Science.gov

Sample records for advanced research kstar

  1. Development of advanced x-ray imaging crystal spectrometer utilizing a large area segmented proportional counter for KSTAR

    SciTech Connect

    Lee, S. G.; Bak, J. G.; Nam, U. W.; Moon, M. K.; Cheon, J. K.

    2007-06-15

    An advanced x-ray imaging crystal spectrometer (XICS) for KSTAR tokamak has been developed by utilizing a segmented two dimensional (2D) position-sensitive multiwire proportional counter. The XICS for the KSTAR tokamak provides time-resolved measurements of the radial ion and electron temperature profiles, toroidal plasma rotation velocity, and ionization equilibrium. The segmented 2D detector with delay-line readout and supporting electronics has been adopted to improve the photon count rate capability. The current fabrication status of the XICS for the KSTAR tokamak and the first performance test results of the prototype segmented 2D detector are presented.

  2. Development of advanced x-ray imaging crystal spectrometer utilizing a large area segmented proportional counter for KSTAR

    NASA Astrophysics Data System (ADS)

    Lee, S. G.; Bak, J. G.; Nam, U. W.; Moon, M. K.; Cheon, J. K.

    2007-06-01

    An advanced x-ray imaging crystal spectrometer (XICS) for KSTAR tokamak has been developed by utilizing a segmented two dimensional (2D) position-sensitive multiwire proportional counter. The XICS for the KSTAR tokamak provides time-resolved measurements of the radial ion and electron temperature profiles, toroidal plasma rotation velocity, and ionization equilibrium. The segmented 2D detector with delay-line readout and supporting electronics has been adopted to improve the photon count rate capability. The current fabrication status of the XICS for the KSTAR tokamak and the first performance test results of the prototype segmented 2D detector are presented.

  3. Development of advanced x-ray imaging crystal spectrometer utilizing a large area segmented proportional counter for KSTAR.

    PubMed

    Lee, S G; Bak, J G; Nam, U W; Moon, M K; Cheon, J K

    2007-06-01

    An advanced x-ray imaging crystal spectrometer (XICS) for KSTAR tokamak has been developed by utilizing a segmented two dimensional (2D) position-sensitive multiwire proportional counter. The XICS for the KSTAR tokamak provides time-resolved measurements of the radial ion and electron temperature profiles, toroidal plasma rotation velocity, and ionization equilibrium. The segmented 2D detector with delay-line readout and supporting electronics has been adopted to improve the photon count rate capability. The current fabrication status of the XICS for the KSTAR tokamak and the first performance test results of the prototype segmented 2D detector are presented.

  4. Numerical Study of Equilibrium, Stability, and Advanced Resistive Wall Mode Feedback Algorithms on KSTAR

    NASA Astrophysics Data System (ADS)

    Katsuro-Hopkins, Oksana; Sabbagh, S. A.; Bialek, J. M.; Park, H. K.; Kim, J. Y.; You, K.-I.; Glasser, A. H.; Lao, L. L.

    2007-11-01

    Stability to ideal MHD kink/ballooning modes and the resistive wall mode (RWM) is investigated for the KSTAR tokamak. Free-boundary equilibria that comply with magnetic field coil current constraints are computed for monotonic and reversed shear safety factor profiles and H-mode tokamak pressure profiles. Advanced tokamak operation at moderate to low plasma internal inductance shows that a factor of two improvement in the plasma beta limit over the no-wall beta limit is possible for toroidal mode number of unity. The KSTAR conducting structure, passive stabilizers, and in-vessel control coils are modeled by the VALEN-3D code and the active RWM stabilization performance of the device is evaluated using both standard and advanced feedback algorithms. Steady-state power and voltage requirements for the system are estimated based on the expected noise on the RWM sensor signals. Using NSTX experimental RWM sensors noise data as input, a reduced VALEN state-space LQG controller is designed to realistically assess KSTAR stabilization system performance.

  5. Equilibrium of KSTAR Plasma

    NASA Astrophysics Data System (ADS)

    You, K.-I.; Lee, D.-K.; Lee, S. G.; Bak, J. G.; Hahn, S. H.; Lao, L.; Kstar Team

    2011-10-01

    We have installed the EFIT code on our computing system and made some modification to reconstruct the plasma equilibrium of KSTAR (Korea Superconducting Tokamak Advanced Research). KSTAR PF and TF coil systems use a CICC (Cable-In-Conduit Conductor) type superconductor. The CICC jacket material for most PF and all TF coils is Incoloy 908, which is a magnetic material with relative magnetic permeability greater than 10 in low external field. We newly introduced Diamagnetic Loop and variational Motion Stark Effect signals to equilibrium reconstruction. In this paper, we present some results of equilibrium reconstruction with the EFIT code, assess the effects of newly introduced diagnsotics signal on the equilibrium reconstruction and compare the EFIT results with the various diagnostics data in various plasma conditions including H- and L- modes. In addition, we will show the Incoloy908 effects on the plasma equilibrium.

  6. Current research activities and installation status of the X-ray imaging crystal spectrometer for KSTAR

    NASA Astrophysics Data System (ADS)

    Lee, S. G.; Bak, J. G.; Nam, U. W.; Moon, M. K.; Cheon, J. K.; Bitter, M.; Hill, K.

    2008-11-01

    An X-ray imaging crystal spectrometer (XICS) for KSTAR utilizing a four-segmented position-sensitive two dimensional (2D) multi-wire proportional counter and time-to-digital converter (TDC) based delay-line readout data acquisition system has been fabricated. The XICS provides spatially and temporally resolved measurements of the ion and electron temperatures, toroidal rotation velocity, impurity charge-state distributions, and ionization equilibrium. The four-segmented 2D detector with supporting electronics successfully demonstrated to improve the photon count-rate capability of the XICS system and a position resolution of the detector showed about 0.35 mm. A spectral resolution of the fabricated spectrometer has been measured using an X-ray tube before installation in the KSTAR tokamak. The current research activities and installation status of the spectrometer will be presented.

  7. Electron cyclotron emission diagnostics on KSTAR tokamak

    SciTech Connect

    Jeong, S. H.; Lee, K. D.; Kwon, M.; Kogi, Y.; Kawahata, K.; Nagayama, Y.; Mase, A.

    2010-10-15

    A new electron cyclotron emission (ECE) diagnostics system was installed for the Second Korea Superconducting Tokamak Advanced Research (KSTAR) campaign. The new ECE system consists of an ECE collecting optics system, an overmode circular corrugated waveguide system, and 48 channel heterodyne radiometer with the frequency range of 110-162 GHz. During the 2 T operation of the KSTAR tokamak, the electron temperatures as well as its radial profiles at the high field side were measured and sawtooth phenomena were also observed. We also discuss the effect of a window on in situ calibration.

  8. Design of a Doppler reflectometer for KSTAR

    SciTech Connect

    Lee, K. D. Nam, Y. U.; Seo, Seong-Heon; Kim, Y. S.

    2014-11-15

    A Doppler reflectometer has been designed to measure the poloidal propagation velocity on the Korea Superconducting Tokamak Advanced Research (KSTAR) tokamak. It has the operating frequency range of V-band (50-75 GHz) and the monostatic antenna configuration with extraordinary mode (X-mode). The single sideband modulation with an intermediate frequency of 50 MHz is used for the heterodyne measurement with the 200 MHz in-phase and quadrature (I/Q) phase detector. The corrugated conical horn antenna is used to approximate the Gaussian beam propagation and it is installed together with the oversized rectangular waveguides in the vacuum vessel. The first commissioning test of the Doppler reflectometer system on the KSTAR tokamak is planned in the 2014 KSTAR experimental campaign.

  9. KSTAR Equilibrium Reconstruction with EFIT Code

    NASA Astrophysics Data System (ADS)

    You, Kwang-Il; Lee, D. K.; Hahn, S. H.; Lao, L. L.

    2007-11-01

    For application to the KSTAR (Korea Superconducting Tokamak Advanced Research) device, we have made some modification to the EFIT code and installed it on our computing system. The main function of EFIT is reconstruction of plasma equilibrium using discharge data. After every discharge, the code will be automatically run for a chosen time array and the results will be stored in the same way as experimental data will be. An MDSplus system will be used as the data storage for KSTAR; therefore, the EFIT reads experimental data from the MDSplus server and writes the results to it. We have added some subroutines to EFIT for direct link with the MDSplus server and also converted EFIT to Fortran 95 form. Test runs of the code will be made by using plasma simulator in the KSTAR plasma control system. This paper will also present some results of equilibrium data obtained with the equilibrium mode of EFIT.

  10. Equilibrium Reconstruction of KSTAR First Plasma

    NASA Astrophysics Data System (ADS)

    You, K.-I.; Lee, D. K.; Park, B. H.; Lee, S. G.; Bak, J. G.; Seo, S. H.; Hahn, S. H.; Lao, L. L.

    2008-11-01

    To reconstruct the plasma equilibrium of KSTAR (Korea Superconducting Tokamak Advanced Research), we have made some modification to the EFIT code and installed it on our computing system. An MDSplus system is used for the data storage of KSTAR; thus, the EFIT reads experimental data from the MDSplus server and writes the results to it. We have modified some subroutines of the EFIT code for direct link with the MDSplus server. KSTAR PF and TF coil systems use a CICC (Cable-In-Conduit Conductor) type superconductor. The CICC jacket material for most PF and all TF coils is Incoloy 908, which is a magnetic material with relative magnetic permeability greater than 10 in low external field. The Incoloy 908 effects should, therefore, be considered in analyzing the magnetic diagnostics data. In this paper, we present our efforts to reconstruct the plasma equilibrium with EFIT code, including the compensation of Incoloy 908 effects.

  11. Equilibrium reconstruction using EFIT code for KSTAR

    NASA Astrophysics Data System (ADS)

    You, Kwang-Il; Lee, D. K.; Jeon, Y. M.; Hahn, S. H.; Lao, L. L.

    2006-10-01

    For application to the KSTAR (Korea Superconducting Tokamak Advanced Research) device, we have made some modification to the EFIT code and installed it on our computing system. The main function of EFIT is reconstruction of plasma equilibrium using discharge data. After every discharge, the code will be run for a chosen time array and the results will be stored in the same way as experimental data will be. An MDSplus system will be used as the data storage for KSTAR; therefore, the EFIT reads experimental data from the MDSplus server and writes the results to it. We have added some subroutines to EFIT for direct link with the MDSplus server and also converted it to Fortran 95 form. Test runs of the code will be made by using the KSTAR plasma control system. This paper will also present results of equilibrium data obtained with the equilibrium mode of EFIT.

  12. Diagnostics for first plasma and development plan on KSTAR

    SciTech Connect

    Lee, J. H.; Na, H. K.; Lee, S. G.; Bak, J. G.; Seo, D. C.; Seo, S. H.; Oh, S. T.; Ko, W. H.; Chung, J.; Nam, Y. U.; Lee, K. D.; Ka, E. M.; Oh, Y. K.; Kwon, M.; Jeong, S. H.

    2010-06-15

    The first plasma with target values of the plasma current and the pulse duration was finally achieved on June 13, 2008 in the Korea Superconducting Tokamak Advanced Research (KSTAR). The diagnostic systems played an important role in achieving successful first plasma operation for the KSTAR tokamak. The employed plasma diagnostic systems for the KSTAR first plasma including the magnetic diagnostics, millimeter-wave interferometer, inspection illuminator, H{sub {alpha}}, visible spectrometer, filterscope, and electron cyclotron emission (ECE) radiometer have provided the main plasma parameters, which are essential for the plasma generation, control, and physics understanding. Improvements to the first diagnostic systems and additional diagnostics including an x-ray imaging crystal spectrometer, reflectometer, ECE radiometer, resistive bolometer, and soft x-ray array are scheduled to be added for the next KSTAR experimental campaign in 2009.

  13. Motional Stark effect diagnostics for KSTAR

    NASA Astrophysics Data System (ADS)

    Chung, J.; Ko, J.; Howard, J.; Michael, C.; von Nessi, G.; Thorman, A.; De Bock, M. F. M.

    2014-10-01

    The motional Stark effect (MSE) diagnostic is used to measure the radial magnetic pitch-angle profile in neutral-beam-heated plasmas. The diagnostic relies upon the measurement of the polarization direction of Stark-split D-alpha emission from injected fast neutral atoms in a magnetic field. Measurements of the magnetic pitch angle are used with magnetic equilibrium reconstruction codes such as EFIT to calculate the safety factor in shaped plasmas. The MSE diagnostic is important for determining the shape of the q profile to optimize confinement and stability, and it has become a key element in high-performance tokamaks. For the purpose of achieving the high-performance operating region in the Korea Superconducting Tokamak Advanced Research KSTAR device, two types of methods are being studied. In KSTAR, a multichord PEM (photo-elastic modulator)-based MSE system is being developed, and an imaging MSE polarimetry system using the coherence imaging technique has been showing promising initial results during the last two KSTAR experimental campaigns in 2012 and 2013, respectively. In this paper, we describe the progress of the KSTAR MSE diagnostics.

  14. Advanced operation scenarios toward high-beta, steady-state plasmas in KSTAR

    NASA Astrophysics Data System (ADS)

    Yoon, Si-Woo; Jeon, Y. M.; Woo, M. H.; Bae, Y. S.; Kim, H. S.; Oh, Y. K.; Park, J. M.; Park, Y. S.; Kstar Team

    2016-10-01

    For the realization of the fusion reactor, solving issues for high-beta steady-state operation is one of the essential topics for the present superconducting tokamaks and in this regard, KSTAR has been focusing on maximizing performance and increasing pulse length simultaneously. Typically, study on high beta operation has been focusing on advanced scenario limited at relatively short pulse discharge and partial success has been reported previously. However, it must be stressed that it is critical to verify compatibility of the developed scenario to long-pulse operation and compared with that of the short-pulse, it is turned out stable long-pulse operation is possible only with a reduced level of beta. In this work, the results of recent approaches in long-pulse operation are presented focusing respectively on high betaN, high betap and high li scenarios. For high betaN, the achieved level is close to 3 with Ip =0.4 MA, BT =1.4T and Pext 6MW and it is found to be limited by m/n =2/1 tearing mode and is also sensitive on the internal inductance. For high betap, conditions of the maximum betap is investigated mainly by parametric scans of plasma current (Ip =0.4-0.7 MA) and also neutral beam injection power (3-5MW). The achieved betap is also close to 3 with Ip =0.4 MA, BT =2.9T and Pext 6MW and it is found to be limited by heating power and without indication of MHD activities. Finally, attempt for high li discharge will be addressed on scenario development and transient results.

  15. Present Status of the KSTAR Superconducting Magnet System Development

    NASA Astrophysics Data System (ADS)

    Kim, Keeman; H, K. Park; K, R. Park; B, S. Lim; S, I. Lee; M, K. Kim; Y, Chu; W, H. Chung; S, H. Baek; J Y, Choi; H, Yonekawa; A, Chertovskikh; Y, B. Chang; J, S. Kim; C, S. Kim; D, J. Kim; N, H. Song; K, P. Kim; Y, J. Song; I, S. Woo; W, S. Han; D, K. Lee; Y, K. Oh; K, W. Cho; J, S. Park; G, S. Lee; H, J. Lee; T, K. Ko; S, J. Lee

    2004-10-01

    The mission of Korea Superconducting Tokamak Advanced Research (KSTAR) project is to develop an advanced steady-state superconducting tokamak for establishing a scientific and technological basis for an attractive fusion reactor. Because one of the KSTAR mission is to achieve a steady-state operation, the use of superconducting coils is an obvious choice for the magnet system. The KSTAR superconducting magnet system consists of 16 Toroidal Field (TF) coils and 14 Poloidal Field (PF) coils. Internally-cooled Cable-In-Conduit Conductors (CICC) are put into use in both the TF and PF coil systems. The TF coil system provides a field of 3.5 T at the plasma center and the PF coil system is able to provide a flux swing of 17 V-sec. The major achievement in KSTAR magnet-system development includes the development of CICC, the development of a full-size TF model coil, the development of a coil system for background magnetic-field generation, the construction of a large-scale superconducting magnet and CICC test facility. TF and PF coils are in the stage of fabrication to pave the way for the scheduled completion of KSTAR by the end of 2006.

  16. Diamagnetic loop for the first plasma in the KSTAR machine.

    PubMed

    Bak, J G; Lee, S G; Ka, E M

    2008-10-01

    The diamagnetic loop (DL) is installed for the plasma diamagnetic measurement at the first plasma in the Korea superconducting tokamak advanced research (KSTAR) machine. Experimental results from the position measurement of the DL inside the KSTAR vacuum vessel and the vacuum flux measurement by using the DL for the evaluation of the geometrical data and the balance coefficient of the DL for the compensation of the vacuum flux in the diamagnetic measurement are described. In addition, a preliminary work of an instrument for a hardware compensation of the vacuum flux is presented.

  17. Diamagnetic loop for the first plasma in the KSTAR machine

    SciTech Connect

    Bak, J. G.; Lee, S. G.; Ka, E. M.

    2008-10-15

    The diamagnetic loop (DL) is installed for the plasma diamagnetic measurement at the first plasma in the Korea superconducting tokamak advanced research (KSTAR) machine. Experimental results from the position measurement of the DL inside the KSTAR vacuum vessel and the vacuum flux measurement by using the DL for the evaluation of the geometrical data and the balance coefficient of the DL for the compensation of the vacuum flux in the diamagnetic measurement are described. In addition, a preliminary work of an instrument for a hardware compensation of the vacuum flux is presented.

  18. Toroidal rotation studies in KSTAR

    NASA Astrophysics Data System (ADS)

    Lee, S. G.; Lee, H. H.; Yoo, J. W.; Kim, Y. S.; Ko, W. H.; Terzolo, L.; Bitter, M.; Hill, K.; KSTAR Team

    2014-10-01

    Investigation of the toroidal rotation is one of the most important topics for the magnetically confined fusion plasma researches since it is essential for the stabilization of resistive wall modes and its shear plays an important role to improve plasma confinement by suppressing turbulent transport. The most advantage of KSTAR tokamak for toroidal rotation studies is that it equips two main diagnostics including the high-resolution X-ray imaging crystal spectrometer (XICS) and charge exchange spectroscopy (CES). Simultaneous core toroidal rotation and ion temperature measurements of different impurity species from the XICS and CES have shown in reasonable agreement with various plasma discharges in KSTAR. It has been observed that the toroidal rotation in KSTAR is faster than that of other tokamak devices with similar machine size and momentum input. This may due to an intrinsically low toroidal field ripple and error field of the KSTAR device. A strong braking of the toroidal rotation by the n = 1 non-resonant magnetic perturbations (NRMPs) also indicates these low toroidal field ripple and error field. Recently, it has been found that n = 2 NRMPs can also damp the toroidal rotation in KSTAR. The detail toroidal rotation studies will be presented. Work supported by the Korea Ministry of Science, ICT and Future Planning under the KSTAR project.

  19. Ray Tracing Study of 170GHZ Electron Cyclotron Waves in Kstar Plasmas

    NASA Astrophysics Data System (ADS)

    Bae, Young-Soon; Joung, M.; Yang, H. L.; Namkung, W.; Cho, M. H.; Park, H.; Prater, R.; Ellis, R. A.; Hosea, J.

    2011-02-01

    The electron cyclotron heating/current drive (ECH/ECCD) system has become an essential tool for the fusion plasma research in toroidal devices. In Korea Superconducting Tokamak Advanced Research (KSTAR) tokamak, development of high power and multi-frequency ECH/ECCD system is in progress. The frequencies employed in KSTAR are 84 GHz, 110 GHz, and 170 GHz. Multiple frequency sources can easily support the wide range of operating regimes from 1.5 T to 3.5 T in KSTAR tokamak. In particular, the 170 GHz source, that will be adapted to the ITER, corresponds to the second harmonic frequency of the KSTAR operating range from 2.6 T to 3.5 T. This frequency will be mainly used for the control of the local plasma current profile to manipulate the internal MHD instabilities such as the neoclassical tearing mode (NTM) critical in high-beta plasma operation. This paper presents simulated ray tracings of the 170 GHz EC waves for a various plasma conditions in KSTAR. The TORAY-GA ray tracing code is used, along with Interactive Data Language (IDL) procedures that create the input files, to study the effect of ECH/ECCD on the plasma equilibrium profiles as a function of the initial density and temperature profiles and of toroidal field.

  20. Investigation of MHD instabilities and their dependence on plasma rotation in KSTAR*

    NASA Astrophysics Data System (ADS)

    Park, Y. S.; Sabbagh, S. A.; Berkery, J. W.; Bialek, J. M.; Jeon, Y. M.; Hahn, S. H.; Kim, J.; You, K.-I.; Lee, S. G.; Bak, J. G.; Lee, K. D.; Ko, W. H.; Bae, Y. S.

    2011-10-01

    A goal of the Korea Superconducting Tokamak Advanced Research (KSTAR) is to perform physics studies in support of ITER. With co-directed neutral beam injection, one expected difference between KSTAR and ITER is the degree and profile of the plasma rotation, which affects plasma stability. The present work examines instabilities that exist in KSTAR under plasma rotation conditions spanning the entire KSTAR operational space. Mode characteristics measured by electron cyclotron emission are compared to values computed from reconstructed plasma equilibria. Frequencies of the modes tied to plasma rotation are compared to measurements from an X-ray crystal spectrometer and charge exchange recombination spectroscopy. A first experiment producing non-resonant alteration of the plasma rotation profile by neoclassical toroidal viscosity will be attempted to access a low rotation operating space most applicable to ITER and examine the dependence of beta-limiting instabilities on rotation and rotation shear. Proximity of this new operational regime to MHD stability limits will be examined, as well as implications for n = 1 feedback stabilization planned for future KSTAR operation. Work supported by U.S. DOE grant DE-FG02-99ER54524.

  1. Simulation Study of Disruption and Halo Currents in the KSTAR Model Structure

    NASA Astrophysics Data System (ADS)

    Kim, J. Y.

    1999-11-01

    A detailed simulation study has been performed for the disruption load analysis in the Korea Superconducting Tokamak Advanced Research (KSTAR) device using the Tokamak Simulation Code. Two different types of disruptions (radial and vertical) are simulated for various initial equilibria and halo region models. Special emphasis is put on the behavior of halo currents in the KSTAR model structure, in which a highly conductive passive plate is located near the plasma. It is found that the path and magnitude of the poloidal halo current depend quite sensitively on the detailed structure model of the KSTAR plasma facing component (PFC). In particular, a local circulation of a very large poloidal halo current is observed to occur near the connector of the up-down passive plates when it is not electrically insulated. An explanation is presented for the physical origin of this rather unusual feature of the halo current in the KSTAR PFC environment. The large poloidal halo current can give a severe electromagnetic load to the KSTAR PFC structure, and an optimized PFC model structure is proposed which can substantially reduce the undesirable halo current.

  2. Mechanical and Thermal Characteristics of Insulation Materials for the KSTAR Magnet System at Cryogenic Temperature

    NASA Astrophysics Data System (ADS)

    Chung, Wooho; Lim, Bungsu; Kim, Myungkyu; Park, Hyunki; Kim, Keeman; Chu, Yong; Lee, Sangil

    2004-06-01

    The KSTAR(Korea Superconducting Tokamak Advanced Research) superconducting magnet is electrically insulated by the composite material of epoxy resin and glass fiber (2.5 kV/mm) and Kapton (8 kV/mm). The insulation composite material of epoxy resin and glass fiber is prepared using a VPI (Vacuum Pressure Impregnation) process. The superconducting magnet is under mechanical stress caused by the large temperature difference between the operation temperature of the magnet and room temperature. The large electro-magnetic force during the operation of the magnet is also exerted on the magnet. Therefore, the characteristics of the insulation material at cryogenic temperatures are very important and the tensile stress and thermal expansion coefficient for the insulation materials of the KSTAR superconducting magnet are measured. This paper presents results on mechanical properties of the insulation material for KSTAR magnets, such as density, ultimate tensile stress and thermal contraction between room temperature and cryogenic temperatures.

  3. Triton burnup measurements in KSTAR using a neutron activation system

    NASA Astrophysics Data System (ADS)

    Jo, Jungmin; Cheon, MunSeong; Kim, Jun Young; Rhee, T.; Kim, Junghee; Shi, Yue-Jiang; Isobe, M.; Ogawa, K.; Chung, Kyoung-Jae; Hwang, Y. S.

    2016-11-01

    Measurements of the time-integrated triton burnup for deuterium plasma in Korea Superconducting Tokamak Advanced Research (KSTAR) have been performed following the simultaneous detection of the d-d and d-t neutrons. The d-d neutrons were measured using a 3He proportional counter, fission chamber, and activated indium sample, whereas the d-t neutrons were detected using activated silicon and copper samples. The triton burnup ratio from KSTAR discharges is found to be in the range 0.01%-0.50% depending on the plasma conditions. The measured burnup ratio is compared with the prompt loss fraction of tritons calculated with the Lorentz orbit code and the classical slowing-down time. The burnup ratio is found to increase as plasma current and classical slowing-down time increase.

  4. Predictions of the poloidal asymmetries and transport frequencies in KSTAR

    SciTech Connect

    Bae, C. Lee, S. G.; Terzolo, L.; Stacey, W. M.

    2014-01-15

    The extended neoclassical rotation theory formulated in Miller flux surface geometry enables unprecedented neoclassical calculations of the poloidal asymmetries in density, rotation velocities, electrostatic potential along the flux surfaces, and of the inertial (Reynolds stress) and gyroviscous transport frequencies, which are strong functions of these asymmetries. This paper presents such calculations of the poloidal asymmetries and non-negligible inertial and gyroviscous transport frequencies in two KSTAR (Korea Superconducting Tokamak Advanced Research) [Kwon et al., Nucl. Fusion 51, 094006 (2011)] Neutral Beam Injection H-mode discharges. The in-out asymmetries in the velocities are an order of magnitude larger than their up-down asymmetries. The magnitudes of the predicted inertial and gyroviscous transport frequencies depend on the magnitudes of the density and velocity asymmetries. The neoclassically predicted density asymmetries are shown to correspond with the reported measurements in tokamaks and the predicted carbon toroidal velocities agree very well with the measurements in KSTAR.

  5. Initial measurements of fast ion loss in KSTAR

    SciTech Connect

    Kim, Junghee; Yoon, S. W.; Kim, W. C.; Kim, Jun Young; Garcia-Munoz, M.; Isobe, M.

    2012-10-15

    A fast ion loss detector (FILD) has been installed and tested in Korea Superconducting Tokamak Advanced Research (KSTAR). KSTAR FILD measures the energy and the pitch-angle of the escaping ions with the striking positions on the scintillator plane. Measurements of the fast ion loss have been performed for the neutral beam heated plasmas. Initial experimental results indicate the prompt losses from neutral beam are dominant and the effects of the resonant magnetic perturbation on the fast ion loss are investigated. In addition, further design change of the detector-head in order to avoid excessive heat load and to detect the fusion products or the fast ions having order of MeV of energy is also discussed.

  6. In-vessel visible inspection system on KSTAR.

    PubMed

    Chung, Jinil; Seo, D C

    2008-08-01

    To monitor the global formation of the initial plasma and damage to the internal structures of the vacuum vessel, an in-vessel visible inspection system has been installed and operated on the Korean superconducting tokamak advanced research (KSTAR) device. It consists of four inspection illuminators and two visible/H-alpha TV cameras. Each illuminator uses four 150 W metal-halide lamps with separate lamp controllers, and programmable progressive scan charge-coupled device cameras with 1004 x 1004 resolution at 48 framess and a resolution of 640 x 480 at 210 framess are used to capture images. In order to provide vessel inspection capability under any operation condition, the lamps and cameras are fully controlled from the main control room and protected by shutters from deposits during plasma operation. In this paper, we describe the design and operation results of the visible inspection system with the images of the KSTAR Ohmic discharges during the first plasma campaign.

  7. ECH-assisted startup at KSTAR

    SciTech Connect

    Bae, Y. S.; Joung, M.; Yoon, S. W.; Kim, J. H.; Hahn, S. H.; Kim, W. C.; Yang, H. L.; Oh, Y. K.; Bak, J. S.; Kwon, M.; Jeong, J. H.; Park, S. I.; Cho, M. H.; Namkung, W.; Jackson, G. L.; Humphreys, D.; Walker, M. L.; Gorelov, Y.; Leuer, J. A.; Hyatt, A. W.

    2009-11-26

    The electron cyclotron heating (ECH)-assisted startup was successful in the Korea Superconducting Tokamak Advanced Research (KSTAR) first plasma campaign completed in June, 2008. It was observed that the second harmonic EC wave of 0.35 MW was sufficient to achieve breakdown in the ECH pre-ionization phase, to allow burn through, and to sustain the plasma during the current ramp with a low loop voltage of 2.0 V. This corresponds to a toroidal electric field of 0.24 Vm{sup -1} at the innermost vacuum vessel wall (R = 1.3 m). Since there is no feedback control of the plasma radial position in the initial phase of the KSTAR first plasma campaign, wall contact caused the plasma current fall to zero soon after the ECH beam was turned off. Extending pulse duration of the ECH power to 190 ms allowed the plasma current to rise up to more than 100 kA with a ramp-up rate of 0.8 MA/s and the pulse duration of 210 ms. Later in the first plasma campaign, the plasma was sustained up to 865 ms with the help of additional heating of 350-ms long ECH beam and with the help of the plasma radial position feedback control. The plasma current in the pre-ionization phase was observed and it is considered to be pressure-driven Pfirsch-Schlueter current.

  8. Analog integrator for the Korea superconducting tokamak advanced research magnetic diagnostics

    SciTech Connect

    Bak, J. G.; Lee, S. G.; Son, D.; Ga, E. M.

    2007-04-15

    An analog integrator, which automatically compensates an integrating drift, has been developed for the magnetic diagnostics in the Korea superconducting tokamak advanced research (KSTAR). The compensation of the drift is done by the analog to digital converter-register-digital to analog converter in the integrator. The integrator will be used in the equilibrium magnetic field measurements by using inductive magnetic sensors during a plasma discharge in the KSTAR machine. Two differential amplifiers are added to the signal path between each magnetic sensor and the integrator in order to improve the performance of the integrator because a long signal cable of 100 m will be used for the measurement in the KSTAR machine. In this work, the characteristics of the integrator with two differential amplifiers are experimentally investigated.

  9. Analog integrator for the Korea superconducting tokamak advanced research magnetic diagnostics

    NASA Astrophysics Data System (ADS)

    Bak, J. G.; Lee, S. G.; Son, D.; Ga, E. M.

    2007-04-01

    An analog integrator, which automatically compensates an integrating drift, has been developed for the magnetic diagnostics in the Korea superconducting tokamak advanced research (KSTAR). The compensation of the drift is done by the analog to digital converter-register-digital to analog converter in the integrator. The integrator will be used in the equilibrium magnetic field measurements by using inductive magnetic sensors during a plasma discharge in the KSTAR machine. Two differential amplifiers are added to the signal path between each magnetic sensor and the integrator in order to improve the performance of the integrator because a long signal cable of 100 m will be used for the measurement in the KSTAR machine. In this work, the characteristics of the integrator with two differential amplifiers are experimentally investigated.

  10. Analog integrator for the Korea superconducting tokamak advanced research magnetic diagnostics.

    PubMed

    Bak, J G; Lee, S G; Son, D; Ga, E M

    2007-04-01

    An analog integrator, which automatically compensates an integrating drift, has been developed for the magnetic diagnostics in the Korea superconducting tokamak advanced research (KSTAR). The compensation of the drift is done by the analog to digital converter-register-digital to analog converter in the integrator. The integrator will be used in the equilibrium magnetic field measurements by using inductive magnetic sensors during a plasma discharge in the KSTAR machine. Two differential amplifiers are added to the signal path between each magnetic sensor and the integrator in order to improve the performance of the integrator because a long signal cable of 100 m will be used for the measurement in the KSTAR machine. In this work, the characteristics of the integrator with two differential amplifiers are experimentally investigated.

  11. Instrumentation for a multichord motional Stark effect diagnostic in KSTAR.

    PubMed

    Chung, J; Ko, J; De Bock, M F M; Jaspers, R J E

    2014-11-01

    The motional Stark effect (MSE) diagnostic is used to measure the radial magnetic pitch angle profile in neutral beam heated plasmas. This information is used to calculate the safety factor, q, with magnetic equilibrium reconstruction codes such as EFIT. The MSE diagnostic is important during active shaping of the q profile to optimize confinement and stability, and it has become a key diagnostic in high performance tokamaks. A multichord photo-elastic modulator (PEM) based MSE system is being developed for a real-time plasma current profile control in Korea Superconducting Tokamak Advanced Research (KSTAR). The PEM-based approach is a standard method that measures the polarization direction of a single Stark line with narrow tunable bandpass filters. A tangential view of the heating beam provides good spatial resolution of 1-3 cm, which provides an opportunity to install 25 spatial channels spanning the major radius from 1.74 m to 2.84 m. Application of real-time control is a long-term technical goal after commissioning the diagnostic in KSTAR, which is expected in 2015. In this paper, we describe the design of this newly-constructed multichord MSE diagnostic in KSTAR.

  12. Instrumentation for a multichord motional Stark effect diagnostic in KSTAR

    NASA Astrophysics Data System (ADS)

    Chung, J.; Ko, J.; De Bock, M. F. M.; Jaspers, R. J. E.

    2014-11-01

    The motional Stark effect (MSE) diagnostic is used to measure the radial magnetic pitch angle profile in neutral beam heated plasmas. This information is used to calculate the safety factor, q, with magnetic equilibrium reconstruction codes such as EFIT. The MSE diagnostic is important during active shaping of the q profile to optimize confinement and stability, and it has become a key diagnostic in high performance tokamaks. A multichord photo-elastic modulator (PEM) based MSE system is being developed for a real-time plasma current profile control in Korea Superconducting Tokamak Advanced Research (KSTAR). The PEM-based approach is a standard method that measures the polarization direction of a single Stark line with narrow tunable bandpass filters. A tangential view of the heating beam provides good spatial resolution of 1-3 cm, which provides an opportunity to install 25 spatial channels spanning the major radius from 1.74 m to 2.84 m. Application of real-time control is a long-term technical goal after commissioning the diagnostic in KSTAR, which is expected in 2015. In this paper, we describe the design of this newly-constructed multichord MSE diagnostic in KSTAR.

  13. Instrumentation for a multichord motional Stark effect diagnostic in KSTAR

    SciTech Connect

    Chung, J. Ko, J.; De Bock, M. F. M.; Jaspers, R. J. E.

    2014-11-15

    The motional Stark effect (MSE) diagnostic is used to measure the radial magnetic pitch angle profile in neutral beam heated plasmas. This information is used to calculate the safety factor, q, with magnetic equilibrium reconstruction codes such as EFIT. The MSE diagnostic is important during active shaping of the q profile to optimize confinement and stability, and it has become a key diagnostic in high performance tokamaks. A multichord photo-elastic modulator (PEM) based MSE system is being developed for a real-time plasma current profile control in Korea Superconducting Tokamak Advanced Research (KSTAR). The PEM-based approach is a standard method that measures the polarization direction of a single Stark line with narrow tunable bandpass filters. A tangential view of the heating beam provides good spatial resolution of 1–3 cm, which provides an opportunity to install 25 spatial channels spanning the major radius from 1.74 m to 2.84 m. Application of real-time control is a long-term technical goal after commissioning the diagnostic in KSTAR, which is expected in 2015. In this paper, we describe the design of this newly-constructed multichord MSE diagnostic in KSTAR.

  14. Overview of KSTAR initial operation

    SciTech Connect

    Kwon, M.; Oh, Y. K.; Yang, H. L.; Na, H. K.; Kim, Y. S.; Kwak, J. G.; Kim, W. C.; Kim, J. Y.; Ahn, Joonwook; Ahn, J.W.; Bae, Y. S.; Baek, S. H.; Bak, J. G.; Bang, E. N.; Chang, C. S.; Chang, D. H.; Chavdarovski, I.; Chen, Z. Y.; Cho, K. W.; Cho, M. H.; Choe, W.; Choi, J. H.; Chu, Y.; Chung, K. S.; Diamond, P. H.; Do, H. J.; Eidietis, N. W.; England, A. C.; Grisham, L.; Hahm, T. S.; Hahn, S. H.; Han, W. S.; Hatae, T.; Hillis, D. L.; Hong, J. S.; Hong, S. H.

    2011-01-01

    Since the successful first plasma generation in the middle of 2008, three experimental campaigns were successfully made for the KSTAR device, accompanied with a necessary upgrade in the power supply, heating, wall-conditioning and diagnostic systems. KSTAR was operated with the toroidal magnetic field up to 3.6 T and the circular and shaped plasmas with current up to 700 kA and pulse length of 7 s, have been achieved with limited capacity of PF magnet power supplies. The mission of the KSTAR experimental program is to achieve steady-state operations with high performance plasmas relevant to ITER and future reactors. The first phase (2008 2012) of operation of KSTAR is dedicated to the development of operational capabilities for a super-conducting device with relatively short pulse. Development of start-up scenario for a super-conducting tokamak and the understanding of magnetic field errors on start-up are one of the important issues to be resolved. Some specific operation techniques for a super-conducting device are also developed and tested. The second harmonic pre-ionization with 84 and 110 GHz gyrotrons is an example. Various parameters have been scanned to optimize the pre-ionization. Another example is the ICRF wall conditioning (ICWC), which was routinely applied during the shot to shot interval. The plasma operation window has been extended in terms of plasma beta and stability boundary. The achievement of high confinement mode was made in the last campaign with the first neutral beam injector and good wall conditioning. Plasma control has been applied in shape and position control and now a preliminary kinetic control scheme is being applied including plasma current and density. Advanced control schemes will be developed and tested in future operations including active profiles, heating and current drives and control coil-driven magnetic perturbation.

  15. First neutral beam injection experiments on KSTAR tokamak.

    PubMed

    Jeong, S H; Chang, D H; Kim, T S; In, S R; Lee, K W; Jin, J T; Chang, D S; Oh, B H; Bae, Y S; Kim, J S; Park, H T; Watanabe, K; Inoue, T; Kashiwagi, M; Dairaku, M; Tobari, H; Hanada, M

    2012-02-01

    The first neutral beam (NB) injection system of the Korea Superconducting Tokamak Advanced Research (KSTAR) tokamak was partially completed in 2010 with only 1∕3 of its full design capability, and NB heating experiments were carried out during the 2010 KSTAR operation campaign. The ion source is composed of a JAEA bucket plasma generator and a KAERI large multi-aperture accelerator assembly, which is designed to deliver a 1.5 MW, NB power of deuterium at 95 keV. Before the beam injection experiments, discharge, and beam extraction characteristics of the ion source were investigated. The ion source has good beam optics in a broad range of beam perveance. The optimum perveance is 1.1-1.3 μP, and the minimum beam divergence angle measured by the Doppler shift spectroscopy is 0.8°. The ion species ratio is D(+):D(2)(+):D(3)(+) = 75:20:5 at beam current density of 85 mA/cm(2). The arc efficiency is more than 1.0 A∕kW. In the 2010 KSTAR campaign, a deuterium NB power of 0.7-1.5 MW was successfully injected into the KSTAR plasma with a beam energy of 70-90 keV. L-H transitions were observed within a wide range of beam powers relative to a threshold value. The edge pedestal formation in the T(i) and T(e) profiles was verified through CES and electron cyclotron emission diagnostics. In every deuterium NB injection, a burst of D-D neutrons was recorded, and increases in the ion temperature and plasma stored energy were found.

  16. Commissioning of 84 GHz Kstar Ech Transmission Line System

    NASA Astrophysics Data System (ADS)

    Bae, Y. S.; Han, W.-S.; Yang, H.-L.; Park, S.; Jeong, J.-H.; Namkung, W.; Cho, M.-H.

    2009-04-01

    The installation of 84 GHz Electron Cyclotron Heating (ECH) system has been completed in Korea Superconducting Tokamak Advanced Research (KSTAR). The 84 GHz EC-wave is transmitted from the gyrotron to the antenna system through evacuated HE11-mode circular corrugated waveguides with inner diameter of 31.75 mm and miter bends with flat mirror. The L-box chamber is designed and installed to match the output beam of TEM00 mode from the gyrotron into the 31.75-mm circular corrugated waveguide by a large ellipsoidal mirror inside the chamber. The ellipsoidal mirror can be adjusted in two perpendicular axes and moved in or out for the minor misalignment. The elliptical polarization of EC-wave required for the specific mode coupling at the plasma edge is obtained by means of subsequent two grooved mirrors inside the miter bend. The torus vacuum window, which is half-wavelength thick diamond disk, is installed for the vacuum isolation of the transmission line vacuum from the KSTAR vacuum vessel. For the RF power measurement, two dummy loads are installed near the gyrotron and near the KSTAR tokamak, respectively. The dummy load near the KSTAR tokamak will be used for the transmission efficiency measurement of the transmission line system. This paper describes the evacuation test result of the transmission line from the L-box to the torus diamond window, the transmission efficiency measurement of 84-GHz millimeter wave, and the measurement of elliptical polarization parameters as a function of the grooved mirror angles. Also, the requirement of the polarization control for the EC-wave injection and mode coupling is discussed.

  17. Research Advances

    ERIC Educational Resources Information Center

    King, Angela G.

    2004-01-01

    Research advances, a new feature in Journal of Chemical Engineering that brings information about innovations in current areas of research to high school and college science faculty with an intent to provide educators with timely descriptions of latest progress in research that can be integrated into existing courses to update course content and…

  18. Diamagnetic loop measurement in Korea Superconducting Tokamak Advanced Research machine.

    PubMed

    Bak, J G; Lee, S G; Kim, H S

    2011-06-01

    Diamagnetic loop (DL), which consists of two poloidal loops inside the vacuum vessel, is used to measure the diamagnetic flux during a plasma discharge in the Korea Superconducting Tokamak Advanced Research (KSTAR) machine. The vacuum fluxes in the DL signal can be compensated up to 0.1 mWb by using the coefficients, which are obtained from experimental investigations, in the vacuum flux measurements during vacuum shots under same operational conditions of magnetic coils for plasma experiment in the KSTAR machine. The maximum error in the diamagnetic flux measurement due to the errors of the coefficients was estimated as ∼0.22 mWb. From the diamagnetic flux measurements for the ohmically heated circular plasmas in the KSTAR machine, the stored energy agrees well with the estimated kinetic energy within the discrepancy of 25%. When the electron cyclotron heating, the neutral beam injection, and the ion cyclotron resonance heating are added to the ohmically heated limiter plasmas, the additional heating effects can be clearly observed from the increase of the stored energy evaluated in the DL measurement.

  19. Diamagnetic loop measurement in Korea Superconducting Tokamak Advanced Research machine

    SciTech Connect

    Bak, J. G.; Lee, S. G.; Kim, H. S.

    2011-06-15

    Diamagnetic loop (DL), which consists of two poloidal loops inside the vacuum vessel, is used to measure the diamagnetic flux during a plasma discharge in the Korea Superconducting Tokamak Advanced Research (KSTAR) machine. The vacuum fluxes in the DL signal can be compensated up to 0.1 mWb by using the coefficients, which are obtained from experimental investigations, in the vacuum flux measurements during vacuum shots under same operational conditions of magnetic coils for plasma experiment in the KSTAR machine. The maximum error in the diamagnetic flux measurement due to the errors of the coefficients was estimated as {approx}0.22 mWb. From the diamagnetic flux measurements for the ohmically heated circular plasmas in the KSTAR machine, the stored energy agrees well with the estimated kinetic energy within the discrepancy of 25%. When the electron cyclotron heating, the neutral beam injection, and the ion cyclotron resonance heating are added to the ohmically heated limiter plasmas, the additional heating effects can be clearly observed from the increase of the stored energy evaluated in the DL measurement.

  20. KSTAR first plasma equilibrium reconstruction and study of global MHD stability control

    NASA Astrophysics Data System (ADS)

    Katsuro-Hopkins, O.; Sabbagh, S. A.; Bialek, J. M.; Park, H. K.; You, K. I.; Lee, S. G.; Bak, J. G.; Yoon, S. W.; Kim, J. H.; Kim, J. Y.; Glasser, A. H.; Lao, L. L.

    2008-11-01

    Korea Superconducting Tokamak Advanced Research, KSTAR, equilibria are computed using EFIT and VALEN based on numerical models and recent experimental data from first plasma operation. A 3-D double-walled vacuum vessel model with port penetrations was used to evaluate the vacuum vessel effective resistance and to simulate and compare to the time evolution of experimental magnetic diagnostic measurements during vacuum poloidal field coil testing and plasma start-up scenarios. KSTAR is designed to produce wall-stabilized high beta equilibria. Ideal MHD stability of toroidal mode number of unity using DCON shows a factor of two improvement in the normalized beta limit over the no-wall beta limit (up to 5) at moderate to low plasma internal inductance. Reaching these high normalized beta levels is possible using passive and active control with classical and advanced state-space based control algorithms at the reasonable power levels.

  1. Analysis of edge density fluctuation measured by trial KSTAR beam emission spectroscopy system

    SciTech Connect

    Nam, Y. U.; Zoletnik, S.; Lampert, M.; Kovacsik, A.

    2012-10-15

    A beam emission spectroscopy (BES) system based on direct imaging avalanche photodiode (APD) camera has been designed for Korea Superconducting Tokamak Advanced Research (KSTAR) and a trial system has been constructed and installed for evaluating feasibility of the design. The system contains two cameras, one is an APD camera for BES measurement and another is a fast visible camera for position calibration. Two pneumatically actuated mirrors were positioned at front and rear of lens optics. The front mirror can switch the measurement between edge and core region of plasma and the rear mirror can switch between the APD and the visible camera. All systems worked properly and the measured photon flux was reasonable as expected from the simulation. While the measurement data from the trial system were limited, it revealed some interesting characteristics of KSTAR plasma suggesting future research works with fully installed BES system. The analysis result and the development plan will be presented in this paper.

  2. Improvement of a plasma uniformity of the 2nd ion source of KSTAR neutral beam injector

    SciTech Connect

    Jeong, S. H. Kim, T. S.; Lee, K. W.; Chang, D. H.; In, S. R.; Bae, Y. S.

    2014-02-15

    The 2nd ion source of KSTAR (Korea Superconducting Tokamak Advanced Research) NBI (Neutral Beam Injector) had been developed and operated since last year. A calorimetric analysis revealed that the heat load of the back plate of the ion source is relatively higher than that of the 1st ion source of KSTAR NBI. The spatial plasma uniformity of the ion source is not good. Therefore, we intended to identify factors affecting the uniformity of a plasma density and improve it. We estimated the effects of a direction of filament current and a magnetic field configuration of the plasma generator on the plasma uniformity. We also verified that the operation conditions of an ion source could change a uniformity of the plasma density of an ion source.

  3. Installation of a fast framing visible camera on KSTAR.

    PubMed

    Chung, Jinil; Lee, Deok Kyo; Seo, Dongcheol; Choi, Myoung Choul

    2008-10-01

    Visible camera technologies have made remarkable progress in recent years, and the fast camera has proven itself to be a capable imaging diagnostic in studies of specific fusion plasma issues such as the start-up physics, plasma wall interactions, edge-localized modes, and disruptions. For the purpose of favorable visible imaging, a fast framing camera has recently been installed on the Korea Superconducting Tokamak Advanced Research (KSTAR) device. The camera uses a complementary metal-oxide semiconductor detector with a maximum resolution of 1280x1024 at 1000 frames/s (fps) and a minimum resolution of 1280x16 at 64 kfps. A 2-m-long viewport having a novel optical rail system was installed on a tangential port to view the tokamak interior. The system is fully controlled from the main control room and protected by a shutter from deposits. To verify that the camera electronics are safe from the high magnetic field and its rapid time variation, possible influences are considered theoretically and experimentally. In this work, we present the design and installation of the fast camera system on the KSTAR device with discussions on the field variation effect issues.

  4. In-vessel visible inspection system on KSTAR

    NASA Astrophysics Data System (ADS)

    Chung, Jinil; Seo, D. C.

    2008-08-01

    To monitor the global formation of the initial plasma and damage to the internal structures of the vacuum vessel, an in-vessel visible inspection system has been installed and operated on the Korean superconducting tokamak advanced research (KSTAR) device. It consists of four inspection illuminators and two visible/H-alpha TV cameras. Each illuminator uses four 150W metal-halide lamps with separate lamp controllers, and programmable progressive scan charge-coupled device cameras with 1004×1004 resolution at 48frames/s and a resolution of 640×480 at 210frames/s are used to capture images. In order to provide vessel inspection capability under any operation condition, the lamps and cameras are fully controlled from the main control room and protected by shutters from deposits during plasma operation. In this paper, we describe the design and operation results of the visible inspection system with the images of the KSTAR Ohmic discharges during the first plasma campaign.

  5. Control simulation of neoclassical tearing modes in KSTAR

    NASA Astrophysics Data System (ADS)

    Park, Y. S.; Hwang, Y. S.

    2006-10-01

    Control of neoclassical tearing modes (NTMs) is one of the key issues to achieve stable high performance discharges for future advanced tokamaks. In KSTAR, active suppression of m/n = 3/2 and 2/1 NTMs will be pursued by using a 3MW electron cyclotron current drive (ECCD) system. To develop a NTM control system in KSTAR, a prototype NTM control simulator is developed. A NTM stability model is constructed by the modified Rutherford equation (MRE) with KSTAR equilibrium parameters. In the NTM controller, the plasma radial position is controlled to align the ECCD to the resonant flux surface where the tearing mode resides by utilizing the fast in-vessel control coils (IVCCs) of KSTAR. To model radial plasma responses during the control sequence, a linear, non-rigid plasma model is constructed by following perturbed equilibrium formulation. Performance of the prototype simulator is assessed in terms of suppressing the NTM modes in KSTAR and utilized to provide controller design criteria for the complete suppression of the modes. The prototype simulator will be used to develop a new NTM control algorithm for the model-based advanced controller with high control efficiency.

  6. Commissioning and Operation Results of 110 GHZ Ech System in Kstar

    NASA Astrophysics Data System (ADS)

    Joung, Mi; Han, Won-Soon; Kim, Jongsu; Bae, Young-Soon; Yang, Hyung-Lyeol; Park, Seungil; Do, Heejin; Namkung, Won; Cho, Moohyun; Gorelov, Yuri; Lohr, John; Doane, John

    2011-02-01

    A 110 GHz GYCOM gyrotron, which was loaned from DIII-D in General Atomics (GA) including a matching optics unit (MOU) and a magnet, was successfully commissioned and used for the second harmonic ECH-assisted startup in 2009 Korea Superconducting Tokamak Advanced Research (KSTAR) campaign. The gyrotron was aligned at the magnetic field axis of the magnet by adjusting aligners on top and bottom flanges of the magnet during the installation procedures. The measured images of the output beam profile at the window using a burn paper showed a good agreement with those measured in DIII-D. The maximum available RF power was just about 250 kW, which was measured at the terminal dummy load, due to the limitation of the existing power supply of which nominal beam voltage and current were 63 kV and 20 A, respectively. The 110 GHz, 250 kW EC wave, which corresponds to the second harmonic resonance wave to the toroidal field of 2 T, was injected to KSTAR for the plasma start-up and current ramp-up. The plasma start-up was successfully and reliably achieved through the second harmonic ECH pre-ionization. The injection mode was the X-mode with oblique launch angle to the toroidal magnetic field. This paper reports the initial commissioning and operation results of the 110 GHz ECH system. Moreover, the experimental results of the ECH-assisted start-up during the 2009 KSTAR campaign are presented and discussed.

  7. Stable plasma start-up in the KSTAR device under various discharge conditions

    NASA Astrophysics Data System (ADS)

    Kim, Jayhyun; Yoon, S. W.; Jeon, Y. M.; Leuer, J. A.; Eidietis, N. W.; Mueller, D.; Park, S.; Nam, Y. U.; Chung, J.; Lee, K. D.; Hahn, S. H.; Bae, Y. S.; Kim, W. C.; Oh, Y. K.; Yang, H. L.; Park, K. R.; Na, H. K.; KSTAR Team

    2011-08-01

    A time series of static nonlinear ferromagnetic calculations was performed to mimic the time-dependent modelling of plasma start-up by assessing the effects of the ferromagnetic Incoloy 908 used in the superconducting coil jackets of the Korea Superconducting Tokamak Advanced Research (KSTAR) device. Time-series calculations of a two-dimensional axisymmetric circuit model with nonlinear ferromagnetic effects enabled us to find appropriate waveforms for the KSTAR poloidal field coil currents that satisfied various start-up requirements, such as the formation and sustainment of field nulls, a sufficient amount of magnetic flux for further plasma current ramp-up, sufficiently large Et ·Bt/Bbottom > 1 kV m-1 contours for successful breakdown, plasma current toroidal equilibria, etc. In addition to the aforementioned requirements, the results introduced in this report also provided the positional stability of the plasma current channel against radial as well as vertical perturbations by compensating the field deformation originating from the ferromagnetic effects. With the improved positional stability, robust plasma start-up was achieved during the 2010 KSTAR campaign under various discharge conditions such as the recovery process from plasma disruptions.

  8. Results of Beam Extraction Performance for the KSTAR Neutral Beam Injector

    NASA Astrophysics Data System (ADS)

    Chang, Doo-Hee; Jeong, Seung Ho; Kim, Tae-Seong; Lee, Kwang Won; Ryul In, Sang; Jin, Jung-Tae; Chang, Dae-Sik; Oh, Byung-Hoon; Bae, Young-Soon; Kim, Jong-Su; Cho, Wook; Park, Hyun-Taek; Park, Young-Min; Yang, Hyung-Lyeol; Watanabe, Kazuhiro; Dairaku, Masayuki; Tobari, Hiroyuki; Kashiwagi, Mieko; Hanada, Masaya; Inoue, Takashi

    2011-06-01

    The first neutral beam injector (NBI-1) has been developed for the Korea Superconducting Tokamak Advanced Research (KSTAR) tokamak. The first long pulse ion source (LPIS-1) has been installed on the NBI-1 for an auxiliary heating and current drive of KSTAR plasmas. The performance of ion and neutral beam extractions in the LPIS-1 was investigated initially on the KSTAR NBI-1 system, prior to the neutral beam injection into the main plasmas. The ion source consists of a magnetic bucket plasma generator with multipole cusp fields and a set of prototype tetrode accelerators with circular apertures. The inner volume of the plasma generator and accelerator column in the LPIS-1 is approximately 123 L. Design requirements for the ion source were a 120 kV/65 A deuterium beam and a 300 s pulse length. The extraction of ion beams was initiated by the formation of arc plasmas in the LPIS-1, called the arc-beam extraction method. A stable ion beam extraction of the LPIS-1 was achieved up to 85 kV/32 A for a 5 s pulse length and 80 kV/25 A for a 14 s pulse length. An optimum beam perveance of 1.15 µperv was observed at an acceleration voltage of 60 kV. Neutralization efficiency was measured by a water-flow calorimetry (WFC) method using a calorimeter and the operation of a bending magnet. The full-energy species of ion beams were detected by using the diagnostic method of optical multichannel analyzer (OMA). An arc efficiency of the LPIS was 0.6-1.1 A/kW depending on the operating conditions of arc discharge. A neutral beam power of ˜1.0 MW must be sufficiently injected into the KSTAR plasmas from the LPIS-1 at a beam energy of 80 keV.

  9. Research Advances

    ERIC Educational Resources Information Center

    King, Angela G.

    2005-01-01

    Researchers in the Department of Bioengineering at Rice University are developing a new approach for fighting cancer, based on nanoshells that can both detect and destroy cancerous cells. The aim is to locate the cells, and be able to make a rational choice about whether they need to be destroyed and if possible they should immediately be sent for…

  10. Research Advances

    ERIC Educational Resources Information Center

    King, Angela G.

    2004-01-01

    Nanotechnology are employed by researchers at Northwestern University to develop a method of labeling disease markers present in blood with unique DNA tags they have dubbed "bio-bar-codes". The preparation of nanoparticle and magnetic microparticle probes and a nanoparticle-based PSR-less DNA amplification scheme are involved by the DNA-BCA assay.

  11. First results of the resistive bolometers on KSTAR

    SciTech Connect

    Seo, Dongcheol; Peterson, B. J.; Lee, Seung Hun

    2010-10-15

    The resistive bolometers have been successfully installed in the midplane of L-port in Korea Superconducting Tokamak Advanced Research (KSTAR) device. The spatial and temporal resolutions, 4.5 cm and {approx}1 kHz, respectively, enable us to measure the radial profile of the total radiated power from magnetically confined plasma at a high temperature through radiation and neutral particles. The radiated power was measured at all shots. Even at low plasma current, the bolometer signal was detectable. The electron cyclotron resonance heating (ECH) has been used in tokamak for ECH assisted start-up and plasma control by local heating and current drive. The detectors of resistive bolometer, near the antenna of ECH, are affected by electron cyclotron wave. The tomographic reconstruction, using the Phillips-Tikhonov regularization method, will be carried out for a major radial profile of the radiation emissivity of the circular cross-section plasma.

  12. Study on the heat flux reconstruction with the infrared thermography for the divertor target plates in the KSTAR tokamak

    NASA Astrophysics Data System (ADS)

    Kang, C. S.; Lee, H. H.; Oh, S.; Lee, S. G.; Wi, H. M.; Kim, Y. S.; Kim, H. S.

    2016-08-01

    An infrared (IR) thermography is the preferred diagnostic that can quantify heat flux by measuring the surface temperature distributions of the divertor plates. The IR thermography is successfully instrumented on Korea Superconducting Tokamak Advanced Research (KSTAR). In this study, finite volume method is considered to solve the heat conduction equations. 1D-, 2D-, and 3D models are developed and compared with various calculation algorithms, such as Duhamel's theorem and THEODOR. These comparisons show good agreement. In order to acquire more efficient and reliable calculation results, we consider two numerical analysis schemes, influence of temperature on thermal properties and image stabilization. Recently, this reconstruction code is successfully applied to the KSTAR IR thermography.

  13. Study on the heat flux reconstruction with the infrared thermography for the divertor target plates in the KSTAR tokamak.

    PubMed

    Kang, C S; Lee, H H; Oh, S; Lee, S G; Wi, H M; Kim, Y S; Kim, H S

    2016-08-01

    An infrared (IR) thermography is the preferred diagnostic that can quantify heat flux by measuring the surface temperature distributions of the divertor plates. The IR thermography is successfully instrumented on Korea Superconducting Tokamak Advanced Research (KSTAR). In this study, finite volume method is considered to solve the heat conduction equations. 1D-, 2D-, and 3D models are developed and compared with various calculation algorithms, such as Duhamel's theorem and THEODOR. These comparisons show good agreement. In order to acquire more efficient and reliable calculation results, we consider two numerical analysis schemes, influence of temperature on thermal properties and image stabilization. Recently, this reconstruction code is successfully applied to the KSTAR IR thermography.

  14. Impurity diagnosis of a KSTAR graphite divertor tile using laser induced breakdown spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Kim, Minju; Cho, Min Sang; Cho, Byoung Ick

    2017-04-01

    Laser induced breakdown spectroscopy (LIBS) has been tested to diagnose impurity elements on a Korea Superconducting Tokamak Advanced Research (KSTAR) divertor tile. Spectral lines of various impurity elements such as iron, chromium, and nickel were detected from the divertor surface. The variation of spectra with consecutive laser pulses demonstrates the potential for depth profiling analysis for the deposited impurity layer. The LIBS plasma parameters have been qualitatively determined from analysis of the relative line intensities and linewidths for each element. The validity of this analysis has been checked with atomic spectral simulations.

  15. Design of a collective scattering system for small scale turbulence study in Korea Superconducting Tokamak Advanced Research.

    PubMed

    Lee, W; Park, H K; Lee, D J; Nam, Y U; Leem, J; Kim, T K

    2016-04-01

    The design characteristics of a multi-channel collective (or coherent) scattering system for small scale turbulence study in Korea Superconducting Tokamak Advanced Research (KSTAR), which is planned to be installed in 2017, are given in this paper. A few critical issues are discussed in depth such as the Faraday and Cotton-Mouton effects on the beam polarization, radial spatial resolution, probe beam frequency, polarization, and power. A proper and feasible optics with the 300 GHz probe beam, which was designed based on these issues, provides a simultaneous measurement of electron density fluctuations at four discrete poloidal wavenumbers up to 24 cm(-1). The upper limit corresponds to the normalized wavenumber kθρe of ∼0.15 in nominal KSTAR plasmas. To detect the scattered beam power and extract phase information, a quadrature detection system consisting of four-channel antenna/detector array and electronics will be employed.

  16. Advancing Ethical Neuroscience Research.

    PubMed

    Borah, B Rashmi; Strand, Nicolle K; Chillag, Kata L

    2016-12-01

    As neuroscience research advances, researchers, clinicians, and other stakeholders will face a host of ethical challenges. The Presidential Commission for the Study of Bioethical Issues (Bioethics Commission) has published two reports that provide recommendations on how to advance research endeavors ethically. The commission addressed, among other issues, how to prioritize different types of neuroscience research and how to include research participants who have impaired consent capacity. The Bioethics Commission's recommendations provide a foundation for ethical guidelines as neuroscience research advances and progresses.

  17. Synchronized operation by field programmable gate array based signal controller for the Thomson scattering diagnostic system in KSTAR

    NASA Astrophysics Data System (ADS)

    Lee, W. R.; Kim, H. S.; Park, M. K.; Lee, J. H.; Kim, K. H.

    2012-09-01

    The Thomson scattering diagnostic system is successfully installed in the Korea Superconducting Tokamak Advanced Research (KSTAR) facility. We got the electron temperature and electron density data for the first time in 2011, 4th campaign using a field programmable gate array (FPGA) based signal control board. It operates as a signal generator, a detector, a controller, and a time measuring device. This board produces two configurable trigger pulses to operate Nd:YAG laser system and receives a laser beam detection signal from a photodiode detector. It allows a trigger pulse to be delivered to a time delay module to make a scattered signal measurement, measuring an asynchronous time value between the KSTAR timing board and the laser system injection signal. All functions are controlled by the embedded processor running on operating system within a single FPGA. It provides Ethernet communication interface and is configured with standard middleware to integrate with KSTAR. This controller has operated for two experimental campaigns including commissioning and performed the reconfiguration of logic designs to accommodate varying experimental situation without hardware rebuilding.

  18. Synchronized operation by field programmable gate array based signal controller for the Thomson scattering diagnostic system in KSTAR

    SciTech Connect

    Lee, W. R.; Park, M. K.; Lee, J. H.; Kim, H. S.; Kim, K. H.

    2012-09-15

    The Thomson scattering diagnostic system is successfully installed in the Korea Superconducting Tokamak Advanced Research (KSTAR) facility. We got the electron temperature and electron density data for the first time in 2011, 4th campaign using a field programmable gate array (FPGA) based signal control board. It operates as a signal generator, a detector, a controller, and a time measuring device. This board produces two configurable trigger pulses to operate Nd:YAG laser system and receives a laser beam detection signal from a photodiode detector. It allows a trigger pulse to be delivered to a time delay module to make a scattered signal measurement, measuring an asynchronous time value between the KSTAR timing board and the laser system injection signal. All functions are controlled by the embedded processor running on operating system within a single FPGA. It provides Ethernet communication interface and is configured with standard middleware to integrate with KSTAR. This controller has operated for two experimental campaigns including commissioning and performed the reconfiguration of logic designs to accommodate varying experimental situation without hardware rebuilding.

  19. Synchronized operation by field programmable gate array based signal controller for the Thomson scattering diagnostic system in KSTAR.

    PubMed

    Lee, W R; Kim, H S; Park, M K; Lee, J H; Kim, K H

    2012-09-01

    The Thomson scattering diagnostic system is successfully installed in the Korea Superconducting Tokamak Advanced Research (KSTAR) facility. We got the electron temperature and electron density data for the first time in 2011, 4th campaign using a field programmable gate array (FPGA) based signal control board. It operates as a signal generator, a detector, a controller, and a time measuring device. This board produces two configurable trigger pulses to operate Nd:YAG laser system and receives a laser beam detection signal from a photodiode detector. It allows a trigger pulse to be delivered to a time delay module to make a scattered signal measurement, measuring an asynchronous time value between the KSTAR timing board and the laser system injection signal. All functions are controlled by the embedded processor running on operating system within a single FPGA. It provides Ethernet communication interface and is configured with standard middleware to integrate with KSTAR. This controller has operated for two experimental campaigns including commissioning and performed the reconfiguration of logic designs to accommodate varying experimental situation without hardware rebuilding.

  20. Second Harmonic Breakdown in KSTAR

    SciTech Connect

    Bae, Y. S.; England, A. C.; Kwon, M.; Lee, G. S.

    2007-09-28

    An 84-GHz electron cyclotron heating (ECH) system is being installed on the KSTAR tokamak. KSTAR adopts ECH-assisted start-up for the flexibility and reliability of the KSTAR operation with the plasma breakdown voltage reduced. The available maximum power of the 84 GHz ECH system is presently 500 kW with maximum duration of 2 s. Currently, the second harmonic ECH-assisted start-up is under consideration because a low toroidal field of B{sub T}{approx}1.5 T is desirable for safety and also for the high-beta experiments in the initial operation phase. The studies in this paper are on the effectiveness of the second harmonic breakdown using a 0-D time dependent plasma evolution code and the comparison with the recent DIII-D experimental results on the second harmonic pre-ionization.

  1. Simulations of KSTAR high performance steady state operation scenarios

    NASA Astrophysics Data System (ADS)

    Na, Yong-Su; Kessel, C. E.; Park, J. M.; Yi, Sumin; Becoulet, A.; Sips, A. C. C.; Kim, J. Y.

    2009-11-01

    We report the results of predictive modelling of high performance steady state operation scenarios in KSTAR. Firstly, the capabilities of steady state operation are investigated with time-dependent simulations using a free-boundary plasma equilibrium evolution code coupled with transport calculations. Secondly, the reproducibility of high performance steady state operation scenarios developed in the DIII-D tokamak, of similar size to that of KSTAR, is investigated using the experimental data taken from DIII-D. Finally, the capability of ITER-relevant steady state operation is investigated in KSTAR. It is found that KSTAR is able to establish high performance steady state operation scenarios; βN above 3, H98(y, 2) up to 2.0, fBS up to 0.76 and fNI equals 1.0. In this work, a realistic density profile is newly introduced for predictive simulations by employing the scaling law of a density peaking factor. The influence of the current ramp-up scenario and the transport model is discussed with respect to the fusion performance and non-inductive current drive fraction in the transport simulations. As observed in the experiments, both the heating and the plasma current waveforms in the current ramp-up phase produce a strong effect on the q-profile, the fusion performance and also on the non-inductive current drive fraction in the current flattop phase. A criterion in terms of qmin is found to establish ITER-relevant steady state operation scenarios. This will provide a guideline for designing the current ramp-up phase in KSTAR. It is observed that the transport model also affects the predictive values of fusion performance as well as the non-inductive current drive fraction. The Weiland transport model predicts the highest fusion performance as well as non-inductive current drive fraction in KSTAR. In contrast, the GLF23 model exhibits the lowest ones. ITER-relevant advanced scenarios cannot be obtained with the GLF23 model in the conditions given in this work. Finally

  2. Simulations of KSTAR high performance steady state operation scenarios

    SciTech Connect

    Na, Y S; Kessel, C. E.; Park, Jin Myung; Yi, Sumin; Becoulet, A.; Sips, A C C; Kim, J Y

    2009-01-01

    We report the results of predictive modelling of high performance steady state operation scenarios in KSTAR. Firstly, the capabilities of steady state operation are investigated with time-dependent simulations using a free-boundary plasma equilibrium evolution code coupled with transport calculations. Secondly, the reproducibility of high performance steady state operation scenarios developed in the DIII-D tokamak, of similar size to that of KSTAR, is investigated using the experimental data taken from DIII-D. Finally, the capability of ITER-relevant steady state operation is investigated in KSTAR. It is found that KSTAR is able to establish high performance steady state operation scenarios; beta(N) above 3, H-98(y, 2) up to 2.0, f(BS) up to 0.76 and f(NI) equals 1.0. In this work, a realistic density profile is newly introduced for predictive simulations by employing the scaling law of a density peaking factor. The influence of the current ramp-up scenario and the transport model is discussed with respect to the fusion performance and non-inductive current drive fraction in the transport simulations. As observed in the experiments, both the heating and the plasma current waveforms in the current ramp-up phase produce a strong effect on the q-profile, the fusion performance and also on the non-inductive current drive fraction in the current flattop phase. A criterion in terms of q(min) is found to establish ITER-relevant steady state operation scenarios. This will provide a guideline for designing the current ramp-up phase in KSTAR. It is observed that the transport model also affects the predictive values of fusion performance as well as the non-inductive current drive fraction. The Weiland transport model predicts the highest fusion performance as well as non-inductive current drive fraction in KSTAR. In contrast, the GLF23 model exhibits the lowest ones. ITER-relevant advanced scenarios cannot be obtained with the GLF23 model in the conditions given in this work

  3. Toroidal mode number estimation of the edge-localized modes using the KSTAR 3-D electron cyclotron emission imaging system

    SciTech Connect

    Lee, J.; Yun, G. S. Lee, J. E.; Kim, M.; Choi, M. J.; Lee, W.; Park, H. K.; Domier, C. W.; Luhmann, N. C.; Sabbagh, S. A.; Park, Y. S.; Lee, S. G.; Bak, J. G.

    2014-06-15

    A new and more accurate technique is presented for determining the toroidal mode number n of edge-localized modes (ELMs) using two independent electron cyclotron emission imaging (ECEI) systems in the Korea Superconducting Tokamak Advanced Research (KSTAR) device. The technique involves the measurement of the poloidal spacing between adjacent ELM filaments, and of the pitch angle α{sub *} of filaments at the plasma outboard midplane. Equilibrium reconstruction verifies that α{sub *} is nearly constant and thus well-defined at the midplane edge. Estimates of n obtained using two ECEI systems agree well with n measured by the conventional technique employing an array of Mirnov coils.

  4. Toroidal mode number estimation of the edge-localized modes using the KSTAR 3-D electron cyclotron emission imaging system

    NASA Astrophysics Data System (ADS)

    Lee, J.; Yun, G. S.; Lee, J. E.; Kim, M.; Choi, M. J.; Lee, W.; Park, H. K.; Domier, C. W.; Luhmann, N. C.; Sabbagh, S. A.; Park, Y. S.; Lee, S. G.; Bak, J. G.

    2014-06-01

    A new and more accurate technique is presented for determining the toroidal mode number n of edge-localized modes (ELMs) using two independent electron cyclotron emission imaging (ECEI) systems in the Korea Superconducting Tokamak Advanced Research (KSTAR) device. The technique involves the measurement of the poloidal spacing between adjacent ELM filaments, and of the pitch angle α* of filaments at the plasma outboard midplane. Equilibrium reconstruction verifies that α* is nearly constant and thus well-defined at the midplane edge. Estimates of n obtained using two ECEI systems agree well with n measured by the conventional technique employing an array of Mirnov coils.

  5. Toroidal mode number estimation of the edge-localized modes using the KSTAR 3-D electron cyclotron emission imaging system.

    PubMed

    Lee, J; Yun, G S; Lee, J E; Kim, M; Choi, M J; Lee, W; Park, H K; Domier, C W; Luhmann, N C; Sabbagh, S A; Park, Y S; Lee, S G; Bak, J G

    2014-06-01

    A new and more accurate technique is presented for determining the toroidal mode number n of edge-localized modes (ELMs) using two independent electron cyclotron emission imaging (ECEI) systems in the Korea Superconducting Tokamak Advanced Research (KSTAR) device. The technique involves the measurement of the poloidal spacing between adjacent ELM filaments, and of the pitch angle α* of filaments at the plasma outboard midplane. Equilibrium reconstruction verifies that α* is nearly constant and thus well-defined at the midplane edge. Estimates of n obtained using two ECEI systems agree well with n measured by the conventional technique employing an array of Mirnov coils.

  6. Non-linear MHD Simulation of ELMs including Pellet Triggered ones for KSTAR tokamak

    NASA Astrophysics Data System (ADS)

    Han, Hyunsun; Park, G.; Strauss, H.; Kim, J. Y.

    2011-10-01

    Three-dimensional non-linear MHD simulations have been conducted to investigate the qualitative characteristics of ELM(Edge Localized Mode)s including pellet induced ones using the M3D code. A linearized velocity perturbation of initial equilibrium is employed to trigger the ELM instability for the simulation of natural ELM, while a density blob, which represents the ionized pellet ablation and is located within the edge pedestal, is adopted in an adiabatic condition for that of pellet induced one. The initial equilibrium is constructed based on a H-mode plasma of KSTAR(Korea Superconducting Tokamak Advanced Research) device. It is found that characteristics of natural ELM simulation are in qualitative agreement with the experimental observations including that density perturbation is much larger than temperature one during ELM instability. Regarding the pellet induced ELM, it is observed that the locally increased pressure due to the fast parallel heat conduction compared to the spread of density perturbation triggers the peeling-ballooning instability resulting in ELM-like relaxation. Detailed results will be presented in the discussion of underlying mechanism and application to KSTAR tokamak.

  7. Equilibrium and global MHD stability study of KSTAR high beta plasmas under passive and active mode control

    NASA Astrophysics Data System (ADS)

    Katsuro-Hopkins, O.; Sabbagh, S. A.; Bialek, J. M.; Park, H. K.; Bak, J. G.; Chung, J.; Hahn, S. H.; Kim, J. Y.; Kwon, M.; Lee, S. G.; Yoon, S. W.; You, K.-I.; Glasser, A. H.; Lao, L. L.

    2010-02-01

    The Korea Superconducting Tokamak Advanced Research, KSTAR, is designed to operate a steady-state, high beta plasma while retaining global magnetohydrodynamic (MHD) stability to establish the scientific and technological basis of an economically attractive fusion reactor. An equilibrium model is established for stability analysis of KSTAR. Reconstructions were performed for the experimental start-up scenario and experimental first plasma operation using the EFIT code. The VALEN code was used to determine the vacuum vessel current distribution. Theoretical high beta equilibria spanning the expected operational range are computed for various profiles including generic L-mode and DIII-D experimental H-mode pressure profiles. Ideal MHD stability calculations of toroidal mode number of unity using the DCON code shows a factor of 2 improvement in the wall-stabilized plasma beta limit at moderate to low plasma internal inductance. The planned stabilization system in KSTAR comprises passive stabilizing plates and actively cooled in-vessel control coils (IVCCs) designed for non-axisymmetric field error correction and stabilization of slow timescale MHD modes including resistive wall modes (RWMs). VALEN analysis using standard proportional gain shows that active stabilization near the ideal wall limit can be reached with feedback using the midplane segment of the IVCC. The RMS power required for control using both white noise and noise taken from NSTX active stabilization experiments is computed for beta near the ideal wall limit. Advanced state-space control algorithms yield a factor of 2 power reduction assuming white noise while remaining robust with respect to variations in plasma beta.

  8. Advances in Qualitative Research.

    ERIC Educational Resources Information Center

    1998

    This document contains five papers from a symposium on advances in qualitative research in human resource development (HRD). "Case Study and Its Virtuoso Possibilities" (Verna J. Willis) asserts that the case study method is particularly well suited for research in HRD because its creative and investigative possibilities have not yet…

  9. Predictive modeling of pedestal structure in KSTAR using EPED model

    NASA Astrophysics Data System (ADS)

    Han, Hyunsun; Kwon, Ohjin; Kim, J. Y.

    2013-10-01

    A predictive calculation is given for the structure of edge pedestal in the H-mode plasma of the KSTAR (Korea Superconducting Tokamak Advanced Research) device using the EPED model. Particularly, the dependence of pedestal width and height on various plasma parameters is studied in detail. The two codes, ELITE and HELENA, are utilized for the stability analysis of the peeling-ballooning and kinetic ballooning modes, respectively. Summarizing the main results, the pedestal slope and height have a strong dependence on plasma current, rapidly increasing with it, while the pedestal width is almost independent of it. The plasma density or collisionality gives initially a mild stabilization, increasing the pedestal slope and height, but above some threshold value its effect turns to a destabilization, reducing the pedestal width and height. Among several plasma shape parameters, the triangularity gives the most dominant effect, rapidly increasing the pedestal width and height, while the effect of elongation and squareness appears to be relatively weak. Implication of these edge results, particularly in relation to the global plasma performance, is discussed.

  10. Predictive modeling of pedestal structure in KSTAR using EPED model

    SciTech Connect

    Han, Hyunsun; Kim, J. Y.; Kwon, Ohjin

    2013-10-15

    A predictive calculation is given for the structure of edge pedestal in the H-mode plasma of the KSTAR (Korea Superconducting Tokamak Advanced Research) device using the EPED model. Particularly, the dependence of pedestal width and height on various plasma parameters is studied in detail. The two codes, ELITE and HELENA, are utilized for the stability analysis of the peeling-ballooning and kinetic ballooning modes, respectively. Summarizing the main results, the pedestal slope and height have a strong dependence on plasma current, rapidly increasing with it, while the pedestal width is almost independent of it. The plasma density or collisionality gives initially a mild stabilization, increasing the pedestal slope and height, but above some threshold value its effect turns to a destabilization, reducing the pedestal width and height. Among several plasma shape parameters, the triangularity gives the most dominant effect, rapidly increasing the pedestal width and height, while the effect of elongation and squareness appears to be relatively weak. Implication of these edge results, particularly in relation to the global plasma performance, is discussed.

  11. An overview of KSTAR results

    NASA Astrophysics Data System (ADS)

    Kwak, Jong-Gu; Oh, Y. K.; Yang, H. L.; Park, K. R.; Kim, Y. S.; Kim, W. C.; Kim, J. Y.; Lee, S. G.; Na, H. K.; Kwon, M.; Lee, G. S.; Ahn, H. S.; Ahn, J.-W.; Bae, Y. S.; Bak, J. G.; Bang, E. N.; Chang, C. S.; Chang, D. H.; Chen, Z. Y.; Cho, K. W.; Cho, M. H.; Choi, M.; Choe, W.; Choi, J. H.; Chu, Y.; Chung, K. S.; Diamond, P.; Delpech, L.; Do, H. J.; Eidietis, N.; England, A. C.; Ellis, R.; Evans, T.; Choe, G.; Grisham, L.; Gorelov, Y.; Hahn, H. S.; Hahn, S. H.; Han, W. S.; Hatae, T.; Hillis, D.; Hoang, T.; Hong, J. S.; Hong, S. H.; Hong, S. R.; Hosea, J.; Humphreys, D.; Hwang, Y. S.; Hyatt, A.; Ida, K.; In, Y. K.; Ide, S.; Jang, Y. B.; Jeon, Y. M.; Jeong, J. I.; Jeong, N. Y.; Jeong, S. H.; Jin, J. K.; Joung, M.; Ju, J.; Kawahata, K.; Kim, C. H.; Kim, Hee-Su; Kim, H. S.; Kim, H. J.; Kim, H. K.; Kim, H. T.; Kim, J. H.; Kim, J.; Kim, J. C.; Kim, Jong-Su; Kim, Jung-Su; Kim, J. H.; Kim, Kyung-Min; Kim, K. J.; Kim, K. P.; Kim, M. K.; Kim, S. T.; Kim, S. W.; Kim, Y. J.; Kim, Y. K.; Kim, Y. O.; Ko, J. S.; Ko, W. H.; Kogi, Y.; Kolemen, E.; Kong, J. D.; Kwak, S. W.; Kwon, J. M.; Kwon, O. J.; Lee, D. G.; Lee, D. R.; Lee, D. S.; Lee, H. J.; Lee, J.; Lee, J. H.; Lee, K. D.; Lee, K. S.; Lee, S. H.; Lee, S. I.; Lee, S. M.; Lee, T. G.; Lee, W.; Lee, W. L.; Lim, D. S.; Litaudon, X.; Lohr, J.; Mueller, D.; Moon, K. M.; Na, D. H.; Na, Y. S.; Nam, Y. U.; Namkung, W.; Narihara, K.; Oh, S. T.; Oh, D. G.; Ono, T.; Park, B. H.; Park, D. S.; Park, G. Y.; Park, H.; Park, H. T.; Park, J. K.; Park, J. S.; Park, M. K.; Park, S. H.; Park, S.; Park, Y. M.; Park, Y. S.; Parker, R.; Rhee, D. R.; Sabbagh, S. A.; Sakamoto, K.; Shiraiwa, S.; Seo, D. C.; Seo, S. H.; Seol, J. C.; Shi, Y. J.; Son, S. H.; Song, N. H.; Suzuki, T.; Terzolo, L.; Walker, M.; Wallace, G.; Watanabe, K.; Wang, S. J.; Woo, H. J.; Woo, I. S.; Yagi, M.; Yu, Y. W.; Yamada, I.; Yonekawa, Y.; Yoo, C. M.; You, K. I.; Yoo, J. W.; Yun, G. S.; Yu, M. G.; Yoon, S. W.; Xiao, W.; Zoletnik, S.; the KSTAR Team

    2013-10-01

    Since the first H-mode discharges in 2010, the duration of the H-mode state has been extended and a significantly wider operational window of plasma parameters has been attained. Using a second neutral beam (NB) source and improved tuning of equilibrium configuration with real-time plasma control, a stored energy of Wtot ˜ 450 kJ has been achieved with a corresponding energy confinement time of τE ˜ 163 ms. Recent discharges, produced in the fall of 2012, have reached plasma βN up to 2.9 and surpassed the n = 1 ideal no-wall stability limit computed for H-mode pressure profiles, which is one of the key threshold parameters defining advanced tokamak operation. Typical H-mode discharges were operated with a plasma current of 600 kA at a toroidal magnetic field BT = 2 T. L-H transitions were obtained with 0.8-3.0 MW of NB injection power in both single- and double-null configurations, with H-mode durations up to ˜15 s at 600 kA of plasma current. The measured power threshold as a function of line-averaged density showed a roll-over with a minimum value of ˜0.8 MW at \\bar{n}_e\\sim 2\\times 10^{19}\\,m^{-3} . Several edge-localized mode (ELM) control techniques during H-mode were examined with successful results including resonant magnetic perturbation, supersonic molecular beam injection (SMBI), vertical jogging and electron cyclotron current drive injection into the pedestal region. We observed various ELM responses, i.e. suppression or mitigation, depending on the relative phase of in-vessel control coil currents. In particular, with the 90° phase of the n = 1 RMP as the most resonant configuration, a complete suppression of type-I ELMs was demonstrated. In addition, fast vertical jogging of the plasma column was also observed to be effective in ELM pace-making. SMBI-mitigated ELMs, a state of mitigated ELMs, were sustained for a few tens of ELM periods. A simple cellular automata (‘sand-pile’) model predicted that shallow deposition near the pedestal

  12. Real-time EFIT data reconstruction based on neural network in KSTAR

    NASA Astrophysics Data System (ADS)

    Kwak, Sehyun; Jeon, Youngmu; Ghim, Young-Chul

    2014-10-01

    Real-time EFIT data can be obtained using a neural network method. A non-linear mapping between diagnostic signals and shaping parameters of plasma equilibrium can be established by the neural network, particularly with the multilayer perceptron. The neural network is utilized to attain real-time EFIT data for Korea Superconducting Tokamak for Advanced Research (KSTAR). We collect and process existing datasets of measured data and EFIT data to train and test the neural network. Parameter scans such as the numbers of hidden layers and hidden units were performed in order to find the optimal condition. EFIT data from the neural network was compared with both offline EFIT and real-time EFIT data. Finally, we discuss advantages of using neutral network reconstructed EFIT data for real time plasma control.

  13. Data acquisition and processing system of the electron cyclotron emission imaging system of the KSTAR tokamak.

    PubMed

    Kim, J B; Lee, W; Yun, G S; Park, H K; Domier, C W; Luhmann, N C

    2010-10-01

    A new innovative electron cyclotron emission imaging (ECEI) diagnostic system for the Korean Superconducting Tokamak Advanced Research (KSTAR) produces a large amount of data. The design of the data acquisition and processing system of the ECEI diagnostic system should consider covering the large data production and flow. The system design is based on the layered structure scalable to the future extension to accommodate increasing data demands. Software architecture that allows a web-based monitoring of the operation status, remote experiment, and data analysis is discussed. The operating software will help machine operators and users validate the acquired data promptly, prepare next discharge, and enhance the experiment performance and data analysis in a distributed environment.

  14. Innovations in optical coupling of the KSTAR electron cyclotron emission imaging diagnostic

    SciTech Connect

    Liang, T.; Tobias, B.; Kong, X.; Domier, C. W.; Luhmann, N. C. Jr.; Lee, W.; Yun, G. S.; Park, H. K.

    2010-10-15

    The installation of a new electron cyclotron emission imaging diagnostic for the Korea Superconducting Tokamak Advanced Research (KSTAR) is underway, making use of a unique optical port cassette design, which allows placement of refractive elements inside the cryostat region without adverse effects. The result is unprecedented window access for the implementation of a state of the art imaging diagnostic. A dual-array optical design has been developed, capable of simultaneously imaging the high and low field sides of the plasma with independent features of focal plane translation, vertical zoom, and radial channel spacing. The number of translating optics has been minimized by making use of a zoom lens triplet and parabolic plasma facing lens for maximum channel uniformity over a continuous vertical zoom range of 3:1. The simulated performance of this design is presented along with preliminary laboratory characterization data.

  15. Controlling Plasma Shapes in KSTAR

    NASA Astrophysics Data System (ADS)

    Lee, B. J.; Lao, L. L.

    1997-11-01

    The proposed shape control system on KSTAR uses 14 external PF coils to control the position of a small number of critical points in the magnetic field geometry. Shape control is accomplished on the slow time scale (>= 100 ms) by the detection of the plasma boundary from the external magnetic measurements and then applying the shape control matrices to determine the correction currents. We present the work on the determination of the location and the number of magnetic probes and flux loops for the KSTAR design using the EFIT code, which uses realistic distributed current source constrained by equilibrium. First of all, EFIT is run in equilibrium mode to simulate the flux loop and the magnetic probe signals at a large number of likely locations around the surrounding vacuum vessel. The number and the location of these probes are then optimized by comparing the reconstructed results using the EFIT code utilizing these simulated signals to the original equilibrium. Finally, we perturb the simulated signals by 3-5% randomly and run the reconstruction for many cases to determine the accuracy of the reconstruction for this particular set of probes and loops.

  16. NASA Advanced Propeller Research

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Bober, Lawrence J.

    1988-01-01

    Acoustic and aerodynamic research at NASA Lewis Research Center on advanced propellers is reviewed including analytical and experimental results on both single and counterrotation. Computational tools used to calculate the detailed flow and acoustic i e l d s a r e described along with wind tunnel tests to obtain data for code verification . Results from two kinds of experiments are reviewed: ( 1 ) performance and near field noise at cruise conditions as measured in the NASA Lewis 8-by 6-Foot Wind Tunnel and ( 2 ) farfield noise and performance for takeoff/approach conditions as measured in the NASA Lewis 9-by 15-Font Anechoic Wind Tunnel. Detailed measurements of steady blade surface pressures are described along with vortex flow phenomena at off design conditions . Near field noise at cruise is shown to level out or decrease as tip relative Mach number is increased beyond 1.15. Counterrotation interaction noise is shown to be a dominant source at take off but a secondary source at cruise. Effects of unequal rotor diameters and rotor-to-rotor spacing on interaction noise a real so illustrated. Comparisons of wind tunnel acoustic measurements to flight results are made. Finally, some future directions in advanced propeller research such as swirl recovery vanes, higher sweep, forward sweep, and ducted propellers are discussed.

  17. NASA advanced propeller research

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Bober, Lawrence J.

    1988-01-01

    Acoustic and aerodynamic research at NASA Lewis Research Center on advanced propellers is reviewed including analytical and experimental results on both single and counterrotation. Computational tools used to calculate the detailed flow and acoustic fields are described along with wind tunnel tests to obtain data for code verification. Results from two kinds of experiments are reviewed: (1) performance and near field noise at cruise conditions as measured in the NASA Lewis 8- by 6-foot Wind Tunnel; and (2) far field noise and performance for takeoff/approach conditions as measured in the NASA Lewis 9- by 15-foot Anechoic Wind Tunnel. Detailed measurements of steady blade surface pressures are described along with vortex flow phenomena at off-design conditions. Near field noise at cruise is shown to level out or decrease as tip relative Mach number is increased beyond 1.15. Counterrotation interaction noise is shown to be a dominant source at takeoff but a secondary source at cruise. Effects of unequal rotor diameters and rotor-to-rotor spacing on interaction noise are also illustrated. Comparisons of wind tunnel acoustic measurements to flight results are made. Finally, some future directions in advanced propeller research such as swirl recovery vanes, higher sweep, forward sweep, and ducted propellers are discussed.

  18. Edge electron density profiles and fluctuations measured by two-dimensional beam emission spectroscopy in the KSTAR

    SciTech Connect

    Nam, Y. U. Wi, H. M.; Zoletnik, S.; Lampert, M.; Kovácsik, Ákos

    2014-11-15

    Beam emission spectroscopy (BES) system in Korea Superconducting Tokamak Advanced Research (KSTAR) has recently been upgraded. The background intensity was reduced from 30% to 2% by suppressing the stray lights. This allows acquisition of the relative electron density profiles on the plasma edge without background subtraction from the beam power modulation signals. The KSTAR BES system has its spatial resolution of 1 cm, the temporal resolution of 2 MHz, and a total 32 channel (8 radial × 4 poloidal) avalanche photo diode array. Most measurements were done on the plasma edge, r/a ∼ 0.9, with 8 cm radial measurement width that covers the pedestal range. High speed density profile measurements reveal temporal behaviors of fast transient events, such as the precursors of edge localized modes and the transitions between confinement modes. Low background level also allows analysis of the edge density fluctuation patterns with reduced background fluctuations. Propagation of the density structures can be investigated by comparing the phase delays between the spatially distributed channels.

  19. Real time MHD mode control using ECCD in KSTAR: Plan and requirements

    NASA Astrophysics Data System (ADS)

    Joung, M.; Woo, M. H.; Jeong, J. H.; Hahn, S. H.; Yun, S. W.; Lee, W. R.; Bae, Y. S.; Oh, Y. K.; Kwak, J. G.; Yang, H. L.; Namkung, W.; Park, H.; Cho, M. H.; Kim, M. H.; Kim, K. J.; Na, Y. S.; Hosea, J.; Ellis, R.

    2014-02-01

    For a high-performance, advanced tokamak mode in KSTAR, we have been developing a real-time control system of MHD modes such as sawtooth and Neo-classical Tearing Mode (NTM) by ECH/ECCD. The active feedback control loop will be also added to the mirror position and the real-time detection of the mode position. In this year, for the stabilization of NTM that is crucial to plasma performance we have implemented open-loop ECH antenna control system in KSTAR Plasma Control System (PCS) for ECH mirror movement during a single plasma discharge. KSTAR 170 GHz ECH launcher which was designed and fabricated by collaboration with PPPL and POSTECH has a final mirror of a poloidally and toroidally steerable mirror. The poloidal steering motion is only controlled in the real-time NTM control system and its maximum steering speed is 10 degree/sec by DC motor. However, the latency of the mirror control system and the return period of ECH antenna mirror angle are not fast because the existing launcher mirror control system is based on PLC which is connected to the KSTAR machine network through serial to LAN converter. In this paper, we present the design of real time NTM control system, ECH requirements, and the upgrade plan.

  20. Real time MHD mode control using ECCD in KSTAR: Plan and requirements

    SciTech Connect

    Joung, M.; Woo, M. H.; Jeong, J. H.; Hahn, S. H.; Yun, S. W.; Lee, W. R.; Bae, Y. S.; Oh, Y. K.; Kwak, J. G.; Yang, H. L.; Namkung, W.; Park, H.; Cho, M. H.; Kim, M. H.; Kim, K. J.; Na, Y. S.; Hosea, J.; Ellis, R.

    2014-02-12

    For a high-performance, advanced tokamak mode in KSTAR, we have been developing a real-time control system of MHD modes such as sawtooth and Neo-classical Tearing Mode (NTM) by ECH/ECCD. The active feedback control loop will be also added to the mirror position and the real-time detection of the mode position. In this year, for the stabilization of NTM that is crucial to plasma performance we have implemented open-loop ECH antenna control system in KSTAR Plasma Control System (PCS) for ECH mirror movement during a single plasma discharge. KSTAR 170 GHz ECH launcher which was designed and fabricated by collaboration with PPPL and POSTECH has a final mirror of a poloidally and toroidally steerable mirror. The poloidal steering motion is only controlled in the real-time NTM control system and its maximum steering speed is 10 degree/sec by DC motor. However, the latency of the mirror control system and the return period of ECH antenna mirror angle are not fast because the existing launcher mirror control system is based on PLC which is connected to the KSTAR machine network through serial to LAN converter. In this paper, we present the design of real time NTM control system, ECH requirements, and the upgrade plan.

  1. Advanced propeller research

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Bober, Lawrence J.

    1987-01-01

    Resent results of aerodynamic and acoustic research on both single and counter-rotation propellers are reviewed. Data and analytical results are presented for three propellers: SR-7A, the single rotation design used in the NASA Propfan Test Assessment (PTA); and F7-A7, the 8+8 counterrotating design used in the proof-of-concept Unducted Fan (UDF) engine. In addition to propeller efficiencies, cruise and takeoff noise, and blade pressure data, off-design phenomena involving formation of leading edge vortices are described. Aerodynamic and acoustic computational results derived from three-dimensional Euler and acoustic radiation codes are presented. Research on unsteady flows, which are particularly important for understanding counterrotation interaction noise, unsteady loading effects on acoustics, and flutter or forced response is described. The first results of three-dimensional unsteady Euler solutions are illustrated for a single rotation propeller at an angle of attack and for a counterrotation propeller. Basic experimental and theoretical results from studies of the unsteady aerodynamics of oscillating cascades are outlined. Finally, advanced concepts involving swirl recovery vanes and ultra bypass ducted propellers are discussed.

  2. Design of a single-channel millimeter-wave interferometer system for Korea Superconducting Tokamak Advanced Research

    NASA Astrophysics Data System (ADS)

    Nam, Y. U.; Cheon, M. S.; Kwon, M.; Hwang, Y. S.

    2003-03-01

    A simple single-channel horizontal millimeter-wave interferometer has been designed for plasma electron density measurements on the Korea Superconducting Tokamak Advanced Research (KSTAR). To measure line integrated plasma densities of 2×1019 m-2 in the initial phase of the KSTAR, Gunn oscillator frequency of 280 GHz has been chosen to optimize errors due to both vibration on the beam path and refraction in the plasma. To reduce the free propagation length of the probing beam and to obtain small beam width on the vacuum windows, a retractable cassette system for deep positioning of the diagnostic system has been designed, where microwave parts are located as close as possible to the tokamak with a shielding box. A beam focusing system with concave reflecting mirrors has been designed on the cassette and on the inner wall of the tokamak to reduce beam losses and to minimize beam width in the plasma. The estimated total transmission loss is about 25 dB, and beam widths are reduced significantly in the range of 20-50 mm.

  3. Advancing Scientific Research in Education

    ERIC Educational Resources Information Center

    Towne, Lisa, Ed.; Wise, Lauress L., Ed.; Winters, Tina M., Ed.

    2005-01-01

    The title of this report reveals its purpose precisely: to spur actions that will advance scientific research in education. The recommendations for accomplishing this goal, detailed in this report, build on the National Research Council (NRC) report "Scientific Research in Education" (National Research Council, 2002). That report offers an…

  4. [Research advances in dendrochronology].

    PubMed

    Fang, Ke-Yan; Chen, Qiu-Yan; Liu, Chang-Zhi; Cao, Chun-Fu; Chen, Ya-Jun; Zhou, Fei-Fei

    2014-07-01

    Tree-ring studies in China have achieved great advances since the 1990s, particularly for the dendroclimatological studies which have made some influence around the world. However, because of the uneven development, limited attention has been currently paid on the other branches of dendrochronology. We herein briefly compared the advances of dendrochronology in China and of the world and presented suggestions on future dendrochronological studies. Large-scale tree-ring based climate reconstructions in China are highly needed by employing mathematical methods and a high quality tree-ring network of the ring-width, density, stable isotope and wood anatomy. Tree-ring based field climate reconstructions provide potentials on explorations of climate forcings during the reconstructed periods via climate diagnosis and process simulation.

  5. Robust control of long-pulse, high performance plasmas in KSTAR tokamak

    NASA Astrophysics Data System (ADS)

    Jeon, Youngmu; Hahn, S. H.; Han, H. S.; Woo, M. H.; Joung, M.; Kim, Jayhyun; Bae, Y. S.; Kim, H.-S.; Yoon, S. W.; Oh, Y. K.; Na, Y. S.; Eidietis, N. W.; Walker, M. L.; Lanctot, M. J.; Hyatt, A. W.; Mueller, D. A.; Kstar Team

    2016-10-01

    The goal of KSTAR is to achieve and demonstrate high performance, steady state tokamak operations in long pulse up to 300 s. In recent years, we made significant progresses on plasma control and performance for this advanced tokamak (AT) operation. First of all, the plasma equilibrium magnetic control has been substantially improved by applying fully decoupled multi-input-multi-output (MIMO) isoflux shape controllers [1]. The MIMO shape controllers were designed using a newly developed design method by taking the plasma equilibrium response into account self-consistently. More than eight shape control variables including plasma currents are controlled independently on each other with high accuracy (less than 1cm error on average) and with wide variations of plasma shape. By virtue of this robust control, various long pulse H-mode discharges have been operated up to 60 s, which was the maximum pulse length allowable in current KSTAR system. Also, plasma performance has been improved accordingly. A fully non-inductive H-mode operation [1] was achieved for the first time in KSTAR, through the so-called `high betap' operation with betap 3.0. In addition, various experimental attempts for advanced scenario development have been conducted such as the `hybrid' [2] and `high li' scenarios[3].

  6. Advances in lightning research

    NASA Astrophysics Data System (ADS)

    Cooray, Vernon; Rachidi, Farhad

    2017-02-01

    This is the part II of a special issue dedicated to lightning research, consisting of papers presented at the 32nd International Conference on Lightning Protection (ICLP), held in Shanghai, China, in 2014, and several contributions invited by the guest editors to complement the subject matter of the papers selected from the ICLP. The papers from the ICLP were selected by the session chairmen of the ICLP and passed through the rigorous review process of the Journal of Solar Terrestrial and Atmospheric Physics (JASTP). The papers presented in this special issue contain subject matter pertinent to all aspects of lightning research both theoretical and experimental.

  7. Advances in Electrophysiological Research

    PubMed Central

    Kamarajan, Chella; Porjesz, Bernice

    2015-01-01

    Electrophysiological measures of brain function are effective tools to understand neurocognitive phenomena and sensitive indicators of pathophysiological processes associated with various clinical conditions, including alcoholism. Individuals with alcohol use disorder (AUD) and their high-risk offspring have consistently shown dysfunction in several electrophysiological measures in resting state (i.e., electroencephalogram) and during cognitive tasks (i.e., event-related potentials and event-related oscillations). Researchers have recently developed sophisticated signal-processing techniques to characterize different aspects of brain dynamics, which can aid in identifying the neural mechanisms underlying alcoholism and other related complex disorders. These quantitative measures of brain function also have been successfully used as endophenotypes to identify and help understand genes associated with AUD and related disorders. Translational research also is examining how brain electrophysiological measures potentially can be applied to diagnosis, prevention, and treatment. PMID:26259089

  8. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect

    Unknown

    2000-01-01

    The activities of the Advanced Gas Turbine Systems Research (AGRSR) program are described in the quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education) and Research. Items worthy of note are presented in extended bullet format following the appropriate heading.

  9. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect

    Unknown

    2002-02-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  10. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect

    Unknown

    2002-04-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  11. Advanced Current Collection Research

    DTIC Science & Technology

    1977-05-01

    Research Projects Agency SContract N00014-76-C-0683 ARPA Order No. 3153 SC. J. Mole, D. L. Greene, I. R. McNab, J. L. Johnson, 0. S. Taylor, W. R. Gass ... Gass , W.R. 6. REPORT DATE 70 TOTAL NO OP PAGES 7b NO OF REFS May 1977 901 fan. CONTRACT OR GRANT No. 9a. ORIGINATOR’S REPORT NUMBER(S) N00014-76-C-0683...considerations In the shunt design. In order for the solid brush to move radially in and out of the brush holder with rotor movement, the shunt-to-brush

  12. Advanced Remote Sensing Research

    USGS Publications Warehouse

    Slonecker, Terrence; Jones, John W.; Price, Susan D.; Hogan, Dianna

    2008-01-01

    'Remote sensing' is a generic term for monitoring techniques that collect information without being in physical contact with the object of study. Overhead imagery from aircraft and satellite sensors provides the most common form of remotely sensed data and records the interaction of electromagnetic energy (usually visible light) with matter, such as the Earth's surface. Remotely sensed data are fundamental to geographic science. The Eastern Geographic Science Center (EGSC) of the U.S. Geological Survey (USGS) is currently conducting and promoting the research and development of three different aspects of remote sensing science: spectral analysis, automated orthorectification of historical imagery, and long wave infrared (LWIR) polarimetric imagery (PI).

  13. Advanced propeller research

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Bober, Lawrence J.

    1990-01-01

    Recent results of aerodynamic and acoustic research on both single rotation and counterrotation propellers are reviewed. Data and analytical results are presented for three propellers: SR-7A, the single rotation design used in the NASA Propfan Test Assessment (PTA) flight program; CRP-X1, the initial 5+5 Hamilton Standard counterrotating design; and F7-A7, the 8+8 counterrotating G.E. design used in the proof of concept Unducted Fan (UDF) engine. In addition to propeller efficiencies, cruise and takeoff noise, and blade pressure data, off-design phenomena involving formation of leading edge vortexes are described. Aerodynamic and acoustic computational results derived from 3-D Euler and acoustic radiation codes are presented. Research on unsteady flows which are particularly important for understanding counterrotation interaction noise, unsteady loading effects on acoustics, and flutter or forced response is described. The first results of 3-D unsteady Euler solutions are illustrated for a single rotation propeller at angle of attack and for a counterrotation propeller. Basic experimental and theoretical results from studies on the unsteady aerodynamics of oscillating cascades are outlined.

  14. Advanced ion thruster research

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1984-01-01

    A simple model describing the discharge chamber performance of high strength, cusped magnetic field ion thrusters is developed. The model is formulated in terms of the energy cost of producing ions in the discharge chamber and the fraction of ions produced in the discharge chamber that are extracted to form the ion beam. The accuracy of the model is verified experimentally in a series of tests wherein the discharge voltage, propellant, grid transparency to neutral atoms, beam diameter and discharge chamber wall temperature are varied. The model is exercised to demonstrate what variations in performance might be expected by varying discharge chamber parameters. The results of a study of xenon and argon orificed hollow cathodes are reported. These results suggest that a hollow cathode model developed from research conducted on mercury cathodes can also be applied to xenon and argon. Primary electron mean free paths observed in argon and xenon cathodes that are larger than those found in mercury cathodes are identified as a cause of performance differences between mercury and inert gas cathodes. Data required as inputs to the inert gas cathode model are presented so it can be used as an aid in cathode design.

  15. Superconductors (History & Advanced Research)

    NASA Astrophysics Data System (ADS)

    Khorrami, Mona

    2012-02-01

    Superconductors are materials that have no resistance to electricity's flow; they are one of the last great frontiers of scientific discovery. In 1911 superconductivity was first observed in mercury by Dutch physicist Heike Kamerlingh Onnes When he cooled it to the temperature of liquid helium, 4 degrees Kelvin (-452F, -269C), its resistance suddenly disappeared. It was necessary for Onnes to come within 4 degrees of the coldest temperature that is theoretically attainable to witness the phenomenon of superconductivity. The next great milestone in understanding how matter behaves at extreme cold temperatures occurred in 1933. German researchers Walther Meissner and Robert Ochsenfeld discovered that a superconducting material will repel a magnetic field. A magnet moving by a conductor induces currents in the conductor. This is the principle on which the electric generator operates. But, in a superconductor the induced currents exactly mirror the field that would have otherwise penetrated the superconducting material - causing the magnet to be repulsed. This phenomenon is known as strong diamagnetism and is today often referred to as the ``Meissner effect'' (an eponym). In 1941 niobium-nitride was found to superconduct at 16 K. In 1953 vanadium-silicon displayed superconductive properties at 17.5 K. And, in 1962 scientists at Westinghouse developed the first commercial superconducting wire, an alloy of niobium and titanium (NbTi).

  16. Radiation damage of the PCO Pixelfly VGA CCD camera of the BES system on KSTAR tokamak

    NASA Astrophysics Data System (ADS)

    Náfrádi, Gábor; Kovácsik, Ákos; Pór, Gábor; Lampert, Máté; Un Nam, Yong; Zoletnik, Sándor

    2015-01-01

    A PCO Pixelfly VGA CCD camera which is part a of the Beam Emission Spectroscopy (BES) diagnostic system of the Korea Superconducting Tokamak Advanced Research (KSTAR) used for spatial calibrations, suffered from serious radiation damage, white pixel defects have been generated in it. The main goal of this work was to identify the origin of the radiation damage and to give solutions to avoid it. Monte Carlo N-Particle eXtended (MCNPX) model was built using Monte Carlo Modeling Interface Program (MCAM) and calculations were carried out to predict the neutron and gamma-ray fields in the camera position. Besides the MCNPX calculations pure gamma-ray irradiations of the CCD camera were carried out in the Training Reactor of BME. Before, during and after the irradiations numerous frames were taken with the camera with 5 s long exposure times. The evaluation of these frames showed that with the applied high gamma-ray dose (1.7 Gy) and dose rate levels (up to 2 Gy/h) the number of the white pixels did not increase. We have found that the origin of the white pixel generation was the neutron-induced thermal hopping of the electrons which means that in the future only neutron shielding is necessary around the CCD camera. Another solution could be to replace the CCD camera with a more radiation tolerant one for example with a suitable CMOS camera or apply both solutions simultaneously.

  17. Modification of argon impurity transport by electron cyclotron heating in KSTAR H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Hong, Joohwan; Henderson, S. S.; Kim, Kimin; Seon, C. R.; Song, Inwoo; Lee, H. Y.; Jang, Juhyeok; Park, Jae Sun; Lee, S. G.; Lee, J. H.; Lee, Seung Hun; Hong, Suk-Ho; Choe, Wonho

    2017-03-01

    Experiments with a small amount of Ar gas injection as a trace impurity were conducted in the Korea Superconducting Tokamak Advanced Research (KSTAR) H-mode plasma ({{B}\\text{T}}   =  2.8 T, {{I}\\text{P}}   =  0.6 MA, and {{P}\\text{NBI}}   =  4.0 MW). 170 GHz electron cyclotron resonance heating (ECH) at 600 and 800 kW was focused along the mid-plane with a fixed major radial position of R   =  1.66 m. The emissivity of the Ar16+ (3.949 {\\mathring{\\text{A}}} ) and Ar15+ (353.860 {\\mathring{\\text{A}}} ) spectral lines were measured by x-ray imaging crystal spectroscopy (XICS) and a vacuum UV (VUV) spectrometer, respectively. ECH reduces the peak Ar15+ emission and increases the Ar16+ emission, an effect largest with 800 kW. The ADAS-SANCO impurity transport code was used to evaluate the Ar transport coefficients. It was found that the inward convective velocity found in the plasma core without ECH was decreased with ECH, while diffusion remained approximately constant resulting in a less-peaked Ar density profile. Theoretical results from the NEO code suggest that neoclassical transport is not responsible for the change in transport, while the microstability analysis using GKW predicts a dominant ITG mode during both ECH and non-ECH plasmas.

  18. MSE measurements for sawtooth and non-inductive current drive studies in KSTAR

    NASA Astrophysics Data System (ADS)

    Ko, J.; Park, H.; Bea, Y. S.; Chung, J.; Jeon, Y. M.

    2016-10-01

    Two major topics where the measurement of the magnetic-field-line rotational transform profiles in toroidal plasma systems include the long-standing issue of complete versus incomplete reconnection model of the sawtooth instability and the issue with future reactor-relevant tokamak devices in which non-inductive steady state current sustainment is essential. The motional Stark effect (MSE) diagnostic based on the photoelastic-modulator (PEM) approach is one of the most reliable means to measure the internal magnetic pitch, and thus the rotational transform, or its reciprocal (q), profiles. The MSE system has been commissioned for the Korea Superconducting Tokamak Advanced Research (KSTAR) along with the development of various techniques to minimize systematic offset errors such as Faraday rotation and mis-alignment of the bandpass filters. The diagnostic has revealed the central q is well correlated with the sawtooth oscillation, maintaining its value above unity during the MHD quiescent period and that the response of the q profile to external current drive such as electron cyclotron wave injection not only involves the local change of the pitch angle gradient but also a significant shift of the magnetic topology due to the wave energy transport. Work supported by the Ministry of Science, ICT and Future Planning, Korea.

  19. A Self-consistent Simulation of KSTAR Reverse-shear Operation Mode using ASTRA Code

    NASA Astrophysics Data System (ADS)

    Kim, J. Y.; Jhang, Hogun

    2001-10-01

    A simulation study is presented on the reverse-shear operation mode of KSTAR (Korea Superconducting Tokamak Advanced Research) device, using the ASTRA (Automatic System of TRansport Analysis in a tokamak) code. The heat deposition and the current profile evolution are modeled self-consistently from the ASTRA code into which several heating and current-drive modules of NBI, ICRH/FWCD, and LHCD have been implemented. The anomalous transport is modeled more elaborately by using the theory-based models, such as IFS/PPPL one, rather than conventional empirical or artificial formulas. The effect of equilibrium flow shear and its time evolution are also included in the modeling for a more realistic description of the formation of ITB and its spatial and temporal evolution. Finally, based on the simulation results we will discuss the possible way to get an AT mode plasma with high-beta and high bootstrap current fraction, avoiding a steep pressure gradient and related local MHD instabilities.

  20. KSTAR equilibrium operating space and projected stabilization at high normalized beta

    NASA Astrophysics Data System (ADS)

    Park, Y. S.; Sabbagh, S. A.; Berkery, J. W.; Bialek, J. M.; Jeon, Y. M.; Hahn, S. H.; Eidietis, N.; Evans, T. E.; Yoon, S. W.; Ahn, J.-W.; Kim, J.; Yang, H. L.; You, K.-I.; Bae, Y. S.; Chung, J.; Kwon, M.; Oh, Y. K.; Kim, W.-C.; Kim, J. Y.; Lee, S. G.; Park, H. K.; Reimerdes, H.; Leuer, J.; Walker, M.

    2011-05-01

    Along with an expanded evaluation of the equilibrium operating space of the Korea Superconducting Tokamak Advanced Research, KSTAR, experimental equilibria of the most recent plasma discharges were reconstructed using the EFIT code. In near-circular plasmas created in 2009, equilibria reached a stored energy of 54 kJ with a maximum plasma current of 0.34 MA. Highly shaped plasmas with near double-null configuration in 2010 achieved H-mode with clear edge localized mode (ELM) activity, and transiently reached a stored energy of up to 257 kJ, elongation of 1.96 and normalized beta of 1.3. The plasma current reached 0.7 MA. Projecting active and passive stabilization of global MHD instabilities for operation above the ideal no-wall beta limit using the designed control hardware was also considered. Kinetic modification of the ideal MHD n = 1 stability criterion was computed by the MISK code on KSTAR theoretical equilibria with a plasma current of 2 MA, internal inductance of 0.7 and normalized beta of 4.0 with simple density, temperature and rotation profiles. The steep edge pressure gradient of this equilibrium resulted in the need for significant plasma toroidal rotation to allow thermal particle kinetic resonances to stabilize the resistive wall mode (RWM). The impact of various materials and electrical connections of the passive stabilizing plates on RWM growth rates was analysed, and copper plates reduced the RWM passive growth rate by a factor of 15 compared with stainless steel plates at a normalized beta of 4.4. Computations of active RWM control using the VALEN code showed that the n = 1 mode can be stabilized at normalized beta near the ideal wall limit via control fields produced by the midplane in-vessel control coils (IVCCs) with as low as 0.83 kW control power using ideal control system assumptions. The ELM mitigation potential of the IVCC, examined by evaluating the vacuum island overlap created by resonant magnetic perturbations, was analysed using the

  1. KSTAR Equilibrium Operating Space and Projected Stabilization at High Normalized Beta

    SciTech Connect

    Park, Y. S.; Sabbagh, S. A.; Berkery, J.W.; Bialek, J.; Jeon, Y. M.; Hahn, S. H.; Eidietis, N. W.; Evans, T. E.; Yoon, S. W.; Ahn, Joonwook; Kim, J.; Yang, H. L.; You, K. I.; Soukhanovskii, V. A.; Bae, Y. S.; Chung, J. I.; Kwon, M.; Oh, Y. K.; Kim, W. C.; Kim, J. Y.; Lee, S. G.; Park, H.; Reimerdes, H.; Leuer, J. A.; Walker, M. L.

    2011-01-01

    Along with an expanded evaluation of the equilibrium operating space of the Korea Superconducting Tokamak Advanced Research, KSTAR, experimental equilibria of the most recent plasma discharges were reconstructed using the EFIT code. In near-circular plasmas created in 2009, equilibria reached a stored energy of 54 kJ with a maximum plasma current of 0.34 MA. Highly shaped plasmas with near double-null configuration in 2010 achieved H-mode with clear edge localized mode (ELM) activity, and transiently reached a stored energy of up to 257 kJ, elongation of 1.96 and normalized beta of 1.3. The plasma current reached 0.7 MA. Projecting active and passive stabilization of global MHD instabilities for operation above the ideal no-wall beta limit using the designed control hardware was also considered. Kinetic modification of the ideal MHD n = 1 stability criterion was computed by the MISK code on KSTAR theoretical equilibria with a plasma current of 2 MA, internal inductance of 0.7 and normalized beta of 4.0 with simple density, temperature and rotation profiles. The steep edge pressure gradient of this equilibrium resulted in the need for significant plasma toroidal rotation to allow thermal particle kinetic resonances to stabilize the resistive wall mode (RWM). The impact of various materials and electrical connections of the passive stabilizing plates on RWM growth rates was analysed, and copper plates reduced the RWM passive growth rate by a factor of 15 compared with stainless steel plates at a normalized beta of 4.4. Computations of active RWM control using the VALEN code showed that the n = 1 mode can be stabilized at normalized beta near the ideal wall limit via control fields produced by the midplane in-vessel control coils (IVCCs) with as low as 0.83kW control power using ideal control system assumptions. The ELM mitigation potential of the IVCC, examined by evaluating the vacuum island overlap created by resonant magnetic perturbations, was analysed using the

  2. ISAAC Advanced Composites Research Testbed

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Stewart, Brian K.; Martin, Robert A.

    2014-01-01

    The NASA Langley Research Center is acquiring a state-of-art composites fabrication capability to support the Center's advanced research and technology mission. The system introduced in this paper is named ISAAC (Integrated Structural Assembly of Advanced Composites). The initial operational capability of ISAAC is automated fiber placement, built around a commercial system from Electroimpact, Inc. that consists of a multi-degree of freedom robot platform, a tool changer mechanism, and a purpose-built fiber placement end effector. Examples are presented of the advanced materials, structures, structural concepts, fabrication processes and technology development that may be enabled using the ISAAC system. The fiber placement end effector may be used directly or with appropriate modifications for these studies, or other end effectors with different capabilities may either be bought or developed with NASA's partners in industry and academia.

  3. Advanced aerodynamics. Selected NASA research

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This Conference Publication contains selected NASA papers that were presented at the Fifth Annual Status Review of the NASA Aircraft Energy Efficiency (ACEE) Energy Efficient Transport (EET) Program held at Dryden Flight Research Center in Edwards, California on September 14 to 15, 1981. These papers describe the status of several NASA in-house research activities in the areas of advanced turboprops, natural laminar flow, oscillating control surfaces, high-Reynolds-number airfoil tests, high-lift technology, and theoretical design techniques.

  4. Advanced Information System Research Project.

    DTIC Science & Technology

    1980-06-01

    realistic near-term achievements. The research program objectives are to develop , manage , and coordinate activities relating to the following: o... development ; o Development and demonstration of tools, techniques, procedures, and advanced design concepts applicable to future management ... management is consolidated under the Division Property Book Officer. Property book accountability is maintained under the provisions of AR 735-35, and

  5. Advances in Teacher Effectiveness Research

    ERIC Educational Resources Information Center

    Brophy, Jere E.

    2010-01-01

    Classroom research on process-outcome relationships had burgeoned in recent years, revealing notable methodological advances and sensible, replicated findings. The studies of the early 1970s supporting direct instruction as particularly effective for producing achievement in basic skills in the early grades have been replicated and extended to…

  6. Demonstration of sawtooth period control with EC waves in KSTAR plasma

    DOE PAGES

    Jeong, J. H.; Bae, Y. S.; Joung, M.; ...

    2015-03-12

    The sawtooth period control in tokamak is important issue in recent years because the sawtooth crash can trigger TM/NTM instabilities and drive plasmas unstable. The control of sawtooth period by the modification of local current profile near the q=1 surface using ECCD has been demonstrated in a number of tokamaks [1, 2] including KSTAR. As a result, developing techniques to control the sawtooth period as a way of controlling the onset of NTM has been an important area of research in recent years [3]. In 2012 KSTAR plasma campaign, the sawtooth period control is carried out by the different depositionmore » position of EC waves across the q=1 surface. The sawtooth period is shortened by on-axis co-ECCD (destabilization), and the stabilization of the sawtooth is also observed by off-axis co-ECCD at outside q=1 surface. In 2013 KSTAR plasma campaign, the sawtooth locking experiment with periodic forcing of 170 GHz EC wave is carried out to control the sawtooth period. The optimal target position which lengthens the sawtooth period is investigated by performing a scan of EC beam deposition position nearby q=1 surface at the toroidal magnetic field of 2.9 T and plasma current of 0.7 MA. The sawtooth locking by the modulated EC beam is successfully demonstrated as in [3-5] with the scan of modulation-frequency and duty-ratio at the low beta (βN~0.5) plasma. In this paper, the sawteeth behavior by the location of EC beam and the preliminary result of the sawtooth locking experiments in KSTAR will be presented.« less

  7. Demonstration of sawtooth period control with EC waves in KSTAR plasma

    SciTech Connect

    Jeong, J. H.; Bae, Y. S.; Joung, M.; Kim, D.; Goodman, T. P.; Sauter, O.; Sakamoto, K.; Kajiwara, K.; Oda, Y.; Kwak, J. G.; Namkung, W.; Cho, M. H.; Park, H.; Hosea, J.; Ellis, R.

    2015-03-12

    The sawtooth period control in tokamak is important issue in recent years because the sawtooth crash can trigger TM/NTM instabilities and drive plasmas unstable. The control of sawtooth period by the modification of local current profile near the q=1 surface using ECCD has been demonstrated in a number of tokamaks [1, 2] including KSTAR. As a result, developing techniques to control the sawtooth period as a way of controlling the onset of NTM has been an important area of research in recent years [3]. In 2012 KSTAR plasma campaign, the sawtooth period control is carried out by the different deposition position of EC waves across the q=1 surface. The sawtooth period is shortened by on-axis co-ECCD (destabilization), and the stabilization of the sawtooth is also observed by off-axis co-ECCD at outside q=1 surface. In 2013 KSTAR plasma campaign, the sawtooth locking experiment with periodic forcing of 170 GHz EC wave is carried out to control the sawtooth period. The optimal target position which lengthens the sawtooth period is investigated by performing a scan of EC beam deposition position nearby q=1 surface at the toroidal magnetic field of 2.9 T and plasma current of 0.7 MA. The sawtooth locking by the modulated EC beam is successfully demonstrated as in [3-5] with the scan of modulation-frequency and duty-ratio at the low beta (βN~0.5) plasma. In this paper, the sawteeth behavior by the location of EC beam and the preliminary result of the sawtooth locking experiments in KSTAR will be presented.

  8. L-H power threshold studies under non-axisymmetric magnetic field in KSTAR

    NASA Astrophysics Data System (ADS)

    Ko, Won-Ha; in, Y.; Kim, H. S.; Lee, H. H.; Lee, J. H.; Jeon, Y. M.; Seol, J.; Ida, K.; Yoon, S. W.; Oh, Y. K.; Park, H.

    2016-10-01

    An exceptionally low level of H-mode power threshold (PTH) , as well as its dependence on non-axisymmetric magnetic field (δB), has been measured in KSTAR. While the application of resonant magnetic perturbation (RMP) is deemed necessary to suppress or mitigate edge-localized-mode (ELM) in ITER and future reactors, δB influence on PTH in deuterium plasmas has been predicted to be mostly insensitive at low level, while linearly proportional at high level. However, in similarly neutral-beam-heated deuterium plasmas, we have found that the PTH of KSTAR was almost a factor of 2 lower than that of DIII-D, while revealing linear δB dependence even at its low level. Despite various differences between two devices in terms of RMP characteristics and configurations, such contrasting results are mostly attributable to an order of magnitude lower level of intrinsic error field and toroidal field ripple in KSTAR. Perhaps, a theory about L-H transition physics might be in better agreement with experimental results, when δB dependence is explicitly incorporated. National Fusion Research Institute.

  9. Design of practical alignment device in KSTAR Thomson diagnostic

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Lee, S. H.; Yamada, I.

    2016-11-01

    The precise alignment of the laser path and collection optics in Thomson scattering measurements is essential for accurately determining electron temperature and density in tokamak experiments. For the last five years, during the development stage, the KSTAR tokamak's Thomson diagnostic system has had alignment fibers installed in its optical collection modules, but these lacked a proper alignment detection system. In order to address these difficulties, an alignment verifying detection device between lasers and an object field of collection optics is developed. The alignment detection device utilizes two types of filters: a narrow laser band wavelength for laser, and a broad wavelength filter for Thomson scattering signal. Four such alignment detection devices have been successfully developed for the KSTAR Thomson scattering system in this year, and these will be tested in KSTAR experiments in 2016. In this paper, we present the newly developed alignment detection device for KSTAR's Thomson scattering diagnostics.

  10. Status of RF Heating and Current Drive Systems for KSTAR

    NASA Astrophysics Data System (ADS)

    Bae, Young-Soon; Jeong, Jin-Hyun; Park, Seung-Il; Cho, Moo-Hyun; Namkung, Won; Kwak, Jong-Gu; Yoon, Jae-Sung; Bae, Yeong-Duk; Wang, Son-Jong; Kim, Suk-Kwon; Hwang, Chul-Kew; Kim, Sung-Kyu

    2007-11-01

    The heating and current drive systems consisting of neutral beam injection (NBI) and radio frequency (RF) systems will be used for the KSTAR whose construction will be completed by August, 2007. The KSTAR RF heating and current drive systems are composed of ion cyclotron range of frequencies (ICRF), lower hybrid current drive (LHCD) system, and electron cyclotron heating (ECH) system. The KSTAR adopts the ECH-assisted start-up for the flexibility and reliability of the operation regime using 84 GHz, 500 kW gyrotron. For the KSTAR first plasma scheduled at June, 2008, two RF heating systems, 84 GHz ECH and 25-60 MHz ICRF systems, will be used for the pre-ionization to reduce the loop voltage and the wall discharge cleaning, respectively. This paper describes the status of the KSTAR RF heating and current drive systems and the initial test results using dummy load. Also, the upgrade plan of the KSTAR RF heating and current drive systems will be presented as well as the key features and the relevant technological issues for the long pulse operation.

  11. Advancing neurosurgery through translational research.

    PubMed

    Lacey, Claire; Sutherland, Garnette

    2013-01-01

    Every year, the number of published research articles increases significantly. However, many potentially useful ideas are lost in this flood of data. Translational research provides a framework through which investigators or laboratories can maximize the likelihood that the product of their research will be adopted in medical practice. There are 2 recognizable models of translation appropriate for the majority of research: investigator driven and industry enabled. Investigator-driven research has more range because it does not have to consider the profit margin of research, but it is a slow process. The industry-enabled model accelerates the translational research process through the power of industry funding but is interested primarily in products with potential for profit. Two cases are examined to illustrate different methods of partnering with industry. IMRIS is a company founded by investigators to distribute intraoperative magnetic resonance imaging technology based on a movable high-field magnet. It took 7 years for IMRIS to make its first sale, but it is now a successful company. With neuroArm, a surgical robot, investigators decided to sell the intellectual property to an established company to ensure successful global commercialization. Translational research advances medicine by creating and distributing effective solutions to contemporary problems.

  12. Advanced aircraft for atmospheric research

    NASA Technical Reports Server (NTRS)

    Russell, P.; Wegener, S.; Langford, J.; Anderson, J.; Lux, D.; Hall, D. W.

    1991-01-01

    The development of aircraft for high-altitude research is described in terms of program objectives and environmental, technological limitations, and the work on the Perseus A aircraft. The need for these advanced aircraft is proposed in relation to atmospheric science issues such as greenhouse trapping, the dynamics of tropical cyclones, and stratospheric ozone. The implications of the study on aircraft design requirements is addressed with attention given to the basic categories of high-altitude, long-range, long-duration, and nap-of-the-earth aircraft. A strategy is delineated for a platform that permits unique stratospheric measurements and is a step toward a more advanced aircraft. The goal of Perseus A is to carry scientific air sampling payloads weighing at least 50 kg to altitudes of more than 25 km. The airfoils are designed for low Reynolds numbers, the structural weight is very low, and the closed-cycle power plant runs on liquid oxygen.

  13. Advancing musculoskeletal research with nanoscience.

    PubMed

    Brown, Cameron P

    2013-10-01

    Nanoscience has arrived. Biological applications of nanoscience are particularly prominent and can be useful in a range of disciplines. Advances in nanoscience are underpinning breakthroughs in biomedical research and are beginning to be adopted by the rheumatology and musculoskeletal science communities. Within these fields, nanoscience can be applied to imaging, drug delivery, implant development, regenerative medicine, and the characterization of nanoscale features of cells, matrices and biomaterials. Nanoscience and nanotechnology also provide means by which the interaction of cells with their environment can be studied, thereby increasing the understanding of disease and regenerative processes. Although its potential is clear, nanoscience research tends to be highly technical, generally targeting an audience of physicists, chemists, materials scientists and engineers, and is difficult for a general audience to follow. This Review aims to step back from the most technical aspects of nanoscience and provide a widely accessible view of how it can be applied to advance the field of rheumatology, with an emphasis on technologies that can have an immediate impact on rheumatology and musculoskeletal research.

  14. Advancing Concentrating Solar Power Research (Fact Sheet)

    SciTech Connect

    Not Available

    2014-02-01

    Researchers at the National Renewable Energy Laboratory (NREL) provide scientific, engineering, and analytical expertise to help advance innovation in concentrating solar power (CSP). This fact sheet summarizes how NREL is advancing CSP research.

  15. Intermediate/Advanced Research Design and Statistics

    NASA Technical Reports Server (NTRS)

    Ploutz-Snyder, Robert

    2009-01-01

    The purpose of this module is To provide Institutional Researchers (IRs) with an understanding of the principles of advanced research design and the intermediate/advanced statistical procedures consistent with such designs

  16. Recent advances in shoulder research.

    PubMed

    Killian, Megan L; Cavinatto, Leonardo; Galatz, Leesa M; Thomopoulos, Stavros

    2012-06-15

    Shoulder pathology is a growing concern for the aging population, athletes, and laborers. Shoulder osteoarthritis and rotator cuff disease represent the two most common disorders of the shoulder leading to pain, disability, and degeneration. While research in cartilage regeneration has not yet been translated clinically, the field of shoulder arthroplasty has advanced to the point that joint replacement is an excellent and viable option for a number of pathologic conditions in the shoulder. Rotator cuff disease has been a significant focus of research activity in recent years, as clinicians face the challenge of poor tendon healing and irreversible changes associated with rotator cuff arthropathy. Future treatment modalities involving biologics and tissue engineering hold further promise to improve outcomes for patients suffering from shoulder pathologies.

  17. Characterization of MHD instabilities, plasma rotation alteration, and RWM control analysis in the expanded H-mode operation of KSTAR

    NASA Astrophysics Data System (ADS)

    Park, Y. S.; Sabbagh, S. A.; Berkery, J. W.; Bialek, J. M.; Bak, J. G.; Ko, W. H.; Lee, S. G.; Jeon, Y. M.; Hahn, S. H.; You, K.-I.; Lee, K. D.; Park, J. K.; Yun, G. S.; Park, H. K.

    2012-10-01

    The Korea Superconducting Tokamak Advanced Research (KSTAR) has expanded its H-mode operational space to higher beta and lower internal inductance, moving toward design target operation. Plasmas have reached normalized beta of 1.9, stored energy of 340 kJ, and energy confinement time of 171ms evaluated by EFIT reconstructions. Advances from the fall run campaign will be reported. Rotating modes having n = 1, 2 tearing parities are observed by internal and external measurements and their characteristics and stability dependence on plasma rotation profile are analyzed and compared to initial observations. Initial alteration of the plasma rotation profile by applied non-axisymmetric fields is investigated and has characteristics of non-resonant braking. Computation of active RWM control using the VALEN code examines the impact of available sensors for control. Both off-axis and midplane sensors are analyzed, and with off-axis sensors the mode can be stabilized up to normalized beta of 4.5 (C/beta = 86/) and up to 3.6 (44&%slash;) with and without compensation of the prompt applied field of the control coils from the sensors, respectively. Power and bandwidth requirements for RWM stabilization are also calculated by including sensor noise and power supply time delay.

  18. a Study on Design Optimization of Conical Bolt in the TF Coil Structure of the Kstar Tokamak

    NASA Astrophysics Data System (ADS)

    Kwon, Young-Doo; Lee, Dae-Suep

    The goals of the KSTAR project are to develop a steady-state-capable advanced superconducting Tokamak and establish a scientific and technological basis for a Korean nuclear fusion power station. The KSTAR Tokamak comprises a magnet system, vacuum vessel, and cryostat, thereby facilitating vacuum conditions for plasma gas at high temperatures, along with low-temperature helium gas for cooling. The TF coil structure, a part of the magnet system, is constructed and jointed with 16 pieces at 22.5-degree intervals using a conical bolt and shear key. The main function of the conical bolt in the inner and outer inter-coil structures is to resist the in-plane and out-of-plane forces and increase the toroidal and intercoil shear stiffness. Therefore, the conical bolt must be dimensionally optimized to reduce the stresses at each connecting part. Accordingly, shape optimization of the conical bolt was carried out using SZGA, and the stresses were analyzed by ANSYS.

  19. Criteria for Neoclassical Tearing Modes Suppression in KSTAR

    NASA Astrophysics Data System (ADS)

    Park, Y. S.; Hwang, Y. S.

    2007-11-01

    In KSTAR, neoclassical tearing modes(NTMs) will be suppressed by using 170GHz electron cyclotron current drive(ECCD) system with steering mirrors that align the current deposition to NTM locations. As an initial stage of NTM suppression study, 1 MW ECCD power will be used to suppress m/n = 3/2 and 2/1 NTMs. To confirm the feasibility of successful suppression of the modes under the proposed KSTAR environment, modified Rutherford equation(MRE) which encapsulates stability of NTMs is constructed for the target equilibrium of KSTAR. The geometric coefficients in MRE are obtained by comparing saturated sizes of NTMs from ISLAND code [1] with the amounts of local bootstrap currents from ONETWO. Parameters related to the operation of ECCD are analyzed by TORAY-GA linear ray-tracing code. Due to the small ECCD power available at the initial stage of KSTAR, condition of the optimum ECCD modulation is considered in the analysis to maximize suppression performance. From the analyses, criteria such as the minimum ECCD power required for complete suppression of the modes and the optimum conditions of EC wave launch angle and modulation duty factor are derived for the successful NTM suppression in KSTAR. [1] C.N. Nguyen, G. Bateman and A.H. Kritz, Phys. Plasmas 11 3460 (2004)

  20. 32 CFR 37.1210 - Advanced research.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 1 2014-07-01 2014-07-01 false Advanced research. 37.1210 Section 37.1210... research. Research that creates new technology or demonstrates the viability of applying existing technology to new products and processes in a general way. Advanced research is most closely analogous...

  1. Investigation of instabilities and rotation alteration in high beta KSTAR plasmas

    NASA Astrophysics Data System (ADS)

    Park, Y. S.; Sabbagh, S. A.; Ko, W. H.; Bak, J. G.; Berkery, J. W.; Bialek, J. M.; Choi, M. J.; Hahn, S. H.; In, Y. K.; Jardin, S. C.; Jeon, Y. M.; Kim, J.; Kwak, J. G.; Lee, S. G.; Oh, Y. K.; Park, H. K.; Yoon, S. W.; Yun, G. S.

    2017-01-01

    H-mode plasma operation of the Korea Superconducting Tokamak Advanced Research (KSTAR) device has been expanded to significantly surpass the ideal MHD no-wall beta limit. Plasmas with high normalized beta, βN, up to 4.3 have been achieved with reduced plasma internal inductance, li, to near 0.7, exceeding the computed n = 1 ideal no-wall limit by a factor of 1.6. Pulse lengths at maximum βN were extended to longer pulses by new, more rapid control. The stability of the observed m/n = 2/1 tearing mode that limited the achieved high βN is computed by the M3D-C1 code, and the effect of sheared toroidal rotation to tearing stability is examined. As a method to affect the mode stability in high βN plasmas, the non-resonant alteration of the rotation profile by non-axisymmetric magnetic fields has been used, enabling a study of the underlying neoclassical toroidal viscosity (NTV) physics and stability dependence on rotation. Non-axisymmetric field spectra were applied using in-vessel control coils (IVCCs) with varied n = 2 field configurations to alter the plasma toroidal rotation profile in high beta H-mode plasmas and to analyze their effects on the rotation. The rotation profile was significantly altered with rotation reduced by more than 60% without tearing activity or mode locking. To investigate the physical characteristics and scaling of the measured rotation braking by NTV, changes in the rotation profile are analytically examined in steady state. The expected NTV scaling with the square of the normalized applied field perturbation agrees with the measured profile change δB2.1-2.3. The NTV is also found to scale as Ti2.1-2.4, in general agreement with the low collisionality "1/ν" regime scaling of the NTV theory (TNTV-(1/ν) ∝ Ti2.5).

  2. Edge profile measurements using Thomson scattering on the KSTAR tokamak

    SciTech Connect

    Lee, J. H. Ko, W. H.; Oh, S.; Lee, W. R.; Kim, K. P.; Lee, K. D.; Jeon, Y. M.; Yoon, S. W.; Cho, K. W.; Narihara, K.; Yamada, I.; Yasuhara, R.; Hatae, T.; Yatsuka, E.; Ono, T.; Hong, J. H.

    2014-11-15

    In the KSTAR Tokamak, a “Tangential Thomson Scattering” (TTS) diagnostic system has been designed and installed to measure electron density and temperature profiles. In the edge system, TTS has 12 optical fiber bundles to measure the edge profiles with 10–15 mm spatial resolution. These 12 optical fibers and their spatial resolution are not enough to measure the pedestal width with a high accuracy but allow observations of L-H transition or H-L transitions at the edge. For these measurements, the prototype ITER edge Thomson Nd:YAG laser system manufactured by JAEA in Japan is installed. In this paper, the KSTAR TTS system is briefly described and some TTS edge profiles are presented and compared against the KSTAR Charge Exchange Spectroscopy and other diagnostics. The future upgrade plan of the system is also discussed in this paper.

  3. Recent advances in betalain research.

    PubMed

    Strack, Dieter; Vogt, Thomas; Schliemann, Willibald

    2003-02-01

    Betalains replace the anthocyanins in flowers and fruits of plants of most families of the Caryophyllales. Unexpectedly, they were also found in some higher fungi. Whereas the anthocyanin-analogous functions of betalains in flower and fruit colouration are obvious, their role in fungi remains obscure. The nature of newly identified betalains as well as final structure elucidation of earlier putatively described compounds published within the last decade is compiled in this report. Recent advances in research on betalain biosynthesis is also covered, including description of some 'early' reactions, i.e. betalain-specific dopa formation in plants and fungi and extradiolic dopa cleavage in fungi. Work on betalain-specific glucosyltransferases (GTs) has given new insights into the evolution of secondary plant enzymes. It is proposed that these GTs are phylogenetically related to flavonoid GTs. It was found that the decisive steps in betalain biosynthesis, i.e. condensation of the betalain chromophore betalamic acid with cyclo-dopa and amino acids or amines in the respective aldimine formation of the red-violet betacyanins and the yellow betaxanthins, are most likely to be non-enzymatic. Betalains have attracted workers in applied fields because of their use for food colouring and their antioxidant and radical scavenging properties for protection against certain oxidative stress-related disorders.

  4. Development of prototype polychromator system for KSTAR Thomson scattering diagnostic

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Lee, S. H.; Son, S. H.; Ko, W. H.; Seo, D. C.; Yamada, I.; Her, K. H.; Jeon, J. S.; Bog, M. G.

    2015-12-01

    A polychromator is widely used by the Thomson scattering system for measuring the electron temperature and density. This type of spectrometer includes optic elements such as band-pass filters, focusing lens, collimating lens, and avalanche photodiodes (APDs). The characteristics of band-pass filters in the polychromator are determined by the measuring range of the Thomson system. KSTAR edge polychromators were developed by co-works at NIFS in Japan, and the KSTAR core polychromators were developed by NFRI in Korea. The power supply system of these polychromators is connected only to one power supply module and can manually control the APD's voltage at the front side of the power supply by using a potentiometer. In this paper, a prototype polychromator is introduced at the KSTAR. The prototype polychromator system has a built-in power supply unit that includes high voltage for the APD and ± 5 V for an op-amp IC. The high voltage for the APD is finely controlled and monitored using a PC with the LabView software. One out of the six band pass-filters has a center wavelength of 523.5 nm with 2-nm bandwidth, which can measure Zeff, and the other five band-pass filters can simultaneously measure the Thomson signal. In addition, we will show the test result of this prototype polychromator system during the KSTAR experiment campaign (2015).

  5. 32 CFR 37.1210 - Advanced research.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... research. Research that creates new technology or demonstrates the viability of applying existing technology to new products and processes in a general way. Advanced research is most closely analogous to precompetitive technology development in the commercial sector (i.e., early phases of research and development...

  6. 32 CFR 37.1210 - Advanced research.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... research. Research that creates new technology or demonstrates the viability of applying existing technology to new products and processes in a general way. Advanced research is most closely analogous to precompetitive technology development in the commercial sector (i.e., early phases of research and development...

  7. 32 CFR 37.1210 - Advanced research.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... research. Research that creates new technology or demonstrates the viability of applying existing technology to new products and processes in a general way. Advanced research is most closely analogous to precompetitive technology development in the commercial sector (i.e., early phases of research and development...

  8. 32 CFR 37.1210 - Advanced research.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... research. Research that creates new technology or demonstrates the viability of applying existing technology to new products and processes in a general way. Advanced research is most closely analogous to precompetitive technology development in the commercial sector (i.e., early phases of research and development...

  9. Lesson from Tungsten Leading Edge Heat Load Analysis in KSTAR Divertor

    NASA Astrophysics Data System (ADS)

    Hong, Suk-Ho; Pitts, Richard Anthony; Lee, Hyeong-Ho; Bang, Eunnam; Kang, Chan-Soo; Kim, Kyung-Min; Kim, Hong-Tack; ITER Organization Collaboration; Kstar Team Team

    2016-10-01

    An important design issue for the ITER tungsten (W) divertor and in fact for all such components using metallic plasma-facing elements and which are exposed to high parallel power fluxes, is the question of surface shaping to avoid melting of leading edges. We have fabricated a series of tungsten blocks with a variety of leading edge heights (0.3, 0.6, 1.0, and 2.0 mm), from the ITER worst case to heights even beyond the extreme value tested on JET. They are mounted into adjacent, inertially cooled graphite tile installed in the central divertor region of KSTAR, within the field of view of an infra-red (IR) thermography system with a spatial resolution to 0.4 mm/pixel. Adjustment of the outer divertor strike point position is used to deposit power on the different blocks in different discharges. The measured power flux density on flat regions of the surrounding graphite tiles is used to obtain the parallel power flux, q|| impinging on the various W blocks. Experiments have been performed in Type I ELMing H-mode with Ip = 600 kA, BT = 2 T, PNBI = 3.5 MW, leading to a hot attached divertor with typical pulse lengths of 10 s. Three dimensional ANSYS simulations using q|| and assuming geometric projection of the heat flux are found to be consistent with the observed edge loading. This research was partially supported by Ministry of Science, ICT, and Future Planning under KSTAR project.

  10. New Advances in Brain Research.

    ERIC Educational Resources Information Center

    Seita, Lori Perkins

    2002-01-01

    Recent findings in brain research suggest the implementation of contemporary instructional practices is in order for base practices. Incorporating best practice research is critical for students to be competitive in a global market. This article provides a brief overview of educational philosophy, recent findings on brain research and language…

  11. Advances in Education Research. Volume 2, 1997.

    ERIC Educational Resources Information Center

    Advances in Education Research, 1997

    1997-01-01

    "Advances in Education Research" reprints previously published journal articles reporting on research supported in whole or in part by the Office of Educational Research and Improvement (OERI). The articles are selected from peer-reviewed/referred journals; the journals used are described briefy at the end of the volume. The articles in…

  12. Teaching Research Synthesis to Advanced Practice Nurses.

    ERIC Educational Resources Information Center

    Upchurch, Sandra; Brosnan, Christine A.; Grimes, Deanna E.

    2002-01-01

    A process for teaching research synthesis to advanced practice nurses includes two courses: a first research applications course in which students build bibliographic databases, practice statistical analysis, and develop search skills; and a second course in which they complete literature reviews or meta analyses of research on clinical practice…

  13. Bringing Advanced Computational Techniques to Energy Research

    SciTech Connect

    Mitchell, Julie C

    2012-11-17

    Please find attached our final technical report for the BACTER Institute award. BACTER was created as a graduate and postdoctoral training program for the advancement of computational biology applied to questions of relevance to bioenergy research.

  14. Therapists and researchers: Advancing collaboration

    PubMed Central

    GARLAND, ANN F.; BROOKMAN-FRAZEE, LAUREN

    2016-01-01

    Collaborative partnerships between community-based clinicians and academic researchers have the potential to improve the relevance, utility, and feasibility of research, as well as the effectiveness of practice. Collaborative partnership research from a variety of fields can inform the development and maintenance of effective partnerships. In this paper we present a conceptual model of research-community practice partnership derived from literature across disciplines and then illustrate application of this model to one case example. The case example is a multi-year partnership between an interdisciplinary group of community-based psychotherapists and a team of mental health researchers. This partnership was initiated to support federally funded research on community-based out-patient mental health care for children with disruptive behavior problems, but it has evolved to drive and support new intervention studies with different clinical foci. Lessons learned from this partnership process will be shared and interpreted in the context of the presented research-practice partnership model. PMID:24224554

  15. Advancing Educational Policy by Advancing Research on Instruction

    ERIC Educational Resources Information Center

    Raudenbush, Stephen W.

    2008-01-01

    Understanding the impact of "instructional regimes" on student learning is central to advancing educational policy. Research on instructional regimes has parallels with clinical trials in medicine yet poses unique challenges because of the social nature of instruction: A child's potential outcome under a given regime depends on peers and teachers,…

  16. Editorial - Advances in lightning research

    NASA Astrophysics Data System (ADS)

    2015-12-01

    This is the part I of a special issue dedicated to lightning research, consisting of papers presented at the 32nd International Conference on Lightning Protection (ICLP), held in Shanghai, China, in 2014, and several contributions invited by the guest editors to complement the subject matter of the papers selected from the ICLP. The papers from the ICLP were selected by the session chairmen of the ICLP and passed through the rigorous review process of the Journal of Solar Terrestrial and Atmospheric Physics (JASTP). The papers presented in this special issue contain subject matter pertinent to all aspects of lightning research both theoretical and experimental.

  17. Advances in Bilingual Education Research.

    ERIC Educational Resources Information Center

    Garcia, Eugene E., Ed.; Padilla, Raymond V., Ed.

    Papers on theory, technology, and public policy in bilingualism and bilingual education are collected in this volume designed to fill the need for systematic, high quality research related to bilingual populations in the United States. Part 1, "Language and Culture," contains five papers that discuss first and second language development,…

  18. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect

    Unknown

    1999-10-01

    The activities of the AGTSR Program during this reporting period are described in this quarterly report. The report text is divided into discussions on Membership, Administration, Technology Transfer (Workshop/Education) and Research. Items worthy of note are highlighted below with additional detail following in the text of the report.

  19. Research Advances: Onions Battle Osteoporosis

    ERIC Educational Resources Information Center

    King, Angela G.

    2005-01-01

    Researchers at the University of Bern in Switzerland have identified a compound in the popular vegetable that appears to decrease bone loss in laboratory studies using rat bone cells. It is suggested that eating onions might help prevent bone loss and osteoporosis, a disease, which predominantly affects older women.

  20. Advancements in Cotton Harvesting Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton harvesting research within USDA ARS is focused on improving harvest productivity, cotton quality, and producer profitability. In recent years, our work has encompassed efforts to improve both spindle picker and brush-roll stripper harvesting systems. Specifically, work with cotton pickers i...

  1. Advances in developmental prosopagnosia research.

    PubMed

    Susilo, Tirta; Duchaine, Bradley

    2013-06-01

    Developmental prosopagnosia (DP) refers to face recognition deficits in the absence of brain damage. DP affects ∼2% of the population, and it often runs in families. DP studies have made considerable progress in identifying the cognitive and neural characteristics of the disorder. A key challenge is to develop a valid taxonomy of DP that will facilitate many aspects of research.

  2. Advances in Translational Medical Research

    DTIC Science & Technology

    2011-01-25

    the first nodes that receive lymph drainage allowed for a change in practice  Results of the clinical trial contributed to what is now the current...Raskind Seattle Institute for Biomedical and Clinical Research Got Nightmares? 2011 MHS Conference Quality of Life: Sentinel Lymph Node Biopsy 25...multi-center clinical trial testing the validity and accuracy of sentinel lymph node biopsy in predicting the spread of disease  Accurately identifying

  3. Advancing Manufacturing Research Through Competitions

    SciTech Connect

    Balakirsky, Stephen; Madhavan, Raj

    2009-01-01

    Competitions provide a technique for building interest and collaboration in targeted research areas. This paper will present a new competition that aims to increase collaboration amongst Universities, automation end-users, and automation manufacturers through a virtual competition. The virtual nature of the competition allows for reduced infrastructure requirements while maintaining realism in both the robotic equipment deployed and the scenarios. Details of the virtual environment as well as the competitions objectives, rules, and scoring metrics will be presented.

  4. Enhancement of KSTAR plasma control for expanding operational space

    NASA Astrophysics Data System (ADS)

    Hahn, Sang-Hee; Jeon, Y. M.; Han, H.; Ahn, H. S.; Kim, J.; Kim, Y. J.; Joung, M.; Woo, M. H.; Mueller, D.; Eidietis, N. W.; Lanctot, M.; Humphreys, D. A.; Hyatt, A. W.; Welander, A. S.; Walker, M. L.; Kolemen, E.; Park, Y. S.; Sabbagh, S. A.

    2015-11-01

    In order to expand the operational space with stationary high performances, new approaches on the magnetic control design are necessary. A few examples on recent achievements at KSTAr are presented here: The Introduction of the in-vessel radial control (IRC) provides a fundamental change on baseline axisymmetric magnetic controls. Analysis on dedicated simulations/experiments for the vertical stabilization control margin gave an insight for improvement of the vertical position control. In order to enhance flexibility on the non-axisymmetric 3D field physics studies, the KSTAR RMP coil systems have been upgraded in 2015 provide more variety on the available 3D field profile. Integration of real-time heating device control enabled more elaborate kinetic controls since 2013. Real-time TM suppression is introduced as an example of the integrated control, which will be linked to stability control in the high-beta regime relevant to ITER success.

  5. Imaging x-ray crystal spectrometers for KSTAR

    NASA Astrophysics Data System (ADS)

    Lee, S. G.; Bak, J. G.; Bitter, M.; Moon, M. K.; Nam, U. W.; Jin, K. C.; Kong, K. N.; Seon, K. I.

    2003-03-01

    Two x-ray imaging crystal spectrometers are presently designed for the KSTAR tokamak. The instruments will provide temporally and spatially resolved spectra of heliumlike argon (or krypton) from a large cross section of the plasma. The spectral data will be used for profile measurements—both within and perpendicular to the horizontal midplane of KSTAR—of the ion and electron temperatures, the rotation velocity, and the ionization equilibrium. Each spectrometer will consist of a spherically bent quartz crystal and large area two-dimensional position-sensitive multiwire proportional counter. The article presents the design for the KSTAR x-ray imaging crystal spectrometers, and the fabrication and initial test results from the large area two-dimensional multiwire proportional counter.

  6. Advances in personality theory and research.

    PubMed Central

    Stelmack, R M

    1991-01-01

    This paper briefly describes important advances in personality research that have been achieved during the past 20 years in the development of a fundamental personality typology and in the determination of the heritability of personality traits. Research conducted at the University of Ottawa that has contributed to the exploration of the biological bases of the extraversion trait is summarized. PMID:1958646

  7. Research priorities for advanced fibrous composites

    NASA Technical Reports Server (NTRS)

    Baumann, K. J.; Swedlow, J. L.

    1981-01-01

    Priorities for research in advanced laminated fibrous composite materials are presented. Supporting evidence is presented in two bodies, including a general literature survey and a survey of aerospace composite hardware and service experience. Both surveys were undertaken during 1977-1979. Specific results and conclusions indicate that a significant portion of contemporary published research diverges from recommended priorites.

  8. [Research advances in porcine bocavirus].

    PubMed

    Zhai, Shao-Lun; Chen, Sheng-Nan; Wei, Wen-Kang

    2012-03-01

    Porcine bocavirus (PBoV) was considered as a new member of the genus Bocavirus of the subfamily Parvovirinae of the family Parvoviridae, which was discovered in Swedish swine herds with postweaning multisystemic wasting syndrome (PMWS) in 2009. At present, as an emerging pathogen, it was paid great attention by researchers at home and abroad. This paper referred to some published literatures and reviewed several aspects of PBoV including its finding, classification, genome structure and replication, epidemiology, associativity with diseases, cultural and diagnostic methods.

  9. [Research advancement about lactose intolerance].

    PubMed

    Yu, Qing; Yin, Shi-An

    2006-05-01

    Lactose intolerance associated with nutrition and health of human especially infant period of time and effect milk product intake. It is important significance to maintain health and cut down the aged risk of osteoporosis because lactose intolerance was understand about grouping, clinical symptom and diagnose. There are extensive perspective for understand prevent and control lactose intolerance for lactose gene polymorphism. It is effective method for earlier period detection gene screen with lactose typing for osteoporosis, however there are carry out multiplicity research in many ways to improve and control lactose intolerance

  10. Recent experimental results of KSTAR RF heating and current drive

    SciTech Connect

    Wang, S. J. Kim, J.; Jeong, J. H.; Kim, H. J.; Joung, M.; Bae, Y. S.; Kwak, J. G.

    2015-12-10

    The overview of KSTAR activities on ICRH, LHCD and ECH/CD including the last experimental results and future plan aiming for long-pulse high-beta plasma will be presented. Recently we achieved reasonable coupling of ICRF power to H-mode plasma through several efforts to increase system reliability. Power balance will be discussed on this experiment. LHCD is still struggling in the low power regime. Review of antenna spectrum for the higher coupling in H-mode plasma will be tried. ECH/CD provides 41 sec, 0.8 MW of heating power to support high-performance long-pulse discharge. Also, 170 GHz ECH system is integrated with the Plasma Control System (PCS) for the feedback controlling of NTM. Status and plan of ECH/CD will be discussed. Finally, helicon current drive is being prepared for the next stage of KSTAR operation. The hardware preparation and the calculation results of helicon current drive in KSTAR plasma will be discussed.

  11. ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM

    SciTech Connect

    Lawrence P. Golan

    2001-01-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. As this program administers research, we have included all program activity herein within the past quarter dated. More specific research progress reports are provided weekly at the request of the AGTSR COR and are being sent to NETL. As for the administration of this program, items worthy of note are presented in extended bullet format following the appropriate heading.

  12. ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM

    SciTech Connect

    Lawrence P. Golan

    2000-05-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program are described in the quarterly report. As this program administers research, we have included all program activity herein within the past quarter dated. More specific research progress reports are provided weekly at the request of the AGTSR COR and are being sent to NETL. As for the administration of this program, items worthy of note are presented in extended bullet format following the appropriate heading.

  13. Beyond competence: advance directives in dementia research.

    PubMed

    Jongsma, Karin Rolanda; van de Vathorst, Suzanne

    2015-01-01

    Dementia is highly prevalent and incurable. The participation of dementia patients in clinical research is indispensable if we want to find an effective treatment for dementia. However, one of the primary challenges in dementia research is the patients' gradual loss of the capacity to consent. Patients with dementia are characterized by the fact that, at an earlier stage of their life, they were able to give their consent to participation in research. Therefore, the phase when patients are still competent to decide offers a valuable opportunity to authorize research, by using an advance research directive (ARD). Yet, the use of ARDs as an authorization for research participation remains controversial. In this paper we discuss the role of autonomous decision-making and the protection of incompetent research subjects. We will show why ARDs are a morally defensible basis for the inclusion of this population in biomedical research and that the use of ARDs is compatible with the protection of incompetent research subjects.

  14. Proposed research on advanced accelerator concepts

    SciTech Connect

    Davidson, R.C.; Wurtele, J.S.

    1991-09-01

    This report summarizes technical progress and accomplishments during the proposed three-year research on advanced accelerator concepts supported by the Department of Energy under Contract No. DE-FG02-88ER40465. A vigorous theoretical program has been pursued in critical problem areas related to advanced accelerator concepts and the basic equilibrium, stability, and radiation properties of intense charged particle beams. Broadly speaking, our research has made significant contributions in the following three major areas: Investigations of physics issues related to particle acceleration including two-beam accelerators and cyclotron resonance laser (CRL) accelerators; Investigations of RF sources including the free- electron lasers, cyclotron resonance masers, and relativistic magnetrons; Studies of coherent structures in electron plasmas and beams ranging from a low-density, nonrelativistic, pure electron plasma column to high-density, relativistic, non-neutral electron flow in a high-voltage diode. The remainder of this report presents theoretical and computational advances in these areas.

  15. ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM

    SciTech Connect

    Lawrence P. Golan

    2003-05-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for the reporting period October 1, 2002 to December 31, 2002 are described in this quarterly report. No new membership, workshops, research projects, internships, faculty fellowships or special studies were initiated during this reporting period. Contract completion is set for June 30, 2003. During the report period, six research progress reports were received (3 final reports and 3 semi-annual reports). The University of Central Florida contract SR080 was terminated during this period, as UCF was unable to secure research facilities. AGTSR now projects that it will under spend DOE obligated funds by approximately 340-350K$.

  16. Defense Advanced Research Projects Agency Strategic Plan

    DTIC Science & Technology

    2007-02-01

    22 Figure 22: Warfighters in a DARPA Training Superiority program classroom ...technical Breakthroughs in DARPA or other research programs; program managers, it is easy to make decisions. This managemet style is essential to...Superiority program classroom . emotional involvement of multi-user computer games. 3.4. Advanced Manned and Unmanned Systems DARPA is working with the Army

  17. Coordinating Space Nuclear Research Advancement and Education

    SciTech Connect

    John D. Bess; Jonathon A. Webb; Brian J. Gross; Aaron E. Craft

    2009-11-01

    The advancement of space exploration using nuclear science and technology has been a goal sought by many individuals over the years. The quest to enable space nuclear applications has experienced many challenges such as funding restrictions; lack of political, corporate, or public support; and limitations in educational opportunities. The Center for Space Nuclear Research (CSNR) was established at the Idaho National Laboratory (INL) with the mission to address the numerous challenges and opportunities relevant to the promotion of space nuclear research and education.1 The CSNR is operated by the Universities Space Research Association and its activities are overseen by a Science Council comprised of various representatives from academic and professional entities with space nuclear experience. Program participants in the CSNR include academic researchers and students, government representatives, and representatives from industrial and corporate entities. Space nuclear educational opportunities have traditionally been limited to various sponsored research projects through government agencies or industrial partners, and dedicated research centers. Centralized research opportunities are vital to the growth and development of space nuclear advancement. Coordinated and focused research plays a key role in developing the future leaders in the space nuclear field. The CSNR strives to synchronize research efforts and provide means to train and educate students with skills to help them excel as leaders.

  18. Research Opportunities in Advanced Aerospace Concepts

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S.; Bangert, Linda S.; Garber, Donald P.; Huebner, Lawrence D.; McKinley, Robert E.; Sutton, Kenneth; Swanson, Roy C., Jr.; Weinstein, Leonard

    2000-01-01

    This report is a review of a team effort that focuses on advanced aerospace concepts of the 21st Century. The paper emphasis advanced technologies, rather than cataloging every unusual aircraft that has ever been attempted. To dispel the myth that "aerodynamics is a mature science" an extensive list of "What we cannot do, or do not know" was enumerated. A zeit geist, a feeling for the spirit of the times, was developed, based on existing research goals. Technological drivers and the constraints that might influence these technological developments in a future society were also examined. The present status of aeronautics, space exploration, and non-aerospace applications, both military and commercial, including enabling technologies are discussed. A discussion of non-technological issues affecting advanced concepts research is presented. The benefit of using the study of advanced vehicles as a tool to uncover new directions for technology development is often necessary. An appendix is provided containing examples of advanced vehicle configurations currently of interest.

  19. Advanced heat pump research and development

    NASA Astrophysics Data System (ADS)

    Kuliasha, M. A.

    The Office of Building Energy Research and Development of the U.S. Department of Energy (DOE), has been funding R&D in advanced heat pumps and appliances since 1976. Much of that research has been managed for DOE by the Oak Ridge National Laboratory (ORNL). The objective of the Building Equipment Research (BER) program at ORNL has been to generate new concepts and develop a technology base for improving the energy efficiency and load characteristics of energy conversion equipment used in residential and commercial buildings. The research being pursued to achieve these objectives falls under three general areas: thermally activated heat pumps (TAHP), refrigeration systems, and building equipment systems. The TAHP work is concentrated on three technologies: (1) absorption heat pumps; (2) Stirling engine-driven heat pumps; and (3) internal combustion (IC) engine-driven heat pumps. Major project areas in refrigeration systems research include electric heat pumps, ground-coupled heat pumps, and refigerant mixtures. In the building equipment systems areas, project areas include advanced distribution systems, advanced insulation for appliances, and commercial building equipment.

  20. Development of Research Projects in Advanced Laboratory

    NASA Astrophysics Data System (ADS)

    Yu, Ping; Guha, Suchi

    2008-04-01

    Advanced laboratory serves as a bridge spanning primary physics laboratory and scientific research or industrial activities for undergraduate students. Students not only study modern physics experiments and techniques but also acquire the knowledge of advanced instrumentation. It is of interest to encourage students using the knowledge into research projects at a later stage of the course. We have designed several scientific projects for advanced laboratory to promote student's abilities of independent research. Students work as a team to select the project and search literatures, to perform experiments, and to give presentations. During the research project, instructor only provides necessary equipment for the project without any pre-knowledge of results, giving students a real flavor of scientific research. Our initial attempt has shown some interesting results. We found that students showed a very strong motivation in these projects, and student performances exceeded our expectation. Almost all the students in our first batch of the course have now joined graduate school in Physics and Materials Science. In the future we will also arrange graduate students working with undergraduate students to build a collaborative environment. In addition, a more comprehensive method will be used to evaluate student achievements.

  1. Advanced energy projects FY 1997 research summaries

    SciTech Connect

    1997-09-01

    The mission of the Advanced Energy Projects (AEP) program is to explore the scientific feasibility of novel energy-related concepts that are high risk, in terms of scientific feasibility, yet have a realistic potential for a high technological payoff. The concepts supported by the AEP are typically at an early stage of scientific development. They often arise from advances in basic research and are premature for consideration by applied research or technology development programs. Some are based on discoveries of new scientific phenomena or involve exploratory ideas that span multiple scientific and technical disciplines which do not fit into an existing DOE program area. In all cases, the objective is to support evaluation of the scientific or technical feasibility of the novel concepts involved. Following AEP support, it is expected that each concept will be sufficiently developed to attract further funding from other sources to realize its full potential. Projects that involve evolutionary research or technology development and demonstration are not supported by AEP. Furthermore, research projects more appropriate for another existing DOE research program are not encouraged. There were 65 projects in the AEP research portfolio during Fiscal Year 1997. Eigheen projects were initiated during that fiscal year. This document consists of short summaries of projects active in FY 1997. Further information of a specific project may be obtained by contacting the principal investigator.

  2. Rotational resonance of nonaxisymmetric magnetic braking in the KSTAR tokamak.

    PubMed

    Park, J-K; Jeon, Y M; Menard, J E; Ko, W H; Lee, S G; Bae, Y S; Joung, M; You, K-I; Lee, K-D; Logan, N; Kim, K; Ko, J S; Yoon, S W; Hahn, S H; Kim, J H; Kim, W C; Oh, Y-K; Kwak, J-G

    2013-08-30

    One of the important rotational resonances in nonaxisymmetric neoclassical transport has been experimentally validated in the KSTAR tokamak by applying highly nonresonant n=1 magnetic perturbations to rapidly rotating plasmas. These so-called bounce-harmonic resonances are expected to occur in the presence of magnetic braking perturbations when the toroidal rotation is fast enough to resonate with periodic parallel motions of trapped particles. The predicted and observed resonant peak along with the toroidal rotation implies that the toroidal rotation in tokamaks can be controlled naturally in favorable conditions to stability, using nonaxisymmetric magnetic perturbations.

  3. Development of 2 MW Dummy Load for KSTAR ICH System

    NASA Astrophysics Data System (ADS)

    Kwak, Jong-Gu; Wang, Son Jong; Bae, Young Dug; Yoon, Jae Sung; Hong, Bong Guen

    2005-09-01

    A 2 MW dummy load with a frequency ranging from 30 to 60 MHz is developed for the KSTAR ICH transmitter and the cold test shows that VSWR is less than 1.35 for the temperature variation of 17 °C. DC test also shows that overall temperature increase is less than 3 °C for 400 kW. RF test is done for the RF power of 140 kW and Max. VSWR is about 1.4 at the temperature of 40 °C.

  4. Development of 2 MW Dummy Load for KSTAR ICH System

    SciTech Connect

    Kwak, Jong-Gu; Wang, Son Jong; Bae, Young Dug; Yoon, Jae Sung; Hong, Bong Guen

    2005-09-26

    A 2 MW dummy load with a frequency ranging from 30 to 60 MHz is developed for the KSTAR ICH transmitter and the cold test shows that VSWR is less than 1.35 for the temperature variation of 17 deg. C. DC test also shows that overall temperature increase is less than 3 deg. C for 400 kW. RF test is done for the RF power of 140 kW and Max. VSWR is about 1.4 at the temperature of 40 deg. C.

  5. Relatively scaled ECE temperature profiles of KSTAR plasmas.

    PubMed

    Choi, M J; Yun, G S; Park, H K; Jeon, Y M; Jeong, S H

    2010-10-01

    A scheme to obtain relatively scaled profiles of electron cyclotron emission (ECE) temperature directly from uncalibrated raw radiometer data is proposed and has been tested for the 2009 campaign KSTAR plasmas. The proposed method utilizes a position controlled system to move the plasma adiabatically and compares ECE radiometer channels at the same relative radial positions assuming the profile consistency during the adiabatic change. This scaling method is an alternative solution when an absolute calibration is unreliable or too time consuming. The application to the two dimensional ECE imaging data, wherein calibration is extremely difficult, may also prove to be useful.

  6. Relatively scaled ECE temperature profiles of KSTAR plasmas

    SciTech Connect

    Choi, M. J.; Yun, G. S.; Park, H. K.; Jeon, Y. M.; Jeong, S. H.

    2010-10-15

    A scheme to obtain relatively scaled profiles of electron cyclotron emission (ECE) temperature directly from uncalibrated raw radiometer data is proposed and has been tested for the 2009 campaign KSTAR plasmas. The proposed method utilizes a position controlled system to move the plasma adiabatically and compares ECE radiometer channels at the same relative radial positions assuming the profile consistency during the adiabatic change. This scaling method is an alternative solution when an absolute calibration is unreliable or too time consuming. The application to the two dimensional ECE imaging data, wherein calibration is extremely difficult, may also prove to be useful.

  7. Commissioning activities of the initial magnetic diagnostics for KSTAR tokamak

    NASA Astrophysics Data System (ADS)

    Lee, Sang Gon; Gyo Bak, Jun; Mie Ka, Eun

    2007-11-01

    The initial magnetic diagnostics for the KSTAR superconducting tokamak including three Rogowski coils, five flux/voltage loops, and sixty-four magnetic field probes have been successfully installed. The Rogowski coils, flux/voltage loops, and magnetic field probes measure the total plasma current, poloidal flux and loop voltage, and local poloidal magnetic field for the plasma position control and equilibrium studies, respectively. Accurate position measurements after installation for all of these initial magnetic diagnostics and in situ calibration for the Rogowski coils were finished. Data acquisition systems for these initial magnetic diagnostics are currently under preparation. Detail commissioning activities before the first plasma from these initial magnetic diagnostics will be presented.

  8. [Advances in the biosynthesis research of ginsenosides].

    PubMed

    Yang, Jin-Ling; Gao, Li-Li; Zhu, Ping

    2013-02-01

    Ginsenosides are the main active components of medicinal herbs including Panax ginseng and Panax quinquefolium, which have potent effects of anti-tumor, anti-inflammatory, antioxidant and apoptosis inhibition. But the low content of ginsenosides limits its development and usage. At present, how to improve the production of ginsenosides by biological technology has been a new research focus. Some advances in the biosynthesis of ginsenosides by tissue culture and biotransformation have been made in recent years. So far at least twenty genes related to the biosynthesis of ginsenosides from Panax genus plants have been cloned and functionally identified, which has laid a good foundation for the study on the synthetic biology of ginsenosides. This review outlines recent advances in several aspects and is expected to provide a theoretical support to the thorough research of the pathway and regulation of ginsenosides biosynthesis.

  9. ISAAC - A Testbed for Advanced Composites Research

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Stewart, Brian K.; Martin, Robert A.

    2014-01-01

    The NASA Langley Research Center is acquiring a state-of-art composites fabrication environment to support the Center's research and technology development mission. This overall system described in this paper is named ISAAC, or Integrated Structural Assembly of Advanced Composites. ISAAC's initial operational capability is a commercial robotic automated fiber placement system from Electroimpact, Inc. that consists of a multi-degree of freedom commercial robot platform, a tool changer mechanism, and a specialized automated fiber placement end effector. Examples are presented of how development of advanced composite materials, structures, fabrication processes and technology are enabled by utilizing the fiber placement end effector directly or with appropriate modifications. Alternatively, end effectors with different capabilities may either be bought or developed with NASA's partners in industry and academia.

  10. Systems Engineering Building Advances Power Grid Research

    SciTech Connect

    Virden, Jud; Huang, Henry; Skare, Paul; Dagle, Jeff; Imhoff, Carl; Stoustrup, Jakob; Melton, Ron; Stiles, Dennis; Pratt, Rob

    2015-08-19

    Researchers and industry are now better equipped to tackle the nation’s most pressing energy challenges through PNNL’s new Systems Engineering Building – including challenges in grid modernization, buildings efficiency and renewable energy integration. This lab links real-time grid data, software platforms, specialized laboratories and advanced computing resources for the design and demonstration of new tools to modernize the grid and increase buildings energy efficiency.

  11. Systems Engineering Building Advances Power Grid Research

    ScienceCinema

    Virden, Jud; Huang, Henry; Skare, Paul; Dagle, Jeff; Imhoff, Carl; Stoustrup, Jakob; Melton, Ron; Stiles, Dennis; Pratt, Rob

    2016-07-12

    Researchers and industry are now better equipped to tackle the nation’s most pressing energy challenges through PNNL’s new Systems Engineering Building – including challenges in grid modernization, buildings efficiency and renewable energy integration. This lab links real-time grid data, software platforms, specialized laboratories and advanced computing resources for the design and demonstration of new tools to modernize the grid and increase buildings energy efficiency.

  12. Medical technology advances from space research

    NASA Technical Reports Server (NTRS)

    Pool, S. L.

    1972-01-01

    Details of medical research and development programs, particularly an integrated medical laboratory, as derived from space technology are given. The program covers digital biotelemetry systems, automatic visual field mapping equipment, sponge electrode caps for clinical electroencephalograms, and advanced respiratory analysis equipment. The possibility of using the medical laboratory in ground based remote areas and regional health care facilities, as well as long duration space missions is discussed.

  13. Research Institute for Advanced Computer Science

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R. (Technical Monitor); Leiner, Barry M.

    2000-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administration's missions. RIACS is located at the NASA Ames Research Center. It currently operates under a multiple year grant/cooperative agreement that began on October 1, 1997 and is up for renewal in the year 2002. Ames has been designated NASA's Center of Excellence in Information Technology. In this capacity, Ames is charged with the responsibility to build an Information Technology Research Program that is preeminent within NASA. RIACS serves as a bridge between NASA Ames and the academic community, and RIACS scientists and visitors work in close collaboration with NASA scientists. RIACS has the additional goal of broadening the base of researchers in these areas of importance to the nation's space and aeronautics enterprises. RIACS research focuses on the three cornerstones of information technology research necessary to meet the future challenges of NASA missions: (1) Automated Reasoning for Autonomous Systems. Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth; (2) Human-Centered Computing. Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities; (3) High Performance Computing and Networking. Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to data analysis of large datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply information technology research to a

  14. UZIG USGS research: Advances through interdisciplinary interaction

    USGS Publications Warehouse

    Nimmo, J.R.; Andraski, B.J.; Rafael, M.-C.

    2009-01-01

    Because vadose zone research relates to diverse disciplines, applications, and modes of research, collaboration across traditional operational and topical divisions is especially likely to yield major advances in understanding. The Unsaturated Zone Interest Group (UZIG) is an informal organization sponsored by the USGS to encourage and support interdisciplinary collaboration in vadose or unsaturated zone hydrologic research across organizational boundaries. It includes both USGS and non-USGS scientists. Formed in 1987, the UZIG operates to promote communication, especially through periodic meetings with presentations, discussions, and fi eld trips. The 10th meeting of the UZIG at Los Alamos, NM, in August 2007 was jointly sponsored by the USGS and Los Alamos National Laboratory. Presentations at this meeting served as the initial basis for selecting papers for this special section of Vadose Zone Journal, the purpose of which is to present noteworthy cuting-edge unsaturated zone research promoted by, facilitated by, or presented in connection with the UZIG. ?? Soil Science Society of America.

  15. ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM

    SciTech Connect

    Lawrence P. Golan

    2003-05-01

    The quarterly activities of the Advanced Gas Turbine Systems Research (AGTSR) program are described in this quarterly report. As this program administers research, we have included all program activity herein within the past quarter as dated. More specific research progress reports are provided weekly at the request of the AGTSR COR and are being sent to NETL As for the administration of this program, items worthy of note are presented in extended bullet format following the appropriate heading. No new memberships, workshops, research projects, internships, faculty fellowships or special studies were initiated during this reporting period. Contract completion is set for June 30, 2003. During the report period, nine subcontractor reports were received (5 final reports and 4 semi-annual reports). The report technology distribution is as follows: 3--aero-heat transfer, 2--combustion and 4--materials. AGTSR continues to project that it will under spend DOE obligated funds by approximately $329K.

  16. JPL basic research review. [research and advanced development

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Current status, projected goals, and results of 49 research and advanced development programs at the Jet Propulsion Laboratory are reported in abstract form. Areas of investigation include: aerodynamics and fluid mechanics, applied mathematics and computer sciences, environment protection, materials science, propulsion, electric and solar power, guidance and navigation, communication and information sciences, general physics, and chemistry.

  17. Center for Advanced Gas Turbine Systems Research

    SciTech Connect

    Golan, L.P.

    1992-12-31

    An unregulated conventional power station based on the Rankine Cycle typically bums pulverized coal in a boiler that exports steam for expansion through a steam turbine which ultimately drives an electric generator. The flue gases are normally cleaned of particulates by an electrostatic precipitator or bag house. A basic cycle such as this will have an efficiency of approximately 35% with 10% of the energy released through the stack and 55% to cooling water. Advanced gas turbine based combustion systems have the potential to be environmentally and commercially superior to existing conventional technology. however, to date, industry, academic, and government groups have not coordinated their effort to commercialize these technologies. The Center for Advanced Gas Turbine Systems Research will provide the medium to support effective commercialization of this technology. Several cycles or concepts for advanced gas turbine systems that could be fired on natural gas or could be adapted into coal based systems have been proposed (for examples, see Figures 4, 5, 6, and 7) (2) all with vary degrees of complexity, research needs, and system potential. Natural gas fired power systems are now available with 52% efficiency ratings; however, with a focused base technology program, it is expected that the efficiency levels can be increased to the 60% level and beyond. This increase in efficiency will significantly reduce the environmental burden and reduce the cost of power generation.

  18. Center for Advanced Gas Turbine Systems Research

    SciTech Connect

    Golan, L.P.

    1992-01-01

    An unregulated conventional power station based on the Rankine Cycle typically bums pulverized coal in a boiler that exports steam for expansion through a steam turbine which ultimately drives an electric generator. The flue gases are normally cleaned of particulates by an electrostatic precipitator or bag house. A basic cycle such as this will have an efficiency of approximately 35% with 10% of the energy released through the stack and 55% to cooling water. Advanced gas turbine based combustion systems have the potential to be environmentally and commercially superior to existing conventional technology. however, to date, industry, academic, and government groups have not coordinated their effort to commercialize these technologies. The Center for Advanced Gas Turbine Systems Research will provide the medium to support effective commercialization of this technology. Several cycles or concepts for advanced gas turbine systems that could be fired on natural gas or could be adapted into coal based systems have been proposed (for examples, see Figures 4, 5, 6, and 7) (2) all with vary degrees of complexity, research needs, and system potential. Natural gas fired power systems are now available with 52% efficiency ratings; however, with a focused base technology program, it is expected that the efficiency levels can be increased to the 60% level and beyond. This increase in efficiency will significantly reduce the environmental burden and reduce the cost of power generation.

  19. Advanced energy projects FY 1994 research summaries

    SciTech Connect

    Not Available

    1994-09-01

    The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are premature for consideration by applied research or technology development programs. The AEP also supports high-risk, exploratory concepts that do not readily fit into a program area but could have several applications that may span scientific disciplines or technical areas. Projects supported by the Division arise from unsolicited ideas and concepts submitted by researchers. The portfolio of projects is dynamic and reflects the broad role of the Department in supporting research and development for improving the Nation`s energy outlook. FY 1994 projects include the following topical areas: novel materials for energy technology; renewable and biodegradable materials; exploring uses of new scientific discoveries; alternate pathways to energy efficiency; alternative energy sources; and innovative approaches to waste treatment and reduction. Summaries are given for 66 projects.

  20. Enhanced understanding of momentum transport barrier observed in KSTAR

    NASA Astrophysics Data System (ADS)

    Lee, H. H.; Seol, J.; Ko, W. H.; Terzolo, L.; Aydemir, A. Y.; in, Y.; Ghime, Y. C.; Lee, S. G.

    2016-10-01

    It is expected that H-mode plasmas exhibit transport barriers not only for plasma particles and energy but also for toroidal angular momentum. Although density and temperature pedestals at the edge have been seen since the first observations of H-mode in tokamaks three decades ago, a toroidal rotation pedestal is not commonly observed except in some special cases such as QH-mode or is much weaker than those in the density and temperature profiles. But, in the KSTAR tokamak, H-mode plasma is always accompanied by the noticeable toroidal rotation pedestal. We show that the inherent nonaxisymmetric error fields and toroidal ripple can generate significant neoclassical toroidal viscosity (NTV), which damps the toroidal rotation at the edge and to a large extent remove the pedestal in the rotation profile. On the other hand, we demonstrate that the NTV torque induced by the intrinsic error fields and toroidal field ripple in the level of the KSTAR tokamak, which are expected to be smaller than most tokamaks by at least one order of magnitude, is negligible in determining the toroidal rotation velocity profile. Thus we conclusively show that H-mode provides a transport barrier against all three transport channels when turbulent transport is suppressed at the edge.

  1. Control and Data Acquisition System for KSTAR ICRF

    SciTech Connect

    Wang, S. J.; Kwak, J. G.

    2009-11-26

    An ICRF discharge cleaning and a plasma heating experiment were performed in KSTAR toka-mak. For an automated operation and the diagnostics of the ICRF system, the ICRF local network was designed and implemented. This internal network provides monitoring, RF protection, remote control and RF diagnostics. All the functions of the control system were realized by customized DSP units. The DSP units were tied by a local network in parallel. For RF diagnostics, a detector based on digital I/Q demodulation technique was fabricated. The I/Q detector collects the RF amplitude and phase at the same time without errors from I/Q imbalance inherent in an analog counterpart. During the first experimental campaign of the KSTAR tokamak, the control system was operated as expected without any major problems such as affecting the tokamak operation. The transmitter was protected from the harmful over-voltage events through a reliable operation of the system. Details of ICRF control system and RF detecting technique with a brief experimental result will be presented.

  2. Advances in craniosynostosis research and management.

    PubMed

    Guimarães-Ferreira, J; Miguéns, J; Lauritzen, C

    2004-01-01

    The purpose of the present paper is to analyze the most recent advances in the field of craniosynostosis basic and clinical research and management, and to give an overview of the more frequently adopted surgical strategies. After reviewing some basic concepts regarding normal craniofacial embryology and growth, aetiopathogenesis of craniosynostosis and craniofacial dysostosis, classification and diagnosis and historical evolution of surgical treatment, the authors elaborate on a selection of topics that have modified our current understanding of and therapeutical approach to these disease processes. Areas covered include advances in molecular biology and genetics, imaging techniques and surgical planning, resorbable fixation technology, bone substitutes and tissue engineering, distraction osteogenesis and the spring-mediated cranioplasties, resorbable distractor devices, minimally invasive surgery and in utero surgery. A review of the main subtypes of craniosynostosis and craniofacial dysostosis is presented, including their specific clinical features and a commentary on the presently available surgical options.

  3. Research for Lunar Exploration: ADVANCE Program

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina

    2009-01-01

    This viewgraph presentation reviews the work that the author has been involved with in her undergraduate and graduate education and the ADVANCE Program. One project was the Lunar Entry and Approach Platform For Research On Ground (LEAPFROG). This vehicle was to be a completely autonomous vehicle, and was developed in successive academic years with increases in the perofmamnce and capability of the simulated lander. Another research project for the PhD was on long-term lunar radiation degradation of materials to be used for construction of lunar habitats. This research has concentrated on developing and testing light-weight composite materials with high strength characteristics, and the ability of these composite materials to withstand the lunar radiation environment.

  4. Advanced Satellite Research Project: SCAR Research Database. Bibliographic analysis

    NASA Technical Reports Server (NTRS)

    Pelton, Joseph N.

    1991-01-01

    The literature search was provided to locate and analyze the most recent literature that was relevant to the research. This was done by cross-relating books, articles, monographs, and journals that relate to the following topics: (1) Experimental Systems - Advanced Communications Technology Satellite (ACTS), and (2) Integrated System Digital Network (ISDN) and Advance Communication Techniques (ISDN and satellites, ISDN standards, broadband ISDN, flame relay and switching, computer networks and satellites, satellite orbits and technology, satellite transmission quality, and network configuration). Bibliographic essay on literature citations and articles reviewed during the literature search task is provided.

  5. Advancing research transdisciplinarity within our discipline.

    PubMed

    Sadovsky, Yoel; Esplin, M Sean; Garite, Thomas J; Nelson, D Michael; Parry, Samuel I; Saade, George R; Socol, Michael L; Spong, Catherine Y; Varner, Michael W; D'Alton, Mary E

    2014-09-01

    Advancing biomedical knowledge is crucial to the understanding of disease pathophysiology, diagnosis, treatment, and the maintenance of health. Whereas collaborative pursuits among basic and translational scientists, clinical researchers, and clinicians should advance biomedical progress and its translation to better medicine. The field of obstetrics and gynecology and its subspecialties has not escaped this problem. Obstetrics and gynecology specialists and subspecialists have limited opportunities to interact with translational or basic investigators, and cross-fertilization and collaborations are further challenged by the current healthcare and funding climate. This opinion manuscript focuses on the field of maternal-fetal medicine, serving as an example that illustrates the risks and opportunities that might exist within our obstetrics and gynecology academic community. A Pregnancy Task Force recently sought to identify ways to overcome hurdles related to research training, and ensure a sufficient pool of physician-scientists pursuing pertinent questions in the field. The group discussed strategies to promote a culture of intellectual curiosity and research excellence, securing additional resources for trainees, and attracting current and next generation basic, translational, and clinical scholars to our field. Recommendations encompassed activities within annual academic meetings, training initiatives, and additional funding opportunities. Inferences from these discussions can be made to all obstetrics and gynecology subspecialty areas.

  6. Advanced instrumentation for aircraft icing research

    NASA Technical Reports Server (NTRS)

    Bachalo, W.; Smith, J.; Rudoff, R.

    1990-01-01

    A compact and rugged probe based on the phase Doppler method was evaluated as a means for characterizing icing clouds using airborne platforms and for advancing aircraft icing research in large scale wind tunnels. The Phase Doppler Particle Analyzer (PDPA) upon which the new probe was based is now widely recognized as an accurate method for the complete characterization of sprays. The prototype fiber optic-based probe was evaluated in simulated aircraft icing clouds and found to have the qualities essential to providing information that will advance aircraft icing research. Measurement comparisons of the size and velocity distributions made with the standard PDPA and the fiber optic probe were in excellent agreement as were the measurements of number density and liquid water content. Preliminary testing in the NASA Lewis Icing Research Tunnel (IRT) produced reasonable results but revealed some problems with vibration and signal quality at high speeds. The cause of these problems were identified and design changes were proposed to eliminate the shortcomings of the probe.

  7. Extremely low intrinsic non-axisymmetric field in KSTAR and its implications

    NASA Astrophysics Data System (ADS)

    In, Y.; Park, J. K.; Jeon, J. M.; Kim, J.; Okabayashi, M.

    2015-04-01

    A surprisingly low level of intrinsic non-axisymmetric field (called ‘error field’) has been measured in KSTAR, suggesting at least an order of magnitude lower than in other major tokamaks. Specifically, the KSTAR was found to have an extremely low level of pitch resonant intrinsic error field at the m/n = 2/1 surface in the order of 10-5 of the magnetic field at the geometric centre, instead of 10-4 typically observed in other devices. Using a single array of in-vessel control coils (IVCCs) at the outboard midplane, the n = 1 intrinsic error field was diagnosed. Such a low level of intrinsic non-axisymmetric field as measured in KSTAR is less than or comparable to the Earth's magnetic field or a remanent field in the KSTAR plasma chamber. Considering that a very low level of n = 1 intrinsic error field (mostly associated with kink-resonance) helps the plasma to be less vulnerable to mode-locking, this might have allowed the n = 1 resonant magnetic perturbation (RMP) currents (configured to be dominantly pitch-resonant for edge localized mode (ELM) suppression) to increase without invoking a kink-resonant mode-locking, consistent with experimental observation and poloidal mode spectra calculations in KSTAR. Further clarification of the influence of the intrinsic error field in terms of a 3D structure is expected to provide a solid foundation to understand the n = 1 RMP-driven ELM suppression uniquely observed in KSTAR.

  8. Advances in neural networks research: an introduction.

    PubMed

    Kozma, Robert; Bressler, Steven; Perlovsky, Leonid; Venayagamoorthy, Ganesh Kumar

    2009-01-01

    The present Special Issue "Advances in Neural Networks Research: IJCNN2009" provides a state-of-art overview of the field of neural networks. It includes 39 papers from selected areas of the 2009 International Joint Conference on Neural Networks (IJCNN2009). IJCNN2009 took place on June 14-19, 2009 in Atlanta, Georgia, USA, and it represents an exemplary collaboration between the International Neural Networks Society and the IEEE Computational Intelligence Society. Topics in this issue include neuroscience and cognitive science, computational intelligence and machine learning, hybrid techniques, nonlinear dynamics and chaos, various soft computing technologies, intelligent signal processing and pattern recognition, bioinformatics and biomedicine, and engineering applications.

  9. Alzheimer's disease: research advances and medical reality.

    PubMed

    Seiguer, Erica

    2005-07-01

    Alzheimer's disease was the eighth-leading cause of death in 2001. There is no cure and no effective treatment. Alzheimer's disease presents policy-makers with several challenges, including the level of funding and direction of federally funded research, as well as the cost pressures on Medicare and Medicaid of long-term care. These challenges will increase in intensity as demographic changes, particularly the aging of baby boomers, take hold. Better prevention of Alzheimer's, advances in therapy, and appropriate care modalities will likely require significant investment.

  10. Research on Advanced Thin Film Batteries

    SciTech Connect

    Goldner, Ronald B.

    2003-11-24

    During the past 7 years, the Tufts group has been carrying out research on advanced thin film batteries composed of a thin film LiCo02 cathode (positive electrode), a thin film LiPON (lithium phosphorous oxynitride) solid electrolyte, and a thin film graphitic carbon anode (negative electrode), under grant DE FG02-95ER14578. Prior to 1997, the research had been using an rfsputter deposition process for LiCoOi and LiPON and an electron beam evaporation or a controlled anode arc evaporation method for depositing the carbon layer. The pre-1997 work led to the deposition of a single layer cell that was successfully cycled for more than 400 times [1,2] and the research also led to the deposition of a monolithic double-cell 7 volt battery that was cycled for more than 15 times [3]. Since 1997, the research has been concerned primarily with developing a research-worthy and, possibly, a production-worthy, thin film deposition process, termed IBAD (ion beam assisted deposition) for depositing each ofthe electrodes and the electrolyte of a completely inorganic solid thin film battery. The main focus has been on depositing three materials - graphitic carbon as the negative electrode (anode), lithium cobalt oxide (nominally LiCoCb) as the positive electrode (cathode), and lithium phosphorus oxynitride (LiPON) as the electrolyte. Since 1998, carbon, LiCoOa, and LiPON films have been deposited using the IBAD process with the following results.

  11. Advanced cyberinfrastructure for research in Geodynamics

    NASA Astrophysics Data System (ADS)

    Manea, Marina; Constantin Manea, Vlad

    2010-05-01

    Today's scientists need access to new information technology capabilities, able to perform high-resolution complex computing simulations in a reasonable time frame. Sophisticated simulation tools allow us to study phenomena that can never be observed or replicated by standard laboratory experiments. Modeling complex natural processes in general, and numerical computation in particular, represents today an essential need of research, and all modern research centers benefit from a computing center of one form or another. The combined power of hardware and sophisticated software, visualization tools, and scientific applications produced and used by interdisciplinary research teams make possible nowadays to advance the frontiers of science and to pose new key scientific questions. Cyberinfrastructure integrates hardware for high speed computing, a collection of highly specialized software and tools, and a powerful visualization tool. A new interdisciplinary research domain is emerging at the interface of geosciences and computing with essential inputs from geology and geophysics. In this study we show how to rapidly deploy a low-cost high-performance computing cluster (HPCC) and a 3D visualization system that can be used both in teaching and research in geosciences. Also, we present several geodynamic simulations performed with such systems.

  12. Advanced Energy Projects FY 1996 research summaries

    SciTech Connect

    1996-09-01

    The mission of the Advanced Energy Projects Division (AEP) is to explore the scientific feasibility of novel energy-related concepts. These concepts are typically at an early stage of scientific development and, therefore, are premature for consideration by applied research or technology development programs. The portfolio of projects is dynamic, but reflects the broad role of the Department in supporting research and development for improving the Nation`s energy posture. Topical areas presently receiving support include: alternative energy sources; innovative concepts for energy conversion and storage; alternate pathways to energy efficiency; exploring uses of new scientific discoveries; biologically-based energy concepts; renewable and biodegradable materials; novel materials for energy technology; and innovative approaches to waste treatment and reduction. Summaries of the 70 projects currently being supported are presented. Appendices contain budget information and investigator and institutional indices.

  13. Research opportunities at the Advanced Light Source

    NASA Astrophysics Data System (ADS)

    Robinson, A. L.; Schlachter, A. S.

    1991-05-01

    The Advanced Light Source (ALS), now under construction at the Lawrence Berkeley Laboratory, is a third-generation synchrotron radiation facility based on a low-emittance, 1.5-GeV electron storage ring with ten long straight sections available for insertion devices and, initially, 24 bend-magnet ports. Undulators will provide high-brightness radiation at photon energies from below 10 eV to above 2 keV; wiggler and bend-magnet radiation will extend the spectral coverage with high fluxes to above 10 keV. Scheduled to begin operations as a US Department of Energy national user facility in the spring of 1993, the ALS will support an extensive research program in which soft X-ray and ultraviolet radiation is used to study matter in all its varied gaseous, liquid and solid forms. Participating research teams to implement the initial scientific program have been selected.

  14. Geysers advanced direct contact condenser research

    SciTech Connect

    Henderson, J.; Bahning, T.; Bharathan, D.

    1997-12-31

    The first geothermal application of the Advanced Direct Contact Condenser (ADCC) technology developed by the National Renewable Energy Laboratory (NREL) is now operational and is being tested at The Geysers Power Plant Unit 11. This major research effort is being supported through the combined efforts of NREL, The Department of Energy (DOE), and Pacific Gas and Electric (PG&E). NREL and PG&E have entered into a Cooperative Research And Development Agreement (CRADA) for a project to improve the direct-contact condenser performance at The Geysers Power Plant. This project is the first geothermal adaptation of an advanced condenser design developed for the Ocean Thermal Energy Conversion (OTEC) systems. PG&E expects this technology to improve power plant performance and to help extend the life of the steam field by using steam more efficiently. In accordance with the CRADA, no money is transferred between the contracting parties. In this case the Department of Energy is funding NREL for their efforts in this project and PG&E is contributing funds in kind. Successful application of this technology at The Geysers will provide a basis for NREL to continue to develop this technology for other geothermal and fossil power plant systems.

  15. Development of X-ray Imaging Crystal Spectrometer for KSTAR

    NASA Astrophysics Data System (ADS)

    Lee, S. G.; Bak, J. G.; Bitter, M.; Hill, K.; Nam, U. W.; Kim, Y. J.; Moon, M. K.

    2003-10-01

    The engineering design for two high-resolution X-ray imaging crystal spectrometers, which will be part of the basic diagnostics for the KSTAR tokamak, has been finalized. Each of the spectrometers will consists of a spherically bent crystal and a 10 cm x 30 cm large 2D position-sensitive multi-wire proportional counter. The instruments will provide spatially and temporally resolved spectra of the resonance line of helium-like argon (or krypton) and the associated satellites from multiple lines of sight parallel and perpendicular to the horizontal mid-plane for measurements of the profiles of the ion and electron temperatures, plasma rotation velocity, and ionization equilibrium. A 2D detector with delay-line readout and supporting electronics has been fabricated and calibrated with an X-ray source. The engineering design of the spectrometers and the calibration results of the 2D detector will be presented.

  16. Analysis of MHD instabilities limiting high normalized beta operation in KSTAR

    NASA Astrophysics Data System (ADS)

    Park, Y. S.; Sabbagh, S. A.; Berkery, J. W.; Bialek, J. M.; Yoon, S. W.; Kim, J.; Jeon, Y. M.; Bak, J. G.; Ko, W. H.; Hahn, S. H.; in, Y. K.; Choi, M. J.; Lee, S. G.; Kwak, J. G.; Oh, Y. K.; Park, H. K.; Yun, G. S.; Jardin, S. C.

    2016-10-01

    H-mode plasma operation in KSTAR reached high normalized beta up to 4.3 that significantly surpassed the computed n = 1 ideal no-wall beta limit by a factor of 1.6. Pulse lengths at maximum normalized beta were extended to longer pulses by new, more rapid equilibrium control resulting in normalized beta greater than 3 sustained for 1 s. Analysis of these plasmas shows that low- n global kink/ballooning or resistive wall modes (RWMs) were not the cause of the plasma termination. Kinetic modification of the ideal MHD n = 1 stability criterion computed by the MISK code shows the kinetic RWM to be stable, which is consistent with the observed high normalized beta operation. An m/ n = 2/1 tearing mode onsets at high normalized beta greater than 3 that experimentally reduces normalized beta by more than 30%. The stability of the observed 2/1 tearing mode examined by using the M3D-C1 code coupled with the EFIT reconstruction shows a stable 2/1 mode while the equilibrium is experimentally unstable to the 2/1 mode This result may imply that the mode is classically stable, and the pressuredriven neoclassical terms dominate over the current gradient term. Advances in the analysis from the recent run campaign will be reported. Supported by U.S. DOE Grant DE-FG02-99ER54524.

  17. Advanced Materials for Exploration Task Research Results

    NASA Technical Reports Server (NTRS)

    Cook, M. B. (Compiler); Murphy, K. L.; Schneider, T.

    2008-01-01

    The Advanced Materials for Exploration (AME) Activity in Marshall Space Flight Center s (MSFC s) Exploration Science and Technology Directorate coordinated activities from 2001 to 2006 to support in-space propulsion technologies for future missions. Working together, materials scientists and mission planners identified materials shortfalls that are limiting the performance of long-term missions. The goal of the AME project was to deliver improved materials in targeted areas to meet technology development milestones of NASA s exploration-dedicated activities. Materials research tasks were targeted in five areas: (1) Thermal management materials, (2) propulsion materials, (3) materials characterization, (4) vehicle health monitoring materials, and (5) structural materials. Selected tasks were scheduled for completion such that these new materials could be incorporated into customer development plans.

  18. Advanced optical diagnostics in hypersonic research

    NASA Astrophysics Data System (ADS)

    Cattolica, Robert J.

    1988-10-01

    The renewed emphasis on hypersonic research has stimulated a resurgence of interest in experimental methods for the study of high-speed flows. Improvement in the physical and chemical models used in computational fluid dynamic simulation of hypersonic flows requires a modern experimental data base. Optical diagnostics provide the capability to make nonintrusive measurements of density, temperature, velocity, and species concentration in hypersonic flows. The short test time available in hypersonic wind tunnels or flight experiments necessitates spectroscopic methods capable of producing high signal levels. Fluorescence methods based on laser or electron-beam excitation satisfy this requirement. For flight experiments, electron-beam excitation offers a number of advantages over laser excitation that include small device size, high electrical efficiency, and multiple-state and species-selective excitation. Disadvantages of the electron beam fluorescence (EBF) technique included a complex excitation mechanism and some limitations in high-density applications. Laser fluorescence methods (LIF) have been developed extensively in recent years for combustion research, but need further advances in miniaturization of lasers for application to in-flight hypersonic combustion and aerodynamic experiments. Both techniques require a fundamental understanding of the complications introduced by physical effects such as energy transfer and quenching of the fluorescence signal. With modern electro-optic instrumentation it is now possible to examine in detail the influence of these phenomena on EBF and LIF fluorescence spectra in the laboratory and to extend these measurement techniques for use in flight research. To illustrate some of the research required to develop these methods to address issues relevent to hypersonic flight, examples of experiments on the use of EBF and LIF spectroscopy for the measurement of nitric oxide concentration are presented.

  19. Advances in nicotine research in Addiction Biology.

    PubMed

    Bernardi, Rick E

    2015-09-01

    The aim of Addiction Biology is to advance our understanding of the action of drugs of abuse and addictive processes via the publication of high-impact clinical and pre-clinical findings resulting from behavioral, molecular, genetic, biochemical, neurobiological and pharmacological research. As of 2013, Addiction Biology is ranked number 1 in the category of Substance Abuse journals (SCI). Occasionally, Addiction Biology likes to highlight via review important findings focused on a particular topic and recently published in the journal. The current review summarizes a number of key publications from Addiction Biology that have contributed to the current knowledge of nicotine research, comprising a wide spectrum of approaches, both clinical and pre-clinical, at the cellular, molecular, systems and behavioral levels. A number of findings from human studies have identified, using imaging techniques, alterations in common brain circuits, as well as morphological and network activity changes, associated with tobacco use. Furthermore, both clinical and pre-clinical studies have characterized a number of mechanistic targets critical to understanding the effects of nicotine and tobacco addiction. Together, these findings will undoubtedly drive future studies examining the dramatic impact of tobacco use and the development of treatments to counter nicotine dependence.

  20. Eagleworks Laboratories: Advanced Propulsion Physics Research

    NASA Technical Reports Server (NTRS)

    White, Harold; March, Paul; Williams, Nehemiah; ONeill, William

    2011-01-01

    NASA/JSC is implementing an advanced propulsion physics laboratory, informally known as "Eagleworks", to pursue propulsion technologies necessary to enable human exploration of the solar system over the next 50 years, and enabling interstellar spaceflight by the end of the century. This work directly supports the "Breakthrough Propulsion" objectives detailed in the NASA OCT TA02 In-space Propulsion Roadmap, and aligns with the #10 Top Technical Challenge identified in the report. Since the work being pursued by this laboratory is applied scientific research in the areas of the quantum vacuum, gravitation, nature of space-time, and other fundamental physical phenomenon, high fidelity testing facilities are needed. The lab will first implement a low-thrust torsion pendulum (<1 uN), and commission the facility with an existing Quantum Vacuum Plasma Thruster. To date, the QVPT line of research has produced data suggesting very high specific impulse coupled with high specific force. If the physics and engineering models can be explored and understood in the lab to allow scaling to power levels pertinent for human spaceflight, 400kW SEP human missions to Mars may become a possibility, and at power levels of 2MW, 1-year transit to Neptune may also be possible. Additionally, the lab is implementing a warp field interferometer that will be able to measure spacetime disturbances down to 150nm. Recent work published by White [1] [2] [3] suggests that it may be possible to engineer spacetime creating conditions similar to what drives the expansion of the cosmos. Although the expected magnitude of the effect would be tiny, it may be a "Chicago pile" moment for this area of physics.

  1. Indentation Methods in Advanced Materials Research Introduction

    SciTech Connect

    Pharr, George Mathews; Cheng, Yang-Tse; Hutchings, Ian; Sakai, Mototsugu; Moody, Neville; Sundararajan, G.; Swain, Michael V.

    2009-01-01

    Since its commercialization early in the 20th century, indentation testing has played a key role in the development of new materials and understanding their mechanical behavior. Progr3ess in the field has relied on a close marriage between research in the mechanical behavior of materials and contact mechanics. The seminal work of Hertz laid the foundations for bringing these two together, with his contributions still widely utilized today in examining elastic behavior and the physics of fracture. Later, the pioneering work of Tabor, as published in his classic text 'The Hardness of Metals', exapdned this understanding to address the complexities of plasticity. Enormous progress in the field has been achieved in the last decade, made possible both by advances in instrumentation, for example, load and depth-sensing indentation and scanning electron microscopy (SEM) and transmission electron microscopy (TEM) based in situ testing, as well as improved modeling capabilities that use computationally intensive techniques such as finite element analysis and molecular dynamics simulation. The purpose of this special focus issue is to present recent state of the art developments in the field.

  2. Land reclamation: Advances in research technology

    SciTech Connect

    Younos, T.; Diplas, P.; Mostaghimi, S.

    1992-01-01

    Land reclamation encompasses remediation of industrial wasteland, improvement of infertile land for agricultural production, preservation of wetlands, and restoration of disturbed areas. Land reclamation is an integral part of sustainable development which aims to reconcile economic productivity with environmental preservation. During the 1980s, significant progress was achieved in the application of advanced technologies to sustainable development projects. The goal of this international symposium was to serve as a forum to review current research and state-of-the-art technology dealing with various aspects of land reclamation, and provide an opportunity for professional interaction and exchange of information in a multi-disciplinary setting. The scope of the symposium was as broad as the topic itself. The keynote address by Professor John Cairns focused on a systems approach in land restoration projects and challenges facing scientists in global biotic impoverishment. Other topics discussed in ten mechanical sessions included development and applications of computer models, geographic information systems, remote sensing technology, salinity problems, surface and ground water monitoring, reclamation of mine areas, soil amendment methods and impacts, wetland restoration techniques, and land use planning for resource protection.

  3. [Research advances on interactions among bryophytes].

    PubMed

    Bu, Zhao-Jun; Chen, Xu; Jiang, Li-Hong; Li, Hong-Kai; Zhao, Hong-Yan

    2009-02-01

    This paper summarized the present research status and advances on the intra- and interspecific positive interaction, intra- and inter-specific competition, niche, and coexistence of bryophytes. Bryophytes are generally the dominant plants in harsh environments, and there is a trade-off between their water retention and light and nutrient resource availability. Because of the lesser importance of competition in harsh environments, the positive interaction among bryophytes is common, but the intra- and inter-specific competition among bryophytes and the competition between bryophytes and vascular plants are not rare. Competition hierarchy may exist among some bryophytes, but often changes with environments. In the process of bryophyte community formation, the random process, nature of colonization, and difference in regeneration strategy can result in the niche overlap and coexistence of bryophytes, and the niche differentiation resulted from competition is also one of the mechanisms for bryophytes coexistence. Bryophytes should not be simply classified as stress tolerated-ruderal life history strategists, and competition is still one of important factors for constructing some bryophyte communities and vegetations co-existed by bryophytes and vascular plants.

  4. Advances in Mycotoxin Research: Public Health Perspectives.

    PubMed

    Lee, Hyun Jung; Ryu, Dojin

    2015-12-01

    Aflatoxins, ochratoxins, fumonisins, deoxynivalenol, and zearalenone are of significant public health concern as they can cause serious adverse effects in different organs including the liver, kidney, and immune system in humans. These toxic secondary metabolites are produced by filamentous fungi mainly in the genus Aspergillus, Penicillium, and Fusarium. It is challenging to control the formation of mycotoxins due to the worldwide occurrence of these fungi in food and the environment. In addition to raw agricultural commodities, mycotoxins tend to remain in finished food products as they may not be destroyed by conventional processing techniques. Hence, much of our concern is directed to chronic health effects through long-term exposure to one or multiple mycotoxins from contaminated foods. Ideally risk assessment requires a comprehensive data, including toxicological and epidemiological studies as well as surveillance and exposure assessment. Setting of regulatory limits for mycotoxins is considered necessary to protect human health from mycotoxin exposure. Although advances in analytical techniques provide basic yet critical tool in regulation as well as all aspects of scientific research, it has been acknowledged that different forms of mycotoxins such as analogs and conjugated mycotoxins may constitute a significant source of dietary exposure. Further studies should be warranted to correlate mycotoxin exposure and human health possibly via identification and validation of suitable biomarkers.

  5. Validation of plasma shape reconstruction by Cauchy condition surface method in KSTAR

    SciTech Connect

    Miyata, Y.; Suzuki, T.; Ide, S.; Hahn, S. H.; Chung, J.; Bak, J. G.; Ko, W. H.

    2014-03-15

    Cauchy Condition Surface (CCS) method is a numerical approach to reconstruct the plasma boundary and calculate the quantities related to plasma shape using the magnetic diagnostics in real time. It has been applied to the KSTAR plasma in order to establish the plasma shape reconstruction with the high elongation of plasma shape and the large effect of eddy currents flowing in the tokamak structures for the first time. For applying the CCS calculation to the KSTAR plasma, the effects by the eddy currents and the ferromagnetic materials on the plasma shape reconstruction are studied. The CCS calculation includes the effect of eddy currents and excludes the magnetic diagnostics, which is expected to be influenced largely by ferromagnetic materials. Calculations have been performed to validate the plasma shape reconstruction in 2012 KSTAR experimental campaign. Comparison between the CCS calculation and non-magnetic measurements revealed that the CCS calculation can reconstruct the accurate plasma shape even with a small I{sub P}.

  6. MHD instabilities and their control in high-beta plasmas in KSTAR

    SciTech Connect

    In, Yongkyoon

    2013-02-06

    We established 3 specific tasks as follows: Task 1 - Investigate the MHD activity during the current ramp-up phase with shaped plasmas; Task 2 - Develop a theoretical model that may show the hollowness dependent instability; Task 3 - Explore the beta-limiting instabilities. To address each task, FAR-TECH actively participated in the 2012 KSTAR run-campaign, which helped us make productive progress. Specifically, the shaping dependence of MHD activity during current ramp-up phase was investigated using dedicated run-time in KSTAR (October 4 and 9, 2012), which was also attempted to address the hollowness of temperature (or pressure) profiles. Also, a performance-limiting disruption, which occurred in a relatively high intermediate beta plasma (shot 7110) in KSTAR ({beta}{sub N} ~ 1.7), was studied, and the preliminary analysis shows that the disruption might not be stability-limited but likely density-limited.

  7. 2010 Summary of Advances in Autism Spectrum Disorder Research

    ERIC Educational Resources Information Center

    Interagency Autism Coordinating Committee, 2010

    2010-01-01

    As part of the Combating Autism Act of 2006, the members of the Interagency Autism Coordinating Committee (IACC) are required to develop an annual "Summary of Advances" to describe each year's top advances in autism spectrum disorder (ASD) research. These advances represent significant progress in the early diagnosis of ASD, understanding the…

  8. 77 FR 19744 - Advanced BioPhotonics, Inc., Advanced Viral Research Corp., Brantley Capital Corp., Brilliant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION Advanced BioPhotonics, Inc., Advanced Viral Research Corp., Brantley Capital Corp., Brilliant... information concerning the securities of Advanced BioPhotonics, Inc. because it has not filed any...

  9. Advanced research workshop: nuclear materials safety

    SciTech Connect

    Jardine, L J; Moshkov, M M

    1999-01-28

    The Advanced Research Workshop (ARW) on Nuclear Materials Safety held June 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 U.S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuclear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuclear material safety topics on the storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, including vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This ARW completed discussions by experts of the nuclear materials safety topics that were not covered in the previous, companion ARW on Nuclear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuclear material aspects of the storage and disposition operations required for excess HEU and plutonium. As a result, specific experts in nuclear materials safety have been identified, know each other from their participation in t he two ARW interactions, and have developed a partial consensus and dialogue on the most urgent nuclear materials safety topics to be addressed in a formal bilateral program on t he subject. A strong basis now exists for maintaining and developing a continuing dialogue between Russian, European, and U.S. experts in nuclear materials safety that will improve the safety of future nuclear materials operations in all the countries involved because of t he positive synergistic effects of focusing these diverse backgrounds of

  10. Progress in development of neutron energy spectrometer for deuterium plasma operation in KSTAR

    SciTech Connect

    Tomita, H. Yamashita, F.; Nakayama, Y.; Morishima, K.; Yamamoto, Y.; Sakai, Y.; Hayashi, S.; Kawarabayashi, J.; Iguchi, T.; Cheon, M. S.; Isobe, M.; Ogawa, K.

    2014-11-15

    Two types of DD neutron energy spectrometer (NES) are under development for deuterium plasma operation in KSTAR to understand behavior of beam ions in the plasma. One is based on the state-of-the-art nuclear emulsion technique. The other is based on a coincidence detection of a recoiled proton and a scattered neutron caused by an elastic scattering of an incident DD neutron, which is called an associated particle coincidence counting-NES. The prototype NES systems were installed at J-port in KSTAR in 2012. During the 2012 and 2013 experimental campaigns, multiple shots-integrated neutron spectra were preliminarily obtained by the nuclear emulsion-based NES system.

  11. Development of a particle injection system for impurity transport study in KSTAR

    SciTech Connect

    Lee, H. Y.; Hong, Joohwan; Lee, Seung Hun; Jang, Siwon; Jang, Juhyeok; Jeon, Taemin; Park, Jae Sun; Choe, Wonho; Hong, Suk-Ho

    2014-11-15

    A solid particle injection system is developed for KSTAR. The system has a compact size, compatibility with a strong magnetic field and high vacuum environment, and the capability to inject a small amount of solid particles with a narrow injection angle. The target flight-distance of 10 cm has been achieved with a particle loss rate of less than 10%. Solid impurity particles such as tungsten and carbon will be injected by this system at the midplane in KSTAR. The impurity transport feature will be studied with a soft X-ray array, a vacuum ultra-violet diagnostic, and Stand Alone Non-Corona code.

  12. Advanced Materials and Solids Analysis Research Core (AMSARC)

    EPA Science Inventory

    The Advanced Materials and Solids Analysis Research Core (AMSARC), centered at the U.S. Environmental Protection Agency's (EPA) Andrew W. Breidenbach Environmental Research Center in Cincinnati, Ohio, is the foundation for the Agency's solids and surfaces analysis capabilities. ...

  13. Advanced Microwave Ferrite Research (AMFeR): Phase Four

    DTIC Science & Technology

    2009-10-15

    COVERED (From - To) 28 Dec 2006 - 30 Sep 2009 4. TITLE AND SUBTITLE Advanced Microwave Ferrite Research (AMFeR): Phase Four 5a. CONTRACT NUMBER 5b...research endeavor is to devise ferrite materials for microwave , self-biased circulator applications. To this end, the research team focused on two key...Std Z39-18 Final Report Advanced Microwave Ferrite Research (AMFeR): Phase Four Dr. Jeffrey L. Young MRC Institute/Electrical and Computer

  14. Advanced cogeneration research study: Executive summary

    NASA Technical Reports Server (NTRS)

    Bluhm, S. A.; Moore, N.; Rosenberg, L.; Slonski, M.

    1983-01-01

    This study provides a broad based overview of selected areas relevant to the development of a comprehensive Southern California Edison (SCE) advanced cogeneration project. The areas studied are: (1) Cogeneration potential in the SCE service territory; (2) Advanced cogeneration technologies; and (3) Existing cogeneration computer models. An estimated 3700 MW sub E could potentially be generated from existing industries in the Southern California Edison service territory using cogeneration technology. Of this total, current technology could provide 2600 MW sub E and advanced technology could provide 1100 MW sub E. The manufacturing sector (SIC Codes 20-39) was found to have the highest average potential for current cogeneration technology. The mining sector (SIC Codes 10-14) was found to have the highest potential for advanced technology.

  15. Ethics, Professional Expectations, and Graduate Education: Advancing Research in Kinesiology

    ERIC Educational Resources Information Center

    DePauw, Karen P.

    2009-01-01

    The university is a social institution and as such has a social responsibility to advance knowledge through research that is ultimately meaningful and beneficial to society. As we seek to advance research and graduate education in kinesiology, we must accept ethical standards and professional expectations not only as an institutional value but as…

  16. Survey of cogeneration: Advanced cogeneration research study

    NASA Technical Reports Server (NTRS)

    Slonski, M. L.

    1983-01-01

    The consumption of electricity, natural gas, or fuel oil was surveyed. The potential electricity that could be generated in the SCE service territory using cogeneration technology was estimated. It was found that an estimated 3700 MWe could potentially be generated in Southern California using cogenerated technology. It is suggested that current technology could provide 2600 MWe and advanced technology could provide 1100 MWe. Approximately 1600 MWt is considered not feasible to produce electricity with either current or advanced cogeneration technology.

  17. Operation results of the KSTAR far infrared interferometer

    NASA Astrophysics Data System (ADS)

    Juhn, June-Woo; Lee, K. C.; Wi, H. M.; Kim, Y. S.; Nam, Y. U.

    2016-11-01

    The 2015 KSTAR experimental campaign was the first year of routine measurement with a far infrared interferometer (FIRI) utilizing 118.87 μm CH3OH lasers at maximum 200 mW CW beam power. By using rtEFIT reconstruction, the path lengths of interferometers can be calculated and so the line-averaged electron densities n ¯ e from the FIRI and a millimeter-wave interferometer were in excellent agreement. In this way, the number of successfully diagnosed discharges is counted: 1003 shots or 83.7% of sustained discharges, defined as shots of plasma current IP ≥ 0.3 MA with pulse lengths tf ≥ 2.0 s, have good-quality FIRI data within a few fringe jump errors. In addition, real-time H-mode density feedback control based on the FIRI was also successfully achieved with supersonic molecular beam injection as an actuator. Both constant density and controlled linear increment with a ramp-up rate of 1.0 × 1019 m-3 s-1 were achieved.

  18. Improvement of X-ray Imaging Crystal Spectrometers for KSTAR

    NASA Astrophysics Data System (ADS)

    Lee, Sang Gon; Bitter, M.; Nam, U. W.; Moon, M. K.

    2005-10-01

    The X-ray imaging crystal spectrometers for the KSTAR tokamak will provide spatially and temporally resolved spectra of the resonance line of helium-like argon (or krypton) and the associated satellites from multiple lines of sight parallel and perpendicular to the horizontal mid-plane for measurements of the profiles of the ion and electron temperatures, plasma rotation velocity, and ionization equilibrium. The spectrometers are consisted of a spherically bent quartz crystal and a 10 cm x 30 cm large 2D position-sensitive multi-wire proportional counter. A 2D detector with delay-line readout and supporting electronics has been fabricated and tested on the NSTX tokamak at PPPL. Position resolution and count rate capability of the 2D detector are still need to be improved to meet the requirements. Hence, a segmented version of the 2D detector is under development to satisfy the requirements. The experimental results from the improved 2D detector will be presented.

  19. High normalized beta plasmas exceeding the ideal stability limit and projected RWM active stabilization performance using newly installed feedback sensors in KSTAR

    NASA Astrophysics Data System (ADS)

    Park, Y. S.; Sabbagh, S. A.; Berkery, J. W.; Bialek, J. M.; Yoon, S. W.; Jeon, Y. M.; Bak, J. G.; Ko, W. H.; Hahn, S. H.; Bae, C.; Bae, Y. S.; in, Y. K.; Kim, J.; Lee, S. G.; Kwak, J. G.; Oh, Y. K.; Park, H. K.; Choi, M. J.; Yun, G. S.

    2015-11-01

    H-mode plasma operation of KSTAR has been expanded to significantly surpass the ideal MHD no-wall beta limit by achieving normalized beta up to 4.3 while reducing plasma internal inductance to near 0.7 exceeding the computed n = 1 ideal no-wall limit by a factor of 1.6. These high normalized beta values have been achieved in discharges having BT in the range 0.9-1.1 T after the plasma reached flattop current of 0.35-0.4 MA, with the highest neutral beam heating power of 4 MW. A significant conclusion of the analysis of these plasmas is that low- n global kink/ballooning or RWMs were not detected, and therefore were not the cause of the plasma termination. Advances from the 2015 run campaign aiming to achieve prolonged pulse duration at maximum normalized beta and to subsequently investigate the MHD stability of these plasmas will be reported. As KSTAR H-mode operation can now routinely surpass the ideal no-wall stability limit, n = 1 RWM active control is planned for the device. RWM active feedback using a newly installed set of poloidal magnetic field sensors mounted on the passive stabilizer plates and designed for optimal performance is analyzed using the VALEN-3D code. The advantages of the new sensors over other device sensors for RWM active control are discussed. Supported by U.S. DOE grant DE-FG02-99ER54524.

  20. Integrating Advance Research Directives into the European Legal Framework.

    PubMed

    Andorno, Roberto; Gennet, Eloïse; Jongsma, Karin; Elger, Bernice

    2016-04-01

    The possibility of using advance directives to prospectively consent to research participation in the event of dementia remains largely unexplored in Europe. Moreover, the legal status of advance directives for research is unclear in the European regulations governing biomedical research. The article explores the place that advance research directives have in the current European legal framework, and considers the possibility of integrating them more explicitly into the existing regulations. Special focus is placed on issues regarding informed consent, the role of proxies, and the level of acceptable risks and burdens.

  1. Integrated Advanced Energy Systems Research at IIT

    SciTech Connect

    Hamid Arastoopour

    2010-09-30

    This report consists of Two research projects; Sustainable Buildings and Hydrogen Storage. Sustainable Building Part includes: Wind and the self powered built environment by professor P. Land and his research group and experimental and computational works by professor D. Rempfer and his research group. Hydrogen Storage part includes: Hydrogen Storage Using Mg-Mixed Metal Hydrides by professor H. Arastoopour and his research team and Carbon Nanostructure as Hydrogen Storage Material by professor J. Prakash and his research team.

  2. Next Steps: Water Technology Advances (Research)

    EPA Science Inventory

    This project will focus on contaminants and their impact on health, adequate removal of contaminants from various water systems, and water and resource recovery within treatment systems. It will develop the next generation of technological advances to provide guidance in support ...

  3. Development of a free-boundary tokamak equilibrium solver for advanced study of tokamak equilibria

    NASA Astrophysics Data System (ADS)

    Jeon, Young Mu

    2015-09-01

    A free-boundary Tokamak equilibrium solver (TES), developed for advanced study of tokamak equilibra, is described with two distinctive features. One is a generalized method to resolve the intrinsic axisymmetric instability, which is encountered in all equilibrium calculations with a freeboundary condition. The other is an extension to deal with a new divertor geometry such as snowflake or X divertors. For validations, the uniqueness of a solution is confirmed by the independence of variations in the computational domain, the mathematical correctness and accuracy of equilibrium profiles are checked by using a direct comparison with an analytic equilibrium known as a generalized Solov'ev equilibrium, and the governing force balance relation is tested by examining the intrinsic axisymmetric instabilities. As an application of an advanced equilibrium study, a snow-flake divertor configuration that requires a second-order zero of the poloidal magnetic flux is discussed in the circumstance of the Korea superconducting tokamak advanced research (KSTAR) coil system.

  4. Status of KSTAR 170 GHz, 1 MW Electron Cyclotron Heating and Current Drive System

    SciTech Connect

    Joung, M.; Bae, Y. S.; Jeong, J. H.; Park, S.; Kim, H. J.; Yang, H. L.; Park, H.; Cho, M. H.; Namkung, W.; Hosea, J.; Ellis, R.; Sakamoto, K.; Kajiwara, K.; Doane, J.

    2011-12-23

    A 170 GHz Electron Cyclotron Heating and Current Drive (ECH/CD) system on KSTAR is designed to launch total 2.4 MW of power for up to 300 sec into the plasma. At present the first 1 MW ECH/CD system is under installation and commissioning for 2011 KSTAR campaign. The 170 GHz, 1 MW, 300 sec gyrotron and the matching optics unit (MOU) will be provided from JAEA under collaboration between NFRI and JAEA. The transmission line consists of MOU and 70 m long 63.5 mm ID corrugated waveguides with the eight miter bends. The 1 MW, 10 sec launcher is developed based on the existing two-mirror front-end launcher in collaboration with Princeton Plasma Physics Laboratory and Pohang University of Science and Technology, and is installed on the low field side in the KSTAR equatorial plane. The mirror pivot is located at 30 cm below from the equatorial plane. 3.6 MVA power supply system is manufactured and now is under commissioning to meet the triode gun operation of JAEA gyrotron. The power supply consists of 66 kV/55 A cathode power supply, mode-anode system, and 50 kV/160 mA body power supply. In this paper, the current status of KSTAR 170 GHz, 1 MW ECH/CD system will be presented as well as the experimental plan utilizing 170 GHz new ECH/CD system.

  5. Commissioning of 170 GHz, 1 MW EC H&CD in KSTAR

    NASA Astrophysics Data System (ADS)

    Jeong, J. H.; Sakamoto, K.; Joung, M.; Park, S. I.; Kim, H. J.; Han, W. S.; Kim, J. S.; Bae, Y. S.; Yang, H. L.; Kwak, J. G.; Kwon, M.; Namkung, W.; Park, H.; Cho, M. H.; Kajiwara, K.; Oda, Y.; Hosea, J.; Ellis, R.; Doane, J.; Olstad, R.

    2012-09-01

    The newly installed electron cyclotron heating and current drive (EC H&CD) system with a frequency of 170 GHz was successfully commissioned and used for the second-harmonic ECH-assisted startup in 2011 operational campaign of the KSTAR. As a RF power source, ITER pre-prototype of 170 GHz, 1 MW continuous-wave gyrotron, is loaned from the Japan Atomic Energy Agency (JAEA). During the KSTAR 2011 plamma campaign, maxumum pulse length of 10 sec at 0.6 MW EC beam was reliably injected into the plasma and the 170 GHz second harmonic ECH-assisted start-up was successful leading to reduce the flux consumption at toroidal magnetic field of 3 T. As a result, the flux consumption until the plasma current flat-top was reduced from 4.13 Wb for pure Ohmic to 3.62 Wb (12 % reduction) for the perpendicular injection. When the EC beam is launched with toroidal angle of 20 deg in co-CD direction, more reduced magnetic flux consumption was obtained with 3.14 Wb (24 % reduction) compared with pure OH plasmas. In recent, the gyrotron has been successfully commissioned with the output power of 1 MW and the pulse duration of 20 sec in KSTAR. This paper presents successful commissioning of 170 GHz EC H&CD system in KSTAR as well as the heating and startup experimental results.

  6. Medical technology advances from space research.

    NASA Technical Reports Server (NTRS)

    Pool, S. L.

    1971-01-01

    NASA-sponsored medical R & D programs for space applications are reviewed with particular attention to the benefits of these programs to earthbound medical services and to the general public. Notable among the results of these NASA programs is an integrated medical laboratory equipped with numerous advanced systems such as digital biotelemetry and automatic visual field mapping systems, sponge electrode caps for electroencephalograms, and sophisticated respiratory analysis equipment.

  7. Advancement in LIDAR Data Collection: NASA's Experimental Airborne Advanced Research LIDAR

    NASA Technical Reports Server (NTRS)

    Riordan, Kevin; Wright, C. Wayne; Noronha, Conan

    2003-01-01

    The NASA Experimental Airborne Advanced Research LIDAR (EAARL) is a new developmental LIDAR designed to investigate and advance LIDAR techniques using a adaptive time resolved backscatter information for complex coastal research and monitoring applications. Information derived from such an advanced LIDAR system can potentially improve the ability of resource managers and policy makers to make better informed decisions. While there has been a large amount of research using LIDAR in coastal areas, most are limited in the amount of information captured from each laser pulse. The unique design of the EAARL instrument permits simultaneous acquisition of coastal environments which include subaerial bare earth topography, vegetation biomass, and bare earth beneath vegetated areas.

  8. CREST Research: Advancing the Field for Practitioners

    PubMed Central

    Mosqueda, Laura; Brandl, Bonnie; Otto, Joanne; Stiegel, Lori; Thomas, Randolph; Heisler, Candace

    2008-01-01

    An external advisory board consisting of members from the fields of geriatric internal medicine, family practice geriatrics, criminal prosecution, civil law, police force, adult protective services and victims advocacy was created to advise and guide the research conducted by the Consortium for Research in Elder Self-neglect of Texas (CREST). This panel of experts performed site visits and facilitated the research through responses to biweekly facts sheets and quarterly conference calls. This paper provides the perspective of five of the board members regarding the research findings that were presented at the CREST National Conference in 2006. The discussions outline the successes of the CREST research, describe obstacles and the necessary next steps for continuance of the scientific exploration of this syndrome, and highlight the practice implications of the current and proposed research. PMID:19016972

  9. Design of an X-mode swept frequency modulation reflectometer for the measurement of KSTAR plasma density profiles (invited)

    NASA Astrophysics Data System (ADS)

    Roh, Y.; Domier, C. W.; Luhmann, N. C.

    2004-10-01

    An X-mode swept frequency modulation (FM) reflectometry system has been designed to measure the electron density profiles of the "initial" KSTAR plasma. Fast swept HTO oscillators are employed to avoid density fluctuation effects, and frequency quadruplers are utilized to expand the HTO frequency range of 8-18 GHz to completely cover the X-mode cutoff frequency range of 33-66 GHz. The system can also be utilized to measure the edge profiles of the "Day One" KSTAR plasma by either switching from X- to O-mode reflectometry or by employing higher frequency millimeter-wave components and retaining the X-mode reflectometry configuration. To facilitate engineering design and optimization, a 3D drawing tool is utilized to effectively deal with any technical problems that may happen under actual KSTAR conditions. Details of the KSTAR FM reflectometry system are described together with important design issues.

  10. Research opportunities to advance solar energy utilization.

    PubMed

    Lewis, Nathan S

    2016-01-22

    Major developments, as well as remaining challenges and the associated research opportunities, are evaluated for three technologically distinct approaches to solar energy utilization: solar electricity, solar thermal, and solar fuels technologies. Much progress has been made, but research opportunities are still present for all approaches. Both evolutionary and revolutionary technology development, involving foundational research, applied research, learning by doing, demonstration projects, and deployment at scale will be needed to continue this technology-innovation ecosystem. Most of the approaches still offer the potential to provide much higher efficiencies, much lower costs, improved scalability, and new functionality, relative to the embodiments of solar energy-conversion systems that have been developed to date.

  11. Advanced research in solar energy storage

    NASA Astrophysics Data System (ADS)

    Luft, W.

    1983-01-01

    This paper gives an overview of the Solar Energy Storage Program at the Solar Energy Research Institute. The program provides research, systems analyses, and economic assessments of thermal and thermochemical energy storage and transport. Current activities include experimental research into very high temperature (above 800 C) thermal energy storage and assessment of novel thermochemical energy storage and transport systems. The applications for such high-temperature storage are thermochemical processes, solar thermal-electric power generation, cogeneration of heat and electricity, industrial process heat, and thermally regenerative electrochemical systems. The research results for five high-temperature thermal energy storage technologies and two thermochemical systems are described.

  12. Ozone Research with Advanced Cooperative Lidar Experiment (ORACLE) Implementation Study

    NASA Technical Reports Server (NTRS)

    Stadler, John H.; Browell, Edward V.; Ismail, Syed; Dudelzak, Alexander E.; Ball, Donald J.

    1998-01-01

    New technological advances have made possible new active remote sensing capabilities from space. Utilizing these technologies, the Ozone Research with Advanced Cooperative Lidar Experiment (ORACLE) will provide high spatial resolution measurements of ozone, clouds and aerosols in the stratosphere and lower troposphere. Simultaneous measurements of ozone, clouds and aerosols will assist in the understanding of global change, atmospheric chemistry and meteorology.

  13. Intervention Research in Social Work: Recent Advances and Continuing Challenges

    ERIC Educational Resources Information Center

    Fraser, Mark W.

    2004-01-01

    The purpose of this article is to review substantive and methodological advances in interventive research. Three substantive advances are discussed: (a) the growing use of a risk factor perspective, (b) the emergence of practice-relevant micro social theories, and (c) the increased acceptance of structured treatment protocols and manual. In…

  14. Characteristics of the First H-mode Discharges in KSTAR

    SciTech Connect

    Yoon, S. W.; Ahn, J.W.; Jeon, Y. M.; Suzuki, T.; Hahn, S. H.; Ko, W. H.; Lee, K. D.; Chung, J. I.; Nam, Y. U.; Kim, H. S.; Kim, W. C.; Oh, Y. K.; Kwak, J. G.; Park, Y. S.; Sabbagh, S. A.; Humphreys, D. A.; Na, Y. S.; Kim, K. M.; Yun, G. S.; Hyatt, A. W.; Gohil, P.; Bae, Y. S.; Yang, H. L.; Park, H.; Kwon, M.; Lee, G. S.

    2011-01-01

    Typical ELMy H-mode discharges have been obtained in the KSTAR tokamak with the combined auxiliary heating of neutral beam injection (NBI) and electron cyclotron resonant heating (ECRH). The minimum external heating power required for the L-H transition is about 0.9MW for a line-averaged density of similar to 2.0 x 10(19) m(-3). There is a clear indication of the increase in the L-H threshold power with decreasing density for densities lower than similar to 2 x 10(19) m(-3). The L-H transitions typically occurred shortly after the beginning of plasma current flattop (I(p) = 0.6 MA) period and after the fast shaping to a highly elongated double-null divertor configuration. The maximum heating power available was marginal for the L-H transition, which is also implied by the relatively slow transition time (>10 ms) and the synchronization of the transition with large sawtooth crashes. The initial analysis of thermal energy confinement time (tau(E)) indicates that tau(E) is higher than the prediction of multi-machine scaling laws by 10-20%. A clear increase in electron and ion temperature in the pedestal is observed in the H-mode phase but the core temperature does not change significantly. On the other hand, the toroidal rotation velocity increased over the whole radial range in the H-mode phase. The measured ELM frequency was around 10-30 Hz for the large ELM bursts and 50-100 Hz for the smaller ones. In addition, very small and high frequency (200-300 Hz) ELMs appeared between large ELM spikes when the ECRH is added to the NBI-heated H-mode plasmas. The drop of total stored energy during a large ELM is up to 5% in most cases.

  15. Addressing Risks to Advance Mental Health Research

    PubMed Central

    Iltis, Ana S.; Misra, Sahana; Dunn, Laura B.; Brown, Gregory K.; Campbell, Amy; Earll, Sarah A.; Glowinski, Anne; Hadley, Whitney B.; Pies, Ronald; DuBois, James M.

    2015-01-01

    Objective Risk communication and management are essential to the ethical conduct of research, yet addressing risks may be time consuming for investigators and institutional review boards (IRBs) may reject study designs that appear too risky. This can discourage needed research, particularly in higher risk protocols or those enrolling potentially vulnerable individuals, such as those with some level of suicidality. Improved mechanisms for addressing research risks may facilitate much needed psychiatric research. This article provides mental health researchers with practical approaches to: 1) identify and define various intrinsic research risks; 2) communicate these risks to others (e.g., potential participants, regulatory bodies, society); 3) manage these risks during the course of a study; and 4) justify the risks. Methods As part of a National Institute of Mental Health (NIMH)-funded scientific meeting series, a public conference and a closed-session expert panel meeting were held on managing and disclosing risks in mental health clinical trials. The expert panel reviewed the literature with a focus on empirical studies and developed recommendations for best practices and further research on managing and disclosing risks in mental health clinical trials. IRB review was not required because there were no human subjects. The NIMH played no role in developing or reviewing the manuscript. Results Challenges, current data, practical strategies, and topics for future research are addressed for each of four key areas pertaining to management and disclosure of risks in clinical trials: identifying and defining risks, communicating risks, managing risks during studies, and justifying research risks. Conclusions Empirical data on risk communication, managing risks, and the benefits of research can support the ethical conduct of mental health research and may help investigators better conceptualize and confront risks and to gain IRB approval. PMID:24173618

  16. Special Education Research Advances Knowledge in Education

    ERIC Educational Resources Information Center

    Vaughn, Sharon; Swanson, Elizabeth A.

    2015-01-01

    Research in special education has yielded beneficial outcomes for students with disabilities as well as typical achieving students. The authors provide examples of the valuable knowledge special education research has generated, including the elements of response to intervention (e.g., screening and progress monitoring), instructional practices…

  17. Advanced technology airfoil research, volume 2. [conferences

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A comprehensive review of airfoil research is presented. The major thrust of the research is in three areas: development of computational aerodynamic codes for airfoil analysis and design, development of experimental facilities and test techniques, and all types of airfoil applications.

  18. Advancing Administrative Supports for Research Development

    ERIC Educational Resources Information Center

    Briar-Lawson, Katharine; Korr, Wynne; White, Barbara; Vroom, Phyllis; Zabora, James; Middleton, Jane; Shank, Barbara; Schatz, Mona

    2008-01-01

    Research administrative supports must parallel and reinforce faculty initiatives in research grant procurement. This article features several types of developments that draw on presentations at the National Association of Deans and Directors of Schools of Social Work meetings. Key changes in social work programs are addressed, including the…

  19. Strategy to Promote Active Learning of an Advanced Research Method

    ERIC Educational Resources Information Center

    McDermott, Hilary J.; Dovey, Terence M.

    2013-01-01

    Research methods courses aim to equip students with the knowledge and skills required for research yet seldom include practical aspects of assessment. This reflective practitioner report describes and evaluates an innovative approach to teaching and assessing advanced qualitative research methods to final-year psychology undergraduate students. An…

  20. Advancements in Research Synthesis Methods: From a Methodologically Inclusive Perspective

    ERIC Educational Resources Information Center

    Suri, Harsh; Clarke, David

    2009-01-01

    The dominant literature on research synthesis methods has positivist and neo-positivist origins. In recent years, the landscape of research synthesis methods has changed rapidly to become inclusive. This article highlights methodologically inclusive advancements in research synthesis methods. Attention is drawn to insights from interpretive,…

  1. Symposium on research advances in clinical PET. Final performance report

    SciTech Connect

    J. Michael McGehee

    1992-01-01

    The Institute for Clinical PET and the U.S. Department of Energy (DOE) co-sponsored a symposium entitled 'Research in PET: International and Institutional Perspectives' that highlighted the activities of many leading investigators in the U.S. and throughout the world. Research programs at the DOE were discussed as were potential directions of PET research. International as well as institutional perspectives on PET research were presented. This symposium was successful in reaching those interested in research advances of clinical PET.

  2. Prostate Cancer Stem Cells: Research Advances

    PubMed Central

    Jaworska, Dagmara; Król, Wojciech; Szliszka, Ewelina

    2015-01-01

    Cancer stem cells have been defined as cells within a tumor that possesses the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. Experimental evidence showed that these highly tumorigenic cells might be responsible for initiation and progression of cancer into invasive and metastatic disease. Eradicating prostate cancer stem cells, the root of the problem, has been considered as a promising target in prostate cancer treatment to improve the prognosis for patients with advanced stages of the disease. PMID:26593898

  3. Advancing Global Cancer Research @ AACR 2015

    Cancer.gov

    Research Priorities for NCI’s Center for Global Health' and included presentations on our mission, objectives, currently funded programs, and future programs given by Dr. Lisa Stevens and Paul Pearlman, as well as three special presentations by NCI grantees.

  4. Extended MHD modeling of edge-localized mode suppression by three-dimensional magnetic perturbations in KSTAR

    NASA Astrophysics Data System (ADS)

    Park, G. Y.; Kim, J.; Evans, T. E.; Lyons, B. C.; Orlov, D. M.; Ferraro, N. M.; in, Y.; Choi, M. J.; Yoon, S. W.

    2016-10-01

    In this presentation, we report on numerical calculations of the linear response of a plasma to applied three-dimensional magnetic perturbations (MPs) in KSTAR. Simulations are implemented using the extended MHD code M3D-C1. Initial M3D-C1 calculation of the plasma response in KSTAR has already produced results that are qualitatively consistent with some experimental characteristics observed during the application of MPs in KSTAR, i.e., amplified kink response and associated plasma displacements. Both of the tearing and kink responses are considered and used to explain the basic experimental characteristics of the suppression of edge-localized modes (ELMs) in KSTAR, i.e., q95, heating, and plasma shape dependences of the suppression. In particular, attention is focused on validation studies comparing the M3D-C1 plasma response results to the magnetic and imaging diagnostic measurements (i.e., ECEI data) in KSTAR. In addition, comparison study of the M3D-C1 results with KSTAR and DIII-D data will be presented to help understand a common ELM suppression mechanism which is expected to hold across the different tokamaks.

  5. NIAAA: Advancing Alcohol Research for 40 Years

    PubMed Central

    Warren, Kenneth R.; Hewitt, Brenda G.

    2010-01-01

    The National Institute on Alcohol Abuse and Alcoholism (NIAAA) has been the lead Federal agency responsible for scientific research on alcohol and its effects for 40 years. During that time, NIAAA has conducted and funded groundbreaking research, distilled and disseminated those research findings to a broad audience, and ultimately improved public health. Among NIAAA’s many significant contributions are the National Epidemiologic Survey on Alcohol and Related Conditions, the largest survey ever conducted on alcohol and associated psychiatric and medical conditions; investment in research to identify the genes underlying vulnerability to alcoholism; creation of the Collaborative Studies on Genetics of Alcoholism, a study of the genetics of alcoholism in a human population; leadership in exploring the effects of alcohol on fetal development and on a variety of diseases and organ systems; fostering alcoholism treatment, including supporting a medications development program that has funded more than 30 Phase 2 trials and 15 human laboratory studies; international collaborations and work across the National Institutes of Health; influential research on preventing alcohol problems through community programs as well as policy changes; and the translation of research findings to everyday practice, including the production of award-winning clinician training materials. PMID:23579932

  6. Intelligence System for Diagnosis Level of Coronary Heart Disease with K-Star Algorithm

    PubMed Central

    Kusnanto, Hari; Herianto, Herianto

    2016-01-01

    Objectives Coronary heart disease is the leading cause of death worldwide, and it is important to diagnose the level of the disease. Intelligence systems for diagnosis proved can be used to support diagnosis of the disease. Unfortunately, most of the data available between the level/type of coronary heart disease is unbalanced. As a result system performance is low. Methods This paper proposes an intelligence systems for the diagnosis of the level of coronary heart disease taking into account the problem of data imbalance. The first stage of this research was preprocessing, which included resampled non-stratified random sampling (R), the synthetic minority over-sampling technique (SMOTE), clean data out of range attribute (COR), and remove duplicate (RD). The second step was the sharing of data for training and testing using a k-fold cross-validation model and training multiclass classification by the K-star algorithm. The third step was performance evaluation. The proposed system was evaluated using the performance parameters of sensitivity, specificity, positive prediction value (PPV), negative prediction value (NPV), area under the curve (AUC) and F-measure. Results The results showed that the proposed system provides an average performance with sensitivity of 80.1%, specificity of 95%, PPV of 80.1%, NPV of 95%, AUC of 87.5%, and F-measure of 80.1%. Performance of the system without consideration of data imbalance provide showed sensitivity of 53.1%, specificity of 88,3%, PPV of 53.1%, NPV of 88.3%, AUC of 70.7%, and F-measure of 53.1%. Conclusions Based on these results it can be concluded that the proposed system is able to deliver good performance in the category of classification. PMID:26893948

  7. INEEL Advanced Radiotherapy Research Program Annual Report 2001

    SciTech Connect

    Venhuizen, James R.

    2002-04-30

    This report summarizes the major activities and accomplishments of the Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Radiotherapy Research Program for calendar year 2001. Applications of supportive research and development, as well as technology deployment in the fields of chemistry, radiation physics and dosimetry, and neutron source design and demonstration are described. Contributions in the fields of physics and biophysics include development of advanced patient treatment planning software, feasibility studies of accelerator neutron source technology for Neutron Capture Therapy (NCT), and completion of major modifications to the research reactor at Washington State University to produce an epithermal-neutron beam for NCT research applications.

  8. INEEL Advanced Radiotherapy Research Program Annual Report 2001

    SciTech Connect

    Venhuizen, James Robert

    2002-04-01

    This report summarizes the major activities and accomplishments of the Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Radiotherapy Research Program for calendar year 2001. Applications of supportive research and development, as well as technology deployment in the fields of chemistry, radiation physics and dosimetry, and neutron source design and demonstration are described. Contributions in the fields of physics and biophysics include development of advanced patient treatment planning software, feasibility studies of accelerator neutron source technology for Neutron Capture Therapy (NCT), and completion of major modifications to the research reactor at Washington State University to produce an epithermal-neutron beam for NCT research applications.

  9. Educating Scientifically - Advances in Physics Education Research

    ScienceCinema

    Finkelstein, Noah [University of Colorado, Colorado, USA

    2016-07-12

    It is now fairly well documented that traditionally taught, large-scale introductory physics courses fail to teach our students the basics. In fact, often these same courses have been found to teach students things we do not want. Building on a tradition of research in physics, the physics education research community has been researching the effects of educational practice and reforms at the undergraduate level for many decades. From these efforts and those within the fields of education, cognitive science, and psychology we have learned a great deal about student learning and environments that support learning for an increasingly diverse population of students in the physics classroom. This talk will introduce some of the ideas from physics education research, discuss a variety of effective classroom practices/ surrounding educational structures, and begin to examine why these do (and do not) work. I will present both a survey of physics education research and some of the exciting theoretical and experimental developments emerging from the University of Colorado.

  10. Conceptualizing and Advancing Research Networking Systems

    PubMed Central

    SCHLEYER, TITUS; BUTLER, BRIAN S.; SONG, MEI; SPALLEK, HEIKO

    2013-01-01

    Science in general, and biomedical research in particular, is becoming more collaborative. As a result, collaboration with the right individuals, teams, and institutions is increasingly crucial for scientific progress. We propose Research Networking Systems (RNS) as a new type of system designed to help scientists identify and choose collaborators, and suggest a corresponding research agenda. The research agenda covers four areas: foundations, presentation, architecture, and evaluation. Foundations includes project-, institution- and discipline-specific motivational factors; the role of social networks; and impression formation based on information beyond expertise and interests. Presentation addresses representing expertise in a comprehensive and up-to-date manner; the role of controlled vocabularies and folksonomies; the tension between seekers’ need for comprehensive information and potential collaborators’ desire to control how they are seen by others; and the need to support serendipitous discovery of collaborative opportunities. Architecture considers aggregation and synthesis of information from multiple sources, social system interoperability, and integration with the user’s primary work context. Lastly, evaluation focuses on assessment of collaboration decisions, measurement of user-specific costs and benefits, and how the large-scale impact of RNS could be evaluated with longitudinal and naturalistic methods. We hope that this article stimulates the human-computer interaction, computer-supported cooperative work, and related communities to pursue a broad and comprehensive agenda for developing research networking systems. PMID:24376309

  11. Educating Scientifically: Advances in Physics Education Research

    SciTech Connect

    Finkelstein, Noah

    2007-05-16

    It is now fairly well documented that traditionally taught, large-scale introductory physics courses fail to teach our students the basics. In fact, often these same courses have been found to teach students things we do not want. Building on a tradition of research in physics, the physics education research community has been researching the effects of educational practice and reforms at the undergraduate level for many decades. From these efforts and those within the fields of education, cognitive science, and psychology we have learned a great deal about student learning and environments that support learning for an increasingly diverse population of students in the physics classroom. This talk will introduce some of the ideas from physics education research, discuss a variety of effective classroom practices/ surrounding educational structures, and begin to examine why these do (and do not) work. I will present both a survey of physics education research and some of the exciting theoretical and experimental developments emerging from the University of Colorado.

  12. Educating Scientifically - Advances in Physics Education Research

    SciTech Connect

    Finkelstein, Noah

    2007-05-16

    It is now fairly well documented that traditionally taught, large-scale introductory physics courses fail to teach our students the basics. In fact, often these same courses have been found to teach students things we do not want. Building on a tradition of research in physics, the physics education research community has been researching the effects of educational practice and reforms at the undergraduate level for many decades. From these efforts and those within the fields of education, cognitive science, and psychology we have learned a great deal about student learning and environments that support learning for an increasingly diverse population of students in the physics classroom. This talk will introduce some of the ideas from physics education research, discuss a variety of effective classroom practices/ surrounding educational structures, and begin to examine why these do (and do not) work. I will present both a survey of physics education research and some of the exciting theoretical and experimental developments emerging from the University of Colorado.

  13. Advanced energy projects; FY 1995 research summaries

    SciTech Connect

    1995-09-01

    The AEP Division supports projects to explore novel energy-related concepts which are typically at an early stage of scientific development, and high-risk, exploratory concepts. Topical areas presently receiving support are: novel materials for energy technology, renewable and biodegradable materials, exploring uses of new scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, and innovative approaches to waste treatment and reduction. There were 46 research projects during FY 1995; ten were initiated during that fiscal year. The summaries are separated into grant and laboratory programs, and small business innovation research programs.

  14. Analysis of line integrated electron density using plasma position data on Korea Superconducting Tokamak Advanced Researcha)

    NASA Astrophysics Data System (ADS)

    Nam, Y. U.; Chung, J.

    2010-10-01

    A 280 GHz single-channel horizontal millimeter-wave interferometer system has been installed for plasma electron density measurements on the Korea Superconducting Tokamak Advanced Research (KSTAR) device. This system has a triangular beam path that does not pass through the plasma axis due to geometrical constraints in the superconducting tokamak. The term line density on KSTAR has a different meaning from the line density of other tokamaks. To estimate the peak density and the mean density from the measured line density, information on the position of the plasma is needed. The information has been calculated from tangentially viewed visible images using the toroidal symmetry of the plasma. Interface definition language routines have been developed for this purpose. The calculated plasma position data correspond well to calculation results from magnetic analysis. With the position data and an estimated plasma profile, the peak density and the mean density have been obtained from the line density. From these results, changes of plasma density themselves can be separated from effects of the plasma movements, so they can give valuable information on the plasma status.

  15. Advances in Education Research, Winter 1999.

    ERIC Educational Resources Information Center

    Advances in Education Research, 1999

    1999-01-01

    This volume presents selected articles related to the impact of early intervention programs. This is part of a two volume set designed to showcase some of the best cutting edge research in these programs. This volume focuses specifically on aspects of the programs that have proven to be most successful in helping students and meeting programmatic…

  16. Advancing Research on the Community College

    ERIC Educational Resources Information Center

    Bers, Trudy H.

    2007-01-01

    Arthur M. Cohen and his colleagues at the Center for the Study of Community Colleges have made significant and broad contributions to the scholarly literature and empirical research about community colleges. Although Cohen's interests are comprehensive and his writings touch on multiple issues associated with community colleges, his empirical work…

  17. Advanced Energy Projects: FY 1993, Research summaries

    SciTech Connect

    Not Available

    1993-09-01

    AEP has been supporting research on novel materials for energy technology, renewable and biodegradable materials, new uses for scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, innovative approaches to waste treatment and reduction, etc. The summaries are grouped according to projects active in FY 1993, Phase I SBIR projects, and Phase II SBIR projects. Investigator and institutional indexes are included.

  18. Advances in Bayesian Modeling in Educational Research

    ERIC Educational Resources Information Center

    Levy, Roy

    2016-01-01

    In this article, I provide a conceptually oriented overview of Bayesian approaches to statistical inference and contrast them with frequentist approaches that currently dominate conventional practice in educational research. The features and advantages of Bayesian approaches are illustrated with examples spanning several statistical modeling…

  19. Advances in Child Development: Theory and Research.

    ERIC Educational Resources Information Center

    Nesdale, Andrew R., Ed.; And Others

    This book consists of 31 papers focusing on aspects of child development. Mainly reports of research, papers are grouped topically into four sections dealing respectively with perceptual, language/communication, cognitive, and social development. Most of the nine papers in section 1 focus on the perceptual development of infants. Topics include…

  20. Advances in Music-Reading Research

    ERIC Educational Resources Information Center

    Gudmundsdottir, Helga Rut

    2010-01-01

    The purpose of this paper is to construct a comprehensive review of the research literature in the reading of western staff notation. Studies in music perception, music cognition, music education and music neurology are cited. The aim is to establish current knowledge in music-reading acquisition and what is needed for further progress in this…

  1. Advances in Design-Based Research

    ERIC Educational Resources Information Center

    Svihla, Vanessa

    2014-01-01

    Design-based research (DBR) is a core methodology of the Learning Sciences. Historically rooted as a movement away from the methods of experimental psychology, it is a means to develop "humble" theory that takes into account numerous contextual effects for understanding how and why a design supported learning. DBR involves iterative…

  2. Load research manual. Volume 3. Load research for advanced technologies

    SciTech Connect

    Brandenburg, L.; Clarkson, G.; Grund, Jr., C.; Leo, J.; Asbury, J.; Brandon-Brown, F.; Derderian, H.; Mueller, R.; Swaroop, R.

    1980-11-01

    This three-volume manual presents technical guidelines for electric utility load research. Special attention is given to issues raised by the load data reporting requirements of the Public Utility Regulatory Policies Act of 1978 and to problems faced by smaller utilities that are initiating load research programs. The manual includes guides to load research literature and glossaries of load research and statistical terms. In Volume 3, special load research procedures are presented for solar, wind, and cogeneration technologies.

  3. Research advances on transgenic plant vaccines.

    PubMed

    Han, Mei; Su, Tao; Zu, Yuan-Gang; An, Zhi-Gang

    2006-04-01

    In recent years, with the development of genetics molecular biology and plant biotechnology, the vaccination (e.g. genetic engineering subunit vaccine, living vector vaccine, nucleic acid vaccine) programs are taking on a prosperous evolvement. In particular, the technology of the use of transgenic plants to produce human or animal therapeutic vaccines receives increasing attention. Expressing vaccine candidates in vegetables and fruits open up a new avenue for producing oral/edible vaccines. Transgenic plant vaccine disquisitions exhibit a tempting latent exploiting foreground. There are a lot of advantages for transgenic plant vaccines, such as low cost, easiness of storage, and convenient immune-inoculation. Some productions converged in edible tissues, so they can be consumed directly without isolation and purification. Up to now, many transgenic plant vaccine productions have been investigated and developed. In this review, recent advances on plant-derived recombinant protein expression systems, infectious targets, and delivery systems are presented. Some issues of high concern such as biosafety and public health are also discussed. Special attention is given to the prospects and limitations on transgenic plant vaccines.

  4. [Research advances in forest soil respiration].

    PubMed

    Luan, Junwei; Xiang, Chenghua; Luo, Zongshi; Gong, Yuanbo

    2006-12-01

    Among the methods of measuring forest soil respiration, infrared CO2 analysis is the optimal one so far. Comparing with empirical model, the process-based model in simulating the production and transportation of soil CO2 has the advantage of considering the biological and physical processes of soil respiration. Generally, soil respiration is positively correlated with soil temperature and moisture, but there are still many uncertainties about the relationships between soil respiration and forest management activities such as firing, cutting, and fertilization. The relationships of soil respiration with vegetation type and soil microbial biomass, as well as the spatial heterogeneity of soil respiration, are the hotspots in recent researches. Some issues and future development in forest soil respiration research were discussed in this paper.

  5. Frontiers of research in advanced computations

    SciTech Connect

    1996-07-01

    The principal mission of the Institute for Scientific Computing Research is to foster interactions among LLNL researchers, universities, and industry on selected topics in scientific computing. In the area of computational physics, the Institute has developed a new algorithm, GaPH, to help scientists understand the chemistry of turbulent and driven plasmas or gases at far less cost than other methods. New low-frequency electromagnetic models better describe the plasma etching and deposition characteristics of a computer chip in the making. A new method for modeling realistic curved boundaries within an orthogonal mesh is resulting in a better understanding of the physics associated with such boundaries and much quicker solutions. All these capabilities are being developed for massively parallel implementation, which is an ongoing focus of Institute researchers. Other groups within the Institute are developing novel computational methods to address a range of other problems. Examples include feature detection and motion recognition by computer, improved monitoring of blood oxygen levels, and entirely new models of human joint mechanics and prosthetic devices.

  6. Research priorities and history of advanced composite compression testing

    NASA Technical Reports Server (NTRS)

    Baumann, K. J.

    1981-01-01

    Priorities for standard compression testing research in advanced laminated fibrous composite materials are presented along with a state of the art survey (completed in 1979) including history and commentary on industrial test methods. Historically apparent research priorities and consequent (lack of) progress are supporting evidence for newly derived priorities.

  7. Broadening horizons: engaging advanced practice nursing students in faculty research.

    PubMed

    Weiss, Josie A

    2009-01-01

    Inviting advanced practice nursing students to participate in faculty research can be an innovative way to interest students in using current evidence as the basis for their practice. The author discusses strategies for effectively engaging graduate nursing students into research projects in ways that broaden the students' perspectives and strengthen their healthcare decision-making skills.

  8. Clinical Research Informatics: Recent Advances and Future Directions

    PubMed Central

    2015-01-01

    Summary Objectives To summarize significant developments in Clinical Research Informatics (CRI) over the past two years and discuss future directions. Methods Survey of advances, open problems and opportunities in this field based on exploration of current literature. Results Recent advances are structured according to three use cases of clinical research: Protocol feasibility, patient identification/recruitment and clinical trial execution. Discussion CRI is an evolving, dynamic field of research. Global collaboration, open metadata, content standards with semantics and computable eligibility criteria are key success factors for future developments in CRI. PMID:26293865

  9. Advances in nanostructured permanent magnets research

    SciTech Connect

    Poudyal, N; Liu, JP

    2012-12-14

    This paper reviews recent developments in research in nanostructured permanent magnets ( hard magnetic materials) with emphasis on bottom-up approaches to fabrication of hard/soft nanocomposite bulk magnets. Theoretical and experimental findings on the effects of soft phase and interface conditions on interphase exchange interactions are given. Synthesis techniques for hard magnetic nanoparticles, including chemical solution methods, surfactant-assisted ball milling and other physical deposition methods are reviewed. Processing and magnetic properties of warm compacted and plastically deformed bulk magnets with nanocrystalline morphology are discussed. Prospects of producing bulk anisotropic hard/soft nanocomposite magnets are presented.

  10. Advances in fog microphysics research in China

    NASA Astrophysics Data System (ADS)

    Liu, Duanyang; Li, Zihua; Yan, Wenlian; Li, Yi

    2017-02-01

    Fog microphysical research in China based on field experiments obtained many important results in recent 50 years. With the fast development of China's economy, urbanization in the last 30 years, special features of fog microphysical structure also appeared, which did not appear in other countries. This article reviews the fog microphysical research around China, and introduces the effect of urbanization on fog microphysical structure and the microphysical processes as well as macroscopic conditions of radiation fog droplet spectral broadening. Urbanization led to an increase in fog droplet number concentration but decreases in fog liquid water content (LWC) and fog droplet size, as well as a decrease in visibility in large cities. Observations show that the radiation fog could be divided into wide-spectrum one, which is all extremely dense fog with the spectral width more than 40 μm, and narrow-spectrum one, most of which is dense fog with the spectral width less than 22 μm, according to droplet spectral distribution. During developing from dense fog to extremely dense fog, the widespectrum radiation fog is characterized by explosive deepening, that is, within a very short time (about 30 min), the droplet concentration increase by about one order of magnitude, droplet spectral broadening across 20 μm, generally up to 30-40 μm, or even 50 μm. As a result, water content increased obviously, visibility decreased to less than 50 m, when dense fog became extremely dense fog.

  11. Recent advances in organ microcirculation research.

    PubMed

    Tsuchiya, M; Oda, M

    1987-01-01

    This review article dealt with progress in the research of gastroenterological organ microcirculation in Japan. It must be emphasized that this remarkable progress particularly in intravital microcirculatory observations at organ level is attributable to great improvement of microscopic devices combined with computerized system, development of new techniques for measuring microcirculatory blood flow and pioneering of a variety of fluorescent and isotope-labelled tracers. Little attention has been directed toward the fact that microvascular manifestations are perhaps the earliest signs of "cells and tissues" dysfunction in disease processes. The microvasculature undergoes a substantial remodeling not only in vascular wall structures, but also in network characteristics themselves especially in chronic disease. Those microvascular alterations in an organ system, which primarily originate in adaptations to the microenvironmental changes, would lead to the chronicity and self-perpetuation of disease. As has been noted in the IVth World Congress for Microcirculation organized by the Japanese Society for Microcirculation, which was held in Tokyo, July 26-30, 1987, further progress has been made in the research of organ microcirculation in the gastroenterological and other fields. It is the cornerstone for better understanding of the pathogenesis of organ diseases to clarify the earliest alterations in the microvasculature of an organ system from a combined aspect of microhemo- and microlymphocirculation using the newly developed techniques for microcirculation study.

  12. Recent advances on Ilex paraguariensis research: minireview.

    PubMed

    Bracesco, N; Sanchez, A G; Contreras, V; Menini, T; Gugliucci, A

    2011-07-14

    Ilex paraguariensis dried and minced leaves are made into a brewed tea, prepared in a sui generis manner by large populations in South America, having evolved from a tea drunk by the Guarani ethnic group to a beverage that has a social and almost ritualistic role in some South American modern societies. It is used both as a source of caffeine, in lieu or in parallel with tea and coffee, but also as a therapeutic agent for its alleged pharmacological properties. Although with some exceptions, research on biomedical properties of this herb has had a late start and strongly lags behind the impressive amount of literature on green tea and coffee. However, in the past 15 years, there was a several-fold increase in the literature studying Ilex paraguariensis properties showing effects such as antioxidant properties in chemical models and ex vivo lipoprotein studies, vaso-dilating and lipid reduction properties, antimutagenic effects, controversial association with oropharyngeal cancer, anti-glycation effects and weight reduction properties. Lately, promising results from human intervention studies have surfaced and the literature offers several developments on this area. The aim of this review is to provide a concise summary of the research published in the past three years, with an emphasis on translational studies, inflammation and lipid metabolism. Ilex paraguariensis reduces LDL-cholesterol levels in humans with Ilex paraguariensis dyslipoproteinemia and the effect is synergic with that of statins. Plasma antioxidant capacity as well as expression of antioxidant enzymes is positively modulated by intervention with Ilex paraguariensis in human cohorts. A review on the evidence implicating Ilex paraguariensis heavy consumption with some neoplasias show data that are inconclusive but indicate that contamination with alkylating agents during the drying process of the leaves should be avoided. On the other hand, several new studies confirm the antimutagenic effects of

  13. Research on geothermal chemistry and advanced instrumentation

    NASA Astrophysics Data System (ADS)

    Robertus, R. J.; Shannon, D. W.; Sullivan, R. G.; Kindle, C. H.; Pool, K. H.

    1985-09-01

    Research at the Pacific Northwest Laboratory (PNL) focuses on long-term geothermal power plant reliability. Past work concentrated on development of continuous high-temperature probes for monitoring process variables. PNL also completed a comprehensive handbook of brine treatment processes as they relate to injection well longevity. A recently completed study analyzed corrosion in the hydrocarbon system of a binary cycle plant. Over the two-year monitoring period, corrosion rates were less than 1 MPY in any part of the hydrocarbon system. The system was kept completely dry so the rates seem reasonable. Present projects include: (1) determination of gas breakout conditions at the Herber Binary Demonstration Plant operated by San Diego Gas and Electric Company; (2) generation of water mixing solubility data; (3) installation of prototype leak detectors at the Herber Plant; and (4) evaluation of state-of-the-art particle counters.

  14. Advances in the CIS research at NREL

    SciTech Connect

    Ramanathan, K.; Bhattacharya, R.N.; Granata, J.; Webb, J.; Niles, D.; Contreras, M.A.; Wiesner, H.; Hasoon, F.S.; Noufi, R.

    1997-12-31

    This paper summarizes the research of the CIS Team at NREL in three major areas: absorber deposition; understanding the role of chemical bath deposited (CBD) CdS in CIS junctions; and in the development of devices without CdS. Low cost, scaleable processes chosen for absorber fabrication include sputtering, electrodeposition (ED), and close spaced sublimation (CSS). The interaction between the CBD and the CIS has been investigated and the results show that Cd might be instrumental in shaping the interface. The authors have also developed a process to fabricate a 13.5% efficiency ZnO/CuInGaSe{sub 2} device without CdS or other buffer layers.

  15. Advanced moisture sensor research and development

    SciTech Connect

    De Los Santos, A.

    1992-10-31

    During this period, testing of the system continued at the American Fructose (AF) plant in Dimmitt, Texas. Testing at the first two sites (dryer output and dryer input) was completed. Following the testing at the second site, the sensor was returned to the Southwest Research Institute (SwRI) laboratories for modifications and for fitting of the additional components required to allow sampling of the material to be measured at the third site. These modifications were completed during this reporting period, and the system is scheduled to be installed at the third site (Rotary Vacuum Filter output) early in the next period. Laboratory measurements of corn germ (to be measured at the fourth site) and a variety of fruits and vegetables (one of which will be measured at the fifth site) have also continued during this period.

  16. Advances in Biomarker Research in Parkinson's Disease.

    PubMed

    Mehta, Shyamal H; Adler, Charles H

    2016-01-01

    Parkinson's disease (PD) is the second most common neurodegenerative disease, and the numbers are projected to double in the next two decades with the increase in the aging population. An important focus of current research is to develop interventions to slow the progression of the disease. However, prerequisites to it include the development of reliable biomarkers for early diagnosis which would identify at-risk groups and disease progression. In this review, we present updated evidence of already known clinical biomarkers (such as hyposmia and rapid eye movement (REM) sleep behavior disorder (RBD)) and neuroimaging biomarkers, as well as newer possible markers in the blood, CSF, and other tissues. While several promising candidates and methods to assess these biomarkers are on the horizon, it is becoming increasingly clear that no one candidate will clearly fulfill all the roles as a single biomarker. A multimodal and combinatorial approach to develop a battery of biomarkers will likely be necessary in the future.

  17. idaho Accelerator Center Advanced Fuel Cycle Research

    SciTech Connect

    Wells, Douglas; Dale, Dan

    2011-10-20

    The technical effort has been in two parts called; Materials Science and Instrumentation Development. The Materials Science technical program has been based on a series of research and development achievements in Positron-Annihilation Spectroscopy (PAS) for defect detection in structural materials. This work is of particular importance in nuclear power and its supporting systems as the work included detection of defects introduced by mechanical and thermal phenomena as well as those caused by irradiation damage. The second part of the program has focused on instrumentation development using active interrogation techniques supporting proliferation resistant recycling methodologies and nuclear material safeguards. This effort has also lead to basic physics studies of various phenomena relating to photo-fission. Highlights of accomplishments and facility improvement legacies in these areas over the program period include

  18. Expert Meeting Report: Advanced Envelope Research for Factory Built Housing

    SciTech Connect

    Levy, E.; Mullens, M.; Tompos, E.; Kessler, B.; Rath, P.

    2012-04-01

    This report provides information about the expert meeting on advanced envelope research for factory built housing, hosted by the ARIES Collaborative on October 11, 2011, in Phoenix, Arizona. The goals of this meeting were to provide a comprehensive solution to the use of three previously selected advanced alternatives for factory-built wall construction, assess each option focusing on major issues relating to viability and commercial potential, and determine additional steps are required to reach this potential.

  19. Expert Meeting Report: Advanced Envelope Research for Factory Built Housing

    SciTech Connect

    Levy, E.; Mullens, M.; Tompos, E.; Kessler, B.; Rath, P.

    2012-04-01

    This report provides information about the Building America expert meeting on advanced envelope research for factory built housing, hosted by the ARIES Collaborative on October 11, 2011, in Phoenix, Arizona. The goals of this meeting were to provide a comprehensive solution to the use of three previously selected advanced alternatives for factory-built wall construction, assess each option focusing on major issues relating to viability and commercial potential, and determine additional steps are required to reach this potential.

  20. Research advancements in palm oil nutrition.

    PubMed

    May, Choo Yuen; Nesaretnam, Kalanithi

    2014-10-01

    Palm oil is the major oil produced, with annual world production in excess of 50 million tonnes. About 85% of global palm oil produced is used in food applications. Over the past three decades, research on nutritional benefits of palm oil have demonstrated the nutritional adequacy of palm oil and its products, and have resulted in transitions in the understanding these attributes. Numerous studies have demonstrated that palm oil was similar to unsaturated oils with regards to effects on blood lipids. Palm oil provides a healthy alternative to trans-fatty acid containing hydrogenated fats that have been demonstrated to have serious deleterious effects on health. The similar effects of palm oil on blood lipids, comparable to other vegetable oils could very well be due to the structure of the major triglycerides in palm oil, which has an unsaturated fatty acid in the stereospecific numbers (sn)-2 position of the glycerol backbone. In addition, palm oil is well endowed with a bouquet of phytonutrients beneficial to health, such as tocotrienols, carotenoids, and phytosterols. This review will provide an overview of studies that have established palm oil as a balanced and nutritious oil.

  1. Research advancements in palm oil nutrition*

    PubMed Central

    May, Choo Yuen; Nesaretnam, Kalanithi

    2014-01-01

    Palm oil is the major oil produced, with annual world production in excess of 50 million tonnes. About 85% of global palm oil produced is used in food applications. Over the past three decades, research on nutritional benefits of palm oil have demonstrated the nutritional adequacy of palm oil and its products, and have resulted in transitions in the understanding these attributes. Numerous studies have demonstrated that palm oil was similar to unsaturated oils with regards to effects on blood lipids. Palm oil provides a healthy alternative to trans-fatty acid containing hydrogenated fats that have been demonstrated to have serious deleterious effects on health. The similar effects of palm oil on blood lipids, comparable to other vegetable oils could very well be due to the structure of the major triglycerides in palm oil, which has an unsaturated fatty acid in the stereospecific numbers (sn)-2 position of the glycerol backbone. In addition, palm oil is well endowed with a bouquet of phytonutrients beneficial to health, such as tocotrienols, carotenoids, and phytosterols. This review will provide an overview of studies that have established palm oil as a balanced and nutritious oil. PMID:25821404

  2. Versatile controllability of non-axisymmetric magnetic perturbations in KSTAR experiments

    NASA Astrophysics Data System (ADS)

    Han, Hyunsun; Jeon, Y. M.; in, Y.; Kim, J.; Yoon, S. W.; Hahn, S. H.; Ahn, H. S.; Woo, M. H.; Park, B. H.; Bak, J. G.; Kstar Team

    2015-11-01

    A newly upgraded IVCC (In-Vessel Control Coil) system equipped with four broadband power supplies, along with current connection patch panel, will be presented and discussed in terms of its capability on various KSTAR experiments. Until the last run-campaign, there were impressive experimental results on ELM(Edge Localized Mode) control experiments using the 3D magnetic field, but the non-axisymmetric field configuration could not be changed in a shot, let alone the limited number of accessible configurations. Introducing the new power supplies, such restrictions have been greatly reduced. Based on the preliminary commissioning results for 2015 KSTAR run-campaign, this new system has been confirmed to easily cope with various dynamic demands for toroidal and poloidal phases of 3D magnetic field in a shot. This enables us to diagnose the plasma response in more detail and to address the 3-D field impacts on the ELM behaviors better than ever.

  3. Comparative study between the reflective optics and lens based system for microwave imaging system on KSTAR

    SciTech Connect

    Lee, W.; Yun, G. S.; Nam, Y.; Hong, I.; Kim, J. B.; Park, H. K.; Tobias, B.; Liang, T.; Domier, C. W.; Luhmann, N. C. Jr.

    2010-10-15

    Recently, two-dimensional microwave imaging diagnostics such as the electron cyclotron emission imaging (ECEI) system and microwave imaging reflectometry (MIR) have been developed to study magnetohydrodynamics instabilities and turbulence in magnetically confined plasmas. These imaging systems utilize large optics to collect passive emission or reflected radiation. The design of this optics can be classified into two different types: reflective or refractive optical systems. For instance, an ECEI/MIR system on the TEXTOR tokamak [Park et al., Rev. Sci. Instrum. 75, 3787 (2004)] employed the reflective optics which consisted of two large mirrors, while the TEXTOR ECEI upgrade [B. Tobias et al., Rev. Sci. Instrum. 80, 093502 (2009)] and systems on DIII-D, ASDEX-U, and KSTAR adopted refractive systems. Each system has advantages and disadvantages in the standing wave problem and optical aberrations. In this paper, a comparative study between the two optical systems has been performed in order to design a MIR system for KSTAR.

  4. Quasi 3D ECE imaging system for study of MHD instabilities in KSTAR

    SciTech Connect

    Yun, G. S. Choi, M. J.; Lee, J.; Kim, M.; Leem, J.; Nam, Y.; Choe, G. H.; Lee, W.; Park, H. K.; Park, H.; Woo, D. S.; Kim, K. W.; Domier, C. W.; Luhmann, N. C.; Ito, N.; Mase, A.; Lee, S. G.

    2014-11-15

    A second electron cyclotron emission imaging (ECEI) system has been installed on the KSTAR tokamak, toroidally separated by 1/16th of the torus from the first ECEI system. For the first time, the dynamical evolutions of MHD instabilities from the plasma core to the edge have been visualized in quasi-3D for a wide range of the KSTAR operation (B{sub 0} = 1.7∼3.5 T). This flexible diagnostic capability has been realized by substantial improvements in large-aperture quasi-optical microwave components including the development of broad-band polarization rotators for imaging of the fundamental ordinary ECE as well as the usual 2nd harmonic extraordinary ECE.

  5. Study on Sawtooth and ELM activities in DIII-D and KSTAR Plasmas

    NASA Astrophysics Data System (ADS)

    Bak, J.-G.; Kim, H. S.; Lee, S. G.; Lee, K. D.; Ko, W. H.; Kim, J.; Jeon, Y. M.; Kim, W. C.; Bae, Y. S.; Strait, E. J.; La Haye, R. J.; Buttery, R. J.; Wade, M. R.; Park, J. K.; Hanson, J. M.

    2012-10-01

    Sawtooth precursor oscillations (SPOs) are studied in neutral beam heated plasmas on DIII-D and KSTAR. The characteristics of the SPO (5-20 kHz, m/n=1/1) are investigated using magnetic sensors along with electron cyclotron emission (ECE) and soft x-ray diagnostics. In addition, the Type I edge localized mode (ELM) precursors (8-40 kHz, n=2,3) are detected before the ELM burst in neutral beam heated plasmas. The characteristics of the ELM precursors are investigated by using magnetic sensor data. In this work, the experimental investigations of the SPOs and ELM precursors in DIII-D and KSTAR plasmas will be presented.

  6. Quasi 3D ECE imaging system for study of MHD instabilities in KSTAR.

    PubMed

    Yun, G S; Lee, W; Choi, M J; Lee, J; Kim, M; Leem, J; Nam, Y; Choe, G H; Park, H K; Park, H; Woo, D S; Kim, K W; Domier, C W; Luhmann, N C; Ito, N; Mase, A; Lee, S G

    2014-11-01

    A second electron cyclotron emission imaging (ECEI) system has been installed on the KSTAR tokamak, toroidally separated by 1/16th of the torus from the first ECEI system. For the first time, the dynamical evolutions of MHD instabilities from the plasma core to the edge have been visualized in quasi-3D for a wide range of the KSTAR operation (B0 = 1.7∼3.5 T). This flexible diagnostic capability has been realized by substantial improvements in large-aperture quasi-optical microwave components including the development of broad-band polarization rotators for imaging of the fundamental ordinary ECE as well as the usual 2nd harmonic extraordinary ECE.

  7. Critical aspects of ELM crash suppression by magnetic perturbations in KSTAR

    NASA Astrophysics Data System (ADS)

    Kim, Jayhyun; Jeon, Y. M.; Park, G. Y.; Choi, M. J.; in, Y.; Yoon, S. W.; Bae, C.; Lee, J.; Park, J.-K.; Ahn, J.; The Kstar Team Team

    2016-10-01

    ELM crash suppressions have been achieved by low n (n = 1, 2, and mixture of them) magnetic perturbations (MPs) with using various configurations of in-vessel perturbation coils in KSTAR. So far, the suppressed periods are extended longer than 10 seconds. In KSTAR, the complete suppression of ELM crashes almost always accompany with the increase of edge fluctuations which are likely to be excited by applied MPs. The excitation of edge fluctuation exhibited the bifurcation-like feature depending on the strength of MPs. The conditions to excite edge fluctuations were investigated with including well known q95 window. On the other hand, ELM mitigation does not come with the increase of edge fluctuations. Instead, it seems that applied MPs directly trigger small frequent ELMs since the mitigated ELMs suddenly disappear when turning MPs off. The results stress the importance of stability analysis with the use of perturbed equilibrium since most stability studies have assumed unperturbed/undistorted equilibrium.

  8. Linguistic Alternatives to Quantitative Research Strategies. Part One: How Linguistic Mechanisms Advance Research Outcomes

    ERIC Educational Resources Information Center

    Yeager, Joseph; Sommer, Linda

    2007-01-01

    Combining psycholinguistic technologies and systems analysis created advances in motivational profiling and numerous new behavioral engineering applications. These advances leapfrog many mainstream statistical research methods, producing superior research results via cause-effect language mechanisms. Entire industries explore motives ranging from…

  9. Magnetized Target Fusion in Advanced Propulsion Research

    NASA Technical Reports Server (NTRS)

    Cylar, Rashad

    2003-01-01

    The Magnetized Target Fusion (MTF) Propulsion lab at NASA Marshall Space Flight Center in Huntsville, Alabama has a program in place that has adopted to attempt to create a faster, lower cost and more reliable deep space transportation system. In this deep space travel the physics and development of high velocity plasma jets must be understood. The MTF Propulsion lab is also in attempt to open up the solar system for human exploration and commercial use. Fusion, as compared to fission, is just the opposite. Fusion involves the light atomic nuclei combination to produce denser nuclei. In the process, the energy is created by destroying the mass according to the distinguished equation: E = mc2 . Fusion energy development is being pursued worldwide as a very sustainable form of energy that is environmentally friendly. For the purposes of space exploration fusion reactions considered include the isotopes of hydrogen-deuterium (D2) and tritium (T3). Nuclei have an electrostatic repulsion between them and in order for the nuclei to fuse this repulsion must be overcome. One technique to bypass repulsion is to heat the nuclei to very high temperatures. The temperatures vary according to the type of reactions. For D-D reactions, one billion degrees Celsius is required, and for D-T reactions, one hundred million degrees is sufficient. There has to be energy input for useful output to be obtained form the fusion To make fusion propulsion practical, the mass, the volume, and the cost of the equipment to produce the reactions (generally called the reactor) need to be reduced by an order of magnitude or two from the state-of-the-art fusion machines. Innovations in fusion schemes are therefore required, especially for obtaining thrust for propulsive applications. Magnetized target fusion (MTF) is one of the innovative fusion concepts that have emerged over the last several years. MSFC is working with Los Alamos National Laboratory and other research groups in studying the

  10. Development of multichannel intermediate frequency system for electron cyclotron emission radiometer on KSTAR Tokamak

    SciTech Connect

    Kogi, Yuichiro; Sakoda, Takuya; Mase, Atsushi; Ito, Naoki; Yokota, Yuya; Yamaguchi, Soichiro; Nagayama, Yoshio; Kawahata, Kazuo; Jeong, Seung H.; Kwon, Myeun

    2008-10-15

    Plasma experiments on KSTAR are scheduled to start up this year (2008). We have developed an electron cyclotron emission (ECE) radiometer to measure the radial electron temperature profiles in KSTAR experiments. The radiometer system consists, briefly, of two downconversion stages, amplifiers, bandpass filter banks, and video detectors. These components are made commercially or developed in house. The system detects ECE power in the frequency range from 110 to 196 GHz, the detected signal being resolved by means of 48 frequency windows. Before installation of this system on KSTAR, we installed a part of this system on large helical device (LHD) to study the system under similar plasma conditions. In this experiment, the signal amplitude, considered to be proportional to the electron temperature, is measured. The time-dependent traces of the electron temperature measured by this radiometer are in good agreement with those provided by the LHD Michelson spectrometer. The system noise level which limits the minimum measurable temperature (converted to the electron temperature) is about 30 eV.

  11. Numerical Simulation on Applicability of Resonant Magnetic Perturbation to KSTAR Tokamak

    NASA Astrophysics Data System (ADS)

    Kim, Doohyun; Han, Hyunsun; Kim, Ki Min; Hong, Sang Hee

    2009-11-01

    A numerical simulation is carried out to investigate the perturbed magnetic field configurations for a feasibility study on the resonant magnetic perturbation(RMP) to mitigate ELM damages to the divertor in KSTAR tokamak. The perturbed magnetic fields are described by vacuum superposition of equilibrium fields and fluctuating fields induced from the in- vessel control coils (IVCCs) will be installed in KSTAR. The equilibrium and induced fields are calculated using Grad- Shafranov equation and Biot-Savart law, respectively. For visualizing the magnetic field configurations, a field line tracing code has been developed using the 4th-order Runge-Kutta method. Magnetic field perturbations and island configurations can be found with this tracing code by describing poloidal positions of field lines as the increment of toroidal angle. And the Chirikov parameter is calculated to verify the generation of stochastic layer by overlap of magnetic islands. From this numerical work, it is confirmed that stochastic magnetic field lines are formed when the IVCC magnetic fields are generated, and the effect of RMP on KSTAR operation is discussed.

  12. Advancing social research relationships in postnatal support settings.

    PubMed

    Tighe, Maria; Peters, Jane; Skirton, Heather

    2013-05-01

    Global trends in public health nursing (PHN) suggest the value of community-based social research. However, it is not always clear how social research relationships may be of benefit to PHN or how such skills can best be learned and applied. To advance this understanding, we present a qualitative analysis of the development of social research relationships in PHN. Using a background literature review as a foundation, our qualitative mixed method strategy involved a comparative case-study analysis based on the authors' participant observation in two distinct postnatal group settings. Our findings suggest that participant observation facilitates the advancement of social research relationships through practitioner-research management of role conflict. Reflexivity and reciprocity is an emergent relational process, which relies upon a de-professionalization of the traditional PHN role. Conversely, social research relationships help build PHN capacity for family health needs assessment. Thus, we contend that the application of participant observation enables the development of social research relationships, which advance the practice of PHN in postnatal support settings.

  13. Advanced technology airfoil research, volume 1, part 2

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This compilation contains papers presented at the NASA Conference on Advanced Technology Airfoil Research held at Langley Research Center on March 7-9, 1978, which have unlimited distribution. This conference provided a comprehensive review of all NASA airfoil research, conducted in-house and under grant and contract. A broad spectrum of airfoil research outside of NASA was also reviewed. The major thrust of the technical sessions were in three areas: development of computational aerodynamic codes for airfoil analysis and design, development of experimental facilities and test techniques, and all types of airfoil applications.

  14. Construction of databases: advances and significance in clinical research.

    PubMed

    Long, Erping; Huang, Bingjie; Wang, Liming; Lin, Xiaoyu; Lin, Haotian

    2015-12-01

    Widely used in clinical research, the database is a new type of data management automation technology and the most efficient tool for data management. In this article, we first explain some basic concepts, such as the definition, classification, and establishment of databases. Afterward, the workflow for establishing databases, inputting data, verifying data, and managing databases is presented. Meanwhile, by discussing the application of databases in clinical research, we illuminate the important role of databases in clinical research practice. Lastly, we introduce the reanalysis of randomized controlled trials (RCTs) and cloud computing techniques, showing the most recent advancements of databases in clinical research.

  15. Advancing a program of research within a nursing faculty role.

    PubMed

    Nolan, Marie T; Wenzel, Jennifer; Han, Hae-Ra; Allen, Jerilyn K; Paez, Kathryn A; Mock, Victoria

    2008-01-01

    Doctoral students and new faculty members often seek advice from more senior faculty on how to advance their program of research. Students may ask whether they should choose the manuscript option for their dissertation or whether they should seek a postdoctoral fellowship. New faculty members wonder whether they should pursue a career development award and whether they need a mentor as they strive to advance their research while carrying out teaching, service, and practice responsibilities. In this article, we describe literature on the impact of selected aspects of pre- and postdoctoral training and faculty strategies on scholarly productivity in the faculty role. We also combine our experiences at a school of nursing within a research-intensive university to suggest strategies for success. Noting the scarcity of research that evaluates the effect of these strategies, we are actively engaged in collecting data on their relationship to the scholarly productivity of students and faculty members within our own institution.

  16. Ion gyroscale fluctuation measurement with microwave imaging reflectometer on KSTAR

    NASA Astrophysics Data System (ADS)

    Lee, W.; Leem, J.; Yun, G. S.; Park, H. K.; Ko, S. H.; Wang, W. X.; Budny, R. V.; Luhmann, N. C.; Kim, K. W.

    2016-11-01

    Ion gyroscale turbulent fluctuations with the poloidal wavenumber kθ ˜ 3 cm-1 have been measured in the core region of the neutral beam (NB) injected low confinement (L-mode) plasmas on Korea superconducting tokamak advanced research. The turbulence poloidal wavenumbers are deduced from the frequencies and poloidal rotation velocities in the laboratory frame, measured by the multichannel microwave imaging reflectometer. Linear and nonlinear gyrokinetic simulations also predict the unstable modes with the normalized wavenumber kθρs ˜ 0.4, consistent with the measurement. Comparison of the measured frequencies with the intrinsic mode frequencies from the linear simulations indicates that the measured ones are primarily due to the E × B flow velocity in the NB-injected fast rotating plasmas.

  17. [Research advance in rare and endemic plant Tetraena mongolica Maxim].

    PubMed

    Zhen, Jiang-Hong; Liu, Guo-Hou

    2008-02-01

    In this paper, the research advance in rare and endemic plant Tetraena mongolica Maxim. was summarized from the aspects of morphology, anatomy, palynology, cytology, seed-coat micro-morphology, embryology, physiology, biology, ecology, genetic diversity, chemical constituents, endangered causes, and conservation approaches, and the further research directions were prospected. It was considered that population viability, idioplasm conservation and artificial renewal, molecular biology of ecological adaptability, and assessment of habitat suitability should be the main aspects for the future study of T. mongolica.

  18. INL Advanced Radiotherapy Research Program Annual Report 2004

    SciTech Connect

    James Venhuizen

    2005-06-01

    This report summarizes the activities and major accomplishments for the Idaho National Laboratory Advanced Radiotherapy Research Program for calendar year 2004. Topics covered include boron analysis in biological samples, computational dosimetry and treatment planning software development, medical neutron source development and characterization, and collaborative dosimetry studies at the RA-1 facility in Buenos Aires, Argentina.

  19. Center for Advanced Power and Energy Research (CAPEC)

    DTIC Science & Technology

    2015-01-01

    University structured through a cooperative research agreement. Our organizational focuses include: 1. Modeling of plasma physics 2. Modeling fuel cells 3...Testing new innovation and ideas for advanced fuel cells 4. Development of energy related issue for micro air vehicles (MAVs). 15. SUBJECT TERMS plasma ...1 2 Plasma Modeling

  20. [Advances in research of dihydroartemisinin against parasitic diseases].

    PubMed

    Li, Hong-Jun; Wang, Wei; Liang, You-Sheng

    2011-08-01

    Dihydroartemisinin, the main metabolite of artemisinin and two artemisinin derivatives, artemether and artesunate, is a broad-spectrum anti-parasitic drug. The present paper systematically reviews the advances in research of dihydroartemisinin against Plasmodium, Schistosoma, Pneumocystis, Toxoplasma, Trichomonas vaginalis, Leishmania, Giardia lamblia.

  1. INEEL Advanced Radiotherapy Research Program Annual Report for 2002

    SciTech Connect

    J. R. Venhuizen

    2003-05-01

    This report summarizes the activities and major accomplishments for the Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Radiotherapy Research Program for calendar year 2002. Topics covered include computational dosimetry and treatment planning software development, medical neutron source development and characterization, and boron analytical chemistry.

  2. INEEL Advanced Radiotherapy Research Program Annual Report 2002

    SciTech Connect

    Venhuizen, J.R.

    2003-05-23

    This report summarizes the activities and major accomplishments for the Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Radiotherapy Research Program for calendar year 2002. Topics covered include computational dosimetry and treatment planning software development, medical neutron source development and characterization, and boron analytical chemistry.

  3. Defining Neighborhood Boundaries for Social Measurement: Advancing Social Work Research

    ERIC Educational Resources Information Center

    Foster, Kirk A.; Hipp, J. Aaron

    2011-01-01

    Much of the current neighborhood-based research uses variables aggregated on administrative boundaries such as zip codes, census tracts, and block groups. However, other methods using current technological advances in geographic sciences may broaden our ability to explore the spatial concentration of neighborhood factors affecting individuals and…

  4. Human Intelligence: An Introduction to Advances in Theory and Research.

    ERIC Educational Resources Information Center

    Lohman, David F.

    1989-01-01

    Recent advances in three research traditions are summarized: trait theories of intelligence, information-processing theories of intelligence, and general theories of thinking. Work on fluid and crystallized abilities by J. Horn and R. Snow, mental speed, spatial visualization, cognitive psychology, artificial intelligence, and the construct of…

  5. Advanced Pediatric Brain Imaging Research and Training Program

    DTIC Science & Technology

    2014-10-01

    AD_________________ Award Number: W81XWH-11-2-0198 TITLE: Advanced Pediatric Brain Imaging... Brain Imaging Research Program 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-11-2-0198 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Catherine...AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES Brain injury is a leading cause of

  6. Advanced materials research for long-haul aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Signorelli, R. A.; Blankenship, C. P.

    1978-01-01

    The status of research efforts to apply low to intermediate temperature composite materials and advanced high temperature materials to engine components is reviewed. Emerging materials technologies and their potential benefits to aircraft gas turbines were emphasized. The problems were identified, and the general state of the technology for near term use was assessed.

  7. Summary of Advances in Autism Spectrum Disorder Research, 2009

    ERIC Educational Resources Information Center

    Interagency Autism Coordinating Committee, 2009

    2009-01-01

    Each year the members of the Interagency Autism Coordinating Committee identify recent research findings that made the most impact on the field. For the 2009 Summary of Advances, the IACC selected and summarized 20 studies that gave significant insight into the prevalence of autism spectrum disorder (ASD), the biology of the disorder, potential…

  8. Advanced Composite Structures At NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Eldred, Lloyd B.

    2015-01-01

    Dr. Eldred's presentation will discuss several NASA efforts to improve and expand the use of composite structures within aerospace vehicles. Topics will include an overview of NASA's Advanced Composites Project (ACP), Space Launch System (SLS) applications, and Langley's ISAAC robotic composites research tool.

  9. Activities of the Research Institute for Advanced Computer Science

    NASA Technical Reports Server (NTRS)

    Oliger, Joseph

    1994-01-01

    The Research Institute for Advanced Computer Science (RIACS) was established by the Universities Space Research Association (USRA) at the NASA Ames Research Center (ARC) on June 6, 1983. RIACS is privately operated by USRA, a consortium of universities with research programs in the aerospace sciences, under contract with NASA. The primary mission of RIACS is to provide research and expertise in computer science and scientific computing to support the scientific missions of NASA ARC. The research carried out at RIACS must change its emphasis from year to year in response to NASA ARC's changing needs and technological opportunities. Research at RIACS is currently being done in the following areas: (1) parallel computing; (2) advanced methods for scientific computing; (3) high performance networks; and (4) learning systems. RIACS technical reports are usually preprints of manuscripts that have been submitted to research journals or conference proceedings. A list of these reports for the period January 1, 1994 through December 31, 1994 is in the Reports and Abstracts section of this report.

  10. Recent Advances in Cigarette Ignition Propensity Research and Development

    PubMed Central

    O’Connor, Richard J.; Spalletta, Ron; Connolly, Gregory N.

    2009-01-01

    Major U.S. cigarette companies for decades conducted research and development regarding cigarette ignition propensity which has continued beyond fire safety standards for cigarettes that have recently been legislated. This paper describes recent scientific advances and technological development based on a comprehensive review of the physical, chemical, and engineering sciences, public health, and trade literature, U.S. and international patents, and research in the tobacco industry document libraries. Advancements since the first implementation of standards have made been in: a) understanding the key parameters involved in cigarette smoldering combustion and ignition of substrates; b) developing new cigarette and paper wrapper designs to reduce ignition propensity, including banded and non-banded cigarette paper approaches, c) assessing toxicology, and d) measuring performance. While the implications of manufacturers’ non-safety related aims are of concern, this research indicates possible alternative designs should experience with fire loss and existing technologies on the market suggest need for improvement. PMID:20495669

  11. Advanced Life Support Research and Technology Development Metric

    NASA Technical Reports Server (NTRS)

    Hanford, A. J.

    2004-01-01

    The Metric is one of several measures employed by the NASA to assess the Agency s progress as mandated by the United States Congress and the Office of Management and Budget. Because any measure must have a reference point, whether explicitly defined or implied, the Metric is a comparison between a selected ALS Project life support system and an equivalently detailed life support system using technology from the Environmental Control and Life Support System (ECLSS) for the International Space Station (ISS). This document provides the official calculation of the Advanced Life Support (ALS) Research and Technology Development Metric (the Metric) for Fiscal Year 2004. The values are primarily based on Systems Integration, Modeling, and Analysis (SIMA) Element approved software tools or reviewed and approved reference documents. For Fiscal Year 2004, the Advanced Life Support Research and Technology Development Metric value is 2.03 for an Orbiting Research Facility and 1.62 for an Independent Exploration Mission.

  12. Recent Advances in Cigarette Ignition Propensity Research and Development.

    PubMed

    Alpert, Hillel R; O'Connor, Richard J; Spalletta, Ron; Connolly, Gregory N

    2010-04-01

    Major U.S. cigarette companies for decades conducted research and development regarding cigarette ignition propensity which has continued beyond fire safety standards for cigarettes that have recently been legislated. This paper describes recent scientific advances and technological development based on a comprehensive review of the physical, chemical, and engineering sciences, public health, and trade literature, U.S. and international patents, and research in the tobacco industry document libraries.Advancements since the first implementation of standards have made been in: a) understanding the key parameters involved in cigarette smoldering combustion and ignition of substrates; b) developing new cigarette and paper wrapper designs to reduce ignition propensity, including banded and non-banded cigarette paper approaches, c) assessing toxicology, and d) measuring performance. While the implications of manufacturers' non-safety related aims are of concern, this research indicates possible alternative designs should experience with fire loss and existing technologies on the market suggest need for improvement.

  13. First Aviation System Technology Advanced Research (AvSTAR) Workshop

    NASA Technical Reports Server (NTRS)

    Denery, Dallas G. (Editor); Weathers, Del W. (Editor); Rosen, Robert (Technical Monitor); Edwards, Tom (Technical Monitor)

    2001-01-01

    This Conference Proceedings documents the results of a two-day NASA/FAA/Industry workshop that was held at the NASA Ames Research Center, located at Moffett Field, CA, on September 21-22, 2000. The purpose of the workshop was to bring together a representative cross section of leaders in air traffic management, from industry. FAA, and academia, to assist in defining the requirements for a new research effort, referred to as AvSTAR Aviation Systems Technology Advanced Research). The Conference Proceedings includes the individual presentation, and summarizes the workshop discussions and recommendations.

  14. Transnationalism: A Framework for Advancing Nursing Research with Contemporary Immigrants

    PubMed Central

    Rosemberg, Marie-Anne S.; Boutain, Doris M.; Mohammed, Selina A.

    2016-01-01

    This article advances nursing research by presenting transnationalism as a framework for inquiry with contemporary immigrants. Transnationalism occurs when immigrants maintain relationships that transcend the geographical borders of their origin and host countries. Immigrants use those relationships to experience health differently within concurrent socioeconomic, political and cultural contexts than national situated populations. Nurse researchers are called upon to consider these trans-border relationships when exploring the health of contemporary immigrants. Such consideration is needed to develop relevant research designs, methods, analysis, and dissemination strategies. PMID:26836998

  15. Advances in Statistical Methods for Substance Abuse Prevention Research

    PubMed Central

    MacKinnon, David P.; Lockwood, Chondra M.

    2010-01-01

    The paper describes advances in statistical methods for prevention research with a particular focus on substance abuse prevention. Standard analysis methods are extended to the typical research designs and characteristics of the data collected in prevention research. Prevention research often includes longitudinal measurement, clustering of data in units such as schools or clinics, missing data, and categorical as well as continuous outcome variables. Statistical methods to handle these features of prevention data are outlined. Developments in mediation, moderation, and implementation analysis allow for the extraction of more detailed information from a prevention study. Advancements in the interpretation of prevention research results include more widespread calculation of effect size and statistical power, the use of confidence intervals as well as hypothesis testing, detailed causal analysis of research findings, and meta-analysis. The increased availability of statistical software has contributed greatly to the use of new methods in prevention research. It is likely that the Internet will continue to stimulate the development and application of new methods. PMID:12940467

  16. Advancing the research agenda for diagnostic error reduction.

    PubMed

    Zwaan, Laura; Schiff, Gordon D; Singh, Hardeep

    2013-10-01

    Diagnostic errors remain an underemphasised and understudied area of patient safety research. We briefly summarise the methods that have been used to conduct research on epidemiology, contributing factors and interventions related to diagnostic error and outline directions for future research. Research methods that have studied epidemiology of diagnostic error provide some estimate on diagnostic error rates. However, there appears to be a large variability in the reported rates due to the heterogeneity of definitions and study methods used. Thus, future methods should focus on obtaining more precise estimates in different settings of care. This would lay the foundation for measuring error rates over time to evaluate improvements. Research methods have studied contributing factors for diagnostic error in both naturalistic and experimental settings. Both approaches have revealed important and complementary information. Newer conceptual models from outside healthcare are needed to advance the depth and rigour of analysis of systems and cognitive insights of causes of error. While the literature has suggested many potentially fruitful interventions for reducing diagnostic errors, most have not been systematically evaluated and/or widely implemented in practice. Research is needed to study promising intervention areas such as enhanced patient involvement in diagnosis, improving diagnosis through the use of electronic tools and identification and reduction of specific diagnostic process 'pitfalls' (eg, failure to conduct appropriate diagnostic evaluation of a breast lump after a 'normal' mammogram). The last decade of research on diagnostic error has made promising steps and laid a foundation for more rigorous methods to advance the field.

  17. [Activities of Research Institute for Advanced Computer Science

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R. (Technical Monitor); Leiner, Barry M.

    2001-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administrations missions. RIACS is located at the NASA Ames Research Center, Moffett Field, California. RIACS research focuses on the three cornerstones of IT research necessary to meet the future challenges of NASA missions: 1. Automated Reasoning for Autonomous Systems Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth. 2. Human-Centered Computing Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities. 3. High Performance Computing and Networking Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to analysis of large scientific datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply IT research to a variety of NASA application domains. RIACS also engages in other activities, such as workshops, seminars, visiting scientist programs and student summer programs, designed to encourage and facilitate collaboration between the university and NASA IT research communities.

  18. Rhetorical Strategies in Engineering Research Articles and Research Theses: Advanced Academic Literacy and Relations of Power

    ERIC Educational Resources Information Center

    Koutsantoni, Dimitra

    2006-01-01

    Research articles and research theses constitute two key genres used by scientific communities for the dissemination and ratification of knowledge. Both genres are produced at advanced stages of individuals' enculturation in disciplinary communities present original research aim to persuade the academic community to accept new knowledge claims,…

  19. Developing Research Infrastructure: The Institute for the Advancement of Social Work Research

    ERIC Educational Resources Information Center

    Zlotnik, Joan Levy; Solt, Barbara E.

    2008-01-01

    This article reviews the 15 years of research development efforts of the Institute for the Advancement of Social Work Research (IASWR); delineates IASWR's roles in relation to the social work practice, education, and research communities; presents the transdisciplinary and transorganizational partnerships in which IASWR engages to influence…

  20. Magnetohydrodynamics Accelerator Research into Advanced Hypersonics (MARIAH). Part 2

    NASA Technical Reports Server (NTRS)

    Baughman, Jack A.; Micheletti, David A.; Nelson, Gordon L.; Simmons, Gloyd A.

    1997-01-01

    This report documents the activities, results, conclusions and recommendations of the Magnetohydrodynamics Accelerator Research Into Advanced Hypersonics (MARIAH) Project in which the use of magnetohydrodynamics (MHD) technology is investigated for its applicability to augment hypersonic wind tunnels. The long range objective of this investigation is to advance the development of ground test facilities to support the development of hypervelocity flight vehicles. The MHD accelerator adds kinetic energy directly to the wind tunnel working fluid, thereby increasing its Mach number to hypervelocity levels. Several techniques for MHD augmentation, as well as other physical characteristics of the process are studied to enhance the overall performance of hypersonic wind tunnel design. Specific recommendations are presented to improve the effectiveness of ground test facilities. The work contained herein builds on nearly four decades of research and experimentation by the aeronautics ground test and evaluation community, both foreign and domestic.

  1. Magnetohydrodynamics Accelerator Research Into Advanced Hypersonics (MARIAH). Part 1

    NASA Technical Reports Server (NTRS)

    Micheletti, David A.; Baughman, Jack A.; Nelson, Gordon L.; Simmons, Gloyd A.

    1997-01-01

    This report documents the activities, results, conclusions and recommendations of the Magnetohydrodynamics Accelerator Research Into Advanced Hypersonics (MARIAH) Project in which the use of magnetohydrodynamics (MHD) technology is investigated for its applicability to augment hypersonic wind tunnels. The long range objective of this investigation is to advance the development of ground test facilities to support the development of hypervelocity flight vehicles. The MHD accelerator adds kinetic energy directly to the wind tunnel working fluid, thereby increasing its Mach number to hypervelocity levels. Several techniques for MHD augmentation, as well as other physical characteristics of the process are studied to enhance the overall performance of hypersonic wind tunnel design. Specific recommendations are presented to improve the effectiveness of ground test facilities. The work contained herein builds on nearly four decades of research and experimentation by the aeronautics ground test and evaluation community, both foreign and domestic.

  2. [Economic perspectives of the research on advanced therapies].

    PubMed

    Pamo Larrauri, Jose María

    2014-11-03

    Since a new advanced therapy medicinal product is discovered until finally allowed its sale in the domestic market, it has to overcome a series of stages. Biomedical research is the first phase, currently its situation is encouraging to the increase in the number of clinical trials in Spain and in the rest of the world, despite the economic situation and the various difficulties that have faced the pharmaceutical laboratories. The next phase consists in obtaining the authorization of marketing of the European Medicines Agency. After authorization, will attempt to set a fair and moderate price for inclusion in the list of health provision of Social Security. A price for a drug that provides added value to health and society, a price that is generated profits for the pharmaceutical companies that hope to make up for the years of work and investment. Commitment to advanced therapy must be clear and forceful, to fund ongoing research projects and encouraging their creation with economic aid.

  3. Recent advances in research on Crimean-Congo hemorrhagic fever.

    PubMed

    Papa, Anna; Mirazimi, Ali; Köksal, Iftihar; Estrada-Pena, Augustin; Feldmann, Heinz

    2015-03-01

    Crimean-Congo hemorrhagic fever (CCHF) is an expanding tick-borne hemorrhagic disease with increasing human and animal health impact. Immense knowledge was gained over the past 10 years mainly due to advances in molecular biology, but also driven by an increased global interest in CCHFV as an emerging/re-emerging zoonotic pathogen. In the present article, we discuss the advances in research with focus on CCHF ecology, epidemiology, pathogenesis, diagnostics, prophylaxis and treatment. Despite tremendous achievements, future activities have to concentrate on the development of vaccines and antivirals/therapeutics to combat CCHF. Vector studies need to continue for better public and animal health preparedness and response. We conclude with a roadmap for future research priorities.

  4. Advances and future directions of research on spectral methods

    NASA Technical Reports Server (NTRS)

    Patera, A. T.

    1986-01-01

    Recent advances in spectral methods are briefly reviewed and characterized with respect to their convergence and computational complexity. Classical finite element and spectral approaches are then compared, and spectral element (or p-type finite element) approximations are introduced. The method is applied to the full Navier-Stokes equations, and examples are given of the application of the technique to several transitional flows. Future directions of research in the field are outlined.

  5. Collaboration in Research and Engineering for Advanced Technology.

    SciTech Connect

    Vrieling, P. Douglas

    2016-01-01

    SNL/CA proposes the Collaboration in Research and Engineering for Advanced Technology and Education (CREATE) facility to support customer-driven national security mission requirements while demonstrating a fiscally responsible approach to cost-control. SNL/CA realizes that due to the current backlog of capital projects in NNSA that following the normal Line Item process to procure capital funding is unlikely and therefore SNL/CA will be looking at all options including Alternative Financing.

  6. [Advancing public mental health research in Latin America].

    PubMed

    Susser, Ezra

    2015-01-01

    This special issue on Mental Health of the Journal of the School of Medicine, represents a significant contribution to the advance of public mental health research and training in Latin America. The editors (as well as the authors) deserve much credit for having conceived and implemented the joint publication of these papers. In this brief introduction, I draw attention to four ways in which their effort is likely to accelerate progress in this field.

  7. Fossil Energy Advanced Research and Technology Development Materials Program

    SciTech Connect

    Cole, N.C.; Judkins, R.R.

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  8. Advanced High-Level Waste Glass Research and Development Plan

    SciTech Connect

    Peeler, David K.; Vienna, John D.; Schweiger, Michael J.; Fox, Kevin M.

    2015-07-01

    The U.S. Department of Energy Office of River Protection (ORP) has implemented an integrated program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product quality requirements. The integrated ORP program is focused on providing a technical, science-based foundation from which key decisions can be made regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities. The fundamental data stemming from this program will support development of advanced glass formulations, key process control models, and tactical processing strategies to ensure safe and successful operations for both the low-activity waste (LAW) and high-level waste (HLW) vitrification facilities with an appreciation toward reducing overall mission life. The purpose of this advanced HLW glass research and development plan is to identify the near-, mid-, and longer-term research and development activities required to develop and validate advanced HLW glasses and their associated models to support facility operations at WTP, including both direct feed and full pretreatment flowsheets. This plan also integrates technical support of facility operations and waste qualification activities to show the interdependence of these activities with the advanced waste glass (AWG) program to support the full WTP mission. Figure ES-1 shows these key ORP programmatic activities and their interfaces with both WTP facility operations and qualification needs. The plan is a living document that will be updated to reflect key advancements and mission strategy changes. The research outlined here is motivated by the potential for substantial economic benefits (e.g., significant increases in waste throughput and reductions in glass volumes) that will be realized when advancements in glass formulation continue and models supporting facility operations are implemented. Developing and applying advanced

  9. [Research advances in association between pediatric obesity and bronchial asthma].

    PubMed

    Zhu, Lian; Xu, Zhi-Liang; Cheng, Yan-Yang

    2016-07-01

    This review article introduces the research advances in the pathophysiological mechanism of obesity in inducing pediatric bronchial asthma, including the role of leptin in obesity and asthma, the association of plasminogen activator inhibitor-1 with obesity and asthma, the association of adiponectin and interleukins with obesity and asthma, and the influence of neurotransmitter on asthma. In particular, this article introduces the latest research on the inhibition of allergic asthma through targeting at the nociceptor of dorsal root ganglion and blocking the signaling pathway of the nociceptor.

  10. Advanced accelerator and mm-wave structure research at LANL

    SciTech Connect

    Simakov, Evgenya Ivanovna

    2016-06-22

    This document outlines acceleration projects and mm-wave structure research performed at LANL. The motivation for PBG research is described first, with reference to couplers for superconducting accelerators and structures for room-temperature accelerators and W-band TWTs. These topics are then taken up in greater detail: PBG structures and the MIT PBG accelerator; SRF PBG cavities at LANL; X-band PBG cavities at LANL; and W-band PBG TWT at LANL. The presentation concludes by describing other advanced accelerator projects: beam shaping with an Emittance Exchanger, diamond field emitter array cathodes, and additive manufacturing of novel accelerator structures.

  11. Research Foundations for the Advanced Distributed Learning Initiative

    DTIC Science & Technology

    2010-08-01

    Tobias, S . (2005). The multimedia principle . In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 117–133). New York, NY...I N S T I T U T E F O R D E F E N S E A N A LY S E S IDA Document D-4118 August 2010 Research Foundations for the Advanced Distributed Learning...requiring scientific and technical expertise, and conduct related research on other national challenges. I N S T I T U T E F O R D E F E N S E A N A L Y

  12. Advancing Research to Action in Global Child Mental Health.

    PubMed

    Ordóñez, Anna E; Collins, Pamela Y

    2015-10-01

    Most mental and substance use disorders begin during childhood and adolescence and are the leading cause of disability in this population. Prenatal and postnatal genetic, familial, social, and environmental exposures interact to influence risk for mental disorders and trajectories of cognitive development. Efforts to advance prevention and implement early interventions to reduce the burden of mental disorders require a global research workforce, intersectoral cooperation, attention to environmental contexts, and the development and testing of evidence-based interventions. The authors describe challenges and resources for building mental health research capacity that stands to influence children's mental health outcomes around the globe.

  13. Recent advances in research on climate and human conflict

    NASA Astrophysics Data System (ADS)

    Hsiang, S. M.

    2014-12-01

    A rapidly growing body of empirical, quantitative research examines whether rates of human conflict can be systematically altered by climatic changes. We discuss recent advances in this field, including Bayesian meta-analyses of the effect of temperature and rainfall on current and future large-scale conflicts, the impact of climate variables on gang violence and suicides in Mexico, and probabilistic projections of personal violence and property crime in the United States under RCP scenarios. Criticisms of this research field will also be explained and addressed.

  14. Teaching advanced science concepts through Freshman Research Immersion

    NASA Astrophysics Data System (ADS)

    Wahila, M. J.; Amey-Proper, J.; Jones, W. E.; Stamp, N.; Piper, L. F. J.

    2017-03-01

    We have developed a new introductory physics/chemistry programme that teaches advanced science topics and practical laboratory skills to freshmen undergraduate students through the use of student-led, bona fide research activities. While many recent attempts to improve college-level physics education have focused on integrating interactive demonstrations and activities into traditional passive lectures, we have taken the idea of active-learning several steps further. Working in conjunction with several research faculty at Binghamton University, we have created a programme that puts undergraduate students on an accelerated path towards working in real research laboratories performing publishable research. Herein, we describe in detail the programme goals, structure, and educational content, and report on our promising initial student outcomes.

  15. Research reactor of the future: The advanced neutron source

    SciTech Connect

    Appleton, B.; West, C.

    1994-12-31

    Agents for cancer detection and treatment, stronger materials, better electronic gadgets, and other consumer and industrial products - these are assured benefits of a research reactor project proposed for Oak Ridge. Just as American companies have again assumed world leadership in producing semiconductor chips as well as cars and trucks, the United States is poised to retake the lead in neutron science by building and operating the $2.9 billion Advanced Neutron Source (ANS) research reactor by the start of the next century. In 1985, the neutron community, led by ORNL researchers, proposed a pioneering project, later called the ANS. Scheduled to begin operation in 2003, the ANS is seen not only as a replacement for the aging HFIR and HFBR but also as the best laboratory in the world for conducting neutron-based research.

  16. Advancing Aeronautics: A Decision Framework for Selecting Research Agendas

    NASA Technical Reports Server (NTRS)

    Anton, Philip S.; Ecola, Liisa; Kallimani, James G.; Light, Thomas; Ohlandt, Chad J. R.; Osburg, Jan; Raman, Raj; Grammich, Clifford A.

    2011-01-01

    Publicly funded research has long played a role in the development of aeronautics, ranging from foundational research on airfoils to development of the air-traffic control system. Yet more than a century after the research and development of successful controlled, sustained, heavier-than-air flight vehicles, there are questions over the future of aeronautics research. The field of aeronautics is relatively mature, technological developments within it have become more evolutionary, and funding decisions are sometimes motivated by the continued pursuit of these evolutionary research tracks rather than by larger factors. These developments raise questions over whether public funding of aeronautics research continues to be appropriate or necessary and at what levels. Tightened federal budgets and increasing calls to address other public demands make these questions sharper still. To help it address the questions of appropriate directions for publicly funded aeronautics research, the National Aeronautics and Space Administration's (NASA's) Aeronautics Research Mission Directorate (ARMD) asked the RAND Corporation to assess the elements required to develop a strategic view of aeronautics research opportunities; identify candidate aeronautic grand challenges, paradigms, and concepts; outline a framework for evaluating them; and exercise the framework as an example of how to use it. Accordingly, this research seeks to address these questions: What aeronautics research should be supported by the U.S. government? What compelling and desirable benefits drive government-supported research? How should the government--especially NASA--make decisions about which research to support? Advancing aeronautics involves broad policy and decisionmaking challenges. Decisions involve tradeoffs among competing perspectives, uncertainties, and informed judgment.

  17. The advanced neutron source research and development plan

    SciTech Connect

    Selby, D.L.

    1995-08-01

    The Advanced Neutron Source (ANS) is being designed as a user-oriented neutron research laboratory centered around the most intense continuous beams of thermal and subthermal neutrons in the world (an order of magnitude more intense than beams available from the most advanced existing reactors). The ANS will be built around a new research reactor of 330-MW fission power, producing an unprecedented peak thermal flux of >7 {center_dot} 10{sup 19} {center_dot} m{sup -2} {center_dot} s{sup -1}. Primarily a research facility, the ANS will accommodate more than 1000 academic, industrial, and government researchers each year. They will conduct basic research in all branches of science as well as applied research leading to better understanding of new materials, including high temperature super conductors, plastics, and thin films. Some 48 neutron beam stations will be set up in the ANS beam rooms and the neutron guide hall for neutron scattering and for fundamental and nuclear physics research. There also will be extensive facilities for materials irradiation, isotope production, and analytical chemistry. The top level work breakdown structure (WBS) for the project. As noted in this figure, one component of the project is a research and development (R&D) program (WBS 1.1). This program interfaces with all of the other project level two WBS activities. Because one of the project guidelines is to meet minimum performance goals without relying on new inventions, this R&D activity is not intended to produce new concepts to allow the project to meet minimum performance goals. Instead, the R&D program will focus on the four objectives described.

  18. A University Consortium for the Advancement of Hydrologic Research

    NASA Astrophysics Data System (ADS)

    Hooper, R. P.; Wilson, J.; Band, L.; Reckhow, K.

    2003-12-01

    Seventy-six research universities across the United States have joined to form the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI), a non-profit corporation. With support from the National Science Foundation, CUAHSI has embarked upon the design and development of programs to enable hydrologic research at larger spatial scales over longer time periods than has been within the grasp of individual investigators. The guiding principle of this design has been an embracing of the entire hydrologic cycle to enable research at the interfaces among traditional hydrologic subdisciplines and between hydrologic science and allied disciplines in the earth and life sciences. To improve our predictive understanding of hydrologic phenomena, the fundamental approach that has been adopted is the development of multidisciplinary, coherent data sets to enable testing of hypotheses in different hydrologic settings across a range of spatial and temporal scales. Four mutually supportive program elements have been conceived: a network of hydrologic observatories (the subject of this special session) designed strategically to collect additional data at large scales (on the order of 10,000 km2) and to leverage existing investments in small-scale intensive studies and in larger scale monitoring activities; hydrologic information systems to develop a comprehensive data model for integrating disparate data types, to develop the cyberinfrastructure necessary for systematic data collection and dissemination and to support community models; hydrologic measurement technology facility to broker instrumentation services from existing sources, to provide cutting edge tools along with the necessary support to use them, and to develop new hydrologic instrumentation needed to advance the science; and hydrologic synthesis center to provide a venue for hydrologic sciences from a range of disciplines to work on topics ranging from inter-observatory comparison to evolving

  19. Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research

    SciTech Connect

    John Jackson; Todd Allen; Frances Marshall; Jim Cole

    2013-03-01

    The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials

  20. Measurement of the ratio of hydrogen to deuterium at the KSTAR 2009 experimental campaign

    SciTech Connect

    Kwak, Jong-Gu; Wang, Son Jong; Kim, Sun Ho; Park, Jae Min; Na, Hoon Kyun

    2010-10-15

    The control of the ratio of hydrogen to the deuterium is one of the very important issues for ion cyclotron range of frequency (ICRF) minority heating as well as the plasma wall interaction in the tokamak. The ratio of hydrogen to deuterium during the tokamak shot was deduced from the emission spectroscopy measurements during the KSTAR 2009 experimental campaign. Graphite tiles were used for the plasma facing components (PFCs) at KSTAR and its surface area exposed to the plasma was about 11 m{sup 2}. The data showed that it remained as high as around 50% during the campaign period because graphite tiles were exposed to the air for about two months and the hydrogen contents at the tiles are not fully pumped out due to the lack of baking on the PFC in the 2009 campaign. The validation of the spectroscopy method was checked by using the Zeeman effects and the ratio of hydrogen to the deuterium is compared with results from the residual gas analysis. During the tokamak shot, the ratio is low below 10% initially and saturated after around 1 s. When there is a hydrogen injection to the vessel via ion cyclotron wall conditioning and the boronization process where the carbone is used, the ratio of the hydrogen to the deuterium is increased by up to 100% and it recovers to around 50% after one day of operation. However it does not decrease below 50% at the end of the experimental campaign. It was found that the full baking on the PFC (with a high temperature and sufficient vacuum pumping) is required for the ratio control which guarantees the efficient ICRF heating at the KSTAR 2010 experimental campaign.

  1. Measurement of the ratio of hydrogen to deuterium at the KSTAR 2009 experimental campaign.

    PubMed

    Kwak, Jong-Gu; Wang, Son Jong; Kim, Sun Ho; Park, Jae Min; Na, Hoon Kyun

    2010-10-01

    The control of the ratio of hydrogen to the deuterium is one of the very important issues for ion cyclotron range of frequency (ICRF) minority heating as well as the plasma wall interaction in the tokamak. The ratio of hydrogen to deuterium during the tokamak shot was deduced from the emission spectroscopy measurements during the KSTAR 2009 experimental campaign. Graphite tiles were used for the plasma facing components (PFCs) at KSTAR and its surface area exposed to the plasma was about 11 m(2). The data showed that it remained as high as around 50% during the campaign period because graphite tiles were exposed to the air for about two months and the hydrogen contents at the tiles are not fully pumped out due to the lack of baking on the PFC in the 2009 campaign. The validation of the spectroscopy method was checked by using the Zeeman effects and the ratio of hydrogen to the deuterium is compared with results from the residual gas analysis. During the tokamak shot, the ratio is low below 10% initially and saturated after around 1 s. When there is a hydrogen injection to the vessel via ion cyclotron wall conditioning and the boronization process where the carbone is used, the ratio of the hydrogen to the deuterium is increased by up to 100% and it recovers to around 50% after one day of operation. However it does not decrease below 50% at the end of the experimental campaign. It was found that the full baking on the PFC (with a high temperature and sufficient vacuum pumping) is required for the ratio control which guarantees the efficient ICRF heating at the KSTAR 2010 experimental campaign.

  2. Numerical simulation on edge localized mode control capability of resonant magnetic perturbation in the KSTAR tokamak

    NASA Astrophysics Data System (ADS)

    Kim, Doohyun; Han, Hyunsun; Kim, Ki Min; Park, Jong Kyu; Jeon, Young Mu; Na, Yong-Su; Hong, Sang Hee

    2010-09-01

    Numerical simulations are carried out to investigate the applicability of resonant magnetic perturbation (RMP) to KSTAR plasmas for a possible control of edge localized mode (ELM) to suppress or mitigate its damages to divertor materials. For the verification of the feasibility of RMP application, magnetic island configurations, resonant normal fields, magnetic island widths and Chirikov parameters are calculated for two types of KSTAR operation scenarios: steady state and hybrid. Field error correction (FEC) coils in KSTAR are considered to produce externally perturbed magnetic fields for RMP, and the directions of coil currents determine the toroidal mode n and the parity (even or odd). The RMP configurations are described by vacuum superposition of the equilibrium magnetic fields and the perturbed ones induced by FEC coils. The numerical simulations for n = 2 toroidal mode in both operation scenarios show that when the pitches of the equilibrium and perturbed magnetic fields are well aligned, magnetic islands are formed for a series of m poloidal modes and the adjacent islands are overlapped to generate a stochastic layer in the edge region. Even parity turns out to be more effective in making the magnetic islands overlapped to become stochastic field lines in the steady-state operation, while odd parity in the hybrid operation. The formation of the stochastic layer is verified by the calculated Chirikov parameters, which also give basic information on the current requirement of FEC coils. Additionally, lobe structures of stochastic field lines are found in the edge region extended to the divertor plate in the hybrid scenario. Based on the standard vacuum criteria for RMP, the simulation results indicate that the FEC coils will be feasible for control of ELMs and mitigation of divertor heat load by RMP in both steady-state and hybrid operation scenarios.

  3. Advanced Radioisotope Power Conversion Technology Research and Development

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.

    2004-01-01

    NASA's Radioisotope Power Conversion Technology program is developing next generation power conversion technologies that will enable future missions that have requirements that cannot be met by either the ubiquitous photovoltaic systems or by current Radioisotope Power System (RPS) technology. Performance goals of advanced radioisotope power systems include improvement over the state-of-practice General Purpose Heat Source/Radioisotope Thermoelectric Generator by providing significantly higher efficiency to reduce the number of radioisotope fuel modules, and increase specific power (watts/kilogram). Other Advanced RPS goals include safety, long-life, reliability, scalability, multi-mission capability, resistance to radiation, and minimal interference with the scientific payload. NASA has awarded ten contracts in the technology areas of Brayton, Stirling, Thermoelectric, and Thermophotovoltaic power conversion including five development contracts that deal with more mature technologies and five research contracts. The Advanced RPS Systems Assessment Team includes members from NASA GRC, JPL, DOE and Orbital Sciences whose function is to review the technologies being developed under the ten Radioisotope Power Conversion Technology contracts and assess their relevance to NASA's future missions. Presented is an overview of the ten radioisotope power conversion technology contracts and NASA's Advanced RPS Systems Assessment Team.

  4. Facing up to the Challenges of Advancing Craniofacial Research

    PubMed Central

    Trainor, Paul A.; Richtsmeier, Joan T.

    2015-01-01

    Craniofacial anomalies are among the most common human birth defects and have considerable functional, aesthetic, and social consequences. The early developmental origin as well as the anatomical complexity of the head and face render these tissues prone to genetic and environmental insult. The establishment of craniofacial clinics offering comprehensive care for craniofacial patients at a single site together with international research networks focused on the origins and treatment of craniofacial disorders has led to tremendous advances in our understanding of the etiology and pathogenesis of congenital craniofacial anomalies. However, the genetic, environmental, and developmental sources of many craniofacial disorders remain unknown. To overcome this problem and further advance craniofacial research, we must recognize current challenges in the field and establish priority areas for study. We still need (i) a deeper understanding of variation during normal development and within the context of any disorder, (ii) improved genotyping and phenotyping and understanding of the impact of epigenetics, (iii) continued development of animal models and functional analyses of genes and variants, and (iv) integration of patient derived cells and tissues together with 3D printing and quantitative assessment of surgical outcomes for improved practice. Only with fundamental advances in each of these areas will we be able to meet the challenge of translating potential therapeutic and preventative approaches into clinical solutions and reduce the financial and emotional burden of craniofacial anomalies. PMID:25820983

  5. Simulated Interactive Research Experiments as Educational Tools for Advanced Science.

    PubMed

    Tomandl, Mathias; Mieling, Thomas; Losert-Valiente Kroon, Christiane M; Hopf, Martin; Arndt, Markus

    2015-09-15

    Experimental research has become complex and thus a challenge to science education. Only very few students can typically be trained on advanced scientific equipment. It is therefore important to find new tools that allow all students to acquire laboratory skills individually and independent of where they are located. In a design-based research process we have investigated the feasibility of using a virtual laboratory as a photo-realistic and scientifically valid representation of advanced scientific infrastructure to teach modern experimental science, here, molecular quantum optics. We found a concept based on three educational principles that allows undergraduate students to become acquainted with procedures and concepts of a modern research field. We find a significant increase in student understanding using our Simulated Interactive Research Experiment (SiReX), by evaluating the learning outcomes with semi-structured interviews in a pre/post design. This suggests that this concept of an educational tool can be generalized to disseminate findings in other fields.

  6. Simulated Interactive Research Experiments as Educational Tools for Advanced Science

    PubMed Central

    Tomandl, Mathias; Mieling, Thomas; Losert-Valiente Kroon, Christiane M.; Hopf, Martin; Arndt, Markus

    2015-01-01

    Experimental research has become complex and thus a challenge to science education. Only very few students can typically be trained on advanced scientific equipment. It is therefore important to find new tools that allow all students to acquire laboratory skills individually and independent of where they are located. In a design-based research process we have investigated the feasibility of using a virtual laboratory as a photo-realistic and scientifically valid representation of advanced scientific infrastructure to teach modern experimental science, here, molecular quantum optics. We found a concept based on three educational principles that allows undergraduate students to become acquainted with procedures and concepts of a modern research field. We find a significant increase in student understanding using our Simulated Interactive Research Experiment (SiReX), by evaluating the learning outcomes with semi-structured interviews in a pre/post design. This suggests that this concept of an educational tool can be generalized to disseminate findings in other fields. PMID:26370627

  7. EarthCube Activities: Community Engagement Advancing Geoscience Research

    NASA Astrophysics Data System (ADS)

    Kinkade, D.

    2015-12-01

    Our ability to advance scientific research in order to better understand complex Earth systems, address emerging geoscience problems, and meet societal challenges is increasingly dependent upon the concept of Open Science and Data. Although these terms are relatively new to the world of research, Open Science and Data in this context may be described as transparency in the scientific process. This includes the discoverability, public accessibility and reusability of scientific data, as well as accessibility and transparency of scientific communication (www.openscience.org). Scientists and the US government alike are realizing the critical need for easy discovery and access to multidisciplinary data to advance research in the geosciences. The NSF-supported EarthCube project was created to meet this need. EarthCube is developing a community-driven common cyberinfrastructure for the purpose of accessing, integrating, analyzing, sharing and visualizing all forms of data and related resources through advanced technological and computational capabilities. Engaging the geoscience community in EarthCube's development is crucial to its success, and EarthCube is providing several opportunities for geoscience involvement. This presentation will provide an overview of the activities EarthCube is employing to entrain the community in the development process, from governance development and strategic planning, to technical needs gathering. Particular focus will be given to the collection of science-driven use cases as a means of capturing scientific and technical requirements. Such activities inform the development of key technical and computational components that collectively will form a cyberinfrastructure to meet the research needs of the geoscience community.

  8. Los Alamos NEP research in advanced plasma thrusters

    NASA Technical Reports Server (NTRS)

    Schoenberg, Kurt; Gerwin, Richard

    1991-01-01

    Research was initiated in advanced plasma thrusters that capitalizes on lab capabilities in plasma science and technology. The goal of the program was to examine the scaling issues of magnetoplasmadynamic (MPD) thruster performance in support of NASA's MPD thruster development program. The objective was to address multi-megawatt, large scale, quasi-steady state MPD thruster performance. Results to date include a new quasi-steady state operating regime which was obtained at space exploration initiative relevant power levels, that enables direct coaxial gun-MPD comparisons of thruster physics and performance. The radiative losses are neglible. Operation with an applied axial magnetic field shows the same operational stability and exhaust plume uniformity benefits seen in MPD thrusters. Observed gun impedance is in close agreement with the magnetic Bernoulli model predictions. Spatial and temporal measurements of magnetic field, electric field, plasma density, electron temperature, and ion/neutral energy distribution are underway. Model applications to advanced mission logistics are also underway.

  9. Advances in Inner Magnetosphere Passive and Active Wave Research

    NASA Technical Reports Server (NTRS)

    Green, James L.; Fung, Shing F.

    2004-01-01

    This review identifies a number of the principal research advancements that have occurred over the last five years in the study of electromagnetic (EM) waves in the Earth's inner magnetosphere. The observations used in this study are from the plasma wave instruments and radio sounders on Cluster, IMAGE, Geotail, Wind, Polar, Interball, and others. The data from passive plasma wave instruments have led to a number of advances such as: determining the origin and importance of whistler mode waves in the plasmasphere, discovery of the source of kilometric continuum radiation, mapping AKR source regions with "pinpoint" accuracy, and correlating the AKR source location with dipole tilt angle. Active magnetospheric wave experiments have shown that long range ducted and direct echoes can be used to obtain the density distribution of electrons in the polar cap and along plasmaspheric field lines, providing key information on plasmaspheric filling rates and polar cap outflows.

  10. Advanced NDE research in electromagnetic, thermal, and coherent optics

    NASA Astrophysics Data System (ADS)

    Skinner, S. Ballou

    1992-09-01

    A new inspection technology called magneto-optic/eddy current imaging was investigated. The magneto-optic imager makes readily visible irregularities and inconsistencies in airframe components. Other research observed in electromagnetics included (1) disbond detection via resonant modal analysis; (2) AC magnetic field frequency dependence of magnetoacoustic emission; and (3) multi-view magneto-optic imaging. Research observed in the thermal group included (1) thermographic detection and characterization of corrosion in aircraft aluminum; (2) a multipurpose infrared imaging system for thermoelastic stress detection; (3) thermal diffusivity imaging of stress induced damage in composites; and (4) detection and measurement of ice formation on the space shuttle main fuel tank. Research observed in the optics group included advancements in optical nondestructive evaluation (NDE).

  11. Assessment of Research Needs for Advanced Fuel Cells

    SciTech Connect

    Penner, S.S.

    1985-11-01

    The DOE Advanced Fuel Cell Working Group (AFCWG) was formed and asked to perform a scientific evaluation of the current status of fuel cells, with emphasis on identification of long-range research that may have a significant impact on the practical utilization of fuel cells in a variety of applications. The AFCWG held six meetings at locations throughout the country where fuel cell research and development are in progress, for presentations by experts on the status of fuel cell research and development efforts, as well as for inputs on research needs. Subsequent discussions by the AFCWG have resulted in the identification of priority research areas that should be explored over the long term in order to advance the design and performance of fuel cells of all types. Surveys describing the salient features of individual fuel cell types are presented in Chapters 2 to 6 and include elaborations of long-term research needs relating to the expeditious introduction of improved fuel cells. The Introduction and the Summary (Chapter 1) were prepared by AFCWG. They were repeatedly revised in response to comments and criticism. The present version represents the closest approach to a consensus that we were able to reach, which should not be interpreted to mean that each member of AFCWG endorses every statement and every unexpressed deletion. The Introduction and Summary always represent a majority view and, occasionally, a unanimous judgment. Chapters 2 to 6 provide background information and carry the names of identified authors. The identified authors of Chapters 2 to 6, rather than AFCWG as a whole, bear full responsibility for the scientific and technical contents of these chapters.

  12. Advancing the field of health systems research synthesis.

    PubMed

    Langlois, Etienne V; Ranson, Michael K; Bärnighausen, Till; Bosch-Capblanch, Xavier; Daniels, Karen; El-Jardali, Fadi; Ghaffar, Abdul; Grimshaw, Jeremy; Haines, Andy; Lavis, John N; Lewin, Simon; Meng, Qingyue; Oliver, Sandy; Pantoja, Tomás; Straus, Sharon; Shemilt, Ian; Tovey, David; Tugwell, Peter; Waddington, Hugh; Wilson, Mark; Yuan, Beibei; Røttingen, John-Arne

    2015-07-10

    Those planning, managing and working in health systems worldwide routinely need to make decisions regarding strategies to improve health care and promote equity. Systematic reviews of different kinds can be of great help to these decision-makers, providing actionable evidence at every step in the decision-making process. Although there is growing recognition of the importance of systematic reviews to inform both policy decisions and produce guidance for health systems, a number of important methodological and evidence uptake challenges remain and better coordination of existing initiatives is needed. The Alliance for Health Policy and Systems Research, housed within the World Health Organization, convened an Advisory Group on Health Systems Research (HSR) Synthesis to bring together different stakeholders interested in HSR synthesis and its use in decision-making processes. We describe the rationale of the Advisory Group and the six areas of its work and reflects on its role in advancing the field of HSR synthesis. We argue in favour of greater cross-institutional collaborations, as well as capacity strengthening in low- and middle-income countries, to advance the science and practice of health systems research synthesis. We advocate for the integration of quasi-experimental study designs in reviews of effectiveness of health systems intervention and reforms. The Advisory Group also recommends adopting priority-setting approaches for HSR synthesis and increasing the use of findings from systematic reviews in health policy and decision-making.

  13. Twelfth International Symposium on Recent Advances in Environmental Health Research.

    PubMed

    Tchounwou, Paul B

    2016-05-04

    During the past century, environmental hazards have become a major concern, not only to public health professionals, but also to the society at large because of their tremendous health, socio-cultural and economic impacts. Various anthropogenic or natural factors have been implicated in the alteration of ecosystem integrity, as well as in the development of a wide variety of acute and/or chronic diseases in humans. It has also been demonstrated that many environmental agents, acting either independently or in combination with other toxins, may induce a wide range of adverse health outcomes. Understanding the role played by the environment in the etiology of human diseases is critical to designing cost-effective control/prevention measures. This special issue of International Journal of Environmental Research and Public Health includes the proceedings of the Twelfth International Symposium on Recent Advances in Environmental Health Research. The Symposium provided an excellent opportunity to discuss the scientific advances in biomedical, environmental, and public health research that addresses global environmental health issues.

  14. Recent trends and advances in berry health benefits research.

    PubMed

    Seeram, Navindra P

    2010-04-14

    Recent advances have been made in our scientific understanding of how berries promote human health and prevent chronic illnesses such as some cancers, heart disease, and neurodegenerative diseases. Cancer is rapidly overtaking heart disease as the number one killer disease in developed countries, and this phenomenon is coupled with a growing aging population and concomitant age-related diseases. Therefore, it is not surprising that consumers are turning toward foods with medicinal properties as promising dietary interventions for disease prevention and health maintenance. Among fruits, berries of all colors have emerged as champions with substantial research data supporting their abilities to positively affect multiple disease states. Apart from several essential dietary components found in berries, such as vitamins, minerals, and fiber, berries also contain numerous bioactives that provide health benefits that extend beyond basic nutrition. Berry bioactives encompass a wide diversity of phytochemicals (phytonutrients) ranging from fat-soluble/lipophilic to water-soluble/hydrophilic compounds. Recent research from laboratories across the globe has provided useful insights into the biological effects and underlying mechanisms of actions resulting from eating berries. The cluster of papers included here represents a cross section of topics discussed at the 2009 International Berry Health Benefits Symposium. Together, these papers provide valuable insight into recent research trends and advances made into evaluating the various health benefits that may result from the consumption of berries and their derived products.

  15. Twelfth International Symposium on Recent Advances in Environmental Health Research

    PubMed Central

    Tchounwou, Paul B.

    2016-01-01

    During the past century, environmental hazards have become a major concern, not only to public health professionals, but also to the society at large because of their tremendous health, socio-cultural and economic impacts. Various anthropogenic or natural factors have been implicated in the alteration of ecosystem integrity, as well as in the development of a wide variety of acute and/or chronic diseases in humans. It has also been demonstrated that many environmental agents, acting either independently or in combination with other toxins, may induce a wide range of adverse health outcomes. Understanding the role played by the environment in the etiology of human diseases is critical to designing cost-effective control/prevention measures. This special issue of International Journal of Environmental Research and Public Health includes the proceedings of the Twelfth International Symposium on Recent Advances in Environmental Health Research. The Symposium provided an excellent opportunity to discuss the scientific advances in biomedical, environmental, and public health research that addresses global environmental health issues. PMID:27153079

  16. [The research advance of brain derived neurotrophic factor].

    PubMed

    Liu, Z; Chen, J

    2000-12-01

    Recent research advances in neuroscience show that neurotrophic factors are proteins that affect selectively various kinds of neurons of CNS and PNS. Brain derived neurotrophic factor (BDNF) is another neurotrophic factor that was first reported by Barde, a German chemist, thirty years later after the nerve growth factor had been found out. BDNF plays an important role in the growth, development, differentiation, maintenance and regeneration of various types of neurons in the CNS and has potential application to the treatment of brain injury and neurodegenerative diseases such as Alzheimer's disease, Parkinson's syndrome, Huntington's chorea and amyotrophic lateral sclerosis. In this paper, the structure, function and potential clinical application of BDNF were reviewed.

  17. Impact of new instrumentation on advanced turbine research

    NASA Technical Reports Server (NTRS)

    Graham, R. W.

    1980-01-01

    A description is presented of an orderly test program that progresses from the simplest stationary geometry to the more complex, three dimensional, rotating turbine stage. The instrumentation requirements for this evolution of testing are described. The heat transfer instrumentation is emphasized. Recent progress made in devising new measurement techniques has greatly improved the development and confirmation of more accurate analytical methods for the prediction of turbine performance and heat transfer. However, there remain challenging requirements for novel measurement techniques that could advance the future research to be done in rotating blade rows of turbomachines.

  18. Advanced computational research in materials processing for design and manufacturing

    SciTech Connect

    Zacharia, T.

    1994-12-31

    The computational requirements for design and manufacture of automotive components have seen dramatic increases for producing automobiles with three times the mileage. Automotive component design systems are becoming increasingly reliant on structural analysis requiring both overall larger analysis and more complex analyses, more three-dimensional analyses, larger model sizes, and routine consideration of transient and non-linear effects. Such analyses must be performed rapidly to minimize delays in the design and development process, which drives the need for parallel computing. This paper briefly describes advanced computational research in superplastic forming and automotive crash worthiness.

  19. [Markers of prostate cancer stem cells: research advances].

    PubMed

    Wang, Shun-Qi; Huang, Sheng-Song

    2013-12-01

    Prostate cancer is one of the most seriously malignant diseases threatening men's health, and the mechanisms of its initiation and progression are not yet completely understood. Recent years have witnessed distinct advances in researches on prostate cancer stem cells in many aspects using different sources of materials, such as human prostate cancer tissues, human prostate cancer cell lines, and mouse models of prostate cancer. Prostate cancer stem cell study offers a new insight into the mechanisms of the initiation and progression of prostate cancer and contributes positively to its treatment. This article presents an overview on the prostate cancer stem cell markers utilized in the isolation and identification of prostate cancer stem cells.

  20. Oklahoma State University proposed Advanced Technology Research Center. Environmental Assessment

    SciTech Connect

    1995-06-01

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA) evaluating the construction and equipping of the proposed Advanced Technology Research Center (ATRC) at Oklahoma State University (OSU) in Stillwater, Oklahoma. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement is not required.

  1. Oil shale, tar sand, coal research, advanced exploratory process technology jointly sponsored research

    SciTech Connect

    Not Available

    1992-01-01

    Accomplishments for the quarter are presented for the following areas of research: oil shale, tar sand, coal, advanced exploratory process technology, and jointly sponsored research. Oil shale research includes; oil shale process studies, environmental base studies for oil shale, and miscellaneous basic concept studies. Tar sand research covers process development. Coal research includes; underground coal gasification, coal combustion, integrated coal processing concepts, and solid waste management. Advanced exploratory process technology includes; advanced process concepts, advanced mitigation concepts, and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO[sub 2] HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesa Verde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced recovery techniques; and menu driven access to the WDEQ Hydrologic Data Management Systems.

  2. Major clinical research advances in gynecologic cancer in 2015

    PubMed Central

    2016-01-01

    In 2015, fourteen topics were selected as major research advances in gynecologic oncology. For ovarian cancer, high-level evidence for annual screening with multimodal strategy which could reduce ovarian cancer deaths was reported. The best preventive strategies with current status of evidence level were also summarized. Final report of chemotherapy or upfront surgery (CHORUS) trial of neoadjuvant chemotherapy in advanced stage ovarian cancer and individualized therapy based on gene characteristics followed. There was no sign of abating in great interest in immunotherapy as well as targeted therapies in various gynecologic cancers. The fifth Ovarian Cancer Consensus Conference which was held in November 7–9 in Tokyo was briefly introduced. For cervical cancer, update of human papillomavirus vaccines regarding two-dose regimen, 9-valent vaccine, and therapeutic vaccine was reviewed. For corpus cancer, the safety concern of power morcellation in presumed fibroids was explored again with regard to age and prevalence of corpus malignancy. Hormone therapy and endometrial cancer risk, trabectedin as an option for leiomyosarcoma, endometrial cancer and Lynch syndrome, and the radiation therapy guidelines were also discussed. In addition, adjuvant therapy in vulvar cancer and the updated of targeted therapy in gynecologic cancer were addressed. For breast cancer, palbociclib in hormone-receptor-positive advanced disease, oncotype DX Recurrence Score in low-risk patients, regional nodal irradiation to internal mammary, supraclavicular, and axillary lymph nodes, and cavity shave margins were summarized as the last topics covered in this review. PMID:27775259

  3. Major clinical research advances in gynecologic cancer in 2015.

    PubMed

    Suh, Dong Hoon; Kim, Miseon; Kim, Hak Jae; Lee, Kyung Hun; Kim, Jae Weon

    2016-11-01

    In 2015, fourteen topics were selected as major research advances in gynecologic oncology. For ovarian cancer, high-level evidence for annual screening with multimodal strategy which could reduce ovarian cancer deaths was reported. The best preventive strategies with current status of evidence level were also summarized. Final report of chemotherapy or upfront surgery (CHORUS) trial of neoadjuvant chemotherapy in advanced stage ovarian cancer and individualized therapy based on gene characteristics followed. There was no sign of abating in great interest in immunotherapy as well as targeted therapies in various gynecologic cancers. The fifth Ovarian Cancer Consensus Conference which was held in November 7-9 in Tokyo was briefly introduced. For cervical cancer, update of human papillomavirus vaccines regarding two-dose regimen, 9-valent vaccine, and therapeutic vaccine was reviewed. For corpus cancer, the safety concern of power morcellation in presumed fibroids was explored again with regard to age and prevalence of corpus malignancy. Hormone therapy and endometrial cancer risk, trabectedin as an option for leiomyosarcoma, endometrial cancer and Lynch syndrome, and the radiation therapy guidelines were also discussed. In addition, adjuvant therapy in vulvar cancer and the updated of targeted therapy in gynecologic cancer were addressed. For breast cancer, palbociclib in hormone-receptor-positive advanced disease, oncotype DX Recurrence Score in low-risk patients, regional nodal irradiation to internal mammary, supraclavicular, and axillary lymph nodes, and cavity shave margins were summarized as the last topics covered in this review.

  4. Advanced Stirling Technology Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Wong, Wayne A.

    2007-01-01

    The NASA Glenn Research Center has been developing advanced energy-conversion technologies for use with both radioisotope power systems and fission surface power systems for many decades. Under NASA's Science Mission Directorate, Planetary Science Theme, Technology Program, Glenn is developing the next generation of advanced Stirling convertors (ASCs) for use in the Department of Energy/Lockheed Martin Advanced Stirling Radioisotope Generator (ASRG). The next-generation power-conversion technologies require high efficiency and high specific power (watts electric per kilogram) to meet future mission requirements to use less of the Department of Energy's plutonium-fueled general-purpose heat source modules and reduce system mass. Important goals include long-life (greater than 14-yr) reliability and scalability so that these systems can be considered for a variety of future applications and missions including outer-planet missions and continual operation on the surface of Mars. This paper provides an update of the history and status of the ASC being developed for Glenn by Sunpower Inc. of Athens, Ohio.

  5. Assessment and modification of an ion source grid design in KSTAR neutral beam system.

    PubMed

    Lee, Dong Won; Shin, Kyu In; Jin, Hyung Gon; Choi, Bo Guen; Kim, Tae-Seong; Jeong, Seung Ho

    2014-02-01

    A new 2 MW NB (Neutral Beam) ion source for supplying 3.5 MW NB heating for the KSTAR campaign was developed in 2012 and its grid was made from OFHC (Oxygen Free High Conductivity) copper with rectangular cooling channels. However, the plastic deformation such as a bulging in the plasma grid of the ion source was found during the overhaul period after the 2012 campaign. A thermal-hydraulic and a thermo-mechanical analysis using the conventional code, ANSYS, were carried out and the thermal fatigue life assessment was evaluated. It was found that the thermal fatigue life of the OFHC copper grid was about 335 cycles in case of 0.165 MW/m(2) heat flux and it gave too short fatigue life to be used as a KSTAR NB ion source grid. To overcome the limited fatigue life of the current design, the following methods were proposed in the present study: (1) changing the OHFC copper to CuCrZr, copper-alloy or (2) adopting a new design with a pure Mo metal grid and CuCrZr tubes. It is confirmed that the proposed methods meet the requirements by performing the same assessment.

  6. Suppression of edge localized mode crashes by multi-spectral non-axisymmetric fields in KSTAR

    NASA Astrophysics Data System (ADS)

    Kim, Jayhyun; Park, Gunyoung; Bae, Cheonho; Yoon, Siwoo; Han, Hyunsun; Yoo, Min-Gu; Park, Young-Seok; Ko, Won-Ha; Juhn, June-Woo; Na, Yong Su; The KSTAR Team

    2017-02-01

    Among various edge localized mode (ELM) crash control methods, only non-axisymmetric magnetic perturbations (NAMPs) yield complete suppression of ELM crashes beyond their mitigation, and thus attract more attention than others. No other devices except KSTAR, DIII-D, and recently EAST have successfully achieved complete suppression with NAMPs. The underlying physics mechanisms of these successful ELM crash suppressions in a non-axisymmetric field environment, however, still remain uncertain. In this work, we investigate the ELM crash suppression characteristics of the KSTAR ELMy H-mode discharges in a controlled multi-spectral field environment, created by both n=2 middle reference and n=1 top/bottom proxy in-vessel control coils. Interestingly, the attempts have produced a set of contradictory findings, one expected (ELM crash suppression enhancement with the addition of n  =  1 to the n  =  2 field at relatively low heating discharges) and another unexpected (ELM crash suppression degradation at relatively high heating discharges) from the earlier findings in DIII-D. This contradiction indicates the dependence of the ELM crash suppression characteristics on the heating level and the associated kink-like plasma responses. Preliminary linear resistive MHD plasma response simulation shows the unexpected suppression performance degradation to be likely caused by the dominance of kink-like plasma responses over the island gap-filling effects.

  7. Design of the Collective Thomson scattering (CTS) system by using 170-GHz gyrotron in the KSTAR

    NASA Astrophysics Data System (ADS)

    Park, Min; Kim, Sun-Ho; Kim, Sung-Kyu; Lee, Kyu-Dong; Wang, Son-Jong

    2014-10-01

    The physics of energetic ions is one of the primary subjects to be understood toward the realization of a nuclear fusion power plant. Collective Thomson scattering (CTS) offers the possibility to diagnose the fast ions and the alpha particles in burning plasmas. Spatially- and temporally-resolved one-dimensional velocity distributions of the fast ions can be obtained from the scattered radiation with fewer geometric constraints by utilizing millimeter waves from a high-power gyrotron as a probe beam. We studied the feasibility of CTS fast-ion measurements in the KSTAR by calculating the spectral density functions. Based on that, we suggest a design for the CTS system that uses the currently-operating 170-GHz gyrotron for electron cyclotron heating (ECH) and electron cyclotron current drive (ECCD) in the KSTAR. The CTS system is presented as two subsystems: the antenna system and the heterodyne receiver system. The design procedure for an off-axis ellipsoidal mirror is described, and the CTS system requirements are discussed.

  8. Quiescence of magnetic braking and control of 3D non-resonance in KSTAR

    NASA Astrophysics Data System (ADS)

    Park, J.-K.; in, Y.; Jeon, Y. M.; Logan, N. C.; Wang, Z. R.; Menard, J. E.; Kim, J. H.; Ko, W. H.; Kstar Team

    2016-10-01

    Magnetic braking using non-axisymmetric (3D) field is a promising tool to control rotation in tokamaks and thereby micro-to-macro instabilities. Ideally magnetic braking should induce only neoclassical momentum transport, without provoking resonant instabilities or unnecessary perturbations in particle or heat transport. Indeed in KSTAR, it was shown that the 3 rows of internal coils could be used to generate highly non-resonant n =1 with backward-helicity field distribution, called -90 phasing, and to change rotation without any perturbations to other transport channels. Recent KSTAR experiments, however, have also shown that the broad-wavelength field distribution, called 0 phasing, is rather more quiescent whereas -90 phasing can be highly degrading especially in high q95 plasmas. IPEC and NTV modeling are consistent with both observations, and further provide the optimal point in coil phasing and amplitude space. Additional experiments and comparisons with modeling all imply the sensitivity of plasma response to remnant resonant field, and thus importance of non-resonance control, to accomplish quiescent magnetic braking. This work was supported by DOE Contract DE-AC02-09CH11466.

  9. The On-Site Status of the Kstar Helium Refrigeration System

    NASA Astrophysics Data System (ADS)

    Chang, H.-S.; Park, D. S.; Joo, J. J.; Moon, K. M.; Cho, K. W.; Kim, Y. S.; Bak, J. S.; Kim, H. M.; Cho, M. C.; Kwon, I. K.; Fauve, E.; Bernhardt, J.-M.; Dauguet, P.; Beauvisage, J.; Andrieu, F.; Yang, S.-H.; Baguer, G. M. Gistau

    2008-03-01

    Since the first design of the KSTAR helium refrigeration system (HRS) in year 2000, many modifications and changes have been applied due to both system optimization and improved knowledge of the KSTAR cold components. The present specification of the HRS had been fixed on March, 2005. Consequent manufacturing of main equipment, such as "Compressor Station" (C/S), "Cold Box" (C/B), and "Distribution Box ♯1" (D/B ♯1) was completed by or under the supervision of Air Liquide DTA by the end of year 2006. The major components of the C/S are 2 low and 2 high pressure compressor units and an oil-removal system. The cooling power of the C/B at 4.5 K equivalent is 9 kW achieved by using 6 turbo-expanders. The D/B ♯1 is a cryostat housing 49 cryogenic valves, 2 supercritical helium circulators, 1 cold compressor, and 7 heat exchangers immersed in a 6 m3 liquid helium storage. In this proceeding, the on-site installation and commissioning status of the HRS will be presented. In addition, the final specification and design features of the HRS and the

  10. Linear global gyrokinetic simulations of toroidal Alfven eigenmodes in KSTAR plasmas

    NASA Astrophysics Data System (ADS)

    Shahzad, M.; Rizvi, H.; Ryu, C. M.

    2016-12-01

    Excitation of toroidal Alfven eigenmodes (TAEs) in KSTAR tokamak plasmas has been studied by using the GENE code. Verification and benchmark analysis are performed for Alfven eigenmodes (AEs) excited by the energetic particles (EPs) in comparison with the AEs from the GYGLES code, and excellent agreements are found. In addition, the threshold value of the EP density gradient to destabilize the TAE has been investigated. For the plasma equilibrium of KSTAR discharge (10574), TAEs of n = 2 are found to be excited by coupling of adjoining poloidal harmonics (5, 6), (6, 7), and (7, 8). The dependence of the growth rate and frequency of the TAE on the EP density gradient is examined. It is found that the threshold value of EP density gradient increases with the higher poloidal mode coupling, of which location moves outward in the radial direction. The growth rates of TAEs with higher poloidal mode numbers are smaller than those with lower poloidal mode numbers, indicating that perpendicular wavenumbers play an important role. The efficiency of the EP drive for the TAE decreases for a higher poloidal mode coupling. At a higher EP density gradient, TAEs with higher poloidal harmonics are less unstable due to the decrease in the radial extents of the modes.

  11. Simulations of plasma shape and vertical-instability control in KSTAR

    NASA Astrophysics Data System (ADS)

    Lodestro, L. L.; Bulmer, R. H.; Meyer, W. H.; Pearlstein, L. D.

    2012-10-01

    In recent years, prompted by applications to ITER, the Corsica code's capability for evolving free-boundary equilibria coupled to transport, in particular current-profile transport, has been improved. All active and passive material conductors (coils, conducting plates, vessel walls) in these calculations are represented as axisymmetric wires, coupled to each other and the plasma with circuit equations; up/down asymmetric elongated plasmas require a feedback circuit to control the vertical instability. The improvements include: completion of the facility for running Corsica as the plasma model in Matlab/Simulink simulations of the circuits, benchmarked against stand-alone Corsica simulations; development of a general machine-description data-base for importing or verifying a machine's conductor configurations; and modernization and generalization of the (scripted) algorithms that accomplish the couplings in Corsica, plus new features needed for ITER scenario development. The code has been used to assess the capability of ITER's in-vessel coils (VS3) and is presently being used for ITER control simulations. In this paper, we apply the code to KSTAR. We have updated the KSTAR machine description and will present simulations of plasma-shape and vertical-instability control.

  12. Opportunities for Condensed Matter Research at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Gibson, J. Murray

    2004-03-01

    The Advanced Photon Source is the Western Hemisphere's most brilliant source of x-rays. This 3rd-generation 7-GeV synchrotron source can accomodate 34 insertion device ports, of which 30 are committed, and 24 are currently operating. In Fiscal Year 2002, we had 2767 unique users carry out at least one experiment at the source, of which 35research in materials science or condensed matter physics. Techniques commonly used by condensed matter scientists include single-crystal and powder diffraction, high-pressure studies, inelastic scattering, absorption and fluorescence spectroscopy, magnetic scattering and fluctuation spectroscopy. Access to the Advanced Photon Source can be either as a general user (www.aps.anl.gov) or as a partner user. Proposals from general users are encouraged, and beamtime is granted based on competitive review. Our capacity to accomodate more general users continues to increase. Typically, partner users build specialized equipment which is made available to general users. Many of our sectors have been built and operated by external Collaborative Access Teams, which support general users who enter through the APS centralized system. With the help of partnerships, the APS continues to evolve state-of-the-art beamlines of interest to condensed matter scientists, in areas such as inelastic scattering and nano-imaging. The Advanced Photon Source is closely connected with the new Center for Nanoscale Materials User Facility at Argonne. In this talk I will present notable examples of recent condensed matter physics experiments which utilized the unique capabilities of existing beamlines, and discuss future beamlines at the Advanced Photon Source.

  13. A changing landscape for advance directives in dementia research.

    PubMed

    Pierce, Robin

    2010-02-01

    The number of persons afflicted by dementia has increased steadily. The need for research leading to diagnostic and therapeutic interventions is widely recognized. However, dementia patients eventually lose the capacity to consent to the very research that could lead to discoveries of effective interventions. Worldwide, surrogate decision-making remains the primary means of consent for this population. This significantly restricts the autonomy of competent patients who wish to prospectively consent to research and do not wish to relinquish this decision to a third party. Advance research directives (ARDs) have been proposed as a mechanism for prospective consent for persons who anticipate cognitive impairment, as in the case of prodromal or early stage dementia patients. Currently, few guidelines specifically address the use of ARDs despite calls for official recognition. This absence of official guidelines regarding ARDs renders this mechanism susceptible to misuse, under-use, or non-use in instances where it could be advantageous for individuals, their families/caregivers, and progress in dementia research and treatment. This paper explores the changing landscape of ARDs, identifying relevant scientific, social, and policy developments, and queries whether, under these circumstances, reticence to use, recognize, or regulate ARDs is justified. It addresses some of the persistent issues related to vulnerability, the role of surrogates, and scope of prospective consent, and concludes that ARDs can serve as an important mechanism of autonomy and empowerment, and that protections should be crafted such that the availability of this option is not limited to those who also appoint a surrogate.

  14. [Research advances in methyl bromide in the ocean].

    PubMed

    Du, Hui-na; Xie, Wen-xia; Cui, Yu-qian; Chen, Jian-lei; Ye, Si-yuan

    2014-12-01

    Methyl bromide is an important atmospheric trace gas, which plays significant roles in the global warming and atmospheric chemistry. The ocean plays important and complex roles in the global biogeochemical cycles of methyl bromide, not only the source of atmospheric methyl bromide, but also the sink. Therefore, developing the chemical research of the soluble methyl bromide in the ocean, will not only have a certain guiding significance to the atmospheric ozone layer protection, but also provide a theoretical basis for estimating methyl bromide's contribution to the global environmental change on global scale. This paper reviewed the research advances on methyl bromide in the ocean, from the aspects of the biogeochemical cycle of methyl bromide in the ocean, the analysis and determination method, the concentration distribution, the sea-to-air flux and its sources and sinks in the atmosphere. Some deficiencies in the current studies were put forward, and the directions of the future studies were prospected.

  15. PREFACE: 7th EEIGM International Conference on Advanced Materials Research

    NASA Astrophysics Data System (ADS)

    Joffe, Roberts

    2013-12-01

    The 7th EEIGM Conference on Advanced Materials Research (AMR 2013) was held at Luleå University of Technology on the 21-22 March 2013 in Luleå, SWEDEN. This conference is intended as a meeting place for researchers involved in the EEIGM programme, in the 'Erasmus Mundus' Advanced Materials Science and Engineering Master programme (AMASE) and the 'Erasmus Mundus' Doctoral Programme in Materials Science and Engineering (DocMASE). This is great opportunity to present their on-going research in the various fields of Materials Science and Engineering, exchange ideas, strengthen co-operation as well as establish new contacts. More than 60 participants representing six countries attended the meeting, in total 26 oral talks and 19 posters were presented during two days. This issue of IOP Conference Series: Materials Science and Engineering presents a selection of articles from EEIGM-7 conference. Following tradition from previous EEIGM conferences, it represents the interdisciplinary nature of Materials Science and Engineering. The papers presented in this issue deal not only with basic research but also with applied problems of materials science. The presented topics include theoretical and experimental investigations on polymer composite materials (synthetic and bio-based), metallic materials and ceramics, as well as nano-materials of different kind. Special thanks should be directed to the senior staff of Division of Materials Science at LTU who agreed to review submitted papers and thus ensured high scientific level of content of this collection of papers. The following colleagues participated in the review process: Professor Lennart Walström, Professor Roberts Joffe, Professor Janis Varna, Associate Professor Marta-Lena Antti, Dr Esa Vuorinen, Professor Aji Mathew, Professor Alexander Soldatov, Dr Andrejs Purpurs, Dr Yvonne Aitomäki, Dr Robert Pederson. Roberts Joffe October 2013, Luleå Conference photograph EEIGM7 conference participants, 22 March 2013 The PDF

  16. Research advances on potential neurotoxicity of quantum dots.

    PubMed

    Wu, Tianshu; Zhang, Ting; Chen, Yilu; Tang, Meng

    2016-03-01

    With rapid development of nanotechnology, quantum dots (QDs) as advanced nanotechnology products have been widely used in biological and biomedical studies, including neuroscience, due to their superior optical properties. In recent years, there has been intense concern regarding the toxicity of QDs with a growing number of studies. However, the knowledge of neurotoxic consequences of QDs applied in living organisms is lagging behind their development, while a potential risk of neurotoxicity arises if mass production of QDs leads to increased exposure and distribution in the nervous system. Owing to the quantum size effect of QDs, they are capable of crossing the blood-brain barrier or moving along neural pathways and entering the brain. Nevertheless, the interactions of QDs with cells and tissues in the central nervous system are not well understood. This review highlighted research advances on the neurotoxicity of QDs in the central nervous system, including oxidative stress injury, elevated cytoplasmic Ca(2+) levels and autophagy to damage in vitro neural cells, and impairments of synaptic transmission and plasticity as well as brain functions in tested animals, with the hope of throwing light on future research directions of QD neurotoxicity, which is a demanding topic that requires further exploration.

  17. Advanced Virtual Reality Simulations in Aerospace Education and Research

    NASA Astrophysics Data System (ADS)

    Plotnikova, L.; Trivailo, P.

    2002-01-01

    Recent research developments at Aerospace Engineering, RMIT University have demonstrated great potential for using Virtual Reality simulations as a very effective tool in advanced structures and dynamics applications. They have also been extremely successful in teaching of various undergraduate and postgraduate courses for presenting complex concepts in structural and dynamics designs. Characteristic examples are related to the classical orbital mechanics, spacecraft attitude and structural dynamics. Advanced simulations, reflecting current research by the authors, are mainly related to the implementation of various non-linear dynamic techniques, including using Kane's equations to study dynamics of space tethered satellite systems and the Co-rotational Finite Element method to study reconfigurable robotic systems undergoing large rotations and large translations. The current article will describe the numerical implementation of the modern methods of dynamics, and will concentrate on the post-processing stage of the dynamic simulations. Numerous examples of building Virtual Reality stand-alone animations, designed by the authors, will be discussed in detail. These virtual reality examples will include: The striking feature of the developed technology is the use of the standard mathematical packages, like MATLAB, as a post-processing tool to generate Virtual Reality Modelling Language files with brilliant interactive, graphics and audio effects. These stand-alone demonstration files can be run under Netscape or Microsoft Explorer and do not require MATLAB. Use of this technology enables scientists to easily share their results with colleagues using the Internet, contributing to the flexible learning development at schools and Universities.

  18. Oil shale, tar sand, coal research advanced exploratory process technology, jointly sponsored research

    SciTech Connect

    Speight, J.G.

    1992-01-01

    Accomplishments for the past quarter are presented for the following five tasks: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers oil shale process studies. Tar sand research is on process development of Recycle Oil Pyrolysis and Extraction (ROPE) Process. Coal research covers: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts;advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; NMR analysis of samples from the ocean drilling program; in situ treatment of manufactured gas plant contaminated soils demonstration program; and solid state NMR analysis of naturally and artificially matured kerogens.

  19. Area Reports. Advanced materials and devices research area. Silicon materials research task, and advanced silicon sheet task

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The objectives of the Silicon Materials Task and the Advanced Silicon Sheet Task are to identify the critical technical barriers to low-cost silicon purification and sheet growth that must be overcome to produce a PV cell substrate material at a price consistent with Flat-plate Solar Array (FSA) Project objectives and to overcome these barriers by performing and supporting appropriate R&D. Progress reports are given on silicon refinement using silane, a chemical vapor transport process for purifying metallurgical grade silicon, silicon particle growth research, and modeling of silane pyrolysis in fluidized-bed reactors.

  20. The Advanced Neutron Source research and development plan

    SciTech Connect

    Selby, D.L.

    1992-11-30

    The Advanced Neutron Source (ANS) is being designed as a user-oriented neutron research laboratory centered around the most intense continuous beams of thermal and subthermal neutrons in the world. The ANS will be built around a new research reactor of [approximately] 330 MW fission power, producing an unprecedented peak thermal flux of > 7 [times] 10[sup 19] M[sup [minus]2] [center dot] S[sup [minus]1]. Primarily a research facility, the ANS will accommodate more than 1000 academic, industrial, and government researchers each year. They will conduct basic research in all branches of science-as well as applied research-leading to better understanding of new materials, including high temperature super conductors, plastics, and thin films. Some 48 neutron beam stations will be set up in the ANS beam rooms and the neutron guide hall for neutron scattering and for fundamental and nuclear physics research. There also will be extensive facilities for materials irradiation, isotope production, and analytical chemistry. The R D program will focus on the four objectives: Address feasibility issues; provide analysis support; evaluate options for improvement in performance beyond minimum requirements; and provide prototype demonstrations for unique facilities. The remainder of this report presents (1) the process by which the R D activities are controlled and (2) a discussion of the individual tasks that have been identified for the R D program, including their justification, schedule and costs. The activities discussed in this report will be performed by Martin Marietta Energy Systems, Inc. (MMES) through the Oak Ridge National Laboratory (ORNL) and through subcontracts with industry, universities, and other national laboratories. It should be noted that in general a success path has been assumed for all tasks.

  1. The Advanced Neutron Source research and development plan

    SciTech Connect

    Selby, D.L.

    1992-11-30

    The Advanced Neutron Source (ANS) is being designed as a user-oriented neutron research laboratory centered around the most intense continuous beams of thermal and subthermal neutrons in the world. The ANS will be built around a new research reactor of {approximately} 330 MW fission power, producing an unprecedented peak thermal flux of > 7 {times} 10{sup 19} M{sup {minus}2} {center_dot} S{sup {minus}1}. Primarily a research facility, the ANS will accommodate more than 1000 academic, industrial, and government researchers each year. They will conduct basic research in all branches of science-as well as applied research-leading to better understanding of new materials, including high temperature super conductors, plastics, and thin films. Some 48 neutron beam stations will be set up in the ANS beam rooms and the neutron guide hall for neutron scattering and for fundamental and nuclear physics research. There also will be extensive facilities for materials irradiation, isotope production, and analytical chemistry. The R&D program will focus on the four objectives: Address feasibility issues; provide analysis support; evaluate options for improvement in performance beyond minimum requirements; and provide prototype demonstrations for unique facilities. The remainder of this report presents (1) the process by which the R&D activities are controlled and (2) a discussion of the individual tasks that have been identified for the R&D program, including their justification, schedule and costs. The activities discussed in this report will be performed by Martin Marietta Energy Systems, Inc. (MMES) through the Oak Ridge National Laboratory (ORNL) and through subcontracts with industry, universities, and other national laboratories. It should be noted that in general a success path has been assumed for all tasks.

  2. Advancing cancer control research in an emerging news media environment.

    PubMed

    Smith, Katherine C; Niederdeppe, Jeff; Blake, Kelly D; Cappella, Joseph N

    2013-12-01

    Cancer is both highly feared and highly newsworthy, and there is a robust body of research documenting the content and effects of cancer news coverage on health behaviors and policy. Recent years have witnessed ongoing, transformative shifts in American journalism alongside rapid advances in communication technology and the public information environment. These changes create a pressing need to consider a new set of research questions, sampling strategies, measurement techniques, and theories of media effects to ensure continued relevance and adaptation of communication research to address critical cancer control concerns. This paper begins by briefly reviewing what we know about the role of cancer news in shaping cancer-related beliefs, attitudes, behaviors, and policies. We then outline challenges and opportunities, both theoretical and methodological, posed by the rapidly changing news media environment and the nature of audience engagement. We organize our discussion around three major shifts associated with the emerging news media environment as it relates to health communication: 1) speed and dynamism of news diffusion, 2) increased narrowcasting of media content for specialized audiences, and 3) broadened participation in shaping media content. In so doing, we articulate a set of questions for future theory and research, in an effort to catalyze innovative communication scholarship to improve cancer prevention and control.

  3. Advanced parallel programming models research and development opportunities.

    SciTech Connect

    Wen, Zhaofang.; Brightwell, Ronald Brian

    2004-07-01

    There is currently a large research and development effort within the high-performance computing community on advanced parallel programming models. This research can potentially have an impact on parallel applications, system software, and computing architectures in the next several years. Given Sandia's expertise and unique perspective in these areas, particularly on very large-scale systems, there are many areas in which Sandia can contribute to this effort. This technical report provides a survey of past and present parallel programming model research projects and provides a detailed description of the Partitioned Global Address Space (PGAS) programming model. The PGAS model may offer several improvements over the traditional distributed memory message passing model, which is the dominant model currently being used at Sandia. This technical report discusses these potential benefits and outlines specific areas where Sandia's expertise could contribute to current research activities. In particular, we describe several projects in the areas of high-performance networking, operating systems and parallel runtime systems, compilers, application development, and performance evaluation.

  4. PREFACE: 6th EEIGM International Conference on Advanced Materials Research

    NASA Astrophysics Data System (ADS)

    Horwat, David; Ayadi, Zoubir; Jamart, Brigitte

    2012-02-01

    The 6th EEIGM Conference on Advanced Materials Research (AMR 2011) was held at the European School of Materials Engineering (EEIGM) on the 7-8 November 2011 in Nancy, France. This biennial conference organized by the EEIGM is a wonderful opportunity for all scientists involved in the EEIGM programme, in the 'Erasmus Mundus' Advanced Materials Science and Engineering Master programme (AMASE) and the 'Erasmus Mundus' Doctoral Programme in Materials Science and Engineering (DocMASE), to present their research in the various fields of Materials Science and Engineering. This conference is also open to other universities who have strong links with the EEIGM and provides a forum for the exchange of ideas, co-operation and future orientations by means of regular presentations, posters and a round-table discussion. This edition of the conference included a round-table discussion on composite materials within the Interreg IVA project '+Composite'. Following the publication of the proceedings of AMR 2009 in Volume 5 of this journal, it is with great pleasure that we present this selection of articles to the readers of IOP Conference Series: Materials Science and Engineering. Once again it represents the interdisciplinary nature of Materials Science and Engineering, covering basic and applicative research on organic and composite materials, metallic materials and ceramics, and characterization methods. The editors are indebted to all the reviewers for reviewing the papers at very short notice. Special thanks are offered to the sponsors of the conference including EEIGM-Université de Lorraine, AMASE, DocMASE, Grand Nancy, Ville de Nancy, Region Lorraine, Fédération Jacques Villermaux, Conseil Général de Meurthe et Moselle, Casden and '+Composite'. Zoubir Ayadi, David Horwat and Brigitte Jamart

  5. The benefits of basic research: advances in reproductive physiology.

    PubMed

    1995-06-01

    At the Population Council's Center for Biomedical Research basic research is being conducted on the reproductive system with a view to develop new contraceptive and reproductive health technologies. Research in the Reproductive Physiology Program at the Center is carried out by reproductive endocrinologists, molecular biologists, and biochemists working in eight laboratories. In several of the laboratories the function of hormones that regulate spermatogenesis is studied. Scientists in Milan Bagchi's laboratory have developed a model system, composed of cellular components in a test tube, that allows them to study the full sequence of events involved in signal transduction. In James Catterall's laboratory, scientists study how androgens regulate sexual development at the molecular level. The steroid hormones cortisol and corticosterone play critical roles in mammalian fetal development. Scientists in several laboratories study the function of two specialized testicular cells: the Leydig and Sertoli cells. The Leydig cell synthesizes and secretes testosterone, an androgen that regulates spermatogenesis. The Sertoli cell maintains the environment in which spermatogenesis occurs. Researchers in Glen Gunsalus's laboratory study an androgen-binding protein secreted by the Sertoli cell. In collaboration with scientists at the Shanghai Research Center of Biotechnology, they used advanced genetic techniques to create a biologically active form of the protein in silk worm larvae. Scientists in Patricia Morris's laboratory recently identified molecular signals that control the interactions between developing sperm and Sertoli and Leydig cells. In the laboratory of David Phillips, scientists are investigating how the HIV virus penetrates the outer layer of cells in the genital tract and infects underlying cells. In 1994 a vaginally applied microbicide was developed that may inhibit infection by sexually transmitted diseases including HIV. Applications of basic research such

  6. Advanced Stirling Convertor Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore M.; Blaze, Gina M.

    2007-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Space Systems (LMSS), Sunpower Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science and exploration missions. This generator will make use of the free-piston Stirling convertors to achieve higher conversion efficiency than currently available alternatives. The ASRG will utilize two Advanced Stirling Convertors (ASC) to convert thermal energy from a radioisotope heat source to electricity. NASA GRC has initiated several experiments to demonstrate the functionality of the ASC, including: in-air extended operation, thermal vacuum extended operation, and ASRG simulation for mobile applications. The in-air and thermal vacuum test articles are intended to provide convertor performance data over an extended operating time. These test articles mimic some features of the ASRG without the requirement of low system mass. Operation in thermal vacuum adds the element of simulating deep space. This test article is being used to gather convertor performance and thermal data in a relevant environment. The ASRG simulator was designed to incorporate a minimum amount of support equipment, allowing integration onto devices powered directly by the convertors, such as a rover. This paper discusses the design, fabrication, and implementation of these experiments.

  7. Advances in targeted proteomics and applications to biomedical research

    PubMed Central

    Shi, Tujin; Song, Ehwang; Nie, Song; Rodland, Karin D.; Liu, Tao; Qian, Wei-Jun; Smith, Richard D.

    2016-01-01

    Targeted proteomics technique has emerged as a powerful protein quantification tool in systems biology, biomedical research, and increasing for clinical applications. The most widely used targeted proteomics approach, selected reaction monitoring (SRM), also known as multiple reaction monitoring (MRM), can be used for quantification of cellular signaling networks and preclinical verification of candidate protein biomarkers. As an extension to our previous review on advances in SRM sensitivity herein we review recent advances in the method and technology for further enhancing SRM sensitivity (from 2012 to present), and highlighting its broad biomedical applications in human bodily fluids, tissue and cell lines. Furthermore, we also review two recently introduced targeted proteomics approaches, parallel reaction monitoring (PRM) and data-independent acquisition (DIA) with targeted data extraction on fast scanning high-resolution accurate-mass (HR/AM) instruments. Such HR/AM targeted quantification with monitoring all target product ions addresses SRM limitations effectively in specificity and multiplexing; whereas when compared to SRM, PRM and DIA are still in the infancy with a limited number of applications. Thus, for HR/AM targeted quantification we focus our discussion on method development, data processing and analysis, and its advantages and limitations in targeted proteomics. Finally, general perspectives on the potential of achieving both high sensitivity and high sample throughput for large-scale quantification of hundreds of target proteins are discussed. PMID:27302376

  8. Recent Advances in Research on Widow Spider Venoms and Toxins

    PubMed Central

    Yan, Shuai; Wang, Xianchun

    2015-01-01

    Widow spiders have received much attention due to the frequently reported human and animal injures caused by them. Elucidation of the molecular composition and action mechanism of the venoms and toxins has vast implications in the treatment of latrodectism and in the neurobiology and pharmaceutical research. In recent years, the studies of the widow spider venoms and the venom toxins, particularly the α-latrotoxin, have achieved many new advances; however, the mechanism of action of the venom toxins has not been completely clear. The widow spider is different from many other venomous animals in that it has toxic components not only in the venom glands but also in other parts of the adult spider body, newborn spiderlings, and even the eggs. More recently, the molecular basis for the toxicity outside the venom glands has been systematically investigated, with four proteinaceous toxic components being purified and preliminarily characterized, which has expanded our understanding of the widow spider toxins. This review presents a glance at the recent advances in the study on the venoms and toxins from the Latrodectus species. PMID:26633495

  9. Major clinical research advances in gynecologic cancer in 2014.

    PubMed

    Suh, Dong Hoon; Lee, Kyung Hun; Kim, Kidong; Kang, Sokbom; Kim, Jae Weon

    2015-04-01

    In 2014, 9 topics were selected as major advances in clinical research for gynecologic oncology: 2 each in cervical and corpus cancer, 4 in ovarian cancer, and 1 in breast cancer. For cervical cancer, several therapeutic agents showed viable antitumor clinical response in recurrent and metastatic disease: bevacizumab, cediranib, and immunotherapies including human papillomavirus (HPV)-tumor infiltrating lymphocytes and Z-100. The HPV test received FDA approval as the primary screening tool of cervical cancer in women aged 25 and older, based on the results of the ATHENA trial, which suggested that the HPV test was a more sensitive and efficient strategy for cervical cancer screening than methods based solely on cytology. For corpus cancers, results of a phase III Gynecologic Oncology Group (GOG) 249 study of early-stage endometrial cancer with high-intermediate risk factors are followed by the controversial topic of uterine power morcellation in minimally invasive gynecologic surgery. Promising results of phase II studies regarding the effectiveness of olaparib in various ovarian cancer settings are summarized. After a brief review of results from a phase III study on pazopanib maintenance therapy in advanced ovarian cancer, 2 outstanding 2014 ASCO presentations cover the topic of using molecular subtypes in predicting response to bevacizumab. A review of the use of opportunistic bilateral salpingectomy as an ovarian cancer preventive strategy in the general population is presented. Two remarkable studies that discussed the effectiveness of adjuvant ovarian suppression in premenopausal early breast cancer have been selected as the last topics covered in this review.

  10. Advances in targeted proteomics and applications to biomedical research

    SciTech Connect

    Shi, Tujin; Song, Ehwang; Nie, Song; Rodland, Karin D.; Liu, Tao; Qian, Wei-Jun; Smith, Richard D.

    2016-08-01

    Targeted proteomics technique has emerged as a powerful protein quantification tool in systems biology, biomedical research, and increasing for clinical applications. The most widely used targeted proteomics approach, selected reaction monitoring (SRM), also known as multiple reaction monitoring (MRM), can be used for quantification of cellular signaling networks and preclinical verification of candidate protein biomarkers. As an extension to our previous review on advances in SRM sensitivity (Shi et al., Proteomics, 12, 1074–1092, 2012) herein we review recent advances in the method and technology for further enhancing SRM sensitivity (from 2012 to present), and highlighting its broad biomedical applications in human bodily fluids, tissue and cell lines. Furthermore, we also review two recently introduced targeted proteomics approaches, parallel reaction monitoring (PRM) and data-independent acquisition (DIA) with targeted data extraction on fast scanning high-resolution accurate-mass (HR/AM) instruments. Such HR/AM targeted quantification with monitoring all target product ions addresses SRM limitations effectively in specificity and multiplexing; whereas when compared to SRM, PRM and DIA are still in the infancy with a limited number of applications. Thus, for HR/AM targeted quantification we focus our discussion on method development, data processing and analysis, and its advantages and limitations in targeted proteomics. Finally, general perspectives on the potential of achieving both high sensitivity and high sample throughput for large-scale quantification of hundreds of target proteins are discussed.

  11. High speed research system study. Advanced flight deck configuration effects

    NASA Technical Reports Server (NTRS)

    Swink, Jay R.; Goins, Richard T.

    1992-01-01

    In mid-1991 NASA contracted with industry to study the high-speed civil transport (HSCT) flight deck challenges and assess the benefits, prior to initiating their High Speed Research Program (HSRP) Phase 2 efforts, then scheduled for FY-93. The results of this nine-month effort are presented, and a number of the most significant findings for the specified advanced concepts are highlighted: (1) a no nose-droop configuration; (2) a far forward cockpit location; and (3) advanced crew monitoring and control of complex systems. The results indicate that the no nose-droop configuration is critically dependent upon the design and development of a safe, reliable, and certifiable Synthetic Vision System (SVS). The droop-nose configuration would cause significant weight, performance, and cost penalties. The far forward cockpit location, with the conventional side-by-side seating provides little economic advantage; however, a configuration with a tandem seating arrangement provides a substantial increase in either additional payload (i.e., passengers) or potential downsizing of the vehicle with resulting increases in performance efficiencies and associated reductions in emissions. Without a droop nose, forward external visibility is negated and takeoff/landing guidance and control must rely on the use of the SVS. The technologies enabling such capabilities, which de facto provides for Category 3 all-weather operations on every flight independent of weather, represent a dramatic benefits multiplier in a 2005 global ATM network: both in terms of enhanced economic viability and environmental acceptability.

  12. The biology of infertility: research advances and clinical challenges

    PubMed Central

    Matzuk, Martin M; Lamb, Dolores J

    2013-01-01

    Reproduction is required for the survival of all mammalian species, and thousands of essential ‘sex’ genes are conserved through evolution. Basic research helps to define these genes and the mechanisms responsible for the development, function and regulation of the male and female reproductive systems. However, many infertile couples continue to be labeled with the diagnosis of idiopathic infertility or given descriptive diagnoses that do not provide a cause for their defect. For other individuals with a known etiology, effective cures are lacking, although their infertility is often bypassed with assisted reproductive technologies (ART), some accompanied by safety or ethical concerns. Certainly, progress in the field of reproduction has been realized in the twenty-first century with advances in the understanding of the regulation of fertility, with the production of over 400 mutant mouse models with a reproductive phenotype and with the promise of regenerative gonadal stem cells. Indeed, the past six years have witnessed a virtual explosion in the identification of gene mutations or polymorphisms that cause or are linked to human infertility. Translation of these findings to the clinic remains slow, however, as do new methods to diagnose and treat infertile couples. Additionally, new approaches to contraception remain elusive. Nevertheless, the basic and clinical advances in the understanding of the molecular controls of reproduction are impressive and will ultimately improve patient care. PMID:18989307

  13. XII Advanced Computing and Analysis Techniques in Physics Research

    NASA Astrophysics Data System (ADS)

    Speer, Thomas; Carminati, Federico; Werlen, Monique

    November 2008 will be a few months after the official start of LHC when the highest quantum energy ever produced by mankind will be observed by the most complex piece of scientific equipment ever built. LHC will open a new era in physics research and push further the frontier of Knowledge This achievement has been made possible by new technological developments in many fields, but computing is certainly the technology that has made possible this whole enterprise. Accelerator and detector design, construction management, data acquisition, detectors monitoring, data analysis, event simulation and theoretical interpretation are all computing based HEP activities but also occurring many other research fields. Computing is everywhere and forms the common link between all involved scientists and engineers. The ACAT workshop series, created back in 1990 as AIHENP (Artificial Intelligence in High Energy and Nuclear Research) has been covering the tremendous evolution of computing in its most advanced topics, trying to setup bridges between computer science, experimental and theoretical physics. Conference web-site: http://acat2008.cern.ch/ Programme and presentations: http://indico.cern.ch/conferenceDisplay.py?confId=34666

  14. The neutron texture diffractometer at the China Advanced Research Reactor

    NASA Astrophysics Data System (ADS)

    Li, Mei-Juan; Liu, Xiao-Long; Liu, Yun-Tao; Tian, Geng-Fang; Gao, Jian-Bo; Yu, Zhou-Xiang; Li, Yu-Qing; Wu, Li-Qi; Yang, Lin-Feng; Sun, Kai; Wang, Hong-Li; Santisteban, J. r.; Chen, Dong-Feng

    2016-03-01

    The first neutron texture diffractometer in China has been built at the China Advanced Research Reactor, due to strong demand for texture measurement with neutrons from the domestic user community. This neutron texture diffractometer has high neutron intensity, moderate resolution and is mainly applied to study texture in commonly used industrial materials and engineering components. In this paper, the design and characteristics of this instrument are described. The results for calibration with neutrons and quantitative texture analysis of zirconium alloy plate are presented. The comparison of texture measurements with the results obtained in HIPPO at LANSCE and Kowari at ANSTO illustrates the reliability of the texture diffractometer. Supported by National Nature Science Foundation of China (11105231, 11205248, 51327902) and International Atomic Energy Agency-TC program (CPR0012)

  15. Advanced research on anti-tumor effects of amygdalin.

    PubMed

    Song, Zuoqing; Xu, Xiaohong

    2014-08-01

    Malignant tumors are the major disease that cause serious damage to human health, and have been listed as the premier diseases which seriously threatened human health by World Health Organization (WHO). In recent years the development of antitumor drugs has been gradually transformed from cytotoxic drugs to improving the selectivity of drugs, overcoming multidrug resistance, development of new targeted drugs and low toxicity with high specificity drugs. Amygdalin is a natural product that owns antitumor activity, less side effects, widely sourced and relatively low priced. All these features make the amygdalin a promising antitumor drugs, if combined with conditional chemotherapy drugs, which can produce synergistic effect. In this paper, we summarized the pharmacological activity, toxicity and antitumor activity of amygdalin, mainly focused on the advanced research of amygdalin on its antitumor effects in recent years, providing new insights for the development of new anticancer drugs, new targets searching and natural antitumor mechanism investigations.

  16. Research opportunities in atomic physics at the Advanced Light Source

    NASA Astrophysics Data System (ADS)

    Schlachter, A. S.; Robinson, A. L.

    1989-09-01

    The Advanced Light Source (ALS) now under construction at the Lawrence Berkeley Laboratory is being planned as a national user facility for the production of high-brightness and partially coherent X-ray and ultraviolet synchrotron radiation. The ALS is based on a low-emittance electron storage ring optimized for operation at 1.5 GeV with insertion devices in 11 long straight sections and up to 48 bending-magnet ports. High-brightness photon beams from less than 10 eV to more than 1 keV will be produced by undulators, thereby providing many research opportunities in atomic and molecular physics and chemistry. Wigglers and bending magnets will provide high-flux broad-band radiation at energies to 10 keV.

  17. Review on advances in nanoscale microscopy in cement research.

    PubMed

    Sharif, Ahmed

    2016-01-01

    With the rapid advancement of nanotechnology, manipulation and characterization of materials in nano scale have become an obvious part of construction related technology. This review will focus on some of the nanoscopy techniques that are most frequently used in current research of cement based nanostructured materials. In particular scanning electron microscopy, transmission electron microscopy, atomic force microscopy, scanning tunneling microscopy, tomography, scanning transmission X-ray microscopy and laser scanning confocal microscopy are addressed. A number of case studies related to microscopic characterization of nano materials utilizing the aforementioned techniques from the published literature are discussed. While these approaches are beginning to yield promising insight, continued progress will definitely provide a potential sustainable solution for the design, development and promotion towards nanoscale engineering of cementitious materials.

  18. Lipids from heterotrophic microbes: advances in metabolism research.

    PubMed

    Kosa, Matyas; Ragauskas, Arthur J

    2011-02-01

    Heterotrophic oleaginous microorganisms are capable of producing over 20% of their weight in single cell oils (SCOs) composed of triacylglycerols (TAGs). These TAGs contain fatty acids, such as palmitic, stearic and oleic acids, that are well-suited for biodiesel applications. Although some of these microbes are able to accumulate SCOs while growing on inexpensive agro-industrial biomass, the competition with plant oil resources means that a significant increase in productivity is desired. The present review aims to summarize recent details in lipid metabolism research and engineering (e.g. direct fatty acid ethyl ester production), as well as culture condition optimization and innovations, such as solid-state or semi-solid-state fermentation, that can all contribute to higher productivity and further advancement of the field.

  19. [Recent advances of genetic research on paroxysmal kinesigenic dyskinesias].

    PubMed

    Li, Xun-hua; Chen, Su-qin; Wang, Yi-ming

    2008-08-01

    Paroxysmal kinesigenic choreoathetosis/dyskinesias (PKC/PKD) is one of the most common types of praoxysmal dyskinesia. It is characterized by recurrent episodic dystonia and/or choreoathetotic attacks triggered by sudden voluntary movement. Some patients have a history of febrile infantile convulsion. PKD commonly occurs sporadically or as an autosomal-dominant familial trait with variable penetrance. It has been linked to 16p12-q12 or 16q13-q22 loci in various families of different populations, which suggests a genetic heterogeneity. The exact etiology and pathogenesis of PKD await further elucidation, although ion channelopathy is suggested as a probable underlying etiology. Here, the recent advances of the genetic research on PKD will be reviewed.

  20. [Advances in the researches of lutein and alzheimer's disease].

    PubMed

    Xu, Xianrong; Lin, Xiaoming

    2015-05-01

    Lutein, a kind of oxycarotenoid, can pass the blood brain barrier and preferentially accumulate in the human brain, which is the most abundant carotenoid in human brain. Evidence from multiple studies suggested that lutein was closely related to age-related cognitive decline and risk of Alzheimer's disease (AD) in human. Dietary, plasma and brain concentrations of lutein were negatively associated with age-related cognitive decline. Lutein concentrations in plasma and brain were significantly lower in AD patients than those of health control. In human brain, lutein was the sole carotenoid which consistently associated with a range of cognitive function measures. In elderly women, lutein supplement can improve the cognitive function. In this article, we systematically reviewed the literature on the role of lutein in age-related cognitive decline and alzheimer's disease and its possible mechanisms. It may prove some benefit information for the advanced research and prevention of AD.

  1. [Research advances in soil fungal diversity and molecular ecology].

    PubMed

    Zhang, Jing; Zhang, Huiwen; Li, Xinyu; Zhang, Chenggang

    2004-10-01

    Fungi are a kind of important soil microorganisms that participate in the decomposition of organic materials and supply nutrients to the plant through symbiosis. But, they can also reduce the output of food due to the existence of pathogenic fungi. Soil fungal diversity plays a fundamentally unique role in maintaining the balance of ecosystem and in supplying large amount of undeveloped resources for the people. In this paper, soil fungal diversity was expatiated from the viewpoints of species diversity, habitant diversity and functional diversity, and furthermore, the research advances in the molecular ecology of soil fungal diversity were reviewed from the aspects of the fungal diversity of farmland, woodland, pasture, extreme environment, and other complex environments. The affecting factors of soil fungal diversity were discussed, and the development trend of the study on soil fungal diversity was also approached.

  2. Advanced research and technology programs for advanced high-pressure oxygen-hydrogen rocket propulsion

    NASA Astrophysics Data System (ADS)

    Marsik, S. J.; Morea, S. F.

    1985-03-01

    A research and technology program for advanced high pressure, oxygen-hydrogen rocket propulsion technology is presently being pursued by the National Aeronautics and Space Administration (NASA) to establish the basic discipline technologies, develop the analytical tools, and establish the data base necessary for an orderly evolution of the staged combustion reusable rocket engine. The need for the program is based on the premise that the USA will depend on the Shuttle and its derivative versions as its principal Earth-to-orbit transportation system for the next 20 to 30 yr. The program is focused in three principal areas of enhancement: (1) life extension, (2) performance, and (3) operations and diagnosis. Within the technological disciplines the efforts include: rotordynamics, structural dynamics, fluid and gas dynamics, materials fatigue/fracture/life, turbomachinery fluid mechanics, ignition/combustion processes, manufacturing/producibility/nondestructive evaluation methods and materials development/evaluation. An overview of the Advanced High Pressure Oxygen-Hydrogen Rocket Propulsion Technology Program Structure and Working Groups objectives are presented with highlights of several significant achievements.

  3. Advanced research and technology program for advanced high pressure oxygen-hydrogen rocket propulsion

    NASA Technical Reports Server (NTRS)

    Marsik, S. J.; Morea, S. F.

    1985-01-01

    A research and technology program for advanced high pressure, oxygen-hydrogen rocket propulsion technology is presently being pursued by the National Aeronautics and Space Administration (NASA) to establish the basic discipline technologies, develop the analytical tools, and establish the data base necessary for an orderly evolution of the staged combustion reusable rocket engine. The need for the program is based on the premise that the USA will depend on the Shuttle and its derivative versions as its principal Earth-to-orbit transportation system for the next 20 to 30 yr. The program is focused in three principal areas of enhancement: (1) life extension, (2) performance, and (3) operations and diagnosis. Within the technological disciplines the efforts include: rotordynamics, structural dynamics, fluid and gas dynamics, materials fatigue/fracture/life, turbomachinery fluid mechanics, ignition/combustion processes, manufacturing/producibility/nondestructive evaluation methods and materials development/evaluation. An overview of the Advanced High Pressure Oxygen-Hydrogen Rocket Propulsion Technology Program Structure and Working Groups objectives are presented with highlights of several significant achievements.

  4. Advanced research and technology programs for advanced high-pressure oxygen-hydrogen rocket propulsion

    NASA Technical Reports Server (NTRS)

    Marsik, S. J.; Morea, S. F.

    1985-01-01

    A research and technology program for advanced high pressure, oxygen-hydrogen rocket propulsion technology is presently being pursued by the National Aeronautics and Space Administration (NASA) to establish the basic discipline technologies, develop the analytical tools, and establish the data base necessary for an orderly evolution of the staged combustion reusable rocket engine. The need for the program is based on the premise that the USA will depend on the Shuttle and its derivative versions as its principal Earth-to-orbit transportation system for the next 20 to 30 yr. The program is focused in three principal areas of enhancement: (1) life extension, (2) performance, and (3) operations and diagnosis. Within the technological disciplines the efforts include: rotordynamics, structural dynamics, fluid and gas dynamics, materials fatigue/fracture/life, turbomachinery fluid mechanics, ignition/combustion processes, manufacturing/producibility/nondestructive evaluation methods and materials development/evaluation. An overview of the Advanced High Pressure Oxygen-Hydrogen Rocket Propulsion Technology Program Structure and Working Groups objectives are presented with highlights of several significant achievements.

  5. FY09 Advanced Instrumentation and Active Interrogation Research for Safeguards

    SciTech Connect

    D. L. Chichester; S. A. Pozzi; E. H. Seabury; J. L. Dolan; M. Flaska; J. T. Johnson; S. M. Watson; J. Wharton

    2009-08-01

    Multiple small-scale projects have been undertaken to investigate advanced instrumentation solutions for safeguard measurement challenges associated with advanced fuel cycle facilities and next-generation fuel reprocessing installations. These activities are in support of the U.S. Department of Energy's Fuel Cycle Research and Development program and its Materials Protection, Accounting, and Control for Transmutation (MPACT) campaign. 1) Work was performed in a collaboration with the University of Michigan (Prof. Sara Pozzi, co-PI) to investigate the use of liquid-scintillator radiation detectors for assaying mixed-oxide (MOX) fuel, to characterize its composition and to develop advanced digital pulse-shape discrimination algorithms for performing time-correlation measurements in the MOX fuel environment. This work included both simulations and experiments and has shown that these techniques may provide a valuable approach for use within advanced safeguard measurement scenarios. 2) Work was conducted in a collaboration with Oak Ridge National Laboratory (Dr. Paul Hausladen, co-PI) to evaluate the strengths and weaknesses of the fast-neutron coded-aperture imaging technique for locating and characterizing fissile material, and as a tool for performing hold-up measurements in fissile material handling facilities. This work involved experiments at Idaho National Laboratory, using MOX fuel and uranium metal, in both passive and active interrogation configurations. A complete analysis has not yet been completed but preliminary results suggest several potential uses for the fast neutron imaging technique. 3) Work was carried out to identify measurement approaches for determining nitric acid concentration in the range of 1 – 4 M and beyond. This work included laboratory measurements to investigate the suitability of prompt-gamma neutron activation analysis for this measurement and product reviews of other commercial solutions. Ultrasonic density analysis appears to be

  6. Invited Review Article: Advanced light microscopy for biological space research

    NASA Astrophysics Data System (ADS)

    De Vos, Winnok H.; Beghuin, Didier; Schwarz, Christian J.; Jones, David B.; van Loon, Jack J. W. A.; Bereiter-Hahn, Juergen; Stelzer, Ernst H. K.

    2014-10-01

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  7. Invited Review Article: Advanced light microscopy for biological space research

    SciTech Connect

    De Vos, Winnok H.; Beghuin, Didier; Schwarz, Christian J.; Jones, David B.; Loon, Jack J. W. A. van

    2014-10-15

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  8. Invited review article: Advanced light microscopy for biological space research.

    PubMed

    De Vos, Winnok H; Beghuin, Didier; Schwarz, Christian J; Jones, David B; van Loon, Jack J W A; Bereiter-Hahn, Juergen; Stelzer, Ernst H K

    2014-10-01

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  9. Fossil energy: From laboratory to marketplace. Part 2, The role of advanced research

    SciTech Connect

    Not Available

    1992-03-01

    The purpose of this work is to provide a summary description of the role of advanced research in the overall Fossil Energy R&D program successes. It presents the specific Fossil Energy advanced research products that have been adopted commercially or fed into other R&D programs as part of the crosscutting enabling technology base upon which advanced systems are based.

  10. Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 1 -- Base program. Final report, October 1986--September 1993

    SciTech Connect

    Smith, V.E.

    1994-05-01

    Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

  11. Fingerprint identification: advances since the 2009 National Research Council report

    PubMed Central

    Champod, Christophe

    2015-01-01

    This paper will discuss the major developments in the area of fingerprint identification that followed the publication of the National Research Council (NRC, of the US National Academies of Sciences) report in 2009 entitled: Strengthening Forensic Science in the United States: A Path Forward. The report portrayed an image of a field of expertise used for decades without the necessary scientific research-based underpinning. The advances since the report and the needs in selected areas of fingerprinting will be detailed. It includes the measurement of the accuracy, reliability, repeatability and reproducibility of the conclusions offered by fingerprint experts. The paper will also pay attention to the development of statistical models allowing assessment of fingerprint comparisons. As a corollary of these developments, the next challenge is to reconcile a traditional practice dominated by deterministic conclusions with the probabilistic logic of any statistical model. There is a call for greater candour and fingerprint experts will need to communicate differently on the strengths and limitations of their findings. Their testimony will have to go beyond the blunt assertion of the uniqueness of fingerprints or the opinion delivered ispe dixit. PMID:26101284

  12. Fingerprint identification: advances since the 2009 National Research Council report.

    PubMed

    Champod, Christophe

    2015-08-05

    This paper will discuss the major developments in the area of fingerprint identification that followed the publication of the National Research Council (NRC, of the US National Academies of Sciences) report in 2009 entitled: Strengthening Forensic Science in the United States: A Path Forward. The report portrayed an image of a field of expertise used for decades without the necessary scientific research-based underpinning. The advances since the report and the needs in selected areas of fingerprinting will be detailed. It includes the measurement of the accuracy, reliability, repeatability and reproducibility of the conclusions offered by fingerprint experts. The paper will also pay attention to the development of statistical models allowing assessment of fingerprint comparisons. As a corollary of these developments, the next challenge is to reconcile a traditional practice dominated by deterministic conclusions with the probabilistic logic of any statistical model. There is a call for greater candour and fingerprint experts will need to communicate differently on the strengths and limitations of their findings. Their testimony will have to go beyond the blunt assertion of the uniqueness of fingerprints or the opinion delivered ispe dixit.

  13. [Research advances in cadmium pollution of peanut (Arachis hypogaea L.)].

    PubMed

    Wang, Kai-rong; Zhang, Lei

    2008-12-01

    Peanut (Arachis hypogaea L.) is a major oil-bearing crop in the world, and as well, an important resource of plant protein and a main raw material for food processing. With the increasing of its direct human consumption and food processing, the Cd concentration in peanut kernel has aroused great concern in recent years. China is a main country of the production and exportation of peanut, but the Cd enrichment in peanut kernel is the main obstacle for its peanut export trade. In this paper, the research advances in Cd pollution of peanut kernel were reviewed, based on the characteristics and mechanisms of Cd accumulation and distribution in peanut kernel, the intra-specific variation of kernel Cd content, and the measures in controlling kernel Cd content. Two strategies were put forward for controlling Cd pollution of peanut kernel, i.e., to reduce the Cd uptake by main root system of peanut plant, and to control the transference of Cd from root to fruit (kernel). In order to applying the strategies effectively, researches on the mechanisms of Cd accumulation in peanut kernel should be enhanced in three aspects, i.e., root vitality and its relationship with Cd accumulation in kernel, mechanism of fruit Cd absorption and its contribution to kernel Cd content, and mechanism of Cd transference in plants and its effects on kernel Cd content.

  14. ARCHES: Advancing Research & Capacity in Hydrologic Education and Science

    NASA Astrophysics Data System (ADS)

    Milewski, A.; Fryar, A. E.; Durham, M. C.; Schroeder, P.; Agouridis, C.; Hanley, C.; Rotz, R. R.

    2013-12-01

    Educating young scientists and building capacity on a global scale is pivotal towards better understanding and managing our water resources. Based on this premise the ARCHES (Advancing Research & Capacity in Hydrologic Education and Science) program has been established. This abstract provides an overview of the program, links to access information, and describes the activities and outcomes of student participants from the Middle East and North Africa. The ARCHES program (http://arches.wrrs.uga.edu) is an integrated hydrologic education approach using online courses, field programs, and various hands-on workshops. The program aims to enable young scientists to effectively perform the high level research that will ultimately improve quality of life, enhance science-based decision making, and facilitate collaboration. Three broad, interlinked sets of activities are incorporated into the ARCHES program: (A1) the development of technical expertise, (A2) the development of professional contacts and skills, and (A3) outreach and long-term sustainability. The development of technical expertise (A1) is implemented through three progressive instructional sections. Section 1: Students were guided through a series of online lectures and exercises (Moodle: http://wrrs.uga.edu/moodle) covering three main topics (Remote Sensing, GIS, and Hydrologic Modeling). Section 2: Students participated in a hands-on workshop hosted at the University of Georgia's Water Resources and Remote Sensing Laboratory (WRRSL). Using ENVI, ArcGIS, and ArcSWAT, students completed a series of lectures and real-world applications (e.g., Development of Hydrologic Models). Section 3: Students participated in field studies (e.g., measurements of infiltration, recharge, streamflow, and water-quality parameters) conducted by U.S. partners and international collaborators in the participating countries. The development of professional contacts and skills (A2) was achieved through the promotion of networking

  15. [Advanced Gas Turbine Systems Research]. Technical Quarterly Progress Report

    SciTech Connect

    1998-09-30

    Major Accomplishments by Advanced Gas Turbine Systems Research (AGTSR) during this reporting period are highlighted below and amplified in later sections of this report: AGTSR distributed 50 proposals from the 98RFP to the IRB for review, evaluation and rank-ordering during the summer; AGTSR conducted a detailed program review at DOE-FETC on July 24; AGTSR organized the 1998 IRB proposal review meeting at SCIES on September 15-16; AGTSR consolidated all the IRB proposal scores and rank-orderings to facilitate the 98RFP proposal deliberations; AGTSR submitted meeting minutes and proposal short-list recommendation to the IRB and DOE for the 98RFP solicitation; AGTSR reviewed two gas turbine related proposals as part of the CU RFP State Project for renovating the central energy facility; AGTSR reviewed and cleared research papers with the IRB from the University of Pittsburgh, Wisconsin, and Minnesota; AGTSR assisted GTA in obtaining university stakeholder support of the ATS program from California, Pennsylvania, and Colorado; AGTSR assisted GTA in distributing alert notices on potential ATS budget cuts to over 150 AGTSR performing university members; AGTSR submitted proceedings booklet and organizational information pertaining to the OAI hybrid gas turbine workshop to DOE-FETC; For DOE-FETC, AGTSR updated the university consortium poster to include new members and research highlights; For DOE-FETC, the general AGTSR Fact Sheet was updated to include new awards, workshops, educational activity and select accomplishments from the research projects; For DOE-FETC, AGTSR prepared three fact sheets highlighting university research supported in combustion, aero-heat transfer, and materials; For DOE-FETC, AGTSR submitted pictures on materials research for inclusion in the ATS technology brochure; For DOE-FETC, AGTSR submitted a post-2000 roadmap showing potential technology paths AGTSR could pursue in the next decade; AGTSR distributed the ninth newsletter UPDATE to DOE, the

  16. Investigation of SOL parameters and divertor particle flux from electric probe measurements in KSTAR

    NASA Astrophysics Data System (ADS)

    Bak, J. G.; Kim, H. S.; Bae, M. K.; Juhn, J. W.; Seo, D. C.; Bang, E. N.; Shim, S. B.; Chung, K. S.; Lee, H. J.; Hong, S. H.

    2015-08-01

    The upstream scrape-off layer (SOL) profiles and downstream particle fluxes are measured with a fast reciprocating Langmuir probe assembly (FRLPA) at the outboard mid-plane and a fixed edge Langmuir probe array (ELPA) at divertor region, respectively in the KSTAR. It is found that the SOL has a two-layer structure in the outboard wall-limited (OWL) ohmic and L-mode: a near SOL (∼5 mm zone) with a narrow feature and a far SOL with a broader profile. The near SOL width evaluated from the SOL profiles in the OWL plasmas is comparable to the scaling for the L-mode divertor plasmas in the JET and AUG. In the SOL profiles and the divertor particle flux profile during the ELMy H-modes, the characteristic e-folding lengths of electron temperature, plasma density and particle flux during an ELM phase are about two times larger than ones at the inter ELM.

  17. ECE imaging of modified edge localized modes (ELMs) under n=1 magnetic perturbations in KSTAR

    NASA Astrophysics Data System (ADS)

    Lee, Jaehyun; Yun, G. S.; Kim, M.; Choi, M. J.; Lee, W.; Park, H. K.; Lee, J. H.; Jeon, Y. M.; Domier, C. W.; Luhmann, N. C., Jr.; Donné, A. J. H.

    2012-10-01

    In order to control the ELMs in KSTAR H-mode plasmas, magnetic perturbations (MPs) of toroidal mode number n=1 were introduced through three sets of field error correction (FEC) coils [1] during the 2011 campaign. The plasma response was studied in 2-D using electron cyclotron emission imaging (ECEI) diagnostic [2], which showed alteration of both the spatial structure and temporal dynamics of the ELMs. The characteristics of the ELMs such as the growth rate, filament size, and poloidal flow are compared before and after the n=1 MP for various configurations of the FEC coil currents. In particular, the ELM suppression by resonant MP condition is characterized by occasional (non-periodic) tiny transport events, which involve the appearance and crash of transient filament structure localized near the separatrix.[4pt] [1] Y. Jeon et al., accepted for publication in Phys. Rev. Lett.[0pt] [2] G.S. Yun et al., Phys. Rev. Lett., 107, 045004 (2011).

  18. Measurements of internal magnetic structures from neutral beam emission spectra in KSTAR

    NASA Astrophysics Data System (ADS)

    Ko, J.; Chung, J.; Song, M.; You, K. I.

    2012-10-01

    The magnetic pitch angle and the magnitude from magnetically confined fusion devices are measured by fitting the beam emission spectra under the motional Stark effect (MSE). Initial values for the free parameters in the complicated raw spectra are obtained from and constrained by the MSE model in the Atomic Data and Analysis Structure (ADAS) which uses a collisional-radiative model with level populations nlm-resolved up to n = 4 and a simple born approximation for ion-impact cross sections. This technique is examined for the MSE spectra taken from the KSTAR plasma discharges and its validity and applicability are discussed to directly infer the internal magnetic field structure with a wide range of pitch angles. The sensitivity of EFIT reconstruction on these internal magnetic data is also discussed.

  19. Development of KSTAR ECE imaging system for measurement of temperature fluctuations and edge density fluctuations.

    PubMed

    Yun, G S; Lee, W; Choi, M J; Kim, J B; Park, H K; Domier, C W; Tobias, B; Liang, T; Kong, X; Luhmann, N C; Donné, A J H

    2010-10-01

    The ECE imaging (ECEI) diagnostic tested on the TEXTOR tokamak revealed the sawtooth reconnection physics in unprecedented detail, including the first observation of high-field-side crash and collective heat transport [H. K. Park, N. C. Luhmann, Jr., A. J. H. Donné et al., Phys. Rev. Lett. 96, 195003 (2006)]. An improved ECEI system capable of visualizing both high- and low-field sides simultaneously with considerably better spatial coverage has been developed for the KSTAR tokamak in order to capture the full picture of core MHD dynamics. Direct 2D imaging of other MHD phenomena such as tearing modes, edge localized modes, and even Alfvén eigenmodes is expected to be feasible. Use of ECE images of the optically thin edge region to recover 2D electron density changes during L/H mode transitions is also envisioned, providing powerful information about the underlying physics. The influence of density fluctuations on optically thin ECE is discussed.

  20. Development of KSTAR ECE imaging system for measurement of temperature fluctuations and edge density fluctuations

    SciTech Connect

    Yun, G. S.; Lee, W.; Choi, M. J.; Kim, J. B.; Park, H. K.; Domier, C. W.; Tobias, B.; Liang, T.; Kong, X.; Luhmann, N. C. Jr.; Donne, A. J. H.

    2010-10-15

    The ECE imaging (ECEI) diagnostic tested on the TEXTOR tokamak revealed the sawtooth reconnection physics in unprecedented detail, including the first observation of high-field-side crash and collective heat transport [H. K. Park, N. C. Luhmann, Jr., A. J. H. Donneet al., Phys. Rev. Lett. 96, 195003 (2006)]. An improved ECEI system capable of visualizing both high- and low-field sides simultaneously with considerably better spatial coverage has been developed for the KSTAR tokamak in order to capture the full picture of core MHD dynamics. Direct 2D imaging of other MHD phenomena such as tearing modes, edge localized modes, and even Alfven eigenmodes is expected to be feasible. Use of ECE images of the optically thin edge region to recover 2D electron density changes during L/H mode transitions is also envisioned, providing powerful information about the underlying physics. The influence of density fluctuations on optically thin ECE is discussed.

  1. Observation of the loss of pre-disruptive runaway electrons in KSTAR ohmic plasma disruptions

    NASA Astrophysics Data System (ADS)

    Cheon, MunSeong; Kim, Junghee; An, YoungHwa; Seo, Dongcheol; Kim, Hyunseok

    2016-12-01

    A newly-developed fast neutron detector revealed a close relationship between the loss of pre-disruptive runaway electrons and the plasma disruption in KSTAR ohmic plasmas. It is observed that a burst of photoneutrons is generated exactly before the start of thermal quenches, indicating a bunch of runaway electrons which had existed before the disruption impacts the first wall at the time. The loss of runaway electrons could be identified also as a decrease in the measured electron temperature, forming a typical two-stage thermal quench trace. From the MHD pattern in the neutron signal during a low-q disruption, it could be identified that pre-disruptive runaway electrons are localized in the plasma, especially on the q  =  2 drift surface. These new findings suggest the pre-disruptive runaway electrons might play an important role in the plasma disruption mechanism.

  2. Development of Plasma Equilibrium Response Model for Optimized Plasma Control of KSTAR tokamak

    NASA Astrophysics Data System (ADS)

    Jeon, Youngmu; Park, Jong-Kyu; Park, Young-Seok; Hwang, Y. S.

    2004-11-01

    Plasma equilibrium response models for an optimized control system design are developed with KSTAR tokamak configurations. In a simple filament model, plasma column is assumed as a single ring filament with rigid displacements, and constitutes circuits with external conductors (coils, passive plate, and vacuum vessel segments). Perturbed equilibrium response model, based on CREATE-L deformable plasma response model [1], assumes that the plasma evolves through a sequence of MHD equilibria. Prediction characteristics of both models are described in terms of open loop characteristics of vertical motion of plasma, and validated by comparison with TSC (Tokamak Simulation Code) simulations. Additionally, applications of the plasma equilibrium response models to design of optimal plasma controllers are described. [1] R. Albanese, and F. Villone, Nucl. Fusion 38 723 (1998)

  3. Advanced Stirling Convertor Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Poriti, Sal

    2010-01-01

    The NASA Glenn Research Center (GRC) has been testing high-efficiency free-piston Stirling convertors for potential use in radioisotope power systems (RPSs) since 1999. The current effort is in support of the Advanced Stirling Radioisotope Generator (ASRG), which is being developed by the U.S. Department of Energy (DOE), Lockheed Martin Space Systems Company (LMSSC), Sunpower, Inc., and the NASA GRC. This generator would use two high-efficiency Advanced Stirling Convertors (ASCs) to convert thermal energy from a radioisotope heat source into electricity. As reliability is paramount to a RPS capable of providing spacecraft power for potential multi-year missions, GRC provides direct technology support to the ASRG flight project in the areas of reliability, convertor and generator testing, high-temperature materials, structures, modeling and analysis, organics, structural dynamics, electromagnetic interference (EMI), and permanent magnets to reduce risk and enhance reliability of the convertor as this technology transitions toward flight status. Convertor and generator testing is carried out in short- and long-duration tests designed to characterize convertor performance when subjected to environments intended to simulate launch and space conditions. Long duration testing is intended to baseline performance and observe any performance degradation over the life of the test. Testing involves developing support hardware that enables 24/7 unattended operation and data collection. GRC currently has 14 Stirling convertors under unattended extended operation testing, including two operating in the ASRG Engineering Unit (ASRG-EU). Test data and high-temperature support hardware are discussed for ongoing and future ASC tests with emphasis on the ASC-E and ASC-E2.

  4. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research

    SciTech Connect

    Not Available

    1992-01-01

    Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

  5. Modeling of neutral beam injection heating and current drive during the ramp-up phase in KSTAR

    NASA Astrophysics Data System (ADS)

    Terzolo, L.

    2014-06-01

    For flexible control of the plasma pressure and the current profiles, which are essential for a high performance plasma with long pulse operation, KSTAR is going to implement several heating and current systems, which include Neutral Beam Injection (NBI), Ion Cyclotron Resonant Heting (ICRH)/Fast Wave Current Drive (FWCD), Lower Hybrid Current Drive (LHCD), and Eclectron Cyclotron Heating (ECH)/Electron Cyclotron Current Drive (ECCD). Here, the NBI system is typically used for the central heating and current drive. For the time being, only one NBI device (composed of 3 sources) is available in KSTAR. The first two sources were successfully commissioned in 2010 and 2013. The last source will be installed in 2014. In this work, we present a simulation study of the heating and current drive of the first NBI system (3 sources) during the ramp-up phase. We consider two different NBI configurations (low and high beam energy). The simulation is performed with NUBEAM, a well-recognized Monte-Carlo code. Several different types of KSTAR target equilibria (scan from lower to higher plasma density) are used for the calculation of the current drive, the heating and the different NB losses (shinethrough, charge exchange and bad orbit). The study shows the dependency of those quantities on the plasma density, the position of the NB source and the beam energy. It also shows that because of the shinethrough loss is too high, each NB source cannot be used when the plasma density is under a certain threshold. This study can be used to determine the starting time of the different NB sources during the KSTAR ramp-up phase.

  6. Advanced quantitative measurement methodology in physics education research

    NASA Astrophysics Data System (ADS)

    Wang, Jing

    The ultimate goal of physics education research (PER) is to develop a theoretical framework to understand and improve the learning process. In this journey of discovery, assessment serves as our headlamp and alpenstock. It sometimes detects signals in student mental structures, and sometimes presents the difference between expert understanding and novice understanding. Quantitative assessment is an important area in PER. Developing research-based effective assessment instruments and making meaningful inferences based on these instruments have always been important goals of the PER community. Quantitative studies are often conducted to provide bases for test development and result interpretation. Statistics are frequently used in quantitative studies. The selection of statistical methods and interpretation of the results obtained by these methods shall be connected to the education background. In this connecting process, the issues of educational models are often raised. Many widely used statistical methods do not make assumptions on the mental structure of subjects, nor do they provide explanations tailored to the educational audience. There are also other methods that consider the mental structure and are tailored to provide strong connections between statistics and education. These methods often involve model assumption and parameter estimation, and are complicated mathematically. The dissertation provides a practical view of some advanced quantitative assessment methods. The common feature of these methods is that they all make educational/psychological model assumptions beyond the minimum mathematical model. The purpose of the study is to provide a comparison between these advanced methods and the pure mathematical methods. The comparison is based on the performance of the two types of methods under physics education settings. In particular, the comparison uses both physics content assessments and scientific ability assessments. The dissertation includes three

  7. Hepatocyte and Sertoli Cell Aquaporins, Recent Advances and Research Trends

    PubMed Central

    Bernardino, Raquel L.; Marinelli, Raul A.; Maggio, Anna; Gena, Patrizia; Cataldo, Ilaria; Alves, Marco G.; Svelto, Maria; Oliveira, Pedro F.; Calamita, Giuseppe

    2016-01-01

    Aquaporins (AQPs) are proteinaceous channels widespread in nature where they allow facilitated permeation of water and uncharged through cellular membranes. AQPs play a number of important roles in both health and disease. This review focuses on the most recent advances and research trends regarding the expression and modulation, as well as physiological and pathophysiological functions of AQPs in hepatocytes and Sertoli cells (SCs). Besides their involvement in bile formation, hepatocyte AQPs are involved in maintaining energy balance acting in hepatic gluconeogenesis and lipid metabolism, and in critical processes such as ammonia detoxification and mitochondrial output of hydrogen peroxide. Roles are played in clinical disorders including fatty liver disease, diabetes, obesity, cholestasis, hepatic cirrhosis and hepatocarcinoma. In the seminiferous tubules, particularly in SCs, AQPs are also widely expressed and seem to be implicated in the various stages of spermatogenesis. Like in hepatocytes, AQPs may be involved in maintaining energy homeostasis in these cells and have a major role in the metabolic cooperation established in the testicular tissue. Altogether, this information represents the mainstay of current and future investigation in an expanding field. PMID:27409609

  8. [Research advances in heavy metals pollution ecology of diatom].

    PubMed

    Ding, Teng-Da; Ni, Wan-Min; Zhang, Jian-Ying

    2012-03-01

    Diatom, due to its high sensitivity to environmental change, is one of the bio-indicators of aquatic ecosystem health, and some typical diatom species have been applied to indicate the heavy metals pollution of water body. With the focus on the surface water heavy metals pollution, this paper reviewed the research advances in the toxic effect of heavy metals pollution on diatom, biosorption and bioaccumulation of heavy metals by diatom, ecological adaptation mechanisms of diatom to heavy metals pollution, and roles of diatom as bio-indicator and in ecological restoration of heavy metals pollution. The growth tendency of diatom and the morphological change of frustule under heavy metals pollution as well as the differences in heavy metals biosorption and bioaccumulation by diatom, the ecological adaptation mechanisms of diatom on heavy metals surface complexation and ion exchange, and the roles of diatom as bio-indicator and in ecological restoration of heavy metals polluted water body were also discussed. This review could provide scientific evidences for the prevention of aquatic ecosystems heavy metals pollution and related early warning techniques.

  9. Hydrogen production from water: Recent advances in photosynthesis research

    SciTech Connect

    Greenbaum, E.; Lee, J.W.

    1997-12-31

    The great potential of hydrogen production by microalgal water splitting is predicated on quantitative measurement of the algae`s hydrogen-producing capability, which is based on the following: (1) the photosynthetic unit size of hydrogen production; (2) the turnover time of photosynthetic hydrogen production; (3) thermodynamic efficiencies of conversion of light energy into the Gibbs free energy of molecular hydrogen; (4) photosynthetic hydrogen production from sea water using marine algae; (5) the potential for research advances using modern methods of molecular biology and genetic engineering to maximize hydrogen production. ORNL has shown that sustained simultaneous photoevolution of molecular hydrogen and oxygen can be performed with mutants of the green alga Chlamydomonas reinhardtii that lack a detectable level of the Photosystem I light reaction. This result is surprising in view of the standard two-light reaction model of photosynthesis and has interesting scientific and technological implications. This ORNL discovery also has potentially important implications for maximum thermodynamic conversion efficiency of light energy into chemical energy by green plant photosynthesis. Hydrogen production performed by a single light reaction, as opposed to two, implies a doubling of the theoretically maximum thermodynamic conversion efficiency from {approx}10% to {approx}20%.

  10. Recent theoretical, neural, and clinical advances in sustained attention research.

    PubMed

    Fortenbaugh, Francesca C; DeGutis, Joseph; Esterman, Michael

    2017-03-05

    Models of attention often distinguish among attention subtypes, with classic models separating orienting, switching, and sustaining functions. Compared with other forms of attention, the neurophysiological basis of sustaining attention has received far less notice, yet it is known that momentary failures of sustained attention can have far-ranging negative effects in healthy individuals, and lasting sustained attention deficits are pervasive in clinical populations. In recent years, however, there has been increased interest in characterizing moment-to-moment fluctuations in sustained attention, in addition to the overall vigilance decrement, and understanding how these neurocognitive systems change over the life span and across various clinical populations. The use of novel neuroimaging paradigms and statistical approaches has allowed for better characterization of the neural networks supporting sustained attention and has highlighted dynamic interactions within and across multiple distributed networks that predict behavioral performance. These advances have also provided potential biomarkers to identify individuals with sustained attention deficits. These findings have led to new theoretical models explaining why sustaining focused attention is a challenge for individuals and form the basis for the next generation of sustained attention research, which seeks to accurately diagnose and develop theoretically driven treatments for sustained attention deficits that affect a variety of clinical populations.

  11. Review: Advances in delta-subsidence research using satellite methods

    NASA Astrophysics Data System (ADS)

    Higgins, Stephanie A.

    2016-05-01

    Most of the world's major river deltas are sinking relative to local sea level. The effects of subsidence can include aquifer salinization, infrastructure damage, increased vulnerability to flooding and storm surges, and permanent inundation of low-lying land. Consequently, determining the relative importance of natural vs. anthropogenic pressures in driving delta subsidence is a topic of ongoing research. This article presents a review of knowledge with respect to delta surface-elevation loss. The field is rapidly advancing due to applications of space-based techniques: InSAR (interferometric synthetic aperture radar), GPS (global positioning system), and satellite ocean altimetry. These techniques have shed new light on a variety of subsidence processes, including tectonics, isostatic adjustment, and the spatial and temporal variability of sediment compaction. They also confirm that subsidence associated with fluid extraction can outpace sea-level rise by up to two orders of magnitude, resulting in effective sea-level rise that is one-hundred times faster than the global average rate. In coming years, space-based and airborne instruments will be critical in providing near-real-time monitoring to facilitate management decisions in sinking deltas. However, ground-based observations continue to be necessary for generating complete measurements of surface-elevation change. Numerical modeling should seek to simulate couplings between subsidence processes for greater predictive power.

  12. Advances in Rodent Research Missions on the International Space Station

    NASA Technical Reports Server (NTRS)

    Choi, S. Y.; Ronca, A.; Leveson-Gower, D.; Gong, C.; Stube, K.; Pletcher, D.; Wigley, C.; Beegle, J.; Globus, R. K.

    2016-01-01

    A research platform for rodent experiment on the ISS is a valuable tool for advancing biomedical research in space. Capabilities offered by the Rodent Research project developed at NASA Ames Research Center can support experiments of much longer duration on the ISS than previous experiments performed on the Space Shuttle. NASAs Rodent Research (RR)-1 mission was completed successfully and achieved a number of objectives, including validation of flight hardware, on-orbit operations, and science capabilities as well as support of a CASIS-sponsored experiment (Novartis) on muscle atrophy. Twenty C57BL6J adult female mice were launched on the Space-X (SpX) 4 Dragon vehicle, and thrived for up to 37 days in microgravity. Daily health checks of the mice were performed during the mission via downlinked video; all flight animals were healthy and displayed normal behavior, and higher levels of physical activity compared to ground controls. Behavioral analysis demonstrated that Flight and Ground Control mice exhibited the same range of behaviors, including eating, drinking, exploratory behavior, self- and allo-grooming, and social interactions indicative of healthy animals. The animals were euthanized on-orbit and select tissues were collected from some of the mice on orbit to assess the long-term sample storage capabilities of the ISS. In general, the data obtained from the flight mice were comparable to those from the three groups of control mice (baseline, vivarium and ground controls, which were housed in flight hardware), showing that the ISS has adequate capability to support long-duration rodent experiments. The team recovered 35 tissues from 40 RR-1 frozen carcasses, yielding 3300 aliquots of tissues to distribute to the scientific community in the U.S., including NASAs GeneLab project and scientists via Space Biology's Biospecimen Sharing Program Ames Life Science Data Archive. Tissues also were distributed to Russian research colleagues at the Institute for

  13. Advanced Photon Source research: Volume 1, Number 1, April 1998

    SciTech Connect

    1998-04-01

    The following articles are included in this publication: (1) The Advanced Photon Source: A Brief Overview; (2) MAD Analysis of FHIT at the Structural Biology Center; (3) Advances in High-Energy-Resolution X-ray Scattering at Beamline 3-ID; (4) X-ray Imaging and Microspectroscopy of the Mycorrhyizal Fungus-Plant Symbiosis; (5) Measurement and Control of Particle-beam Trajectories in the Advanced Photon Storage Ring; (6) Beam Acceleration and Storage at the Advanced Photon Source; and (7) Experimental Facilities Operations and Current Status.

  14. Advancing Transdisciplinary Research: The Transdisciplinary Research on Energetics and Cancer Initiative.

    PubMed

    Gehlert, Sarah; Hall, Kara; Vogel, Amanda; Hohl, Sarah; Hartman, Sheri; Nebeling, Linda; Redline, Susan; Schmitz, Kathryn; Thornquist, Mark; Patterson, Ruth; Thompson, Beti

    2014-09-01

    Strategies for constructing and maintaining cross-disciplinary teams are in their infancy. We outline strategies to support one form, transdisciplinary research, in a major initiative of the National Cancer Institute, the Transdisciplinary Research in Energetics and Cancer 2 (TREC2) initiative. Discussion of the TREC2 sites' experiences with transdisciplinarity is structured around a conceptual model that identifies four iterative phases of transdisciplinary research. An active coordination center, regular face-to-face meetings, and input from external advisors were instrumental in moving TREC2 to the translation phase. The possibilities for advancements in the science of energetics and cancer increased as investigator ties became denser. TREC2 can be seen as a flagship effort in transdisciplinary science that provides lessons on moving ideas from development to translation.

  15. Advanced Low-Noise Research Fan Stage Design

    NASA Technical Reports Server (NTRS)

    Neubert, Robert; Bock, Larry; Malmborg, Eric; Owen-Peer, William

    1997-01-01

    This report describes the design of the Advanced Low-Noise Research Fan stage. The fan is a variable pitch design, which is designed at the cruise pitch condition. Relative to the cruise setting, the blade is closed at takeoff and opened for reverse thrust operation. The fan stage is a split flow design with fan exit guide vanes (FEGVs) and core stators. The fan stage design is combined with a nacelle and engine core duct to form a powered fan/nacelle subscale model. This model is intended for use in combined aerodynamic, acoustic, and structural testing in a wind tunnel. The fan has an outer diameter of 22 in. and a hub-to-tip of 0.426 in., which allows the use of existing NASA fan and cowl force balance and rig drive systems. The design parameters were selected to permit valid acoustic and aerodynamic comparisons with the Pratt & Whitney (P&W) 17- and 22-in. rigs previously tested under NASA contract. The fan stage design is described in detail. The results of the design axisymmetric and Navier-Stokes aerodynamic analysis are presented at the critical design conditions. The structural analysis of the fan rotor and attachment is included. The blade and attachment are predicted to have adequate low-cycle fatigue life and an acceptable operating range without resonant stress or flutter. The stage was acoustically designed with airfoil counts in the FEGV and core stator to minimize noise. A fan/FEGV tone analysis developed separately under NASA contract was used to determine the optimum airfoil counts. The fan stage was matched to the existing nacelle, designed under the previous P&W low-noise contract, to form a fan/nacelle model for wind tunnel testing. It is an axisymmetric nacelle for convenience in testing and analysis. Previous testing confirmed that the nacelle performed as required at various aircraft operating conditions.

  16. A programmable sound processor for advanced hearing aid research.

    PubMed

    McDermott, H

    1998-03-01

    A portable sound processor has been developed to facilitate research on advanced hearing aids. Because it is based on a digital signal processing integrated circuit (Motorola DSP56001), it can readily be programmed to execute novel algorithms. Furthermore, the parameters of these algorithms can be adjusted quickly and easily to suit the specific hearing characteristics of users. In the processor, microphone signals are digitized to a precision of 12 bits at a sampling rate of approximately 12 kHz for input to the DSP device. Subsequently, processed samples are delivered to the earphone by a novel, fully-digital class-D driver. This driver provides the advantages of a conventional class-D amplifier (high maximum output, low power consumption, low distortion) without some of the disadvantages (such as the need for precise analog circuitry). In addition, a cochlear implant driver is provided so that the processor is suitable for hearing-impaired people who use an implant and an acoustic hearing aid together. To reduce the computational demands on the DSP device, and therefore the power consumption, a running spectral analysis of incoming signals is provided by a custom-designed switched-capacitor integrated circuit incorporating 20 bandpass filters. The complete processor is pocket-sized and powered by batteries. An example is described of its use in providing frequency-shaped amplification for aid users with severe hearing impairment. Speech perception tests confirmed that the processor performed significantly better than the subjects' own hearing aids, probably because the digital filter provided a frequency response generally closer to the optimum for each user than the simpler analog aids.

  17. Research advances on animal genetics in China in 2015.

    PubMed

    Bo, Zhang; Xiaofang, Chen; Xun, Huang; Xiao, Yang

    2016-06-20

    -wide genetic basis of the species-specific physiological and pathological characteristics as well as their adaptation to environmental conditions. In this review, we make a first attempt to summarize the research advances on animal genetics in China in 2015, with an emphasis on the achievements led by Chinese scientists and carried out in Chinese institutions. We will briefly discuss the significance of their research and contributions of Chinese scientists in animal genetics.

  18. Research Priorities in the Seminary Professorate: Scholarly Research and Academic Writing as Criterion for Rank Advancement in Graduate Theological Education

    ERIC Educational Resources Information Center

    Bell, Skip

    2005-01-01

    The purpose of this investigation was to surface definitions for scholarly research employed in Association of Theological Schools seminaries, identify the application of scholarly research as a criteria for rank advancement, and form a scholarly research productivity reference point. The research revealed that while definitions of scholarly…

  19. Status and future directions for advanced accelerator research - conventional and non-conventional collider concepts

    SciTech Connect

    Siemann, R.H.

    1997-01-01

    The relationship between advanced accelerator research and future directions for particle physics is discussed. Comments are made about accelerator research trends in hadron colliders, muon colliders, and e{sup +}3{sup {minus}} linear colliders.

  20. Brain barriers and brain fluid research in 2016: advances, challenges and controversies.

    PubMed

    Keep, Richard F; Jones, Hazel C; Drewes, Lester R

    2017-02-02

    This editorial highlights some of the advances that occurred in relation to brain barriers and brain fluid research in 2016. It also aims to raise some of the attendant controversies and challenges in such research.

  1. Gout: History, Research, and Recent NIH–Supported Advances | NIH MedlinePlus the Magazine

    MedlinePlus

    ... please turn Javascript on. Feature: Detecting and Treating Gout Gout: History, Research, and Recent NIH–Supported Advances Past ... History of Medicine Division, National Library of Medicine Gout—Before Modern Medicine Before medical research discovered the ...

  2. 2009 Biospecimen research network symposium: advancing cancer research through biospecimen science.

    PubMed

    Moore, Helen M; Compton, Carolyn C; Lim, Mark D; Vaught, Jimmie; Christiansen, Katerina N; Alper, Joe

    2009-09-01

    This report details the proceedings of the 2009 Biospecimen Research Network (BRN) Symposium that took place on March 16 to 18, 2009, the second in a series of annual symposia sponsored by the National Cancer Institute Office of Biorepositories and Biospecimen Research. The BRN Symposium is a public forum addressing the relevance of biospecimen quality to progress in cancer research and the systematic investigation needed to understand how different methods of collection, processing, and storage of human biospecimens affect subsequent molecular research results. More than 300 participants from industry, academia, and government attended the symposium, which featured both formal presentations and a day of workshops aimed at addressing several key issues in biospecimen science. An additional 100 individuals participated via a live webcast (archived at http://brnsymposium.com). The BRN Symposium is part of a larger program designed as a networked, multidisciplinary research approach to increase the knowledge base for biospecimen science. Biospecimens are generally understood to represent an accurate representation of a patient's disease biology, but can instead reflect a combination of disease biology and the biospecimen's response to a wide range of biological stresses. The molecular signatures of disease can thus be confounded by the signatures of biospecimen biological stress, with the potential to affect clinical and research outcomes through incorrect diagnosis of disease, improper use of a given therapy, and irreproducible research results that can lead to misinterpretation of artifacts as biomarkers. Biospecimen research represents the kind of bricks-and-mortar research that provides a solid scientific foundation for future advances that will directly help patients.

  3. 76 FR 52954 - Workshop: Advancing Research on Mixtures; New Perspectives and Approaches for Predicting Adverse...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-24

    ... HUMAN SERVICES Workshop: Advancing Research on Mixtures; New Perspectives and Approaches for Predicting... ``Advancing Research on Mixtures: New Perspectives and Approaches for Predicting Adverse Human Health Effects....niehs.nih.gov/conferences/dert/mixtures/ . The deadline to register for this workshop is...

  4. Research and development on the application of advanced control technologies to advanced nuclear reactor systems: A US national perspective

    SciTech Connect

    White, J.D.; Monson, L.R.; Carrol, D.G.; Dayal, Y.; Argonne National Lab., IL; General Electric Co., San Jose, CA )

    1989-01-01

    Control system designs for nuclear power plants are becoming more advanced through the use of digital technology and automation. This evolution is taking place because of: (1) the limitations in analog based control system performance and maintenance and availability and (2) the promise of significant improvement in plant operation and availability due to advances in digital and other control technologies. Digital retrofits of control systems in US nuclear plants are occurring now. Designs of control and protection systems for advanced LWRs are based on digital technology. The use of small inexpensive, fast, large-capacity computers in these designs is the first step of an evolutionary process described in this paper. Under the sponsorship of the US Department of Energy (DOE), Oak Ridge National Laboratory, Argonne National Laboratory, GE Nuclear Energy and several universities are performing research and development in the application of advances in control theory, software engineering, advanced computer architectures, artificial intelligence, and man-machine interface analysis to control system design. The target plant concept for the work described in this paper is the Power Reactor Inherently Safe Module reactor (PRISM), an advanced modular liquid metal reactor concept. This and other reactor designs which provide strong passive responses to operational upsets or accidents afford good opportunities to apply these advances in control technology. 18 refs., 5 figs.

  5. Advanced Research Training in Human Geography: The Scottish Experience

    ERIC Educational Resources Information Center

    Gwanzura-Ottemoeller, Fungisai; Hopkins, Peter; Lorimer, Hayden; Philip, Lorna J.

    2005-01-01

    Formal research training is integral to research degrees in human geography completed in UK higher education institutions today. The Economic and Social Research Council (ESRC) has been the driving force behind the formalization of research training. Arguably less well known among the ESRC research training recommendations is the stipulation that…

  6. Meeting Reports for 2013: Recent Advances in Breath Biomarker Research

    EPA Science Inventory

    This article reports the efforts of the breath research community affiliated with the International Association of Breath Research (IABR) in disseminating research results in high profile technical meetings in the United States (US). Specifically, we describe presentations at a ...

  7. Space research policies in advanced and developing countries

    NASA Astrophysics Data System (ADS)

    Roederer, Juan G.

    The motivations for the conduct of space research and the development of space research policies by different constituencies and different types of countries are analyzed. Concerning space research in developing countries, four main aspects are discussed: 1. The role of space research for the achievement of ``critical mass'' by research groups; 2. The role of space research in higher education; 3. The identification of space research problems to which a country can make significant contributions; and 4. Multinational cooperation among developing countries in space research.

  8. Development of an advanced high-speed rotor - Final results from the Advanced Flight Research Rotor program

    NASA Technical Reports Server (NTRS)

    Jenks, Mark; Haslim, Leonard

    1988-01-01

    The final results of the Advanced Flight Research Rotor (AFRR) study, a NASA sponsored research program, are summarized. First, the results of the initial phase of the AFRR program, consisting of the definition of a conventional rotor with planform and prescribed twist distributions, are briefly reviewed. The mechanism of the calculated performance benefit is then explained, and a detailed analysis of the prescribed twist distribution is presented. Recommendations are made on the practical means of approximating the prescribed twist on the actual rotor.

  9. NASA advanced turboprop research and concept validation program

    NASA Technical Reports Server (NTRS)

    Whitlow, John B., Jr.; Sievers, G. Keith

    1988-01-01

    NASA has determined by experimental and analytical effort that use of advanced turboprop propulsion instead of the conventional turbofans in the older narrow-body airline fleet could reduce fuel consumption for this type of aircraft by up to 50 percent. In cooperation with industry, NASA has defined and implemented an Advanced Turboprop (ATP) program to develop and validate the technology required for these new high-speed, multibladed, thin, swept propeller concepts. This paper presents an overview of the analysis, model-scale test, and large-scale flight test elements of the program together with preliminary test results, as available.

  10. Advanced cogeneration research study. Survey of cogeneration potential

    NASA Technical Reports Server (NTRS)

    Slonski, M. L.

    1983-01-01

    Fifty-five facilities that consumed substantial amounts of electricity, natural gas, or fuel oil were surveyed by telephone in 1983. The primary objective of the survey was to estimate the potential electricity that could be generated in the SCE service territory using cogeneration technology. An estimated 3667 MW sub e could potentially be generated using cogenerated technology. Of this total, current technology could provide 2569 MW sub p and advanced technology could provide 1098 MW sub e. Approximately 1611 MW sub t was considered not feasible to produce electricity with either current or advanced cogeneration technology.

  11. Space Launch System NASA Research Announcement Advanced Booster Engineering Demonstration and/or Risk Reduction

    NASA Technical Reports Server (NTRS)

    Crumbly, Christopher M.; Craig, Kellie D.

    2011-01-01

    The intent of the Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) effort is to: (1) Reduce risks leading to an affordable Advanced Booster that meets the evolved capabilities of SLS (2) Enable competition by mitigating targeted Advanced Booster risks to enhance SLS affordability. Key Concepts (1) Offerors must propose an Advanced Booster concept that meets SLS Program requirements (2) Engineering Demonstration and/or Risk Reduction must relate to the Offeror s Advanced Booster concept (3) NASA Research Announcement (NRA) will not be prescriptive in defining Engineering Demonstration and/or Risk Reduction

  12. Advanced gasification projects. [Support research needs; contains list of advanced gasification projects supported by US DOE

    SciTech Connect

    Not Available

    1982-02-01

    An analysis of the needs for coal gasification reveals the following principal categories of information gaps that can be filled by programs already in progress or those readily initiated. The gaps are technology base needs required for successful application of both currently available and advanced gasification processes. The need areas are classified as follows: Reactor design/performance, gas cleaning/cooling separation, acid-gas removal/gas shift/gas conversion, wastewater treatment, and general data base on both state-of-the-art and advanced technologies. During the future operating and optimization phases of most of the coal gasification projects, when additional troubles will surface, the technical support program described herein will have provided the additional data base needed to correct deficiencies and/or to advance the state-of-the-art. The report describes US DOE supported projects in this area: brief description, title, contractor, objective, accomplishments, current work and possible application.

  13. Advancing High-Quality Literacy Research in Juvenile Justice: Methodological and Practical Considerations

    ERIC Educational Resources Information Center

    Houchins, David E.; Jolivette, Kristine; Shippen, Margaret E.; Lambert, Richard

    2010-01-01

    Special education researchers have made noteworthy progress toward conceptualizing literacy research questions, designing quality studies, and disseminating the results of their research. These advancements have been made through the establishment and refinement of quality research indicators. Unfortunately, this progress has mostly eluded the…

  14. First 3 years of operation of RIACS (Research Institute for Advanced Computer Science) (1983-1985)

    NASA Technical Reports Server (NTRS)

    Denning, P. J.

    1986-01-01

    The focus of the Research Institute for Advanced Computer Science (RIACS) is to explore matches between advanced computing architectures and the processes of scientific research. An architecture evaluation of the MIT static dataflow machine, specification of a graphical language for expressing distributed computations, and specification of an expert system for aiding in grid generation for two-dimensional flow problems was initiated. Research projects for 1984 and 1985 are summarized.

  15. Advances take stage - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    Regulatory advances in proteomics will be taking center stage at a Symposia scheduled to occur at the 2011 American Association for Clinical Chemistry (AACC) Annual Meeting. The symposium entitled "Enabling Translational Proteomics with NCI's Clinical Proteomic Technologies for Cancer" is scheduled for July 25, 2011 at AACC's annual Meeting.

  16. Advances in pancreatic cancer research: moving towards early detection.

    PubMed

    He, Xiang-Yi; Yuan, Yao-Zong

    2014-08-28

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal forms of cancer. Substantial progress has been made in the understanding of the biology of pancreatic cancer, and advances in patient management have been significant. However, most patients (nearly 80%) who present with locally advanced or metastatic disease have an extremely poor prognosis. Survival is better for those with malignant disease localized to the pancreas, because surgical resection at present offers the only chance of cure. Therefore, the early detection of pancreatic cancer may benefit patients with PDAC. However, its low rate of incidence and the limitations of current screening strategies make early detection difficult. Recent advances in the understanding of the pathogenesis of PDAC suggest that it is possible to detect PDAC in early stages and even identify precursor lesions. The presence of new-onset diabetes mellitus in the early phase of pancreatic cancer may provide clues for its early diagnosis. Advances in the identification of novel circulating biomarkers including serological signatures, autoantibodies, epigenetic markers, circulating tumor cells and microRNAs suggest that they can be used as potential tools for the screening of precursors and early stage PDAC in the future. However, proper screening strategies based on effective screening methodologies need to be tested for clinical application.

  17. 2013 Summary of Advances in Autism Spectrum Disorder Research

    ERIC Educational Resources Information Center

    Interagency Autism Coordinating Committee, 2014

    2014-01-01

    Each year, the Interagency Autism Coordinating Committee (IACC) releases its annual list of scientific advances that represent significant progress in the field. The 20 studies selected have given new insight into the complex causes of autism and potential risk factors, studied clues that could lead to earlier diagnosis, and evaluated promising…

  18. School Integration Matters: Research-Based Strategies to Advance Equity

    ERIC Educational Resources Information Center

    Frankenberg, Erica, Ed.; Garces, Liliana M., Ed.; Hopkins, Megan, Ed.

    2016-01-01

    More than 60 years after the "Brown v. Board of Education" decision declared segregated schooling inherently unequal, this timely book sheds light on how and why U.S. schools are experiencing increasing segregation along racial, socioeconomic, and linguistic lines. It offers policy and programmatic alternatives for advancing equity and…

  19. Advanced Measurement Technology at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Antcliff, Richard R.

    1998-01-01

    Instrumentation systems have always been essential components of world class wind tunnels and laboratories. Langley continues to be on the forefront of the development of advanced systems for aerospace applications. This paper will describe recent advances in selected measurement systems which have had significant impact on aerospace testing. To fully understand the aerodynamics and aerothermodynamics influencing aerospace vehicles, highly accurate and repeatable measurements need to be made of critical phenomena. However, to maintain leadership in a highly competitive world market, productivity enhancement and the development of new capabilities must also be addressed aggressively. The accomplishment of these sometimes conflicting requirements has been the challenge of advanced measurement developers. However, several new technologies have recently matured to the point where they have enabled the achievement of these goals. One of the critical areas where advanced measurement systems are required is flow field velocity measurements. These measurements are required to correctly characterize the flowfield under study, to quantify the aerodynamic performance of test articles and to assess the effect of aerodynamic vehicles on their environment. Advanced measurement systems are also making great strides in obtaining planar measurements of other important thermodynamic quantities, including species concentration, temperature, pressure and the speed of sound. Langley has been on the forefront of applying these technologies to practical wind tunnel environments. New capabilities in Projection Moire Interferometry and Acoustics Array Measurement systems have extended our capabilities into the model deformation, vibration and noise measurement arenas. An overview of the status of these techniques and recent applications in practical environments will be presented in this paper.

  20. Experimental Advanced Airborne Research Lidar (EAARL) Data Processing Manual

    USGS Publications Warehouse

    Bonisteel, Jamie M.; Nayegandhi, Amar; Wright, C. Wayne; Brock, John C.; Nagle, David

    2009-01-01

    The Experimental Advanced Airborne Research Lidar (EAARL) is an example of a Light Detection and Ranging (Lidar) system that utilizes a blue-green wavelength (532 nanometers) to determine the distance to an object. The distance is determined by recording the travel time of a transmitted pulse at the speed of light (fig. 1). This system uses raster laser scanning with full-waveform (multi-peak) resolving capabilities to measure submerged topography and adjacent coastal land elevations simultaneously (Nayegandhi and others, 2009). This document reviews procedures for the post-processing of EAARL data using the custom-built Airborne Lidar Processing System (ALPS). ALPS software was developed in an open-source programming environment operated on a Linux platform. It has the ability to combine the laser return backscatter digitized at 1-nanosecond intervals with aircraft positioning information. This solution enables the exploration and processing of the EAARL data in an interactive or batch mode. ALPS also includes modules for the creation of bare earth, canopy-top, and submerged topography Digital Elevation Models (DEMs). The EAARL system uses an Earth-centered coordinate and reference system that removes the necessity to reference submerged topography data relative to water level or tide gages (Nayegandhi and others, 2006). The EAARL system can be mounted in an array of small twin-engine aircraft that operate at 300 meters above ground level (AGL) at a speed of 60 meters per second (117 knots). While other systems strive to maximize operational depth limits, EAARL has a narrow transmit beam and receiver field of view (1.5 to 2 milliradians), which improves the depth-measurement accuracy in shallow, clear water but limits the maximum depth to about 1.5 Secchi disk depth (~20 meters) in clear water. The laser transmitter [Continuum EPO-5000 yttrium aluminum garnet (YAG)] produces up to 5,000 short-duration (1.2 nanosecond), low-power (70 microjoules) pulses each second

  1. ADVANCES IN DIETARY EXPOSURE RESEARCH AT THE UNITED STATES

    EPA Science Inventory

    The United States Environmental Protection Agency-National Exposure Research Laboratory's (USEPA-NERL)dietary exposure research program investigates the role of diet, including drinking water, as a potential pathway of human exposure to environmental contaminants. A primary progr...

  2. Advancing the Therapeutic Massage Research Agenda(s)

    PubMed Central

    Porcino, Antony J.

    2013-01-01

    Therapeutic massage and bodywork (TMB) is now an established field of research with dedicated funding, researchers, and many venues and channels for dissemination of TMB research. Research agendas are a way for a profession to focus the development and funding of research on facets of TMB practice and education that are most needed at a given point of time to best move forward the practice and professionalization of TMB. Of the two TMB research agendas, one is currently being updated, the other is newly developed. Because of the impact on the development of the profession, gaps in research agendas also need to be carefully considered. Three areas that could use further consideration or support within the current agendas include education, methods and methodologies, and underlying assumptions. TMB researchers need to engage with and support the current agendas, and participate in their evolution. PMID:24000302

  3. Narrative Abilities: Advances in Research and Implications for Clinical Practice

    ERIC Educational Resources Information Center

    Boudreau, Donna

    2008-01-01

    The article discusses the key findings in recent research dealing narrative abilities in children with and without language implications. The implications of research findings for narrative assessment and intervention are discussed.

  4. First comprehensive particle balance study in KSTAR with a full graphite first wall and diverted plasmas

    NASA Astrophysics Data System (ADS)

    Yu, Yaowei; Hong, Suk-Ho; Yoon, Si-Woo; Kim, Kwang-Pyo; Kim, Woong-Chae; Park, Jae-Min; Oh, Young-Suk; Na, Hoon-Kyun; Bak, Jun-Gyo; Chung, Kyu-Sun; the KSTAR Team

    2012-10-01

    The first comprehensive particle balance study is carried out in the KSTAR 2010 campaign with a full graphite first wall and diverted plasmas. The dominant retention is observed during the gas puffing into the plasmas. Statistical analysis shows that deuterium retention is increased with the number of injected particles. Particle balance analysis in the whole campaign shows that the long-term retention ratio is ˜21%, and the retention via implantation can be partially recovered by He-glow discharge cleaning (GDC), while long-term retention via co-deposition. The wall pumping capability is decreased with the D2 plasma due to fuel accumulation in the first wall, and He-GDC is effective in recovering the wall pumping. Boronization assisted by the D2 glow discharge using C2B10H12 strongly enhances the wall puffing and leads to negative retentions, but the wall pumping capability is recovered in 2-3 days by He-GDCs. Electron cyclotron resonance heating enhances wall outgassing during the discharge. During a diverted H-mode discharge, the retention rate decreases to a very low value, and a high divertor particle flux of ˜1.5 × 1023 D s-1 is observed indicating the strong recycling divertor. The amount of recovered deuterium after discharges mainly depends on the plasma-wall interaction when the plasma is terminated, and disruptive discharges release more particles from the first wall.

  5. Conceptual Design Studies of the KSTAR Bay-Nm Cassette and Thomson Scattering Optics

    SciTech Connect

    Feder, R.; Ellis, R.; Johnson, D.; Park, H.; Lee, H. G.

    2005-09-26

    A Multi-Channel Thomson Scattering System viewing the edge and core of the KSTAR plasma will be installed at the mid-plane port Bay-N. An engineering design study was undertaken at PPPL in collaboration with the Korea Basic Science Institute (KBSI) to determine the optimal optics and cassette design. Design criteria included environmental, mechanical and optical factors. All of the optical design options have common design features; the Thomson Scattering laser, an in-vacuum shutter, a quartz heat shield and primary vacuum window, a set of optical elements and a fiber optic bundle. Neutron radiation damage was a major factor in the choice of competing lens-based and mirror-based optical designs. Both the mirror based design and the lens design are constrained by physical limits of the Bay-N cassette and interference with the Bay-N micro-wave launcher. The cassette will contain the optics and a rail system for maintenance of the optics.

  6. First evidence of Alfvén wave activity in KSTAR plasmas

    NASA Astrophysics Data System (ADS)

    Hole, M. J.; Ryu, C. M.; Woo, M. H.; Bak, J. G.; Sharapov, S. E.; Fitzgerald, M.; the KSTAR Team

    2013-04-01

    We report on first evidence of wave activity during neutral beam heating in KSTAR plasmas: 40 kHz magnetic fluctuations with a toroidal mode number of n = 1. Our analysis suggests this a beta-induced Alfvén eigenmode (BAE) resonant with the q = 1 surface. A kinetic analysis, when coupled with electron temperature measurements from electron cyclotron emission and ion/electron temperature ratios from crystallography, enables calculation of the frequency evolution, which is in agreement with observations. Complementary detailed magnetohydrodynamic (MHD) modelling of the magnetic configuration and wave modes supports the BAE conclusion, by locating an n = 1 mode separated from the continuum in the core region. Finally, we have computed the threshold to marginal stability for a range of ion temperature profiles. These suggest the BAE can be driven unstable by energetic ions when the ion temperature radial gradient is sufficiently large. Our findings suggest that mode existence could be used as a form of inference for temperature profile consistency in the radial interval of the mode, thereby extending the tools of MHD spectroscopy.

  7. Effect of RMP spectrum on ELM suppression and the divertor plasma in KSTAR

    NASA Astrophysics Data System (ADS)

    Ahn, Joon-Wook; Park, J.-K.; in, Y.; Loarte, A.; Kim, J.; Jeon, Y. M.; Park, G. Y.; Choe, W.; Hong, J. H.; Hong, S. H.; Lee, H. H.; Kang, C. S.; Ko, W. H.; Yoon, S. W.

    2016-10-01

    ELM suppression by n =1 and n =2 magnetic perturbations have been robustly obtained in KSTAR, and effects of various coil configurations for applied magnetic perturbations (MPs) on ELM suppression as well as divertor plasma conditions have been investigated. The 4 toroidal and 3 poloidal sectors of internal coils allow to fully scan the phase difference (Δφ) of n =1 between different rows of coils, where it is shown that ideal plasma response can either shield or amplify applied MPs, depending on Δφ , which leads respectively to the weakening and strengthening of divertor footprint striations compared to the vacuum case. On the other hand, shielding is found to be the dominant plasma response for all possible cases of n =2 configuration (Δφ =0o and 90o, and mid-plane coil only), which weakens footprint striations. Spectra of applied MPs have been varied by changing Δφ as well as modifying the ratio of coil currents between different row of coils, e.g. IU/IL, in order to find optimal conditions for ELM suppression and divertor heat and particle flux dispersal. Effects of divertor conditions in various density and impurity levels on the ELM behavior and footprint striations are also being investigated. Work supported by the U.S. DOE, contract # DE-AC05-00OR22725.

  8. Search for Suitable ICRF Operation Window for the Shaped H-mode Operation of KSTAR

    SciTech Connect

    Park, B. H.; Kim, J. Y.

    2009-11-26

    KSTAR will try to achieve its 1st shaped H-mode plasma in 2010 campaign. The available power is limited by our plan for auxiliary heating system. Up to 2010, NBI with 1 MW, LHCD 0.5 MW, and ECH with 0.5 MW power will be prepared. To accomplish high beta plasma, TF magnetic field will be reduced to 2 T from rated field of 3.5 T. In this case the ECH contribution to H-mode power threshold requirement is ignorant because the 84 GHz frequency does not meet neither fundamental nor second harmonic resonance in the discharge area. Therefore the ICRF heating should carry out important roll to reach power threshold. The ICRF system of tunable frequency from 30 to 60 MHz will come with 1 MW power in 2010. To maximize the ICRF heating efficiency for H-mode purpose, we try to find suitable condition of ICRF heating parameters through the simulation using by TORIC code. Optimizations of RF frequency, toroidal modes controllable by 4 current straps, and the minority concentration are performed. Possibilities of second harmonic heating of minority and the mode converted heating near resonance layer are also studied.

  9. Reconstruction of Plasma Equilibria and Projected Stabilization of Global MHD Modes in KSTAR

    NASA Astrophysics Data System (ADS)

    Park, Y. S.; Sabbagh, S. A.; Bialek, J. M.; Berkery, J. W.; Jeon, Y. M.; Hahn, S. H.; Lee, S. G.; You, K.-. I.; Park, H. K.; Evans, T. E.; Eidietis, N.; Walker, M.; Leuer, J.

    2010-11-01

    Experimental equilibria of the KSTAR tokamak with plasma current up to 0.34 MA were reconstructed using EFIT. Vessel currents were included by fitting estimated values based on loop voltage measurements and effective resistances from 2 and 3-D vacuum model calculations including a double-walled vessel with large port penetrations and passive stabilizers. Active and passive stabilization of global MHD instabilities for operation above the no-wall beta limit is also projected. The stabilization is applied using a set of segmented internal coils called in-vessel control coils (IVCCs). Passive stability of the resistive wall mode and power requirement for its active stabilization are investigated including conductive casing structures covering the IVCC, and noise effects. The potential for ELM mitigation by resonant magnetic perturbations is also examined by using the TRIP3D code. Favorable configurations of the IVCC based on the Chirikov parameter are determined using a combination of all IVCCs (midplane and off-midplane coils) with a dominant n = 2 field configuration.

  10. Validation of BOUT + + ELM simulation by Comparison with ECEI Measurements in the KSTAR tokamak

    NASA Astrophysics Data System (ADS)

    Kim, Minwoo; Lee, Jaehyun; Choi, Minjun; Yun, Gunsu; Xu, X. Q.; Lee, Woochang; Park, Hyeon; Domier, C. W.; Luhmann, N. C., Jr.; Kstar Team

    2013-10-01

    Details of ELM dynamics has been measured in 2D using an electron cyclotron emission imaging (ECEI) diagnostic in the KSTAR tokamak. The observed ELM dynamics show complex evolution stages including linear growth, saturation, changes in mode number and rotation velocity, and localized crash. We studied the mode structure of the observed ELMs in the linear growth phase using 3-field BOUT + + simulations. The toroidal mode number (n) of ELMs, which was experimentally determined by an array of toroidal Mirnov coils, was fixed in the simulation. On the other hand, the pressure profile was adjusted to make the linear growth rate finite at the given n number. For direct comparison with the observed images, the simulation results were converted to synthetic ECEI images by taking into account instrumental broadening, intrinsic ECE broadening in the pedestal region, and system noises. The synthetic images were qualitatively well matched with the observations. As a next step, a simulation study in linear phase is planned for a self-consistent equilibrium including bootstrap current. Work supported by NRF Korea under contract no. 2013035905 and US DoE under contract no. DE-FG-02-99ER54531.

  11. Breeding and quantitative genetics advances in sunflower Sclerotinia research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic research of the sunflower research unit, USDA-ARS, in Fargo, ND, was discussed in a presentation to a group of producers, industry representatives, and scientists. The need for sunflower quantitative genetics research to find and capture Sclerotinia resistance is increasing with every year t...

  12. Development of fast neutron pinhole camera using nuclear emulsion for neutron emission profile measurement in KSTAR

    NASA Astrophysics Data System (ADS)

    Izumi, Y.; Tomita, H.; Nakayama, Y.; Hayashi, S.; Morishima, K.; Isobe, M.; Cheon, M. S.; Ogawa, K.; Nishitani, T.; Naka, T.; Nakano, T.; Nakamura, M.; Iguchi, T.

    2016-11-01

    We have developed a compact fast neutron camera based on a stack of nuclear emulsion plates and a pinhole collimator. The camera was installed at J-port of Korea superconducting tokamak advanced research at National Fusion Research Institute, Republic of Korea. Fast neutron images agreed better with calculated ones based on Monte Carlo neutron simulation using the uniform distribution of Deuterium-Deuterium (DD) neutron source in a torus of 40 cm radius.

  13. Cooperative Research and Development of Primary Surface Recuperator for Advanced Microturbine Systems

    SciTech Connect

    Escola, George

    2007-01-17

    Recuperators have been identified as key components of advanced gas turbines systems that achieve a measure of improvement in operating efficiency and lead the field in achieving very low emissions. Every gas turbine manufacturer that is studying, developing, or commercializing advanced recuperated gas turbine cycles requests that recuperators operate at higher temperature without a reduction in design life and must cost less. The Solar Cooperative Research and Development of Primary Surface Recuperator for Advanced Microturbine Systems Program is directed towards meeting the future requirements of advanced gas turbine systems by the following: (1) The development of advanced alloys that will allow recuperator inlet exhaust gas temperatures to increase without significant cost increase. (2) Further characterization of the creep and oxidation (dry and humid air) properties of nickel alloy foils (less than 0.13 mm thick) to allow the economical use of these materials. (3) Increasing the use of advanced robotic systems and advanced in-process statistical measurement systems.

  14. Advanced Pediatric Brain Imaging Research and Training Program

    DTIC Science & Technology

    2013-10-01

    injury in children. Dr. Dobson’s project was an investigation of the mechanisms of brain injury in premature infants , and potential neuroprotective...study hypoxic ischemic brain injury in newborns treated with therapeutic hypothermia. Dr. Massaro has a long standing interest in identifying early...TE.Understanding brain injury and neurodevelopmental disabilities in the preterm infant : the evolving role of advanced magnetic resonance imaging.Semin

  15. Advanced steel reheat furnaces: Research and development. Final report

    SciTech Connect

    Nguyen, Q.; Koppang, R.; Maly, P.; Moyeda, D.; Li, X.

    1999-01-14

    The purpose of this report is to present the results of two phases of a three-phase project to develop and evaluate an Advanced Steel Reheat Furnace (SSRF) concept which incorporates two proven and commercialized technologies, oxy-fuel enriched air (OEA) combustion and gas reburning (GR). The combined technologies aim to improve furnace productivity with higher flame radiant heat transfer in the heating zones of a steel reheat furnace while controlling potentially higher NOx emissions from these zones. The project was conducted under a contract sponsored by the Department of Energy (DOE). Specifically, this report summarizes the results of a modeling study and an experimental study to define and evaluate the issues which affect the integration and performance of the combined technologies. Section 2.0 of the report describes the technical approach uses in the development and evaluation of the advanced steel reheat furnace. Section 3.0 presents results of the modeling study applied to a model steel furnace. Experimental validation of the modeling results obtained from EER`s Fuel Evaluation Facility (FEF) pilot-scale furnace discussed in Section 4.0. Section 5.0 provides an economic evaluation on the cost effectiveness of the advanced reheat furnace concept. Section 6.0 concludes the report with recommendations on the applicability of the combined technologies of steel reheat furnaces.

  16. A CTSA agenda to advance methods for comparative effectiveness research.

    PubMed

    Helfand, Mark; Tunis, Sean; Whitlock, Evelyn P; Pauker, Stephen G; Basu, Anirban; Chilingerian, Jon; Harrell, Frank E; Meltzer, David O; Montori, Victor M; Shepard, Donald S; Kent, David M

    2011-06-01

    Clinical research needs to be more useful to patients, clinicians, and other decision makers. To meet this need, more research should focus on patient-centered outcomes, compare viable alternatives, and be responsive to individual patients' preferences, needs, pathobiology, settings, and values. These features, which make comparative effectiveness research (CER) fundamentally patient-centered, challenge researchers to adopt or develop methods that improve the timeliness, relevance, and practical application of clinical studies. In this paper, we describe 10 priority areas that address 3 critical needs for research on patient-centered outcomes (PCOR): (1) developing and testing trustworthy methods to identify and prioritize important questions for research; (2) improving the design, conduct, and analysis of clinical research studies; and (3) linking the process and outcomes of actual practice to priorities for research on patient-centered outcomes. We argue that the National Institutes of Health, through its clinical and translational research program, should accelerate the development and refinement of methods for CER by linking a program of methods research to the broader portfolio of large, prospective clinical and health system studies it supports. Insights generated by this work should be of enormous value to PCORI and to the broad range of organizations that will be funding and implementing CER.

  17. Two-Dimensional Visualization of Growth and Burst of the Edge-Localized Filaments in KSTAR H-Mode Plasmas

    NASA Astrophysics Data System (ADS)

    Yun, G. S.; Lee, W.; Choi, M. J.; Lee, J.; Park, H. K.; Tobias, B.; Domier, C. W.; Luhmann, N. C., Jr.; Donné, A. J. H.; Lee, J. H.

    2011-07-01

    The filamentary nature and dynamics of edge-localized modes (ELMs) in the KSTAR high-confinement mode plasmas have been visualized in 2D via electron cyclotron emission imaging. The ELM filaments rotating with a net poloidal velocity are observed to evolve in three distinctive stages: initial linear growth, interim quasisteady state, and final crash. The crash is initiated by a narrow fingerlike perturbation growing radially from a poloidally elongated filament. The filament bursts through this finger, leading to fast and collective heat convection from the edge region into the scrape-off layer, i.e., ELM crash.

  18. FY2011 Annual Progress Report for Advanced Combustion Engine Research and Development

    SciTech Connect

    none,

    2011-12-01

    Annual Progress Report for the Advanced Combustion Engine Research and Development (R&D) subprogram supporting the mission of the Vehicle Technologies Program by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future federal emissions regulations.

  19. Learning Design Research: Advancing Pedagogies in the Digital Age

    ERIC Educational Resources Information Center

    Dobozy, Eva

    2013-01-01

    Learning design research (LDR) is establishing itself as a separate and specialised field of educational research. Worldwide, technology-mediated learning experiences in higher and further education are on the increase. LDR investigates their success in providing effective outcomes-based and personalised learning experiences. This paper reports on…

  20. Research Advances: New Weapon in War on TB

    ERIC Educational Resources Information Center

    King, Angela G.

    2005-01-01

    Tuberculosis (TB) is a disease caused by Mycobacterium tuberculosis, which usually attacks the lung and is spread through the air from one person to another. Researchers from Johnson & Johnson Pharmaceutical Research and Development, the Swedish Institute for Infectious Disease Control and The Pitie-Salpetriere School of Medicine began their…

  1. Methodological Advances in Research on Learning and Instruction and in the Learning Sciences

    ERIC Educational Resources Information Center

    Fischer, Frank; Järvelä, Sanna

    2014-01-01

    Recent years have seen a dynamic growth of research communities addressing conditions, processes and outcomes of learning in formal and informal environments. Two of them have markedly advanced the field: The community on research on learning and instruction that has been organized in the European Association for Research on Learning and…

  2. Advanced Materials Research with 3RD Generation Synchrotron Light

    NASA Astrophysics Data System (ADS)

    Soukiassian, P.; D'angelo, M.; Enriquez, H.; Aristov, V. Yu.

    H and D surface nanochemistry on an advanced wide band gap semiconductor, silicon carbide is investigated by synchrotron radiation-based core level and valence band photoemission, infrared absorption and scanning tunneling spectroscopy, showing the 1st example of H/D-induced semiconductor surface metallization, that also occurs on a pre-oxidized surface. These results are compared to recent state-of-the-art ab-initio total energy calculations. Most interestingly, an amazing isotopic behavior is observed with a smaller charge transfer from D atoms suggesting the role of dynamical effects. Such findings are especially exciting in semiconductor physics and in interface with biology.

  3. Advanced Video Data-Acquisition System For Flight Research

    NASA Technical Reports Server (NTRS)

    Miller, Geoffrey; Richwine, David M.; Hass, Neal E.

    1996-01-01

    Advanced video data-acquisition system (AVDAS) developed to satisfy variety of requirements for in-flight video documentation. Requirements range from providing images for visualization of airflows around fighter airplanes at high angles of attack to obtaining safety-of-flight documentation. F/A-18 AVDAS takes advantage of very capable systems like NITE Hawk forward-looking infrared (FLIR) pod and recent video developments like miniature charge-couple-device (CCD) color video cameras and other flight-qualified video hardware.

  4. A Description of the Advanced Research WRF Version 2

    DTIC Science & Technology

    2005-06-01

    hydrostatic counterpart to the nonhydrostatic equations , (2.9) replaces the vertical momentum equation (2.5) and it becomes a constraint on the solution ...model equations as Φt = R(Φ), the RK3 integration takes the form of 3 steps to advance a solution Φ(t) to Φ(t+∆t): Φ∗ = Φt + ∆t 3 R(Φt) (3.1) Φ∗∗ = Φt...workshops, and lectures. (Distribution may be limited to attendees.) STR: Scientific and Technical Reports Data compilations, theoretical and numerical

  5. 78 FR 18933 - Proposed Priority-National Institute on Disability and Rehabilitation Research-Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF EDUCATION 34...--Advanced Rehabilitation Research Training Program AGENCY: Office of Special Education and Rehabilitative Services, Department of Education. ACTION: Proposed priority. SUMMARY: The Assistant Secretary for...

  6. Clinical Trial Results Vary Widely, But Always Advance Research | NIH MedlinePlus the Magazine

    MedlinePlus

    ... of this page please turn Javascript on. Feature: Clinical Trials Clinical Trial Results Vary Widely, But Always Advance Research ... very emotional." Should You Be Interested in a Clinical Trial People volunteer to take part in clinical ...

  7. Research on chemical vapor deposition processes for advanced ceramic coatings

    NASA Technical Reports Server (NTRS)

    Rosner, Daniel E.

    1993-01-01

    Our interdisciplinary background and fundamentally-oriented studies of the laws governing multi-component chemical vapor deposition (VD), particle deposition (PD), and their interactions, put the Yale University HTCRE Laboratory in a unique position to significantly advance the 'state-of-the-art' of chemical vapor deposition (CVD) R&D. With NASA-Lewis RC financial support, we initiated a program in March of 1988 that has led to the advances described in this report (Section 2) in predicting chemical vapor transport in high temperature systems relevant to the fabrication of refractory ceramic coatings for turbine engine components. This Final Report covers our principal results and activities for the total NASA grant of $190,000. over the 4.67 year period: 1 March 1988-1 November 1992. Since our methods and the technical details are contained in the publications listed (9 Abstracts are given as Appendices) our emphasis here is on broad conclusions/implications and administrative data, including personnel, talks, interactions with industry, and some known applications of our work.

  8. Exploring the promises of intersectionality for advancing women's health research

    PubMed Central

    2010-01-01

    Women's health research strives to make change. It seeks to produce knowledge that promotes action on the variety of factors that affect women's lives and their health. As part of this general movement, important strides have been made to raise awareness of the health effects of sex and gender. The resultant base of knowledge has been used to inform health research, policy, and practice. Increasingly, however, the need to pay better attention to the inequities among women that are caused by racism, colonialism, ethnocentrism, heterosexism, and able-bodism, is confronting feminist health researchers and activists. Researchers are seeking new conceptual frameworks that can transform the design of research to produce knowledge that captures how systems of discrimination or subordination overlap and "articulate" with one another. An emerging paradigm for women's health research is intersectionality. Intersectionality places an explicit focus on differences among groups and seeks to illuminate various interacting social factors that affect human lives, including social locations, health status, and quality of life. This paper will draw on recently emerging intersectionality research in the Canadian women's health context in order to explore the promises and practical challenges of the processes involved in applying an intersectionality paradigm. We begin with a brief overview of why the need for an intersectionality approach has emerged within the context of women's health research and introduce current thinking about how intersectionality can inform and transform health research more broadly. We then highlight novel Canadian research that is grappling with the challenges in addressing issues of difference and diversity. In the analysis of these examples, we focus on a largely uninvestigated aspect of intersectionality research - the challenges involved in the process of initiating and developing such projects and, in particular, the meaning and significance of social

  9. Exploring the promises of intersectionality for advancing women's health research.

    PubMed

    Hankivsky, Olena; Reid, Colleen; Cormier, Renee; Varcoe, Colleen; Clark, Natalie; Benoit, Cecilia; Brotman, Shari

    2010-02-11

    Women's health research strives to make change. It seeks to produce knowledge that promotes action on the variety of factors that affect women's lives and their health. As part of this general movement, important strides have been made to raise awareness of the health effects of sex and gender. The resultant base of knowledge has been used to inform health research, policy, and practice. Increasingly, however, the need to pay better attention to the inequities among women that are caused by racism, colonialism, ethnocentrism, heterosexism, and able-bodism, is confronting feminist health researchers and activists. Researchers are seeking new conceptual frameworks that can transform the design of research to produce knowledge that captures how systems of discrimination or subordination overlap and "articulate" with one another. An emerging paradigm for women's health research is intersectionality. Intersectionality places an explicit focus on differences among groups and seeks to illuminate various interacting social factors that affect human lives, including social locations, health status, and quality of life. This paper will draw on recently emerging intersectionality research in the Canadian women's health context in order to explore the promises and practical challenges of the processes involved in applying an intersectionality paradigm. We begin with a brief overview of why the need for an intersectionality approach has emerged within the context of women's health research and introduce current thinking about how intersectionality can inform and transform health research more broadly. We then highlight novel Canadian research that is grappling with the challenges in addressing issues of difference and diversity. In the analysis of these examples, we focus on a largely uninvestigated aspect of intersectionality research - the challenges involved in the process of initiating and developing such projects and, in particular, the meaning and significance of social

  10. Creep and fatigue research efforts on advanced materials

    NASA Technical Reports Server (NTRS)

    Gayda, John

    1990-01-01

    Two of the more important materials problems encountered in turbine blades of aircraft engines are creep and fatigue. To withstand these high-temperature phenomena, modern engines utilize single-crystal, nickel-base superalloys as the material of choice in critical applications. This paper will present recent research activities at NASA's Lewis Research Center on single-crystal blading material, related to creep and fatique. The goal of these research efforts is to improve the understanding of microstructure-property relationships and thereby guide material development.

  11. Creep and fatigue research efforts on advanced materials

    NASA Technical Reports Server (NTRS)

    Gayda, John

    1987-01-01

    Two of the more important materials problems encountered in turbine blades of aircraft engines are creep and fatigue. To withstand these high-temperature phenomena modern engines utilize single-crystal, nickel-based superalloys as the material of choice in critical applications. Recent research activities at Lewis on single-crystal blading material as well as future research initiatives on metal matrix composites related to creep and fatigue are discussed. The goal of these research efforts is improving the understanding of microstructure-property relationships and thereby guide material development.

  12. The Advanced Interdisciplinary Research Laboratory: A Student Team Approach to the Fourth-Year Research Thesis Project Experience

    ERIC Educational Resources Information Center

    Piunno, Paul A. E.; Boyd, Cleo; Barzda, Virginijus; Gradinaru, Claudiu C.; Krull, Ulrich J.; Stefanovic, Sasa; Stewart, Bryan

    2014-01-01

    The advanced interdisciplinary research laboratory (AIRLab) represents a novel, effective, and motivational course designed from the interdisciplinary research interests of chemistry, physics, biology, and education development faculty members as an alternative to the independent thesis project experience. Student teams are assembled to work…

  13. Fish Protection: Cooperative research advances fish-friendly turbine design

    SciTech Connect

    Brown, Richard S.; Ahmann, Martin L.; Trumbo, Bradly A.; Foust, Jason

    2012-12-01

    Renewable hydropower is a tremendous resource within the Pacific Northwest that is managed with considerable cost and consideration for the safe migration of salmon. Recent research conducted in this region has provided results that could lower the impacts of hydro power production and make the technology more fish-friendly. This research is now being applied during a period when a huge emphasis is being made to develop clean, renewable energy sources.

  14. Advancing Aeronautics: A Decision Framework for Selecting Research Agendas

    DTIC Science & Technology

    2011-01-01

    p. cm. Includes bibliographical references. ISBN 978-0-8330-5019-9 (pbk. : alk. paper) 1. Aeronautics—Research-- Government policy—United...from current research and new ideas, not a strategic vision of the greatest challenges, govern - mental role, social needs, potential payoffs, economic...Navy, the Marine Corps, the U.S. Coast Guard, the U.S. Intel- ligence Community, allied foreign governments , and foundations. For more information on

  15. Highlights of the Latest Advances in Research on CDK Inhibitors.

    PubMed

    Cicenas, Jonas; Kalyan, Karthik; Sorokinas, Aleksandras; Jatulyte, Asta; Valiunas, Deividas; Kaupinis, Algirdas; Valius, Mindaugas

    2014-10-27

    Uncontrolled proliferation is the hallmark of cancer and other proliferative disorders and abnormal cell cycle regulation is, therefore, common in these diseases. Cyclin-dependent kinases (CDKs) play a crucial role in the control of the cell cycle and proliferation. These kinases are frequently deregulated in various cancers, viral infections, neurodegenerative diseases, ischemia and some proliferative disorders. This led to a rigorous pursuit for small-molecule CDK inhibitors for therapeutic uses. Early efforts to block CDKs with nonselective CDK inhibitors led to little specificity and efficacy but apparent toxicity, but the recent advance of selective CDK inhibitors allowed the first successful efforts to target these kinases for the therapies of several diseases. Major ongoing efforts are to develop CDK inhibitors as monotherapies and rational combinations with chemotherapy and other targeted drugs.

  16. Gas-turbine critical research and advanced technology support project

    NASA Technical Reports Server (NTRS)

    Clark, J. S.; Hodge, P. E.; Lowell, C. E.; Anderson, D. N.; Schultz, D. F.

    1981-01-01

    A technology data base for utility gas turbine systems capable of burning coal derived fuels was developed. The following areas are investigated: combustion; materials; and system studies. A two stage test rig is designed to study the conversion of fuel bound nitrogen to NOx. The feasibility of using heavy fuels in catalytic combustors is evaluated. A statistically designed series of hot corrosion burner rig tests was conducted to measure the corrosion rates of typical gas turbine alloys with several fuel contaminants. Fuel additives and several advanced thermal barrier coatings are tested. Thermal barrier coatings used in conjunction with low critical alloys and those used in a combined cycle system in which the stack temperature was maintained above the acid corrosion temperature are also studied.

  17. Recent advances in the use of gelatin in biomedical research.

    PubMed

    Su, Kai; Wang, Chunming

    2015-11-01

    The biomacromolecule, gelatin, has increasingly been used in biomedicine-beyond its traditional use in food and cosmetics. The appealing advantages of gelatin, such as its cell-adhesive structure, low cost, off-the-shelf availability, high biocompatibility, biodegradability and low immunogenicity, among others, have made it a desirable candidate for the development of biomaterials for tissue engineering and drug delivery. Gelatin can be formulated in the form of nanoparticles, employed as size-controllable porogen, adopted as surface coating agent and mixed with synthetic or natural biopolymers forming composite scaffolds. In this article, we review recent advances in the versatile applications of gelatin within biomedical context and attempt to draw upon its advantages and potential challenges.

  18. Cooperative Research and Development for Advanced Microturbines Program on Advanced Integrated Microturbine System

    SciTech Connect

    Michael J. Bowman

    2007-05-30

    The Advanced Integrated Microturbine Systems (AIMS) project was kicked off in October of 2000 to develop the next generation microturbine system. The overall objective of the project was to develop a design for a 40% electrical efficiency microturbine system and demonstrate many of the enabling technologies. The project was initiated as a collaborative effort between several units of GE, Elliott Energy Systems, Turbo Genset, Oak Ridge National Lab and Kyocera. Since the inception of the project the partners have changed but the overall direction of the project has stayed consistent. The project began as a systems study to identify design options to achieve the ultimate goal of 40% electrical efficiency. Once the optimized analytical design was identified for the 40% system, it was determined that a 35% efficient machine would be capable of demonstrating many of the advanced technologies within the given budget and timeframe. The items that would not be experimentally demonstrated were fully produced ceramic parts. However, to understand the requirements of these ceramics, an effort was included in the project to experimentally evaluate candidate materials in representative conditions. The results from this effort would clearly identify the challenges and improvement required of these materials for the full design. Following the analytical effort, the project was dedicated to component development and testing. Each component and subsystem was designed with the overall system requirements in mind and each tested to the fullest extent possible prior to being integrated together. This method of component development and evaluation helps to minimize the technical risk of the project. Once all of the components were completed, they were assembled into the full system and experimentally evaluated.

  19. Eco-informatics for decision makers advancing a research agenda

    USGS Publications Warehouse

    Cushing, J.B.; Wilson, T.; Brandt, L.; Gregg, V.; Spengler, S.; Borning, A.; Delcambre, L.; Bowker, G.; Frame, M.; Fulop, J.; Hert, C.; Hovy, E.; Jones, J.; Landis, E.; Schnase, J.L.; Schweik, C.; Sonntag, W.; ,

    2005-01-01

    Resource managers often face significant information technology (IT) problems when integrating ecological or environmental information to make decisions. At a workshop sponsored by the NSF and USGS in December 2004, university researchers, natural resource managers, and information managers met to articulate IT problems facing ecology and environmental decision makers. Decision making IT problems were identified in five areas: 1) policy, 2) data presentation, 3) data gaps, 4) tools, and 5) indicators. To alleviate those problems, workshop participants recommended specific informatics research in modeling and simulation, data quality, information integration and ontologies, and social and human aspects. This paper reports the workshop findings, and briefly compares these with research that traditionally falls under the emerging eco-informatics rubric. ?? Springer-Verlag Berlin Heidelberg 2005.

  20. Advancing Australia's role in climate change and health research

    NASA Astrophysics Data System (ADS)

    Green, Donna; Pitman, Andrew; Barnett, Adrian; Kaldor, John; Doherty, Peter; Stanley, Fiona

    2017-02-01

    A major Australian government report published 25 years ago called for urgent investment in research on the impacts of climate change on human health. Since that report's release, less than 0.1% of Australian health funding has been allocated to this area. As the world continues on a high emissions pathway, the health impacts from climate change are increasing in size and complexity. While Australia has established leadership roles in climate science and health research, it must now link these two strengths. Doing so would boost regional understanding of how climate change will affect health and what adaptation strategies are needed to reduce these threats. Such research would support better health planning and decision-making in partnership with other regional countries.