion

    PubMed Central

    Handžić, Ismet; Reed, Kyle B.

    2015-01-01

    This study examines the range of gait patterns that are perceived as healthy and human-like with the goal of understanding how much asymmetry is allowable in a gait pattern before other people start to notice a gait impairment. Specifically, this study explores if certain abnormal walking patterns can be dismissed as unimpaired or not uncanny. Altering gait biomechanics is generally done in the fields of prosthetics and rehabilitation, however the perception of gait is often neglected. Although a certain gait can be functional, it may not be considered as normal by observers. On the other hand, an abnormally perceived gait may be more practical or necessary in some situations, such as limping after an injury or stroke and when wearing a prosthesis. This research will help to find the balance between the form and function of gait. Gait patterns are synthetically created using a passive dynamic walker (PDW) model that allows gait patterns to be systematically changed without the confounding influence from human sensorimotor feedback during walking. This standardized method allows the perception of specific changes in gait to be studied. The PDW model was used to produce walking patterns that showed a degree of abnormality in gait cadence, knee height, step length, and swing time created by changing the foot roll-over-shape, knee damping, knee location, and leg masses. The gait patterns were shown to participants who rated them according to separate scales of impairment and uncanniness. The results indicate that some pathological and asymmetric gait patterns are perceived as unimpaired and normal. Step time and step length asymmetries less than 5%, small knee location differences, and gait cadence changes of 25% do not result in a change in perception. The results also show that the parameters of a pathologically or uncanny perceived gait can be beneficially altered by increasing other independent parameters, in some sense masking the initial pathology. PMID:25774144

  11. Validation of a Footwear-Based Gait Analysis System With Action-Related Feedback.

    PubMed

    Minto, Simone; Zanotto, Damiano; Boggs, Emily Marie; Rosati, Giulio; Agrawal, Sunil K

    2016-09-01

    Quantitative gait analysis enables clinicians to evaluate patient mobility and to diagnose neuromuscular disorders. The clinical application of gait analysis is currently limited by the high operating costs of gait laboratories. The use of instrumented footwear that performs out of the lab measurements on subjects' walking patterns is a promising way to overcome this limitation. Besides serving as assessment tools, such devices can also act as retraining tools that help regulate a patient's gait with acoustic or vibrotactile stimuli.

  12. Perception of gait patterns that deviate from normal and symmetric biped locomotion.

    PubMed

    Handžić, Ismet; Reed, Kyle B

    2015-01-01

    This study examines the range of gait patterns that are perceived as healthy and human-like with the goal of understanding how much asymmetry is allowable in a gait pattern before other people start to notice a gait impairment. Specifically, this study explores if certain abnormal walking patterns can be dismissed as unimpaired or not uncanny. Altering gait biomechanics is generally done in the fields of prosthetics and rehabilitation, however the perception of gait is often neglected. Although a certain gait can be functional, it may not be considered as normal by observers. On the other hand, an abnormally perceived gait may be more practical or necessary in some situations, such as limping after an injury or stroke and when wearing a prosthesis. This research will help to find the balance between the form and function of gait. Gait patterns are synthetically created using a passive dynamic walker (PDW) model that allows gait patterns to be systematically changed without the confounding influence from human sensorimotor feedback during walking. This standardized method allows the perception of specific changes in gait to be studied. The PDW model was used to produce walking patterns that showed a degree of abnormality in gait cadence, knee height, step length, and swing time created by changing the foot roll-over-shape, knee damping, knee location, and leg masses. The gait patterns were shown to participants who rated them according to separate scales of impairment and uncanniness. The results indicate that some pathological and asymmetric gait patterns are perceived as unimpaired and normal. Step time and step length asymmetries less than 5%, small knee location differences, and gait cadence changes of 25% do not result in a change in perception. The results also show that the parameters of a pathologically or uncanny perceived gait can be beneficially altered by increasing other independent parameters, in some sense masking the initial pathology.

  13. Comparative abilities of Microsoft Kinect and Vicon 3D motion capture for gait analysis.

    PubMed

    Pfister, Alexandra; West, Alexandre M; Bronner, Shaw; Noah, Jack Adam

    2014-07-01

    Biomechanical analysis is a powerful tool in the evaluation of movement dysfunction in orthopaedic and neurologic populations. Three-dimensional (3D) motion capture systems are widely used, accurate systems, but are costly and not available in many clinical settings. The Microsoft Kinect™ has the potential to be used as an alternative low-cost motion analysis tool. The purpose of this study was to assess concurrent validity of the Kinect™ with Brekel Kinect software in comparison to Vicon Nexus during sagittal plane gait kinematics. Twenty healthy adults (nine male, 11 female) were tracked while walking and jogging at three velocities on a treadmill. Concurrent hip and knee peak flexion and extension and stride timing measurements were compared between Vicon and Kinect™. Although Kinect measurements were representative of normal gait, the Kinect™ generally under-estimated joint flexion and over-estimated extension. Kinect™ and Vicon hip angular displacement correlation was very low and error was large. Kinect™ knee measurements were somewhat better than hip, but were not consistent enough for clinical assessment. Correlation between Kinect™ and Vicon stride timing was high and error was fairly small. Variability in Kinect™ measurements was smallest at the slowest velocity. The Kinect™ has basic motion capture capabilities and with some minor adjustments will be an acceptable tool to measure stride timing, but sophisticated advances in software and hardware are necessary to improve Kinect™ sensitivity before it can be implemented for clinical use.

  14. A Compact Forearm Crutch Based on Force Sensors for Aided Gait: Reliability and Validity

    PubMed Central

    Chamorro-Moriana, Gema; Sevillano, José Luis; Ridao-Fernández, Carmen

    2016-01-01

    Frequently, patients who suffer injuries in some lower member require forearm crutches in order to partially unload weight-bearing. These lesions cause pain in lower limb unloading and their progression should be controlled objectively to avoid significant errors in accuracy and, consequently, complications and after effects in lesions. The design of a new and feasible tool that allows us to control and improve the accuracy of loads exerted on crutches during aided gait is necessary, so as to unburden the lower limbs. In this paper, we describe such a system based on a force sensor, which we have named the GCH System 2.0. Furthermore, we determine the validity and reliability of measurements obtained using this tool via a comparison with the validated AMTI (Advanced Mechanical Technology, Inc., Watertown, MA, USA) OR6-7-2000 Platform. An intra-class correlation coefficient demonstrated excellent agreement between the AMTI Platform and the GCH System. A regression line to determine the predictive ability of the GCH system towards the AMTI Platform was found, which obtained a precision of 99.3%. A detailed statistical analysis is presented for all the measurements and also segregated for several requested loads on the crutches (10%, 25% and 50% of body weight). Our results show that our system, designed for assessing loads exerted by patients on forearm crutches during assisted gait, provides valid and reliable measurements of loads. PMID:27338396

  15. Easy-to-use, general, and accurate multi-Kinect calibration and its application to gait monitoring for fall prediction.

    PubMed

    Staranowicz, Aaron N; Ray, Christopher; Mariottini, Gian-Luca

    2015-01-01

    Falls are the most-common causes of unintentional injury and death in older adults. Many clinics, hospitals, and health-care providers are urgently seeking accurate, low-cost, and easy-to-use technology to predict falls before they happen, e.g., by monitoring the human walking pattern (or "gait"). Despite the wide popularity of Microsoft's Kinect and the plethora of solutions for gait monitoring, no strategy has been proposed to date to allow non-expert users to calibrate the cameras, which is essential to accurately fuse the body motion observed by each camera in a single frame of reference. In this paper, we present a novel multi-Kinect calibration algorithm that has advanced features when compared to existing methods: 1) is easy to use, 2) it can be used in any generic Kinect arrangement, and 3) it provides accurate calibration. Extensive real-world experiments have been conducted to validate our algorithm and to compare its performance against other multi-Kinect calibration approaches, especially to show the improved estimate of gait parameters. Finally, a MATLAB Toolbox has been made publicly available for the entire research community.

  16. A Review of Balance and Gait Capacities in Relation to Falls in Persons with Intellectual Disability

    ERIC Educational Resources Information Center

    Enkelaar, Lotte; Smulders, Ellen; van Schrojenstein Lantman-de Valk, Henny; Geurts, Alexander C. H.; Weerdesteyn, Vivian

    2012-01-01

    Limitations in mobility are common in persons with intellectual disabilities (ID). As balance and gait capacities are key aspects of mobility, the prevalence of balance and gait problems is also expected to be high in this population. The objective of this study was to critically review the available literature on balance and gait characteristics…

  17. Gait variability in people with neurological disorders: A systematic review and meta-analysis.

    PubMed

    Moon, Yaejin; Sung, JongHun; An, Ruopeng; Hernandez, Manuel E; Sosnoff, Jacob J

    2016-06-01

    There has been growing evidence showing gait variability provides unique information about gait characteristics in neurological disorders. This study systemically reviewed and quantitatively synthesized (via meta-analysis) existing evidence on gait variability in various neurological diseases, including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), cerebellar ataxia (CA), Huntington's disease (HD), multiple sclerosis (MS), and Parkinson's disease (PD). Keyword search were conducted in PubMed, Web of science, Cumulative Index to Nursing and Allied Health Literature, and Cochrane Library. Meta-analysis was performed to estimate the pooled effect size for gait variability for each neurological group. Meta-regression was performed to compare gait variability across multiple groups with neurological diseases. Gait variability of 777 patients with AD, ALS, CA, HD, MS, or PD participating in 25 studies was included in meta-analysis. All pathological groups had increased amount of gait variability and loss of fractal structure of gait dynamics compared to healthy controls, and gait variability differentiated distinctive neurological conditions. The HD groups had the highest alterations in gait variability among all pathological groups, whereas the PD, AD and MS groups had the lowest. Interventions that aim to improve gait function in patients with neurological disorders should consider the heterogeneous relationship between gait variability and neurological conditions.

  18. Gait Pattern Differences between Children with Mild Scoliosis and Children with Unilateral Cerebral Palsy

    PubMed Central

    Domagalska-Szopa, Małgorzata; Szopa, Andrzej

    2014-01-01

    This study was conducted to investigate the effects of asymmetrical body posture alone, i.e., the effects seen in children with mild scoliosis, vs. the effects of body posture control impairment, i.e., those seen in children with unilateral cerebral palsy on gait patterns. Three-dimensional instrumented gait analysis (3DGA) was conducted in 45 children with hemiplegia and 51 children with mild scoliosis. All the children were able to walk without assistance devices. A set of 35 selected spatiotemporal gait and kinematics parameters were evaluated when subjects walked on a treadmill. A cluster analysis revealed 3 different gait patterns: a scoliotic gait pattern and 2 different hemiplegic gait patterns. The results showed that the discrepancy in gait patterns was not simply a lower limb kinematic deviation in the sagittal plane, as expected. Additional altered kinematics, such as pelvic misorientation in the coronal plane in both the stance and swing phases and inadequate stance phase hip ad/abduction, which resulted from postural pattern features, were distinguished between the 3 gait patterns. Our study provides evidence for a strong correlation between postural and gait patterns in children with unilateral cerebral palsy. Information on differences in gait patterns may be used to improve the guidelines for early therapy for children with hemiplegia before abnormal gait patterns are fully established. The gait pathology characteristic of scoliotic children is a potential new direction for treating scoliosis that complements the standard posture and walking control therapy exercises with the use of biofeedback. PMID:25089908

  19. Abnormal reciprocal inhibition between antagonist muscles in Parkinson's disease.

    PubMed

    Meunier, S; Pol, S; Houeto, J L; Vidailhet, M

    2000-05-01

    Disynaptic Ia reciprocal inhibition acts, at the spinal level, by actively inhibiting antagonist motor neurons and reducing the inhibition of agonist motor neurons. The deactivation of this pathway in Parkinson's disease is still debated. Disynaptic reciprocal inhibition of H reflexes in the forearm flexor muscles was examined in 15 control subjects and 16 treated parkinsonian patients at rest and at the onset of a voluntary wrist flexion. Two patients were reassessed 18 h after withdrawal of antiparkinsonian medication. At rest, the level of Ia reciprocal inhibition between the wrist antagonist muscles was not significantly different between patients and controls. In contrast, clear abnormalities of this inhibition were revealed by voluntary movements in the patients. In normal subjects, at the onset of a wrist flexion, Ia reciprocal inhibition showed a large decrease, and we argue that this decrease is supraspinal in origin. On the less affected sides of the patients the descending modulation was still present but lower than in controls; on the more affected sides this modulation had vanished almost completely. These movement-induced abnormalities of disynaptic Ia reciprocal inhibition were closely associated with Parkinson's disease but were probably not dependent on L-dopa. They could play a role in the disturbances of precise voluntary movements observed in Parkinson's disease.

  20. Prosocial behaviour emerges independent of reciprocity in cottontop tamarins.

    PubMed

    Cronin, Katherine A; Schroeder, Kori K E; Snowdon, Charles T

    2010-12-22

    The cooperative breeding hypothesis posits that cooperatively breeding species are motivated to act prosocially, that is, to behave in ways that provide benefits to others, and that cooperative breeding has played a central role in the evolution of human prosociality. However, investigations of prosocial behaviour in cooperative breeders have produced varying results and the mechanisms contributing to this variation are unknown. We investigated whether reciprocity would facilitate prosocial behaviour among cottontop tamarins, a cooperatively breeding primate species likely to engage in reciprocal altruism, by comparing the number of food rewards transferred to partners who had either immediately previously provided or denied rewards to the subject. Subjects were also tested in a non-social control condition. Overall, results indicated that reciprocity increased food transfers. However, temporal analyses revealed that when the tamarins' behaviour was evaluated in relation to the non-social control, results were best explained by (i) an initial depression in the transfer of rewards to partners who recently denied rewards, and (ii) a prosocial effect that emerged late in sessions independent of reciprocity. These results support the cooperative breeding hypothesis, but suggest a minimal role for positive reciprocity, and emphasize the importance of investigating proximate temporal mechanisms underlying prosocial behaviour.

  1. Gait pattern in myotonic dystrophy (Steinert disease): a kinematic, kinetic and EMG evaluation using 3D gait analysis.

    PubMed

    Galli, Manuela; Cimolin, Veronica; Crugnola, Veronica; Priano, Lorenzo; Menegoni, Francesco; Trotti, Claudio; Milano, Eva; Mauro, Alessandro

    2012-03-15

    We investigated the gait pattern of 10 patients with myotonic dystrophy (Steinert disease; 4 females, 6 males; age: 41.5+7.6 years), compared to 20 healthy controls, through manual muscle test and gait analysis, in terms of kinematic, kinetic and EMG data. In most of patients (80%) distal muscle groups were weaker than proximal ones. Weakness at lower limbs was in general moderate to severe and MRC values evidenced a significant correlation between tibialis anterior and gastrocnemius medialis (R=0.91). An overall observation of gait pattern in patients when compared to controls showed that most spatio-temporal parameters (velocity, step length and cadence) were significantly different. As concerns kinematics, patients' pelvic tilt was globally in a higher position than control group, with reduced hip extension ability in stance phase and limited range of motion; 60% of the limbs revealed knee hyperextension during midstance and ankle joints showed a quite physiological position at initial contact and higher dorsiflexion during stance phase if compared to healthy individuals. Kinetic plots evidenced higher hip power during loading response and lower ankle power generation in terminal stance. The main EMG abnormalities were seen in tibialis anterior and gastrocnemius medialis muscles. In this study gait analysis gives objective and quantitative information about the gait pattern and the deviations due to the muscular situation of these patients; these results are important from a clinical point of view and suggest that rehabilitation programs for them should take these findings into account.

  2. Effect of Task Specific Exercises, Gait Training, and Visual Biofeedback on Equinovarus Gait among Individuals with Stroke: Randomized Controlled Study

    PubMed Central

    Khallaf, Mohamed Elsayed; Gabr, Ahmed Maher; Fayed, Eman Elsayed

    2014-01-01

    Background and Purpose. Equinovarus foot is a common sign after stroke. The aim of this study is to investigate the effect of task specific exercises, gait training, and visual biofeedback on correcting equinovarus gait among individuals with stroke. Subjects and Methods. Sixteen subjects with ischemic stroke were randomly assigned to two equal groups (G1 and G2). All the patients were at stage 4 of motor recovery of foot according to Chedoke-McMaster Stroke Assessment without any cognitive dysfunction. E-med pedography was used to measure contact time, as well as force underneath hind and forefoot during walking. Outcome measures were collected before randomization, one week after the last session, and four weeks later. Participants in G1 received task specific exercises, gait training, and visual biofeedback and a traditional physical therapy program was applied for participants in G2 for 8 weeks. Results. Significant improvement was observed among G1 patients (P ≤ 0.05) which lasts one month after therapy termination. On the other hand, there were no significant differences between measurements of the participants in G2. Between groups comparison also revealed a significant improvement in G1 with long lasting effect. Conclusion. The results of this study showed a positive long lasting effect of the task specific exercises, gait training, and visual biofeedback on equinovarus gait pattern among individuals with stroke. PMID:25538853

  3. Gait apraxia after bilateral supplementary motor area lesion

    PubMed Central

    Della, S; Francescani, A; Spinnler, H

    2002-01-01

    Objectives: The study aimed at addressing the issue of the precise nature of gait apraxia and the cerebral dysfunction responsible for it. Methods: The case of a patient, affected by a bilateral infarction limited to a portion of the anterior cerebral artery territory is reported. The patient's ability to walk was formally assessed by means of a new standardised test. Results: Due to an anomaly within the anterior cerebral artery system, the patient's lesion was centred on the supplementary motor regions of both hemispheres. He presented with clear signs of gait apraxia that could not be accounted for by paresis or other neurological deficits. No signs of any other form of apraxia were detected. Conclusions: The clinical profile of the patient and the analysis of 49 cases from previous literature suggest that gait apraxia should be considered a clinical entity in its own right and lesions to the supplementary motor areas are responsible for it. PMID:11784830

  4. Ultrasonic Measurement of Dynamic Muscle Behavior for Poststroke Hemiparetic Gait

    PubMed Central

    Chen, Xin; Shi, Wenxiu; Wang, Jun; Xiang, Yun

    2017-01-01

    Quantitative evaluation of the hemiparesis status for a poststroke patient is still challenging. This study aims to measure and investigate the dynamic muscle behavior in poststroke hemiparetic gait using ultrasonography. Twelve hemiparetic patients walked on a treadmill, and EMG, joint angle, and ultrasonography were simultaneously recorded for the gastrocnemius medialis muscle. Pennation angle was automatically extracted from ultrasonography using a tracking algorithm reported previously. The characteristics of EMG, joint angle, and pennation angle in gait cycle were calculated for both (affected and unaffected) sides of lower limbs. The results suggest that pennation angle could work as an important morphological index to continuous muscle contraction. The change pattern of pennation angle between the affected and unaffected sides is different from that of EMG. These findings indicate that morphological parameter extracted from ultrasonography can provide different information from that provided by EMG for hemiparetic gait. PMID:28232945

  5. Design of active orthoses for a robotic gait rehabilitation system

    NASA Astrophysics Data System (ADS)

    Villa-Parra, A. C.; Broche, L.; Delisle-Rodríguez, D.; Sagaró, R.; Bastos, T.; Frizera-Neto, A.

    2015-09-01

    An active orthosis (AO) is a robotic device that assists both human gait and rehabilitation therapy. This work proposes portable AOs, one for the knee joint and another for the ankle joint. Both AOs will be used to complete a robotic system that improves gait rehabilitation. The requirements for actuator selection, the biomechanical considerations during the AO design, the finite element method, and a control approach based on electroencephalographic and surface electromyographic signals are reviewed. This work contributes to the design of AOs for users with foot drop and knee flexion impairment. However, the potential of the proposed AOs to be part of a robotic gait rehabilitation system that improves the quality of life of stroke survivors requires further investigation.

  6. Underwater treadmill training and gait ability in the normal adult

    PubMed Central

    Kim, Myoung-Kwon; Lee, Si-A

    2017-01-01

    [Purpose] Our working hypothesis is that underwater treadmill training improves normal people’s gait ability. [Subjects and Methods] Twenty-five healthy subjects with no orthopedic history of lower extremity were recruited. Gait training is performed using an underwater treadmill (HydroTrack® Underwater Treadmill System, Conray, Inc., Phoenix, AZ, USA), for twenty minutes per session, five sessions a week for four weeks. The water temperature was set at about 33 °C and the depth was fixed to reach between the subjects’ xiphoid process and the navel. [Results] After the intervention, step length, velocity, and cadence increased significantly. [Conclusion] This study conducted underwater treadmill training with normal people, with positive effects on gait ability. PMID:28210041

  7. Criteria for dynamic similarity in bouncing gaits.

    PubMed

    Bullimore, Sharon R; Donelan, J Maxwell

    2008-01-21

    Animals of different sizes tend to move in a dynamically similar manner when travelling at speeds corresponding to equal values of a dimensionless parameter (DP) called the Froude number. Consequently, the Froude number has been widely used for defining equivalent speeds and predicting speeds of locomotion by extinct species and on other planets. However, experiments using simulated reduced gravity have demonstrated that equality of the Froude number does not guarantee dynamic similarity. This has cast doubt upon the usefulness of the Froude number in locomotion research. Here we use dimensional analysis of the planar spring-mass model, combined with Buckingham's Pi-Theorem, to demonstrate that four DPs must be equal for dynamic similarity in bouncing gaits such as trotting, hopping and bipedal running. This can be reduced to three DPs by applying the constraint of maintaining a constant average speed of locomotion. Sensitivity analysis indicates that all of these DPs are important for predicting dynamic similarity. We show that the reason humans do not run in a dynamically similar manner at equal Froude number in different levels of simulated reduced gravity is that dimensionless leg stiffness decreases as gravity increases. The reason that the Froude number can predict dynamic similarity in Earth gravity is that dimensionless leg stiffness and dimensionless vertical landing speed are both independent of size. In conclusion, although equal Froude number is not sufficient for dynamic similarity, it is a necessary condition. Therefore, to detect fundamental differences in locomotion, animals of different sizes should be compared at equal Froude number, so that they can be as close to dynamic similarity as possible. More generally, the concept of dynamic similarity provides a powerful framework within which similarities and differences in locomotion can be interpreted.

  8. Investigation on the Reciprocity Principle with In-Situ Pumping Test in Confined Aquifer

    NASA Astrophysics Data System (ADS)

    Chen, Yong-Lin; Lin, Hong-Ru; Huang, Shao-Yang; Yeh, Tian-Chyi J.; Wen, Jet-Chau

    2016-04-01

    In this study, the pumping test of reciprocity between wells is developed for 11 wells located on campus of NYUST. The reciprocity analysis is conducted with the heterogeneous hydraulic properties distributions of the site. The mathematical theory of reciprocity implies that choose one as stimulation point and the other as observed response point in two known points at the same random field. Repeat the above action, the response behavior should have the reciprocity between the two points. However, the lack of literature with the field experiment to prove that reciprocity principle. Therefore, this study is expected to investigate the reciprocity of drawdown with the pumping test which will have heterogeneous hydraulic properties distributions obtained by inverse process. In general, there are two ways to investigate the reciprocity of pumping tests of two wells. One way is to evaluate the drawdown reciprocity of two sequential wells. From the evaluation the reciprocity of the drawdown behavior during the sequential pumping wells, the reciprocity of the drawdown behavior is investigated. The other one is to estimate cross-correlation between the drawdown behavior of the sequential pumping wells and heterogeneous hydraulic properties distributions. The reciprocity of between the drawdown and the heterogeneous hydraulic properties distributions is therefore can be investigated. This study proved the reciprocity of drawdown with the sequential pumping test and heterogeneous hydraulic properties distributions obtained by inverse method. Meanwhile, we proved the reciprocity is existed during the pumping test in the confined aquifer. Keywords: Reciprocity, Cross-correlation, Confined aquifer, Stimulation, Response

  9. Relationship of regional brain β-amyloid to gait speed

    PubMed Central

    Payoux, Pierre; Djilali, Adel; Delrieu, Julien; Hoogendijk, Emiel O.; Rolland, Yves; Cesari, Matteo; Weiner, Michael W.; Andrieu, Sandrine; Vellas, Bruno

    2016-01-01

    Objective: To investigate in vivo the relationship of regional brain β-amyloid (Aβ) to gait speed in a group of elderly individuals at high risk for dementia. Methods: Cross-sectional associations between brain Aβ as measured with [18F]florbetapir PET and gait speed were examined in 128 elderly participants. Subjects ranged from healthy to mildly cognitively impaired enrolled in the control arm of the multidomain intervention in the Multidomain Alzheimer Preventive Trial (MAPT). Nearly all participants presented spontaneous memory complaints. Regional [18F]florbetapir (AV45) standardized uptake volume ratios were obtained via semiautomated quantitative analysis using the cerebellum as reference region. Gait speed was measured by timing participants while they walked 4 meters. Associations were explored with linear regression, correcting for age, sex, education, body mass index (BMI), and APOE genotype. Results: We found a significant association between Aβ in the posterior and anterior putamen, occipital cortex, precuneus, and anterior cingulate and slow gait speed (all corrected p < 0.05). A multivariate model emphasized the locations of the posterior putamen and the precuneus. Aβ burden explained up to 9% of the variance in gait speed, and significantly improved regression models already containing demographic variables, BMI, and APOE status. Conclusions: The present PET study confirms, in vivo, previous postmortem evidence showing an association between Alzheimer disease (AD) pathology and gait speed, and provides additional evidence on potential regional effects of brain Aβ on motor function. More research is needed to elucidate the neural mechanisms underlying these regional associations, which may involve motor and sensorimotor circuits hitherto largely neglected in the pathophysiology of AD. PMID:26643548

  10. The effect of trunk flexion on able-bodied gait.

    PubMed

    Saha, Devjani; Gard, Steven; Fatone, Stefania

    2008-05-01

    This study examined the effect of sagittal trunk posture on the gait of able-bodied subjects. Understanding the effect of trunk posture on gait is of clinical interest since alterations in trunk posture often occur with age or in the presence of spinal pathologies, such as lumbar flatback. Gait analysis was conducted on 14 adults walking at self-selected slow, normal, and fast walking speeds while maintaining three trunk postures: upright, and with 25+/-7 degrees and 50+/-7 degrees of trunk flexion from the vertical. During trunk-flexed gait, subjects adopted a crouch posture characterized by sustained knee flexion during stance and an increase in ankle dorsiflexion and hip flexion angles. During stance, these kinematic adaptations produced a posterior shift in the positions of the trunk and pelvis, which helped to offset the anterior shift in the trunk mass that occurred with trunk flexion. In this way, kinematic adaptations may have been used to maintain balance by shifting the body's center of mass to a position similar to that of upright walking. These changes in lower limb joint kinematics created a phase lag in the position of the hip joint center relative to that of the ankle joint center in the sagittal plane. Alterations in the sagittal alignment of the hip and ankle joint positions were associated with a phase lag in the vertical position, velocity, and acceleration of the body's center of mass (BCOM) relative to upright walking. Since the vertical ground reaction force (GRF(v)) is proportional to the vertical acceleration of the BCOM, significant changes were also seen in the GRF(v) during trunk-flexed gait. In summary, kinematic adaptations necessary to maintain dynamic balance altered the trajectory and acceleration of the BCOM in the vertical direction, which was reflected in the GRF(v). The results of this study may help clinicians better understand the nature and impact of compensatory mechanisms in patients who exhibit trunk-flexed postures during

  11. A motor cortex excitability and gait analysis on Parkinsonian patients.

    PubMed

    Vacherot, François; Attarian, Shahram; Vaugoyeau, Marianne; Azulay, Jean-Philippe

    2010-12-15

    Transcranial magnetic stimulation (TMS) parameters were recorded in a lower limb muscle and correlated with the gait parameters of 25 patients with Parkinson's disease (PD) with and without dopamine substitution treatment (DST) and 10 control subjects. Single and paired-pulse TMS were recorded in the tibialis anterior muscle (TA). Gait analysis was performed using a 3D motion analysis system. Parkinsonian patients (PP) did not differ from the control subjects (CS) in terms of relaxed motor threshold, active motor threshold (AMT), cortical silent period (CSP), motor-evoked potential (MEP) amplitude and area, or paired-pulse TMS with short interstimulus intervals (ISI). At longer ISIs, paired-pulse TMS showed that the amplitudes of the conditioned MEPs were lower in untreated PP than in CS. DST partially compensated for this difference. Gait analysis showed that the gait of PP undergoing no treatment was slower and the stride length shorter than normal. Both of these parameters improved under DST, however. Analysis of data obtained on all the subjects combined showed that both of the latter parameters were correlated with the paired-pulse MEP amplitude and area at longer ISIs. In PP, the cortical areas responsible for the lower limb movements seem to undergo intracortical facilitation (ICF) impairments, whereas the intracortical inhibition process is normal. The ICF level was found to be associated to the stride length and the velocity. The fact that only these two gait parameters were found to be dopa responsive indicates that dopaminergic treatment may improve gait disorders by restoring the ICF.

  12. Stability and Harmony of Gait in Patients with Subacute Stroke.

    PubMed

    Iosa, Marco; Bini, Fabiano; Marinozzi, Franco; Fusco, Augusto; Morone, Giovanni; Koch, Giacomo; Martino Cinnera, Alex; Bonnì, Sonia; Paolucci, Stefano

    2016-01-01

    Stroke affects many gait features, such as gait stability, symmetry, and harmony. However, it is still unclear which of these features are directly altered by primary damage, and which are affected by the reduced walking speed. The aim of this study was to analyze the above gait features in patients with subacute stroke with respect to the values observed in age- and speed-matched healthy subjects. A wearable triaxial accelerometer and an optoelectronic device were used for assessing the upright gait stability, symmetry of trunk movements, and harmonic structure of gait phases by means of the root-mean-square (RMS) acceleration of the trunk, harmonic ratio (HR), and gait ratios (GRs), respectively. For healthy subjects, results showed that RMS acceleration increased with speed, HR peaked at a comfortable speed, and GRs tended towards the theoretical value of the golden ratio for speeds >1 m/s. At matched speed conditions, patients showed higher instabilities in the latero-lateral axis (p = 0.001) and reduced symmetry of trunk movements (p = 0.002). Different from healthy subjects, antero-posterior and latero-lateral acceleration harmonics were coupled in patients (R = 0.507, p = 0.023). Conversely, GRs were not more altered in patients than in slow-walking healthy subjects. In conclusion, patients with stroke showed some characteristics similar to those of the elderly when the latter subjects walk slowly, and some altered characteristics, such as increased latero-lateral instabilities coupled with movements performed along the antero-posterior axis.

  13. Gait planning for a quadruped robot with one faulty actuator

    NASA Astrophysics Data System (ADS)

    Chen, Xianbao; Gao, Feng; Qi, Chenkun; Tian, Xinghua

    2015-01-01

    Fault tolerance is essential for quadruped robots when they work in remote areas or hazardous environments. Many fault-tolerant gaits planning method proposed in the past decade constrained more degrees of freedom(DOFs) of a robot than necessary. Thus a novel method to realize the fault-tolerant walking is proposed. The mobility of the robot is analyzed first by using the screw theory. The result shows that the translation of the center of body(CoB) can be kept with one faulty actuator if the rotations of the body are controlled. Thus the DOFs of the robot body are divided into two parts: the translation of the CoB and the rotation of the body. The kinematic model of the whole robot is built, the algorithm is developed to actively control the body orientations at the velocity level so that the planned CoB trajectory can be realized in spite of the constraint of the faulty actuator. This gait has a similar generation sequence with the normal gait and can be applied to the robot at any position. Simulations and experiments of the fault-tolerant gait with one faulty actuator are carried out. The CoB errors and the body rotation angles are measured. Comparing to the traditional fault-tolerant gait they can be reduced by at least 50%. A fault-tolerant gait planning algorithm is presented, which not only realizes the walking of a quadruped robot with a faulty actuator, but also efficiently improves the walking performances by taking full advantage of the remaining operational actuators according to the results of the simulations and experiments.

  14. Gait status 17-26 years after selective dorsal rhizotomy.

    PubMed

    Langerak, Nelleke G; Tam, Nicholas; Vaughan, Christopher L; Fieggen, A Graham; Schwartz, Michael H

    2012-02-01

    The purpose of this study was to use three-dimensional gait analysis to describe the gait status of adults with spastic diplegia who underwent selective dorsal rhizotomy (SDR) in childhood. Outcome measures were the gait deviation index (GDI), non-dimensional temporal-distance parameters, and kinematics of the lower limbs. A total of 31 adults with spastic diplegia who had previously undergone SDR were eligible and participated in current study (SDR group). These participants had a median age of 26.8 years (range 21-44 years) with a mean time between surgery and assessment of 21.2±2.9 years (range 17-26 years). For comparison purposes, 43 typically developed adults also participated (CONTROL group), with a median age of 28.3 years (range 21-45 years). More than 17 years after SDR 58% of the SDR group showed improved GMFCS levels, while none of them deteriorated. The participants in the SDR group walked with a mild crouch gait, although there was a loading response, adequate swing-phase knee flexion, adequate swing-phase plantarflexion, reasonable speed and cadence. The gait status of the SDR group more than 17 years after SDR was similar to what has been reported in short-term follow-up studies, as well as our earlier 20 year follow-up study that did not include 3D gait analysis. Appropriate orthopaedic intervention was required in 61% of the study cohort. Whether the types and numbers of orthopaedic interventions are positively affected by SDR remains an open question. Further studies examining this question are warranted. In addition, long-term follow-up studies focused on other interventions would also be of clinical relevance.

  15. Gait post-stroke: Pathophysiology and rehabilitation strategies.

    PubMed

    Beyaert, C; Vasa, R; Frykberg, G E

    2015-11-01

    We reviewed neural control and biomechanical description of gait in both non-disabled and post-stroke subjects. In addition, we reviewed most of the gait rehabilitation strategies currently in use or in development and observed their principles in relation to recent pathophysiology of post-stroke gait. In both non-disabled and post-stroke subjects, motor control is organized on a task-oriented basis using a common set of a few muscle modules to simultaneously achieve body support, balance control, and forward progression during gait. Hemiparesis following stroke is due to disruption of descending neural pathways, usually with no direct lesion of the brainstem and cerebellar structures involved in motor automatic processes. Post-stroke, improvements of motor activities including standing and locomotion are variable but are typically characterized by a common postural behaviour which involves the unaffected side more for body support and balance control, likely in response to initial muscle weakness of the affected side. Various rehabilitation strategies are regularly used or in development, targeting muscle activity, postural and gait tasks, using more or less high-technology equipment. Reduced walking speed often improves with time and with various rehabilitation strategies, but asymmetric postural behaviour during standing and walking is often reinforced, maintained, or only transitorily decreased. This asymmetric compensatory postural behaviour appears to be robust, driven by support and balance tasks maintaining the predominant use of the unaffected side over the initially impaired affected side. Based on these elements, stroke rehabilitation including affected muscle strengthening and often stretching would first need to correct the postural asymmetric pattern by exploiting postural automatic processes in various particular motor tasks secondarily beneficial to gait.

  16. Gait improvement surgery in ambulatory children with diplegic cerebral palsy

    PubMed Central

    Terjesen, Terje; Lofterød, Bjørn; Skaaret, Ingrid

    2015-01-01

    Background and purpose Instrumented 3-D gait analyses (GA) in children with cerebral palsy (CP) have shown improved gait function 1 year postoperatively. Using GA, we assessed the outcome after 5 years and evaluated parental satisfaction with the surgery and the need for additional surgery. Patients and methods 34 ambulatory children with spastic diplegia had preoperative GA. Based on this GA, the children underwent 195 orthopedic procedures on their lower limbs at a mean age of 11.6 (6–19) years. On average, 5.7 (1–11) procedures per child were performed. Outcome measures were evaluation of gait quality using the gait profile score (GPS) and selected kinematic parameters, functional level using the functional mobility scale (FMS), and the degree of parental satisfaction. Results The mean GPS improved from 20.7° (95% CI: 19–23) preoperatively to 15.4° (95% CI: 14–17) 5 years postoperatively. There was no significant change in GPS between 1 and 5 years. The individual kinematic parameters at the ankle, knee, and hip improved statistically significantly, as did gait function (FMS). The mean parental satisfaction, on a scale from 0 to 10, was 7.7 (2–10) points. There was a need for additional surgical procedures in 14 children; this was more frequent in those who had the index operation at an early age. Interpretation The main finding was that orthopedic surgery based on preoperative GA gave marked improvements in gait function and quality, which were stable over a 5-year period. Nevertheless, additional orthopedic procedures were necessary in almost half of the children and further follow-up with GA for more than 1 year postoperatively is recommended in children with risk factors for such surgery. PMID:25637100

  17. Gait development during lifespan in subjects with Down syndrome.

    PubMed

    Rigoldi, Chiara; Galli, Manuela; Albertini, Giorgio

    2011-01-01

    In this work we studied and evaluated the effects of aging in a group of individuals with Down syndrome, using gait analysis as tool of investigation. 32 individuals suffering from Down syndrome (DS) were enrolled in this study as group of pathological participants. The control group (CG) was composed by 36 healthy subjects (10 children, 15 teenagers and 16 adults) in order to evidence the differences between the normal and the pathological gait evolution in age-matched comparisons. The assessment consisted of 3D gait analysis: all pathological participants performed gait analysis in a longitudinal examination, from childhood to adulthood. Participants with DS evidenced how the delay in cognitive aspects and the typical orthopedic features of DS, as ligament laxity, led to the development of different motor strategies. During childhood, for both the considered populations, we found large variability in the gait indexes, but after this age a split in gait development was evidenced: the participants with DS developed a strategy focused on the reduction of the degrees of freedom, increasing the dispersion of generated power in the frontal plane, while in healthy participants the strategy was focused on the use of all the degrees of freedom, in order to reach the effectiveness of the gesture and finalize their movements in sagittal progression. The present study reinforces the idea that early intervention aimed to improve muscle tone, in order to supply for the excessive ligament laxity and to improve motor coordination, could represent a real goal for a more effective movement and for the prevention of compensatory strategies that increase energy cost.

  18. Detection of gait cycles in treadmill walking using a Kinect.

    PubMed

    Auvinet, Edouard; Multon, Franck; Aubin, Carl-Eric; Meunier, Jean; Raison, Maxime

    2015-02-01

    Treadmill walking is commonly used to analyze several gait cycles in a limited space. Depth cameras, such as the low-cost and easy-to-use Kinect sensor, look promising for gait analysis on a treadmill for routine outpatient clinics. However, gait analysis is based on accurately detecting gait events (such as heel-strike) by tracking the feet which may be incorrectly recognized with Kinect. Indeed depth images could lead to confusion between the ground and the feet around the contact phase. To tackle this problem we assume that heel-strike events could be indirectly estimated by searching for extreme values of the distance between knee joints along the walking longitudinal axis. To evaluate this assumption, the motion of 11 healthy subjects walking on a treadmill was recorded using both an optoelectronic system and Kinect. The measures were compared to reference heel-strike events obtained with vertical foot velocity. When using the optoelectronic system to assess knee joints, heel-strike estimation errors were very small (29±18ms) leading to small cycle durations errors (0±15ms). To locate knees in depth map (Kinect), we used anthropometrical data to select the body point located at a constant height where the knee should be based on a reference posture. This Kinect approach gave heel-strike errors of 17±24ms (mean cycle duration error: 0±12ms). Using this same anthropometric methodology with optoelectronic data, the heel-strike error was 12±12ms (mean cycle duration error: 0±11ms). Compared to previous studies using Kinect, heel-strike and gait cycles were more accurately estimated, which could improve clinical gait analysis with such sensor.

  19. Effect of Rhythmic Auditory Stimulation on Hemiplegic Gait Patterns

    PubMed Central

    Shin, Yoon-Kyum; Chong, Hyun Ju

    2015-01-01

    Purpose The purpose of our study was to investigate the effect of gait training with rhythmic auditory stimulation (RAS) on both kinematic and temporospatial gait patterns in patients with hemiplegia. Materials and Methods Eighteen hemiplegic patients diagnosed with either cerebral palsy or stroke participated in this study. All participants underwent the 4-week gait training with RAS. The treatment was performed for 30 minutes per each session, three sessions per week. RAS was provided with rhythmic beats using a chord progression on a keyboard. Kinematic and temporospatial data were collected and analyzed using a three-dimensional motion analysis system. Results Gait training with RAS significantly improved both proximal and distal joint kinematic patterns in hip adduction, knee flexion, and ankle plantar flexion, enhancing the gait deviation index (GDI) as well as ameliorating temporal asymmetry of the stance and swing phases in patients with hemiplegia. Stroke patients with previous walking experience demonstrated significant kinematic improvement in knee flexion in mid-swing and ankle dorsiflexion in terminal stance. Among stroke patients, subacute patients showed a significantly increased GDI score compared with chronic patients. In addition, household ambulators showed a significant effect on reducing anterior tilt of the pelvis with an enhanced GDI score, while community ambulators significantly increased knee flexion in mid-swing phase and ankle dorsiflexion in terminal stance phase. Conclusion Gait training with RAS has beneficial effects on both kinematic and temporospatial patterns in patients with hemiplegia, providing not only clinical implications of locomotor rehabilitation with goal-oriented external feedback using RAS but also differential effects according to ambulatory function. PMID:26446657

  20. External validity of post-stroke interventional gait rehabilitation studies.

    PubMed

    Kafri, Michal; Dickstein, Ruth

    2017-01-01

    Gait rehabilitation is a major component of stroke rehabilitation, and is supported by extensive research. The objective of this review was to examine the external validity of intervention studies aimed at improving gait in individuals post-stroke. To that end, two aspects of these studies were assessed: subjects' exclusion criteria and the ecological validity of the intervention, as manifested by the intervention's technological complexity and delivery setting. Additionally, we examined whether the target population as inferred from the titles/abstracts is broader than the population actually represented by the reported samples.