DOE Office of Scientific and Technical Information (OSTI.GOV)
Wichman, K.; Tsao, J.; Mayfield, M.
The regulatory application of leak before break (LBB) for operating and advanced reactors in the U.S. is described. The U.S. Nuclear Regulatory Commission (NRC) has approved the application of LBB for six piping systems in operating reactors: reactor coolant system primary loop piping, pressurizer surge, safety injection accumulator, residual heat removal, safety injection, and reactor coolant loop bypass. The LBB concept has also been applied in the design of advanced light water reactors. LBB applications, and regulatory considerations, for pressurized water reactors and advanced light water reactors are summarized in this paper. Technology development for LBB performed by the NRCmore » and the International Piping Integrity Research Group is also briefly summarized.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Was, Gary; Leonard, Keith J.; Tan, Lizhen
Life extension of the existing nuclear reactors imposes irradiation of high fluences to structural materials, resulting in significant challenges to the traditional reactor materials such as type 304 and 316 stainless steels. Advanced alloys with superior radiation resistance will increase safety margins, design flexibility, and economics for not only the life extension of the existing fleet but also new builds with advanced reactor designs. The Electric Power Research Institute (EPRI) teamed up with Department of Energy (DOE) Light Water Reactor Sustainability Program to initiate the Advanced Radiation Resistant Materials (ARRM) program, aiming to identify and develop advanced alloys with superiormore » degradation resistance in light water reactor (LWR)-relevant environments by 2024.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monteleone, S.
This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25--27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updatedmore » and may differ from those that appeared in the final program of the meeting. Individual papers have been cataloged separately. This document, Volume 1 covers the following topics: Advanced Reactor Research; Advanced Instrumentation and Control Hardware; Advanced Control System Technology; Human Factors Research; Probabilistic Risk Assessment Topics; Thermal Hydraulics; and Thermal Hydraulic Research for Advanced Passive Light Water Reactors.« less
Renewing Liquid Fueled Molten Salt Reactor Research and Development
NASA Astrophysics Data System (ADS)
Towell, Rusty; NEXT Lab Team
2016-09-01
Globally there is a desperate need for affordable, safe, and clean energy on demand. More than anything else, this would raise the living conditions of those in poverty around the world. An advanced reactor that utilizes liquid fuel and molten salts is capable of meeting these needs. Although, this technology was demonstrated in the Molten Salt Reactor Experiment (MSRE) at ORNL in the 60's, little progress has been made since the program was cancelled over 40 years ago. A new research effort has been initiated to advance the technical readiness level of key reactor components. This presentation will explain the motivation and initial steps for this new research initiative.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honma, George
The establishment of a systematic process for the evaluation of historic technology information for use in advanced reactor licensing is described. Efforts are underway to recover and preserve Experimental Breeder Reactor II and Fast Flux Test Facility historical data. These efforts have generally emphasized preserving information from data-acquisition systems and hard-copy reports and entering it into modern electronic formats suitable for data retrieval and examination. The guidance contained in this document has been developed to facilitate consistent and systematic evaluation processes relating to quality attributes of historic technical information (with focus on sodium-cooled fast reactor (SFR) technology) that will bemore » used to eventually support licensing of advanced reactor designs. The historical information may include, but is not limited to, design documents for SFRs, research-and-development (R&D) data and associated documents, test plans and associated protocols, operations and test data, international research data, technical reports, and information associated with past U.S. Nuclear Regulatory Commission (NRC) reviews of SFR designs. The evaluation process is prescribed in terms of SFR technology, but the process can be used to evaluate historical information for any type of advanced reactor technology. An appendix provides a discussion of typical issues that should be considered when evaluating and qualifying historical information for advanced reactor technology fuel and source terms, based on current light water reactor (LWR) requirements and recent experience gained from Next Generation Nuclear Plant (NGNP).« less
NASA Astrophysics Data System (ADS)
Stacey, Weston M.
2001-02-01
An authoritative textbook and up-to-date professional's guide to basic and advanced principles and practices Nuclear reactors now account for a significant portion of the electrical power generated worldwide. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. Nuclear reactor physics is the core discipline of nuclear engineering, and as the first comprehensive textbook and reference on basic and advanced nuclear reactor physics to appear in a quarter century, this book fills a large gap in the professional literature. Nuclear Reactor Physics is a textbook for students new to the subject, for others who need a basic understanding of how nuclear reactors work, as well as for those who are, or wish to become, specialists in nuclear reactor physics and reactor physics computations. It is also a valuable resource for engineers responsible for the operation of nuclear reactors. Dr. Weston Stacey begins with clear presentations of the basic physical principles, nuclear data, and computational methodology needed to understand both the static and dynamic behaviors of nuclear reactors. This is followed by in-depth discussions of advanced concepts, including extensive treatment of neutron transport computational methods. As an aid to comprehension and quick mastery of computational skills, he provides numerous examples illustrating step-by-step procedures for performing the calculations described and chapter-end problems. Nuclear Reactor Physics is a useful textbook and working reference. It is an excellent self-teaching guide for research scientists, engineers, and technicians involved in industrial, research, and military applications of nuclear reactors, as well as government regulators who wish to increase their understanding of nuclear reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
William Richins; Stephen Novascone; Cheryl O'Brien
Summary of SMIRT20 Preconference Topical Workshop – Identifying Structural Issues in Advanced Reactors William Richins1, Stephen Novascone1, and Cheryl O’Brien1 1Idaho National Laboratory, US Dept. of Energy, Idaho Falls, Idaho, USA, e-mail: William.Richins@inl.gov The Idaho National Laboratory (INL, USA) and IASMiRT sponsored an international forum Nov 5-6, 2008 in Porvoo, Finland for nuclear industry, academic, and regulatory representatives to identify structural issues in current and future advanced reactor design, especially for extreme conditions and external threats. The purpose of this Topical Workshop was to articulate research, engineering, and regulatory Code development needs. The topics addressed by the Workshop were selectedmore » to address critical industry needs specific to advanced reactor structures that have long lead times and can be the subject of future SMiRT technical sessions. The topics were; 1) structural/materials needs for extreme conditions and external threats in contemporary (Gen. III) and future (Gen. IV and NGNP) advanced reactors and 2) calibrating simulation software and methods that address topic 1 The workshop discussions and research needs identified are presented. The Workshop successfully produced interactive discussion on the two topics resulting in a list of research and technology needs. It is recommended that IASMiRT communicate the results of the discussion to industry and researchers to encourage new ideas and projects. In addition, opportunities exist to retrieve research reports and information that currently exists, and encourage more international cooperation and collaboration. It is recommended that IASMiRT continue with an off-year workshop series on select topics.« less
Assessment of Sensor Technologies for Advanced Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korsah, Kofi; Kisner, R. A.; Britton Jr., C. L.
This paper provides an assessment of sensor technologies and a determination of measurement needs for advanced reactors (AdvRx). It is a summary of a study performed to provide the technical basis for identifying and prioritizing research targets within the instrumentation and control (I&C) Technology Area under the Department of Energy’s (DOE’s) Advanced Reactor Technology (ART) program. The study covered two broad reactor technology categories: High Temperature Reactors and Fast Reactors. The scope of “High temperature reactors” included Gen IV reactors whose coolant exit temperatures exceed ≈650 °C and are moderated (as opposed to fast reactors). To bound the scope formore » fast reactors, this report reviewed relevant operating experience from US-operated Sodium Fast Reactor (SFR) and relevant test experience from the Fast Flux Test Facility (FFTF). For high temperature reactors the study showed that in many cases instrumentation have performed reasonably well in research and demonstration reactors. However, even in cases where the technology is “mature” (such as thermocouples), HTGRs can benefit from improved technologies. Current HTGR instrumentation is generally based on decades-old technology and adapting newer technologies could provide significant advantages. For sodium fast reactors, the study found that several key research needs arise around (1) radiation-tolerant sensor design for in-vessel or in-core applications, where possible non-invasive sensing approaches for key parameters that minimize the need to deploy sensors in-vessel, (2) approaches to exfiltrating data from in-vessel sensors while minimizing penetrations, (3) calibration of sensors in-situ, and (4) optimizing sensor placements to maximize the information content while minimizing the number of sensors needed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mynatt, F.R.
1987-03-18
This report provides a description of the statements submitted for the record to the committee on Science, Space, and Technology of the United States House of Representatives. These statements describe three principal areas of activity of the Advanced Reactor Technology Program of the Department of Energy (DOE). These areas are advanced fuel cycle technology, modular high-temperature gas-cooled reactor technology, and liquid metal-cooled reactor. The areas of automated reactor control systems, robotics, materials and structural design shielding and international cooperation were included in these statements describing the Oak Ridge National Laboratory's efforts in these areas. (FI)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristine Barrett; Shannon Bragg-Sitton
The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Research and Development (R&D) Pathway encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. To achieve significant operating improvements while remaining within safety boundaries, significant steps beyond incremental improvements in the current generation of nuclear fuel are required. Fundamental improvements are required in the areas of nuclear fuel composition, cladding integrity, and the fuel/cladding interaction to allow power uprates and increased fuel burn-up allowance while potentially improving safety margin through the adoption of an “accident tolerant” fuel system thatmore » would offer improved coping time under accident scenarios. With a development time of about 20 – 25 years, advanced fuel designs must be started today and proven in current reactors if future reactor designs are to be able to use them with confidence.« less
Advanced In-Pile Instrumentation for Materials Testing Reactors
NASA Astrophysics Data System (ADS)
Rempe, J. L.; Knudson, D. L.; Daw, J. E.; Unruh, T. C.; Chase, B. M.; Davis, K. L.; Palmer, A. J.; Schley, R. S.
2014-08-01
The U.S. Department of Energy sponsors the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) program to promote U.S. research in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR NSUF facilitates basic and applied nuclear research and development, advancing U.S. energy security needs. A key component of the ATR NSUF effort is to design, develop, and deploy new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. This paper describes the strategy developed by the Idaho National Laboratory (INL) for identifying instrumentation needed for ATR irradiation tests and the program initiated to obtain these sensors. New sensors developed from this effort are identified, and the progress of other development efforts is summarized. As reported in this paper, INL researchers are currently involved in several tasks to deploy real-time length and flux detection sensors, and efforts have been initiated to develop a crack growth test rig. Tasks evaluating `advanced' technologies, such as fiber-optics based length detection and ultrasonic thermometers, are also underway. In addition, specialized sensors for real-time detection of temperature and thermal conductivity are not only being provided to NSUF reactors, but are also being provided to several international test reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, James E.; Sabharwall, Piyush; Yoon, Su -Jong
2014-09-01
This report presents a conceptual design for a new high-temperature multi fluid, multi loop test facility for the INL to support thermal hydraulic, materials, and thermal energy storage research for nuclear and nuclear-hybrid applications. In its initial configuration, the facility will include a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed with this facility include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs)more » at prototypical operating conditions, flow and heat transfer issues related to core thermal hydraulics in advanced helium-cooled and salt-cooled reactors, and evaluation of corrosion behavior of new cladding materials and accident-tolerant fuels for LWRs at prototypical conditions. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST) facility. Research performed in this facility will advance the state of the art and technology readiness level of high temperature intermediate heat exchangers (IHXs) for nuclear applications while establishing the INL as a center of excellence for the development and certification of this technology. The thermal energy storage capability will support research and demonstration activities related to process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will assist in development of reliable predictive models for thermal hydraulic design and safety codes over the range of expected advanced reactor operating conditions. Proposed/existing IHX heat transfer and friction correlations and criteria will be assessed with information on materials compatibility and instrumentation needs. The experimental database will guide development of appropriate predictive methods and be available for code verification and validation (V&V) related to these systems.« less
Research gaps and technology needs in development of PHM for passive AdvSMR components
NASA Astrophysics Data System (ADS)
Meyer, Ryan M.; Ramuhalli, Pradeep; Coble, Jamie B.; Hirt, Evelyn H.; Mitchell, Mark R.; Wootan, David W.; Berglin, Eric J.; Bond, Leonard J.; Henagar, Chuck H., Jr.
2014-02-01
Advanced small modular reactors (AdvSMRs), which are based on modularization of advanced reactor concepts, may provide a longer-term alternative to traditional light-water reactors and near-term small modular reactors (SMRs), which are based on integral pressurized water reactor (iPWR) concepts. SMRs are challenged economically because of losses in economy of scale; thus, there is increased motivation to reduce the controllable operations and maintenance costs through automation technologies including prognostics health management (PHM) systems. In this regard, PHM systems have the potential to play a vital role in supporting the deployment of AdvSMRs and face several unique challenges with respect to implementation for passive AdvSMR components. This paper presents a summary of a research gaps and technical needs assessment performed for implementation of PHM for passive AdvSMR components.
Development of advanced strain diagnostic techniques for reactor environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleming, Darryn D.; Holschuh, Thomas Vernon,; Miller, Timothy J.
2013-02-01
The following research is operated as a Laboratory Directed Research and Development (LDRD) initiative at Sandia National Laboratories. The long-term goals of the program include sophisticated diagnostics of advanced fuels testing for nuclear reactors for the Department of Energy (DOE) Gen IV program, with the future capability to provide real-time measurement of strain in fuel rod cladding during operation in situ at any research or power reactor in the United States. By quantifying the stress and strain in fuel rods, it is possible to significantly improve fuel rod design, and consequently, to improve the performance and lifetime of the cladding.more » During the past year of this program, two sets of experiments were performed: small-scale tests to ensure reliability of the gages, and reactor pulse experiments involving the most viable samples in the Annulated Core Research Reactor (ACRR), located onsite at Sandia. Strain measurement techniques that can provide useful data in the extreme environment of a nuclear reactor core are needed to characterize nuclear fuel rods. This report documents the progression of solutions to this issue that were explored for feasibility in FY12 at Sandia National Laboratories, Albuquerque, NM.« less
NASA Astrophysics Data System (ADS)
Keiser, Dennis; Jue, Jan-Fong; Miller, Brandon; Gan, Jian; Robinson, Adam; Madden, James
2017-12-01
A low-enriched uranium U-10Mo monolithic nuclear fuel is being developed by the Material Management and Minimization Program, earlier known as the Reduced Enrichment for Research and Test Reactors Program, for utilization in research and test reactors around the world that currently use high-enriched uranium fuels. As part of this program, reactor experiments are being performed in the Advanced Test Reactor. It must be demonstrated that this fuel type exhibits mechanical integrity, geometric stability, and predictable behavior to high powers and high fission densities in order for it to be a viable fuel for qualification. This paper provides an overview of the microstructures observed at different regions of interest in fuel plates before and after irradiation for fuel samples that have been tested. These fuel plates were fabricated using laboratory-scale fabrication methods. Observations regarding how microstructural changes during irradiation may impact fuel performance are discussed.
Advanced reactors and associated fuel cycle facilities: safety and environmental impacts.
Hill, R N; Nutt, W M; Laidler, J J
2011-01-01
The safety and environmental impacts of new technology and fuel cycle approaches being considered in current U.S. nuclear research programs are contrasted to conventional technology options in this paper. Two advanced reactor technologies, the sodium-cooled fast reactor (SFR) and the very high temperature gas-cooled reactor (VHTR), are being developed. In general, the new reactor technologies exploit inherent features for enhanced safety performance. A key distinction of advanced fuel cycles is spent fuel recycle facilities and new waste forms. In this paper, the performance of existing fuel cycle facilities and applicable regulatory limits are reviewed. Technology options to improve recycle efficiency, restrict emissions, and/or improve safety are identified. For a closed fuel cycle, potential benefits in waste management are significant, and key waste form technology alternatives are described. Copyright © 2010 Health Physics Society
Advanced Reactor Technologies - Regulatory Technology Development Plan (RTDP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moe, Wayne L.
This DOE-NE Advanced Small Modular Reactor (AdvSMR) regulatory technology development plan (RTDP) will link critical DOE nuclear reactor technology development programs to important regulatory and policy-related issues likely to impact a “critical path” for establishing a viable commercial AdvSMR presence in the domestic energy market. Accordingly, the regulatory considerations that are set forth in the AdvSMR RTDP will not be limited to any one particular type or subset of advanced reactor technology(s) but rather broadly consider potential regulatory approaches and the licensing implications that accompany all DOE-sponsored research and technology development activity that deal with commercial non-light water reactors. However,more » it is also important to remember that certain “minimum” levels of design and safety approach knowledge concerning these technology(s) must be defined and available to an extent that supports appropriate pre-licensing regulatory analysis within the RTDP. Final resolution to advanced reactor licensing issues is most often predicated on the detailed design information and specific safety approach as documented in a facility license application and submitted for licensing review. Because the AdvSMR RTDP is focused on identifying and assessing the potential regulatory implications of DOE-sponsored reactor technology research very early in the pre-license application development phase, the information necessary to support a comprehensive regulatory analysis of a new reactor technology, and the resolution of resulting issues, will generally not be available. As such, the regulatory considerations documented in the RTDP should be considered an initial “first step” in the licensing process which will continue until a license is issued to build and operate the said nuclear facility. Because a facility license application relies heavily on the data and information generated by technology development studies, the anticipated regulatory importance of key DOE reactor research initiatives should be assessed early in the technology development process. Quality assurance requirements supportive of later licensing activities must also be attached to important research activities to ensure resulting data is usable in that context. Early regulatory analysis and licensing approach planning thus provides a significant benefit to the formulation of research plans and also enables the planning and development of a compatible AdvSMR licensing framework, should significant modification be required.« less
Advanced Reactor Technology -- Regulatory Technology Development Plan (RTDP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moe, Wayne Leland
This DOE-NE Advanced Small Modular Reactor (AdvSMR) regulatory technology development plan (RTDP) will link critical DOE nuclear reactor technology development programs to important regulatory and policy-related issues likely to impact a “critical path” for establishing a viable commercial AdvSMR presence in the domestic energy market. Accordingly, the regulatory considerations that are set forth in the AdvSMR RTDP will not be limited to any one particular type or subset of advanced reactor technology(s) but rather broadly consider potential regulatory approaches and the licensing implications that accompany all DOE-sponsored research and technology development activity that deal with commercial non-light water reactors. However,more » it is also important to remember that certain “minimum” levels of design and safety approach knowledge concerning these technology(s) must be defined and available to an extent that supports appropriate pre-licensing regulatory analysis within the RTDP. Final resolution to advanced reactor licensing issues is most often predicated on the detailed design information and specific safety approach as documented in a facility license application and submitted for licensing review. Because the AdvSMR RTDP is focused on identifying and assessing the potential regulatory implications of DOE-sponsored reactor technology research very early in the pre-license application development phase, the information necessary to support a comprehensive regulatory analysis of a new reactor technology, and the resolution of resulting issues, will generally not be available. As such, the regulatory considerations documented in the RTDP should be considered an initial “first step” in the licensing process which will continue until a license is issued to build and operate the said nuclear facility. Because a facility license application relies heavily on the data and information generated by technology development studies, the anticipated regulatory importance of key DOE reactor research initiatives should be assessed early in the technology development process. Quality assurance requirements supportive of later licensing activities must also be attached to important research activities to ensure resulting data is usable in that context. Early regulatory analysis and licensing approach planning thus provides a significant benefit to the formulation of research plans and also enables the planning and development of a compatible AdvSMR licensing framework, should significant modification be required.« less
Implementation Plan for Qualification of Sodium-Cooled Fast Reactor Technology Information
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moe, Wayne; Honma, George
This document identifies and discusses implementation elements that can be used to facilitate consistent and systematic evaluation processes relating to quality attributes of technical information (with focus on SFR technology) that will be used to support licensing of advanced reactor designs. Information may include, but is not limited to, design documents for SFRs, research-and-development (R&D) data and associated documents, test plans and associated protocols, operations and test data, international research data, technical reports, and information associated with past U.S. Nuclear Regulatory Commission (NRC) reviews of SFR designs. The approach for determining acceptability of test data, analysis, and/or other technical informationmore » is based on guidance provided in INL/EXT-15-35805, “Guidance on Evaluating Historic Technology Information for Use in Advanced Reactor Licensing.” The implementation plan can be adopted into a working procedure at each of the national laboratories performing data qualification, or by applicants seeking future license application for advanced reactor technology.« less
Advanced 3D Characterization and Reconstruction of Reactor Materials FY16 Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fromm, Bradley; Hauch, Benjamin; Sridharan, Kumar
2016-12-01
A coordinated effort to link advanced materials characterization methods and computational modeling approaches is critical to future success for understanding and predicting the behavior of reactor materials that operate at extreme conditions. The difficulty and expense of working with nuclear materials have inhibited the use of modern characterization techniques on this class of materials. Likewise, mesoscale simulation efforts have been impeded due to insufficient experimental data necessary for initialization and validation of the computer models. The objective of this research is to develop methods to integrate advanced materials characterization techniques developed for reactor materials with state-of-the-art mesoscale modeling and simulationmore » tools. Research to develop broad-ion beam sample preparation, high-resolution electron backscatter diffraction, and digital microstructure reconstruction techniques; and methods for integration of these techniques into mesoscale modeling tools are detailed. Results for both irradiated and un-irradiated reactor materials are presented for FY14 - FY16 and final remarks are provided.« less
Johnson Noise Thermometry for Advanced Small Modular Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Britton, C.L.,Jr.; Roberts, M.; Bull, N.D.
Temperature is a key process variable at any nuclear power plant (NPP). The harsh reactor environment causes all sensor properties to drift over time. At the higher temperatures of advanced NPPs the drift occurs more rapidly. The allowable reactor operating temperature must be reduced by the amount of the potential measurement error to assure adequate margin to material damage. Johnson noise is a fundamental expression of temperature and as such is immune to drift in a sensor’s physical condition. In and near the core, only Johnson noise thermometry (JNT) and radiation pyrometry offer the possibility for long-term, high-accuracy temperature measurementmore » due to their fundamental natures. Small Modular Reactors (SMRs) place a higher value on long-term stability in their temperature measurements in that they produce less power per reactor core and thus cannot afford as much instrument recalibration labor as their larger brethren. The purpose of the current ORNL-led project, conducted under the Instrumentation, Controls, and Human-Machine Interface (ICHMI) research pathway of the U.S. Department of Energy (DOE) Advanced SMR Research and Development (R&D) program, is to develop and demonstrate a drift free Johnson noise-based thermometer suitable for deployment near core in advanced SMR plants.« less
A Framework for Human Performance Criteria for Advanced Reactor Operational Concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacques V Hugo; David I Gertman; Jeffrey C Joe
2014-08-01
This report supports the determination of new Operational Concept models needed in support of the operational design of new reactors. The objective of this research is to establish the technical bases for human performance and human performance criteria frameworks, models, and guidance for operational concepts for advanced reactor designs. The report includes a discussion of operating principles for advanced reactors, the human performance issues and requirements for human performance based upon work domain analysis and current regulatory requirements, and a description of general human performance criteria. The major findings and key observations to date are that there is some operatingmore » experience that informs operational concepts for baseline designs for SFR and HGTRs, with the Experimental Breeder Reactor-II (EBR-II) as a best-case predecessor design. This report summarizes the theoretical and operational foundations for the development of a framework and model for human performance criteria that will influence the development of future Operational Concepts. The report also highlights issues associated with advanced reactor design and clarifies and codifies the identified aspects of technology and operating scenarios.« less
Advanced Demonstration and Test Reactor Options Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petti, David Andrew; Hill, R.; Gehin, J.
Global efforts to address climate change will require large-scale decarbonization of energy production in the United States and elsewhere. Nuclear power already provides 20% of electricity production in the United States (U.S.) and is increasing in countries undergoing rapid growth around the world. Because reliable, grid-stabilizing, low emission electricity generation, energy security, and energy resource diversity will be increasingly valued, nuclear power’s share of electricity production has a potential to grow. In addition, there are non electricity applications (e.g., process heat, desalination, hydrogen production) that could be better served by advanced nuclear systems. Thus, the timely development, demonstration, and commercializationmore » of advanced nuclear reactors could diversify the nuclear technologies available and offer attractive technology options to expand the impact of nuclear energy for electricity generation and non-electricity missions. The purpose of this planning study is to provide transparent and defensible technology options for a test and/or demonstration reactor(s) to be built to support public policy, innovation and long term commercialization within the context of the Department of Energy’s (DOE’s) broader commitment to pursuing an “all of the above” clean energy strategy and associated time lines. This planning study includes identification of the key features and timing needed for advanced test or demonstration reactors to support research, development, and technology demonstration leading to the commercialization of power plants built upon these advanced reactor platforms. This planning study is consistent with the Congressional language contained within the fiscal year 2015 appropriation that directed the DOE to conduct a planning study to evaluate “advanced reactor technology options, capabilities, and requirements within the context of national needs and public policy to support innovation in nuclear energy”. Advanced reactors are defined in this study as reactors that use coolants other than water. Advanced reactor technologies have the potential to expand the energy applications, enhance the competitiveness, and improve the sustainability of nuclear energy.« less
Proceedings of a Symposium on Advanced Compact Reactor Systems
NASA Technical Reports Server (NTRS)
1983-01-01
Reactor system technologies suitable for a variety of aerospace and terrestrial applications are considered. Technologies, safety and regulatory considerations, potential applications, and research and development opportunities are covered.
Research and Development Roadmaps for Liquid Metal Cooled Fast Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, T. K.; Grandy, C.; Natesan, K.
The United States Department of Energy (DOE) commissioned the development of technology roadmaps for advanced (non-light water reactor) reactor concepts to help focus research and development funding over the next five years. The roadmaps show the research and development needed to support demonstration of an advanced (non-LWR) concept by the early 2030s, consistent with DOE’s Vision and Strategy for the Development and Deployment of Advanced Reactors. The intent is only to convey the technical steps that would be required to achieve such a goal; the means by which DOE will determine whether to invest in specific tasks will be treatedmore » separately. The starting point for the roadmaps is the Technical Readiness Assessment performed as part of an Advanced Test and Demonstration Reactor study released in 2016. The roadmaps were developed based upon a review of technical reports and vendor literature summarizing the technical maturity of each concept and the outstanding research and development needs. Critical path tasks for specific systems were highlighted on the basis of time and resources needed to complete the tasks and the importance of the system to the performance of the reactor concept. The roadmaps are generic, i.e. not specific to a particular vendor’s design but vendor design information may have been used as representative of the concept family. In the event that both near-term and more advanced versions of a concept are being developed, either a single roadmap with multiple branches or separate roadmaps for each version were developed. In each case, roadmaps point to a demonstration reactor (engineering or commercial) and show the activities that must be completed in parallel to support that demonstration in the 2030-2035 window. This report provides the roadmaps for two fast reactor concepts, the Sodium-cooled Fast Reactor (SFR) and the Lead-cooled Fast Reactor (LFR). The SFR technology is mature enough for commercial demonstration by the early 2030s, and the remaining critical paths and R&D needs are generally related to the completion of qualification of fuel and structural materials, validation of reactor design codes and methods, and support of the licensing frameworks. The LFR’s technology is instead less-mature compared to the SFR’s, and will be at the engineering demonstration stage by the early 2030s. Key LFR technology development activities will focus on resolving remaining design challenges and demonstrating the viability of systems and components in the integral system, which will be done in parallel with addressing the gaps shared with SFR technology. The approach and timeline presented here assume that, for the first module demonstration, vendors would pursue a two-step licensing process based on 10CFR Part 50.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalifa, Hesham
Advanced ceramic materials exhibit properties that enable safety and fuel cycle efficiency improvements in advanced nuclear reactors. In order to fully exploit these desirable properties, new processing techniques are required to produce the complex geometries inherent to nuclear fuel assemblies and support structures. Through this project, the state of complex SiC-SiC composite fabrication for nuclear components has advanced significantly. New methods to produce complex SiC-SiC composite structures have been demonstrated in the form factors needed for in-core structural components in advanced high temperature nuclear reactors. Advanced characterization techniques have been employed to demonstrate that these complex SiC-SiC composite structures providemore » the strength, toughness and hermeticity required for service in harsh reactor conditions. The complex structures produced in this project represent a significant step forward in leveraging the excellent high temperature strength, resistance to neutron induced damage, and low neutron cross section of silicon carbide in nuclear applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Progress is reported on fundamental research in: crystal physics, reactions at metal surfaces, spectroscopy of ionic media, structure of metals, theory of alloying, physical properties, sintering, deformation of crystalline solids, x ray diffraction, metallurgy of superconducting materials, and electron microscope studies. Long-randge applied research studies were conducted for: zirconium metallurgy, materials compatibility, solid reactions, fuel element development, mechanical properties, non-destructive testing, and high-temperature materials. Reactor development support work was carried out for: gas-cooled reactor program, molten-salt reactor, high-flux isotope reactor, space-power program, thorium-utilization program, advanced-test reactor, Army Package Power Reactor, Enrico Fermi fast-breeder reactor, and water desalination program. Other programmore » activities, for which research was conducted, included: thermonuclear project, transuraniunn program, and post-irradiation examination laboratory. Separate abstracts were prepared for 30 sections of the report. (B.O.G.)« less
Assessment of Sensor Technologies for Advanced Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korsah, Kofi; Ramuhalli, Pradeep; Vlim, R.
2016-10-01
Sensors and measurement technologies provide information on processes, support operations and provide indications of component health. They are therefore crucial to plant operations and to commercialization of advanced reactors (AdvRx). This report, developed by a three-laboratory team consisting of Argonne National Laboratory (ANL), Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL), provides an assessment of sensor technologies and a determination of measurement needs for AdvRx. It provides the technical basis for identifying and prioritizing research targets within the instrumentation and control (I&C) Technology Area under the Department of Energy’s (DOE’s) Advanced Reactor Technology (ART) program and contributesmore » to the design and implementation of AdvRx concepts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johanna Oxstrand; Katya Le Blanc
The Human-Automation Collaboration (HAC) research effort is a part of the Department of Energy (DOE) sponsored Advanced Small Modular Reactor (AdvSMR) program conducted at Idaho National Laboratory (INL). The DOE AdvSMR program focuses on plant design and management, reduction of capital costs as well as plant operations and maintenance costs (O&M), and factory production costs benefits.
Year One Summary of X-energy Pebble Fuel Development at ORNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helmreich, Grant W.; Hunn, John D.; McMurray, Jake W.
2017-06-01
The Advanced Reactor Concepts X-energy (ARC-Xe) Pebble Fuel Development project at Oak Ridge National Laboratory (ORNL) has successfully completed its first year, having made excellent progress in accomplishing programmatic objectives. The primary focus of research at ORNL in support of X-energy has been the training of X-energy fuel fabrication engineers and the establishment of US pebble fuel production capabilities able to supply the Xe-100 pebble-bed reactor. These efforts have been strongly supported by particle fuel fabrication and characterization expertise present at ORNL from the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program.
Key Assets for a Sustainable Low Carbon Energy Future
NASA Astrophysics Data System (ADS)
Carre, Frank
2011-10-01
Since the beginning of the 21st century, concerns of energy security and climate change gave rise to energy policies focused on energy conservation and diversified low-carbon energy sources. Provided lessons of Fukushima accident are evidently accounted for, nuclear energy will probably be confirmed in most of today's nuclear countries as a low carbon energy source needed to limit imports of oil and gas and to meet fast growing energy needs. Future challenges of nuclear energy are then in three directions: i) enhancing safety performance so as to preclude any long term impact of severe accident outside the site of the plant, even in case of hypothetical external events, ii) full use of Uranium and minimization long lived radioactive waste burden for sustainability, and iii) extension to non-electricity energy products for maximizing the share of low carbon energy source in transportation fuels, industrial process heat and district heating. Advanced LWRs (Gen-III) are today's best available technologies and can somewhat advance nuclear energy in these three directions. However, breakthroughs in sustainability call for fast neutron reactors and closed fuel cycles, and non-electric applications prompt a revival of interest in high temperature reactors for exceeding cogeneration performances achievable with LWRs. Both types of Gen-IV nuclear systems by nature call for technology breakthroughs to surpass LWRs capabilities. Current resumption in France of research on sodium cooled fast neutron reactors (SFRs) definitely aims at significant progress in safety and economic competitiveness compared to earlier reactors of this type in order to progress towards a new generation of commercially viable sodium cooled fast reactor. Along with advancing a new generation of sodium cooled fast reactor, research and development on alternative fast reactor types such as gas or lead-alloy cooled systems (GFR & LFR) is strategic to overcome technical difficulties and/or political opposition specific to sodium. In conclusion, research and technology breakthroughs in nuclear power are needed for shaping a sustainable low carbon future. International cooperation is key for sharing costs of research and development of the required novel technologies and cost of first experimental reactors needed to demonstrate enabling technologies. At the same time technology breakthroughs are developed, pre-normative research is required to support codification work and harmonized regulations that will ultimately apply to safety and security features of resulting innovative reactor types and fuel cycles.
A Comparative Study of Welded ODS Cladding materials for AFCI/GNEP Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Indrajit Charit; Megan Frary; Darryl Butt
2011-03-31
This research project involved working on the pressure resistance welding of oxide dispersion strengthened (ODS) alloys which will have a large role to play in advanced nuclear reactors. The project also demonstrated the research collaboration between four universities and one nation laboratory (Idaho National Laboratory) with participation from an industry for developing for ODS alloys. These alloys contain a high number density of very fine oxide particles that can impart high temperature strength and radiation damage resistance suitable for in-core applications in advanced reactors. The conventional fusion welding techniques tend to produce porosity-laden microstructure in the weld region and leadmore » to the agglomeration and non-uniform distribution of the neededoxide particles. That is why two solid state welding methods - pressure resistance welding (PRW) and friction stir welding (FSW) - were chosen to be evaluated in this project. The proposal is expected to support the development of Advanced Burner Reactors (ABR) under the GNEP program (now incorporated in Fuel Cycle R&D program). The outcomes of the concluded research include training of graduate and undergraduate students and get them interested in nuclear related research.« less
Proceedings of the 1994 international meeting on reduced enrichment for research and test reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-08-01
This meeting brought together participants in the international effort to minimize and eventually eliminate the use of highly enriched uranium in civilian nuclear programs. Papers cover the following topics: National programs; fuel cycle; nuclear fuels; analyses; advanced reactors; and reactor conversions. Selected papers have been indexed separately for inclusion to the Energy Science and Technology Database.
Operational Philosophy for the Advanced Test Reactor National Scientific User Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Benson; J. Cole; J. Jackson
2013-02-01
In 2007, the Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF). At its core, the ATR NSUF Program combines access to a portion of the available ATR radiation capability, the associated required examination and analysis facilities at the Idaho National Laboratory (INL), and INL staff expertise with novel ideas provided by external contributors (universities, laboratories, and industry). These collaborations define the cutting edge of nuclear technology research in high-temperature and radiation environments, contribute to improved industry performance of current and future light-water reactors (LWRs), and stimulate cooperative research between user groupsmore » conducting basic and applied research. To make possible the broadest access to key national capability, the ATR NSUF formed a partnership program that also makes available access to critical facilities outside of the INL. Finally, the ATR NSUF has established a sample library that allows access to pre-irradiated samples as needed by national research teams.« less
NASA Astrophysics Data System (ADS)
Turinsky, Paul J.; Martin, William R.
2017-04-01
In this special issue of the Journal of Computational Physics, the research and development completed at the time of manuscript submission by the Consortium for Advanced Simulation of Light Water Reactors (CASL) is presented. CASL is the first of several Energy Innovation Hubs that have been created by the Department of Energy. The Hubs are modeled after the strong scientific management characteristics of the Manhattan Project and AT&T Bell Laboratories, and function as integrated research centers that combine basic and applied research with engineering to accelerate scientific discovery that addresses critical energy issues. Lifetime of a Hub is expected to be five or ten years depending upon performance, with CASL being granted a ten year lifetime.
Design and Status of RERTR Irradiation Tests in the Advanced Test Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel M. Wachs; Richard G. Ambrosek; Gray Chang
2006-10-01
Irradiation testing of U-Mo based fuels is the central component of the Reduced Enrichment for Research and Test Reactors (RERTR) program fuel qualification plan. Several RERTR tests have recently been completed or are planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory in Idaho Falls, ID. Four mini-plate experiments in various stages of completion are described in detail, including the irradiation test design, objectives, and irradiation conditions. Observations made during and after the in-reactor RERTR-7A experiment breach are summarized. The irradiation experiment design and planned irradiation conditions for full-size plate test are described. Progressmore » toward element testing will be reviewed.« less
The Advanced Test Reactor National Scientific User Facility Advancing Nuclear Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
T. R. Allen; J. B. Benson; J. A. Foster
2009-05-01
To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities ismore » granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team projects and faculty/staff exchanges. In June of 2008, the first week-long ATR NSUF Summer Session was attended by 68 students, university faculty and industry representatives. The Summer Session featured presentations by 19 technical experts from across the country and covered topics including irradiation damage mechanisms, degradation of reactor materials, LWR and gas reactor fuels, and non-destructive evaluation. High impact research results from leveraging the entire research infrastructure, including universities, industry, small business, and the national laboratories. To increase overall research capability, ATR NSUF seeks to form strategic partnerships with university facilities that add significant nuclear research capability to the ATR NSUF and are accessible to all ATR NSUF users. Current partner facilities include the MIT Reactor, the University of Michigan Irradiated Materials Testing Laboratory, the University of Wisconsin Characterization Laboratory, and the University of Nevada, Las Vegas transmission Electron Microscope User Facility. Needs for irradiation of material specimens at tightly controlled temperatures are being met by dedication of a large in-pile pressurized water loop facility for use by ATR NSUF users. Several environmental mechanical testing systems are under construction to determine crack growth rates and fracture toughness on irradiated test systems.« less
Preliminary Framework for Human-Automation Collaboration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oxstrand, Johanna Helene; Le Blanc, Katya Lee; Spielman, Zachary Alexander
The Department of Energy’s Advanced Reactor Technologies Program sponsors research, development and deployment activities through its Next Generation Nuclear Plant, Advanced Reactor Concepts, and Advanced Small Modular Reactor (aSMR) Programs to promote safety, technical, economical, and environmental advancements of innovative Generation IV nuclear energy technologies. The Human Automation Collaboration (HAC) Research Project is located under the aSMR Program, which identifies developing advanced instrumentation and controls and human-machine interfaces as one of four key research areas. It is expected that the new nuclear power plant designs will employ technology significantly more advanced than the analog systems in the existing reactor fleetmore » as well as utilizing automation to a greater extent. Moving towards more advanced technology and more automation does not necessary imply more efficient and safer operation of the plant. Instead, a number of concerns about how these technologies will affect human performance and the overall safety of the plant need to be addressed. More specifically, it is important to investigate how the operator and the automation work as a team to ensure effective and safe plant operation, also known as the human-automation collaboration (HAC). The focus of the HAC research is to understand how various characteristics of automation (such as its reliability, processes, and modes) effect an operator’s use and awareness of plant conditions. In other words, the research team investigates how to best design the collaboration between the operators and the automated systems in a manner that has the greatest positive impact on overall plant performance and reliability. This report addresses the Department of Energy milestone M4AT-15IN2302054, Complete Preliminary Framework for Human-Automation Collaboration, by discussing the two phased development of a preliminary HAC framework. The framework developed in the first phase was used as the basis for selecting topics to be investigated in more detail. The results and insights gained from the in-depth studies conducted during the second phase were used to revise the framework. This report describes the basis for the framework developed in phase 1, the changes made to the framework in phase 2, and the basis for the changes. Additional research needs are identified and presented in the last section of the report.« less
NASA Astrophysics Data System (ADS)
Sakurai, Yoshinori; Tanaka, Hiroki; Takata, Takushi; Fujimoto, Nozomi; Suzuki, Minoru; Masunaga, Shinichiro; Kinashi, Yuko; Kondo, Natsuko; Narabayashi, Masaru; Nakagawa, Yosuke; Watanabe, Tsubasa; Ono, Koji; Maruhashi, Akira
2015-07-01
At the Kyoto University Research Reactor Institute (KURRI), a clinical study of boron neutron capture therapy (BNCT) using a neutron irradiation facility installed at the research nuclear reactor has been regularly performed since February 1990. As of November 2014, 510 clinical irradiations were carried out using the reactor-based system. The world's first accelerator-based neutron irradiation system for BNCT clinical irradiation was completed at this institute in early 2009, and the clinical trial using this system was started in 2012. A shift of BCNT from special particle therapy to a general one is now in progress. To promote and support this shift, improvements to the irradiation system, as well as its preparation, and improvements in the physical engineering and the medical physics processes, such as dosimetry systems and quality assurance programs, must be considered. The recent advances in BNCT at KURRI are reported here with a focus on physical engineering and medical physics topics.
Irradiation Tests Supporting LEU Conversion of Very High Power Research Reactors in the US
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woolstenhulme, N. E.; Cole, J. I.; Glagolenko, I.
The US fuel development team is developing a high density uranium-molybdenum alloy monolithic fuel to enable conversion of five high-power research reactors. Previous irradiation tests have demonstrated promising behavior for this fuel design. A series of future irradiation tests will enable selection of final fuel fabrication process and provide data to qualify the fuel at moderately-high power conditions for use in three of these five reactors. The remaining two reactors, namely the Advanced Test Reactor and High Flux Isotope Reactor, require additional irradiation tests to develop and demonstrate the fuel’s performance with even higher power conditions, complex design features, andmore » other unique conditions. This paper reviews the program’s current irradiation testing plans for these moderately-high irradiation conditions and presents conceptual testing strategies to illustrate how subsequent irradiation tests will build upon this initial data package to enable conversion of these two very-high power research reactors.« less
The U.S. RERTR program status and progress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Travelli, A.
1998-01-21
The progress of the Reduced Enrichment Research and Test Reactor (RERTR) Program since its inception in 1978 is described. A brief summary of the results which the RERTR Program had achieved by the end of 1996 in collaboration with its many international partners is followed by a detailed review of the major events, findings, and activities of 1997. Significant progress has been made during the past year. In the area of U.S. acceptance of spent fuel from foreign research reactors, several shipments have taken place and additional are being planned. Intense fuel development activities are in progress, including procurement ofmore » equipment, screening of candidate materials, and production of microplates. Irradiation of the first series of microplates began in August 1997 in the Advanced Test Reactor, in Idaho. Progress has been made in the Russian RERTR program, which aims to develop and demonstrate within five years the technical means needed to convert Russian-supplied research reactors to LEU fuels. The study of an alternative LEU core for the FRM-II design has been extended to address, with favorable results, controversial performance issues which were raised at last year's meeting. Progress was also made on several aspects of producing molybdenum-99 from fission targets utilizing LEU instead of HEU. Various types of targets and processes are being pursued, with FDA approval of an LEU process projected to occur within two years. The feasibility of LEU Fuel conversion for three important DOE research reactors (BMRR, HFBR, and HFIR) has been evaluated by the RERTR program. In spite of the many momentous events which have occurred during the intervening years, and the excellent progress achieved, the most important challenges that the RERTR program faces today are not very different in type from those that were faced during the first RERTR meeting. Now, as then, the most important task is to develop new LEU fuels satisfying requirements which cannot be satisfied by any existing fuel. These new advanced fuels will enable conversion of the reactors which cannot be converted today, ensure better efficiency and performance for all research reactors, and allow the design of more powerful new advanced LEU reactors. As in the past, the success of the RERTR program will depend on free exchange of ideas and information, and on the international friendship and cooperation that have been a trademark of the RERTR program since its inception.« less
Enhanced In-Pile Instrumentation at the Advanced Test Reactor
NASA Astrophysics Data System (ADS)
Rempe, Joy L.; Knudson, Darrell L.; Daw, Joshua E.; Unruh, Troy; Chase, Benjamin M.; Palmer, Joe; Condie, Keith G.; Davis, Kurt L.
2012-08-01
Many of the sensors deployed at materials and test reactors cannot withstand the high flux/high temperature test conditions often requested by users at U.S. test reactors, such as the Advanced Test Reactor (ATR) at the Idaho National Laboratory. To address this issue, an instrumentation development effort was initiated as part of the ATR National Scientific User Facility in 2007 to support the development and deployment of enhanced in-pile sensors. This paper provides an update on this effort. Specifically, this paper identifies the types of sensors currently available to support in-pile irradiations and those sensors currently available to ATR users. Accomplishments from new sensor technology deployment efforts are highlighted by describing new temperature and thermal conductivity sensors now available to ATR users. Efforts to deploy enhanced in-pile sensors for detecting elongation and real-time flux detectors are also reported, and recently-initiated research to evaluate the viability of advanced technologies to provide enhanced accuracy for measuring key parameters during irradiation testing are noted.
Update on ORNL TRANSFORM Tool: Simulating Multi-Module Advanced Reactor with End-to-End I&C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hale, Richard Edward; Fugate, David L.; Cetiner, Sacit M.
2015-05-01
The Small Modular Reactor (SMR) Dynamic System Modeling Tool project is in the fourth year of development. The project is designed to support collaborative modeling and study of various advanced SMR (non-light water cooled reactor) concepts, including the use of multiple coupled reactors at a single site. The focus of this report is the development of a steam generator and drum system model that includes the complex dynamics of typical steam drum systems, the development of instrumentation and controls for the steam generator with drum system model, and the development of multi-reactor module models that reflect the full power reactormore » innovative small module design concept. The objective of the project is to provide a common simulation environment and baseline modeling resources to facilitate rapid development of dynamic advanced reactor models; ensure consistency among research products within the Instrumentation, Controls, and Human-Machine Interface technical area; and leverage cross-cutting capabilities while minimizing duplication of effort. The combined simulation environment and suite of models are identified as the TRANSFORM tool. The critical elements of this effort include (1) defining a standardized, common simulation environment that can be applied throughout the Advanced Reactors Technology program; (2) developing a library of baseline component modules that can be assembled into full plant models using available geometry, design, and thermal-hydraulic data; (3) defining modeling conventions for interconnecting component models; and (4) establishing user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.« less
High Neutron Fluence Survivability Testing of Advanced Fiber Bragg Grating Sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fielder, Robert S.; Klemer, Daniel; Stinson-Bagby, Kelly L.
2004-02-04
The motivation for the reported research was to support NASA space nuclear power initiatives through the development of advanced fiber optic sensors for space-based nuclear power applications. The purpose of the high-neutron fluence testing was to demonstrate the survivability of fiber Bragg grating (FBG) sensors in a fission reactor environment. 520 FBGs were installed in the Ford reactor at the University of Michigan. The reactor was operated for 1012 effective full power hours resulting in a maximum neutron fluence of approximately 5x1019 n/cm2, and a maximum gamma dose of 2x103 MGy gamma. This work is significant in that, to themore » knowledge of the authors, the exposure levels obtained are approximately 1000 times higher than for any previously published experiment. Four different fiber compositions were evaluated. An 87% survival rate was observed for fiber Bragg gratings located at the fuel centerline. Optical Frequency Domain Reflectometry (OFDR), originally developed at the NASA Langley Research Center, can be used to interrogate several thousand low-reflectivity FBG strain and/or temperature sensors along a single optical fiber. A key advantage of the OFDR sensor technology for space nuclear power is the extremely low mass of the sensor, which consists of only a silica fiber 125{mu}m in diameter. The sensors produced using this technology will fill applications in nuclear power for current reactor plants, emerging Generation-IV reactors, and for space nuclear power. The reported research was conducted by Luna Innovations and was funded through a Small Business Innovative Research (SBIR) contract with the NASA Glenn Research Center.« less
High Neutron Fluence Survivability Testing of Advanced Fiber Bragg Grating Sensors
NASA Astrophysics Data System (ADS)
Fielder, Robert S.; Klemer, Daniel; Stinson-Bagby, Kelly L.
2004-02-01
The motivation for the reported research was to support NASA space nuclear power initiatives through the development of advanced fiber optic sensors for space-based nuclear power applications. The purpose of the high-neutron fluence testing was to demonstrate the survivability of fiber Bragg grating (FBG) sensors in a fission reactor environment. 520 FBGs were installed in the Ford reactor at the University of Michigan. The reactor was operated for 1012 effective full power hours resulting in a maximum neutron fluence of approximately 5×1019 n/cm2, and a maximum gamma dose of 2×103 MGy gamma. This work is significant in that, to the knowledge of the authors, the exposure levels obtained are approximately 1000 times higher than for any previously published experiment. Four different fiber compositions were evaluated. An 87% survival rate was observed for fiber Bragg gratings located at the fuel centerline. Optical Frequency Domain Reflectometry (OFDR), originally developed at the NASA Langley Research Center, can be used to interrogate several thousand low-reflectivity FBG strain and/or temperature sensors along a single optical fiber. A key advantage of the OFDR sensor technology for space nuclear power is the extremely low mass of the sensor, which consists of only a silica fiber 125μm in diameter. The sensors produced using this technology will fill applications in nuclear power for current reactor plants, emerging Generation-IV reactors, and for space nuclear power. The reported research was conducted by Luna Innovations and was funded through a Small Business Innovative Research (SBIR) contract with the NASA Glenn Research Center.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulder, R.U.; Benneche, P.E.; Hosticka, B.
The objective of the DOE supported Reactor Sharing Program is to increase the availability of university nuclear reactor facilities to non-reactor-owning educational institutions. The educational and research programs of these user institutions is enhanced by the use of the nuclear facilities. Several methods have been used by the UVA Reactor Facility to achieve this objective. First, many college and secondary school groups toured the Reactor Facility and viewed the UVAR reactor and associated experimental facilities. Second, advanced undergraduate and graduate classes from area colleges and universities visited the facility to perform experiments in nuclear engineering and physics which would notmore » be possible at the user institution. Third, irradiation and analysis services at the Facility have been made available for research by faculty and students from user institutions. Fourth, some institutions have received activated material from UVA from use at their institutions. These areas are discussed in this report.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The objective of the DOE supported Reactor Sharing Program is to increase the availability of university nuclear reactor facilities to non-reactor-owning educational institutions. The educational and research programs of these user institutions is enhanced by the use of the nuclear facilities. Several methods have been used by the UVA Reactor Facility to achieve this objective. First, many college and secondary school groups toured the Reactor Facility and viewed the UVAR reactor and associated experimental facilities. Second, advanced undergraduate and graduate classes from area colleges and universities visited the facility to perform experiments in nuclear engineering and physics which would notmore » be possible at the user institution. Third, irradiation and analysis services at the Facility have been made available for research by faculty and students from user institutions. Fourth, some institutions have received activated material from UVA for use at their institutions. These areas are discussed further in the report.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulder, R.U.; Benneche, P.E.; Hosticka, B.
The objective of the DOE supported Reactor Sharing Program is to increase the availability of university nuclear reactor facilities to non-reactor-owning educational institutions. The educational and research programs of these user institutions is enhanced by the use of the nuclear facilities. Several methods have been used by the UVA Reactor Facility to achieve this objective. First, many college and secondary school groups toured the Reactor Facility and viewed the UVAR reactor and associated experimental facilities. Second, advanced undergraduate and graduate classes from area colleges and universities visited the facility to perform experiments in nuclear engineering and physics which would notmore » be possible at the user institution. Third, irradiation and analysis services at the Facility have been made available for research by faculty and students from user institutions. Fourth, some institutions have received activated material from UVA for use at their institutions. These areas are discussed here.« less
Recent Advances in Pd-Based Membranes for Membrane Reactors.
Arratibel Plazaola, Alba; Pacheco Tanaka, David Alfredo; Van Sint Annaland, Martin; Gallucci, Fausto
2017-01-01
Palladium-based membranes for hydrogen separation have been studied by several research groups during the last 40 years. Much effort has been dedicated to improving the hydrogen flux of these membranes employing different alloys, supports, deposition/production techniques, etc. High flux and cheap membranes, yet stable at different operating conditions are required for their exploitation at industrial scale. The integration of membranes in multifunctional reactors (membrane reactors) poses additional demands on the membranes as interactions at different levels between the catalyst and the membrane surface can occur. Particularly, when employing the membranes in fluidized bed reactors, the selective layer should be resistant to or protected against erosion. In this review we will also describe a novel kind of membranes, the pore-filled type membranes prepared by Pacheco Tanaka and coworkers that represent a possible solution to integrate thin selective membranes into membrane reactors while protecting the selective layer. This work is focused on recent advances on metallic supports, materials used as an intermetallic diffusion layer when metallic supports are used and the most recent advances on Pd-based composite membranes. Particular attention is paid to improvements on sulfur resistance of Pd based membranes, resistance to hydrogen embrittlement and stability at high temperature.
An Update on Improvements to NiCE Support for PROTEUS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, Andrew; McCaskey, Alexander J.; Billings, Jay Jay
2015-09-01
The Department of Energy Office of Nuclear Energy's Nuclear Energy Advanced Modeling and Simulation (NEAMS) program has supported the development of the NEAMS Integrated Computational Environment (NiCE), a modeling and simulation workflow environment that provides services and plugins to facilitate tasks such as code execution, model input construction, visualization, and data analysis. This report details the development of workflows for the reactor core neutronics application, PROTEUS. This advanced neutronics application (primarily developed at Argonne National Laboratory) aims to improve nuclear reactor design and analysis by providing an extensible and massively parallel, finite-element solver for current and advanced reactor fuel neutronicsmore » modeling. The integration of PROTEUS-specific tools into NiCE is intended to make the advanced capabilities that PROTEUS provides more accessible to the nuclear energy research and development community. This report will detail the work done to improve existing PROTEUS workflow support in NiCE. We will demonstrate and discuss these improvements, including the development of flexible IO services, an improved interface for input generation, and the addition of advanced Fortran development tools natively in the platform.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-12
... for Passive Advanced Light Water Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Standard... Passive Advanced Light Water Reactors.'' The current SRP does not contain guidance on the proposed RTNSS for Passive Advance Light Water Reactors. DATES: Submit comments by November 13, 2012. Comments...
Overview of Fuel Rod Simulator Usage at ORNL
NASA Astrophysics Data System (ADS)
Ott, Larry J.; McCulloch, Reg
2004-02-01
During the 1970s and early 1980s, the Oak Ridge National Laboratory (ORNL) operated large out-of-reactor experimental facilities to resolve thermal-hydraulic safety issues in nuclear reactors. The fundamental research ranged from material mechanical behavior of fuel cladding during the depressurization phase of a loss-of-coolant accident (LOCA) to basic heat transfer research in gas- or sodium-cooled cores. The largest facility simulated the initial phase (less than 1 min. of transient time) of a LOCA in a commercial pressurized-water reactor. The nonnuclear reactor cores of these facilities were mimicked via advanced, highly instrumented electric fuel rod simulators locally manufactured at ORNL. This paper provides an overview of these experimental facilities with an emphasis on the fuel rod simulators.
Plant maintenance and advanced reactors issue, 2004
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnihotri, Newal
2004-09-15
The focus of the September-October issue is on plant maintenance and advanced reactors. Major articles/reports in this issue include: Optimism about the future of nuclear power, by Ruth G. Shaw, Duke Power Company; Licensed in three countries, by GE Energy; Enhancing public acceptance, by Westinghouse Electric Company; Standardized MOV program, by Ted Neckowicz, Exelon; Inservice testing, by Steven Unikewicz, U.S. Nuclear Regulatory Commission; Asian network for education, Fatimah Mohd Amin, Malaysian Institute for Nuclear Technology Research; and, Cooling water intake optimization, by Jeffrey M. Jones and Bert Mayer, P.E., Framatome ANP.
Assessment of Nuclear Fuels using Radiographic Thickness Measurement Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muhammad Abir; Fahima Islam; Hyoung Koo Lee
2014-11-01
The Convert branch of the National Nuclear Security Administration (NNSA) Global Threat Reduction Initiative (GTRI) focuses on the development of high uranium density fuels for research and test reactors for nonproliferation. This fuel is aimed to convert low density high enriched uranium (HEU) based fuel to high density low enriched uranium (LEU) based fuel for high performance research reactors (HPRR). There are five U.S. reactors that fall under the HPRR category, including: the Massachusetts Institute of Technology Reactor (MITR), the National Bureau of Standards Reactor (NBSR), the Missouri University Research Reactor (UMRR), the Advanced Test Reactor (ATR), and the Highmore » Flux Isotope Reactor (HFIR). U-Mo alloy fuel phase in the form of either monolithic or dispersion foil type fuels, such as ATR Full-size In center flux trap Position (AFIP) and Reduced Enrichment for Research and Test Reactor (RERTR), are being designed for this purpose. The fabrication process1 of RERTR is susceptible to introducing a variety of fuel defects. A dependable quality control method is required during fabrication of RERTR miniplates to maintain the allowable design tolerances, therefore evaluating and analytically verifying the fabricated miniplates for maintaining quality standards as well as safety. The purpose of this work is to analyze the thickness of the fabricated RERTR-12 miniplates using non-destructive technique to meet the fuel plate specification for RERTR fuel to be used in the ATR.« less
ASME Code Efforts Supporting HTGRs
DOE Office of Scientific and Technical Information (OSTI.GOV)
D.K. Morton
2010-09-01
In 1999, an international collaborative initiative for the development of advanced (Generation IV) reactors was started. The idea behind this effort was to bring nuclear energy closer to the needs of sustainability, to increase proliferation resistance, and to support concepts able to produce energy (both electricity and process heat) at competitive costs. The U.S. Department of Energy has supported this effort by pursuing the development of the Next Generation Nuclear Plant, a high temperature gas-cooled reactor. This support has included research and development of pertinent data, initial regulatory discussions, and engineering support of various codes and standards development. This reportmore » discusses the various applicable American Society of Mechanical Engineers (ASME) codes and standards that are being developed to support these high temperature gascooled reactors during construction and operation. ASME is aggressively pursuing these codes and standards to support an international effort to build the next generation of advanced reactors so that all can benefit.« less
ASME Code Efforts Supporting HTGRs
DOE Office of Scientific and Technical Information (OSTI.GOV)
D.K. Morton
2011-09-01
In 1999, an international collaborative initiative for the development of advanced (Generation IV) reactors was started. The idea behind this effort was to bring nuclear energy closer to the needs of sustainability, to increase proliferation resistance, and to support concepts able to produce energy (both electricity and process heat) at competitive costs. The U.S. Department of Energy has supported this effort by pursuing the development of the Next Generation Nuclear Plant, a high temperature gas-cooled reactor. This support has included research and development of pertinent data, initial regulatory discussions, and engineering support of various codes and standards development. This reportmore » discusses the various applicable American Society of Mechanical Engineers (ASME) codes and standards that are being developed to support these high temperature gascooled reactors during construction and operation. ASME is aggressively pursuing these codes and standards to support an international effort to build the next generation of advanced reactors so that all can benefit.« less
ASME Code Efforts Supporting HTGRs
DOE Office of Scientific and Technical Information (OSTI.GOV)
D.K. Morton
2012-09-01
In 1999, an international collaborative initiative for the development of advanced (Generation IV) reactors was started. The idea behind this effort was to bring nuclear energy closer to the needs of sustainability, to increase proliferation resistance, and to support concepts able to produce energy (both electricity and process heat) at competitive costs. The U.S. Department of Energy has supported this effort by pursuing the development of the Next Generation Nuclear Plant, a high temperature gas-cooled reactor. This support has included research and development of pertinent data, initial regulatory discussions, and engineering support of various codes and standards development. This reportmore » discusses the various applicable American Society of Mechanical Engineers (ASME) codes and standards that are being developed to support these high temperature gascooled reactors during construction and operation. ASME is aggressively pursuing these codes and standards to support an international effort to build the next generation of advanced reactors so that all can benefit.« less
Development of a polysilicon process based on chemical vapor deposition, phase 1 and phase 2
NASA Technical Reports Server (NTRS)
Plahutnik, F.; Arvidson, A.; Sawyer, D.; Sharp, K.
1982-01-01
High-purity polycrystalline silicon was produced in an experimental, intermediate and advanced CVD reactor. Data from the intermediate and advanced reactors confirmed earlier results obtained in the experimental reactor. Solar cells were fabricated by Westinghouse Electric and Applied Solar Research Corporation which met or exceeded baseline cell efficiencies. Feedstocks containing trichlorosilane or silicon tetrachloride are not viable as etch promoters to reduce silicon deposition on bell jars. Neither are they capable of meeting program goals for the 1000 MT/yr plant. Post-run CH1 etch was found to be a reasonably effective method of reducing silicon deposition on bell jars. Using dichlorosilane as feedstock met the low-cost solar array deposition goal (2.0 gh-1-cm-1), however, conversion efficiency was approximately 10% lower than the targeted value of 40 mole percent (32 to 36% achieved), and power consumption was approximately 20 kWh/kg over target at the reactor.
Neutronics Analysis of SMART Small Modular Reactor using SRAC 2006 Code
NASA Astrophysics Data System (ADS)
Ramdhani, Rahmi N.; Prastyo, Puguh A.; Waris, Abdul; Widayani; Kurniadi, Rizal
2017-07-01
Small modular reactors (SMRs) are part of a new generation of nuclear reactor being developed worldwide. One of the advantages of SMR is the flexibility to adopt the advanced design concepts and technology. SMART (System integrated Modular Advanced ReacTor) is a small sized integral type PWR with a thermal power of 330 MW that has been developed by KAERI (Korea Atomic Energy Research Institute). SMART core consists of 57 fuel assemblies which are based on the well proven 17×17 array that has been used in Korean commercial PWRs. SMART is soluble boron free, and the high initial reactivity is mainly controlled by burnable absorbers. The goal of this study is to perform neutronics evaluation of SMART core with UO2 as main fuel. Neutronics calculation was performed by using PIJ and CITATION modules of SRAC 2006 code with JENDL 3.3 as nuclear data library.
Testing piezoelectric sensors in a nuclear reactor environment
NASA Astrophysics Data System (ADS)
Reinhardt, Brian T.; Suprock, Andy; Tittmann, Bernhard
2017-02-01
Several Department of Energy Office of Nuclear Energy (DOE-NE) programs, such as the Fuel Cycle Research and Development (FCRD), Advanced Reactor Concepts (ARC), Light Water Reactor Sustainability, and Next Generation Nuclear Power Plants (NGNP), are investigating new fuels, materials, and inspection paradigms for advanced and existing reactors. A key objective of such programs is to understand the performance of these fuels and materials during irradiation. In DOE-NE's FCRD program, ultrasonic based technology was identified as a key approach that should be pursued to obtain the high-fidelity, high-accuracy data required to characterize the behavior and performance of new candidate fuels and structural materials during irradiation testing. The radiation, high temperatures, and pressure can limit the available tools and characterization methods. In this work piezoelectric transducers capable of making these measurements are developed. Specifically, three piezoelectric sensors (Bismuth Titanate, Aluminum Nitride, and Zinc Oxide) are tested in the Massachusetts Institute of Technology Research reactor to a fast neutron fluence of 8.65×1020 nf/cm2. It is demonstrated that Bismuth Titanate is capable of transduction up to 5 × 1020 nf/cm2, Zinc Oxide is capable of transduction up to at least 6.27 × 1020 nf/cm2, and Aluminum Nitride is capable of transduction up to at least 8.65 × 1020 nf/cm2.
ATR National Scientific User Facility 2013 Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulrich, Julie A.; Robertson, Sarah
2015-03-01
This is the 2013 Annual Report for the Advanced Test Reactor National Scientific User Facility. This report includes information on university-run research projects along with a description of the program and the capabilities offered researchers.
Baseline Fracture Toughness and CGR testing of alloys X-750 and XM-19 (EPRI Phase I)
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. H. Jackson; S. P. Teysseyre
2012-10-01
The Advanced Test Reactor National Scientific User Facility (ATR NSUF) and Electric Power Research Institute (EPRI) formed an agreement to test representative alloys used as reactor structural materials as a pilot program toward establishing guidelines for future ATR NSUF research programs. This report contains results from the portion of this program established as Phase I (of three phases) that entails baseline fracture toughness, stress corrosion cracking (SCC), and tensile testing of selected materials for comparison to similar tests conducted at GE Global Research. The intent of this Phase I research program is to determine baseline properties for the materials ofmore » interest prior to irradiation, and to ensure comparability between laboratories using similar testing techniques, prior to applying these techniques to the same materials after having been irradiated at the Advanced Test Reactor (ATR). The materials chosen for this research are the nickel based super alloy X-750, and nitrogen strengthened austenitic stainless steel XM-19. A spare core shroud upper support bracket of alloy X-750 was purchased by EPRI from Southern Co. and a section of XM-19 plate was purchased by EPRI from GE-Hitachi. These materials were sectioned at GE Global Research and provided to INL.« less
Baseline Fracture Toughness and CGR testing of alloys X-750 and XM-19 (EPRI Phase I)
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. H. Jackson; S. P. Teysseyre
2012-02-01
The Advanced Test Reactor National Scientific User Facility (ATR NSUF) and Electric Power Research Institute (EPRI) formed an agreement to test representative alloys used as reactor structural materials as a pilot program toward establishing guidelines for future ATR NSUF research programs. This report contains results from the portion of this program established as Phase I (of three phases) that entails baseline fracture toughness, stress corrosion cracking (SCC), and tensile testing of selected materials for comparison to similar tests conducted at GE Global Research. The intent of this Phase I research program is to determine baseline properties for the materials ofmore » interest prior to irradiation, and to ensure comparability between laboratories using similar testing techniques, prior to applying these techniques to the same materials after having been irradiated at the Advanced Test Reactor (ATR). The materials chosen for this research are the nickel based super alloy X-750, and nitrogen strengthened austenitic stainless steel XM-19. A spare core shroud upper support bracket of alloy X-750 was purchased by EPRI from Southern Co. and a section of XM-19 plate was purchased by EPRI from GE-Hitachi. These materials were sectioned at GE Global Research and provided to INL.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sridharan, Kumar; Allen, Todd; Anderson, Mark
The Generation IV (GEN IV) Nuclear Energy Systems Initiative was instituted by the Department of Energy (DOE) with the goal of researching and developing technologies and materials necessary for various types of future reactors. These GEN IV reactors will employ advanced fuel cycles, passive safety systems, and other innovative systems, leading to significant differences between these future reactors and current water-cooled reactors. The leading candidate for the Next Generation Nuclear Plant (NGNP) to be built at Idaho National Lab (INL) in the United States is the Very High Temperature Reactor (VHTR). Due to the high operating temperatures of the VHTR,more » the Reactor Pressure Vessel (RPV) will partially rely on heat transfer by radiation for cooling. Heat expulsion by radiation will become all the more important during high temperature excursions during off-normal accident scenarios. Radiant power is dictated by emissivity, a material property. The NGNP Materials Research and Development Program Plan [1] has identified emissivity and the effects of high temperature oxide formation on emissivity as an area of research towards the development of the VHTR.« less
AGC 2 Irradiated Material Properties Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rohrbaugh, David Thomas
2017-05-01
The Advanced Reactor Technologies Graphite Research and Development Program is conducting an extensive graphite irradiation experiment to provide data for licensing of a high temperature reactor (HTR) design. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor designs. , Nuclear graphite H 451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphite grades have been developed and are considered suitable candidates for new HTR reactor designs. To support the design and licensing of HTR core componentsmore » within a commercial reactor, a complete properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade, with a specific emphasis on data accounting for the life limiting effects of irradiation creep on key physical properties of the HTR candidate graphite grades. Further details on the research and development activities and associated rationale required to qualify nuclear grade graphite for use within the HTR are documented in the graphite technology research and development plan.« less
AGC 2 Irradiation Creep Strain Data Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Windes, William E.; Rohrbaugh, David T.; Swank, W. David
2016-08-01
The Advanced Reactor Technologies Graphite Research and Development Program is conducting an extensive graphite irradiation experiment to provide data for licensing of a high temperature reactor (HTR) design. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor designs. Nuclear graphite H-451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphite grades have been developed and are considered suitable candidates for new HTR reactor designs. To support the design and licensing of HTR core components within amore » commercial reactor, a complete properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade, with a specific emphasis on data accounting for the life limiting effects of irradiation creep on key physical properties of the HTR candidate graphite grades. Further details on the research and development activities and associated rationale required to qualify nuclear grade graphite for use within the HTR are documented in the graphite technology research and development plan.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-08
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor The ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR... Committee on Reactor Safeguards. [FR Doc. 2013-08131 Filed 4-5-13; 8:45 am] BILLING CODE 7590-01-P ...
Yale High Energy Physics Research: Precision Studies of Reactor Antineutrinos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heeger, Karsten M.
2014-09-13
This report presents experimental research at the intensity frontier of particle physics with particular focus on the study of reactor antineutrinos and the precision measurement of neutrino oscillations. The experimental neutrino physics group of Professor Heeger and Senior Scientist Band at Yale University has had leading responsibilities in the construction and operation of the Daya Bay Reactor Antineutrino Experiment and made critical contributions to the discovery of non-zeromore » $$\\theta_{13}$$. Heeger and Band led the Daya Bay detector management team and are now overseeing the operations of the antineutrino detectors. Postdoctoral researchers and students in this group have made leading contributions to the Daya Bay analysis including the prediction of the reactor antineutrino flux and spectrum, the analysis of the oscillation signal, and the precision determination of the target mass yielding unprecedented precision in the relative detector uncertainty. Heeger's group is now leading an R\\&D effort towards a short-baseline oscillation experiment, called PROSPECT, at a US research reactor and the development of antineutrino detectors with advanced background discrimination.« less
New reactor technology: safety improvements in nuclear power systems.
Corradini, M L
2007-11-01
Almost 450 nuclear power plants are currently operating throughout the world and supplying about 17% of the world's electricity. These plants perform safely, reliably, and have no free-release of byproducts to the environment. Given the current rate of growth in electricity demand and the ever growing concerns for the environment, nuclear power can only satisfy the need for electricity and other energy-intensive products if it can demonstrate (1) enhanced safety and system reliability, (2) minimal environmental impact via sustainable system designs, and (3) competitive economics. The U.S. Department of Energy with the international community has begun research on the next generation of nuclear energy systems that can be made available to the market by 2030 or earlier, and that can offer significant advances toward these challenging goals; in particular, six candidate reactor system designs have been identified. These future nuclear power systems will require advances in materials, reactor physics, as well as thermal-hydraulics to realize their full potential. However, all of these designs must demonstrate enhanced safety above and beyond current light water reactor systems if the next generation of nuclear power plants is to grow in number far beyond the current population. This paper reviews the advanced Generation-IV reactor systems and the key safety phenomena that must be considered to guarantee that enhanced safety can be assured in future nuclear reactor systems.
Status Report on Efforts to Enhance Instrumentation to Support Advanced Test Reactor Irradiations
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Rempe; D. Knudson; J. Daw
2014-01-01
The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support the growth of nuclear science and technology in the United States (US). By attracting new research users - universities, laboratories, and industry - the ATR NSUF facilitates basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort at the Idaho National Laboratory (INL) is to design, develop, and deploy new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation.more » To address this need, an assessment of instrumentation available and under-development at other test reactors was completed. Based on this initial review, recommendations were made with respect to what instrumentation is needed at the ATR, and a strategy was developed for obtaining these sensors. In 2009, a report was issued documenting this program’s strategy and initial progress toward accomplishing program objectives. Since 2009, annual reports have been issued to provide updates on the program strategy and the progress made on implementing the strategy. This report provides an update reflecting progress as of January 2014.« less
The RERTR Program status and progress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Travelli, A.
1995-12-01
The progress of the Reduced Enrichment Research and Test Reactor (RERTR) Program is described. The major events, findings, and activities of 1995 are reviewed after a brief summary of the results which the RERTR Program had achieved by the end of 1994. The revelation that Iraq was on the verge of developing a nuclear weapon at the time of the Gulf War, and that it was planning to do so by extracting HEU from the fuel of its research reactors, has given new impetus and urgency to the RERTR commitment of eliminating HEU use in research and test reactors worldwide.more » Development of advanced LEU research reactor fuels is scheduled to begin in October 1995. The Russian RERTR program, which aims to develop and demonstrate within the next five years the technical means needed to convert Russian-supplied research reactors to LEU fuels, is now in operation. A Statement of Intent was signed by high US and Chinese officials, endorsing cooperative activities between the RERTR program and Chinese laboratories involved in similar activities. Joint studies of LEU technical feasibility were completed for the SAFARI-I reactor in South Africa and for the ANS reactor in the US. A new study has been initiated for the FRM-II reactor in Germany. Significant progress was made on several aspects of producing {sup 99}Mo from fission targets utilizing LEU instead of HEU. A cooperation agreements is in place with the Indonesian BATAN. The first prototypical irradiation of an LEU metal-foil target for {sup 99}Mo production was accomplished in Indonesia. The TR-2 reactor, in Turkey, began conversion. SAPHIR, in Switzerland, was shut down. LEU fuel fabrication has begun for the conversion of two more US reactors. Twelve foreign reactors and nine domestic reactors have been fully converted. Approximately 60 % of the work required to eliminate the use of HEU in US-supplied research reactors has been accomplished.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahnema, Farzad; Garimeela, Srinivas; Ougouag, Abderrafi
2013-11-29
This project will develop a 3D, advanced coarse mesh transport method (COMET-Hex) for steady- state and transient analyses in advanced very high-temperature reactors (VHTRs). The project will lead to a coupled neutronics and thermal hydraulic (T/H) core simulation tool with fuel depletion capability. The computational tool will be developed in hexagonal geometry, based solely on transport theory without (spatial) homogenization in complicated 3D geometries. In addition to the hexagonal geometry extension, collaborators will concurrently develop three additional capabilities to increase the code’s versatility as an advanced and robust core simulator for VHTRs. First, the project team will develop and implementmore » a depletion method within the core simulator. Second, the team will develop an elementary (proof-of-concept) 1D time-dependent transport method for efficient transient analyses. The third capability will be a thermal hydraulic method coupled to the neutronics transport module for VHTRs. Current advancements in reactor core design are pushing VHTRs toward greater core and fuel heterogeneity to pursue higher burn-ups, efficiently transmute used fuel, maximize energy production, and improve plant economics and safety. As a result, an accurate and efficient neutron transport, with capabilities to treat heterogeneous burnable poison effects, is highly desirable for predicting VHTR neutronics performance. This research project’s primary objective is to advance the state of the art for reactor analysis.« less
Hydraulic Shuttle Irradiation System (HSIS) Recently Installed in the Advanced Test Reactor (ATR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. Joseph Palmer; Gerry L. McCormick; Shannon J. Corrigan
2010-06-01
2010 International Congress on Advances in Nuclear Power Plants (ICAPP’10) ANS Annual Meeting Imbedded Topical San Diego, CA June 13 – 17, 2010 Hydraulic Shuttle Irradiation System (HSIS) Recently Installed in the Advanced Test Reactor (ATR) Author: A. Joseph Palmer, Mechanical Engineer, Irradiation Test Programs, 208-526-8700, Joe.Palmer@INL.gov Affiliation: Idaho National Laboratory P.O. Box 1625, MS-3840 Idaho Falls, ID 83415 INL/CON-10-17680 ABSTRACT Most test reactors are equipped with shuttle facilities (sometimes called rabbit tubes) whereby small capsules can be inserted into the reactor and retrieved during power operations. With the installation of Hydraulic Shuttle Irradiation System (HSIS) this capability has beenmore » restored to the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). The general design and operating principles of this system were patterned after the hydraulic rabbit at Oak Ridge National Laboratory’s (ORNL) High Flux Isotope Reactor (HFIR), which has operated successfully for many years. Using primary coolant as the motive medium the HSIS system is designed to simultaneously transport fourteen shuttle capsules, each 16 mm OD x 57 mm long, to and from the B-7 position of the reactor. The B-7 position is one of the higher flux positions in the reactor with typical thermal and fast (>1 Mev) fluxes of 2.8E+14 n/cm2/sec and 1.9E+14 n/cm2/sec respectively. The available space inside each shuttle is approximately 14 mm diameter x 50 mm long. The shuttle containers are made from titanium which was selected for its low neutron activation properties and durability. Shuttles can be irradiated for time periods ranging from a few minutes to several months. The Send and Receive Station (SRS) for the HSIS is located 2.5 m deep in the ATR canal which allows irradiated shuttles to be easily moved from the SRS to a wet loaded cask, or transport pig. The HSIS system first irradiated (empty) shuttles in September 2009 and has since completed a Readiness Assessment in November 2009. The HSIS is a key component of the ATR National Scientific User Facility (NSUF) operated by Battelle Energy Alliance, LLC and is available to a wide variety of university researchers for nuclear fuels and materials experiments as well as medical isotope research and production.« less
Advanced Instrumentation and Control Methods for Small and Medium Reactors with IRIS Demonstration
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Wesley Hines; Belle R. Upadhyaya; J. Michael Doster
2011-05-31
Development and deployment of small-scale nuclear power reactors and their maintenance, monitoring, and control are part of the mission under the Small Modular Reactor (SMR) program. The objectives of this NERI-consortium research project are to investigate, develop, and validate advanced methods for sensing, controlling, monitoring, diagnosis, and prognosis of these reactors, and to demonstrate the methods with application to one of the proposed integral pressurized water reactors (IPWR). For this project, the IPWR design by Westinghouse, the International Reactor Secure and Innovative (IRIS), has been used to demonstrate the techniques developed under this project. The research focuses on three topicalmore » areas with the following objectives. Objective 1 - Develop and apply simulation capabilities and sensitivity/uncertainty analysis methods to address sensor deployment analysis and small grid stability issues. Objective 2 - Develop and test an autonomous and fault-tolerant control architecture and apply to the IRIS system and an experimental flow control loop, with extensions to multiple reactor modules, nuclear desalination, and optimal sensor placement strategy. Objective 3 - Develop and test an integrated monitoring, diagnosis, and prognosis system for SMRs using the IRIS as a test platform, and integrate process and equipment monitoring (PEM) and process and equipment prognostics (PEP) toolboxes. The research tasks are focused on meeting the unique needs of reactors that may be deployed to remote locations or to developing countries with limited support infrastructure. These applications will require smaller, robust reactor designs with advanced technologies for sensors, instrumentation, and control. An excellent overview of SMRs is described in an article by Ingersoll (2009). The article refers to these as deliberately small reactors. Most of these have modular characteristics, with multiple units deployed at the same plant site. Additionally, the topics focus on meeting two of the eight needs outlined in the recently published 'Technology Roadmap on Instrumentation, Control, and Human-Machine Interface (ICHMI) to Support DOE Advanced Nuclear Energy Programs' which was created 'to provide a systematic path forward for the integration of new ICHMI technologies in both near-term and future nuclear power plants and the reinvigoration of the U.S. nuclear ICHMI community and capabilities.' The research consortium is led by The University of Tennessee (UT) and is focused on three interrelated topics: Topic 1 (simulator development and measurement sensitivity analysis) is led by Dr. Mike Doster with Dr. Paul Turinsky of North Carolina State University (NCSU). Topic 2 (multivariate autonomous control of modular reactors) is led by Dr. Belle Upadhyaya of the University of Tennessee (UT) and Dr. Robert Edwards of Penn State University (PSU). Topic 3 (monitoring, diagnostics, and prognostics system development) is led by Dr. Wes Hines of UT. Additionally, South Carolina State University (SCSU, Dr. Ken Lewis) participated in this research through summer interns, visiting faculty, and on-campus research projects identified throughout the grant period. Lastly, Westinghouse Science and Technology Center (Dr. Mario Carelli) was a no-cost collaborator and provided design information related to the IRIS demonstration platform and defining needs that may be common to other SMR designs. The results of this research are reported in a six-volume Final Report (including the Executive Summary, Volume 1). Volumes 2 through 6 of the report describe in detail the research and development under the topical areas. This volume serves to introduce the overall NERI-C project and to summarize the key results. Section 2 provides a summary of the significant contributions of this project. A list of all the publications under this project is also given in Section 2. Section 3 provides a brief summary of each of the five volumes (2-6) of the report. The contributions of SCSU are described in Section 4, including a summary of undergraduate research experience. The project management organizational chart is provided as Figure 1. Appendices A, B, and C contain the reports on the summer research performed at the University of Tennessee by undergraduate students from South Carolina State University.« less
Exploratory study of several advanced nuclear-MHD power plant systems.
NASA Technical Reports Server (NTRS)
Williams, J. R.; Clement, J. D.; Rosa, R. J.; Yang, Y. Y.
1973-01-01
In order for efficient multimegawatt closed cycle nuclear-MHD systems to become practical, long-life gas cooled reactors with exit temperatures of about 2500 K or higher must be developed. Four types of nuclear reactors which have the potential of achieving this goal are the NERVA-type solid core reactor, the colloid core (rotating fluidized bed) reactor, the 'light bulb' gas core reactor, and the 'coaxial flow' gas core reactor. Research programs aimed at developing these reactors have progressed rapidly in recent years so that prototype power reactors could be operating by 1980. Three types of power plant systems which use these reactors have been analyzed to determine the operating characteristics, critical parameters and performance of these power plants. Overall thermal efficiencies as high as 80% are projected, using an MHD turbine-compressor cycle with steam bottoming, and slightly lower efficiencies are projected for an MHD motor-compressor cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Nicholas R.; Mueller, Donald E.; Patton, Bruce W.
2016-08-31
Experiments are being planned at Research Centre Rež (RC Rež) to use the FLiBe (2 7LiF-BeF 2) salt from the Molten Salt Reactor Experiment (MSRE) to perform reactor physics measurements in the LR-0 low power nuclear reactor. These experiments are intended to inform on neutron spectral effects and nuclear data uncertainties for advanced reactor systems utilizing FLiBe salt in a thermal neutron energy spectrum. Oak Ridge National Laboratory (ORNL) is performing sensitivity/uncertainty (S/U) analysis of these planned experiments as part of the ongoing collaboration between the United States and the Czech Republic on civilian nuclear energy research and development. Themore » objective of these analyses is to produce the sensitivity of neutron multiplication to cross section data on an energy-dependent basis for specific nuclides. This report provides a status update on the S/U analyses of critical experiments at the LR-0 Reactor relevant to fluoride salt-cooled high temperature reactor (FHR) and liquid-fueled molten salt reactor (MSR) concepts. The S/U analyses will be used to inform design of FLiBe-based experiments using the salt from MSRE.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-01
... of Electronic Distribution of Advanced Reactor Correspondence AGENCY: Nuclear Regulatory Commission. ACTION: Implementation of electronic distribution of advanced reactor correspondence; issuance. SUMMARY... public that, in the future, publicly available correspondence originating from the Division of Advanced...
Autonomous Control of Nuclear Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basher, H.
2003-10-20
A nuclear reactor is a complex system that requires highly sophisticated controllers to ensure that desired performance and safety can be achieved and maintained during its operations. Higher-demanding operational requirements such as reliability, lower environmental impacts, and improved performance under adverse conditions in nuclear power plants, coupled with the complexity and uncertainty of the models, necessitate the use of an increased level of autonomy in the control methods. In the opinion of many researchers, the tasks involved during nuclear reactor design and operation (e.g., design optimization, transient diagnosis, and core reload optimization) involve important human cognition and decisions that maymore » be more easily achieved with intelligent methods such as expert systems, fuzzy logic, neural networks, and genetic algorithms. Many experts in the field of control systems share the idea that a higher degree of autonomy in control of complex systems such as nuclear plants is more easily achievable through the integration of conventional control systems and the intelligent components. Researchers have investigated the feasibility of the integration of fuzzy logic, neural networks, genetic algorithms, and expert systems with the conventional control methods to achieve higher degrees of autonomy in different aspects of reactor operations such as reactor startup, shutdown in emergency situations, fault detection and diagnosis, nuclear reactor alarm processing and diagnosis, and reactor load-following operations, to name a few. With the advancement of new technologies and computing power, it is feasible to automate most of the nuclear reactor control and operation, which will result in increased safety and economical benefits. This study surveys current status, practices, and recent advances made towards developing autonomous control systems for nuclear reactors.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-26
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR) will hold a meeting on January 16, 2013, Room T-2B3, 11545 Rockville Pike...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-28
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR); Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR) will hold a meeting on February 8, 2011, 11545 Rockville Pike, Rockville, MD...
The U.S. Geological Survey's TRIGA® reactor
DeBey, Timothy M.; Roy, Brycen R.; Brady, Sally R.
2012-01-01
The U.S. Geological Survey (USGS) operates a low-enriched uranium-fueled, pool-type reactor located at the Federal Center in Denver, Colorado. The mission of the Geological Survey TRIGA® Reactor (GSTR) is to support USGS science by providing information on geologic, plant, and animal specimens to advance methods and techniques unique to nuclear reactors. The reactor facility is supported by programs across the USGS and is organizationally under the Associate Director for Energy and Minerals, and Environmental Health. The GSTR is the only facility in the United States capable of performing automated delayed neutron analyses for detecting fissile and fissionable isotopes. Samples from around the world are submitted to the USGS for analysis using the reactor facility. Qualitative and quantitative elemental analyses, spatial elemental analyses, and geochronology are performed. Few research reactor facilities in the United States are equipped to handle the large number of samples processed at the GSTR. Historically, more than 450,000 sample irradiations have been performed at the USGS facility. Providing impartial scientific information to resource managers, planners, and other interested parties throughout the world is an integral part of the research effort of the USGS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grabaskas, Dave; Brunett, Acacia J.; Bucknor, Matthew
GE Hitachi Nuclear Energy (GEH) and Argonne National Laboratory are currently engaged in a joint effort to modernize and develop probabilistic risk assessment (PRA) techniques for advanced non-light water reactors. At a high level the primary outcome of this project will be the development of next-generation PRA methodologies that will enable risk-informed prioritization of safety- and reliability-focused research and development, while also identifying gaps that may be resolved through additional research. A subset of this effort is the development of a reliability database (RDB) methodology to determine applicable reliability data for inclusion in the quantification of the PRA. The RDBmore » method developed during this project seeks to satisfy the requirements of the Data Analysis element of the ASME/ANS Non-LWR PRA standard. The RDB methodology utilizes a relevancy test to examine reliability data and determine whether it is appropriate to include as part of the reliability database for the PRA. The relevancy test compares three component properties to establish the level of similarity to components examined as part of the PRA. These properties include the component function, the component failure modes, and the environment/boundary conditions of the component. The relevancy test is used to gauge the quality of data found in a variety of sources, such as advanced reactor-specific databases, non-advanced reactor nuclear databases, and non-nuclear databases. The RDB also establishes the integration of expert judgment or separate reliability analysis with past reliability data. This paper provides details on the RDB methodology, and includes an example application of the RDB methodology for determining the reliability of the intermediate heat exchanger of a sodium fast reactor. The example explores a variety of reliability data sources, and assesses their applicability for the PRA of interest through the use of the relevancy test.« less
Evaluation Metrics Applied to Accident Tolerant Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shannon M. Bragg-Sitton; Jon Carmack; Frank Goldner
2014-10-01
The safe, reliable, and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the United States’ nuclear industry. Continual improvement of technology, including advanced materials and nuclear fuels, remains central to the industry’s success. Decades of research combined with continual operation have produced steady advancements in technology and have yielded an extensive base of data, experience, and knowledge on light water reactor (LWR) fuel performance under both normal and accident conditions. One of the current missions of the U.S. Department of Energy’s (DOE) Office of Nuclear Energy (NE) is to develop nuclear fuelsmore » and claddings with enhanced accident tolerance for use in the current fleet of commercial LWRs or in reactor concepts with design certifications (GEN-III+). Accident tolerance became a focus within advanced LWR research upon direction from Congress following the 2011 Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex. The overall goal of ATF development is to identify alternative fuel system technologies to further enhance the safety, competitiveness and economics of commercial nuclear power. Enhanced accident tolerant fuels would endure loss of active cooling in the reactor core for a considerably longer period of time than the current fuel system while maintaining or improving performance during normal operations. The U.S. DOE is supporting multiple teams to investigate a number of technologies that may improve fuel system response and behavior in accident conditions, with team leadership provided by DOE national laboratories, universities, and the nuclear industry. Concepts under consideration offer both evolutionary and revolutionary changes to the current nuclear fuel system. Mature concepts will be tested in the Advanced Test Reactor at Idaho National Laboratory beginning in Summer 2014 with additional concepts being readied for insertion in fiscal year 2015. This paper provides a brief summary of the proposed evaluation process that would be used to evaluate and prioritize the candidate accident tolerant fuel concepts currently under development.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jennifer Lyons; Wade R. Marcum; Mark D. DeHart
2014-01-01
The Advanced Test Reactor (ATR), under the Reduced Enrichment for Research and Test Reactors (RERTR) Program and the Global Threat Reduction Initiative (GTRI), is conducting feasibility studies for the conversion of its fuel from a highly enriched uranium (HEU) composition to a low enriched uranium (LEU) composition. These studies have considered a wide variety of LEU plate-type fuels to replace the current HEU fuel. Continuing to investigate potential alternatives to the present HEU fuel form, this study presents a preliminary analysis of TRIGA® fuel within the current ATR fuel envelopes and compares it to the functional requirements delineated by themore » Naval Reactors Program, which includes: greater than 4.8E+14 fissions/s/g of 235U, a fast to thermal neutron flux ratio that is less than 5% deviation of its current value, a constant cycle power within the corner lobes, and an operational cycle length of 56 days at 120 MW. Other parameters outside those put forth by the Naval Reactors Program which are investigated herein include axial and radial power profiles, effective delayed neutron fraction, and mean neutron generation time.« less
D-He-3 spherical torus fusion reactor system study
NASA Astrophysics Data System (ADS)
Macon, William A., Jr.
1992-04-01
This system study extrapolates present physics knowledge and technology to predict the anticipated characteristics of D-He3 spherical torus fusion reactors and their sensitivity to uncertainties in important parameters. Reference cases for steady-state 1000 MWe reactors operating in H-mode in both the 1st stability regime and the 2nd stability regime were developed and assessed quantitatively. These devices would a very small aspect ratio (A=1,2), a major radius of about 2.0 m, an on-axis magnetic field less than 2 T, a large plasma current (80-120 MA) dominated by the bootstrap effect, and high plasma beta (greater than O.6). The estimated cost of electricity is in the range of 60-90 mills/kW-hr, assuming the use of a direct energy conversion system. The inherent safety and environmental advantages of D-He3 fusion indicate that this reactor concept could be competitive with advanced fission breeder reactors and large-scale solar electric plants by the end of the 21st century if research and development can produce the anticipated physics and technology advances.
The neutron texture diffractometer at the China Advanced Research Reactor
NASA Astrophysics Data System (ADS)
Li, Mei-Juan; Liu, Xiao-Long; Liu, Yun-Tao; Tian, Geng-Fang; Gao, Jian-Bo; Yu, Zhou-Xiang; Li, Yu-Qing; Wu, Li-Qi; Yang, Lin-Feng; Sun, Kai; Wang, Hong-Li; Santisteban, J. r.; Chen, Dong-Feng
2016-03-01
The first neutron texture diffractometer in China has been built at the China Advanced Research Reactor, due to strong demand for texture measurement with neutrons from the domestic user community. This neutron texture diffractometer has high neutron intensity, moderate resolution and is mainly applied to study texture in commonly used industrial materials and engineering components. In this paper, the design and characteristics of this instrument are described. The results for calibration with neutrons and quantitative texture analysis of zirconium alloy plate are presented. The comparison of texture measurements with the results obtained in HIPPO at LANSCE and Kowari at ANSTO illustrates the reliability of the texture diffractometer. Supported by National Nature Science Foundation of China (11105231, 11205248, 51327902) and International Atomic Energy Agency-TC program (CPR0012)
Radio-toxicity of spent fuel of the advanced heavy water reactor.
Anand, S; Singh, K D S; Sharma, V K
2010-01-01
The Advanced Heavy Water Reactor (AHWR) is a new power reactor concept being developed at Bhabha Atomic Research Centre, Mumbai. The reactor retains many desirable features of the existing Pressurised Heavy Water Reactor (PHWR), while incorporating new, advanced safety features. The reactor aims to utilise the vast thorium resources available in India. The reactor core will use plutonium as the make-up fuel, while breeding (233)U in situ. On account of this unique combination of fuel materials, the operational characteristics of the fuel as determined by its radioactivity, decay heat and radio-toxicity are being viewed with great interest. Radio-toxicity of the spent fuel is a measure of potential radiological hazard to the members of the public and also important from the ecological point of view. The radio-toxicity of the AHWR fuel is extremely high to start with, being approximately 10(4) times that of the fresh natural U fuel used in a PHWR, and continues to remain relatively high during operation and subsequent cooling. A unique feature of this fuel is the peak observed in its radio-toxicity at approximately 10(5) y of decay cooling. The delayed increase in fuel toxicity has been traced primarily to a build-up of (229)Th, (230)Th and (226)Ra. This phenomenon has been observed earlier for thorium-based fuels and is confirmed for the AHWR fuel. This paper presents radio-toxicity data for AHWR spent fuel up to a period of 10(6) y and the results are compared with the radio-toxicity of PHWR.
Miley, Don
2017-12-21
The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-28
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR) will hold a meeting on October 2, 2012, Room T-2B1, 11545 Rockville Pike, Rockville...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-13
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR) will hold a meeting on June 21, 2011, Room T-2B1, 11545 Rockville Pike, Rockville...
10 CFR Appendix A to Part 52 - Design Certification Rule for the U.S. Advanced Boiling Water Reactor
Code of Federal Regulations, 2010 CFR
2010-01-01
... Water Reactor A Appendix A to Part 52 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES... Rule for the U.S. Advanced Boiling Water Reactor I. Introduction Appendix A constitutes the standard design certification for the U.S. Advanced Boiling Water Reactor (ABWR) design, in accordance with 10 CFR...
10 CFR Appendix A to Part 52 - Design Certification Rule for the U.S. Advanced Boiling Water Reactor
Code of Federal Regulations, 2011 CFR
2011-01-01
... Water Reactor A Appendix A to Part 52 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES... Rule for the U.S. Advanced Boiling Water Reactor I. Introduction Appendix A constitutes the standard design certification for the U.S. Advanced Boiling Water Reactor (ABWR) design, in accordance with 10 CFR...
The Simulator Development for RDE Reactor
NASA Astrophysics Data System (ADS)
Subekti, Muhammad; Bakhri, Syaiful; Sunaryo, Geni Rina
2018-02-01
BATAN is proposing the construction of experimental power reactor (RDE reactor) for increasing the public acceptance on NPP development plan, proofing the safety level of the most advanced reactor by performing safety demonstration on the accidents such as Chernobyl and Fukushima, and owning the generation fourth (G4) reactor technology. For owning the reactor technology, the one of research activities is RDE’s simulator development that employing standard equation. The development utilizes standard point kinetic and thermal equation. The examination of the simulator carried out comparison in which the simulation’s calculation result has good agreement with assumed parameters and ChemCAD calculation results. The transient simulation describes the characteristic of the simulator to respond the variation of power increase of 1.5%/min, 2.5%/min, and 3.5%/min.
Advanced Fuels Campaign FY 2015 Accomplishments Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braase, Lori Ann; Carmack, William Jonathan
2015-10-29
The mission of the Advanced Fuels Campaign (AFC) is to perform research, development, and demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors; enhance proliferation resistance of nuclear fuel; effectively utilize nuclear energy resources; and address the longer-term waste management challenges. This report is a compilation of technical accomplishment summaries for FY-15. Emphasis is on advanced accident-tolerant LWR fuel systems, advanced transmutation fuels technologies, and capability development.
Supervisory Control System Architecture for Advanced Small Modular Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cetiner, Sacit M; Cole, Daniel L; Fugate, David L
2013-08-01
This technical report was generated as a product of the Supervisory Control for Multi-Modular SMR Plants project within the Instrumentation, Control and Human-Machine Interface technology area under the Advanced Small Modular Reactor (SMR) Research and Development Program of the U.S. Department of Energy. The report documents the definition of strategies, functional elements, and the structural architecture of a supervisory control system for multi-modular advanced SMR (AdvSMR) plants. This research activity advances the state-of-the art by incorporating decision making into the supervisory control system architectural layers through the introduction of a tiered-plant system approach. The report provides a brief history ofmore » hierarchical functional architectures and the current state-of-the-art, describes a reference AdvSMR to show the dependencies between systems, presents a hierarchical structure for supervisory control, indicates the importance of understanding trip setpoints, applies a new theoretic approach for comparing architectures, identifies cyber security controls that should be addressed early in system design, and describes ongoing work to develop system requirements and hardware/software configurations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendez Cruz, Carmen Margarita; Rochau, Gary E.; Middleton, Bobby
Sandia National Laboratories and General Atomics are pleased to respond to the Advanced Research Projects Agency-Energy (ARPA-e)’s request for information on innovative developments that may overcome various current reactor-technology limitations. The RFI is particularly interested in innovations that enable ultra-safe and secure modular nuclear energy systems. Our response addresses the specific features for reactor designs called out in the RFI, including a brief assessment of the current state of the technologies that would enable each feature and the methods by which they could be best incorporated into a reactor design.
Wang, Meng; Keeley, Ryan; Zalivina, Nadezhda; Halfhide, Trina; Scott, Kathleen; Zhang, Qiong; van der Steen, Peter; Ergas, Sarina J
2018-07-01
The synergistic activity of algae and prokaryotic microorganisms can be used to improve the efficiency of biological wastewater treatment, particularly with regards to nitrogen removal. For example, algae can provide oxygen through photosynthesis needed for aerobic degradation of organic carbon and nitrification and harvested algal-prokaryotic biomass can be used to produce high value chemicals or biogas. Algal-prokaryotic consortia have been used to treat wastewater in different types of reactors, including waste stabilization ponds, high rate algal ponds and closed photobioreactors. This review addresses the current literature and identifies research gaps related to the following topics: 1) the complex interactions between algae and prokaryotes in wastewater treatment; 2) advances in bioreactor technologies that can achieve high nitrogen removal efficiencies in small reactor volumes, such as algal-prokaryotic biofilm reactors and enhanced algal-prokaryotic treatment systems (EAPS); 3) molecular tools that have expanded our understanding of the activities of algal and prokaryotic communities in wastewater treatment processes. Copyright © 2018 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-07
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR) will hold a meeting on November 22, 2013, Room T-2B1, 11545 Rockville Pike, Rockville, Maryland. The meeting will be...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-21
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR) will hold a meeting on July 9, 2013, Room T-2B3, 11545 Rockville Pike, Rockville, Maryland. The meeting will be open to...
ADVANCED REACTIVITY MEASUREMENT FACILITY, TRA660, INTERIOR. REACTOR INSIDE TANK. METAL ...
ADVANCED REACTIVITY MEASUREMENT FACILITY, TRA-660, INTERIOR. REACTOR INSIDE TANK. METAL WORK PLATFORM ABOVE. THE REACTOR WAS IN A SMALL WATER-FILLED POOL. INL NEGATIVE NO. 66-6373. Unknown Photographer, ca. 1966 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
NASA Technical Reports Server (NTRS)
1986-01-01
The objectives of the Silicon Materials Task and the Advanced Silicon Sheet Task are to identify the critical technical barriers to low-cost silicon purification and sheet growth that must be overcome to produce a PV cell substrate material at a price consistent with Flat-plate Solar Array (FSA) Project objectives and to overcome these barriers by performing and supporting appropriate R&D. Progress reports are given on silicon refinement using silane, a chemical vapor transport process for purifying metallurgical grade silicon, silicon particle growth research, and modeling of silane pyrolysis in fluidized-bed reactors.
Developments and Tendencies in Fission Reactor Concepts
NASA Astrophysics Data System (ADS)
Adamov, E. O.; Fuji-Ie, Y.
This chapter describes, in two parts, new-generation nuclear energy systems that are required to be in harmony with nature and to make full use of nuclear resources. The issues of transmutation and containment of radioactive waste will also be addressed. After a short introduction to the first part, Sect. 58.1.2 will detail the requirements these systems must satisfy on the basic premise of peaceful use of nuclear energy. The expected designs themselves are described in Sect. 58.1.3. The subsequent sections discuss various types of advanced reactor systems. Section 58.1.4 deals with the light water reactor (LWR) whose performance is still expected to improve, which would extend its application in the future. The supercritical-water-cooled reactor (SCWR) will also be shortly discussed. Section 58.1.5 is mainly on the high temperature gas-cooled reactor (HTGR), which offers efficient and multipurpose use of nuclear energy. The gas-cooled fast reactor (GFR) is also included. Section 58.1.6 focuses on the sodium-cooled fast reactor (SFR) as a promising concept for advanced nuclear reactors, which may help both to achieve expansion of energy sources and environmental protection thus contributing to the sustainable development of mankind. The molten-salt reactor (MSR) is shortly described in Sect. 58.1.7. The second part of the chapter deals with reactor systems of a new generation, which are now found at the research and development (R&D) stage and in the medium term of 20-30 years can shape up as reliable, economically efficient, and environmentally friendly energy sources. They are viewed as technologies of cardinal importance, capable of resolving the problems of fuel resources, minimizing the quantities of generated radioactive waste and the environmental impacts, and strengthening the regime of nonproliferation of the materials suitable for nuclear weapons production. Particular attention has been given to naturally safe fast reactors with a closed fuel cycle (CFC) - as an advanced and promising reactor system that offers solutions to the above problems. The difference (not confrontation) between the approaches to nuclear power development based on the principles of “inherent safety” and “natural safety” is demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belles, Randy; Poore, III, Willis P.; Brown, Nicholas R.
2017-03-01
This report proposes adaptation of the previous regulatory gap analysis in Chapter 4 (Reactor) of NUREG 0800, Standard Review Plan (SRP) for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR [Light Water Reactor] Edition. The proposed adaptation would result in a Chapter 4 review plan applicable to certain advanced reactors. This report addresses two technologies: the sodium-cooled fast reactor (SFR) and the modular high temperature gas-cooled reactor (mHTGR). SRP Chapter 4, which addresses reactor components, was selected for adaptation because of the possible significant differences in advanced non-light water reactor (non-LWR) technologies compared with the current LWR-basedmore » description in Chapter 4. SFR and mHTGR technologies were chosen for this gap analysis because of their diverse designs and the availability of significant historical design detail.« less
Oxidation of aluminum alloy cladding for research and test reactor fuel
NASA Astrophysics Data System (ADS)
Kim, Yeon Soo; Hofman, G. L.; Robinson, A. B.; Snelgrove, J. L.; Hanan, N.
2008-08-01
The oxide thicknesses on aluminum alloy cladding were measured for the test plates from irradiation tests RERTR-6 and 7A in the ATR (advanced test reactor). The measured thicknesses were substantially lower than those of test plates with similar power from other reactors available in the literature. The main reason is believed to be due to the lower pH (pH 5.1-5.3) of the primary coolant water in the ATR than in the other reactors (pH 5.9-6.5) for which we have data. An empirical model for oxide film thickness predictions on aluminum alloy used as fuel cladding in the test reactors was developed as a function of irradiation time, temperature, surface heat flux, pH, and coolant flow rate. The applicable ranges of pH and coolant flow rates cover most research and test reactors. The predictions by the new model are in good agreement with the in-pile test data available in the literature as well as with the RERTR test data measured in the ATR.
Plant maintenance and advanced reactors issue, 2008
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnihotri, Newal
The focus of the September-October issue is on plant maintenance and advanced reactors. Major articles/reports in this issue include: Technologies of national importance, by Tsutomu Ohkubo, Japan Atomic Energy Agency, Japan; Modeling and simulation advances brighten future nuclear power, by Hussein Khalil, Argonne National Laboratory, Energy and desalination projects, by Ratan Kumar Sinha, Bhabha Atomic Research Centre, India; A plant with simplified design, by John Higgins, GE Hitachi Nuclear Energy; A forward thinking design, by Ray Ganthner, AREVA; A passively safe design, by Ed Cummins, Westinghouse Electric Company; A market-ready design, by Ken Petrunik, Atomic Energy of Canada Limited, Canada;more » Generation IV Advanced Nuclear Energy Systems, by Jacques Bouchard, French Commissariat a l'Energie Atomique, France, and Ralph Bennett, Idaho National Laboratory; Innovative reactor designs, a report by IAEA, Vienna, Austria; Guidance for new vendors, by John Nakoski, U.S. Nuclear Regulatory Commission; Road map for future energy, by John Cleveland, International Atomic Energy Agency, Vienna, Austria; and, Vermont's largest source of electricity, by Tyler Lamberts, Entergy Nuclear Operations, Inc. The Industry Innovation article is titled Intelligent monitoring technology, by Chris Demars, Exelon Nuclear.« less
Risk Management for Sodium Fast Reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denman, Matthew R.; Groth, Katrina; Cardoni, Jeffrey N.
2015-01-01
Accident management is an important component to maintaining risk at acceptable levels for all complex systems, such as nuclear power plants. With the introduction of self - correcting, or inherently safe, reactor designs the focus has shifted from management by operators to allowing the syste m's design to manage the accident. While inherently and passively safe designs are laudable, extreme boundary conditions can interfere with the design attributes which facilitate inherent safety , thus resulting in unanticipated and undesirable end states. This report examines an inherently safe and small sodium fast reactor experiencing a beyond design basis seismic event withmore » the intend of exploring two issues : (1) can human intervention either improve or worsen the potential end states and (2) can a Bayes ian Network be constructed to infer the state of the reactor to inform (1). ACKNOWLEDGEMENTS The author s would like to acknowledge the U.S. Department of E nergy's Office of Nuclear Energy for funding this research through Work Package SR - 14SN100303 under the Advanced Reactor Concepts program. The authors also acknowledge the PRA teams at A rgonne N ational L aborator y , O ak R idge N ational L aborator y , and I daho N ational L aborator y for their continue d contributions to the advanced reactor PRA mission area.« less
Cladding and duct materials for advanced nuclear recycle reactors
NASA Astrophysics Data System (ADS)
Allen, T. R.; Busby, J. T.; Klueh, R. L.; Maloy, S. A.; Toloczko, M. B.
2008-01-01
The expanded use of nuclear energy without risk of nuclear weapons proliferation and with safe nuclear waste disposal is a primary goal of the Global Nuclear Energy Partnership (GNEP). To achieve that goal the GNEP is exploring advanced technologies for recycling spent nuclear fuel that do not separate pure plutonium, and advanced reactors that consume transuranic elements from recycled spent fuel. The GNEP’s objectives will place high demands on reactor clad and structural materials. This article discusses the materials requirements of the GNEP’s advanced nuclear recycle reactors program.
Overview of the present progress and activities on the CFETR
NASA Astrophysics Data System (ADS)
Wan, Yuanxi; Li, Jiangang; Liu, Yong; Wang, Xiaolin; Chan, Vincent; Chen, Changan; Duan, Xuru; Fu, Peng; Gao, Xiang; Feng, Kaiming; Liu, Songlin; Song, Yuntao; Weng, Peide; Wan, Baonian; Wan, Farong; Wang, Heyi; Wu, Songtao; Ye, Minyou; Yang, Qingwei; Zheng, Guoyao; Zhuang, Ge; Li, Qiang; CFETR Team
2017-10-01
The China Fusion Engineering Test Reactor (CFETR) is the next device in the roadmap for the realization of fusion energy in China, which aims to bridge the gaps between the fusion experimental reactor ITER and the demonstration reactor (DEMO). CFETR will be operated in two phases. Steady-state operation and self-sufficiency will be the two key issues for Phase I with a modest fusion power of up to 200 MW. Phase II aims for DEMO validation with a fusion power over 1 GW. Advanced H-mode physics, high magnetic fields up to 7 T, high frequency electron cyclotron resonance heating and lower hybrid current drive together with off-axis negative-ion neutral beam injection will be developed for achieving steady-state advanced operation. The recent detailed design, research and development (R&D) activities including integrated modeling of operation scenarios, high field magnet, material, tritium plant, remote handling and future plans are introduced in this paper.
Corrosion Evaluation of RERTR Uranium Molybdenum Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
A K Wertsching
2012-09-01
As part of the National Nuclear Security Agency (NNSA) mandate to replace the use of highly enriched uranium (HEU) fuel for low enriched uranium (LEU) fuel, research into the development of LEU fuel for research reactors has been active since the late 1970’s. Originally referred to as the Reduced Enrichment for Research and Test Reactor (RERTR) program the new effort named Global Threat Reduction Initiative (GTRI) is nearing the goal of replacing the standard aluminum clad dispersion highly enriched uranium aluminide fuel with a new LEU fuel. The five domestic high performance research reactors undergoing this conversion are High Fluxmore » Isotope reactor (HFIR), Advanced Test Reactor (ATR), National Institute of Standards and Technology (NIST) Reactor, Missouri University Research Reactor (MURR) and the Massachusetts Institute of Technology Reactor II (MITR-II). The design of these reactors requires a higher neutron flux than other international research reactors, which to this point has posed unique challenges in the design and development of the new mandated LEU fuel. The new design utilizes a monolithic fuel configuration in order to obtain sufficient 235U within the LEU stoichoimetry to maintain the fission reaction within the domestic test reactors. The change from uranium aluminide dispersion fuel type to uranium molybdenum (UMo) monolithic configuration requires examination of possible corrosion issues associated with the new fuel meat. A focused analysis of the UMo fuel under potential corrosion conditions, within the ATR and under aqueous storage indicates a slow and predictable corrosion rate. Additional corrosion testing is recommended for the highest burn-up fuels to confirm observed corrosion rate trends. This corrosion analysis will focus only on the UMo fuel and will address corrosion of ancillary components such as cladding only in terms of how it affects the fuel. The calculations and corrosion scenarios are weighted with a conservative bias to provide additional confidence with the results. The actual corrosion rates of UMo fuel is very likely to be lower than assumed within this report which can be confirmed with additional testing.« less
Advanced Reactor Technology/Energy Conversion Project FY17 Accomplishments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rochau, Gary E.
The purpose of the ART Energy Conversion (EC) Project is to provide solutions to convert the heat from an advanced reactor to useful products that support commercial application of the reactor designs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Utgikar, Vivek; Sun, Xiaodong; Christensen, Richard
2016-12-29
The overall goal of the research project was to model the behavior of the advanced reactorintermediate heat exchange system and to develop advanced control techniques for off-normal conditions. The specific objectives defined for the project were: 1. To develop the steady-state thermal hydraulic design of the intermediate heat exchanger (IHX); 2. To develop mathematical models to describe the advanced nuclear reactor-IHX-chemical process/power generation coupling during normal and off-normal operations, and to simulate models using multiphysics software; 3. To develop control strategies using genetic algorithm or neural network techniques and couple these techniques with the multiphysics software; 4. To validate themore » models experimentally The project objectives were accomplished by defining and executing four different tasks corresponding to these specific objectives. The first task involved selection of IHX candidates and developing steady state designs for those. The second task involved modeling of the transient and offnormal operation of the reactor-IHX system. The subsequent task dealt with the development of control strategies and involved algorithm development and simulation. The last task involved experimental validation of the thermal hydraulic performances of the two prototype heat exchangers designed and fabricated for the project at steady state and transient conditions to simulate the coupling of the reactor- IHX-process plant system. The experimental work utilized the two test facilities at The Ohio State University (OSU) including one existing High-Temperature Helium Test Facility (HTHF) and the newly developed high-temperature molten salt facility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Kurt R.; Howard, Richard H.; Daily, Charles R.
The Advanced Fuels Campaign within the Fuel Cycle Research and Development program of the Department of Energy Office of Nuclear Energy is currently investigating a number of advanced nuclear fuel cladding concepts to improve the accident tolerance of light water reactors. Alumina-forming ferritic alloys (e.g., FeCrAl) are some of the leading candidates to replace traditional zirconium alloys due to their superior oxidation resistance, provided no prohibitive irradiation-induced embrittlement occurs. Oak Ridge National Laboratory has developed experimental designs to irradiate thin-walled cladding tubes with representative pressurized water reactor geometry in the High Flux Isotope Reactor (HFIR) under relevant temperatures. These designsmore » allow for post-irradiation examination (PIE) of cladding that closely resembles expected commercially viable geometries and microstructures. The experiments were designed using relatively inexpensive rabbit capsules for the irradiation vehicle. The simplistic designs combined with the extremely high neutron flux in the HFIR allow for rapid testing of a large test matrix, thus reducing the time and cost needed to advanced cladding materials closer to commercialization. The designs are flexible in that they allow for testing FeCrAl alloys, stainless steels, Inconel alloys, and zirconium alloys (as a reference material) both with and without hydrides. This will allow a direct comparison of the irradiation performance of advanced cladding materials with traditional zirconium alloys. PIE will include studies of dimensional change, microstructure variation, mechanical performance, etc. This work describes the capsule design, neutronic and thermal analyses, and flow testing that were performed to support the qualification of this new irradiation vehicle.« less
Visible spectral power emitted from a laser produced uranium plasma
NASA Technical Reports Server (NTRS)
Williams, M. D.; Jalufka, N. W.
1975-01-01
The development of plasma-core nuclear reactors for advanced terrestrial and space-power sources is researched. Experimental measurements of the intensity and the spectral distribution of radiation from a nonfissioning uranium plasma are reported.
Metrics for the technical performance evaluation of light water reactor accident-tolerant fuel
Bragg-Sitton, Shannon M.; Todosow, Michael; Montgomery, Robert; ...
2017-03-26
The safe, reliable, and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the nuclear industry. Continual improvement of technology, including advanced materials and nuclear fuels, remains central to the industry’s success. Enhancing the accident tolerance of light water reactors (LWRs) became a topic of serious discussion following the 2011 Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex. The overall goal for the development of accident-tolerant fuel (ATF) for LWRs is to identify alternative fuel system technologies to further enhance the safety, competitiveness, andmore » economics of commercial nuclear power. Designed for use in the current fleet of commercial LWRs or in reactor concepts with design certifications (GEN-III+), fuels with enhanced accident tolerance would endure loss of active cooling in the reactor core for a considerably longer period of time than the current fuel system while maintaining or improving performance during normal operations. The complex multiphysics behavior of LWR nuclear fuel in the integrated reactor system makes defining specific material or design improvements difficult; as such, establishing desirable performance attributes is critical in guiding the design and development of fuels and cladding with enhanced accident tolerance. Research and development of ATF in the United States is conducted under the U.S. Department of Energy (DOE) Fuel Cycle Research and Development Advanced Fuels Campaign. The DOE is sponsoring multiple teams to develop ATF concepts within multiple national laboratories, universities, and the nuclear industry. Concepts under investigation offer both evolutionary and revolutionary changes to the current nuclear fuel system. This study summarizes the technical evaluation methodology proposed in the United States to aid in the optimization and prioritization of candidate ATF designs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1993-09-15
This report contains an extensive evaluation of GE advanced boiling water reactor plants prepared for United State Department of Energy. The general areas covered in this report are: core and system performance; fuel cycle; infrastructure and deployment; and safety and environmental approval.
Energy Innovation Hubs: A Home for Scientific Collaboration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, Steven
Secretary Chu will host a live, streaming Q&A session with the directors of the Energy Innovation Hubs on Tuesday, March 6, at 2:15 p.m. EST. The directors will be available for questions regarding their teams' work and the future of American energy. Ask your questions in the comments below, or submit them on Facebook, Twitter (@energy), or send an e-mail to newmedia@hq.doe.gov, prior or during the live event. Dr. Hank Foley is the director of the Greater Philadelphia Innovation Cluster for Energy-Efficient Buildings, which is pioneering new data intensive techniques for designing and operating energy efficient buildings, including advanced computermore » modeling. Dr. Douglas Kothe is the director of the Consortium for Advanced Simulation of Light Water Reactors, which uses powerful supercomputers to create "virtual" reactors that will help improve the safety and performance of both existing and new nuclear reactors. Dr. Nathan Lewis is the director of the Joint Center for Artificial Photosynthesis, which focuses on how to produce fuels from sunlight, water, and carbon dioxide. The Energy Innovation Hubs are major integrated research centers, with researchers from many different institutions and technical backgrounds. Each hub is focused on a specific high priority goal, rapidly accelerating scientific discoveries and shortening the path from laboratory innovation to technological development and commercial deployment of critical energy technologies. Ask your questions in the comments below, or submit them on Facebook, Twitter (@energy), or send an e-mail to newmedia@energy.gov, prior or during the live event. The Energy Innovation Hubs are major integrated research centers, with researchers from many different institutions and technical backgrounds. Each Hub is focused on a specific high priority goal, rapidly accelerating scientific discoveries and shortening the path from laboratory innovation to technological development and commercial deployment of critical energy technologies. Dr. Hank Holey is the director of the Greater Philadelphia Innovation Cluster for Energy-Efficient Buildings, which is pioneering new data intensive techniques for designing and operating energy efficient buildings, including advanced computer modeling. Dr. Douglas Kothe is the director of the Modeling and Simulation for Nuclear Reactors Hub, which uses powerful supercomputers to create "virtual" reactors that will help improve the safety and performance of both existing and new nuclear reactors. Dr. Nathan Lewis is the director of the Joint Center for Artificial Photosynthesis Hub, which focuses on how to produce biofuels from sunlight, water, and carbon dioxide.« less
Energy Innovation Hubs: A Home for Scientific Collaboration
Chu, Steven
2017-12-11
Secretary Chu will host a live, streaming Q&A session with the directors of the Energy Innovation Hubs on Tuesday, March 6, at 2:15 p.m. EST. The directors will be available for questions regarding their teams' work and the future of American energy. Ask your questions in the comments below, or submit them on Facebook, Twitter (@energy), or send an e-mail to newmedia@hq.doe.gov, prior or during the live event. Dr. Hank Foley is the director of the Greater Philadelphia Innovation Cluster for Energy-Efficient Buildings, which is pioneering new data intensive techniques for designing and operating energy efficient buildings, including advanced computer modeling. Dr. Douglas Kothe is the director of the Consortium for Advanced Simulation of Light Water Reactors, which uses powerful supercomputers to create "virtual" reactors that will help improve the safety and performance of both existing and new nuclear reactors. Dr. Nathan Lewis is the director of the Joint Center for Artificial Photosynthesis, which focuses on how to produce fuels from sunlight, water, and carbon dioxide. The Energy Innovation Hubs are major integrated research centers, with researchers from many different institutions and technical backgrounds. Each hub is focused on a specific high priority goal, rapidly accelerating scientific discoveries and shortening the path from laboratory innovation to technological development and commercial deployment of critical energy technologies. Ask your questions in the comments below, or submit them on Facebook, Twitter (@energy), or send an e-mail to newmedia@energy.gov, prior or during the live event. The Energy Innovation Hubs are major integrated research centers, with researchers from many different institutions and technical backgrounds. Each Hub is focused on a specific high priority goal, rapidly accelerating scientific discoveries and shortening the path from laboratory innovation to technological development and commercial deployment of critical energy technologies. Dr. Hank Holey is the director of the Greater Philadelphia Innovation Cluster for Energy-Efficient Buildings, which is pioneering new data intensive techniques for designing and operating energy efficient buildings, including advanced computer modeling. Dr. Douglas Kothe is the director of the Modeling and Simulation for Nuclear Reactors Hub, which uses powerful supercomputers to create "virtual" reactors that will help improve the safety and performance of both existing and new nuclear reactors. Dr. Nathan Lewis is the director of the Joint Center for Artificial Photosynthesis Hub, which focuses on how to produce biofuels from sunlight, water, and carbon dioxide.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-09
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the Subcommittee on Advanced Boiling Water Reactor (ABWR); Notice of Meeting The ACRS Subcommittee on ABWR will... would result in major inconvenience. Dated: March 3, 2010. Antonio F. Dias, Chief, Reactor Safety Branch...
Georgia Institute of Technology research on the Gas Core Actinide Transmutation Reactor (GCATR)
NASA Technical Reports Server (NTRS)
Clement, J. D.; Rust, J. H.; Schneider, A.; Hohl, F.
1976-01-01
The program reviewed is a study of the feasibility, design, and optimization of the GCATR. The program is designed to take advantage of initial results and to continue work carried out on the Gas Core Breeder Reactor. The program complements NASA's program of developing UF6 fueled cavity reactors for power, nuclear pumped lasers, and other advanced technology applications. The program comprises: (1) General Studies--Parametric survey calculations performed to examine the effects of reactor spectrum and flux level on the actinide transmutation for GCATR conditions. The sensitivity of the results to neutron cross sections are to be assessed. Specifically, the parametric calculations of the actinide transmutation are to include the mass, isotope composition, fission and capture rates, reactivity effects, and neutron activity of recycled actinides. (2) GCATR Design Studies--This task is a major thrust of the proposed research program. Several subtasks are considered: optimization criteria studies of the blanket and fuel reprocessing, the actinide insertion and recirculation system, and the system integration. A brief review of the background of the GCATR and ongoing research is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Carmack; L. Braase; F. Goldner
The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors, enhance proliferation resistance of nuclear fuel, effectively utilize nuclear energy resources, and address the longer-term waste management challenges. This includes development of a state of the art Research and Development (R&D) infrastructure to support the use of a “goal oriented science based approach.” AFC uses a “goal oriented, science based approach” aimed at a fundamental understanding of fuel and cladding fabrication methods and performancemore » under irradiation, enabling the pursuit of multiple fuel forms for future fuel cycle options. This approach includes fundamental experiments, theory, and advanced modeling and simulation. One of the most challenging aspects of AFC is the management, integration, and coordination of major R&D activities across multiple organizations. AFC interfaces and collaborates with Fuel Cycle Technologies (FCT) campaigns, universities, industry, various DOE programs and laboratories, federal agencies (e.g., Nuclear Regulatory Commission [NRC]), and international organizations. Key challenges are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Challenged with the research and development of fuels for two different reactor technology platforms, AFC targeted transmutation fuel development and focused ceramic fuel development for Advanced LWR Fuels.« less
In-Pile Instrumentation Multi- Parameter System Utilizing Photonic Fibers and Nanovision
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgett, Eric
2015-10-13
An advanced in-pile multi-parameter reactor monitoring system is being proposed in this funding opportunity. The proposed effort brings cutting edge, high fidelity optical measurement systems into the reactor environment in an unprecedented fashion, including in-core, in-cladding and in-fuel pellet itself. Unlike instrumented leads, the proposed system provides a unique solution to a multi-parameter monitoring need in core while being minimally intrusive in the reactor core. Detector designs proposed herein can monitor fuel compression and expansion in both the radial and axial dimensions as well as monitor linear power profiles and fission rates during the operation of the reactor. In additionmore » to pressure, stress, strain, compression, neutron flux, neutron spectra, and temperature can be observed inside the fuel bundle and fuel rod using the proposed system. The proposed research aims at developing radiation-hard, harsh-environment multi-parameter systems for insertion into the reactor environment. The proposed research holds the potential to drastically increase the fidelity and precision of in-core instrumentation with little or no impact in the neutron economy in the reactor environment while providing a measurement system capable of operation for entire operating cycles.« less
Proceedings of the 1992 topical meeting on advances in reactor physics. Volume 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-04-01
This document, Volume 2, presents proceedings of the 1992 Topical Meeting on Advances in Reactor Physics on March 8--11, 1992 at Charleston, SC. Session topics were as follows: Transport Theory; Fast Reactors; Plant Analyzers; Integral Experiments/Measurements & Analysis; Core Computational Systems; Reactor Physics; Monte Carlo; Safety Aspects of Heavy Water Reactors; and Space-Time Core Kinetics. The individual reports have been cataloged separately. (FI)
Advance High Temperature Inspection Capabilities for Small Modular Reactors: Part 1 - Ultrasonics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bond, Leonard J.; Bowler, John R.
The project objective was to investigate the development non-destructive evaluation techniques for advanced small modular reactors (aSMR), where the research sought to provide key enabling inspection technologies needed to support the design and maintenance of reactor component performance. The project tasks for the development of inspection techniques to be applied to small modular reactor are being addressed through two related activities. The first is focused on high temperature ultrasonic transducers development (this report Part 1) and the second is focused on an advanced eddy current inspection capability (Part 2). For both inspection techniques the primary aim is to develop in-servicemore » inspection techniques that can be carried out under standby condition in a fast reactor at a temperature of approximately 250°C in the presence of liquid sodium. The piezoelectric material and the bonding between layers have been recognized as key factors fundamental for development of robust ultrasonic transducers. Dielectric constant characterization of bismuth scantanate-lead titanate ((1-x)BiScO 3-xPbTiO 3) (BS-PT) has shown a high Curie temperature in excess of 450°C , suitable for hot stand-by inspection in liquid metal reactors. High temperature pulse-echo contact measurements have been performed with BS-PT bonded to 12.5 mm thick 1018-low carbon steel plate from 20C up to 260 C. High temperature air-backed immersion transducers have been developed with BS-PT, high temperature epoxy and quarter wavlength nickel plate, needed for wetting ability in liquid sodium. Ultrasonic immersion measurements have been performed in water up to 92C and in silicone oil up to 140C. Physics based models have been validated with room temperature experimental data with benchmark artifical defects.« less
10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Advance notification of shipment of irradiated reactor... notification of shipment of irradiated reactor fuel and nuclear waste. (a) As specified in paragraphs (b), (c... required under this section for shipments of irradiated reactor fuel in quantities less than that subject...
10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Advance notification of shipment of irradiated reactor... notification of shipment of irradiated reactor fuel and nuclear waste. (a) As specified in paragraphs (b), (c... required under this section for shipments of irradiated reactor fuel in quantities less than that subject...
NASA Astrophysics Data System (ADS)
Reichenberger, Michael A.; Nichols, Daniel M.; Stevenson, Sarah R.; Swope, Tanner M.; Hilger, Caden W.; Unruh, Troy C.; McGregor, Douglas S.; Roberts, Jeremy A.
2017-08-01
Advancements in nuclear reactor core modeling and computational capability have encouraged further development of in-core neutron sensors. Micro-Pocket Fission Detectors (MPFDs) have been fabricated and tested previously, but successful testing of these prior detectors was limited to single-node operation with specialized designs. Described in this work is a modular, four-node MPFD array fabricated and tested at Kansas State University (KSU). The four sensor nodes were equally spaced to span the length of the fuel-region of the KSU TRIGA Mk. II research nuclear reactor core. The encapsulated array was filled with argon gas, serving as an ionization medium in the small cavities of the MPFDs. The unified design improved device ruggedness and simplified construction over previous designs. A 0.315-in. (8-mm) penetration in the upper grid plate of the KSU TRIGA Mk. II research nuclear reactor was used to deploy the array between fuel elements in the core. The MPFD array was coupled to an electronic support system which has been developed to support pulse-mode operation. Neutron-induced pulses were observed on all four sensor channels. Stable device operation was confirmed by testing under steady-state reactor conditions. Each of the four sensors in the array responded to changes in reactor power between 10 kWth and full power (750 kWth). Reactor power transients were observed in real-time including positive transients with periods of 5, 15, and 30 s. Finally, manual reactor power oscillations were observed in real-time.
The benefits of an advanced fast reactor fuel cycle for plutonium management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hannum, W.H.; McFarlane, H.F.; Wade, D.C.
1996-12-31
The United States has no program to investigate advanced nuclear fuel cycles for the large-scale consumption of plutonium from military and civilian sources. The official U.S. position has been to focus on means to bury spent nuclear fuel from civilian reactors and to achieve the spent fuel standard for excess separated plutonium, which is considered by policy makers to be an urgent international priority. Recently, the National Research Council published a long awaited report on its study of potential separation and transmutation technologies (STATS), which concluded that in the nuclear energy phase-out scenario that they evaluated, transmutation of plutonium andmore » long-lived radioisotopes would not be worth the cost. However, at the American Nuclear Society Annual Meeting in June, 1996, the STATS panelists endorsed further study of partitioning to achieve superior waste forms for burial, and suggested that any further consideration of transmutation should be in the context of energy production, not of waste management. 2048 The U.S. Department of Energy (DOE) has an active program for the short-term disposition of excess fissile material and a `focus area` for safe, secure stabilization, storage and disposition of plutonium, but has no current programs for fast reactor development. Nevertheless, sufficient data exist to identify the potential advantages of an advanced fast reactor metallic fuel cycle for the long-term management of plutonium. Advantages are discussed.« less
Enhanced Passive Cooling for Waterless-Power Production Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, Salvador B.
2016-06-14
Recent advances in the literature and at SNL indicate the strong potential for passive, specialized surfaces to significantly enhance power production output. Our exploratory computational and experimental research indicates that fractal and swirl surfaces can help enable waterless-power production by increasing the amount of heat transfer and turbulence, when compared with conventional surfaces. Small modular reactors, advanced reactors, and non-nuclear plants (e.g., solar and coal) are ideally suited for sCO2 coolant loops. The sCO2 loop converts the thermal heat into electricity, while the specialized surfaces passively and securely reject the waste process heat in an environmentally benign manner. The resultant,more » integrated energy systems are highly suitable for small grids, rural areas, and arid regions.« less
Aluminum Carbothermic Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruno, Marshall J.
2005-03-31
This report documents the non-proprietary research and development conducted on the Aluminum Carbothermic Technology (ACT) project from contract inception on July 01, 2000 to termination on December 31, 2004. The objectives of the program were to demonstrate the technical and economic feasibility of a new carbothermic process for producing commercial grade aluminum, designated as the ''Advanced Reactor Process'' (ARP). The scope of the program ranged from fundamental research through small scale laboratory experiments (65 kW power input) to larger scale test modules at up to 1600 kW power input. The tasks included work on four components of the process, Stagesmore » 1 and 2 of the reactor, vapor recovery and metal alloy decarbonization; development of computer models; and economic analyses of capital and operating costs. Justification for developing a new, carbothermic route to aluminum production is defined by the potential benefits in reduced energy, lower costs and more favorable environmental characteristics than the conventional Hall-Heroult process presently used by the industry. The estimated metrics for these advantages include energy rates at approximately 10 kWh/kg Al (versus over 13 kWh/kg Al for Hall-Heroult), capital costs as low as $1250 per MTY (versus 4,000 per MTY for Hall-Heroult), operating cost reductions of over 10%, and up to 37% reduction in CO2 emissions for fossil-fuel power plants. Realization of these benefits would be critical to sustaining the US aluminum industries position as a global leader in primary aluminum production. One very attractive incentive for ARP is its perceived ability to cost effectively produce metal over a range of smelter sizes, not feasible for Hall-Heroult plants which must be large, 240,000 TPY or more, to be economical. Lower capacity stand alone carbothermic smelters could be utilized to supply molten metal at fabrication facilities similar to the mini-mill concept employed by the steel industry. Major accomplishments for the program include definition of the system thermo-chemistry, demonstration of reactor stage 1, development of reactor stage 2 critical components in a 500 kW module, experimental determination of the vapor recovery reactor fundamentals, detailed design and installation of an advanced stage 1/vapor recovery reactor, feasibility of efficient separation of Al-C metal alloy product, updated capital and operating cost estimates, and development of computer models for all steps of the Advanced Reactor Process.« less
A multi-physics analysis for the actuation of the SSS in opal reactor
NASA Astrophysics Data System (ADS)
Ferraro, Diego; Alberto, Patricio; Villarino, Eduardo; Doval, Alicia
2018-05-01
OPAL is a 20 MWth multi-purpose open-pool type Research Reactor located at Lucas Heights, Australia. It was designed, built and commissioned by INVAP between 2000 and 2006 and it has been operated by the Australia Nuclear Science and Technology Organization (ANSTO) showing a very good overall performance. On November 2016, OPAL reached 10 years of continuous operation, becoming one of the most reliable and available in its kind worldwide, with an unbeaten record of being fully operational 307 days a year. One of the enhanced safety features present in this state-of-art reactor is the availability of an independent, diverse and redundant Second Shutdown System (SSS), which consists in the drainage of the heavy water reflector contained in the Reflector Vessel. As far as high quality experimental data is available from reactor commissioning and operation stages and even from early component design validation stages, several models both regarding neutronic and thermo-hydraulic approaches have been developed during recent years using advanced calculations tools and the novel capabilities to couple them. These advanced models were developed in order to assess the capability of such codes to simulate and predict complex behaviours and develop highly detail analysis. In this framework, INVAP developed a three-dimensional CFD model that represents the detailed hydraulic behaviour of the Second Shutdown System for an actuation scenario, where the heavy water drainage 3D temporal profiles inside the Reflector Vessel can be obtained. This model was validated, comparing the computational results with experimental measurements performed in a real-size physical model built by INVAP during early OPAL design engineering stages. Furthermore, detailed 3D Serpent Monte Carlo models are also available, which have been already validated with experimental data from reactor commissioning and operating cycles. In the present work the neutronic and thermohydraulic models, available for OPAL reactor, are coupled by means of a shared unstructured mesh geometry definition of relevant zones inside the Reflector Vessel. Several scenarios, both regarding coupled and uncoupled neutronic & thermohydraulic behavior, are presented and analyzed, showing the capabilities to develop and manage advanced modelling that allows to predict multi-physics variables observed when an in-depth performance analysis of a Research Reactor like OPAL is carried out.
The Modeling of Advanced BWR Fuel Designs with the NRC Fuel Depletion Codes PARCS/PATHS
Ward, Andrew; Downar, Thomas J.; Xu, Y.; ...
2015-04-22
The PATHS (PARCS Advanced Thermal Hydraulic Solver) code was developed at the University of Michigan in support of U.S. Nuclear Regulatory Commission research to solve the steady-state, two-phase, thermal-hydraulic equations for a boiling water reactor (BWR) and to provide thermal-hydraulic feedback for BWR depletion calculations with the neutronics code PARCS (Purdue Advanced Reactor Core Simulator). The simplified solution methodology, including a three-equation drift flux formulation and an optimized iteration scheme, yields very fast run times in comparison to conventional thermal-hydraulic systems codes used in the industry, while still retaining sufficient accuracy for applications such as BWR depletion calculations. Lastly, themore » capability to model advanced BWR fuel designs with part-length fuel rods and heterogeneous axial channel flow geometry has been implemented in PATHS, and the code has been validated against previously benchmarked advanced core simulators as well as BWR plant and experimental data. We describe the modifications to the codes and the results of the validation in this paper.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
This report covers selected highlights from the four research pathways in the LWRS Program: Materials Aging and Degradation; Risk-Informed Safety Margin Characterization; Advanced Instrumentation, Information, and Control Systems Technologies; and Reactor Safety Technologies, as well as a look-ahead at planned activities for 2017.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
This report covers selected highlights from the four research pathways in the LWRS Program: Materials Aging and Degradation; Risk-Informed Safety Margin Characterization; Advanced Instrumentation, Information, and Control Systems Technologies; and Reactor Safety Technologies, as well as a look-ahead at planned activities for 2017.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hallbert, Bruce Perry; Thomas, Kenneth David
2015-10-01
Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.
Prioritized List of Research Needs to support MRWFD Case Study Flowsheet Advancement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Law, Jack Douglas; Soelberg, Nicholas Ray
In FY-13, a case study evaluation was performed of full recycle technologies for both the processing of light-water reactor (LWR) used nuclear fuels as well as fast reactor (FR) fuel in the full recycle option. This effort focused on the identification of the case study processes and the initial preparation of material balance flowsheets for the identified technologies. In identifying the case study flowsheets, it was decided that two cases would be developed: one which identifies the flowsheet as currently developed and another near-term target flowsheet which identifies the flowsheet as envisioned within two years, pending the results of ongoingmore » research. The case study focus is on homogeneous aqueous recycle of the U/TRU resulting from the processing of LWR fuel as feed for metal fuel fabrication. The metal fuel is utilized in a sodium-cooled fast reactor, and the used fast reactor fuel is processed using electrochemical separations. The recovered U/TRU from electrochemical separations is recycled to fuel fabrication and the fast reactor. Waste streams from the aqueous and electrochemical processing are treated and prepared for disposition. Off-gas from the separations and waste processing are also treated. As part of the FY-13 effort, preliminary process unknowns and research needs to advance the near-term target flowsheets were identified. In FY-14, these research needs were updated, expanded and prioritized. This report again updates the prioritized list of research needs based upon results to date in FY-15. The research needs are listed for each of the main portions of the flowsheet: 1) Aqueous headend, 2) Headend tritium pretreatment off-gas, 3) Aqueous U/Pu/Np recovery, 4) Aqueous TRU product solidification, 5) Aqueous actinide/lanthanide separation, 6) Aqueous off-gas treatment, 7) Aqueous HLW management, 8) Treatment of aqueous process wastes, 9) E-chem actinide separations, 10) E-chem off-gas, 11) E-chem HLW management. The identified research needs were prioritized within each of these areas. No effort was made to perform an overall prioritization. This information will be used by the MRWFD Campaign leadership in research planning for FY-16. Additionally, this information will be incorporated into the next version of the Case Study Report scheduled to be issued September 2015.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-19
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on U.S. Advanced Pressurized Power Reactor; Notice of Meeting The ACRS Subcommittee on U.S. Advanced Pressurized Power Reactor (US-APWR) will hold a meeting on July 9-10, 2012, Room T-2B3, 11545...
Issues relating to spent nuclear fuel storage on the Oak Ridge Reservation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, J.A.; Turner, D.W.
1994-12-31
Currently, about 2,800 metric tons of spent nuclear fuel (SNF) is stored in the US, 1,000 kg of SNF (or about 0.03% of the nation`s total) are stored at the US Department of Energy (DOE) complex in Oak Ridge, Tennessee. However small the total quantity of material stored at Oak Ridge, some of the material is quite singular in character and, thus, poses unique management concerns. The various types of SNF stored at Oak Ridge will be discussed including: (1) High-Flux Isotope Reactor (HFIR) and future Advanced Neutron Source (ANS) fuels; (2) Material Testing Reactor (MTR) fuels, including Bulk Shieldingmore » Reactor (BSR) and Oak Ridge Research Reactor (ORR) fuels; (3) Molten Salt Reactor Experiment (MSRE) fuel; (4) Homogeneous Reactor Experiment (HRE) fuel; (5) Miscellaneous SNF stored in Oak Ridge National Laboratory`s (ORNL`s) Solid Waste Storage Areas (SWSAs); (6) SNF stored in the Y-12 Plant 9720-5 Warehouse including Health. Physics Reactor (HPRR), Space Nuclear Auxiliary Power (SNAP-) 10A, and DOE Demonstration Reactor fuels.« less
FSA future directions: FSA technology activities in FY86
NASA Technical Reports Server (NTRS)
Leipold, M. H.
1985-01-01
The silicon material, advanced silicon sheet, device research, and process research activities are explained. There will be no new initiatives. Many activities are targeted for completion and the emphasis will then be on technology transfer. Industrial development of the fluidized-bed reactor (FBR) deposition technology is proceeding. Technology transfer and industry funding of sheet development are continuing.
Feasibility of EB Welded Hastelloy X and Combination of Refractory Metals
NASA Technical Reports Server (NTRS)
Martinez, Diana A.
2004-01-01
As NASA continues to expand its horizon, exploration and discovery creates the need of advancement in technology. The Jupiter Icy Moon Orbiter's (JIMO) mission to explore and document the outer surfaces, rate the possibility of holding potential life forms, etc. within the three moons (Callisto, Ganymede, and Europa) proves to be challenging. The orbiter itself consists of many sections including: the nuclear reactor and the power conversion system, the radiator panels, and the thrusters and antenna. The nuclear reactor serves as a power source, and if successfully developed, can operate for extended periods. During the duration of my tenure at NASA Glenn Research Center's (NASA GRC) Advanced Metallics Branch, I was assigned to assist Frank J. Ritzert on analyzing the feasibility of the Electron Beam Welded Hastelloy X (HX), a nickel-based superalloy, to Niobium- 1 %Zirconium (Nb-1 Zr) and other refractory metals/alloys including Tantalum, Molybdenum, Tungsten, and Rhenium alloys. This welding technique is going to be used for the nuclear reactor within JIMO.
A HUMAN AUTOMATION INTERACTION CONCEPT FOR A SMALL MODULAR REACTOR CONTROL ROOM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Blanc, Katya; Spielman, Zach; Hill, Rachael
Many advanced nuclear power plant (NPP) designs incorporate higher degrees of automation than the existing fleet of NPPs. Automation is being introduced or proposed in NPPs through a wide variety of systems and technologies, such as advanced displays, computer-based procedures, advanced alarm systems, and computerized operator support systems. Additionally, many new reactor concepts, both full scale and small modular reactors, are proposing increased automation and reduced staffing as part of their concept of operations. However, research consistently finds that there is a fundamental tradeoff between system performance with increased automation and reduced human performance. There is a need to addressmore » the question of how to achieve high performance and efficiency of high levels of automation without degrading human performance. One example of a new NPP concept that will utilize greater degrees of automation is the SMR concept from NuScale Power. The NuScale Power design requires 12 modular units to be operated in one single control room, which leads to a need for higher degrees of automation in the control room. Idaho National Laboratory (INL) researchers and NuScale Power human factors and operations staff are working on a collaborative project to address the human performance challenges of increased automation and to determine the principles that lead to optimal performance in highly automated systems. This paper will describe this concept in detail and will describe an experimental test of the concept. The benefits and challenges of the approach will be discussed.« less
NASA Astrophysics Data System (ADS)
Ogawa, Yuichi
2016-05-01
A new strategic energy plan decided by the Japanese Cabinet in 2014 strongly supports the steady promotion of nuclear fusion development activities, including the ITER project and the Broader Approach activities from the long-term viewpoint. Atomic Energy Commission (AEC) in Japan formulated the Third Phase Basic Program so as to promote an experimental fusion reactor project. In 2005 AEC has reviewed this Program, and discussed on selection and concentration among many projects of fusion reactor development. In addition to the promotion of ITER project, advanced tokamak research by JT-60SA, helical plasma experiment by LHD, FIREX project in laser fusion research and fusion engineering by IFMIF were highly prioritized. Although the basic concept is quite different between tokamak, helical and laser fusion researches, there exist a lot of common features such as plasma physics on 3-D magnetic geometry, high power heat load on plasma facing component and so on. Therefore, a synergetic scenario on fusion reactor development among various plasma confinement concepts would be important.
DOE Office of Scientific and Technical Information (OSTI.GOV)
James E. O'Brien; Piyush Sabharwall; SuJong Yoon
2001-11-01
Effective and robust high temperature heat transfer systems are fundamental to the successful deployment of advanced reactors for both power generation and non-electric applications. Plant designs often include an intermediate heat transfer loop (IHTL) with heat exchangers at either end to deliver thermal energy to the application while providing isolation of the primary reactor system. In order to address technical feasibility concerns and challenges a new high-temperature multi-fluid, multi-loop test facility “Advanced Reactor Technology Integral System Test facility” (ARTIST) is under development at the Idaho National Laboratory. The facility will include three flow loops: high-temperature helium, molten salt, and steam/water.more » Details of some of the design aspects and challenges of this facility, which is currently in the conceptual design phase, are discussed« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loflin, Leonard; McRimmon, Beth
2014-12-18
This report summarizes a project by EPRI to include requirements for small modular light water reactors (smLWR) into the EPRI Utility Requirements Document (URD) for Advanced Light Water Reactors. The project was jointly funded by EPRI and the U.S. Department of Energy (DOE). The report covers the scope and content of the URD, the process used to revise the URD to include smLWR requirements, a summary of the major changes to the URD to include smLWR, and how to use the URD as revised to achieve value on new plant projects.
From biofilm ecology to reactors: a focused review.
Boltz, Joshua P; Smets, Barth F; Rittmann, Bruce E; van Loosdrecht, Mark C M; Morgenroth, Eberhard; Daigger, Glen T
2017-04-01
Biofilms are complex biostructures that appear on all surfaces that are regularly in contact with water. They are structurally complex, dynamic systems with attributes of primordial multicellular organisms and multifaceted ecosystems. The presence of biofilms may have a negative impact on the performance of various systems, but they can also be used beneficially for the treatment of water (defined herein as potable water, municipal and industrial wastewater, fresh/brackish/salt water bodies, groundwater) as well as in water stream-based biological resource recovery systems. This review addresses the following three topics: (1) biofilm ecology, (2) biofilm reactor technology and design, and (3) biofilm modeling. In so doing, it addresses the processes occurring in the biofilm, and how these affect and are affected by the broader biofilm system. The symphonic application of a suite of biological methods has led to significant advances in the understanding of biofilm ecology. New metabolic pathways, such as anaerobic ammonium oxidation (anammox) or complete ammonium oxidation (comammox) were first observed in biofilm reactors. The functions, properties, and constituents of the biofilm extracellular polymeric substance matrix are somewhat known, but their exact composition and role in the microbial conversion kinetics and biochemical transformations are still to be resolved. Biofilm grown microorganisms may contribute to increased metabolism of micro-pollutants. Several types of biofilm reactors have been used for water treatment, with current focus on moving bed biofilm reactors, integrated fixed-film activated sludge, membrane-supported biofilm reactors, and granular sludge processes. The control and/or beneficial use of biofilms in membrane processes is advancing. Biofilm models have become essential tools for fundamental biofilm research and biofilm reactor engineering and design. At the same time, the divergence between biofilm modeling and biofilm reactor modeling approaches is recognized.
Analysis of ORNL site temperature and humidity data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willis, B.E.
1989-08-01
The Advanced Neutron Source (ANS) is planned as a new state-of-the-art facility for neutron research and is currently undergoing conceptual design at the Oak Ridge National Laboratory (ORNL). The current concept calls for a nuclear research reactor with an operating power near 350 MW and extensive experiment and user support facilities. Analyses have been undertaken to determine an acceptable design basis wet-bulb temperature range for the facility. Comparisons are drawn with the design wet-bulb temperature previously used for the High Flux Isotope Reactor (HFIR), which is located on an adjacent site a Oak Ridge. This report explains the importance ofmore » wet-bulb temperature to the reactor cooling system performance, and describes the analysis of available meteorological data, and presents the results and the recommendations for a wet-bulb temperature range for use as a part of the plant design basis conditions. 1 ref., 6 figs.« less
Development of a carbon formation reactor for carbon dioxide reduction
NASA Technical Reports Server (NTRS)
Noyes, G.
1985-01-01
Applied research, engineering development, and performance evaluation were conducted on a process for formation of dense carbon by pyrolysis of methane. Experimental research showed that dense (0.7 to 1.6 g/cc bulk density and 1.6 to 2.2 g/cc solid density) carbon can be produced by methane pyrolysis in quartzwool-packed quartz tubes at temperatrues of 1100 to 1300 C. This result supports the condensation theory of pyrolytic carbon formation from gaseous hydrocarbons. A full-scale Breadboard Carbon Formation Reactor (CFR) was designed, fabricated, and tested at 1100 to 1200 C with 380 to 2280 sccm input flows of methane. Single-pass conversion of methane to carbon ranged from 60 to 100 percent, with 89 percent average conversion. Performance was projected for an Advanced Carbon Reactor Subsystem (ACRS) which indicated that the ACRS is a viable option for management of metabolic carbon on long-duration space missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grabaskas, Dave; Brunett, Acacia J.; Bucknor, Matthew
GE Hitachi Nuclear Energy (GEH) and Argonne National Laboratory are currently engaged in a joint effort to modernize and develop probabilistic risk assessment (PRA) techniques for advanced non-light water reactors. At a high level, the primary outcome of this project will be the development of next-generation PRA methodologies that will enable risk-informed prioritization of safety- and reliability-focused research and development, while also identifying gaps that may be resolved through additional research. A subset of this effort is the development of PRA methodologies to conduct a mechanistic source term (MST) analysis for event sequences that could result in the release ofmore » radionuclides. The MST analysis seeks to realistically model and assess the transport, retention, and release of radionuclides from the reactor to the environment. The MST methods developed during this project seek to satisfy the requirements of the Mechanistic Source Term element of the ASME/ANS Non-LWR PRA standard. The MST methodology consists of separate analysis approaches for risk-significant and non-risk significant event sequences that may result in the release of radionuclides from the reactor. For risk-significant event sequences, the methodology focuses on a detailed assessment, using mechanistic models, of radionuclide release from the fuel, transport through and release from the primary system, transport in the containment, and finally release to the environment. The analysis approach for non-risk significant event sequences examines the possibility of large radionuclide releases due to events such as re-criticality or the complete loss of radionuclide barriers. This paper provides details on the MST methodology, including the interface between the MST analysis and other elements of the PRA, and provides a simplified example MST calculation for a sodium fast reactor.« less
Research and proposal on selective catalytic reduction reactor optimization for industrial boiler.
Yang, Yiming; Li, Jian; He, Hong
2017-08-24
The advanced computational fluid dynamics (CFD) software STAR-CCM+ was used to simulate a denitrification (De-NOx) project for a boiler in this paper, and the simulation result was verified based on a physical model. Two selective catalytic reduction (SCR) reactors were developed: reactor 1 was optimized and reactor 2 was developed based on reactor 1. Various indicators, including gas flow field, ammonia concentration distribution, temperature distribution, gas incident angle, and system pressure drop were analyzed. The analysis indicated that reactor 2 was of outstanding performance and could simplify developing greatly. Ammonia injection grid (AIG), the core component of the reactor, was studied; three AIGs were developed and their performances were compared and analyzed. The result indicated that AIG 3 was of the best performance. The technical indicators were proposed for SCR reactor based on the study. Flow filed distribution, gas incident angle, and temperature distribution are subjected to SCR reactor shape to a great extent, and reactor 2 proposed in this paper was of outstanding performance; ammonia concentration distribution is subjected to ammonia injection grid (AIG) shape, and AIG 3 could meet the technical indicator of ammonia concentration without mounting ammonia mixer. The developments above on the reactor and the AIG are both of great application value and social efficiency.
Low Energy Neutron Source (LENS), Indiana University Cyclotron Facility, USA McMaster Nuclear Reactor Research, Gaithersburg, Maryland, USA Peruvian Institute of Nuclear Energy (IPEN), Lima, Peru Spallation Nuclear Science and Technology Organisation, Lucas Heights, Australia High-flux Advanced Neutron
None
2018-06-12
An international team of scientists from Russia and the United States, including two Department of Energy national laboratories and two universities, has discovered the newest superheavy element, element 117. The team included scientists from the Joint Institute of Nuclear Research (Dubna, Russia), the Research Institute for Advanced Reactors (Dimitrovgrad), Lawrence Livermore National Laboratory, Oak Ridge National Laboratory, Vanderbilt University, and the University of Nevada, Las Vegas.
CY2013 Annual Report for DOE-ITU INERI 2010-006-E
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, J. Rory; Rondinella, Vincenzo V.
2014-12-01
New concepts for nuclear energy development are considered in both the USA and Europe within the framework of the Generation-IV International Forum (GIF) as well as in various US-DOE programs (e.g. the Fuel Cycle Research and Development - FCRD) and as part of the European Sustainable Nuclear Energy Technology Platform (SNE-TP). Since most new fuel cycle concepts envisage the adoption of a closed nuclear fuel cycle employing fast reactors, the fuel behavior characteristics of the various proposed advanced fuel forms must be effectively investigated using state of the art experimental techniques before implementation. More rapid progress can be achieved ifmore » effective synergy with advanced (multi-scale) modeling efforts can be achieved. The fuel systems to be considered include minor actinide (MA) transmutation fuel types such as advanced MOX, advanced metal alloy, inert matrix fuel (IMF), and other ceramic fuels like nitrides, carbides, etc., for fast neutronic spectrum conditions. Most of the advanced fuel compounds have already been the object of past examination programs, which included irradiations in research reactors. The knowledge derived from previous experience constitutes a significant, albeit incomplete body of data. New or upgraded experimental tools are available today that can extend the scientific and technological knowledge towards achieving the objectives associated with the new generation of nuclear reactors and fuels. The objectives of this project will be three-fold: (1) to extend the available knowledge on properties and irradiation behavior of high burnup and minor actinide bearing advanced fuel systems; (2) to establish a synergy with multi-scale and code development efforts in which experimental data and expertise on the irradiation behavior of nuclear fuels is properly conveyed for the upgrade/development of advanced modeling tools; (3) to promote the effective use of international resources to the characterization of irradiated fuel through exchange of expertise and information among leading experimental facilities. The priorities in this project will be set according to the down selection procedure of U.S. and European development programs.« less
Interior of the Plum Brook Reactor Facility
1961-02-21
A view inside the 55-foot high containment vessel of the National Aeronautics and Space Administration (NASA) Plum Brook Reactor Facility in Sandusky, Ohio. The 60-megawatt test reactor went critical for the first time in 1961 and began its full-power research operations in 1963. From 1961 to 1973, this reactor performed some of the nation’s most advanced nuclear research. The reactor was designed to determine the behavior of metals and other materials after long durations of irradiation. The materials would be used to construct a nuclear-powered rocket. The reactor core, where the chain reaction occurred, sat at the bottom of the tubular pressure vessel, seen here at the center of the shielding pool. The core contained fuel rods with uranium isotopes. A cooling system was needed to reduce the heat levels during the reaction. A neutron-impervious reflector was also employed to send many of the neutrons back to the core. The Plum Brook Reactor Facility was constructed from high-density concrete and steel to prevent the excess neutrons from escaping the facility, but the water in the pool shielded most of the radiation. The water, found in three of the four quadrants served as a reflector, moderator, and coolant. In this photograph, the three 20-ton protective shrapnel shields and hatch have been removed from the top of the pressure tank revealing the reactor tank. An overhead crane could be manipulated to reach any section of this room. It was used to remove the shrapnel shields and transfer equipment.
Metal fires and their implications for advanced reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nowlen, Steven Patrick; Figueroa, Victor G.; Olivier, Tara Jean
This report details the primary results of the Laboratory Directed Research and Development project (LDRD 08-0857) Metal Fires and Their Implications for Advance Reactors. Advanced reactors may employ liquid metal coolants, typically sodium, because of their many desirable qualities. This project addressed some of the significant challenges associated with the use of liquid metal coolants, primary among these being the extremely rapid oxidation (combustion) that occurs at the high operating temperatures in reactors. The project has identified a number of areas for which gaps existed in knowledge pertinent to reactor safety analyses. Experimental and analysis capabilities were developed in thesemore » areas to varying degrees. In conjunction with team participation in a DOE gap analysis panel, focus was on the oxidation of spilled sodium on thermally massive surfaces. These are spills onto surfaces that substantially cool the sodium during the oxidation process, and they are relevant because standard risk mitigation procedures seek to move spill environments into this regime through rapid draining of spilled sodium. While the spilled sodium is not quenched, the burning mode is different in that there is a transition to a smoldering mode that has not been comprehensively described previously. Prior work has described spilled sodium as a pool fire, but there is a crucial, experimentally-observed transition to a smoldering mode of oxidation. A series of experimental measurements have comprehensively described the thermal evolution of this type of sodium fire for the first time. A new physics-based model has been developed that also predicts the thermal evolution of this type of sodium fire for the first time. The model introduces smoldering oxidation through porous oxide layers to go beyond traditional pool fire analyses that have been carried out previously in order to predict experimentally observed trends. Combined, these developments add significantly to the safety analysis capabilities of the advanced-reactor community for directly relevant scenarios. Beyond the focus on the thermally-interacting and smoldering sodium pool fires, experimental and analysis capabilities for sodium spray fires have also been developed in this project.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-04
... as technical reports related to the Gas Turbine Generator design. The Subcommittee will hear... Subcommittee on United States-Advanced Pressurized Water Reactor (US-APWR); Notice of Meeting The ACRS Subcommittee on United States-Advanced Pressurized Water Reactor (US-APWR) will hold a meeting on April 22...
The role of inertial fusion energy in the energy marketplace of the 21st century and beyond
NASA Astrophysics Data System (ADS)
John Perkins, L.
The viability of inertial fusion in the 21st century and beyond will be determined by its ultimate cost, complexity, and development path relative to other competing, long term, primary energy sources. We examine this potential marketplace in terms of projections for population growth, energy demands, competing fuel sources and environmental constraints (CO 2), and show that the two competitors for inertial fusion energy (IFE) in the medium and long term are methane gas hydrates and advanced, breeder fission; both have potential fuel reserves that will last for thousands of years. Relative to other classes of fusion concepts, we argue that the single largest advantage of the inertial route is the perception by future customers that the IFE fusion power core could achieve credible capacity factors, a result of its relative simplicity, the decoupling of the driver and reactor chamber, and the potential to employ thick liquid walls. In particular, we show that the size, cost and complexity of the IFE reactor chamber is little different to a fission reactor vessel of the same thermal power. Therefore, relative to fission, because of IFE's tangible advantages in safety, environment, waste disposal, fuel supply and proliferation, our research in advanced targets and innovative drivers can lead to a certain, reduced-size driver at which future utility executives will be indifferent to the choice of an advanced fission plant or an advanced IFE power plant; from this point on, we have a competitive commercial product. Finally, given that the major potential customer for energy in the next century is the present developing world, we put the case for future IFE "reservations" which could be viable propositions providing sufficient reliability and redundancy can be realized for each modular reactor unit.
Development/Modernization of an Advanced Non-Light Water Reactor Probabilistic Risk Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henneke, Dennis W.; Robinson, James
In 2015, GE Hitachi Nuclear Energy (GEH) teamed with Argonne National Laboratory (Argonne) to perform Research and Development (R&D) of next-generation Probabilistic Risk Assessment (PRA) methodologies for the modernization of an advanced non-Light Water Reactor (non-LWR) PRA. This effort built upon a PRA developed in the early 1990s for GEH’s Power Reactor Inherently Safe Module (PRISM) Sodium Fast Reactor (SFR). The work had four main tasks: internal events development modeling the risk from the reactor for hazards occurring at-power internal to the plant; an all hazards scoping review to analyze the risk at a high level from external hazards suchmore » as earthquakes and high winds; an all modes scoping review to understand the risk at a high level from operating modes other than at-power; and risk insights to integrate the results from each of the three phases above. To achieve these objectives, GEH and Argonne used and adapted proven PRA methodologies and techniques to build a modern non-LWR all hazards/all modes PRA. The teams also advanced non-LWR PRA methodologies, which is an important outcome from this work. This report summarizes the project outcomes in two major phases. The first phase presents the methodologies developed for non-LWR PRAs. The methodologies are grouped by scope, from Internal Events At-Power (IEAP) to hazards analysis to modes analysis. The second phase presents details of the PRISM PRA model which was developed as a validation of the non-LWR methodologies. The PRISM PRA was performed in detail for IEAP, and at a broader level for hazards and modes. In addition to contributing methodologies, this project developed risk insights applicable to non-LWR PRA, including focus-areas for future R&D, and conclusions about the PRISM design.« less
Advanced Plasma Pyrolysis Assembly (PPA) Reactor and Process Development
NASA Technical Reports Server (NTRS)
Wheeler, Richard R., Jr.; Hadley, Neal M.; Dahl, Roger W.; Abney, Morgan B.; Greenwood, Zachary; Miller, Lee; Medlen, Amber
2012-01-01
Design and development of a second generation Plasma Pyrolysis Assembly (PPA) reactor is currently underway as part of NASA's Atmosphere Revitalization Resource Recovery effort. By recovering up to 75% of the hydrogen currently lost as methane in the Sabatier reactor effluent, the PPA helps to minimize life support resupply costs for extended duration missions. To date, second generation PPA development has demonstrated significant technology advancements over the first generation device by doubling the methane processing rate while, at the same time, more than halving the required power. One development area of particular interest to NASA system engineers is fouling of the PPA reactor with carbonaceous products. As a mitigation plan, NASA MSFC has explored the feasibility of using an oxidative plasma based upon metabolic CO2 to regenerate the reactor window and gas inlet ports. The results and implications of this testing are addressed along with the advanced PPA reactor development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleischman, R.M.; Goldsmith, S.; Newman, D.F.
1981-09-01
The objective of the Advanced Reactor Design Study (ARDS) is to identify and evaluate nonbackfittable concepts for improving uranium utilization in light water reactors (LWRs). The results of this study provide a basis for selecting and demonstrating specific nonbackfittable concepts that have good potential for implementation. Lead responsibility for managing the study was assigned to the Pacific Northwest Laboratory (PNL). Nonbackfittable concepts for improving uranium utilization in LWRs on the once-through fuel cycle were selected separately for PWRs and BWRs due to basic differences in the way specific concepts apply to those plants. Nonbackfittable concepts are those that are toomore » costly to incorporate in existing plants, and thus, could only be economically incorporated in new reactor designs or plants in very early stages of construction. Essential results of the Advanced Reactor Design Study are summarized.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blue, Thomas; Windl, Wolfgang
The primary objective of this project was to determine the optical attenuation and signal degradation of sapphire optical fibers & sensors (temperature & strain), in-situ, operating at temperatures up to 1500°C during reactor irradiation through experiments and modeling. The results will determine the feasibility of extending sapphire optical fiber-based instrumentation to extremely high temperature radiation environments. This research will pave the way for future testing of sapphire optical fibers and fiber-based sensors under conditions expected in advanced high temperature reactors.
INL Experimental Program Roadmap for Thermal Hydraulic Code Validation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glenn McCreery; Hugh McIlroy
2007-09-01
Advanced computer modeling and simulation tools and protocols will be heavily relied on for a wide variety of system studies, engineering design activities, and other aspects of the Next Generation Nuclear Power (NGNP) Very High Temperature Reactor (VHTR), the DOE Global Nuclear Energy Partnership (GNEP), and light-water reactors. The goal is for all modeling and simulation tools to be demonstrated accurate and reliable through a formal Verification and Validation (V&V) process, especially where such tools are to be used to establish safety margins and support regulatory compliance, or to design a system in a manner that reduces the role ofmore » expensive mockups and prototypes. Recent literature identifies specific experimental principles that must be followed in order to insure that experimental data meet the standards required for a “benchmark” database. Even for well conducted experiments, missing experimental details, such as geometrical definition, data reduction procedures, and manufacturing tolerances have led to poor Benchmark calculations. The INL has a long and deep history of research in thermal hydraulics, especially in the 1960s through 1980s when many programs such as LOFT and Semiscle were devoted to light-water reactor safety research, the EBRII fast reactor was in operation, and a strong geothermal energy program was established. The past can serve as a partial guide for reinvigorating thermal hydraulic research at the laboratory. However, new research programs need to fully incorporate modern experimental methods such as measurement techniques using the latest instrumentation, computerized data reduction, and scaling methodology. The path forward for establishing experimental research for code model validation will require benchmark experiments conducted in suitable facilities located at the INL. This document describes thermal hydraulic facility requirements and candidate buildings and presents examples of suitable validation experiments related to VHTRs, sodium-cooled fast reactors, and light-water reactors. These experiments range from relatively low-cost benchtop experiments for investigating individual phenomena to large electrically-heated integral facilities for investigating reactor accidents and transients.« less
a Dosimetry Assessment for the Core Restraint of AN Advanced Gas Cooled Reactor
NASA Astrophysics Data System (ADS)
Thornton, D. A.; Allen, D. A.; Tyrrell, R. J.; Meese, T. C.; Huggon, A. P.; Whiley, G. S.; Mossop, J. R.
2009-08-01
This paper describes calculations of neutron damage rates within the core restraint structures of Advanced Gas Cooled Reactors (AGRs). Using advanced features of the Monte Carlo radiation transport code MCBEND, and neutron source data from core follow calculations performed with the reactor physics code PANTHER, a detailed model of the reactor cores of two of British Energy's AGR power plants has been developed for this purpose. Because there are no relevant neutron fluence measurements directly supporting this assessment, results of benchmark comparisons and successful validation of MCBEND for Magnox reactors have been used to estimate systematic and random uncertainties on the predictions. In particular, it has been necessary to address the known under-prediction of lower energy fast neutron responses associated with the penetration of large thicknesses of graphite.
Pre-Licensing Evaluation of Legacy SFR Metallic Fuel Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yacout, A. M.; Billone, M. C.
2016-09-16
The US sodium cooled fast reactor (SFR) metallic fuel performance data that are of interest to advanced fast reactors applications, can be attributed mostly to the Integral Fast Reactor (IFR) program between 1984 and 1994. Metallic fuel data collected prior to the IFR program were associated with types of fuel that are not of interest to future advanced reactors deployment (e.g., previous U-Fissium alloy fuel). The IFR fuels data were collected from irradiation of U-Zr based fuel alloy, with and without Pu additions, and clad in different types of steels, including HT9, D9, and 316 stainless-steel. Different types of datamore » were generated during the program, and were based on the requirements associated with the DOE Advanced Liquid Metal Cooled Reactor (ALMR) program.« less
The Ongoing Impact of the U.S. Fast Reactor Integral Experiments Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
John D. Bess; Michael A. Pope; Harold F. McFarlane
2012-11-01
The creation of a large database of integral fast reactor physics experiments advanced nuclear science and technology in ways that were unachievable by less capital intensive and operationally challenging approaches. They enabled the compilation of integral physics benchmark data, validated (or not) analytical methods, and provided assurance of future rector designs The integral experiments performed at Argonne National Laboratory (ANL) represent decades of research performed to support fast reactor design and our understanding of neutronics behavior and reactor physics measurements. Experiments began in 1955 with the Zero Power Reactor No. 3 (ZPR-3) and terminated with the Zero Power Physics Reactormore » (ZPPR, originally the Zero Power Plutonium Reactor) in 1990 at the former ANL-West site in Idaho, which is now part of the Idaho National Laboratory (INL). Two additional critical assemblies, ZPR-6 and ZPR-9, operated at the ANL-East site in Illinois. A total of 128 fast reactor assemblies were constructed with these facilities [1]. The infrastructure and measurement capabilities are too expensive to be replicated in the modern era, making the integral database invaluable as the world pushes ahead with development of liquid metal cooled reactors.« less
Advanced fuels campaign 2013 accomplishments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braase, Lori; Hamelin, Doug
The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors; enhance proliferation resistance of nuclear fuel; effectively utilize nuclear energy resources; and address the longer-term waste management challenges. This includes development of a state-of-the art Research and Development (R&D) infrastructure to support the use of “goal-oriented science-based approach.” In support of the Fuel Cycle Research and Development (FCRD) program, AFC is responsible for developing advanced fuels technologies to support the various fuel cycle optionsmore » defined in the Department of Energy (DOE) Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. Accomplishments made during fiscal year (FY) 2013 are highlighted in this report, which focuses on completed work and results. The process details leading up to the results are not included; however, the technical contact is provided for each section.« less
Overview of the US Fusion Materials Sciences Program
NASA Astrophysics Data System (ADS)
Zinkle, Steven
2004-11-01
The challenging fusion reactor environment (radiation, heat flux, chemical compatibility, thermo-mechanical stresses) requires utilization of advanced materials to fulfill the promise of fusion to provide safe, economical, and environmentally acceptable energy. This presentation reviews recent experimental and modeling highlights on structural materials for fusion energy. The materials requirements for fusion will be compared with other demanding technologies, including high temperature turbine components, proposed Generation IV fission reactors, and the current NASA space fission reactor project to explore the icy moons of Jupiter. A series of high-performance structural materials have been developed by fusion scientists over the past ten years with significantly improved properties compared to earlier materials. Recent advances in the development of high-performance ferritic/martensitic and bainitic steels, nanocomposited oxide dispersion strengthened ferritic steels, high-strength V alloys, improved-ductility Mo alloys, and radiation-resistant SiC composites will be reviewed. Multiscale modeling is providing important insight on radiation damage and plastic deformation mechanisms and fracture mechanics behavior. Electron microscope in-situ straining experiments are uncovering fundamental physical processes controlling deformation in irradiated metals. Fundamental modeling and experimental studies are determining the behavior of transmutant helium in metals, enabling design of materials with improved resistance to void swelling and helium embrittlement. Recent chemical compatibility tests have identified promising new candidates for magnetohydrodynamic insulators in lithium-cooled systems, and have established the basic compatibility of SiC with Pb-Li up to high temperature. Research on advanced joining techniques such as friction stir welding will be described. ITER materials research will be briefly summarized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabharwall, Piyush; O'Brien, James E.; McKellar, Michael G.
2015-03-01
Hybrid energy system research has the potential to expand the application for nuclear reactor technology beyond electricity. The purpose of this research is to reduce both technical and economic risks associated with energy systems of the future. Nuclear hybrid energy systems (NHES) mitigate the variability of renewable energy sources, provide opportunities to produce revenue from different product streams, and avoid capital inefficiencies by matching electrical output to demand by using excess generation capacity for other purposes when it is available. An essential step in the commercialization and deployment of this advanced technology is scaled testing to demonstrate integrated dynamic performancemore » of advanced systems and components when risks cannot be mitigated adequately by analysis or simulation. Further testing in a prototypical environment is needed for validation and higher confidence. This research supports the development of advanced nuclear reactor technology and NHES, and their adaptation to commercial industrial applications that will potentially advance U.S. energy security, economy, and reliability and further reduce carbon emissions. Experimental infrastructure development for testing and feasibility studies of coupled systems can similarly support other projects having similar developmental needs and can generate data required for validation of models in thermal energy storage and transport, energy, and conversion process development. Experiments performed in the Systems Integration Laboratory will acquire performance data, identify scalability issues, and quantify technology gaps and needs for various hybrid or other energy systems. This report discusses detailed scaling (component and integrated system) and heat transfer figures of merit that will establish the experimental infrastructure for component, subsystem, and integrated system testing to advance the technology readiness of components and systems to the level required for commercial application and demonstration under NHES.« less
Hydroponic potato production on nutrients derived from anaerobically-processed potato plant residues
NASA Astrophysics Data System (ADS)
Mackowiak, C. L.; Stutte, G. W.; Garland, J. L.; Finger, B. W.; Ruffe, L. M.
1997-01-01
Bioregenerative methods are being developed for recycling plant minerals from harvested inedible biomass as part of NASA's Advanced Life Support (ALS) research. Anaerobic processing produces secondary metabolites, a food source for yeast production, while providing a source of water soluble nutrients for plant growth. Since NH_4-N is the nitrogen product, processing the effluent through a nitrification reactor was used to convert this to NO_3-N, a more acceptable form for plants. Potato (Solanum tuberosum L.) cv. Norland plants were used to test the effects of anaerobically-produced effluent after processing through a yeast reactor or nitrification reactor. These treatments were compared to a mixed-N treatment (75:25, NO_3:NH_4) or a NO_3-N control, both containing only reagent-grade salts. Plant growth and tuber yields were greatest in the NO_3-N control and yeast reactor effluent treatments, which is noteworthy, considering the yeast reactor treatment had high organic loading in the nutrient solution and concomitant microbial activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hale, Richard Edward; Cetiner, Sacit M.; Fugate, David L.
The Small Modular Reactor (SMR) Dynamic System Modeling Tool project is in the third year of development. The project is designed to support collaborative modeling and study of various advanced SMR (non-light water cooled) concepts, including the use of multiple coupled reactors at a single site. The objective of the project is to provide a common simulation environment and baseline modeling resources to facilitate rapid development of dynamic advanced reactor SMR models, ensure consistency among research products within the Instrumentation, Controls, and Human-Machine Interface (ICHMI) technical area, and leverage cross-cutting capabilities while minimizing duplication of effort. The combined simulation environmentmore » and suite of models are identified as the Modular Dynamic SIMulation (MoDSIM) tool. The critical elements of this effort include (1) defining a standardized, common simulation environment that can be applied throughout the program, (2) developing a library of baseline component modules that can be assembled into full plant models using existing geometry and thermal-hydraulic data, (3) defining modeling conventions for interconnecting component models, and (4) establishing user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Lizhen; Yang, Ying; Chen, Tianyi
Advanced nuclear reactors as well as the life extension of light water reactors require advanced alloys capable of satisfactory operation up to neutron damage levels approaching 200 displacements per atom (dpa). Extensive studies, including fundamental theories, have demonstrated the superior resistance to radiation-induced swelling in ferritic steels, primarily inherited from their body-centered cubic (bcc) structure. This study aims at developing nanoprecipitates strengthened advanced ferritic alloys for advanced nuclear reactor applications. To be more specific, this study aims at enhancing the amorphization ability of some precipitates, such as Laves phase and other types of intermetallic phases, through smart alloying strategy, andmore » thereby promote the crystalline®amorphous transformation of these precipitates under irradiation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Rui
The System Analysis Module (SAM) is an advanced and modern system analysis tool being developed at Argonne National Laboratory under the U.S. DOE Office of Nuclear Energy’s Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. SAM development aims for advances in physical modeling, numerical methods, and software engineering to enhance its user experience and usability for reactor transient analyses. To facilitate the code development, SAM utilizes an object-oriented application framework (MOOSE), and its underlying meshing and finite-element library (libMesh) and linear and non-linear solvers (PETSc), to leverage modern advanced software environments and numerical methods. SAM focuses on modeling advanced reactormore » concepts such as SFRs (sodium fast reactors), LFRs (lead-cooled fast reactors), and FHRs (fluoride-salt-cooled high temperature reactors) or MSRs (molten salt reactors). These advanced concepts are distinguished from light-water reactors in their use of single-phase, low-pressure, high-temperature, and low Prandtl number (sodium and lead) coolants. As a new code development, the initial effort has been focused on modeling and simulation capabilities of heat transfer and single-phase fluid dynamics responses in Sodium-cooled Fast Reactor (SFR) systems. The system-level simulation capabilities of fluid flow and heat transfer in general engineering systems and typical SFRs have been verified and validated. This document provides the theoretical and technical basis of the code to help users understand the underlying physical models (such as governing equations, closure models, and component models), system modeling approaches, numerical discretization and solution methods, and the overall capabilities in SAM. As the code is still under ongoing development, this SAM Theory Manual will be updated periodically to keep it consistent with the state of the development.« less
NASA Astrophysics Data System (ADS)
Tong, H.; Snow, G. C.; Chu, E. K.; Chang, R. L. S.; Angwin, M. J.; Pessagno, S. L.
1981-09-01
Durable catalytic reactors for advanced gas turbine engines were developed. Objectives were: to evaluate furnace aging as a cost effective catalytic reactor screening test, measure reactor degradation as a function of furnace aging, demonstrate 1,000 hours of combustion durability, and define a catalytic reactor system with a high probability of successful integration into an automotive gas turbine engine. Fourteen different catalytic reactor concepts were evaluated, leading to the selection of one for a durability combustion test with diesel fuel for combustion conditions. Eight additional catalytic reactors were evaluated and one of these was successfully combustion tested on propane fuel. This durability reactor used graded cell honeycombs and a combination of noble metal and metal oxide catalysts. The reactor was catalytically active and structurally sound at the end of the durability test.
NASA Technical Reports Server (NTRS)
Tong, H.; Snow, G. C.; Chu, E. K.; Chang, R. L. S.; Angwin, M. J.; Pessagno, S. L.
1981-01-01
Durable catalytic reactors for advanced gas turbine engines were developed. Objectives were: to evaluate furnace aging as a cost effective catalytic reactor screening test, measure reactor degradation as a function of furnace aging, demonstrate 1,000 hours of combustion durability, and define a catalytic reactor system with a high probability of successful integration into an automotive gas turbine engine. Fourteen different catalytic reactor concepts were evaluated, leading to the selection of one for a durability combustion test with diesel fuel for combustion conditions. Eight additional catalytic reactors were evaluated and one of these was successfully combustion tested on propane fuel. This durability reactor used graded cell honeycombs and a combination of noble metal and metal oxide catalysts. The reactor was catalytically active and structurally sound at the end of the durability test.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anheier, Norman C.; Suter, Jonathan D.; Qiao, Hong
2013-08-06
This report intends to support Department of Energy’s Office of Nuclear Energy (DOE-NE) Nuclear Energy Research and Development Roadmap and industry stakeholders by evaluating optical-based instrumentation and control (I&C) concepts for advanced small modular reactor (AdvSMR) applications. These advanced designs will require innovative thinking in terms of engineering approaches, materials integration, and I&C concepts to realize their eventual viability and deployability. The primary goals of this report include: 1. Establish preliminary I&C needs, performance requirements, and possible gaps for AdvSMR designs based on best available published design data. 2. Document commercial off-the-shelf (COTS) optical sensors, components, and materials in termsmore » of their technical readiness to support essential AdvSMR in-vessel I&C systems. 3. Identify technology gaps by comparing the in-vessel monitoring requirements and environmental constraints to COTS optical sensor and materials performance specifications. 4. Outline a future research, development, and demonstration (RD&D) program plan that addresses these gaps and develops optical-based I&C systems that enhance the viability of future AdvSMR designs. The development of clean, affordable, safe, and proliferation-resistant nuclear power is a key goal that is documented in the Nuclear Energy Research and Development Roadmap. This roadmap outlines RD&D activities intended to overcome technical, economic, and other barriers, which currently limit advances in nuclear energy. These activities will ensure that nuclear energy remains a viable component to this nation’s energy security.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorelenkov, Nikolai N
The area of energetic particle (EP) physics of fusion research has been actively and extensively researched in recent decades. The progress achieved in advancing and understanding EP physics has been substantial since the last comprehensive review on this topic by W.W. Heidbrink and G.J. Sadler [1]. That review coincided with the start of deuterium-tritium (DT) experiments on Tokamak Fusion Test reactor (TFTR) and full scale fusion alphas physics studies. Fusion research in recent years has been influenced by EP physics in many ways including the limitations imposed by the "sea" of Alfven eigenmodes (AE) in particular by the toroidicityinduced AEsmore » (TAE) modes and reversed shear Alfven (RSAE). In present paper we attempt a broad review of EP physics progress in tokamaks and spherical tori since the first DT experiments on TFTR and JET (Joint European Torus) including helical/stellarator devices. Introductory discussions on basic ingredients of EP physics, i.e. particle orbits in STs, fundamental diagnostic techniques of EPs and instabilities, wave particle resonances and others are given to help understanding the advanced topics of EP physics. At the end we cover important and interesting physics issues toward the burning plasma experiments such as ITER (International Thermonuclear Experimental Reactor).« less
NASA Technical Reports Server (NTRS)
Arevidson, A. N.; Sawyer, D. H.; Muller, D. M.
1983-01-01
Dichlorosilane (DCS) was used as the feedstock for an advanced decomposition reactor for silicon production. The advanced reactor had a cool bell jar wall temperature, 300 C, when compared to Siemen's reactors previously used for DCS decomposition. Previous reactors had bell jar wall temperatures of approximately 750 C. The cooler wall temperature allows higher DCS flow rates and concentrations. A silicon deposition rate of 2.28 gm/hr-cm was achieved with power consumption of 59 kWh/kg. Interpretation of data suggests that a 2.8 gm/hr-cm deposition rate is possible. Screening of lower cost materials of construction was done as a separate program segment. Stainless Steel (304 and 316), Hastalloy B, Monel 400 and 1010-Carbon Steel were placed individually in an experimental scale reactor. Silicon was deposited from trichlorosilane feedstock. The resultant silicon was analyzed for electrically active and metallic impurities as well as carbon. No material contributed significant amounts of electrically active or metallic impurities, but all contributed carbon.
Code qualification of structural materials for AFCI advanced recycling reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Natesan, K.; Li, M.; Majumdar, S.
2012-05-31
This report summarizes the further findings from the assessments of current status and future needs in code qualification and licensing of reference structural materials and new advanced alloys for advanced recycling reactors (ARRs) in support of Advanced Fuel Cycle Initiative (AFCI). The work is a combined effort between Argonne National Laboratory (ANL) and Oak Ridge National Laboratory (ORNL) with ANL as the technical lead, as part of Advanced Structural Materials Program for AFCI Reactor Campaign. The report is the second deliverable in FY08 (M505011401) under the work package 'Advanced Materials Code Qualification'. The overall objective of the Advanced Materials Codemore » Qualification project is to evaluate key requirements for the ASME Code qualification and the Nuclear Regulatory Commission (NRC) approval of structural materials in support of the design and licensing of the ARR. Advanced materials are a critical element in the development of sodium reactor technologies. Enhanced materials performance not only improves safety margins and provides design flexibility, but also is essential for the economics of future advanced sodium reactors. Code qualification and licensing of advanced materials are prominent needs for developing and implementing advanced sodium reactor technologies. Nuclear structural component design in the U.S. must comply with the ASME Boiler and Pressure Vessel Code Section III (Rules for Construction of Nuclear Facility Components) and the NRC grants the operational license. As the ARR will operate at higher temperatures than the current light water reactors (LWRs), the design of elevated-temperature components must comply with ASME Subsection NH (Class 1 Components in Elevated Temperature Service). However, the NRC has not approved the use of Subsection NH for reactor components, and this puts additional burdens on materials qualification of the ARR. In the past licensing review for the Clinch River Breeder Reactor Project (CRBRP) and the Power Reactor Innovative Small Module (PRISM), the NRC/Advisory Committee on Reactor Safeguards (ACRS) raised numerous safety-related issues regarding elevated-temperature structural integrity criteria. Most of these issues remained unresolved today. These critical licensing reviews provide a basis for the evaluation of underlying technical issues for future advanced sodium-cooled reactors. Major materials performance issues and high temperature design methodology issues pertinent to the ARR are addressed in the report. The report is organized as follows: the ARR reference design concepts proposed by the Argonne National Laboratory and four industrial consortia were reviewed first, followed by a summary of the major code qualification and licensing issues for the ARR structural materials. The available database is presented for the ASME Code-qualified structural alloys (e.g. 304, 316 stainless steels, 2.25Cr-1Mo, and mod.9Cr-1Mo), including physical properties, tensile properties, impact properties and fracture toughness, creep, fatigue, creep-fatigue interaction, microstructural stability during long-term thermal aging, material degradation in sodium environments and effects of neutron irradiation for both base metals and weld metals. An assessment of modified versions of Type 316 SS, i.e. Type 316LN and its Japanese version, 316FR, was conducted to provide a perspective for codification of 316LN or 316FR in Subsection NH. Current status and data availability of four new advanced alloys, i.e. NF616, NF616+TMT, NF709, and HT-UPS, are also addressed to identify the R&D needs for their code qualification for ARR applications. For both conventional and new alloys, issues related to high temperature design methodology are described to address the needs for improvements for the ARR design and licensing. Assessments have shown that there are significant data gaps for the full qualification and licensing of the ARR structural materials. Development and evaluation of structural materials require a variety of experimental facilities that have been seriously degraded in the past. The availability and additional needs for the key experimental facilities are summarized at the end of the report. Detailed information covered in each Chapter is given.« less
AGR-1 Compact 1-3-1 Post-Irradiation Examination Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demkowicz, Paul Andrew
The Advanced Gas Reactor (AGR) Fuel Development and Qualification Program was established to perform the requisite research and development on tristructural isotropic (TRISO) coated particle fuel to support deployment of a high-temperature gas-cooled reactor (HTGR). The work continues as part of the Advanced Reactor Technologies (ART) TRISO Fuel program. The overarching program goal is to provide a baseline fuel qualification data set to support licensing and operation of an HTGR. To achieve these goals, the program includes the elements of fuel fabrication, irradiation, post-irradiation examination (PIE) and safety testing, fuel performance modeling, and fission product transport (INL 2015). A seriesmore » of fuel irradiation experiments is being planned and conducted in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). These experiments will provide data on fuel performance under irradiation, support fuel process development, qualify the fuel for normal operating conditions, provide irradiated fuel for safety testing, and support the development of fuel performance and fission product transport models. The first of these irradiation tests, designated AGR-1, began in the ATR in December 2006 and ended in November 2009. This experiment was conducted primarily to act as a shakedown test of the multicapsule test train design and provide early data on fuel performance for use in fuel fabrication process development. It also provided samples for post-irradiation safety testing, where fission product retention of the fuel at high temperatures will be experimentally measured. The capsule design and details of the AGR-1 experiment have been presented previously (Grover, Petti, and Maki 2010, Maki 2009).« less
AGR-1 Compact 5-3-1 Post-Irradiation Examination Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demkowicz, Paul; Harp, Jason; Winston, Phil
The Advanced Gas Reactor (AGR) Fuel Development and Qualification Program was established to perform the requisite research and development on tristructural isotropic (TRISO) coated particle fuel to support deployment of a high-temperature gas-cooled reactor (HTGR). The work continues as part of the Advanced Reactor Technologies (ART) TRISO Fuel program. The overarching program goal is to provide a baseline fuel qualification data set to support licensing and operation of an HTGR. To achieve these goals, the program includes the elements of fuel fabrication, irradiation, post-irradiation examination (PIE) and safety testing, fuel performance, and fission product transport (INL 2015). A series ofmore » fuel irradiation experiments is being planned and conducted in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). These experiments will provide data on fuel performance under irradiation, support fuel process development, qualify the fuel for normal operating conditions, provide irradiated fuel for safety testing, and support the development of fuel performance and fission product transport models. The first of these irradiation tests, designated AGR-1, began in the ATR in December 2006 and ended in November 2009. This experiment was conducted primarily to act as a shakedown test of the multicapsule test train design and provide early data on fuel performance for use in fuel fabrication process development. It also provided samples for post-irradiation safety testing, where fission product retention of the fuel at high temperatures will be experimentally measured. The capsule design and details of the AGR-1 experiment have been presented previously.« less
Brookhaven highlights. Report on research, October 1, 1992--September 30, 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rowe, M.S.; Belford, M.; Cohen, A.
This report highlights the research activities of Brookhaven National Laboratory during the period dating from October 1, 1992 through September 30, 1993. There are contributions to the report from different programs and departments within the laboratory. These include technology transfer, RHIC, Alternating Gradient Synchrotron, physics, biology, national synchrotron light source, applied science, medical science, advanced technology, chemistry, reactor physics, safety and environmental protection, instrumentation, and computing and communications.
Plant maintenance and advanced reactors, 2005
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnihotri, Newal
2005-09-15
The focus of the September-October issue is on plant maintenance and advanced reactors. Major articles/reports in this issue include: First U.S. EPRs in 2015, by Ray Ganthner, Framatome ANP; Pursuing several opportunities, by William E. (Ed) Cummins, Westinghouse Electric Company; Vigorous plans to develop advanced reactors, by Yuliang Sun, Tsinghua University, China; Multiple designs, small and large, by Kumiaki Moriya, Hitachi Ltd., Japan; Sealed and embedded for safety and security, by Handa Norihiko, Toshiba Corporation, Japan; Scheduled online in 2010, by Johan Slabber, PMBR (Pty) Ltd., South Africa; Multi-application reactors, by Nikolay G. Kodochigov, OKBM, Russia; Six projects under budgetmore » and on schedule, by David F. Togerson, AECL, Canada; Creating a positive image, by Scott Peterson, Nuclear Energy Institute (NEI); Advanced plans for nuclear power's renaissance, by John Cleveland, International Atomic Energy Agency, Austria; and, Plant profile: last five outages in less than 20 days, by Beth Rapczynski, Exelon Nuclear.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
K. L. Davis; D. L. Knudson; J. L. Rempe
New materials are being considered for fuel, cladding, and structures in next generation and existing nuclear reactors. Such materials can undergo significant dimensional and physical changes during high temperature irradiations. In order to accurately predict these changes, real-time data must be obtained under prototypic irradiation conditions for model development and validation. To provide such data, researchers at the Idaho National Laboratory (INL) High Temperature Test Laboratory (HTTL) are developing several instrumented test rigs to obtain data real-time from specimens irradiated in well-controlled pressurized water reactor (PWR) coolant conditions in the Advanced Test Reactor (ATR). This paper reports the status ofmore » INL efforts to develop and evaluate prototype test rigs that rely on Linear Variable Differential Transformers (LVDTs) in laboratory settings. Although similar LVDT-based test rigs have been deployed in lower flux Materials Testing Reactors (MTRs), this effort is unique because it relies on robust LVDTs that can withstand higher temperatures and higher fluxes than often found in other MTR irradiations. Specifically, the test rigs are designed for detecting changes in length and diameter of specimens irradiated in ATR PWR loops. Once implemented, these test rigs will provide ATR users with unique capabilities that are sorely needed to obtain measurements such as elongation caused by thermal expansion and/or creep loading and diameter changes associated with fuel and cladding swelling, pellet-clad interaction, and crud buildup.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramuhalli, Pradeep; Hirt, Evelyn H.; Pitman, Stan G.
The harsh environments in advanced reactors (AdvRx) increase the possibility of degradation of safety-critical passive components, and therefore pose a particular challenge for deployment and extended operation of these concepts. Nondestructive evaluation technologies are an essential element for obtaining information on passive component condition in AdvRx, with the development of sensor technologies for nondestructively inspecting AdvRx passive components identified as a key need. Given the challenges posed by AdvRx environments and the potential needs for reducing the burden posed by periodic in-service inspection of hard-to-access and hard-to-replace components, a viable solution may be provided by online condition monitoring of components.more » This report identifies the key challenges that will need to be overcome for sensor development in this context, and documents an experimental plan for sensor development, test, and evaluation. The focus of initial research and development is on sodium fast reactors, with the eventual goal of the research being developing the necessary sensor technology, quantifying sensor survivability and long-term measurement reliability for nondestructively inspecting critical components. Materials for sensor development that are likely to withstand the harsh environments are described, along with a status on the fabrication of reference specimens, and the planned approach for design and evaluation of the sensor and measurement technology.« less
NASA Astrophysics Data System (ADS)
Among the topics discussed are the nuclear fuel cycle, advanced nuclear reactor designs, developments in central status power reactors, space nuclear reactors, magnetohydrodynamic devices, thermionic devices, thermoelectric devices, geothermal systems, solar thermal energy conversion systems, ocean thermal energy conversion (OTEC) developments, and advanced energy conversion concepts. Among the specific questions covered under these topic headings are a design concept for an advanced light water breeder reactor, energy conversion in MW-sized space power systems, directionally solidified cermet electrodes for thermionic energy converters, boron-based high temperature thermoelectric materials, geothermal energy commercialization, solar Stirling cycle power conversion, and OTEC production of methanol. For individual items see A84-30027 to A84-30055
Generating unstructured nuclear reactor core meshes in parallel
Jain, Rajeev; Tautges, Timothy J.
2014-10-24
Recent advances in supercomputers and parallel solver techniques have enabled users to run large simulations problems using millions of processors. Techniques for multiphysics nuclear reactor core simulations are under active development in several countries. Most of these techniques require large unstructured meshes that can be hard to generate in a standalone desktop computers because of high memory requirements, limited processing power, and other complexities. We have previously reported on a hierarchical lattice-based approach for generating reactor core meshes. Here, we describe efforts to exploit coarse-grained parallelism during reactor assembly and reactor core mesh generation processes. We highlight several reactor coremore » examples including a very high temperature reactor, a full-core model of the Korean MONJU reactor, a ¼ pressurized water reactor core, the fast reactor Experimental Breeder Reactor-II core with a XX09 assembly, and an advanced breeder test reactor core. The times required to generate large mesh models, along with speedups obtained from running these problems in parallel, are reported. A graphical user interface to the tools described here has also been developed.« less
Mitigating IASCC of Reactor Core Internals by Post-Irradiation Annealing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Was, Gary
This final report summarizes research performed during the period between September 2012 and December 2016, with the objective of establishing the effectiveness of post-irradiation annealing (PIA) as an advanced mitigation strategy for irradiation-assisted stress corrosion cracking (IASCC). This was completed by using irradiated 304SS control blade material to conduct crack initiation and crack growth rate (CGR) experiments in simulated BWR environment. The mechanism by which PIA affects IASCC susceptibility will also be verified. The success of this project will provide a foundation for the use of PIA as a mitigation strategy for core internal components in commercial reactors.
Review of the Tri-Agency Space Nuclear Reactor Power System Technology Program
NASA Technical Reports Server (NTRS)
Ambrus, J. H.; Wright, W. E.; Bunch, D. F.
1984-01-01
The Space Nuclear Reactor Power System Technology Program designated SP-100 was created in 1983 by NASA, the U.S. Department of Defense, and the Defense Advanced Research Projects Agency. Attention is presently given to the development history of SP-100 over the course of its first year, in which it has been engaged in program objectives' definition, the analysis of civil and military missions, nuclear power system functional requirements' definition, concept definition studies, the selection of primary concepts for technology feasibility validation, and the acquisition of initial experimental and analytical results.
Eddy Current Flow Measurements in the FFTF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nielsen, Deborah L.; Polzin, David L.; Omberg, Ronald P.
2017-02-02
The Fast Flux Test Facility (FFTF) is the most recent liquid metal reactor (LMR) to be designed, constructed, and operated by the U.S. Department of Energy (DOE). The 400-MWt sodium-cooled, fast-neutron flux reactor plant was designed for irradiation testing of nuclear reactor fuels and materials for liquid metal fast breeder reactors. Following shut down of the Clinch River Breeder Reactor Plant (CRBRP) project in 1983, FFTF continued to play a key role in providing a test bed for demonstrating performance of advanced fuel designs and demonstrating operation, maintenance, and safety of advanced liquid metal reactors. The FFTF Program provides valuablemore » information for potential follow-on reactor projects in the areas of plant system and component design, component fabrication, fuel design and performance, prototype testing, site construction, and reactor control and operations. This report provides HEDL-TC-1344, “ECFM Flow Measurements in the FFTF Using Phase-Sensitive Detectors”, March 1979.« less
Multiphase Nanocrystalline Ceramic Concept for Nuclear Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mecartnery, Martha; Graeve, Olivia; Patel, Maulik
2017-05-25
The goal of this research is to help develop new fuels for higher efficiency, longer lifetimes (higher burn-up) and increased accident tolerance in future nuclear reactors. Multiphase nanocrystalline ceramics will be used in the design of simulated advanced inert matrix nuclear fuel to provide for enhanced plasticity, better radiation tolerance, and improved thermal conductivity
Structural materials challenges for advanced reactor systems
NASA Astrophysics Data System (ADS)
Yvon, P.; Carré, F.
2009-03-01
Key technologies for advanced nuclear systems encompass high temperature structural materials, fast neutron resistant core materials, and specific reactor and power conversion technologies (intermediate heat exchanger, turbo-machinery, high temperature electrolytic or thermo-chemical water splitting processes, etc.). The main requirements for the materials to be used in these reactor systems are dimensional stability under irradiation, whether under stress (irradiation creep or relaxation) or without stress (swelling, growth), an acceptable evolution under ageing of the mechanical properties (tensile strength, ductility, creep resistance, fracture toughness, resilience) and a good behavior in corrosive environments (reactor coolant or process fluid). Other criteria for the materials are their cost to fabricate and to assemble, and their composition could be optimized in order for instance to present low-activation (or rapid desactivation) features which facilitate maintenance and disposal. These requirements have to be met under normal operating conditions, as well as in incidental and accidental conditions. These challenging requirements imply that in most cases, the use of conventional nuclear materials is excluded, even after optimization and a new range of materials has to be developed and qualified for nuclear use. This paper gives a brief overview of various materials that are essential to establish advanced systems feasibility and performance for in pile and out of pile applications, such as ferritic/martensitic steels (9-12% Cr), nickel based alloys (Haynes 230, Inconel 617, etc.), oxide dispersion strengthened ferritic/martensitic steels, and ceramics (SiC, TiC, etc.). This article gives also an insight into the various natures of R&D needed on advanced materials, including fundamental research to investigate basic physical and chemical phenomena occurring in normal and accidental operating conditions, lab-scale tests to characterize candidate materials mechanical properties and corrosion resistance, as well as component mock-up tests on technology loops to validate potential applications while accounting for mechanical design rules and manufacturing processes. The selection, assessment and validation of materials necessitate a large number of experiments, involving rare and expensive facilities such as research reactors, hot laboratories or corrosion loops. The modelling and the codification of the behaviour of materials will always involve the use of such technological experiments, but it is of utmost importance to develop also a predictive material science. Finally, the paper stresses the benefit of prospects of multilateral collaboration to join skills and share efforts of R&D to achieve in the nuclear field breakthroughs on materials that have already been achieved over the past decades in other industry sectors (aeronautics, metallurgy, chemistry, etc.).
Regulatory Risk Reduction for Advanced Reactor Technologies – FY2016 Status and Work Plan Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moe, Wayne Leland
2016-08-01
Millions of public and private sector dollars have been invested over recent decades to realize greater efficiency, reliability, and the inherent and passive safety offered by advanced nuclear reactor technologies. However, a major challenge in experiencing those benefits resides in the existing U.S. regulatory framework. This framework governs all commercial nuclear plant construction, operations, and safety issues and is highly large light water reactor (LWR) technology centric. The framework must be modernized to effectively deal with non-LWR advanced designs if those designs are to become part of the U.S energy supply. The U.S. Department of Energy’s (DOE) Advanced Reactor Technologiesmore » (ART) Regulatory Risk Reduction (RRR) initiative, managed by the Regulatory Affairs Department at the Idaho National Laboratory (INL), is establishing a capability that can systematically retire extraneous licensing risks associated with regulatory framework incompatibilities. This capability proposes to rely heavily on the perspectives of the affected regulated community (i.e., commercial advanced reactor designers/vendors and prospective owner/operators) yet remain tuned to assuring public safety and acceptability by regulators responsible for license issuance. The extent to which broad industry perspectives are being incorporated into the proposed framework makes this initiative unique and of potential benefit to all future domestic non-LWR applicants« less
Direct numerical simulation of reactor two-phase flows enabled by high-performance computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Jun; Cambareri, Joseph J.; Brown, Cameron S.
Nuclear reactor two-phase flows remain a great engineering challenge, where the high-resolution two-phase flow database which can inform practical model development is still sparse due to the extreme reactor operation conditions and measurement difficulties. Owing to the rapid growth of computing power, the direct numerical simulation (DNS) is enjoying a renewed interest in investigating the related flow problems. A combination between DNS and an interface tracking method can provide a unique opportunity to study two-phase flows based on first principles calculations. More importantly, state-of-the-art high-performance computing (HPC) facilities are helping unlock this great potential. This paper reviews the recent researchmore » progress of two-phase flow DNS related to reactor applications. The progress in large-scale bubbly flow DNS has been focused not only on the sheer size of those simulations in terms of resolved Reynolds number, but also on the associated advanced modeling and analysis techniques. Specifically, the current areas of active research include modeling of sub-cooled boiling, bubble coalescence, as well as the advanced post-processing toolkit for bubbly flow simulations in reactor geometries. A novel bubble tracking method has been developed to track the evolution of bubbles in two-phase bubbly flow. Also, spectral analysis of DNS database in different geometries has been performed to investigate the modulation of the energy spectrum slope due to bubble-induced turbulence. In addition, the single-and two-phase analysis results are presented for turbulent flows within the pressurized water reactor (PWR) core geometries. The related simulations are possible to carry out only with the world leading HPC platforms. These simulations are allowing more complex turbulence model development and validation for use in 3D multiphase computational fluid dynamics (M-CFD) codes.« less
Plutonium: Advancing our Understanding to Support Sustainable Nuclear Fuel Cycles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lines, Amanda M.; Adami, Susan R.; Casella, Amanda
With Global energy needs increasing, real energy solutions to meet demands now, are needed. Fossil fuels are not an ideal candidate to meet these needs because of their negative impact on the environment. Renewables such as wind and solar have huge potential, but still need major technological advancements (particularly in the area of battery storage) before they can effectively meet growing world needs. The best option for meeting large energy needs without a large carbon footprint is nuclear energy. Of course, nuclear energy can face a fair amount of opposition and concern. However, through modern engineering and science many ofmore » these concerns can now be addressed. Many safety concerns can be met by engineering advancements, but perhaps the biggest area of concern is what to do with the used nuclear fuel after it is removed from the reactor. Currently the United States (and several other countries) utilize an open fuel cycle, meaning fuel is only used once and then discarded. It should be noted that fuel coming out of a reactor has utilized approximately 1% of the total energy that could be produced by the uranium in the fuel rod. The answer here is to close the fuel cycle and recycle the nuclear materials. By reprocessing used nuclear fuel, all the U can be repurposed without requiring disposal. The various fission products can be removed and either discarded (hugely reduced waste volume) or more reasonably, utilized in specialty reactors to make more energy or needed research/medical isotopes. While reprocessing technology is currently advanced enough to meet energy needs, completing research to improve and better understand these techniques is still needed. Better understanding behavior of fission products is one area of important research. Despite it being discovered over 75 years ago, plutonium is still an exciting element to study because of the complex solution chemistry it exhibits. In aqueous solutions Pu can exist simultaneously in multiple oxidation states, including 3+, 4+, and 6+. It also readily forms a variety of metal-ligand complexes depending on solution pH and available ligands. Understanding of the behavior of Pu in solution remains an important area of research today, with relevance to developing sustainable nuclear fuel cycles, minimizing its impact on the environment, and detecting and preventing the spread of nuclear weapons technology.« less
LWRS ATR Irradiation Testing Readiness Status
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristine Barrett
2012-09-01
The Light Water Reactor Sustainability (LWRS) Program was established by the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors. The LWRS Program is divided into four R&D Pathways: (1) Materials Aging and Degradation; (2) Advanced Light Water Reactor Nuclear Fuels; (3) Advanced Instrumentation, Information and Control Systems; and (4) Risk-Informed Safety Margin Characterization. This report describes an irradiation testing readiness analysis in preparation of LWRS experiments for irradiation testing at the Idaho National Laboratory (INL) Advanced Testmore » Reactor (ATR) under Pathway (2). The focus of the Advanced LWR Nuclear Fuels Pathway is to improve the scientific knowledge basis for understanding and predicting fundamental performance of advanced nuclear fuel and cladding in nuclear power plants during both nominal and off-nominal conditions. This information will be applied in the design and development of high-performance, high burn-up fuels with improved safety, cladding integrity, and improved nuclear fuel cycle economics« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Mark; Sridharan, Kumar; Morgan, Dane
2015-01-22
The concept of a molten salt reactor has existed for nearly sixty years. Previously all work was done during a large collaborative effort at Oak Ridge National Laboratory, culminating in a research reactor which operated for 15,000 hours without major error. This technical success has garnished interest in modern, high temperature, reactor schemes. Research using molten fluoride salts for nuclear applications requires a steady supply of high grade molten salts. There is no bulk supplier of research grade fluoride salts in the world, so a facility which could provide all the salt needed for testing at the University of Wisconsinmore » had to be produced. Two salt purification devices were made for this purpose, a large scale purifier, and a small scale purifier, each designed to clean the salts from impurities and reduce their corrosion potential. As of now, the small scale has performed with flibe salt, hydrogen, and hydrogen fluoride, yielding clean salt. This salt is currently being used in corrosion testing facilities at the Massachusetts Institute of Technology and the University of Wisconsin. Working with the beryllium based salts requires extensive safety measures and health monitoring to prevent the development of acute or chronic beryllium disease, two pulmonary diseases created by an allergic reaction to beryllium in the lungs. Extensive health monitoring, engineering controls, and environment monitoring had to be set up with the University of Wisconsin department of Environment, Health and Safety. The hydrogen fluoride required for purification was also an extreme health hazard requiring thoughtful planning and execution. These dangers have made research a slow and tedious process. Simple processes, such as chemical handling and clean-up, can take large amounts of ingenuity and time. Other work has complemented the experimental research at Wisconsin to advance high temperature reactor goals. Modeling work has been performed in house to re-evaluate thermophysical properties of flibe and flinak. Pacific Northwest National Laboratories has focused on evaluating the fluorinating gas nitrogen trifluoride as a potential salt purification agent. Work there was performed on removing hydroxides and oxides from flinak salt under controlled conditions. Lastly, the University of California Berkeley has spent considerable time designing and simulating reactor components with fluoride salts at high temperatures. Despite the hurdles presented by the innate chemical hazards, considerable progress has been made. The stage has been set to perform new research on salt chemical control which could advance the fluoride salt cooled reactor concept towards commercialization. What were previously thought of as chemical undesirable, but nuclear certified, alloys have been shown to be theoretically compatible with fluoride salts at high temperatures. This preliminary report has been prepared to communicate the construction of the basic infrastructure required for flibe, as well as suggest original research to performed at the University of Wisconsin. Simultaneously, the contents of this report can serve as a detailed, but introductory guide to allow anyone to learn the fundamentals of chemistry, engineering, and safety required to work with flibe salt.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgett, Eric; Al-Sheikhly, Mohamad; Summers, Christopher
An advanced in-pile multi-parameter reactor monitoring system is being proposed in this funding opportunity. The proposed effort brings cutting edge, high-fidelity optical measurement systems into the reactor environment in an unprecedented fashion, including in-core, in-cladding and in-fuel pellet itself. Unlike instrumented leads, the proposed system provides a unique solution to a multi-parameter monitoring need in core while being minimally intrusive in the reactor core. Detector designs proposed herein can monitor fuel compression and expansion in both the radial and axial dimensions as well as monitor linear power profiles and fission rates during the operation of the reactor. In addition tomore » pressure, stress, strain, compression, neutron flux, neutron spectra, and temperature can be observed inside the fuel bundle and fuel rod using the proposed system. The proposed research aims at developing radiation-hard, harsh-environment multi-parameter systems for insertion into the reactor environment. The proposed research holds the potential to drastically increase the fidelity and precision of in-core instrumentation with little or no impact in the neutron economy in the reactor environment while providing a measurement system capable of operation for entire operating cycles. Significant work has been done over the last few years on the use of nanoparticle-based scintillators. Through the use of metamaterials, the PIs aim to develop planar neutron detectors and large-volume neutron detectors. These detectors will have high efficiencies for neutron detection and will have a high gamma discrimination capability.« less
Neutron fluxes in test reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youinou, Gilles Jean-Michel
Communicate the fact that high-power water-cooled test reactors such as the Advanced Test Reactor (ATR), the High Flux Isotope Reactor (HFIR) or the Jules Horowitz Reactor (JHR) cannot provide fast flux levels as high as sodium-cooled fast test reactors. The memo first presents some basics physics considerations about neutron fluxes in test reactors and then uses ATR, HFIR and JHR as an illustration of the performance of modern high-power water-cooled test reactors.
Nonlinear Ultrasonic Measurements in Nuclear Reactor Environments
NASA Astrophysics Data System (ADS)
Reinhardt, Brian T.
Several Department of Energy Office of Nuclear Energy (DOE-NE) programs, such as the Fuel Cycle Research and Development (FCRD), Advanced Reactor Concepts (ARC), Light Water Reactor Sustainability, and Next Generation Nuclear Power Plants (NGNP), are investigating new fuels, materials, and inspection paradigms for advanced and existing reactors. A key objective of such programs is to understand the performance of these fuels and materials during irradiation. In DOE-NE's FCRD program, ultrasonic based technology was identified as a key approach that should be pursued to obtain the high-fidelity, high-accuracy data required to characterize the behavior and performance of new candidate fuels and structural materials during irradiation testing. The radiation, high temperatures, and pressure can limit the available tools and characterization methods. In this thesis, two ultrasonic characterization techniques will be explored. The first, finite amplitude wave propagation has been demonstrated to be sensitive to microstructural material property changes. It is a strong candidate to determine fuel evolution; however, it has not been demonstrated for in-situ reactor applications. In this thesis, finite amplitude wave propagation will be used to measure the microstructural evolution in Al-6061. This is the first demonstration of finite amplitude wave propagation at temperatures in excess of 200 °C and during an irradiation test. Second, a method based on contact nonlinear acoustic theory will be developed to identify compressed cracks. Compressed cracks are typically transparent to ultrasonic wave propagation; however, by measuring harmonic content developed during finite amplitude wave propagation, it is shown that even compressed cracks can be characterized. Lastly, piezoelectric transducers capable of making these measurements are developed. Specifically, three piezoelectric sensors (Bismuth Titanate, Aluminum Nitride, and Zinc Oxide) are tested in the Massachusetts Institute of Technology Research reactor to a fast neutron fluence of 8.65x10 20 n/cm2. It is demonstrated that Bismuth Titanate is capable of transduction up to 5 x1020 n/cm2, Zinc Oxide is capable of transduction up to 6.27 x1020 n/cm 2, and Aluminum Nitride is capable of transduction up to 8.65x x10 20 n/cm2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigg, David W.; Nielsen, Joseph W.; Norman, Daren R.
The Korea Atomic Energy Research Institute is currently in the process of qualifying a Low-Enriched Uranium fuel element design for the new Ki-Jang Research Reactor (KJRR). As part of this effort, a prototype KJRR fuel element was irradiated for several operating cycles in the Northeast Flux Trap of the Advanced Test Reactor (ATR) at the Idaho National Laboratory. The KJRR fuel element contained a very large quantity of fissile material (618g 235U) in comparison with historical ATR experiment standards (<1g 235U), and its presence in the ATR flux trap was expected to create a neutronic configuration that would be wellmore » outside of the approved validation envelope for the reactor physics analysis methods used to support ATR operations. Accordingly it was necessary, prior to high-power irradiation of the KJRR fuel element in the ATR, to conduct an extensive set of new low-power physics measurements with the KJRR fuel element installed in the ATR Critical Facility (ATRC), a companion facility to the ATR that is located in an immediately adjacent building, sharing the same fuel handling and storage canal. The new measurements had the objective of expanding the validation envelope for the computational reactor physics tools used to support ATR operations and safety analysis to include the planned KJRR irradiation in the ATR and similar experiments that are anticipated in the future. The computational and experimental results demonstrated that the neutronic behavior of the KJRR fuel element in the ATRC is well-understood, both in terms of its general effects on core excess reactivity and fission power distributions, its effects on the calibration of the core lobe power measurement system, as well as in terms of its own internal fission rate distribution and total fission power per unit ATRC core power. Taken as a whole, these results have significantly extended the ATR physics validation envelope, thereby enabling an entire new class of irradiation experiments.« less
Advanced Fuel Cycles for Fusion Reactors: Passive Safety and Zero-Waste Options
NASA Astrophysics Data System (ADS)
Zucchetti, Massimo; Sugiyama, Linda E.
2006-05-01
Nuclear fusion is seen as a much ''cleaner'' energy source than fission. Most of the studies and experiments on nuclear fusion are currently devoted to the Deuterium-Tritium (DT) fuel cycle, since it is the easiest way to reach ignition. The recent stress on safety by the world's community has stimulated the research on other fuel cycles than the DT one, based on 'advanced' reactions, such as the Deuterium-Helium-3 (DHe) one. These reactions pose problems, such as the availability of 3He and the attainment of the higher plasma parameters that are required for burning. However, they have many advantages, like for instance the very low neutron activation, while it is unnecessary to breed and fuel tritium. The extrapolation of Ignitor technologies towards a larger and more powerful experiment using advanced fuel cycles (Candor) has been studied. Results show that Candor does reach the passive safety and zero-waste option. A fusion power reactor based on the DHe cycle could be the ultimate response to the environmental requirements for future nuclear power plants.
Small low mass advanced PBR's for propulsion
NASA Astrophysics Data System (ADS)
Powell, J. R.; Todosow, M.; Ludewig, H.
1993-10-01
The advanced Particle Bed Reactor (PBR) to be described in this paper is characterized by relatively low power, and low cost, while still maintaining competition values for thrust/weight, specific impulse and operating times. In order to retain competitive values for the thrust/weight ratio while reducing the reactor size, it is necessary to change the basic reactor layout, by incorporating new concepts. The new reactor design concept is termed SIRIUS (Small Lightweight Reactor Integral Propulsion System). The following modifications are proposed for the reactor design to be discussed in this paper: Pre-heater (U-235 included in Moderator); Hy-C (Hydride/De-hydride for Reactor Control); Afterburner (U-235 impregnated into Hot Frit); and Hy-S (Hydride Spike Inside Hot Frit). Each of the modifications will be briefly discussed below, with benefits, technical issues, design approach, and risk levels addressed. The paper discusses conceptual assumptions, feasibility analysis, mass estimates, and information needs.
Propulsion Research at the Propulsion Research Center of the NASA Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Blevins, John; Rodgers, Stephen
2003-01-01
The Propulsion Research Center of the NASA Marshall Space Flight Center is engaged in research activities aimed at providing the bases for fundamental advancement of a range of space propulsion technologies. There are four broad research themes. Advanced chemical propulsion studies focus on the detailed chemistry and transport processes for high-pressure combustion, and on the understanding and control of combustion stability. New high-energy propellant research ranges from theoretical prediction of new propellant properties through experimental characterization propellant performance, material interactions, aging properties, and ignition behavior. Another research area involves advanced nuclear electric propulsion with new robust and lightweight materials and with designs for advanced fuels. Nuclear electric propulsion systems are characterized using simulated nuclear systems, where the non-nuclear power source has the form and power input of a nuclear reactor. This permits detailed testing of nuclear propulsion systems in a non-nuclear environment. In-space propulsion research is focused primarily on high power plasma thruster work. New methods for achieving higher thrust in these devices are being studied theoretically and experimentally. Solar thermal propulsion research is also underway for in-space applications. The fourth of these research areas is advanced energetics. Specific research here includes the containment of ion clouds for extended periods. This is aimed at proving the concept of antimatter trapping and storage for use ultimately in propulsion applications. Another activity in this involves research into lightweight magnetic technology for space propulsion applications.
A roadmap for nuclear energy technology
NASA Astrophysics Data System (ADS)
Sofu, Tanju
2018-01-01
The prospects for the future use of nuclear energy worldwide can best be understood within the context of global population growth, urbanization, rising energy need and associated pollution concerns. As the world continues to urbanize, sustainable development challenges are expected to be concentrated in cities of the lower-middle-income countries where the pace of urbanization is fastest. As these countries continue their trajectory of economic development, their energy need will also outpace their population growth adding to the increased demand for electricity. OECD IEA's energy system deployment pathway foresees doubling of the current global nuclear capacity by 2050 to reduce the impact of rapid urbanization. The pending "retirement cliff" of the existing U.S. nuclear fleet, representing over 60 percent of the nation's emission-free electricity, also poses a large economic and environmental challenge. To meet the challenge, the U.S. DOE has developed the vision and strategy for development and deployment of advanced reactors. As part of that vision, the U.S. government pursues programs that aim to expand the use of nuclear power by supporting sustainability of the existing nuclear fleet, deploying new water-cooled large and small modular reactors to enable nuclear energy to help meet the energy security and climate change goals, conducting R&D for advanced reactor technologies with alternative coolants, and developing sustainable nuclear fuel cycle strategies. Since the current path relying heavily on water-cooled reactors and "once-through" fuel cycle is not sustainable, next generation nuclear energy systems under consideration aim for significant advances over existing and evolutionary water-cooled reactors. Among the spectrum of advanced reactor options, closed-fuel-cycle systems using reactors with fast-neutron spectrum to meet the sustainability goals offer the most attractive alternatives. However, unless the new public-private partnership models emerge to tackle the licensing and demonstration challenges for these advanced reactor concepts, realization of their enormous potential is not likely, at least in the U.S.
Developments of Spent Nuclear Fuel Pyroprocessing Technology at Idaho National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael F. Simpson
This paper summarizes research in used fuel pyroprocessing that has been published by Idaho National Laboratory over the last decade. It includes work done both on treatment of Experimental Breeder Reactor-II and development of advanced technology for potential scale-up and commercialization. Collaborations with universities and other laboratories is included in the cited work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramuhalli, Pradeep; Hirt, Evelyn H.; Coles, Garill A.
Advanced small modular reactors (AdvSMRs) can contribute to safe, sustainable, and carbon-neutral energy production. The economics of small reactors (including AdvSMRs) will be impacted by the reduced economy-of-scale savings when compared to traditional light water reactors. The most significant controllable element of the day-to-day costs involves operations and maintenance (O&M). Enhancing affordability of AdvSMRs through technologies that help control O&M costs will be critical to ensuring their practicality for wider deployment.A significant component of O&M costs is the management and mitigation of degradation of components due to their impact on planning maintenance activities and staffing levels. Technologies that help characterizemore » real-time risk of failure of key components are important in this context. Given the possibility of frequently changing AdvSMR plant configurations, approaches are needed to integrate three elements – advanced plant configuration information, equipment condition information, and risk monitors – to provide a measure of risk that is customized for each AdvSMR unit and support real-time decisions on O&M. This article describes an overview of ongoing research into diagnostics/prognostics and enhanced predictive risk monitors (ERM) for this purpose.« less
75 FR 8154 - Advisory Committee on Reactor Safeguards
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-23
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards In accordance with the... on Reactor Safeguards (ACRS) will hold a meeting on March 4-6, 2010, 11545 Rockville Pike, Rockville....-12 p.m.: New Advanced Reactor Designs (Open)--The Committee will hear presentations by and hold...
Interim status report on lead-cooled fast reactor (LFR) research and development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tzanos, C. P.; Sienicki, J. J.; Moisseytsev, A.
2008-03-31
This report discusses the status of Lead-Cooled Fast Reactor (LFR) research and development carried out during the first half of FY 2008 under the U.S. Department of Energy Generation IV Nuclear Energy Systems Initiative. Lead-Cooled Fast Reactor research and development has recently been transferred from Generation IV to the Reactor Campaign of the Global Nuclear Energy Partnership (GNEP). Another status report shall be issued at the end of FY 2008 covering all of the LFR activities carried out in FY 2008 for both Generation IV and GNEP. The focus of research and development in FY 2008 is an initial investigationmore » of a concept for a LFR Advanced Recycling Reactor (ARR) Technology Pilot Plant (TPP)/demonstration test reactor (demo) incorporating features and operating conditions of the European Lead-cooled SYstem (ELSY) {approx} 600 MWe lead (Pb)-cooled LFR preconceptual design for the transmutation of waste and central station power generation, and which would enable irradiation testing of advanced fuels and structural materials. Initial scoping core concept development analyses have been carried out for a 100 MWt core composed of sixteen open-lattice 20 by 20 fuel assemblies largely similar to those of the ELSY preconceptual fuel assembly design incorporating fuel pins with mixed oxide (MOX) fuel, central control rods in each fuel assembly, and cooled with Pb coolant. For a cycle length of three years, the core is calculated to have a conversion ratio of 0.79, an average discharge burnup of 108 MWd/kg of heavy metal, and a burnup reactivity swing of about 13 dollars. With a control rod in each fuel assembly, the reactivity worth of an individual rod would need to be significantly greater than one dollar which is undesirable for postulated rod withdrawal reactivity insertion events. A peak neutron fast flux of 2.0 x 10{sup 15} (n/cm{sup 2}-s) is calculated. For comparison, the 400 MWt Fast Flux Test Facility (FFTF) achieved a peak neutron fast flux of 7.2 x 10{sup 15} (n/cm{sup 2}-s) and the initially 563 MWt PHENIX reactor attained 2.0 x 10{sup 15} (n/cm{sup 2}-s) before one of three intermediate cooling loops was shut down due to concerns about potential steam generator tube failures. The calculations do not assume a test assembly location for advanced fuels and materials irradiation in place of a fuel assembly (e.g., at the center of the core); the calculations have not examined whether it would be feasible to replace the central assembly by a test assembly location. However, having only fifteen driver assemblies implies a significant effect due to perturbations introduced by the test assembly. The peak neutron fast flux is low compared with the fast fluxes previously achieved in FFTF and PHENIX. Furthermore, the peak neutron fluence is only about half of the limiting value (4 x 10{sup 23} n/cm{sup 2}) typically used for ferritic steels. The results thus suggest that a larger power level (e.g., 400 MWt) and a larger core would be better for a TPP based upon the ELSY fuel assembly design and which can also perform irradiation testing of advanced fuels and materials. In particular, a core having a higher power level and larger dimensions would achieve a suitable average discharge burnup, peak fast flux, peak fluence, and would support the inclusion of one or more test assembly locations. Participation in the Generation IV International Forum Provisional System Steering Committee for the LFR is being maintained throughout FY 2008. Results from the analysis of samples previously exposed to flowing lead-bismuth eutectic (LBE) in the DELTA loop are summarized and a model for the oxidation/corrosion kinetics of steels in heavy liquid metal coolants was applied to systematically compare the calculated long-term (i.e., following several years of growth) oxide layer thicknesses of several steels.« less
Quality Assurance Program Plan for SFR Metallic Fuel Data Qualification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benoit, Timothy; Hlotke, John Daniel; Yacout, Abdellatif
2017-07-05
This document contains an evaluation of the applicability of the current Quality Assurance Standards from the American Society of Mechanical Engineers Standard NQA-1 (NQA-1) criteria and identifies and describes the quality assurance process(es) by which attributes of historical, analytical, and other data associated with sodium-cooled fast reactor [SFR] metallic fuel and/or related reactor fuel designs and constituency will be evaluated. This process is being instituted to facilitate validation of data to the extent that such data may be used to support future licensing efforts associated with advanced reactor designs. The initial data to be evaluated under this program were generatedmore » during the US Integral Fast Reactor program between 1984-1994, where the data includes, but is not limited to, research and development data and associated documents, test plans and associated protocols, operations and test data, technical reports, and information associated with past United States Nuclear Regulatory Commission reviews of SFR designs.« less
Preliminary Tritium Management Design Activities at ORNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, Thomas J.; Felde, David K.; Logsdon, Randall J.
2016-09-01
Interest in salt-cooled and salt-fueled reactors has increased over the last decade (Forsberg et al. 2016). Several private companies and universities in the United States, as well as governments in other countries, are developing salt reactor designs and/or technology. Two primary issues for the development and deployment of many salt reactor concepts are (1) the prevention of tritium generation and (2) the management of tritium to prevent release to the environment. In 2016, the US Department of Energy (DOE) initiated a research project under the Advanced Reactor Technology Program to (1) experimentally assess the feasibility of proposed methods for tritiummore » mitigation and (2) to perform an engineering demonstration of the most promising methods. This document describes results from the first year’s efforts to define, design, and build an experimental apparatus to test potential methods for tritium management. These efforts are focused on producing a final design document as the basis for the apparatus and its scheduled completion consistent with available budget and approvals for facility use.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Yong-Hoon, E-mail: chaotics@snu.ac.kr; Park, Sangrok; Kim, Byong Sup
Since the first nuclear power was engaged in Korean electricity grid in 1978, intensive research and development has been focused on localization and standardization of large pressurized water reactors (PWRs) aiming at providing Korean peninsula and beyond with economical and safe power source. With increased priority placed on the safety since Chernobyl accident, Korean nuclear power R and D activity has been diversified into advanced PWR, small modular PWR and generation IV reactors. After the outbreak of Fukushima accident, inherently safe small modular reactor (SMR) receives growing interest in Korea and Europe. In this paper, we will describe recent statusmore » of evolving designs of SMR, their advantages and challenges. In particular, the conceptual design of lead-bismuth cooled SMR in Korea, URANUS with 40∼70 MWe is examined in detail. This paper will cover a framework of the program and a strategy for the successful deployment of small modular reactor how the goals would entail and the approach to collaboration with other entities.« less
IAEA international studies on irradiation embrittlement of reactor pressure vessel steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brumovsky, M.; Steele, L.E.
1997-02-01
In last 25 years, three phases a Co-operative Research Programme on Irradiation Embrittlement of Reactor Pressure Vessel Steels has been organized by the International Atomic Energy Agency. This programme started with eight countries in 1971 and finally 16 countries took part in phase III of the Programme in 1983. Several main efforts were put into preparation of the programme, but the principal task was concentrated on an international comparison of radiation damage characterization by different laboratories for steels of {open_quotes}old{close_quotes} (with high impurity contents) and {open_quotes}advanced{close_quotes} (with low impurity contents) types as well as on development of small scale fracturemore » mechanics procedures applicable to reactor pressure vessel surveillance programmes. This year, a new programme has been opened, concentrated mostly on small scale fracture mechanics testing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mezei, F.; Thompson, J.
1998-12-01
The Workshop on Probing Frontiers in Matter with Neutron Scattering consisted of a series of lectures and discussions about recent highlights in neutron scattering. In this report, we present the transcript of the concluding discussion session (wrap-up session) chaired by John C. Browne, Director of Los Alamos National Laboratory. The workshop had covered a spectrum of topics ranging from high T{sub c} superconductivity to polymer science, from glasses to molecular biology, a broad review aimed at identifying trends and future needs in condensed matter research. The focus of the wrap-up session was to summarize the workshop participants' views on developmentsmore » to come. Most of the highlights presented during the workshop were the result of experiments performed at the leading reactor-based neutron scattering facilities. However, recent advances with very high power accelerators open up opportunities to develop new approaches to spallation technique that could decisively advance neutron scattering research in areas for which reactor sources are today by far the best choice. The powerful combination of neutron scattering and increasingly accurate computer modeling emerged as another area of opportunity for research in the coming decades.« less
Status of the US RERTR Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Travelli, A.
1995-02-01
The progress of the Reduced Enrichment Research and Test Reactor (RERTR) Program is described. The major events, findings, and activities of 1994 are reviewed after a brief summary of the results which the RERTR Program had achieved by the end of 1993 in collaboration with its many international partners. The RERTR Program has moved aggressively to support President Clinton`s nonproliferation policy and his goal {open_quotes}to minimize the use of highly-enriched uranium in civil nuclear programs{close_quotes}. An Environmental Assessment which addresses the urgent-relief acceptance of 409 spent fuel elements was completed, and the first shipment of spent fuel elements is scheduledmore » for this month. An Environmental Impact Statement addressing the acceptance of spent research reactor fuel containing enriched uranium of U.S. origin is scheduled for completion by the end of June 1995. The U.S. administration has decided to resume development of high-density LEU research reactor fuels. DOE funding and guidance are expected to begin soon. A preliminary plan for the resumption of fuel development has been prepared and is ready for implementation. The scope and main technical activities of a plan to develop and demonstrate within the next five years the technical means needed to convert Russian-supplied research reactors to LEU fuels was agreed upon by the RERTR Program and four Russian institutes lead by RDIPE. Both Secretary O`Leary and Minister Michailov have expressed strong support for this initiative. Joint studies have made significant progress, especially in assessing the technical and economic feasibility of using reduced enrichment fuels in the SAFARI-I reactor in South Africa and in the Advanced Neutron Source reactor under design at ORNL. Significant progress was achieved on several aspects of producing {sup 99}Mo from fission targets utilizing LEU instead of HEU to the achievement of the common goal.« less
Physical and chemical controls on the critical zone
Anderson, S.P.; Von Blanckenburg, F.; White, A.F.
2007-01-01
Geochemists have long recognized a correlation between rates of physical denudation and chemical weathering. What underlies this correlation? The Critical Zone can be considered as a feed-through reactor. Downward advance of the weathering front brings unweathered rock into the reactor. Fluids are supplied through precipitation. The reactor is stirred at the top by biological and physical processes. The balance between advance of the weathering front by mechanical and chemical processes and mass loss by denudation fixes the thickness of the Critical Zone reactor. The internal structure of this reactor is controlled by physical processes that create surface area, determine flow paths, and set the residence time of material in the Critical Zone. All of these impact chemical weathering flux.
77 FR 64563 - Advisory Committee on Reactor Safeguards; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-22
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards; Notice of Meeting In... Advisory Committee on Reactor Safeguards (ACRS) will hold a meeting on November 1-3, 2012, 11545 Rockville...-Term Core Cooling Approach for the Advanced Boiling Water Reactor (ABWR) Design for South Texas Project...
75 FR 55365 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Joint Subcommittee
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-10
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Joint Subcommittee The ACRS Subcommittees on Thermal Hydraulics Phenomena; Advanced Boiling Water Reactor (ABWR); and Materials, Metallurgy, and Reactor Fuels will hold a joint meeting on October 4, 2010...
NASA Astrophysics Data System (ADS)
Reichenberger, Michael A.; Nichols, Daniel M.; Stevenson, Sarah R.; Swope, Tanner M.; Hilger, Caden W.; Roberts, Jeremy A.; Unruh, Troy C.; McGregor, Douglas S.
2018-01-01
Advancements in nuclear reactor core modeling and computational capability have encouraged further development of in-core neutron sensors. Measurement of the neutron-flux distribution within the reactor core provides a more complete understanding of the operating conditions in the reactor than typical ex-core sensors. Micro-Pocket Fission Detectors have been developed and tested previously but have been limited to single-node operation and have utilized highly specialized designs. The development of a widely deployable, multi-node Micro-Pocket Fission Detector assembly will enhance nuclear research capabilities. A modular, four-node Micro-Pocket Fission Detector array was designed, fabricated, and tested at Kansas State University. The array was constructed from materials that do not significantly perturb the neutron flux in the reactor core. All four sensor nodes were equally spaced axially in the array to span the fuel-region of the reactor core. The array was filled with neon gas, serving as an ionization medium in the small cavities of the Micro-Pocket Fission Detectors. The modular design of the instrument facilitates the testing and deployment of numerous sensor arrays. The unified design drastically improved device ruggedness and simplified construction from previous designs. Five 8-mm penetrations in the upper grid plate of the Kansas State University TRIGA Mk. II research nuclear reactor were utilized to deploy the array between fuel elements in the core. The Micro-Pocket Fission Detector array was coupled to an electronic support system which has been specially developed to support pulse-mode operation. The Micro-Pocket Fission Detector array composed of four sensors was used to monitor local neutron flux at a constant reactor power of 100 kWth at different axial locations simultaneously. The array was positioned at five different radial locations within the core to emulate the deployment of multiple arrays and develop a 2-dimensional measurement of neutron flux in the reactor core.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Nicholas R.; Powers, Jeffrey J.; Mueller, Don
In September 2016, reactor physics measurements were conducted at Research Centre Rez (RC Rez) using the FLiBe (2 7LiF + BeF 2) salt from the Molten Salt Reactor Experiment (MSRE) in the LR-0 low power nuclear reactor. These experiments were intended to inform on neutron spectral effects and nuclear data uncertainties for advanced reactor systems using FLiBe salt in a thermal neutron energy spectrum. Oak Ridge National Laboratory (ORNL), in collaboration with RC Rez, performed sensitivity/uncertainty (S/U) analyses of these experiments as part of the ongoing collaboration between the United States and the Czech Republic on civilian nuclear energy researchmore » and development. The objectives of these analyses were (1) to identify potential sources of bias in fluoride salt-cooled and salt-fueled reactor simulations resulting from cross section uncertainties, and (2) to produce the sensitivity of neutron multiplication to cross section data on an energy-dependent basis for specific nuclides. This report provides a final report on the S/U analyses of critical experiments at the LR-0 Reactor relevant to fluoride salt-cooled high temperature reactor (FHR) and liquid-fueled molten salt reactor (MSR) concepts. In the future, these S/U analyses could be used to inform the design of additional FLiBe-based experiments using the salt from MSRE. The key finding of this work is that, for both solid and liquid fueled fluoride salt reactors, radiative capture in 7Li is the most significant contributor to potential bias in neutronics calculations within the FLiBe salt.« less
NASA Technical Reports Server (NTRS)
Bloomfield, H. S.; Sovie, R. J.
1991-01-01
The history of the NASA Lewis Research Center's role in space nuclear power programs is reviewed. Lewis has provided leadership in research, development, and the advancement of space power and propulsion systems. Lewis' pioneering efforts in nuclear reactor technology, shielding, high temperature materials, fluid dynamics, heat transfer, mechanical and direct energy conversion, high-energy propellants, electric propulsion and high performance rocket fuels and nozzles have led to significant technical and management roles in many natural space nuclear power and propulsion programs.
NASA Technical Reports Server (NTRS)
Bloomfield, H. S.; Sovie, R. J.
1991-01-01
The history of the NASA Lewis Research Center's role in space nuclear power programs is reviewed. Lewis has provided leadership in research, development, and the advancement of space power and propulsion systems. Lewis' pioneering efforts in nuclear reactor technology, shielding, high temperature materials, fluid dynamics, heat transfer, mechanical and direct energy conversion, high-energy propellants, electric propulsion and high performance rocket fuels and nozzles have led to significant technical and management roles in many national space nuclear power and propulsion programs.
Annual Report to Congress of the Atomic Energy Commission for 1965
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seaborg, Glenn T.
1966-01-31
The document represents the 1965 Annual Report of the Atomic Energy Commission (AEC) to Congress. The report opens with a Foreword - a letter from President Lyndon B. Johnson. The main portion is divided into 3 major sections for 1965, plus 10 appendices and the index. Section names and chapters are as follows. Part One reports on Developmental and Promotional Activities with the following chapters: (1) The Atomic Energy Program - 1965; (2) The Industrial Base ; (3) Industrial Relations; (4) Operational Safety; (5) Source and Special Nuclear Materials Production; (6) The Nuclear Defense Effort; (7) Civilian Nuclear Power; (8)more » Nuclear Space Applications; (9) Auxiliary Electrical Power for Land and Sea; (10) Military Reactors; (11) Advanced Reactor Technology and Nuclear Safety Research; (12) The Plowshare Program; (13) Isotopes and Radiation Development; (14) Facilities and Projects for Basic Research; (15) International Cooperation; and, (16) Nuclear Education and Information. Part Two reports on Regulatory Activities with the following chapters: (1) Licensing and Regulating the Atom; (2) Reactors and other Nuclear Facilities; and, (3) Control of Radioactive Materials. Part Three reports on Adjudicatory Activities.« less
Operation and reactivity measurements of an accelerator driven subcritical TRIGA reactor
NASA Astrophysics Data System (ADS)
O'Kelly, David Sean
Experiments were performed at the Nuclear Engineering Teaching Laboratory (NETL) in 2005 and 2006 in which a 20 MeV linear electron accelerator operating as a photoneutron source was coupled to the TRIGA (Training, Research, Isotope production, General Atomics) Mark II research reactor at the University of Texas at Austin (UT) to simulate the operation and characteristics of a full-scale accelerator driven subcritical system (ADSS). The experimental program provided a relatively low-cost substitute for the higher power and complexity of internationally proposed systems utilizing proton accelerators and spallation neutron sources for an advanced ADSS that may be used for the burning of high-level radioactive waste. Various instrumentation methods that permitted ADSS neutron flux monitoring in high gamma radiation fields were successfully explored and the data was used to evaluate the Stochastic Pulsed Feynman method for reactivity monitoring.
NEET In-Pile Ultrasonic Sensor Enablement-FY 2012 Status Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
JE Daw; JL Rempe; BR Tittmann
2012-09-01
Several Department Of Energy-Nuclear Energy (DOE-NE) programs, such as the Fuel Cycle Research and Development, Advanced Reactor Concepts, Light Water Reactor Sustainability, and Next Generation Nuclear Plant programs, are investigating new fuels and materials for advanced and existing reactors. A key objective of such programs is to understand the performance of these fuels and materials when irradiated. The Nuclear Energy Enabling Technology (NEET) Advanced Sensors and Instrumentation (ASI) in-pile instrumentation development activities are focused upon addressing cross-cutting needs for DOE-NE irradiation testing by providing higher fidelity, real-time data, with increased accuracy and resolution from smaller, compact sensors that are lessmore » intrusive. Ultrasonic technologies offer the potential to measure a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes, under harsh irradiation test conditions. There are two primary issues associated with in-pile deployment of ultrasonic sensors. The first is transducer survivability. The ability of ultrasonic transducer materials to maintain their useful properties during an irradiation must be demonstrated. The second issue is signal processing. Ultrasonic testing is typically performed in a lab or field environment, where the sensor and sample are accessible. Due to the harsh nature of in-pile testing, and the range of measurements that are desired, an enhanced signal processing capability is needed to make in-pile ultrasonic sensors viable. This project addresses these technology deployment issues.« less
Current status of the development of high density LEU fuel for Russian research reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vatulin, A.; Dobrikova, I.; Suprun, V.
2008-07-15
One of the main directions of the Russian RERTR program is to develop U-Mo fuel and fuel elements/FA with this fuel. The development is carried out both for existing reactors, and for new advanced designs of reactors. Many organizations in Russia, i.e. 'TVEL', RDIPE, RIAR, IRM, NPCC participate in the work. Two fuels are under development: dispersion and monolithic U-Mo fuel, as well two types of FA to use the dispersion U-Mo fuel: with tubular type fuel elements and with pin type fuel elements. The first stage of works was successfully completed. This stage included out-pile, in-pile and post irradiationmore » examinations of U-Mo dispersion fuel in experimental tubular and pin fuel elements under parameters similar to operation conditions of Russian design pool-type research reactors. The results received both in Russia and abroad enabled to go on to the next stage of development which includes irradiation tests both of full-scale IRT pin-type and tube-type fuel assemblies with U-Mo dispersion fuel and of mini-fuel elements with modified U-Mo dispersion fuel and monolithic fuel. The paper gives a generalized review of the results of U-Mo fuel development accomplished by now. (author)« less
Development of a Research Reactor Protocol for Neutron Multiplication Measurements
Arthur, Jennifer Ann; Bahran, Rian Mustafa; Hutchinson, Jesson D.; ...
2018-03-20
A new series of subcritical measurements has been conducted at the zero-power Walthousen Reactor Critical Facility (RCF) at Rensselaer Polytechnic Institute (RPI) using a 3He neutron multiplicity detector. The Critical and Subcritical 0-Power Experiment at Rensselaer (CaSPER) campaign establishes a protocol for advanced subcritical neutron multiplication measurements involving research reactors for validation of neutron multiplication inference techniques, Monte Carlo codes, and associated nuclear data. There has been increased attention and expanded efforts related to subcritical measurements and analyses, and this work provides yet another data set at known reactivity states that can be used in the validation of state-of-the-art Montemore » Carlo computer simulation tools. The diverse (mass, spatial, spectral) subcritical measurement configurations have been analyzed to produce parameters of interest such as singles rates, doubles rates, and leakage multiplication. MCNP ®6.2 was used to simulate the experiment and the resulting simulated data has been compared to the measured results. Comparison of the simulated and measured observables (singles rates, doubles rates, and leakage multiplication) show good agreement. This work builds upon the previous years of collaborative subcritical experiments and outlines a protocol for future subcritical neutron multiplication inference and subcriticality monitoring measurements on pool-type reactor systems.« less
Thermal barrier coatings on gas turbine blades: Chemical vapor deposition (Review)
NASA Astrophysics Data System (ADS)
Igumenov, I. K.; Aksenov, A. N.
2017-12-01
Schemes are presented for experimental setups (reactors) developed at leading scientific centers connected with the development of technologies for the deposition of coatings using the CVD method: at the Technical University of Braunschweig (Germany), the French Aerospace Research Center, the Materials Research Institute (Tohoku University, Japan) and the National Laboratory Oak Ridge (USA). Conditions and modes for obtaining the coatings with high operational parameters are considered. It is established that the formed thermal barrier coatings do not fundamentally differ in their properties (columnar microstructure, thermocyclic resistance, thermal conductivity coefficient) from standard electron-beam condensates, but the highest growth rates and the perfection of the crystal structure are achieved in the case of plasma-chemical processes and in reactors with additional laser or induction heating of a workpiece. It is shown that CVD reactors can serve as a basis for the development of rational and more advanced technologies for coating gas turbine blades that are not inferior to standard electron-beam plants in terms of the quality of produced coatings and have a much simpler and cheaper structure. The possibility of developing a new technology based on CVD processes for the formation of thermal barrier coatings with high operational parameters is discussed, including a set of requirements for industrial reactors, high-performance sources of vapor precursors, and promising new materials.
Development of a Research Reactor Protocol for Neutron Multiplication Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arthur, Jennifer Ann; Bahran, Rian Mustafa; Hutchinson, Jesson D.
A new series of subcritical measurements has been conducted at the zero-power Walthousen Reactor Critical Facility (RCF) at Rensselaer Polytechnic Institute (RPI) using a 3He neutron multiplicity detector. The Critical and Subcritical 0-Power Experiment at Rensselaer (CaSPER) campaign establishes a protocol for advanced subcritical neutron multiplication measurements involving research reactors for validation of neutron multiplication inference techniques, Monte Carlo codes, and associated nuclear data. There has been increased attention and expanded efforts related to subcritical measurements and analyses, and this work provides yet another data set at known reactivity states that can be used in the validation of state-of-the-art Montemore » Carlo computer simulation tools. The diverse (mass, spatial, spectral) subcritical measurement configurations have been analyzed to produce parameters of interest such as singles rates, doubles rates, and leakage multiplication. MCNP ®6.2 was used to simulate the experiment and the resulting simulated data has been compared to the measured results. Comparison of the simulated and measured observables (singles rates, doubles rates, and leakage multiplication) show good agreement. This work builds upon the previous years of collaborative subcritical experiments and outlines a protocol for future subcritical neutron multiplication inference and subcriticality monitoring measurements on pool-type reactor systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
NNSA’s third mission pillar is supporting the U.S. Navy’s ability to protect and defend American interests across the globe. The Naval Reactors Program remains at the forefront of technological developments in naval nuclear propulsion and ensures a commanding edge in warfighting capabilities by advancing new technologies and improvements in naval reactor performance and reliability. In 2015, the Naval Nuclear Propulsion Program pioneered advances in nuclear reactor and warship design – such as increasing reactor lifetimes, improving submarine operational effectiveness, and reducing propulsion plant crewing. The Naval Reactors Program continued its record of operational excellence by providing the technical expertise requiredmore » to resolve emergent issues in the Nation’s nuclear-powered fleet, enabling the Fleet to safely steam more than two million miles. Naval Reactors safely maintains, operates, and oversees the reactors on the Navy’s 82 nuclear-powered warships, constituting more than 45 percent of the Navy’s major combatants.« less
Developing and validating advanced divertor solutions on DIII-D for next-step fusion devices
NASA Astrophysics Data System (ADS)
Guo, H. Y.; Hill, D. N.; Leonard, A. W.; Allen, S. L.; Stangeby, P. C.; Thomas, D.; Unterberg, E. A.; Abrams, T.; Boedo, J.; Briesemeister, A. R.; Buchenauer, D.; Bykov, I.; Canik, J. M.; Chrobak, C.; Covele, B.; Ding, R.; Doerner, R.; Donovan, D.; Du, H.; Elder, D.; Eldon, D.; Lasa, A.; Groth, M.; Guterl, J.; Jarvinen, A.; Hinson, E.; Kolemen, E.; Lasnier, C. J.; Lore, J.; Makowski, M. A.; McLean, A.; Meyer, B.; Moser, A. L.; Nygren, R.; Owen, L.; Petrie, T. W.; Porter, G. D.; Rognlien, T. D.; Rudakov, D.; Sang, C. F.; Samuell, C.; Si, H.; Schmitz, O.; Sontag, A.; Soukhanovskii, V.; Wampler, W.; Wang, H.; Watkins, J. G.
2016-12-01
A major challenge facing the design and operation of next-step high-power steady-state fusion devices is to develop a viable divertor solution with order-of-magnitude increases in power handling capability relative to present experience, while having acceptable divertor target plate erosion and being compatible with maintaining good core plasma confinement. A new initiative has been launched on DIII-D to develop the scientific basis for design, installation, and operation of an advanced divertor to evaluate boundary plasma solutions applicable to next step fusion experiments beyond ITER. Developing the scientific basis for fusion reactor divertor solutions must necessarily follow three lines of research, which we plan to pursue in DIII-D: (1) Advance scientific understanding and predictive capability through development and comparison between state-of-the art computational models and enhanced measurements using targeted parametric scans; (2) Develop and validate key divertor design concepts and codes through innovative variations in physical structure and magnetic geometry; (3) Assess candidate materials, determining the implications for core plasma operation and control, and develop mitigation techniques for any deleterious effects, incorporating development of plasma-material interaction models. These efforts will lead to design, installation, and evaluation of an advanced divertor for DIII-D to enable highly dissipative divertor operation at core density (n e/n GW), neutral fueling and impurity influx most compatible with high performance plasma scenarios and reactor relevant plasma facing components (PFCs). This paper highlights the current progress and near-term strategies of boundary/PMI research on DIII-D.
Developing and validating advanced divertor solutions on DIII-D for next-step fusion devices
Guo, H. Y.; Hill, D. N.; Leonard, A. W.; ...
2016-09-14
A major challenge facing the design and operation of next-step high-power steady-state fusion devices is to develop a viable divertor solution with order-of-magnitude increases in power handling capability relative to present experience, while having acceptable divertor target plate erosion and being compatible with maintaining good core plasma confinement. A new initiative has been launched on DIII-D to develop the scientific basis for design, installation, and operation of an advanced divertor to evaluate boundary plasma solutions applicable to next step fusion experiments beyond ITER. Developing the scientific basis for fusion reactor divertor solutions must necessarily follow three lines of research, whichmore » we plan to pursue in DIII-D: (1) Advance scientific understanding and predictive capability through development and comparison between state-of-the art computational models and enhanced measurements using targeted parametric scans; (2) Develop and validate key divertor design concepts and codes through innovative variations in physical structure and magnetic geometry; (3) Assess candidate materials, determining the implications for core plasma operation and control, and develop mitigation techniques for any deleterious effects, incorporating development of plasma-material interaction models. These efforts will lead to design, installation, and evaluation of an advanced divertor for DIII-D to enable highly dissipative divertor operation at core density (n e/n GW), neutral fueling and impurity influx most compatible with high performance plasma scenarios and reactor relevant plasma facing components (PFCs). In conclusion, this paper highlights the current progress and near-term strategies of boundary/PMI research on DIII-D.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Michael George
This report summarizes radiological monitoring results from groundwater wells associated with the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Ponds Reuse Permit (I-161-02). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-24
... NUCLEAR REGULATORY COMMISSION [NRC-2010-0361] Toshiba Corporation Power Systems Company Notice of Receipt and Availability of an Application for Renewal of the U.S. Advanced Boiling Water Reactor Design... application for a design certification (DC) renewal for the U.S. Advanced Boiling Water Reactor (ABWR). An...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, Wai Kit, E-mail: kekyeung@ust.hk; Joueet, Justine; Heng, Samuel
An advanced ozone membrane reactor that synergistically combines membrane distributor for ozone gas, membrane contactor for pollutant adsorption and reaction, and membrane separator for clean water production is described. The membrane reactor represents an order of magnitude improvement over traditional semibatch reactor design and is capable of complete conversion of recalcitrant endocrine disrupting compounds (EDCs) in water at less than three minutes residence time. Coating the membrane contactor with alumina and hydrotalcite (Mg/Al=3) adsorbs and traps the organics in the reaction zone resulting in 30% increase of total organic carbon (TOC) removal. Large surface area coating that diffuses surface chargesmore » from adsorbed polar organic molecules is preferred as it reduces membrane polarization that is detrimental to separation. - Graphical abstract: Advanced ozone membrane reactor synergistically combines membrane distributor for ozone, membrane contactor for sorption and reaction and membrane separator for clean water production to achieve an order of magnitude enhancement in treatment performance compared to traditional ozone reactor. Highlights: Black-Right-Pointing-Pointer Novel reactor using membranes for ozone distributor, reaction contactor and water separator. Black-Right-Pointing-Pointer Designed to achieve an order of magnitude enhancement over traditional reactor. Black-Right-Pointing-Pointer Al{sub 2}O{sub 3} and hydrotalcite coatings capture and trap pollutants giving additional 30% TOC removal. Black-Right-Pointing-Pointer High surface area coating prevents polarization and improves membrane separation and life.« less
Precise Nuclear Data Measurements Possible with the NIFFTE fissionTPC for Advanced Reactor Designs
NASA Astrophysics Data System (ADS)
Towell, Rusty; Niffte Collaboration
2015-10-01
The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) Collaboration has applied the proven technology of Time Projection Chambers (TPC) to the task of precisely measuring fission cross sections. With the NIFFTE fission TPC, precise measurements have been made during the last year at the Los Alamos Neutron Science Center from both U-235 and Pu-239 targets. The exquisite tracking capabilities of this device allow the full reconstruction of charged particles produced by neutron beam induced fissions from a thin central target. The wealth of information gained from this approach will allow systematics to be controlled at the level of 1%. The fissionTPC performance will be presented. These results are critical to the development of advanced uranium-fueled reactors. However, there are clear advantages to developing thorium-fueled reactors such as Liquid Fluoride Thorium Reactors over uranium-fueled reactors. These advantages include improved reactor safety, minimizing radioactive waste, improved reactor efficiency, and enhanced proliferation resistance. The potential for using the fissionTPC to measure needed cross sections important to the development of thorium-fueled reactors will also be discussed.
Johnson Noise Thermometry for Advanced Small Modular Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Britton Jr, Charles L; Roberts, Michael; Bull, Nora D
Temperature is a key process variable at any nuclear power plant (NPP). The harsh reactor environment causes all sensor properties to drift over time. At the higher temperatures of advanced NPPs the drift occurs more rapidly. The allowable reactor operating temperature must be reduced by the amount of the potential measurement error to assure adequate margin to material damage. Johnson noise is a fundamental expression of temperature and as such is immune to drift in a sensor s physical condition. In and near core, only Johnson noise thermometry (JNT) and radiation pyrometry offer the possibility for long-term, high-accuracy temperature measurementmore » due to their fundamental natures. Small, Modular Reactors (SMRs) place a higher value on long-term stability in their temperature measurements in that they produce less power per reactor core and thus cannot afford as much instrument recalibration labor as their larger brethren. The purpose of this project is to develop and demonstrate a drift free Johnson noise-based thermometer suitable for deployment near core in advanced SMR plants.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
AL-Dahhan, Muthanna; Rizwan-Uddin, Rizwan; Usman, S.
All the goals and the objectives set for the project were successfully executed and achieved and all the milestones have been successfully completed. The results that have been obtained for the first time advance the scientific and engineering knowledge and understanding of the plenum-to plenum natural convection of prismatic block nuclear reactors that is encountered during accident or abnormal operation. These have been accomplished by developing and implementing for the first time unique and flexible scaled-down separate and integrated effects experimental plenumto- plenum facility (P2PF) with dual channels at this time that has been equipped with sophisticated measurement techniques integratedmore » in a novel way on the heated and cooled channels. The unique facility is an asset now that can be extended to research multiple channels and to study the effects of hot plumes in the plena for future projects if funding will be available. It can also be modified to research natural convection of pebble bed reactors. Hence, it complement the HTTF at Oregon State University. However, in this study, heat transfer coefficients from the inner wall surface to the flowing gas (both helium and air were used) and the radial temperature and gas velocity profiles have been measured and investigated along the height of the heated and cooled channels using in house developed wall flush mounted heat transfer probes, thermocouple with in house developed adjuster for radial movement with 1 mm increment inside the channel and hot wire anemometry with also in house developed adjuster for 1 mm radial movement inside the channel, respectively. Also advanced tracer technique has been developed to quantify also for the first time the dispersion of the gas dynamics of the hot and cold channels. The research has provided new knowledge and new benchmarking data that can be used to validate computational fluid dynamics (CFD) codes with conjugate heat transfer. The work and its results that have been performed within the budget have demonstrated their superior technical effectiveness and high economic feasibility to perform needed studies for safety analysis and assessment at least cost for these types of gas cooled very high temperature 4th generation nuclear reactors. Accordingly, the results obtained in this project and the unique facility and techniques that have been developed will benefit greatly the public by advancing the technology of the prismatic block nuclear reactors toward commercialization and to ensure they will be designed and operated safely by utilizing the obtained knowledge and having well validated CFD simulations integrated with heat transfer computations« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Leary, Patrick
The framework created through the Open-Source Integrated Design-Analysis Environment (IDAE) for Nuclear Energy Advanced Modeling & Simulation grant has simplify and democratize advanced modeling and simulation in the nuclear energy industry that works on a range of nuclear engineering applications. It leverages millions of investment dollars from the Department of Energy's Office of Nuclear Energy for modeling and simulation of light water reactors and the Office of Nuclear Energy's research and development. The IDEA framework enhanced Kitware’s Computational Model Builder (CMB) while leveraging existing open-source toolkits and creating a graphical end-to-end umbrella guiding end-users and developers through the nuclear energymore » advanced modeling and simulation lifecycle. In addition, the work deliver strategic advancements in meshing and visualization for ensembles.« less
Current Development in Treatment and Hydrogen Energy Conversion of Organic Solid Waste
NASA Astrophysics Data System (ADS)
Shin, Hang-Sik
2008-02-01
This manuscript summarized current developments on continuous hydrogen production technologies researched in Korea advanced institute of science and technology (KAIST). Long-term continuous pilot-scale operation of hydrogen producing processes fed with non-sterile food waste exhibited successful results. Experimental findings obtained by the optimization processes of growth environments for hydrogen producing bacteria, the development of high-rate hydrogen producing strategies, and the feasibility tests for real field application could contribute to the progress of fermentative hydrogen production technologies. Three major technologies such as controlling dilution rate depending on the progress of acidogenesis, maintaining solid retention time independently from hydraulic retention time, and decreasing hydrogen partial pressure by carbon dioxide sparging could enhance hydrogen production using anaerobic leaching beds reactors and anaerobic sequencing batch reactors. These findings could contribute to stable, reliable and effective performances of pilot-scale reactors treating organic wastes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCarthy, Kathryn A.; Adams, Bradley J.
The LWR RD&D Working Group developed a detailed list of RD&D suggestions and recommendations, which are provided in Appendix D. The Working Group then undertook a systematic ranking process, described in Appendix E. The results of the ranking process are not meant to be a strict set of priorities, but rather should provide insight into how the items generally ranked within the Working Group. Future discussions and investigation into these items could provide information that would support a change in these priorities or in their emphasis. The results of this prioritization are provided below. Note that in general, many RD&Dmore » ideas are applicable to both new Advanced Light Water Reactor (ALWR) plants and currently operating plants.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Lizhen; Yang, Ying; Sridharan, K.
2015-12-01
The mission of the Nuclear Energy Enabling Technologies (NEET) program is to develop crosscutting technologies for nuclear energy applications. Advanced structural materials with superior performance at elevated temperatures are always desired for nuclear reactors, which can improve reactor economics, safety margins, and design flexibility. They benefit not only new reactors, including advanced light water reactors (LWRs) and fast reactors such as the sodium-cooled fast reactor (SFR) that is primarily designed for management of high-level wastes, but also life extension of the existing fleet when component exchange is needed. Developing and utilizing the modern materials science tools (experimental, theoretical, and computationalmore » tools) is an important path to more efficient alloy development and process optimization. The ultimate goal of this project is, with the aid of computational modeling tools, to accelerate the development of Zr-bearing ferritic alloys that can be fabricated using conventional steelmaking methods. The new alloys are expected to have superior high-temperature creep performance and excellent radiation resistance as compared to Grade 91. The designed alloys were fabricated using arc-melting and drop-casting, followed by hot rolling and conventional heat treatments. Comprehensive experimental studies have been conducted on the developed alloys to evaluate their hardness, tensile properties, creep resistance, Charpy impact toughness, and aging resistance, as well as resistance to proton and heavy ion (Fe 2+) irradiation.« less
Advanced Small Modular Reactor Economics Model Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, Thomas J.
2014-10-01
The US Department of Energy Office of Nuclear Energy’s Advanced Small Modular Reactor (SMR) research and development activities focus on four key areas: Developing assessment methods for evaluating advanced SMR technologies and characteristics; and Developing and testing of materials, fuels and fabrication techniques; and Resolving key regulatory issues identified by US Nuclear Regulatory Commission and industry; and Developing advanced instrumentation and controls and human-machine interfaces. This report focuses on development of assessment methods to evaluate advanced SMR technologies and characteristics. Specifically, this report describes the expansion and application of the economic modeling effort at Oak Ridge National Laboratory. Analysis ofmore » the current modeling methods shows that one of the primary concerns for the modeling effort is the handling of uncertainty in cost estimates. Monte Carlo–based methods are commonly used to handle uncertainty, especially when implemented by a stand-alone script within a program such as Python or MATLAB. However, a script-based model requires each potential user to have access to a compiler and an executable capable of handling the script. Making the model accessible to multiple independent analysts is best accomplished by implementing the model in a common computing tool such as Microsoft Excel. Excel is readily available and accessible to most system analysts, but it is not designed for straightforward implementation of a Monte Carlo–based method. Using a Monte Carlo algorithm requires in-spreadsheet scripting and statistical analyses or the use of add-ons such as Crystal Ball. An alternative method uses propagation of error calculations in the existing Excel-based system to estimate system cost uncertainty. This method has the advantage of using Microsoft Excel as is, but it requires the use of simplifying assumptions. These assumptions do not necessarily bring into question the analytical results. In fact, the analysis shows that the propagation of error method introduces essentially negligible error, especially when compared to the uncertainty associated with some of the estimates themselves. The results of these uncertainty analyses generally quantify and identify the sources of uncertainty in the overall cost estimation. The obvious generalization—that capital cost uncertainty is the main driver—can be shown to be an accurate generalization for the current state of reactor cost analysis. However, the detailed analysis on a component-by-component basis helps to demonstrate which components would benefit most from research and development to decrease the uncertainty, as well as which components would benefit from research and development to decrease the absolute cost.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strydom, Gerhard; Bostelmann, F.
The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of HTGR design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The predictive capability of coupled neutronics/thermal-hydraulics and depletion simulations for reactor design and safety analysis can be assessed with sensitivity analysis (SA) and uncertainty analysis (UA) methods. Uncertainty originates from errors in physical data, manufacturing uncertainties, modelling and computational algorithms. (The interested reader is referred to the large body of published SA and UA literature for a more complete overview of the various types of uncertainties, methodologies and results obtained).more » SA is helpful for ranking the various sources of uncertainty and error in the results of core analyses. SA and UA are required to address cost, safety, and licensing needs and should be applied to all aspects of reactor multi-physics simulation. SA and UA can guide experimental, modelling, and algorithm research and development. Current SA and UA rely either on derivative-based methods such as stochastic sampling methods or on generalized perturbation theory to obtain sensitivity coefficients. Neither approach addresses all needs. In order to benefit from recent advances in modelling and simulation and the availability of new covariance data (nuclear data uncertainties) extensive sensitivity and uncertainty studies are needed for quantification of the impact of different sources of uncertainties on the design and safety parameters of HTGRs. Only a parallel effort in advanced simulation and in nuclear data improvement will be able to provide designers with more robust and well validated calculation tools to meet design target accuracies. In February 2009, the Technical Working Group on Gas-Cooled Reactors (TWG-GCR) of the International Atomic Energy Agency (IAEA) recommended that the proposed Coordinated Research Program (CRP) on the HTGR Uncertainty Analysis in Modelling (UAM) be implemented. This CRP is a continuation of the previous IAEA and Organization for Economic Co-operation and Development (OECD)/Nuclear Energy Agency (NEA) international activities on Verification and Validation (V&V) of available analytical capabilities for HTGR simulation for design and safety evaluations. Within the framework of these activities different numerical and experimental benchmark problems were performed and insight was gained about specific physics phenomena and the adequacy of analysis methods.« less
An advanced carbon reactor subsystem for carbon dioxide reduction
NASA Technical Reports Server (NTRS)
Noyes, Gary P.; Cusick, Robert J.
1986-01-01
An evaluation is presented of the development status of an advanced carbon-reactor subsystem (ACRS) for the production of water and dense, solid carbon from CO2 and hydrogen, as required in physiochemical air revitalization systems for long-duration manned space missions. The ACRS consists of a Sabatier Methanation Reactor (SMR) that reduces CO2 with hydrogen to form methane and water, a gas-liquid separator to remove product water from the methane, and a Carbon Formation Reactor (CFR) to pyrolize methane to carbon and hydrogen; the carbon is recycled to the SMR, while the produce carbon is periodically removed from the CFR. A preprototype ACRS under development for the NASA Space Station is described.
Off-design temperature effects on nuclear fuel pins for an advanced space-power-reactor concept
NASA Technical Reports Server (NTRS)
Bowles, K. J.
1974-01-01
An exploratory out-of-reactor investigation was made of the effects of short-time temperature excursions above the nominal operating temperature of 990 C on the compatibility of advanced nuclear space-power reactor fuel pin materials. This information is required for formulating a reliable reactor safety analysis and designing an emergency core cooling system. Simulated uranium mononitride (UN) fuel pins, clad with tungsten-lined T-111 (Ta-8W-2Hf) showed no compatibility problems after heating for 8 hours at 2400 C. At 2520 C and above, reactions occurred in 1 hour or less. Under these conditions free uranium formed, redistributed, and attacked the cladding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Block, R.C.; Feiner, F.
This document, Volume 3, includes papers presented at the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-7) September 10--15, 1995 at Saratoga Springs, N.Y. The following subjects are discussed: Progress in analytical and experimental work on the fundamentals of nuclear thermal-hydraulics, the development of advanced mathematical and numerical methods, ad the application of advancements in the field in the development of novel reactor concepts. Also combined issues of thermal-hydraulics and reactor/power-plant safety, core neutronics and/or radiation. Selected abstracts have been indexed separately for inclusion in the Energy Science and Technology Database.
Preliminary design of high temperature ultrasonic transducers for liquid sodium environments
NASA Astrophysics Data System (ADS)
Prowant, M. S.; Dib, G.; Qiao, H.; Good, M. S.; Larche, M. R.; Sexton, S. S.; Ramuhalli, P.
2018-04-01
Advanced reactor concepts include fast reactors (including sodium-cooled fast reactors), gas-cooled reactors, and molten-salt reactors. Common to these concepts is a higher operating temperature (when compared to light-water-cooled reactors), and the proposed use of new alloys with which there is limited operational experience. Concerns about new degradation mechanisms, such as high-temperature creep and creep fatigue, that are not encountered in the light-water fleet and longer operating cycles between refueling intervals indicate the need for condition monitoring technology. Specific needs in this context include periodic in-service inspection technology for the detection and sizing of cracking, as well as technologies for continuous monitoring of components using in situ probes. This paper will discuss research on the development and evaluation of high temperature (>550°C; >1022°F) ultrasonic probes that can be used for continuous monitoring of components. The focus of this work is on probes that are compatible with a liquid sodium-cooled reactor environment, where the core outlet temperatures can reach 550°C (1022°F). Modeling to assess sensitivity of various sensor configurations and experimental evaluation have pointed to a preferred design and concept of operations for these probes. This paper will describe these studies and ongoing work to fabricate and fully evaluate survivability and sensor performance over extended periods at operational temperatures.
Advanced Instrumentation for Transient Reactor Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corradini, Michael L.; Anderson, Mark; Imel, George
Transient testing involves placing fuel or material into the core of specialized materials test reactors that are capable of simulating a range of design basis accidents, including reactivity insertion accidents, that require the reactor produce short bursts of intense highpower neutron flux and gamma radiation. Testing fuel behavior in a prototypic neutron environment under high-power, accident-simulation conditions is a key step in licensing nuclear fuels for use in existing and future nuclear power plants. Transient testing of nuclear fuels is needed to develop and prove the safety basis for advanced reactors and fuels. In addition, modern fuel development and designmore » increasingly relies on modeling and simulation efforts that must be informed and validated using specially designed material performance separate effects studies. These studies will require experimental facilities that are able to support variable scale, highly instrumented tests providing data that have appropriate spatial and temporal resolution. Finally, there are efforts now underway to develop advanced light water reactor (LWR) fuels with enhanced performance and accident tolerance. These advanced reactor designs will also require new fuel types. These new fuels need to be tested in a controlled environment in order to learn how they respond to accident conditions. For these applications, transient reactor testing is needed to help design fuels with improved performance. In order to maximize the value of transient testing, there is a need for in-situ transient realtime imaging technology (e.g., the neutron detection and imaging system like the hodoscope) to see fuel motion during rapid transient excursions with a higher degree of spatial and temporal resolution and accuracy. There also exists a need for new small, compact local sensors and instrumentation that are capable of collecting data during transients (e.g., local displacements, temperatures, thermal conductivity, neutron flux, etc.).« less
Design and Analysis of Embedded I&C for a Fully Submerged Magnetically Suspended Impeller Pump
Melin, Alexander M.; Kisner, Roger A.
2018-04-03
Improving nuclear reactor power system designs and fuel-processing technologies for safer and more efficient operation requires the development of new component designs. In particular, many of the advanced reactor designs such as the molten salt reactors and high-temperature gas-cooled reactors have operating environments beyond the capability of most currently available commercial components. To address this gap, new cross-cutting technologies need to be developed that will enable design, fabrication, and reliable operation of new classes of reactor components. The Advanced Sensor Initiative of the Nuclear Energy Enabling Technologies initiative is investigating advanced sensor and control designs that are capable of operatingmore » in these extreme environments. Under this initiative, Oak Ridge National Laboratory (ORNL) has been developing embedded instrumentation and control (I&C) for extreme environments. To develop, test, and validate these new sensing and control techniques, ORNL is building a pump test bed that utilizes submerged magnetic bearings to levitate the shaft. The eventual goal is to apply these techniques to a high-temperature (700°C) canned rotor pump that utilizes active magnetic bearings to eliminate the need for mechanical bearings and seals. The technologies will benefit the Next Generation Power Plant, Advanced Reactor Concepts, and Small Modular Reactor programs. In this paper, we will detail the design and analysis of the embedded I&C test bed with submerged magnetic bearings, focusing on the interplay between the different major systems. Then we will analyze the forces on the shaft and their role in the magnetic bearing design. Next, we will develop the radial and thrust bearing geometries needed to meet the operational requirements of the test bed. In conclusion, we will present some initial system identification results to validate the theoretical models of the test bed dynamics.« less
Design and Analysis of Embedded I&C for a Fully Submerged Magnetically Suspended Impeller Pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melin, Alexander M.; Kisner, Roger A.
Improving nuclear reactor power system designs and fuel-processing technologies for safer and more efficient operation requires the development of new component designs. In particular, many of the advanced reactor designs such as the molten salt reactors and high-temperature gas-cooled reactors have operating environments beyond the capability of most currently available commercial components. To address this gap, new cross-cutting technologies need to be developed that will enable design, fabrication, and reliable operation of new classes of reactor components. The Advanced Sensor Initiative of the Nuclear Energy Enabling Technologies initiative is investigating advanced sensor and control designs that are capable of operatingmore » in these extreme environments. Under this initiative, Oak Ridge National Laboratory (ORNL) has been developing embedded instrumentation and control (I&C) for extreme environments. To develop, test, and validate these new sensing and control techniques, ORNL is building a pump test bed that utilizes submerged magnetic bearings to levitate the shaft. The eventual goal is to apply these techniques to a high-temperature (700°C) canned rotor pump that utilizes active magnetic bearings to eliminate the need for mechanical bearings and seals. The technologies will benefit the Next Generation Power Plant, Advanced Reactor Concepts, and Small Modular Reactor programs. In this paper, we will detail the design and analysis of the embedded I&C test bed with submerged magnetic bearings, focusing on the interplay between the different major systems. Then we will analyze the forces on the shaft and their role in the magnetic bearing design. Next, we will develop the radial and thrust bearing geometries needed to meet the operational requirements of the test bed. In conclusion, we will present some initial system identification results to validate the theoretical models of the test bed dynamics.« less
A Blueprint for GNEP Advanced Burner Reactor Startup Fuel Fabrication Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. Khericha
2010-12-01
The purpose of this article is to identify the requirements and issues associated with design of GNEP Advanced Burner Reactor Fuel Facility. The report was prepared in support of providing data for preparation of a NEPA Environmental Impact Statement in support the U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives was to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu) -239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn thesemore » actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept was proposed to achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR was proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu was assumed to be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) was being considered for fabrication of WG Pu fuel for the ABR. It was estimated that the facility will provide the startup fuel for 10-15 years and would take 3 to 5 years to construct.« less
Preliminary design studies on a nuclear seawater desalination system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wibisono, A. F.; Jung, Y. H.; Choi, J.
2012-07-01
Seawater desalination is one of the most promising technologies to provide fresh water especially in the arid region. The most used technology in seawater desalination are thermal desalination (MSF and MED) and membrane desalination (RO). Some developments have been done in the area of coupling the desalination plant with a nuclear reactor to reduce the cost of energy required in thermal desalination. The coupling a nuclear reactor to a desalination plant can be done either by using the co-generation or by using dedicated heat from a nuclear system. The comparison of the co-generation nuclear reactor with desalination plant, dedicated nuclearmore » heat system, and fossil fueled system will be discussed in this paper using economical assessment with IAEA DEEP software. A newly designed nuclear system dedicated for the seawater desalination will also be suggested by KAIST (Korea Advanced Inst. of Science and Technology) research team and described in detail within this paper. The suggested reactor system is using gas cooled type reactor and in this preliminary study the scope of design will be limited to comparison of two cases in different operating temperature ranges. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Meimei; Natesan, K.; Chen, Weiying
This report provides an update on understanding and predicting the effects of long-term thermal aging on microstructure and tensile properties of G91 to corroborate the ASME Code rules in strength reduction due to elevated temperature service. The research is to support the design and long-term operation of G91 structural components in sodium-cooled fast reactors (SFRs). The report is a Level 2 deliverable in FY17 (M2AT-17AN1602017), under the Work Package AT-17AN160201, “SFR Materials Testing” performed by the Argonne National Laboratory (ANL), as part of the Advanced Reactor Technologies Program.
Temperature Swing Adsorption Compressor Development
NASA Technical Reports Server (NTRS)
Finn, John E.; Mulloth, Lila M.; Affleck, Dave L.
2001-01-01
Closing the oxygen loop in an air revitalization system based on four-bed molecular sieve and Sabatier reactor technology requires a vacuum pump-compressor that can take the low-pressure CO, from the 4BMS and compress and store for use by a Sabatier reactor. NASA Ames Research Center proposed a solid-state temperature-swing adsorption (TSA) compressor that appears to meet performance requirements, be quiet and reliable, and consume less power than a comparable mechanical compressor/accumulator combination. Under this task, TSA compressor technology is being advanced through development of a complete prototype system. A liquid-cooled TSA compressor has been partially tested, and the rest of the system is being fabricated. An air-cooled TSA compressor is also being designed.
Nuclear Security Applications of Antineutrino Detectors: Current Capabilities and Future Prospects
Bernstein, Adam; Baldwin, George; Boyer, Brian; ...
2010-12-10
Antineutrinos are electrically neutral, nearly massless fundamental particles produced in large numbers in the cores of nuclear reactors and in nuclear explosions. In the half century since their discovery, major advances in the understanding of their properties, and in detector technology, have opened the door to a new discipline—Applied Antineutrino Physics. Because antineutrinos are inextricably linked to the process of nuclear fission, there are many applications of interest in nuclear nonproliferation. This work presents a comprehensive survey of applied antineutrino physics relevant for nonproliferation, summarizes recent advances in the field, describes the overlap of this nascent discipline with other ongoingmore » fundamental and applied antineutrino research, and charts a course for research and development for future applications. It is intended as a resource for policymakers, researchers, and the wider nuclear nonproliferation community.« less
Nuclear security applications of antineutrino detectors : current capabilities and future prospects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernstein, A.; Goodman, M.; Baldwin, G.
2010-12-10
Antineutrinos are electrically neutral, nearly massless fundamental particles produced in large numbers in the cores of nuclear reactors and in nuclear explosions. In the half century since their discovery, major advances in the understanding of their properties, and in detector technology, have opened the door to a new discipline - Applied Antineutrino Physics. Because antineutrinos are inextricably linked to the process of nuclear fission, there are many applications of interest in nuclear nonproliferation. This paper presents a comprehensive survey of applied antineutrino physics relevant for nonproliferation, summarizes recent advances in the field, describes the overlap of this nascent discipline withmore » other ongoing fundamental and applied antineutrino research, and charts a course for research and development for future applications. It is intended as a resource for policymakers, researchers, and the wider nuclear nonproliferation community.« less
Simulator platform for fast reactor operation and safety technology demonstration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vilim, R. B.; Park, Y. S.; Grandy, C.
2012-07-30
A simulator platform for visualization and demonstration of innovative concepts in fast reactor technology is described. The objective is to make more accessible the workings of fast reactor technology innovations and to do so in a human factors environment that uses state-of-the art visualization technologies. In this work the computer codes in use at Argonne National Laboratory (ANL) for the design of fast reactor systems are being integrated to run on this platform. This includes linking reactor systems codes with mechanical structures codes and using advanced graphics to depict the thermo-hydraulic-structure interactions that give rise to an inherently safe responsemore » to upsets. It also includes visualization of mechanical systems operation including advanced concepts that make use of robotics for operations, in-service inspection, and maintenance.« less
10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.
Code of Federal Regulations, 2013 CFR
2013-01-01
... notification of shipment of irradiated reactor fuel and nuclear waste. (a)(1) As specified in paragraphs (b... shipment of irradiated reactor fuel or nuclear waste must contain the following information: (1) The name... nuclear waste shipment; (2) A description of the irradiated reactor fuel or nuclear waste contained in the...
10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.
Code of Federal Regulations, 2012 CFR
2012-01-01
... notification of shipment of irradiated reactor fuel and nuclear waste. (a) As specified in paragraphs (b), (c... of the shipper, carrier, and receiver of the irradiated reactor fuel or nuclear waste shipment; (2) A description of the irradiated reactor fuel or nuclear waste contained in the shipment, as specified in the...
10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.
Code of Federal Regulations, 2014 CFR
2014-01-01
... notification of shipment of irradiated reactor fuel and nuclear waste. (a)(1) As specified in paragraphs (b... shipment of irradiated reactor fuel or nuclear waste must contain the following information: (1) The name... nuclear waste shipment; (2) A description of the irradiated reactor fuel or nuclear waste contained in the...
UN TRISO Compaction in SiC for FCM Fuel Irradiations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terrani, Kurt A.; Trammell, Michael P.; Kiggans, James O.
2016-11-01
The U.S. Department of Energy Office of Nuclear Energy (DOE-NE) Advanced Fuels Campaign (AFC) is conducting research and development to elevate the technology readiness level of Fully Ceramic Microencapsulated (FCM) fuels, a candidate nuclear fuel with potentially enhanced accident tolerance due to very high fission product retention. One of the early activities in FY17 was to demonstrate production of FCM pellets with uranium nitride TRISO particles. This was carried out in preparation of the larger pellet production campaign in support of the upcoming irradiation testing of this fuel form at INL’s Advanced Test Reactor.
Developments in neutron beam devices and an advanced cold source for the NIST research reactor
NASA Astrophysics Data System (ADS)
Williams, Robert E.; Rowe, J. Michael
2002-01-01
The last 5 yr has been a period of steady growth in instrument capabilities and utilization at the National Institute of Standards and Technology Center for Neutron Research. Since the installation of the liquid hydrogen cold source in 1995, all of the instruments originally planned for the Cold Neutron Research Facility have been completed and made available to users, and three new thermal neutron instruments have been installed. Currently, an advanced cold source is being fabricated that will better couple the reactor core and the existing network of neutron guides. Many improvements are also being made in neutron optics to enhance the beam characteristics of certain instruments. For example, optical filters will be installed that will increase the fluxes at the two 30-m SANS instruments by as much as two. Sets of MgF 2 biconcave lenses have been developed for SANS that have demonstrated a significant improvement in resolution over conventional pinhole collimation. The recently commissioned high-flux backscattering spectrometer incorporates a converging guide, a large spherically focusing monochromator and analyzer, and a novel phase space transform chopper, to achieve very high intensity while maintaining excellent energy resolution. Finally, a prototype low background, doubly focusing neutron monochromator is nearing completion that will be the heart of a new cold neutron spectrometer, as well as two new thermal neutron triple axis spectrometers.
Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report October 2014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogden, Dan
Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report October 2014 Highlights • Rory Kennedy, Dan Ogden and Brenden Heidrich traveled to Germantown October 6-7, for a review of the Infrastructure Management mission with Shane Johnson, Mike Worley, Bradley Williams and Alison Hahn from NE-4 and Mary McCune from NE-3. Heidrich briefed the group on the project progress from July to October 2014 as well as the planned path forward for FY15. • Jim Cole gave two invited university seminars at Ohio State University and University of Florida, providing an overview of NSUF including available capabilities and themore » process for accessing facilities through the peer reviewed proposal process. • Jim Cole and Rory Kennedy co-chaired the NuMat meeting with Todd Allen. The meeting, sponsored by Elsevier publishing, was held in Clearwater, Florida, and is considered one of the premier nuclear fuels and materials conferences. Over 340 delegates attended with 160 oral and over 200 posters presented over 4 days. • Thirty-one pre-applications were submitted for NSUF access through the NE-4 Combined Innovative Nuclear Research Funding Opportunity Announcement. • Fourteen proposals were received for the NSUF Rapid Turnaround Experiment Summer 2014 call. Proposal evaluations are underway. • John Jackson and Rory Kennedy attended the Nuclear Fuels Industry Research meeting. Jackson presented an overview of ongoing NSUF industry research.« less
Brookhaven highlights, October 1978-September 1979. [October 1978 to September 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-01-01
These highlights present an overview of the major research and development achievements at Brookhaven National Laboratory from October 1978 to September 1979. Specific areas covered include: accelerator and high energy physics programs; high energy physics research; the AGS and improvements to the AGS; neutral beam development; heavy ion fusion; superconducting power cables; ISABELLE storage rings; the BNL Tandem accelerator; heavy ion experiments at the Tandem; the High Flux Beam Reactor; medium energy physics; nuclear theory; atomic and applied physics; solid state physics; neutron scattering studies; x-ray scattering studies; solid state theory; defects and disorder in solids; surface physics; the Nationalmore » Synchrotron Light Source ; Chemistry Department; Biology Department; Medical Department; energy sciences; environmental sciences; energy technology programs; National Center for Analysis of Energy Systems; advanced reactor systems; nuclear safety; National Nuclear Data Center; nuclear materials safeguards; Applied Mathematics Department; and support activities. (GHT)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
BLanc, Katya Le; Powers, David; Joe, Jeffrey
2015-08-01
Control room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. Nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Upgrades in the U.S. do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The goal of the control room upgrade benefits research is to identify previously overlooked benefits of modernization, identify candidate technologiesmore » that may facilitate such benefits, and demonstrate these technologies through human factors research. This report describes a pilot study to test upgrades to the Human Systems Simulation Laboratory at INL.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cappiello, M.; Hobbins, R.; Penny, K.
As part of the Department of Energy Advanced Fuel Cycle program, a series of fuels development irradiation tests have been performed in the Advanced Test Reactor (ATR) at the Idaho National Laboratory. These tests are providing excellent data for advanced fuels development. The program is focused on the transmutation of higher actinides which best can be accomplished in a sodium-cooled fast reactor. Because a fast test reactor is no longer available in the US, a special test vehicle is used to achieve near-prototypic fast reactor conditions (neutron spectra and temperature) for use in ATR (a water-cooled thermal reactor). As partmore » of the testing program, there were many successful tests of advanced fuels including metals and ceramics. Recently however, there have been three experimental campaigns using metal fuels that experienced failure during irradiation. At the request of the program, an independent review committee was convened to review the post-test analyses performed by the fuels development team, to assess the conclusions of the team for the cause of the failures, to assess the adequacy and completeness of the analyses, to identify issues that were missed, and to make recommendations for improvements in the design and operation of future tests. Although there is some difference of opinion, the review committee largely agreed with the conclusions of the fuel development team regarding the cause of the failures. For the most part, the analyses that support the conclusions are sufficient.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Meimei; Almer, Jonathan D.; Yang, Yong
2016-01-01
This report provides a summary of research activities on understanding microstructure – property correlation in reactor materials using in situ high-energy X-rays. The report is a Level 2 deliverable in FY16 (M2CA-13-IL-AN_-0403-0111), under the Work Package CA-13-IL-AN_- 0403-01, “Microstructure-Property Correlation in Reactor Materials using in situ High Energy Xrays”, as part of the DOE-NE NEET Program. The objective of this project is to demonstrate the application of in situ high energy X-ray measurements of nuclear reactor materials under thermal-mechanical loading, to understand their microstructure-property relationships. The gained knowledge is expected to enable accurate predictions of mechanical performance of these materialsmore » subjected to extreme environments, and to further facilitate development of advanced reactor materials. The report provides detailed description of the in situ X-ray Radiated Materials (iRadMat) apparatus designed to interface with a servo-hydraulic load frame at beamline 1-ID at the Advanced Photon Source. This new capability allows in situ studies of radioactive specimens subject to thermal-mechanical loading using a suite of high-energy X-ray scattering and imaging techniques. We conducted several case studies using the iRadMat to obtain a better understanding of deformation and fracture mechanisms of irradiated materials. In situ X-ray measurements on neutron-irradiated pure metal and model alloy and several representative reactor materials, e.g. pure Fe, Fe-9Cr model alloy, 316 SS, HT-UPS, and duplex cast austenitic stainless steels (CASS) CF-8 were performed under tensile loading at temperatures of 20-400°C in vacuum. A combination of wide-angle X-ray scattering (WAXS), small-angle X-ray scattering (SAXS), and imaging techniques were utilized to interrogate microstructure at different length scales in real time while the specimen was subject to thermal-mechanical loading. In addition, in situ X-ray studies were complemented and benchmarked by ex situ characterization using advanced electron microscopy, atom probe tomography (APT) and micro/nano-indentation. The report presented in situ tensile test results on neutron-irradiated pure Fe, Fe-9Cr model alloy, 316 SS and CASS CF-8. These in situ experiments demonstrate the broad applications of the new capability in understanding several outstanding issues related to irradiated materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wootan, David W.; Casella, Andrew M.; Asner, David M.
PNNL has developed and continues to develop innovative methods for characterizing irradiated materials from nuclear reactors and particle accelerators for various clients and collaborators around the world. The continued development of these methods, in addition to the ability to perform unique scientific investigations of the effects of radiation on materials could be greatly enhanced with easy access to irradiation facilities. A Tunable Irradiation Testbed with customized targets (a 30 MeV, 1mA cyclotron or similar coupled to a unique target system) is shown to provide a much more flexible and cost-effective source of irradiating particles than a test reactor or isotopicmore » source. The configuration investigated was a single shielded building with multiple beam lines from a small, flexible, high flux irradiation source. Potential applications investigated were the characterization of radiation damage to materials applicable to advanced reactors, fusion reactor, legacy waste, (via neutron spectra tailored to HTGR, molten salt, LWR, LMR, fusion environments); 252Cf replacement; characterization of radiation damage to materials of interest to High Energy Physics to enable the neutrino program; and research into production of short lived isotopes for potential medical and other applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Block, R.C.; Feiner, F.
1995-09-01
Technical papers accepted for presentation at the Seventh International Topical Meeting on Nuclear Reactor Thermal-Hydraulics are included in the present Proceedings. Except for the invited papers in the plenary session, all other papers are contributed papers. The topics of the meeting encompass all major areas of nuclear thermal-hydraulics, including analytical and experimental works on the fundamental mechanisms of fluid flow and heat transfer, the development of advanced mathematical and numerical methods, and the application of advancements in the field in the development of novel reactor concepts. Because of the complex nature of nuclear reactors and power plants, several papers dealmore » with the combined issues of thermal-hydraulics and reactor/power-plant safety, core neutronics and/or radiation. The participation in the conference by the authors from several countries and four continents makes the Proceedings a comprehensive review of the recent progress in the field of nuclear reactor thermal-hydraulics worldwide. Individual papers have been cataloged separately.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-28
... University of Illinois Advanced TRIGA Reactor, License No. R-115 The U.S. Nuclear Regulatory Commission (NRC) is noticing the termination of Facility Operating License No. R-115, for the University of Illinois... Operating License No. R-115 is terminated. The above referenced documents may be examined, and/or copied for...
Analysis of Advanced Fuel Assemblies and Core Designs for the Current and Next Generations of LWRs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ragusa, Jean; Vierow, Karen
2011-09-01
The objective of the project is to design and analyze advanced fuel assemblies for use in current and future light water reactors and to assess their ability to reduce the inventory of transuranic elements, while preserving operational safety. The reprocessing of spent nuclear fuel can delay or avoid the need for a second geological repository in the US. Current light water reactor fuel assembly designs under investigation could reduce the plutonium inventory of reprocessed fuel. Nevertheless, these designs are not effective in stabilizing or reducing the inventory of minor actinides. In the course of this project, we developed and analyzedmore » advanced fuel assembly designs with improved thermal transmutation capability regarding transuranic elements and especially minor actinides. These designs will be intended for use in thermal spectrum (e.g., current and future fleet of light water reactors in the US). We investigated various fuel types, namely high burn-up advanced mixed oxides and inert matrix fuels, in various geometrical designs that are compliant with the core internals of current and future light water reactors. Neutronic/thermal hydraulic effects were included. Transmutation efficiency and safety parameters were used to rank and down-select the various designs.« less
NASA Astrophysics Data System (ADS)
Carroll, Spencer
As current reactors approach the end of their operable lifetime, new reactors are needed if nuclear power is to continue being generated in the United States. Some utilities have already began construction on newer, more advanced LWR reactors, which use the same fuel as current reactors and have a similar but updated design. Others are researching next generation (GEN-IV) reactors which have new designs that utilize alternative fuel, coolants and other reactor materials. Many of these alternative fuels are capable of achieving higher burnups and are designed to be more accident tolerant than the currently used UO2 fuel. However, before these new materials can be used, extensive research must be done in order to obtain a detailed understanding of how the new fuels and other materials will interact. New fuels, such as uranium nitride (UN) and uranium carbide (UC) have several advantages over UO2, such as increased burnup capabilities and higher thermal conductivities. However, there are issues with each that prevent UC and UN from being used as direct replacements for UO2. Both UC and UN swell at a significantly higher rate than UO2 and neither fuel reacts favorably when exposed to water. Due to this, UC and UN are being considered more for GEN-IV reactors that use alternative coolant rather than for current LWRs. In an effort to increase accident tolerance, silicon carbide (SiC) is being considered for use as an alternative cladding. The high strength, high melting point and low oxidation of SiC make it an attractive cladding choice, especially in an accident scenario. However, as a ceramic, SiC is not ductile and will not creep outwards upon pellet-clad mechanical interaction (PCMI) which can cause a large build up in interfacial pressure. In order to understand the interaction between the high swelling fuels and unyielding SiC cladding, data on the properties and behaviors of these materials must be gathered and incorporated into FRAPCON. FRAPCON is a fuel performance code developed by PNNL and used by the Nuclear Regulatory Commission (NRC) as a licensing code for US reactors. FRAPCON will give insight into how these new fuel-cladding combinations will affect cladding hoop stress and help determine if the new materials are feasible for use in a reactor. To accurately simulate the interaction between the new materials, a soft pellet model that allows for stresses on the pellet to affect pellet deformation will have to be implemented. Currently, FRAPCON uses a rigid pellet model that does not allow for feedback of the cladding onto the pellet. Since SiC does not creep at the temperatures being considered and is not ductile, any PCMI create a much higher interfacial pressure than is possible with Zircaloy. Because of this, it is necessary to implement a model that allows for pellet creep to alleviate some of these cladding stresses. These results will then be compared to FEMAXI-6, a Japanese fuel performance code that already calculates pellet stress and allows for cladding feedback onto the pellet. This research is intended to be a continuation and verification of previous work done by USC on the analysis of accident tolerant fuels with alternative claddings and is intended to prove that a soft pellet model is necessary to accurately model any fuel with SiC cladding.
NASA Astrophysics Data System (ADS)
Seibert, Rachel L.; Terrani, Kurt A.; Velázquez, Daniel; Hunn, John D.; Baldwin, Charles A.; Montgomery, Fred C.; Terry, Jeff
2018-03-01
The structure and speciation of fission products within the SiC barrier layer of tristructural-isotropic (TRISO) fuel particles irradiated to 19.6% fissions per initial metal atom (FIMA) burnup in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) was investigated. As-irradiated fuel particles, as well as those subjected to simulated accident scenarios, were examined. The TRISO particles were characterized using synchrotron X-ray absorption fine-structure spectroscopy (XAFS) at the Materials Research Collaborative Access Team (MRCAT) beamline at the Advanced Photon Source. The TRISO particles were produced at Oak Ridge National Laboratory under the Advanced Gas Reactor Fuel Development and Qualification Program and sent to the ATR for irradiation. XAFS measurements on the palladium and silver K-edges were collected using the MRCAT undulator beamline. Analysis of the Pd edge indicated the formation of palladium silicides of the form PdxSi (2 ≤ x ≤ 3). In contrast, Ag was found to be metallic within the SiC shell safety tested to 1700 °C. To the best of our knowledge, this is the first result demonstrating metallic bonding of silver from fissioned samples. Knowledge of these reaction pathways will allow for better simulations of radionuclide transport in the various coating layers of TRISO fuels for next generation nuclear reactors. They may also suggest different ways to modify TRISO particles to improve their fuel performance and to mitigate potential fission product release under both normal operation and accident conditions.
Seibert, Rachel L.; Terrani, Kurt A.; Velázquez, Daniel; ...
2018-03-01
The structure and speciation of fission products within the SiC barrier layer of tristructural-isotropic (TRISO) fuel particles irradiated to 19.6% fissions per initial metal atom (FIMA) burnup in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) was investigated. As-irradiated fuel particles, as well as those subjected to simulated accident scenarios, were examined. The TRISO particles were characterized using synchrotron X-ray absorption fine-structure spectroscopy (XAFS) at the Materials Research Collaborative Access Team (MRCAT) beamline at the Advanced Photon Source. The TRISO particles were produced at Oak Ridge National Laboratory under the Advanced Gas Reactor Fuel Development and Qualification Programmore » and sent to the ATR for irradiation. XAFS measurements on the palladium and silver K-edges were collected using the MRCAT undulator beamline. Analysis of the Pd edge indicated the formation of palladium silicides of the form Pd xSi (2 ≤ x ≤ 3). In contrast, Ag was found to be metallic within the SiC shell safety tested to 1700 °C. To the best of our knowledge, this is the first result demonstrating metallic bonding of silver from fissioned samples. Knowledge of these reaction pathways will allow for better simulations of radionuclide transport in the various coating layers of TRISO fuels for next generation nuclear reactors. In conclusion, they may also suggest different ways to modify TRISO particles to improve their fuel performance and to mitigate potential fission product release under both normal operation and accident conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seibert, Rachel L.; Terrani, Kurt A.; Velázquez, Daniel
The structure and speciation of fission products within the SiC barrier layer of tristructural-isotropic (TRISO) fuel particles irradiated to 19.6% fissions per initial metal atom (FIMA) burnup in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) was investigated. As-irradiated fuel particles, as well as those subjected to simulated accident scenarios, were examined. The TRISO particles were characterized using synchrotron X-ray absorption fine-structure spectroscopy (XAFS) at the Materials Research Collaborative Access Team (MRCAT) beamline at the Advanced Photon Source. The TRISO particles were produced at Oak Ridge National Laboratory under the Advanced Gas Reactor Fuel Development and Qualification Programmore » and sent to the ATR for irradiation. XAFS measurements on the palladium and silver K-edges were collected using the MRCAT undulator beamline. Analysis of the Pd edge indicated the formation of palladium silicides of the form Pd xSi (2 ≤ x ≤ 3). In contrast, Ag was found to be metallic within the SiC shell safety tested to 1700 °C. To the best of our knowledge, this is the first result demonstrating metallic bonding of silver from fissioned samples. Knowledge of these reaction pathways will allow for better simulations of radionuclide transport in the various coating layers of TRISO fuels for next generation nuclear reactors. In conclusion, they may also suggest different ways to modify TRISO particles to improve their fuel performance and to mitigate potential fission product release under both normal operation and accident conditions.« less
Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report November 2014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soelberg, Renae
2014-11-01
Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report November 2014 Highlights Rory Kennedy and Sarah Robertson attended the American Nuclear Society Winter Meeting and Nuclear Technology Expo in Anaheim, California, Nov. 10-13. ATR NSUF exhibited at the technology expo where hundreds of meeting participants had an opportunity to learn more about ATR NSUF. Dr. Kennedy briefed the Nuclear Engineering Department Heads Organization (NEDHO) on the workings of the ATR NSUF. • Rory Kennedy, James Cole and Dan Ogden participated in a reactor instrumentation discussion with Jean-Francois Villard and Christopher Destouches of CEA and several members of themore » INL staff. • ATR NSUF received approval from the NE-20 office to start planning the annual Users Meeting. The meeting will be held at INL, June 22-25. • Mike Worley, director of the Office of Innovative Nuclear Research (NE-42), visited INL Nov. 4-5. Milestones Completed • Recommendations for the Summer Rapid Turnaround Experiment awards were submitted to DOE-HQ Nov. 12 (Level 2 milestone due Nov. 30). Major Accomplishments/Activities • The University of California, Santa Barbara 2 experiment was unloaded from the GE-2000 at HFEF. The experiment specimen packs will be removed and shipped to ORNL for PIE. • The Terrani experiment, one of three FY 2014 new awards, was completed utilizing the Advanced Photon Source MRCAT beamline. The experiment investigated the chemical state of Ag and Pd in SiC shell of irradiated TRISO particles via X-ray Absorption Fine Structure (XAFS) spectroscopy. Upcoming Meetings/Events • The ATR NSUF program review meeting will be held Dec. 9-10 at L’Enfant Plaza. In addition to NSUF staff and users, NE-4, NE-5 and NE-7 representatives will attend the meeting. Awarded Research Projects Boise State University Rapid Turnaround Experiments (14-485 and 14-486) Nanoindentation and TEM work on the T91, HT9, HCM12A and 9Cr ODS specimens has been completed at CAES by Boise State PI Janelle Wharry and Cory Dolph. PI Corey Dolph returned in early November to complete their research by performing nanoindentation on unirradiated specimens that will be used as a baseline for their research.« less
A Research Framework for Demonstrating Benefits of Advanced Control Room Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Blanc, Katya; Boring, Ronald; Joe, Jeffrey
Control Room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. A full-scale modernization might, for example, entail replacement of all analog panels with digital workstations. Such modernizations have been undertaken successfully in upgrades in Europe and Asia, but the U.S. has yet to undertake a control room upgrade of this magnitude. Instead, nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digitalmore » modernizations. Previous research under the U.S. Department of Energy’s Light Water Reactor Sustainability Program has helped establish a systematic process for control room upgrades that support the transition to a hybrid control. While the guidance developed to date helps streamline the process of modernization and reduce costs and uncertainty associated with introducing digital control technologies into an existing control room, these upgrades do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The aim of the control room benefits research presented here is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report serves as an outline for planned research on the benefits of greater modernization in the main control rooms of nuclear power plants.« less
Advanced Fuels Campaign FY 2014 Accomplishments Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braase, Lori; May, W. Edgar
The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors; enhance proliferation resistance of nuclear fuel; effectively utilize nuclear energy resources; and address the longer-term waste management challenges. This includes development of a state-of-the art Research and Development (R&D) infrastructure to support the use of a “goal-oriented science-based approach.” In support of the Fuel Cycle Research and Development (FCRD) program, AFC is responsible for developing advanced fuels technologies to support the various fuel cyclemore » options defined in the Department of Energy (DOE) Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. AFC uses a “goal-oriented, science-based approach” aimed at a fundamental understanding of fuel and cladding fabrication methods and performance under irradiation, enabling the pursuit of multiple fuel forms for future fuel cycle options. This approach includes fundamental experiments, theory, and advanced modeling and simulation. The modeling and simulation activities for fuel performance are carried out under the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program, which is closely coordinated with AFC. In this report, the word “fuel” is used generically to include fuels, targets, and their associated cladding materials. R&D of light water reactor (LWR) fuels with enhanced accident tolerance is also conducted by AFC. These fuel systems are designed to achieve significantly higher fuel and plant performance to allow operation to significantly higher burnup, and to provide enhanced safety during design basis and beyond design basis accident conditions. The overarching goal is to develop advanced nuclear fuels and materials that are robust, have high performance capability, and are more tolerant to accident conditions than traditional fuel systems. AFC management and integration activities included continued support for international collaborations, primarily with France, Japan, the European Union, Republic of Korea, and China, as well as various working group and expert group activities in the Organization for Economic Cooperation and Development Nuclear Energy Agency (OECD-NEA) and the International Atomic Energy Agency (IAEA). Three industry-led Funding Opportunity Announcements (FOAs) and two university-led Integrated Research Projects (IRPs), funded in 2013, made significant progress in fuels and materials development. All are closely integrated with AFC and Accident Tolerant Fuels (ATF) research. Accomplishments made during fiscal year (FY) 2014 are highlighted in this report, which focuses on completed work and results. The process details leading up to the results are not included; however, the lead technical contact is provided for each section.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynard-Carette, C.; Lyoussi, A.
Research and development on nuclear fuel behavior under irradiations and accelerated ageing of structure materials is a key issue for sustainable nuclear energy in order to meet specific needs by keeping the best level of safety. A new Material Testing Reactor (MTR), the Jules Horowitz Reactor (JHR) currently under construction in the South of France in the CEA Cadarache research centre will offer a real opportunity to perform R and D programs and hence will crucially contribute to the selection, optimization and qualification of innovative materials and fuels. To perform such programs advanced accurate and innovative experiments, irradiation devices thatmore » contain material and fuel samples are required to be set up inside or beside the reactor core. These experiments needs beforehand in situ and on line sophisticated measurements to accurately reach specific and determining parameters such as thermal and fast neutron fluxes, nuclear heating and temperature conditions to precisely monitor and control the conducted assays. Consequently, since 2009 CEA and Aix-Marseille University collaborate in order to design and develop a new multi-sensor device which will be dedicated to measuring profiles of such conditions inside the experimental channels of the JHR. These works are performed in the framework of two complementary joint research programs called MAHRI-BETHY and INCORE. These programs couple experimental studies carried out both out-of nuclear fluxes (in laboratory) and under irradiation conditions (in OSIRIS MTR reactor in France and MARIA MTR reactor in Poland) with numerical works realized by thermal simulations (CAST3M code) and Monte Carlo simulations (MCNP code). These programs deal with three main aims. The first one corresponds to the design and/or the test of new in-pile instrumentation. The second one concerns the development of advanced calibration procedures in particular in the case of one specific sensor: a differential calorimeter used to quantify nuclear heating. The last one consists in the development of accurate measurement and analysis methods. The paper will be dedicated to a complete review of the experimental and numerical works performed since 2009 thanks to two parts. The first part will detail a new thermal approach implemented to improve nuclear heating measurements by radiometric calorimeters. New experimental tools (calorimeter prototypes and set-ups such BETHY Bench) developed to perform preliminary out-of-pile studies under suitable conditions will be presented (temperature and velocity of the external cooling fluid, heat source localization and intensity inside the calorimetric cells). Then the response of two kinds of sensors, their calibrations curves and their thermal behaviors will be compared for various parameters. Finally validated numerical thermal and Monte Carlo works will be discussed to propose new improvements. The second parts of the paper will focus on works realized in order to design, develop and test the first prototype of the multi-sensor device called CARMEN [7-9]. The two mock-ups dedicated respectively to neutron measurements and photon measurements will be detailed. The results obtained during two irradiation campaigns inside the periphery of OSIRIS reactor will be shown. The new analysis method will be discussed. (authors)« less
Status of the irradiation test vehicle for testing fusion materials in the Advanced Test Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, H.; Gomes, I.C.; Smith, D.L.
1998-09-01
The design of the irradiation test vehicle (ITV) for the Advanced Test Reactor (ATR) has been completed. The main application for the ITV is irradiation testing of candidate fusion structural materials, including vanadium-base alloys, silicon carbide composites, and low-activation steels. Construction of the vehicle is underway at the Lockheed Martin Idaho Technology Company (LMITCO). Dummy test trains are being built for system checkout and fine-tuning. Reactor insertion of the ITV with the dummy test trains is scheduled for fall 1998. Barring unexpected difficulties, the ITV will be available for experiments in early 1999.
ADX: A high Power Density, Advanced RF-Driven Divertor Test Tokamak for PMI studies
NASA Astrophysics Data System (ADS)
Whyte, Dennis; ADX Team
2015-11-01
The MIT PSFC and collaborators are proposing an advanced divertor experiment, ADX; a divertor test tokamak dedicated to address critical gaps in plasma-material interactions (PMI) science, and the world fusion research program, on the pathway to FNSF/DEMO. Basic ADX design features are motivated and discussed. In order to assess the widest range of advanced divertor concepts, a large fraction (>50%) of the toroidal field volume is purpose-built with innovative magnetic topology control and flexibility for assessing different surfaces, including liquids. ADX features high B-field (>6 Tesla) and high global power density (P/S ~ 1.5 MW/m2) in order to access the full range of parallel heat flux and divertor plasma pressures foreseen for reactors, while simultaneously assessing the effect of highly dissipative divertors on core plasma/pedestal. Various options for efficiently achieving high field are being assessed including the use of Alcator technology (cryogenic cooled copper) and high-temperature superconductors. The experimental platform would also explore advanced lower hybrid current drive and ion-cyclotron range of frequency actuators located at the high-field side; a location which is predicted to greatly reduce the PMI effects on the launcher while minimally perturbing the core plasma. The synergistic effects of high-field launchers with high total B on current and flow drive can thus be studied in reactor-relevant boundary plasmas.
NASA Astrophysics Data System (ADS)
Calderoni, P.; Sharpe, J.; Shimada, M.; Denny, B.; Pawelko, B.; Schuetz, S.; Longhurst, G.; Hatano, Y.; Hara, M.; Oya, Y.; Otsuka, T.; Katayama, K.; Konishi, S.; Noborio, K.; Yamamoto, Y.
2011-10-01
The Safety, Tritium and Applied Research facility at the Idaho National Laboratory is a US Department of Energy National User Facility engaged in various aspects of materials research for nuclear applications related to fusion and advanced fission systems. Research activities are mainly focused on the interaction of tritium with materials, in particular plasma facing components, liquid breeders, high temperature coolants, fuel cladding, cooling and blanket structures and heat exchangers. Other activities include validation and verification experiments in support of the Fusion Safety Program, such as beryllium dust reactivity and dust transport in vacuum vessels, and support of Advanced Test Reactor irradiation experiments. This paper presents an overview of the programs engaged in the activities, which include the US-Japan TITAN collaboration, the US ITER program, the Next Generation Power Plant program and the tritium production program, and a presentation of ongoing experiments as well as a summary of recent results with emphasis on fusion relevant materials.
Health physics aspects of advanced reactor licensing reviews
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinson, C.S.
1995-03-01
The last Construction Permit to be issued by the U.S. Nuclear Regulatory Commission (NRC) for a U.S. light water reactor (LWR) was granted in the late 1970s. In 1989 the NRC issued 10 CFR Part 52 which is intended to serve as a framework for the licensing of future reactor designs. The NRC is currently reviewing four different future on {open_quotes}next-generation{close_quotes} reactor designs. Two of these designs are classified as evolutionary designs (modified versions of current generation LWRs) and two are advanced designs (reactors incorporating simplified designs and passive means for accident mitigation). These {open_quotes}next-generation{close_quotes} reactor designs incorporate many innovativemore » design features which are intended to maintain personnel doses ALARA and ensure that the annual average collective dose at these reactors does not exceed 100 person-rems (1 person-sievert) per year. This paper discusses some of the ALARA design features which are incorporated in the four {open_quotes}next-generation{close_quotes} reactor designs incorporate many innovative design features which are intended to maintain personnel doses ALARA and ensure that the annual average collective dose at these reactors does not exceed 100 person-rems (1 person-sievert) per year. This paper discusses some of the ALARA design features which are incorporated in the four {open_quotes}next-generation{close_quotes} reactor designs currently being reviewed by the NRC.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-02
... Pressurized Water Reactor Spent Fuel in Transportation and Storage Casks AGENCY: Nuclear Regulatory Commission... of pressurized water reactor spent nuclear fuel (SNF) in transportation packages and storage casks... for the licensing basis, (b) provide recommendations regarding advanced isotopic depletion and...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-08
... Research Reactor; License Renewal for the Dow Chemical TRIGA Research Reactor; Supplemental Information and... 20, 2012 (77 FR 42771), ``License Renewal for the Dow Chemical TRIGA Research Reactor,'' to inform... Chemical Company which would authorize continued operation of the Dow TRIGA Research Reactor. The notice...
Progress towards developing neutron tolerant magnetostrictive and piezoelectric transducers
NASA Astrophysics Data System (ADS)
Reinhardt, Brian; Tittmann, Bernhard; Rempe, Joy; Daw, Joshua; Kohse, Gordon; Carpenter, David; Ames, Michael; Ostrovsky, Yakov; Ramuhalli, Pradeep; Montgomery, Robert; Chien, Hualte; Wernsman, Bernard
2015-03-01
Current generation light water reactors (LWRs), sodium cooled fast reactors (SFRs), small modular reactors (SMRs), and next generation nuclear plants (NGNPs) produce harsh environments in and near the reactor core that can severely tax material performance and limit component operational life. To address this issue, several Department of Energy Office of Nuclear Energy (DOE-NE) research programs are evaluating the long duration irradiation performance of fuel and structural materials used in existing and new reactors. In order to maximize the amount of information obtained from Material Testing Reactor (MTR) irradiations, DOE is also funding development of enhanced instrumentation that will be able to obtain in-situ, real-time data on key material characteristics and properties, with unprecedented accuracy and resolution. Such data are required to validate new multi-scale, multi-physics modeling tools under development as part of a science-based, engineering driven approach to reactor development. It is not feasible to obtain high resolution/microscale data with the current state of instrumentation technology. However, ultrasound-based sensors offer the ability to obtain such data if it is demonstrated that these sensors and their associated transducers are resistant to high neutron flux, high gamma radiation, and high temperature. To address this need, the Advanced Test Reactor National Scientific User Facility (ATR-NSUF) is funding an irradiation, led by PSU, at the Massachusetts Institute of Technology Research Reactor to test the survivability of ultrasound transducers. As part of this effort, PSU and collaborators have designed, fabricated, and provided piezoelectric and magnetostrictive transducers that are optimized to perform in harsh, high flux, environments. Four piezoelectric transducers were fabricated with either aluminum nitride, zinc oxide, or bismuth titanate as the active element that were coupled to either Kovar or aluminum waveguides and two magnetostrictive transducers were fabricated with Remendur or Galfenol as the active elements. Pulse-echo ultrasonic measurements of these transducers are made in-situ. This paper will present an overview of the test design including selection criteria for candidate materials and optimization of test assembly parameters, data obtained from both out-of-pile and in-pile testing at elevated temperatures, and an assessment based on initial data of the expected performance of ultrasonic devices in irradiation conditions.
NASA Technical Reports Server (NTRS)
El-Genk, Mohamed S. (Editor); Hoover, Mark D. (Editor)
1991-01-01
The present conference discusses NASA mission planning for space nuclear power, lunar mission design based on nuclear thermal rockets, inertial-electrostatic confinement fusion for space power, nuclear risk analysis of the Ulysses mission, the role of the interface in refractory metal alloy composites, an advanced thermionic reactor systems design code, and space high power nuclear-pumped lasers. Also discussed are exploration mission enhancements with power-beaming, power requirement estimates for a nuclear-powered manned Mars rover, SP-100 reactor design, safety, and testing, materials compatibility issues for fabric composite radiators, application of the enabler to nuclear electric propulsion, orbit-transfer with TOPAZ-type power sources, the thermoelectric properties of alloys, ruthenium silicide as a promising thermoelectric material, and innovative space-saving device for high-temperature piping systems. The second volume of this conference discusses engine concepts for nuclear electric propulsion, nuclear technologies for human exploration of the solar system, dynamic energy conversion, direct nuclear propulsion, thermionic conversion technology, reactor and power system control, thermal management, thermionic research, effects of radiation on electronics, heat-pipe technology, radioisotope power systems, and nuclear fuels for power reactors. The third volume discusses space power electronics, space nuclear fuels for propulsion reactors, power systems concepts, space power electronics systems, the use of artificial intelligence in space, flight qualifications and testing, microgravity two-phase flow, reactor manufacturing and processing, and space and environmental effects.
After Action Report: Advanced Test Reactor Complex 2015 Evaluated Drill October 6, 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holmes, Forest Howard
2015-11-01
The Advanced Test Reactor (ATR) Complex, operated by Battelle Energy Alliance, LLC, at the Idaho National Laboratory (INL) conducted an evaluated drill on October 6, 2015, to allow the ATR Complex emergency response organization (ERO) to demonstrate the ability to respond to and mitigate an emergency by implementing the requirements of DOE O 151.1C, “Comprehensive Emergency Management System.”
ADVANCED HEAT TRANSFER TEST FACILITY, TRA666A. ELEVATIONS. ROOF FRAMING PLAN. ...
ADVANCED HEAT TRANSFER TEST FACILITY, TRA-666A. ELEVATIONS. ROOF FRAMING PLAN. CONCRETE BLOCK SIDING. SLOPED ROOF. ROLL-UP DOOR. AIR INTAKE ENCLOSURE ON NORTH SIDE. F.C. TORKELSON 842-MTR-666-A5, 8/1966. INL INDEX NO. 531-0666-00-851-152258, REV. 2. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
NASA Astrophysics Data System (ADS)
Lee, Sungman; Kim, Jongyul; Moon, Myung Kook; Lee, Kye Hong; Lee, Seung Wook; Ino, Takashi; Skoy, Vadim R.; Lee, Manwoo; Kim, Guinyun
2013-02-01
For use as a neutron spin polarizer or analyzer in the neutron beam lines of the HANARO (High-flux Advanced Neutron Application ReactOr) nuclear research reactor, a 3He polarizer was designed based on both a compact solenoid coil and a VBG (volume Bragg grating) diode laser with a narrow spectral linewidth of 25 GHz. The nuclear magnetic resonance (NMR) signal was measured and analyzed using both a built-in cosine radio-frequency (RF) coil and a pick-up coil. Using a neutron transmission measurement, we estimated the polarization ratio of the 3He cell as 18% for an optical pumping time of 8 hours.
Post-Irradiation Non-Destructive Analyses of the AFIP-7 Experiment
NASA Astrophysics Data System (ADS)
Williams, W. J.; Robinson, A. B.; Rabin, B. H.
2017-12-01
This article reports the results and interpretation of post-irradiation non-destructive examinations performed on four curved full-size fuel plates that comprise the AFIP-7 experiment. These fuel plates, having a U-10 wt.%Mo monolithic design, were irradiated under moderate operating conditions in the Advanced Test Reactor to assess fuel performance for geometries that are prototypic of research reactor fuel assemblies. Non-destructive examinations include visual examination, neutron radiography, profilometry, and precision gamma scanning. This article evaluates the qualitative and quantitative data taken for each plate, compares corresponding data sets, and presents the results of swelling analyses. These characterization results demonstrate that the fuel meets established irradiation performance requirements for mechanical integrity, geometric stability, and stable and predictable behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hold, A.
An advanced nonlinear transient model for calculating steady-state and dynamic behaviors of characteristic parameters of a Kraftwerk Union-type vertical natural-circulation U-tube steam generator and its main steam system is presented. This model has been expanded due to the increasing need for safety-related accident research studies. It now takes into consideration the possibilities of dryout and superheating along the secondary side of the steam generator. The resulting theoretical model is the basis of the digital code UTSG-2, which can be used both by itself and in combination with other pressurized water reactor transient codes, such as ALMOD-3.4, AMOD-4, and ATHLET.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tome, Carlos N; Caro, J A; Lebensohn, R A
2010-01-01
Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Reactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems to develop predictive tools is critical. Not only are fabrication and performance models needed to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating themore » phase and microstructural behavior of the nuclear fuel system materials and matrices. In this paper we review the current status of the advanced modeling and simulation of nuclear reactor cladding, with emphasis on what is available and what is to be developed in each scale of the project, how we propose to pass information from one scale to the next, and what experimental information is required for benchmarking and advancing the modeling at each scale level.« less
Advanced ceramic materials for next-generation nuclear applications
NASA Astrophysics Data System (ADS)
Marra, John
2011-10-01
The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme environments of high-temperature plasma systems. Fusion reactors will likely depend on lithium-based ceramics to produce tritium that fuels the fusion plasma, while high-temperature alloys or ceramics will contain and control the hot plasma. All the while, alloys, ceramics, and ceramic-related processes continue to find applications in the management of wastes and byproducts produced by these processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronald Farris; David Gertman; Jacques Hugo
This report presents the results of the Work Domain Analysis for the Experimental Breeder Reactor (EBR-II). This is part of the phase of the research designed to incorporate Cognitive Work Analysis in the development of a framework for the formalization of an Operational Concept (OpsCon) for Advanced Small Modular Reactors (AdvSMRs). For a new AdvSMR design, information obtained through Cognitive Work Analysis, combined with human performance criteria, can and should be used in during the operational phase of a plant to assess the crew performance aspects associated with identified AdvSMR operational concepts. The main objective of this phase was tomore » develop an analytical and descriptive framework that will help systems and human factors engineers to understand the design and operational requirements of the emerging generation of small, advanced, multi-modular reactors. Using EBR-II as a predecessor to emerging sodium-cooled reactor designs required the application of a method suitable to the structured and systematic analysis of the plant to assist in identifying key features of the work associated with it and to clarify the operational and other constraints. The analysis included the identification and description of operating scenarios that were considered characteristic of this type of nuclear power plant. This is an invaluable aspect of Operational Concept development since it typically reveals aspects of future plant configurations that will have an impact on operations. These include, for example, the effect of core design, different coolants, reactor-to-power conversion unit ratios, modular plant layout, modular versus central control rooms, plant siting, and many more. Multi-modular plants in particular are expected to have a significant impact on overall OpsCon in general, and human performance in particular. To support unconventional modes of operation, the modern control room of a multi-module plant would typically require advanced HSIs that would provide sophisticated operational information visualization, coupled with adaptive automation schemes and operator support systems to reduce complexity. These all have to be mapped at some point to human performance requirements. The EBR-II results will be used as a baseline that will be extrapolated in the extended Cognitive Work Analysis phase to the analysis of a selected advanced sodium-cooled SMR design as a way to establish non-conventional operational concepts. The Work Domain Analysis results achieved during this phase have not only established an organizing and analytical framework for describing existing sociotechnical systems, but have also indicated that the method is particularly suited to the analysis of prospective and immature designs. The results of the EBR-II Work Domain Analysis have indicated that the methodology is scientifically sound and generalizable to any operating environment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Lizhen; Yang, Ying; Tyburska-Puschel, Beata
The mission of the Nuclear Energy Enabling Technologies (NEET) program is to develop crosscutting technologies for nuclear energy applications. Advanced structural materials with superior performance at elevated temperatures are always desired for nuclear reactors, which can improve reactor economics, safety margins, and design flexibility. They benefit not only new reactors, including advanced light water reactors (LWRs) and fast reactors such as sodium-cooled fast reactor (SFR) that is primarily designed for management of high-level wastes, but also life extension of the existing fleet when component exchange is needed. Developing and utilizing the modern materials science tools (experimental, theoretical, and computational tools)more » is an important path to more efficient alloy development and process optimization. Ferritic-martensitic (FM) steels are important structural materials for nuclear reactors due to their advantages over other applicable materials like austenitic stainless steels, notably their resistance to void swelling, low thermal expansion coefficients, and higher thermal conductivity. However, traditional FM steels exhibit a noticeable yield strength reduction at elevated temperatures above ~500°C, which limits their applications in advanced nuclear reactors which target operating temperatures at 650°C or higher. Although oxide-dispersion-strengthened (ODS) ferritic steels have shown excellent high-temperature performance, their extremely high cost, limited size and fabricability of products, as well as the great difficulty with welding and joining, have limited or precluded their commercial applications. Zirconium has shown many benefits to Fe-base alloys such as grain refinement, improved phase stability, and reduced radiation-induced segregation. The ultimate goal of this project is, with the aid of computational modeling tools, to accelerate the development of a new generation of Zr-bearing ferritic alloys to be fabricated using conventional steelmaking practices, which have excellent radiation resistance and enhanced high-temperature creep performance greater than Grade 91.« less
A thermodynamic approach for advanced fuels of gas-cooled reactors
NASA Astrophysics Data System (ADS)
Guéneau, C.; Chatain, S.; Gossé, S.; Rado, C.; Rapaud, O.; Lechelle, J.; Dumas, J. C.; Chatillon, C.
2005-09-01
For both high temperature reactor (HTR) and gas cooled fast reactor (GFR) systems, the high operating temperature in normal and accidental conditions necessitates the assessment of the thermodynamic data and associated phase diagrams for the complex system constituted of the fuel kernel, the inert materials and the fission products. A classical CALPHAD approach, coupling experiments and thermodynamic calculations, is proposed. Some examples of studies are presented leading with the CO and CO 2 gas formation during the chemical interaction of [UO 2± x/C] in the HTR particle, and the chemical compatibility of the couples [UN/SiC], [(U, Pu)N/SiC], [(U, Pu)N/TiN] for the GFR system. A project of constitution of a thermodynamic database for advanced fuels of gas-cooled reactors is proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sham, Sam; Tan, Lizhen; Yamamoto, Yukinori
2013-01-01
Ferritic-martensitic (FM) steel Grade 92, with or without thermomechanical treatment (TMT), and austenitic stainless steels HT-UPS (high-temperature ultrafine precipitate strengthening) and NF709 were selected as potential candidate structural materials in the U.S. Sodium-cooled Fast Reactor (SFR) program. The objective is to develop advanced steels with improved properties as compared with reference materials such as Grade 91 and Type 316H steels that are currently in nuclear design codes. Composition modification and/or processing optimization (e.g., TMT and cold-work) were performed to improve properties such as resistance to thermal aging, creep, creep-fatigue, fracture, and sodium corrosion. Testings to characterize these properties for themore » advanced steels were conducted by the Idaho National Laboratory, the Argonne National Laboratory and the Oak Ridge National Laboratory under the U.S. SFR program. This paper focuses on the resistance to thermal aging and creep of the advanced steels. The advanced steels exhibited up to two orders of magnitude increase in creep life compared to the reference materials. Preliminary results on the weldment performance of the advanced steels are also presented. The superior performance of the advanced steels would improve reactor design flexibility, safety margins and economics.« less
Microbial fuel cell (MFC) power performance improvement through enhanced microbial electrogenicity.
Li, Ming; Zhou, Minghua; Tian, Xiaoyu; Tan, Chaolin; McDaniel, Cameron T; Hassett, Daniel J; Gu, Tingyue
Within the past 5 years, tremendous advances have been made to maximize the performance of microbial fuel cells (MFCs) for both "clean" bioenergy production and bioremediation. Most research efforts have focused on parameters including (i) optimizing reactor configuration, (ii) electrode construction, (iii) addition of redox-active, electron donating mediators, (iv) biofilm acclimation and feed nutrient adjustment, as well as (v) other parameters that contribute to enhanced MFC performance. To date, tremendous advances have been made, but further improvements are needed for MFCs to be economically practical. In this review, the diversity of electrogenic microorganisms and microbial community changes in mixed cultures are discussed. More importantly, different approaches including chemical/genetic modifications and gene regulation of exoelectrogens, synthetic biology approaches and bacterial community cooperation are reviewed. Advances in recent years in metagenomics and microbiomes have allowed researchers to improve bacterial electrogenicity of robust biofilms in MFCs using novel, unconventional approaches. Taken together, this review provides some important and timely information to researchers who are examining additional means to enhance power production of MFCs. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohachek, Randolph Charles
2015-09-01
The Advanced Test Reactor (ATR; TRA-670), which is located in the ATR Complex at Idaho National Laboratory, was constructed in the 1960s for the purpose of irradiating reactor fuels and materials. Other irradiation services, such as radioisotope production, are also performed at ATR. While ATR is safely fulfilling current mission requirements, assessments are continuing. These assessments intend to identify areas to provide defense–in-depth and improve safety for ATR. One of the assessments performed by an independent group of nuclear industry experts recommended that a remote accident management capability be provided. The report stated that: “contemporary practice in commercial power reactorsmore » is to provide a remote shutdown station or stations to allow shutdown of the reactor and management of long-term cooling of the reactor (i.e., management of reactivity, inventory, and cooling) should the main control room be disabled (e.g., due to a fire in the control room or affecting the control room).” This project will install remote reactor monitoring and management capabilities for ATR. Remote capabilities will allow for post scram reactor management and monitoring in the event the main Reactor Control Room (RCR) must be evacuated.« less
Code of Federal Regulations, 2010 CFR
2010-01-01
..., or irradiated reactor fuel. 73.72 Section 73.72 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED... strategic significance, or irradiated reactor fuel. (a) A licensee, other than one specified in paragraph (b... strategic significance, or irradiated reactor fuel required to be protected in accordance with § 73.37...
Code of Federal Regulations, 2011 CFR
2011-01-01
..., or irradiated reactor fuel. 73.72 Section 73.72 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED... strategic significance, or irradiated reactor fuel. (a) A licensee, other than one specified in paragraph (b... strategic significance, or irradiated reactor fuel required to be protected in accordance with § 73.37...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davenport, Michael; Petti, D. A.; Palmer, Joe
2016-11-01
The United States Department of Energy’s Advanced Reactor Technologies (ART) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is irradiating up to seven low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The experiments will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the experimentsmore » are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of several independent capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2) started irradiation in June 2010 and completed in October 2013. The third and fourth experiments have been combined into a single experiment designated (AGR-3/4), which started its irradiation in December 2011 and completed in April 2014. Since the purpose of this experiment was to provide data on fission product migration and retention in the NGNP reactor, the design of this experiment was significantly different from the first two experiments, though the control and monitoring systems are very similar. The final experiment, AGR-5/6/7, is scheduled to begin irradiation in early summer 2017.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report presents the results of Run 262 performed at the Advanced Coal Liquefaction R&D Facility in Wilsonville, Alabama. The run started on July 10, 1991 and continued until September 30, 1991, operating in the Close-Coupled Integrated Two-Stage Liquefaction mode processing Black Thunder Mine subbituminous coal (Wyodak-Anderson seam from Wyoming Powder River Basin). A dispersed molybdenum catalyst was evaluated for its performance. The effect of the dispersed catalyst on eliminating solids buildup was also evaluated. Half volume reactors were used with supported Criterion 324 1/16`` catalyst in the second stage at a catalyst replacement rate of 3 lb/ton of MFmore » coal. The hybrid dispersed plus supported catalyst system was tested for the effect of space velocity, second stage temperature, and molybdenum concentration. The supported catalyst was removed from the second stage for one test period to see the performance of slurry reactors. Iron oxide was used as slurry catalyst at a rate of 2 wt % MF coal throughout the run (dimethyl disulfide (DMDS) was used as the sulfiding agent). The close-coupled reactor unit was on-stream for 1271.2 hours for an on-stream factor of 89.8% and the ROSE-SR unit was on-feed for 1101.6 hours for an on-stream factor of 90.3% for the entire run.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melin, Alexander M.; Kisner, Roger A.
2016-09-01
Embedded instrumentation and control systems that can operate in extreme environments are challenging to design and operate. Extreme environments limit the options for sensors and actuators and degrade their performance. Because sensors and actuators are necessary for feedback control, these limitations mean that designing embedded instrumentation and control systems for the challenging environments of nuclear reactors requires advanced technical solutions that are not available commercially. This report details the development of testbed that will be used for cross-cutting embedded instrumentation and control research for nuclear power applications. This research is funded by the Department of Energy's Nuclear Energy Enabling Technologymore » program's Advanced Sensors and Instrumentation topic. The design goal of the loop-scale testbed is to build a low temperature pump that utilizes magnetic bearing that will be incorporated into a water loop to test control system performance and self-sensing techniques. Specifically, this testbed will be used to analyze control system performance in response to nonlinear and cross-coupling fluid effects between the shaft axes of motion, rotordynamics and gyroscopic effects, and impeller disturbances. This testbed will also be used to characterize the performance losses when using self-sensing position measurement techniques. Active magnetic bearings are a technology that can reduce failures and maintenance costs in nuclear power plants. They are particularly relevant to liquid salt reactors that operate at high temperatures (700 C). Pumps used in the extreme environment of liquid salt reactors provide many engineering challenges that can be overcome with magnetic bearings and their associated embedded instrumentation and control. This report will give details of the mechanical design and electromagnetic design of the loop-scale embedded instrumentation and control testbed.« less
Thermal-Hydraulic Design of a Fluoride High-Temperature Demonstration Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carbajo, Juan J; Qualls, A L
2016-01-01
INTRODUCTION The Fluoride High-Temperature Reactor (FHR) named the Demonstration Reactor (DR) is a novel reactor concept using molten salt coolant and TRIstructural ISOtropic (TRISO) fuel that is being developed at Oak Ridge National Laboratory (ORNL). The objective of the FHR DR is to advance the technology readiness level of FHRs. The FHR DR will demonstrate technologies needed to close remaining gaps to commercial viability. The FHR DR has a thermal power of 100 MWt, very similar to the SmAHTR, another FHR ORNL concept (Refs. 1 and 2) with a power of 125 MWt. The FHR DR is also a smallmore » version of the Advanced High Temperature Reactor (AHTR), with a power of 3400 MWt, cooled by a molten salt and also being developed at ORNL (Ref. 3). The FHR DR combines three existing technologies: (1) high-temperature, low-pressure molten salt coolant, (2) high-temperature coated-particle TRISO fuel, (3) and passive decay heat cooling systems by using Direct Reactor Auxiliary Cooling Systems (DRACS). This paper presents FHR DR thermal-hydraulic design calculations.« less
NASA Astrophysics Data System (ADS)
Palmiste, Ü.; Voll, H.
2017-10-01
The development of advanced air cleaning technologies aims to reduce building energy consumption by reduction of outdoor air flow rates while keeping the indoor air quality at an acceptable level by air cleaning. Photocatalytic oxidation is an emerging technology for gas-phase air cleaning that can be applied in a standalone unit or a subsystem of a building mechanical ventilation system. Quantitative information on photocatalytic reactor performance is required to evaluate the technical and economic viability of the advanced air cleaning by PCO technology as an energy conservation measure in a building air conditioning system. Photocatalytic reactors applying optical fibers as light guide or photocatalyst coating support have been reported as an approach to address the current light utilization problems and thus, improve the overall efficiency. The aim of the paper is to present a preliminary evaluation on continuous flow optical fiber photocatalytic reactors based on performance indicators commonly applied for air cleaners. Based on experimental data, monolith-type optical fiber reactor performance surpasses annular-type optical fiber reactors in single-pass removal efficiency, clean air delivery rate and operating cost efficiency.
REACTOR PHYSICS MODELING OF SPENT RESEARCH REACTOR FUEL FOR TECHNICAL NUCLEAR FORENSICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols, T.; Beals, D.; Sternat, M.
2011-07-18
Technical nuclear forensics (TNF) refers to the collection, analysis and evaluation of pre- and post-detonation radiological or nuclear materials, devices, and/or debris. TNF is an integral component, complementing traditional forensics and investigative work, to help enable the attribution of discovered radiological or nuclear material. Research is needed to improve the capabilities of TNF. One research area of interest is determining the isotopic signatures of research reactors. Research reactors are a potential source of both radiological and nuclear material. Research reactors are often the least safeguarded type of reactor; they vary greatly in size, fuel type, enrichment, power, and burn-up. Manymore » research reactors are fueled with highly-enriched uranium (HEU), up to {approx}93% {sup 235}U, which could potentially be used as weapons material. All of them have significant amounts of radiological material with which a radioactive dispersal device (RDD) could be built. Therefore, the ability to attribute if material originated from or was produced in a specific research reactor is an important tool in providing for the security of the United States. Currently there are approximately 237 operating research reactors worldwide, another 12 are in temporary shutdown and 224 research reactors are reported as shut down. Little is currently known about the isotopic signatures of spent research reactor fuel. An effort is underway at Savannah River National Laboratory (SRNL) to analyze spent research reactor fuel to determine these signatures. Computer models, using reactor physics codes, are being compared to the measured analytes in the spent fuel. This allows for improving the reactor physics codes in modeling research reactors for the purpose of nuclear forensics. Currently the Oak Ridge Research reactor (ORR) is being modeled and fuel samples are being analyzed for comparison. Samples of an ORR spent fuel assembly were taken by SRNL for analytical and radiochemical analysis. The fuel assembly was modeled using MONTEBURNS(MCNP5/ ORIGEN2.2) and MCNPX/CINDER90. The results from the models have been compared to each other and to the measured data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Mike
2015-02-01
This report summarizes radiological monitoring performed of the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.
Integrated intelligent systems in advanced reactor control rooms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckmeyer, R.R.
1989-01-01
An intelligent, reactor control room, information system is designed to be an integral part of an advanced control room and will assist the reactor operator's decision making process by continuously monitoring the current plant state and providing recommended operator actions to improve that state. This intelligent system is an integral part of, as well as an extension to, the plant protection and control systems. This paper describes the interaction of several functional components (intelligent information data display, technical specifications monitoring, and dynamic procedures) of the overall system and the artificial intelligence laboratory environment assembled for testing the prototype. 10 refs.,more » 5 figs.« less
Radiogenic lead as coolant, reflector and moderator in advanced fast reactors
NASA Astrophysics Data System (ADS)
Kulikov, E. G.
2017-01-01
Main purpose of the study is assessing reasonability for recovery, production and application of radiogenic lead as a coolant, neutron moderator and neutron reflector in advanced fast reactors. When performing the study, thermal, physical and neutron-physical properties of natural and radiogenic lead were analyzed. The following results were obtained: 1. Radiogenic lead with high content of isotope 208Pb can be extracted from thorium or mixed thorium-uranium ores because 208Pb is a final product of 232Th natural decay chain. 2. The use of radiogenic lead with high 208Pb content in advanced fast reactors and accelerator-driven systems (ADS) makes it possible to improve significantly their neutron-physical and thermal-hydraulic parameters. 3. The use of radiogenic lead with high 208Pb content in advanced fast reactors as a coolant opens the possibilities for more intense fuel breeding and for application of well-known oxide fuel instead of the promising but not tested enough nitride fuel under the same safety parameters. 4. The use of radiogenic lead with high 208Pb content in ADS as a coolant can upgrade substantially the level of neutron flux in the ADS blanket, which enables effective transmutation of radioactive wastes with low cross-sections of radiative neutron capture.
Wols, B A; Harmsen, D J H; Wanders-Dijk, J; Beerendonk, E F; Hofman-Caris, C H M
2015-05-15
UV/H2O2 treatment is a well-established technique to degrade organic micropollutants. A CFD model in combination with an advanced kinetic model is presented to predict the degradation of organic micropollutants in UV (LP)/H2O2 reactors, accounting for the hydraulics, fluence rate, complex (photo)chemical reactions in the water matrix and the interactions between these processes. The model incorporates compound degradation by means of direct UV photolysis, OH radical and carbonate radical reactions. Measurements of pharmaceutical degradations in pilot-scale UV/H2O2 reactors are presented under different operating conditions. A comparison between measured and modeled degradation for a group of 35 pharmaceuticals resulted in good model predictions for most of the compounds. The research also shows that the degradation of organic micropollutants can be dependent on temperature, which is relevant for full-scale installations that are operated at different temperatures over the year. Copyright © 2015 Elsevier Ltd. All rights reserved.
Advanced Testing Techniques to Measure the PWSCC Resistance of Alloy 690 and its Weld Metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
P.Andreson
2004-10-01
Wrought Alloy 600 and its weld metals (Alloy 182 and Alloy 82) were originally used in pressurized water reactors (PWRs) due to the material's inherent resistance to general corrosion in a number of aggressive environments and because of a coefficient of thermal expansion that is very close to that of low alloy and carbon steel. Over the last thirty years, stress corrosion cracking in PWR primary water (PWSCC) has been observed in numerous Alloy 600 component items and associated welds, sometimes after relatively long incubation times. The occurrence of PWSCC has been responsible for significant downtime and replacement power costs.more » As part of an ongoing, comprehensive program involving utilities, reactor vendors and engineering/research organizations, this report will help to ensure that corrosion degradation of nickel-base alloys does not limit service life and that full benefit can be obtained from improved designs for both replacement components and new reactors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blau, P. J.; Qu, J.; Lu, R.
One significant concern in the operation of light water nuclear reactors is the fretting wear damage to fuel cladding from flow-induced vibrations. For years, research on the grid-to-rod fretting (GTRF) phenomena has been underway in countries where nuclear power production is a significant industry. Under the auspices of the U.S. Department of Energy Consortium for Advanced Simulation of Light Water Reactors, an effort has been underway to develop and test an engineering wear model for zirconium alloy fuel rod cladding against a supporting grid. Furthermore, the multi-stage model accounts for oxide layers and wear rate transitions. Our paper describes themore » basis for a GTRF engineering wear model, the physical significance of the wear factor it contains, and recent progress toward model validation based on a fretting wear testing apparatus that accounts for coolant temperature, pressure, and the presence of periodic impacts (gaps) in grid/rod contact.« less
Verification of combined thermal-hydraulic and heat conduction analysis code FLOWNET/TRUMP
NASA Astrophysics Data System (ADS)
Maruyama, Soh; Fujimoto, Nozomu; Kiso, Yoshihiro; Murakami, Tomoyuki; Sudo, Yukio
1988-09-01
This report presents the verification results of the combined thermal-hydraulic and heat conduction analysis code, FLOWNET/TRUMP which has been utilized for the core thermal hydraulic design, especially for the analysis of flow distribution among fuel block coolant channels, the determination of thermal boundary conditions for fuel block stress analysis and the estimation of fuel temperature in the case of fuel block coolant channel blockage accident in the design of the High Temperature Engineering Test Reactor(HTTR), which the Japan Atomic Energy Research Institute has been planning to construct in order to establish basic technologies for future advanced very high temperature gas-cooled reactors and to be served as an irradiation test reactor for promotion of innovative high temperature new frontier technologies. The verification of the code was done through the comparison between the analytical results and experimental results of the Helium Engineering Demonstration Loop Multi-channel Test Section(HENDEL T(sub 1-M)) with simulated fuel rods and fuel blocks.
Blau, P. J.; Qu, J.; Lu, R.
2016-09-21
One significant concern in the operation of light water nuclear reactors is the fretting wear damage to fuel cladding from flow-induced vibrations. For years, research on the grid-to-rod fretting (GTRF) phenomena has been underway in countries where nuclear power production is a significant industry. Under the auspices of the U.S. Department of Energy Consortium for Advanced Simulation of Light Water Reactors, an effort has been underway to develop and test an engineering wear model for zirconium alloy fuel rod cladding against a supporting grid. Furthermore, the multi-stage model accounts for oxide layers and wear rate transitions. Our paper describes themore » basis for a GTRF engineering wear model, the physical significance of the wear factor it contains, and recent progress toward model validation based on a fretting wear testing apparatus that accounts for coolant temperature, pressure, and the presence of periodic impacts (gaps) in grid/rod contact.« less
Steady State Advanced Tokamak (SSAT): The mission and the machine
NASA Astrophysics Data System (ADS)
Thomassen, K.; Goldston, R.; Nevins, B.; Neilson, H.; Shannon, T.; Montgomery, B.
1992-03-01
Extending the tokamak concept to the steady state regime and pursuing advances in tokamak physics are important and complementary steps for the magnetic fusion energy program. The required transition away from inductive current drive will provide exciting opportunities for advances in tokamak physics, as well as important impetus to drive advances in fusion technology. Recognizing this, the Fusion Policy Advisory Committee and the U.S. National Energy Strategy identified the development of steady state tokamak physics and technology, and improvements in the tokamak concept, as vital elements in the magnetic fusion energy development plan. Both called for the construction of a steady state tokamak facility to address these plan elements. Advances in physics that produce better confinement and higher pressure limits are required for a similar unit size reactor. Regimes with largely self-driven plasma current are required to permit a steady-state tokamak reactor with acceptable recirculating power. Reliable techniques of disruption control will be needed to achieve the availability goals of an economic reactor. Thus the central role of this new tokamak facility is to point the way to a more attractive demonstration reactor (DEMO) than the present data base would support. To meet the challenges, we propose a new 'Steady State Advanced Tokamak' (SSAT) facility that would develop and demonstrate optimized steady state tokamak operating mode. While other tokamaks in the world program employ superconducting toroidal field coils, SSAT would be the first major tokamak to operate with a fully superconducting coil set in the elongated, divertor geometry planned for ITER and DEMO.
Technology readiness levels for advanced nuclear fuels and materials development
Carmack, W. J.; Braase, L. A.; Wigeland, R. A.; ...
2016-12-23
The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. It was pioneered by the National Aeronautics and Space Administration (NASA) in the 1980s to develop and deploy new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications as well as the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is a critical technology needed for improving the performance and safety of currentmore » and advanced reactors, and ultimately closing the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management, communication and tracking tool. Furthermore, this article provides examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).« less
Technology readiness levels for advanced nuclear fuels and materials development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmack, W. J.; Braase, L. A.; Wigeland, R. A.
The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. It was pioneered by the National Aeronautics and Space Administration (NASA) in the 1980s to develop and deploy new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications as well as the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is a critical technology needed for improving the performance and safety of currentmore » and advanced reactors, and ultimately closing the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management, communication and tracking tool. Furthermore, this article provides examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Blanc, Katya; Joe, Jeffrey; Rice, Brandon
Control Room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. A full-scale modernization might, for example, entail replacement of all analog panels with digital workstations. Such modernizations have been undertaken successfully in upgrades in Europe and Asia, but the U.S. has yet to undertake a control room upgrade of this magnitude. Instead, nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digitalmore » modernizations. Previous research under the U.S. Department of Energy’s Light Water Reactor Sustainability Program has helped establish a systematic process for control room upgrades that support the transition to a hybrid control room. While the guidance developed to date helps streamline the process of modernization and reduce costs and uncertainty associated with introducing digital control technologies into an existing control room, these upgrades do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The aim of the control room benefits research is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report describes the initial upgrades to the HSSL and outlines the methodology for a pilot test of the HSSL configuration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Pavel V. Tsvetkov
2009-05-20
This project assessed the advantages and limitations of using minor actinides as a fuel component to achieve ultra-long life Very High Temperature Reactor (VHTR) configurations. Researchers considered and compared the capabilities of pebble-bed and prismatic core designs with advanced actinide fuels to achieve ultra-long operation without refueling. Since both core designs permit flexibility in component configuration, fuel utilization, and fuel management, it is possible to improve fissile properties of minor actinides by neutron spectrum shifting through configuration adjustments. The project studied advanced actinide fuels, which could reduce the long-term radio-toxicity and heat load of high-level waste sent to a geologicmore » repository and enable recovery of the energy contained in spent fuel. The ultra-long core life autonomous approach may reduce the technical need for additional repositories and is capable to improve marketability of the Generation IV VHTR by allowing worldwide deployment, including remote regions and regions with limited industrial resources. Utilization of minor actinides in nuclear reactors facilitates developments of new fuel cycles towards sustainable nuclear energy scenarios.« less
A new simpler way to obtain high fusion power gain in tandem mirrors
NASA Astrophysics Data System (ADS)
Fowler, T. K.; Moir, R. W.; Simonen, T. C.
2017-05-01
From the earliest days of fusion research, Richard F. Post and other advocates of magnetic mirror confinement recognized that mirrors favor high ion temperatures where nuclear reaction rates < σ v> begin to peak for all fusion fuels. In this paper we review why high ion temperatures are favored, using Post’s axisymmetric Kinetically Stabilized Tandem Mirror as the example; and we offer a new idea that appears to greatly improve reactor prospects at high ion temperatures. The idea is, first, to take advantage of recent advances in superconducting magnet technology to minimize the size and cost of End Plugs; and secondly, to utilize parallel advances in gyrotrons that would enable intense electron cyclotron heating (ECH) in these high field End Plugs. The yin-yang magnets and thermal barriers that complicated earlier tandem mirror designs are not required. We find that, concerning end losses, intense ECH in symmetric End Plugs could increase the fusion power gain Q, for both DT and Catalyzed DD fuel cycles, to levels competitive with steady-state tokamaks burning DT fuel. Radial losses remain an issue that will ultimately determine reactor viability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gougar, Hans David
2015-10-01
The United States Department of Energy (DOE) commissioned a study the suitability of different advanced reactor concepts to support materials irradiations (i.e. a test reactor) or to demonstrate an advanced power plant/fuel cycle concept (demonstration reactor). As part of the study, an assessment of the technical maturity of the individual concepts was undertaken to see which, if any, can support near-term deployment. A Working Group composed of the authors of this document performed the maturity assessment using the Technical Readiness Levels as defined in DOE’s Technology Readiness Guide . One representative design was selected for assessment from of each ofmore » the six Generation-IV reactor types: gas-cooled fast reactor (GFR), lead-cooled fast reactor (LFR), molten salt reactor (MSR), supercritical water-cooled reactor (SCWR), sodium-cooled fast reactor (SFR), and very high temperature reactor (VHTR). Background information was obtained from previous detailed evaluations such as the Generation-IV Roadmap but other technical references were also used including consultations with concept proponents and subject matter experts. Outside of Generation IV activity in which the US is a party, non-U.S. experience or data sources were generally not factored into the evaluations as one cannot assume that this data is easily available or of sufficient quality to be used for licensing a US facility. The Working Group established the scope of the assessment (which systems and subsystems needed to be considered), adapted a specific technology readiness scale, and scored each system through discussions designed to achieve internal consistency across concepts. In general, the Working Group sought to determine which of the reactor options have sufficient maturity to serve either the test or demonstration reactor missions.« less
Phenomena Important in Molten Salt Reactor Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diamond, David J.; Brown, Nicholas R.; Denning, Richard
The U.S. Nuclear Regulatory Commission (NRC) is preparing for the future licensing of advanced reactors that will be very different from current light water reactors. Part of the NRC preparation strategy is to identify the simulation tools that will be used for confirmatory safety analysis of normal operation and abnormal situations in those reactors. This report advances that strategy for reactors that will use molten salts (MSRs). This includes reactors with the fuel within the salt as well as reactors using solid fuel. Although both types are discussed in this report, the emphasis is on those reactors with liquid fuelmore » because of the perception that solid-fuel MSRs will be significantly easier to simulate. These liquid-fuel reactors include thermal and fast neutron spectrum alternatives. The specific designs discussed in the report are a subset of many designs being considered in the U.S. and elsewhere but they are considered the most likely to submit information to the NRC in the near future. The objective herein, is to understand the design of proposed molten salt reactors, how they will operate under normal or transient/accident conditions, and what will be the corresponding modeling needs of simulation tools that consider neutronics, heat transfer, fluid dynamics, and material composition changes in the molten salt. These tools will enable the NRC to eventually carry out confirmatory analyses that examine the validity and accuracy of applicant’s calculations and help determine the margin of safety in plant design.« less
The Euratom Seventh Framework Programme FP7 (2007-2011)
NASA Astrophysics Data System (ADS)
Garbil, R.
2010-10-01
The objective of the Seventh Euratom Framework Program in the area of nuclear fission and radiation protection is to establish a sound scientific and technical basis to accelerate practical developments of nuclear energy related to resource efficiency, enhancing safety performance, cost-effectiveness and safer management of long-lived radioactive waste. Key cross-cutting topics such as the nuclear fuel cycle, actinide chemistry, risk analysis, safety assessment, even societal and governance issues are linked to the individual technical areas. Research need to explore new scientific and techno- logical opportunities and to respond in a flexible way to new policy needs that arise. The following activities are to be pursued. (a) Management of radioactive waste, research on partitioning and transmutation and/or other concepts aimed at reducing the amount and/or hazard of the waste for disposal; (b) Reactor systems research to underpin the con- tinued safe operation of all relevant types of existing reactor systems (including fuel cycle facilities), life-time extension, development of new advanced safety assessment methodologies and waste-management aspects of future reactor systems; (c) Radiation protection research in particular on the risks from low doses on medical uses and on the management of accidents; (d) Infrastructures and support given to the availability of, and cooperation between, research infrastructures necessary to maintain high standards of technical achievement, innovation and safety in the European nuclear sector and Research Area. (e) Human resources, mobility and training support to be provided for the retention and further development of scientific competence, human capacity through joint training activities in order to guarantee the availability of suitably qualified researchers, engineers and employees in the nuclear sector over the longer term.
Apollo - An advanced fuel fusion power reactor for the 21st century
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulcinski, G.L.; Emmert, G.A.; Blanchard, J.P.
1989-03-01
A preconceptual design of a tokamak reactor fueled by a D-He-3 plasma is presented. A low aspect ratio (A=2-4) device is studied here but high aspect ratio devices (A > 6) may also be quite attractive. The Apollo D-He-3 tokamak capitalizes on recent advances in high field magnets (20 T) and utilizes rectennas to convert the synchrotron radiation directly to electricity. The overall efficiency ranges from 37 to 52% depending on whether the bremsstrahlung energy is utilized. The low neutron wall loading (0.1 MW/m/sup 2/) allows a permanent first wall to be designed and the low nuclear decay heat enablesmore » the reactor to be classed as inherently safe. The cost of electricity from Apollo is > 40% lower than electricity from a similar sized DT reactor.« less
Advanced Reactor Passive System Reliability Demonstration Analysis for an External Event
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bucknor, Matthew D.; Grabaskas, David; Brunett, Acacia J.
2016-01-01
Many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended due to deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has been examining various methodologiesmore » for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Centering on an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive reactor cavity cooling system following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. While this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability for the reactor cavity cooling system (and the reactor system in general) to the postulated transient event.« less
Hardening neutron spectrum for advanced actinide transmutation experiments in the ATR.
Chang, G S; Ambrosek, R G
2005-01-01
The most effective method for transmuting long-lived isotopes contained in spent nuclear fuel into shorter-lived fission products is in a fast neutron spectrum reactor. In the absence of a fast test reactor in the United States, initial irradiation testing of candidate fuels can be performed in a thermal test reactor that has been modified to produce a test region with a hardened neutron spectrum. Such a test facility, with a spectrum similar but somewhat softer than that of the liquid-metal fast breeder reactor (LMFBR), has been constructed in the INEEL's Advanced Test Reactor (ATR). The radial fission power distribution of the actinide fuel pin, which is an important parameter in fission gas release modelling, needs to be accurately predicted and the hardened neutron spectrum in the ATR and the LMFBR fast neutron spectrum is compared. The comparison analyses in this study are performed using MCWO, a well-developed tool that couples the Monte Carlo transport code MCNP with the isotope depletion and build-up code ORIGEN-2. MCWO analysis yields time-dependent and neutron-spectrum-dependent minor actinide and Pu concentrations and detailed radial fission power profile calculations for a typical fast reactor (LMFBR) neutron spectrum and the hardened neutron spectrum test region in the ATR. The MCWO-calculated results indicate that the cadmium basket used in the advanced fuel test assembly in the ATR can effectively depress the linear heat generation rate in the experimental fuels and harden the neutron spectrum in the test region.
Advanced Reactor Passive System Reliability Demonstration Analysis for an External Event
Bucknor, Matthew; Grabaskas, David; Brunett, Acacia J.; ...
2017-01-24
We report that many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has beenmore » examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Lastly, although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general) for the postulated transient event.« less
NRC ARDC Guidance Support Status Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holbrook, Mark R.
This report provides a summary that reflects the progress and status of proposed regulatory design criteria for advanced non-light water reactor (LWR) designs in accordance with the Level 3 milestone M3AT-17IN2001013 in work package AT-17IN200101. These criteria have been designated as advanced reactor design criteria (ARDC) and they provide guidance to future applicants for addressing the general design criteria (GDC) that are currently applied specifically to LWR designs. This report provides a summary of Phase 2 activities related to the various tasks associated with ARDC development and the subsequent development of ARDC regulatory guidance for sodium fast reactor (SFR) andmore » modular high-temperature gas-cooled reactor (HTGR) designs. Status Report Organization: Section 2 discusses the origin of the GDC and their application to LWRs. Section 3 addresses the objective of this initiative and how it benefits the advanced non-LWR reactor vendors. Section 4 discusses the scope and structure of the initiative. Section 5 provides background on the U.S. Department of Energy (DOE) ARDC team’s original development of the proposed ARDC that were submitted to the NRC for consideration. Section 6 provides a summary of recent ARDC Phase 2 activities. Appendices A through E document the DOE ARDC team’s public comments on various sections of the NRC’s draft regulatory guide DG–1330, “Guidance for Developing Principal Design Criteria for Non-Light Water Reactors.”« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coble, Jamie B.; Coles, Garill A.; Ramuhalli, Pradeep
Advanced small modular reactors (aSMRs) can provide the United States with a safe, sustainable, and carbon-neutral energy source. The controllable day-to-day costs of aSMRs are expected to be dominated by operation and maintenance costs. Health and condition assessment coupled with online risk monitors can potentially enhance affordability of aSMRs through optimized operational planning and maintenance scheduling. Currently deployed risk monitors are an extension of probabilistic risk assessment (PRA). For complex engineered systems like nuclear power plants, PRA systematically combines event likelihoods and the probability of failure (POF) of key components, so that when combined with the magnitude of possible adversemore » consequences to determine risk. Traditional PRA uses population-based POF information to estimate the average plant risk over time. Currently, most nuclear power plants have a PRA that reflects the as-operated, as-modified plant; this model is updated periodically, typically once a year. Risk monitors expand on living PRA by incorporating changes in the day-by-day plant operation and configuration (e.g., changes in equipment availability, operating regime, environmental conditions). However, population-based POF (or population- and time-based POF) is still used to populate fault trees. Health monitoring techniques can be used to establish condition indicators and monitoring capabilities that indicate the component-specific POF at a desired point in time (or over a desired period), which can then be incorporated in the risk monitor to provide a more accurate estimate of the plant risk in different configurations. This is particularly important for active systems, structures, and components (SSCs) proposed for use in aSMR designs. These SSCs may differ significantly from those used in the operating fleet of light-water reactors (or even in LWR-based SMR designs). Additionally, the operating characteristics of aSMRs can present significantly different requirements, including the need to operate in different coolant environments, higher operating temperatures, and longer operating cycles between planned refueling and maintenance outages. These features, along with the relative lack of operating experience for some of the proposed advanced designs, may limit the ability to estimate event probability and component POF with a high degree of certainty. Incorporating real-time estimates of component POF may compensate for a relative lack of established knowledge about the long-term component behavior and improve operational and maintenance planning and optimization. The particular eccentricities of advanced reactors and small modular reactors provide unique challenges and needs for advanced instrumentation, control, and human-machine interface (ICHMI) techniques such as enhanced risk monitors (ERM) in aSMRs. Several features of aSMR designs increase the need for accurate characterization of the real-time risk during operation and maintenance activities. A number of technical gaps in realizing ERM exist, and these gaps are largely independent of the specific reactor technology. As a result, the development of a framework for ERM would enable greater situational awareness regardless of the specific class of reactor technology. A set of research tasks are identified in a preliminary research plan to enable the development, testing, and demonstration of such a framework. Although some aspects of aSMRs, such as specific operational characteristics, will vary and are not now completely defined, the proposed framework is expected to be relevant regardless of such uncertainty. The development of an ERM framework will provide one of the key technical developments necessary to ensure the economic viability of aSMRs.« less
Worldwide advanced nuclear power reactors with passive and inherent safety: What, why, how, and who
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forsberg, C.W.; Reich, W.J.
1991-09-01
The political controversy over nuclear power, the accidents at Three Mile Island (TMI) and Chernobyl, international competition, concerns about the carbon dioxide greenhouse effect and technical breakthroughs have resulted in a segment of the nuclear industry examining power reactor concepts with PRIME safety characteristics. PRIME is an acronym for Passive safety, Resilience, Inherent safety, Malevolence resistance, and Extended time after initiation of an accident for external help. The basic ideal of PRIME is to develop power reactors in which operator error, internal sabotage, or external assault do not cause a significant release of radioactivity to the environment. Several PRIME reactormore » concepts are being considered. In each case, an existing, proven power reactor technology is combined with radical innovations in selected plant components and in the safety philosophy. The Process Inherent Ultimate Safety (PIUS) reactor is a modified pressurized-water reactor, the Modular High Temperature Gas-Cooled Reactor (MHTGR) is a modified gas-cooled reactor, and the Advanced CANDU Project is a modified heavy-water reactor. In addition to the reactor concepts, there is parallel work on super containments. The objective is the development of a passive box'' that can contain radioactivity in the event of any type of accident. This report briefly examines: why a segment of the nuclear power community is taking this new direction, how it differs from earlier directions, and what technical options are being considered. A more detailed description of which countries and reactor vendors have undertaken activities follows. 41 refs.« less
Further Development of Crack Growth Detection Techniques for US Test and Research Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohse, Gordon; Carpenter, David M.; Ostrovsky, Yakov
One of the key issues facing Light Water Reactors (LWRs) in extending lifetimes beyond 60 years is characterizing the combined effect of irradiation and water chemistry on material degradation and failure. Irradiation Assisted Stress Corrosion Cracking (IASCC), in which a crack propagates in a susceptible material under stress in an aggressive environment, is a mechanism of particular concern. Full understanding of IASCC depends on real time crack growth data acquired under relevant irradiation conditions. Techniques to measure crack growth in actively loaded samples under irradiation have been developed outside the US - at the Halden Boiling Water Reactor, for example.more » Several types of IASCC tests have also been deployed at the MITR, including passively loaded crack growth measurements and actively loaded slow strain rate tests. However, there is not currently a facility available in the US to measure crack growth on actively loaded, pre-cracked specimens in LWR irradiation environments. A joint program between the Idaho National Laboratory (INL) and the Massachusetts Institute of Technology (MIT) Nuclear Reactor Laboratory (NRL) is currently underway to develop and demonstrate such a capability for US test and research reactors. Based on the Halden design, the samples will be loaded using miniature high pressure bellows and a compact loading mechanism, with crack length measured in real time using the switched Direct Current Potential Drop (DCPD) method. The basic design and initial mechanical testing of the load system and implementation of the DCPD method have been previously reported. This paper presents the results of initial autoclave testing at INL and the adaptation of the design for use in the high pressure, high temperature water loop at the MITR 6 MW research reactor, where an initial demonstration is planned in mid-2015. Materials considerations for the high pressure bellows are addressed. Design modifications to the loading mechanism required by the size constraints of the MITR water loop are described. The safety case for operation of the high pressure gas-driven bellows mechanism is also presented. Key issues are the design and response of systems to limit gas flow in the event of a high pressure gas leak in the in-core autoclave. Integrity of the autoclave must be maintained and reactivity effects due to voiding of the loop coolant must be shown to be within the reactor technical specifications. The technical development of the crack growth monitor for application in the INL Advanced Test Reactor or the MITR can act as a template for adaptation of this technology in other reactors. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snoj, L.; Sklenka, L.; Rataj, J.
2012-07-01
The Eastern Europe Research Reactor Initiative was established in January 2008 to enhance cooperation between the Research Reactors in Eastern Europe. It covers three areas of research reactor utilisation: irradiation of materials and fuel, radioisotope production, neutron beam experiments, education and training. In the field of education and training an EERRI training course was developed. The training programme has been elaborated with the purpose to assist IAEA Member States, which consider building a research reactor (RR) as a first step to develop nuclear competence and infrastructure in the Country. The major strength of the reactor is utilisation of three differentmore » research reactors and a lot of practical exercises. Due to high level of adaptability, the course can be tailored to specific needs of institutions with limited or no access to research reactors. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Michael George
This report describes conditions and information, as required by the state of Idaho, Department of Environmental Quality Reuse Permit I-161-02, for the Advanced Test Reactor Complex Cold Waste Ponds located at Idaho National Laboratory from November 1, 2014–October 31, 2015. The effective date of Reuse Permit I-161-02 is November 20, 2014 with an expiration date of November 19, 2019.
Bartel, N.; Chen, M.; Utgikar, V. P.; ...
2015-04-04
A comparative evaluation of alternative compact heat exchanger designs for use as the intermediate heat exchanger in advanced nuclear reactor systems is presented in this article. Candidate heat exchangers investigated included the Printed circuit heat exchanger (PCHE) and offset strip-fin heat exchanger (OSFHE). Both these heat exchangers offer high surface area to volume ratio (a measure of compactness [m2/m3]), high thermal effectiveness, and overall low pressure drop. Helium–helium heat exchanger designs for different heat exchanger types were developed for a 600 MW thermal advanced nuclear reactor. The wavy channel PCHE with a 15° pitch angle was found to offer optimummore » combination of heat transfer coefficient, compactness and pressure drop as compared to other alternatives. The principles of the comparative analysis presented here will be useful for heat exchanger evaluations in other applications as well.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartel, N.; Chen, M.; Utgikar, V. P.
A comparative evaluation of alternative compact heat exchanger designs for use as the intermediate heat exchanger in advanced nuclear reactor systems is presented in this article. Candidate heat exchangers investigated included the Printed circuit heat exchanger (PCHE) and offset strip-fin heat exchanger (OSFHE). Both these heat exchangers offer high surface area to volume ratio (a measure of compactness [m2/m3]), high thermal effectiveness, and overall low pressure drop. Helium–helium heat exchanger designs for different heat exchanger types were developed for a 600 MW thermal advanced nuclear reactor. The wavy channel PCHE with a 15° pitch angle was found to offer optimummore » combination of heat transfer coefficient, compactness and pressure drop as compared to other alternatives. The principles of the comparative analysis presented here will be useful for heat exchanger evaluations in other applications as well.« less
Fabrication and testing of U-7Mo monolithic plate fuel with Zircaloy cladding
NASA Astrophysics Data System (ADS)
Pasqualini, E. E.; Robinson, A. B.; Porter, D. L.; Wachs, D. M.; Finlay, M. R.
2016-10-01
Nuclear fuel designs are being developed to replace highly enriched fuel used in research and test reactors with fuels of low enrichment. In the most challenging cases, U-(7-10 wt%)Mo monolithic plate fuels are proposed. One of the considered designs includes aluminum-alloy cladding, which provides some challenges in fabrication and fuel/cladding interaction during service. Zircaloy cladding, specifically Zry-4, was investigated as an alternative cladding, and development of a fabrication method was performed by researchers with the Comisión Nacionalde Energia Atómica (CNEA) in Argentina, resulting in test fuel plates (Zry-4 clad U-7Mo) which were subsequently tested in the Advanced Test Reactor in Idaho. Because Zry-4 and U-(7-10)Mo have similar high-temperature mechanical properties, fabrication was simplified in that the fuel foil and cladding could be co-rolled and bonded. The challenge was to prevent a thermal-expansion mismatch, which could destroy the fuel/cladding bond before complete bonding was achieved; the solution was to prevent the composites from cooling significantly during or between roll passes. The final product performed very well in-reactor, showing good bonding, very little fuel/cladding interaction-either from fabrication or in-reactor testing-and little swelling, especially no detectable heterogeneous bubble formation at the fuel/cladding interface tested to a fission density of up to 2.7E+21 (average) fissions/cm3, 3.8E+21 (peak).
TEST REACTOR AREA PLOT PLAN CA. 1968. MTR AND ETR ...
TEST REACTOR AREA PLOT PLAN CA. 1968. MTR AND ETR AREAS SOUTH OF PERCH AVENUE. "COLD" SERVICES NORTH OF PERCH. ADVANCED TEST REACTOR IN NEW SECTION WEST OF COLD SERVICES SECTION. NEW PERIMETER FENCE ENCLOSES BETA RAY SPECTROMETER, TRA-669, AN ATR SUPPORT FACILITY, AND ATR STACK. UTM LOCATORS HAVE BEEN DELETED. IDAHO NUCLEAR CORPORATION, FROM A BLAW-KNOX DRAWING, 3/1968. INL INDEX NO. 530-0100-00-400-011646, REV. 0. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Detectability prediction for a thermoacoustic sensor in the breazeale nuclear reactor pool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, James; Hrisko, Joshua; Garrett, Steven
2016-03-01
Laboratory experiments have suggested that thermoacoustic engines can be in- corporated within nuclear fuel rods. Such engines would radiate sounds that could be used to measure and acoustically-telemeter information about the op- eration of the nuclear reactor (e.g., coolant temperature or uxes of neutrons or other energetic particles) or the physical condition of the nuclear fuel itself (e.g., changes in temperature, evolved gases) that are encoded as the frequency and/or amplitude of the radiated sound [IEEE Measurement and Instrumen- tation 16(3), 18-25 (2013)]. For such acoustic information to be detectable, it is important to characterize the vibroacoustical environments within reactors.more » Measurements will be presented of the background noise spectra (with and with- out coolant pumps) and reverberation times within the 70,000 gallon pool that cools and shields the fuel in the 1 MW research reactor on Penn State's campus using two hydrophones, a piezoelectric projector, and an accelerometer. Sev- eral signal-processing techniques will be demonstrated to enhance the measured results. Background vibrational measurement were also taken at the 250 MW Advanced Test Reactor, located at the Idaho National Laboratory, using ac- celerometers mounted outside the reactor's pressure vessel and on plumbing will also be presented. The detectability predictions made in the thesis were validated in September 2015 using a nuclear ssion-heated thermoacoustic sensor that was placed in the core of the Breazeale Nuclear Reactor on Penn State's campus. Some features of the thermoacoustic device used in that experiment will also be revealed. [Work supported by the U.S. Department of Energy.]« less
Compatibility of refractory materials for nuclear reactor poison control systems
NASA Technical Reports Server (NTRS)
Sinclair, J. H.
1974-01-01
Metal-clad poison rods have been considered for the control system of an advanced space power reactor concept studied at the NASA Lewis Research Center. Such control rods may be required to operate at temperatures of about 140O C. Selected poison materials (including boron carbide and the diborides of zirconium, hafnium, and tantalum) were subjected to 1000-hour screening tests in contact with candidate refractory metal cladding materials (including tungsten and alloys of tantalum, niobium, and molybdenum) to assess the compatibility of these materials combinations at the temperatures of interest. Zirconium and hafnium diborides were compatible with refractory metals at 1400 C, but boron carbide and tantalum diboride reacted with the refractory metals at this temperature. Zirconium diboride also showed promise as a reaction barrier between boron carbide and tungsten.
Synergies Between ' and Cavity Formation in HT-9 Following High Dose Neutron Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, Kevin G.; Parish, Chad M.; Saleh, Tarik A.
Candidate cladding materials for advanced nuclear power reactors including fast reactor designs require materials capable of withstanding high dose neutron irradiation at elevated temperatures. One candidate material, HT-9, through various research programs have demonstrated the ability to withstand significant swelling and other radiation-induced degradation mechanisms in the high dose regime (>50 displacements per atom, dpa) at elevated temperatures (>300 C). Here, high efficiency multi-dimensional scanning transmission electron microscopy (STEM) acquisition with the aid of a three-dimensional (3D) reconstruction and modeling technique is used to probe the microstructural features that contribute to the exceptional swelling resistance of HT-9. In particular, themore » synergies between ' and fine-scale and moderate-scale cavity formation is investigated.« less
Assessment of Silicon Carbide Composites for Advanced Salt-Cooled Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katoh, Yutai; Wilson, Dane F; Forsberg, Charles W
2007-09-01
The Advanced High-Temperature Reactor (AHTR) is a new reactor concept that uses a liquid fluoride salt coolant and a solid high-temperature fuel. Several alternative fuel types are being considered for this reactor. One set of fuel options is the use of pin-type fuel assemblies with silicon carbide (SiC) cladding. This report provides (1) an initial viability assessment of using SiC as fuel cladding and other in-core components of the AHTR, (2) the current status of SiC technology, and (3) recommendations on the path forward. Based on the analysis of requirements, continuous SiC fiber-reinforced, chemically vapor-infiltrated SiC matrix (CVI SiC/SiC) compositesmore » are recommended as the primary option for further study on AHTR fuel cladding among various industrially available forms of SiC. Critical feasibility issues for the SiC-based AHTR fuel cladding are identified to be (1) corrosion of SiC in the candidate liquid salts, (2) high dose neutron radiation effects, (3) static fatigue failure of SiC/SiC, (4) long-term radiation effects including irradiation creep and radiation-enhanced static fatigue, and (5) fabrication technology of hermetic wall and sealing end caps. Considering the results of the issues analysis and the prospects of ongoing SiC research and development in other nuclear programs, recommendations on the path forward is provided in the order or priority as: (1) thermodynamic analysis and experimental examination of SiC corrosion in the candidate liquid salts, (2) assessment of long-term mechanical integrity issues using prototypical component sections, and (3) assessment of high dose radiation effects relevant to the anticipated operating condition.« less
78 FR 58575 - Review of Experiments for Research Reactors
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-24
... NUCLEAR REGULATORY COMMISSION [NRC-2013-0219] Review of Experiments for Research Reactors AGENCY... Commission (NRC) is withdrawing Regulatory Guide (RG) 2.4, ``Review of Experiments for Research Reactors... withdrawing RG 2.4, ``Review of Experiments for Research Reactors,'' (ADAMS Accession No. ML003740131) because...
Behavior of U 3Si 2 Fuel and FeCrAl Cladding under Normal Operating and Accident Reactor Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamble, Kyle Allan Lawrence; Hales, Jason Dean; Barani, Tommaso
2016-09-01
As part of the Department of Energy's Nuclear Energy Advanced Modeling and Simulation program, an Accident Tolerant Fuel High Impact Problem was initiated at the beginning of fiscal year 2015 to investigate the behavior of \\usi~fuel and iron-chromium-aluminum (FeCrAl) claddings under normal operating and accident reactor conditions. The High Impact Problem was created in response to the United States Department of Energy's renewed interest in accident tolerant materials after the events that occurred at the Fukushima Daiichi Nuclear Power Plant in 2011. The High Impact Problem is a multinational laboratory and university collaborative research effort between Idaho National Laboratory, Losmore » Alamos National Laboratory, Argonne National Laboratory, and the University of Tennessee, Knoxville. This report primarily focuses on the engineering scale research in fiscal year 2016 with brief summaries of the lower length scale developments in the areas of density functional theory, cluster dynamics, rate theory, and phase field being presented.« less
Ohmic Heating: An Emerging Concept in Organic Synthesis.
Silva, Vera L M; Santos, Luis M N B F; Silva, Artur M S
2017-06-12
The ohmic heating also known as direct Joule heating, is an advanced thermal processing method, mainly used in the food industry to rapidly increase the temperature for either cooking or sterilization purposes. Its use in organic synthesis, in the heating of chemical reactors, is an emerging method that shows great potential, the development of which has started recently. This Concept article focuses on the use of ohmic heating as a new tool for organic synthesis. It presents the fundamentals of ohmic heating and makes a qualitative and quantitative comparison with other common heating methods. A brief description of the ohmic reactor prototype in operation is presented as well as recent examples of its use in organic synthesis at laboratory scale, thus showing the current state of the research. The advantages and limitations of this heating method, as well as its main current applications are also discussed. Finally, the prospects and potential implications of ohmic heating in future research in chemical synthesis are proposed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Chagvardieff, Pierre; Barré, Yves; Blin, Virginie; Faure, Sylvain; Fornier, Anne; Grange, Didier; Grandjean, Agnès; Guiderdoni, Emmanuel; Henner, Pascale; Siroux, Brice; Leybros, Antoine; Messalier, Marc; Paillard, Hervé; Prévost, Thierry; Rennesson, Malvina; Sarrobert, Catherine; Vavasseur, Alain; Véry, Anne-Aliénor
2017-09-01
As part of the « post-accidental » management, the DEMETERRES project (RSNR PIA) proposes to develop innovative and environmentally friendly methods for removal of cesium and strontium from soils and liquid matrices in order to rehabilitate them for an agricultural use while minimizing the volume of generated wastes in accordance with the nuclear waste existing processes. Complementary approaches are used: they are based on physico-chemical technologies (such as foams flotation, supercritical CO2 extraction, extractants in fluidized bed reactor …) and biological ones (bioextractants, phytoextraction) which concepts are described. These researches aim to design innovative and performing extractants in term of selectivity and to achieve the pilot reactor phase for each of them. These pilots will group in a network to provide a technological platform lasting the project, to which will be attached an available network of experts. The respective advances of these researches are presented, completed of tests initiated in Japan on contaminated soils through partnerships.
Nuclear Fuels & Materials Spotlight Volume 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petti, David Andrew
2016-10-01
As the nation's nuclear energy laboratory, Idaho National Laboratory brings together talented people and specialized nuclear research capability to accomplish our mission. This edition of the Nuclear Fuels and Materials Division Spotlight provides an overview of some of our recent accomplishments in research and capability development. These accomplishments include: • Evaluation and modeling of light water reactor accident tolerant fuel concepts • Status and results of recent TRISO-coated particle fuel irradiations, post-irradiation examinations, high-temperature safety testing to demonstrate the accident performance of this fuel system, and advanced microscopy to improve the understanding of fission product transport in this fuel system.more » • Improvements in and applications of meso and engineering scale modeling of light water reactor fuel behavior under a range of operating conditions and postulated accidents (e.g., power ramping, loss of coolant accident, and reactivity initiated accidents) using the MARMOT and BISON codes. • Novel measurements of the properties of nuclear (actinide) materials under extreme conditions, (e.g. high pressure, low/high temperatures, high magnetic field) to improve the scientific understanding of these materials. • Modeling reactor pressure vessel behavior using the GRIZZLY code. • New methods using sound to sense temperature inside a reactor core. • Improved experimental capabilities to study the response of fusion reactor materials to a tritium plasma. Throughout Spotlight, you'll find examples of productive partnerships with academia, industry, and government agencies that deliver high-impact outcomes. The work conducted at Idaho National Laboratory helps spur innovation in nuclear energy applications that drive economic growth and energy security. We appreciate your interest in our work here at Idaho National Laboratory, and hope that you find this issue informative.« less
NASA Astrophysics Data System (ADS)
El-Genk, Mohamed S.; Hoover, Mark D.
1991-07-01
The present conference discusses NASA mission planning for space nuclear power, lunar mission design based on nuclear thermal rockets, inertial-electrostatic confinement fusion for space power, nuclear risk analysis of the Ulysses mission, the role of the interface in refractory metal alloy composites, an advanced thermionic reactor systems design code, and space high power nuclear-pumped lasers. Also discussed are exploration mission enhancements with power-beaming, power requirement estimates for a nuclear-powered manned Mars rover, SP-100 reactor design, safety, and testing, materials compatibility issues for fabric composite radiators, application of the enabler to nuclear electric propulsion, orbit-transfer with TOPAZ-type power sources, the thermoelectric properties of alloys, ruthenium silicide as a promising thermoelectric material, and innovative space-saving device for high-temperature piping systems. The second volume of this conference discusses engine concepts for nuclear electric propulsion, nuclear technologies for human exploration of the solar system, dynamic energy conversion, direct nuclear propulsion, thermionic conversion technology, reactor and power system control, thermal management, thermionic research, effects of radiation on electronics, heat-pipe technology, radioisotope power systems, and nuclear fuels for power reactors. The third volume discusses space power electronics, space nuclear fuels for propulsion reactors, power systems concepts, space power electronics systems, the use of artificial intelligence in space, flight qualifications and testing, microgravity two-phase flow, reactor manufacturing and processing, and space and environmental effects. (For individual items see A93-13752 to A93-13937)
Summary of the Advanced Reactor Design Criteria (ARDC) Phase 2 Activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holbrook, Mark Raymond
This report provides an end-of-year summary reflecting the progress and status of proposed regulatory design criteria for advanced non-LWR designs in accordance with the Level 3 milestone in M3AT-15IN2001017 in work package AT-15IN200101. These criteria have been designated as ARDC, and they provide guidance to future applicants for addressing the GDC that are currently applied specifically to LWR designs. The report provides a summary of Phase 2 activities related to the various tasks associated with ARDC development and the subsequent development of example adaptations of ARDC for Sodium Fast Reactor (SFR) and modular High Temperature Gas-cooled Reactor (HTGR) designs.
Advanced gray rod control assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drudy, Keith J; Carlson, William R; Conner, Michael E
An advanced gray rod control assembly (GRCA) for a nuclear reactor. The GRCA provides controlled insertion of gray rod assemblies into the reactor, thereby controlling the rate of power produced by the reactor and providing reactivity control at full power. Each gray rod assembly includes an elongated tubular member, a primary neutron-absorber disposed within the tubular member said neutron-absorber comprising an absorber material, preferably tungsten, having a 2200 m/s neutron absorption microscopic capture cross-section of from 10 to 30 barns. An internal support tube can be positioned between the primary absorber and the tubular member as a secondary absorber tomore » enhance neutron absorption, absorber depletion, assembly weight, and assembly heat transfer characteristics.« less
ERIC Educational Resources Information Center
Hogerton, John F.
This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: How Reactors Work; Reactor Design; Research, Teaching, and Materials Testing; Reactors (Research, Teaching and Materials); Production Reactors; Reactors for Electric Power…
Advanced I&C for Fault-Tolerant Supervisory Control of Small Modular Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, Daniel G.
In this research, we have developed a supervisory control approach to enable automated control of SMRs. By design the supervisory control system has an hierarchical, interconnected, adaptive control architecture. A considerable advantage to this architecture is that it allows subsystems to communicate at different/finer granularity, facilitates monitoring of process at the modular and plant levels, and enables supervisory control. We have investigated the deployment of automation, monitoring, and data collection technologies to enable operation of multiple SMRs. Each unit's controller collects and transfers information from local loops and optimize that unit’s parameters. Information is passed from the each SMR unitmore » controller to the supervisory controller, which supervises the actions of SMR units and manage plant processes. The information processed at the supervisory level will provide operators the necessary information needed for reactor, unit, and plant operation. In conjunction with the supervisory effort, we have investigated techniques for fault-tolerant networks, over which information is transmitted between local loops and the supervisory controller to maintain a safe level of operational normalcy in the presence of anomalies. The fault-tolerance of the supervisory control architecture, the network that supports it, and the impact of fault-tolerance on multi-unit SMR plant control has been a second focus of this research. To this end, we have investigated the deployment of advanced automation, monitoring, and data collection and communications technologies to enable operation of multiple SMRs. We have created a fault-tolerant multi-unit SMR supervisory controller that collects and transfers information from local loops, supervise their actions, and adaptively optimize the controller parameters. The goal of this research has been to develop the methodologies and procedures for fault-tolerant supervisory control of small modular reactors. To achieve this goal, we have identified the following objectives. These objective are an ordered approach to the research: I) Development of a supervisory digital I&C system II) Fault-tolerance of the supervisory control architecture III) Automated decision making and online monitoring.« less
Final Report for the “WSU Neutron Capture Therapy Facility Support”
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerald E. Tripard; Keith G. Fox
2006-08-24
The objective for the cooperative research program for which this report has been written was to provide separate NCT facility user support for the students, faculty and scientists who would be doing the U.S. Department of Energy Office (DOE) of Science supported advanced radiotargeted research at the WSU 1 megawatt TRIGA reactor. The participants were the Idaho National laboratory (INL, P.I., Dave Nigg), the Veterinary Medical Research Center of Washington State University (WSU, Janean Fidel and Patrick Gavin), and the Washington State University Nuclear Radiation Center (WSU, P.I., Gerald Tripard). A significant number of DOE supported modifications were made tomore » the WSU reactor in order to create an epithermal neutron beam while at the same time maintaining the other activities of the 1 MW reactor. These modifications were: (1) Removal of the old thermal column. (2) Construction and insertion of a new epithermal filter, collimator and shield. (3) Construction of a shielded room that could accommodate the very high radiation field created by an intense neutron beam. (4) Removal of the previous reactor core fuel cluster arrangement. (5) Design and loading of the new reactor core fuel cluster arrangement in order to optimize the neutron flux entering the epithermal neutron filter. (6) The integration of the shielded rooms interlocks and radiological controls into the SCRAM chain and operating electronics of the reactor. (7) Construction of a motorized mechanism for moving and remotely controlling the position of the entire reactor bridge. (8) The integration of the reactor bridge control electronics into the SCRAM chain and operating electronics of the reactor. (9) The design, construction and attachment to the support structure of the reactor of an irradiation box that could be inserted into position next to the face of the reactor. (Necessitated by the previously mentioned core rearrangement). All of the above modifications were successfully completed and tested. The resulting epithermal beam of 1 x 10{sup 9} n/sec-cm{sup 2} was measured by Idaho National Laboratory with assistance from WSU's Neutron Activation Analysis Group. The beam is as good as our initial proposals for the project had predicted. In addition to all of the design, construction and insertion of the hardware, shielding, electronics and radiation monitoring systems there was considerable manpower and effort put into changes in the Technical Specifications of the reactor and implementing procedures for use of the new facility. This staff involvement is one of the reasons we requested special facility support from the DOE. Once the facility was competed and all of the recalibrations and measurements made to characterize the differences between this reactor core and the previous core we began to assist INL in making their beam measurements with foils and phantoms. Although we proposed support for only one additional staff position to support this new NCT facility the staff support provided by the WSU Nuclear Radiation Center was greater than had been anticipated by our initial proposal. INL was also assisted in the testing of a heavy water (deuterated water) bladder that can be inserted into the collimator in order to produce an intense, external thermal neutron beam. The external epithermal and/or thermal neutron beam capability remains available for use, if funding becomes available for future research projects.« less
Research Program of a Super Fast Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oka, Yoshiaki; Ishiwatari, Yuki; Liu, Jie
2006-07-01
Research program of a supercritical-pressure light water cooled fast reactor (Super Fast Reactor) is funded by MEXT (Ministry of Education, Culture, Sports, Science and Technology) in December 2005 as one of the research programs of Japanese NERI (Nuclear Energy Research Initiative). It consists of three programs. (1) development of Super Fast Reactor concept; (2) thermal-hydraulic experiments; (3) material developments. The purpose of the concept development is to pursue the advantage of high power density of fast reactor over thermal reactors to achieve economic competitiveness of fast reactor for its deployment without waiting for exhausting uranium resources. Design goal is notmore » breeding, but maximizing reactor power by using plutonium from spent LWR fuel. MOX will be the fuel of the Super Fast Reactor. Thermal-hydraulic experiments will be conducted with HCFC22 (Hydro chlorofluorocarbons) heat transfer loop of Kyushu University and supercritical water loop at JAEA. Heat transfer data including effect of grid spacers will be taken. The critical flow and condensation of supercritical fluid will be studied. The materials research includes the development and testing of austenitic stainless steel cladding from the experience of PNC1520 for LMFBR. Material for thermal insulation will be tested. SCWR (Supercritical-Water Cooled Reactor) of GIF (Generation-4 International Forum) includes both thermal and fast reactors. The research of the Super Fast Reactor will enhance SCWR research and the data base. The research period will be until March 2010. (authors)« less
Characterization of Metalorganic Chemical Vapor Deposition
NASA Technical Reports Server (NTRS)
Jesser, W. A.
1998-01-01
A series of experimental and numerical investigations to develop a more complete understanding of the reactive fluid dynamics of chemical vapor deposition were conducted. In the experimental phases of the effort, a horizontal CVD reactor configuration was used for the growth of InP at UVA and for laser velocimetry measurements of the flow fields in the reactor at LaRC. This horizontal reactor configuration was developed for the growth of III-V semiconductors and has been used by our research group in the past to study the deposition of both GaAs and InP. While the ultimate resolution of many of the heat and mass transport issues will require access to a reduced-gravity environment, the series of groundbased research makes direct contributions to this area while attempting to answer the design questions for future experiments of how low must gravity be reduced and for how long must this gravity level be maintained to make the necessary measurements. It is hoped that the terrestrial experiments will be useful for the design of future microgravity experiments which likely will be designed to employ a core set of measurements for applications in the microgravity environment such as HOLOC, the Fluid Physics/Dynamics Facility, or the Schlieren photography, the Laser Imaging Velocimetry and the Laser Doppler Velocimetry instruments under development for the Advanced Fluids Experiment Module.
Microstructure of the irradiated U 3Si 2/Al silicide dispersion fuel
NASA Astrophysics Data System (ADS)
Gan, J.; Keiser, D. D.; Miller, B. D.; Jue, J.-F.; Robinson, A. B.; Madden, J. W.; Medvedev, P. G.; Wachs, D. M.
2011-12-01
The silicide dispersion fuel of U 3Si 2/Al is recognized as the best performance fuel for many nuclear research and test reactors with up to 4.8 gU/cm 3 fuel loading. An irradiated U 3Si 2/Al dispersion fuel ( 235U ˜ 75%) from the high-flux side of a fuel plate (U0R040) from the Reduced Enrichment for Research and Test Reactors (RERTR)-8 test was characterized using transmission electron microscopy (TEM). The fuel was irradiated in the Advanced Test Reactor (ATR) for 105 days. The average irradiation temperature and fission density of the U 3Si 2 fuel particles for the TEM sample are estimated to be approximately 110 °C and 5.4 × 10 27 f/m 3. The characterization was performed using a 200-kV TEM. The U/Si ratio for the fuel particle and (Si + Al)/U for the fuel-matrix-interaction layer are approximately 1.1 and 4-10, respectively. The estimated average diameter, number density and volume fraction for small bubbles (<1 μm) in the fuel particle are ˜94 nm, 1.05 × 10 20 m -3 and ˜11%, respectively. The results and their implication on the performance of the U 3Si 2/Al silicide dispersion fuel are discussed.
Report on the Synchrotron Characterization of U-Mo and U-Zr Alloys and the Modeling Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okuniewski, Maria A.; Ganapathy, Varsha; Hamilton, Brenden
2016-09-01
ABSTRACT Uranium-molybdenum (U-Mo) and uranium-zirconium (U-Zr) are two promising fuel candidates for nuclear transmutation reactors which burn long-lived minor actinides and fission products within fast spectrum reactors. The objectives of this research are centered on understanding the early stages of fuel performance through the examination of the irradiation induced microstructural changes in U-Zr and U-Mo alloys subjected to low neutron fluences. Specimens that were analyzed include those that were previously irradiated in the Advanced Test Reactor at INL. This most recent work has focused on a sub-set of the irradiated specimens, specifically U-Zr and U-Mo alloys that were irradiated tomore » 0.01 dpa at temperatures ranging from (150-800oC). These specimens were analyzed with two types of synchrotron techniques, including X-ray absorption fine structure and X-ray diffraction. These techniques provide non-destructive microstructural analysis, including phase identification and quantitation, lattice parameters, crystallite sizes, as well as bonding, structure, and chemistry. Preliminary research has shown changes in the phase fractions, crystallite sizes, and lattice parameters as a function of irradiation and temperature. Future data analyses will continue to explore these microstructural changes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Betzler, Benjamin R; Mays, Gary T
2016-01-01
A workshop on Molten Salt Reactor (MSR) technologies commemorating the 50th anniversary of the Molten Salt Reactor Experiment (MSRE) was held at Oak Ridge National Laboratory on October 15 16, 2015. The MSRE represented a pioneering experiment that demonstrated an advanced reactor technology: the molten salt eutectic-fueled reactor. A multinational group of more than 130 individuals representing a diverse set of stakeholders gathered to discuss the historical, current, and future technical challenges and paths to deployment of MSR technology. This paper provides a summary of the key messages from this workshop.
Update on Small Modular Reactors Dynamic System Modeling Tool: Web Application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hale, Richard Edward; Cetiner, Sacit M.; Fugate, David L.
Previous reports focused on the development of component and system models as well as end-to-end system models using Modelica and Dymola for two advanced reactor architectures: (1) Advanced Liquid Metal Reactor and (2) fluoride high-temperature reactor (FHR). The focus of this report is the release of the first beta version of the web-based application for model use and collaboration, as well as an update on the FHR model. The web-based application allows novice users to configure end-to-end system models from preconfigured choices to investigate the instrumentation and controls implications of these designs and allows for the collaborative development of individualmore » component models that can be benchmarked against test systems for potential inclusion in the model library. A description of this application is provided along with examples of its use and a listing and discussion of all the models that currently exist in the library.« less
Applying flow chemistry: methods, materials, and multistep synthesis.
McQuade, D Tyler; Seeberger, Peter H
2013-07-05
The synthesis of complex molecules requires control over both chemical reactivity and reaction conditions. While reactivity drives the majority of chemical discovery, advances in reaction condition control have accelerated method development/discovery. Recent tools include automated synthesizers and flow reactors. In this Synopsis, we describe how flow reactors have enabled chemical advances in our groups in the areas of single-stage reactions, materials synthesis, and multistep reactions. In each section, we detail the lessons learned and propose future directions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aas, S.; Barendregt, T.J.; Chesne, A.
1960-07-01
A series of lectures on fuel elements for water-cooled power reactors are presented. Topics covered include fabrication, properties, cladding, radiation damage, design, cycling, storage and transpont, and reprocessing. Separate records have been prepared for each section.
Recent advances of mesoporous materials in sample preparation.
Zhao, Liang; Qin, Hongqiang; Wu, Ren'an; Zou, Hanfa
2012-03-09
Sample preparation has been playing an important role in the analysis of complex samples. Mesoporous materials as the promising adsorbents have gained increasing research interest in sample preparation due to their desirable characteristics of high surface area, large pore volume, tunable mesoporous channels with well defined pore-size distribution, controllable wall composition, as well as modifiable surface properties. The aim of this paper is to review the recent advances of mesoporous materials in sample preparation with emphases on extraction of metal ions, adsorption of organic compounds, size selective enrichment of peptides/proteins, specific capture of post-translational peptides/proteins and enzymatic reactor for protein digestion. Copyright © 2011 Elsevier B.V. All rights reserved.
Critical Issues on Materials for Gen-IV Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caro, M; Marian, J; Martinez, E
2009-02-27
Within the LDRD on 'Critical Issues on Materials for Gen-IV Reactors' basic thermodynamics of the Fe-Cr alloy and accurate atomistic modeling were used to help develop the capability to predict hardening, swelling and embrittlement using the paradigm of Multiscale Materials Modeling. Approaches at atomistic and mesoscale levels were linked to build-up the first steps in an integrated modeling platform that seeks to relate in a near-term effort dislocation dynamics to polycrystal plasticity. The requirements originated in the reactor systems under consideration today for future sources of nuclear energy. These requirements are beyond the present day performance of nuclear materials andmore » calls for the development of new, high temperature, radiation resistant materials. Fe-Cr alloys with 9-12% Cr content are the base matrix of advanced ferritic/martensitic (FM) steels envisaged as fuel cladding and structural components of Gen-IV reactors. Predictive tools are needed to calculate structural and mechanical properties of these steels. This project represents a contribution in that direction. The synergy between the continuous progress of parallel computing and the spectacular advances in the theoretical framework that describes materials have lead to a significant advance in our comprehension of materials properties and their mechanical behavior. We took this progress to our advantage and within this LDRD were able to provide a detailed physical understanding of iron-chromium alloys microstructural behavior. By combining ab-initio simulations, many-body interatomic potential development, and mesoscale dislocation dynamics we were able to describe their microstructure evolution. For the first time in the case of Fe-Cr alloys, atomistic and mesoscale were merged and the first steps taken towards incorporating ordering and precipitation effects into dislocation dynamics (DD) simulations. Molecular dynamics (MD) studies of the transport of self-interstitial, vacancy and point defect clusters in concentrated Fe-Cr alloys were performed for future diffusion data calculations. A recently developed parallel MC code with displacement allowed us to predict the evolution of the defect microstructures, local chemistry changes, grain boundary segregation and precipitation resulting from radiation enhanced diffusion. We showed that grain boundaries, dislocations and free surfaces are not preferential for alpha-prime precipitation, and explained experimental observations of short-range order (SRO) in Fe-rich FeCr alloys. Our atomistic studies of dislocation hardening allowed us to obtain dislocation mobility functions for BCC pure iron and Fe-Cr and determine for FCC metals the dislocation interaction with precipitates with a description to be used in Dislocation Dynamic (DD) codes. A Synchronous parallel Kinetic Monte Carlo code was developed and tested which promises to expand the range of applicability of kMC simulations. This LDRD furthered the limits of the available science on the thermodynamic and mechanic behavior of metallic alloys and extended the application of physically-based multiscale materials modeling to cases of severe temperature and neutron fluence conditions in advanced future nuclear reactors. The report is organized as follows: after a brief introduction, we present the research activities, and results obtained. We give recommendations on future LLNL activities that may contribute to the progress in this area, together with examples of possible research lines to be supported.« less
Cermet-fueled reactors for advanced space applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cowan, C.L.; Palmer, R.S.; Taylor, I.N.
Cermet-fueled nuclear reactors are attractive candidates for high-performance advanced space power systems. The cermet consists of a hexagonal matrix of a refractory metal and a ceramic fuel, with multiple tubular flow channels. The high performance characteristics of the fuel matrix come from its high strength at elevated temperatures and its high thermal conductivity. The cermet fuel concept evolved in the 1960s with the objective of developing a reactor design that could be used for a wide range of mobile power generating sytems, including both Brayton and Rankine power conversion cycles. High temperature thermal cycling tests for the cermet fuel weremore » carried out by General Electric as part of the 710 Project (General Electric 1966), and by Argonne National Laboratory in the Direct Nuclear Rocket Program (1965). Development programs for cermet fuel are currently under way at Argonne National Laboratory and Pacific Northwest Laboratory. The high temperature qualification tests from the 1960s have provided a base for the incorporation of cermet fuel in advanced space applications. The status of the cermet fuel development activities and descriptions of the key features of the cermet-fueled reactor design are summarized in this paper.« less
A summary of sodium-cooled fast reactor development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aoto, Kazumi; Dufour, Philippe; Hongyi, Yang
Much of the basic technology for the Sodium-cooled fast Reactor (SFR) has been established through long term development experience with former fast reactor programs, and is being confirmed by the Phénix end-of-life tests in France, the restart of Monju in Japan, the lifetime extension of BN-600 in Russia, and the startup of the China Experimental Fast Reactor in China. Planned startup in 2014 for new SFRs: BN-800 in Russia and PFBR in India, will further enhance the confirmation of the SFR basic technology. Nowadays, the SFR development has advanced to aiming at establishment of the Generation-IV system which is dedicatedmore » to sustainable energy generation and actinide management, and several advanced SFR concepts are under development such as PRISM, JSFR, ASTRID, PGSFR, BN-1200, and CFR-600. Generation-IV International Forum is an international collaboration framework where various R&D activities are progressing on design of system and component, safety and operation, advanced fuel, and actinide cycle for the Generation-IV SFR development, and will play a beneficial role of promoting them thorough providing an opportunity to share the past experience and the latest data of design and R&D among countries developing SFR.« less
PIE on Safety-Tested Loose Particles from Irradiated Compact 4-4-2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunn, John D.; Gerczak, Tyler J.; Morris, Robert Noel
2016-04-01
Post-irradiation examination (PIE) is being performed in support of tristructural isotropic (TRISO) coated particle fuel development and qualification for High Temperature Gas-cooled Reactors (HTGRs). This work is sponsored by the Department of Energy Office of Nuclear Energy (DOE-NE) through the Advanced Reactor Technologies (ART) Office under the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program. The AGR-1 experiment was the first in a series of TRISO fuel irradiation tests initiated in 2006. The AGR-1 TRISO particles and fuel compacts were fabricated at Oak Ridge National Laboratory (ORNL) in 2006 using laboratory-scale equipment and irradiated for 3 years in themore » Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) to demonstrate and evaluate fuel performance under HTGR irradiation conditions. Post-irradiation examination was performed at INL and ORNL to study how the fuel behaved during irradiation, and to test fuel performance during exposure to elevated temperatures at or above temperatures that could occur during a depressurized conduction cooldown event. This report summarizes safety testing and post-safety testing PIE conducted at ORNL on loose particles extracted from irradiated AGR-1 Compact 4-4-2.« less
Characteristics and Dose Levels for Spent Reactor Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coates, Cameron W
2007-01-01
Current guidance considers highly radioactive special nuclear materials to be those materials that, unshielded, emit a radiation dose [rate] measured at 1 m which exceeds 100 rem/h. Smaller, less massive fuel assemblies from research reactors can present a challenge from the point of view of self protection because of their size (lower dose, easier to handle) and the desirability of higher enrichments; however, a follow-on study to cross-compare dose trends of research reactors and power reactors was deemed useful to confirm/verify these trends. This paper summarizes the characteristics and dose levels of spent reactor fuels for both research reactors andmore » power reactors and extends previous studies aimed at quantifying expected dose rates from research reactor fuels worldwide.« less
Transuranic inventory reduction in repository by partitioning and transmutation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, C.H.; Kazimi, M.S.
1992-01-01
The promise of a new reprocessing technology and the issuance of Environmental Protection Agency (EPA) and U.S. Nuclear Regulatory Commission regulations concerning a geologic repository rekindle the interest in partitioning and transmutation of transuranic (TRU) elements from discharged reactor fuel as a high level waste management option. This paper investigates the TRU repository inventory reduction capability of the proposed advanced liquid metal reactors (ALMRs) and integral fast reactors (IFRs) as well as the plutonium recycled light water reactors (LWRs).
Fuel Fabrication and Nuclear Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karpius, Peter Joseph
2017-02-02
The uranium from the enrichment plant is still in the form of UF 6. UF 6 is not suitable for use in a reactor due to its highly corrosive chemistry as well as its phase diagram. UF 6 is converted into UO 2 fuel pellets, which are in turn placed in fuel rods and assemblies. Reactor designs are variable in moderators, coolants, fuel, performance etc.The dream of energy ‘too-cheap to meter’ is no more, and now the nuclear power industry is pushing ahead with advanced reactor designs.
Scaling up microbial fuel cells and other bioelectrochemical systems.
Logan, Bruce E
2010-02-01
Scientific research has advanced on different microbial fuel cell (MFC) technologies in the laboratory at an amazing pace, with power densities having reached over 1 kW/m(3) (reactor volume) and to 6.9 W/m(2) (anode area) under optimal conditions. The main challenge is to bring these technologies out of the laboratory and engineer practical systems for bioenergy production at larger scales. Recent advances in new types of electrodes, a better understanding of the impact of membranes and separators on performance of these systems, and results from several new pilot-scale tests are all good indicators that commercialization of the technology could be possible within a few years. Some of the newest advances and future challenges are reviewed here with respect to practical applications of these MFCs for renewable energy production and other applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerczak, Tyler J.; Smith, Kurt R.; Petrie, Christian M.
Tristructural-isotropic (TRISO)–coated particle fuel is a promising advanced fuel concept consisting of a spherical fuel kernel made of uranium oxide and uranium carbide, surrounded by a porous carbonaceous buffer layer and successive layers of dense inner pyrolytic carbon (IPyC), silicon carbide (SiC) deposited by chemical vapor , and dense outer pyrolytic carbon (OPyC). This fuel concept is being considered for advanced reactor applications such as high temperature gas-cooled reactors (HTGRs) and molten salt reactors (MSRs), as well as for accident-tolerant fuel for light water reactors (LWRs). Development and implementation of TRISO fuel for these reactor concepts support the US Departmentmore » of Energy (DOE) Office of Nuclear Energy mission to promote safe, reliable nuclear energy that is sustainable and environmentally friendly. During operation, the SiC layer serves as the primary barrier to metallic fission products and actinides not retained in the kernel. It has been observed that certain fission products are released from TRISO fuel during operation, notably, Ag, Eu, and Sr [1]. Release of these radioisotopes causes safety and maintenance concerns.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Incorporation of real-time component information using equipment condition assessment (ECA) through the developmentof enhanced risk monitors (ERM) for active components in advanced reactor (AR) and advanced small modular reactor (SMR) designs. We incorporate time-dependent failure probabilities from prognostic health management (PHM) systems to dynamically update the risk metric of interest. This information is used to augment data used for supervisory control and plant-wide coordination of multiple modules by providing the incremental risk incurred due to aging and demands placed on components that support mission requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Natesan, K.; Momozaki, Y.; Li, M.
This report gives a description of the activities in design, fabrication, construction, and assembling of a pumped sodium loop for the sodium compatibility studies on advanced structural materials. The work is the Argonne National Laboratory (ANL) portion of the effort on the work project entitled, 'Sodium Compatibility of Advanced Fast Reactor Materials,' and is a part of Advanced Materials Development within the Reactor Campaign. The objective of this project is to develop information on sodium corrosion compatibility of advanced materials being considered for sodium reactor applications. This report gives the status of the sodium pumped loop at Argonne National Laboratory,more » the specimen details, and the technical approach to evaluate the sodium compatibility of advanced structural alloys. This report is a deliverable from ANL in FY2010 (M2GAN10SF050302) under the work package G-AN10SF0503 'Sodium Compatibility of Advanced Fast Reactor Materials.' Two reports were issued in 2009 (Natesan and Meimei Li 2009, Natesan et al. 2009) which examined the thermodynamic and kinetic factors involved in the purity of liquid sodium coolant for sodium reactor applications as well as the design specifications for the ANL pumped loop for testing advanced structural materials. Available information was presented on solubility of several metallic and nonmetallic elements along with a discussion of the possible mechanisms for the accumulation of impurities in sodium. That report concluded that the solubility of many metals in sodium is low (<1 part per million) in the temperature range of interest in sodium reactors and such trace amounts would not impact the mechanical integrity of structural materials and components. The earlier report also analyzed the solubility and transport mechanisms of nonmetallic elements such as oxygen, nitrogen, carbon, and hydrogen in laboratory sodium loops and in reactor systems such as Experimental Breeder Reactor-II, Fast Flux Test Facility, and Clinch River Breeder Reactor. Among the nonmetallic elements discussed, oxygen is deemed controllable and its concentration in sodium can be maintained in sodium for long reactor life by using cold-trap method. It was concluded that among the cold-trap and getter-trap methods, the use of cold trap is sufficient to achieve oxygen concentration of the order of 1 part per million. Under these oxygen conditions in sodium, the corrosion performance of structural materials such as austenitic stainless steels and ferritic steels will be acceptable at a maximum core outlet sodium temperature of {approx}550 C. In the current sodium compatibility studies, the oxygen concentration in sodium will be controlled and maintained at {approx}1 ppm by controlling the cold trap temperature. The oxygen concentration in sodium in the forced convection sodium loop will be controlled and monitored by maintaining the cold trap temperature in the range of 120-150 C, which would result in oxygen concentration in the range of 1-2 ppm. Uniaxial tensile specimens are being exposed to flowing sodium and will be retrieved and analyzed for corrosion and post-exposure tensile properties. Advanced materials for sodium exposure include austenitic alloy HT-UPS and ferritic-martensitic steels modified 9Cr-1Mo and NF616. Among the nonmetallic elements in sodium, carbon was assessed to have the most influence on structural materials since carbon, as an impurity, is not amenable to control and maintenance by any of the simple purification methods. The dynamic equilibrium value for carbon in sodium systems is dependent on several factors, details of which were discussed in the earlier report. The current sodium compatibility studies will examine the role of carbon concentration in sodium on the carburization-decarburization of advanced structural materials at temperatures up to 650 C. Carbon will be added to the sodium by exposure of carbon-filled iron tubes, which over time will enable carbon to diffuse through iron and dissolve into sodium. The method enables addition of dissolved carbon (without carbon particulates) in sodium that is of interest for materials compatibility evaluation. The removal of carbon from the sodium will be accomplished by exposing carbon-gettering alloys such as refractory metals that have a high partitioning coefficient for carbon and also precipitate carbides, thereby decreasing the carbon concentration in sodium.« less
Analysis of Coolant Options for Advanced Metal Cooled Nuclear Reactors
2006-12-01
24 Table 3.3 Hazards of Sodium Reaction Products, Hydride And Oxide...........................26 Table 3.4 Chemical Reactivity Of Selected...Liquid Metal Fast Breeder Reactor ORIGEN Oak Ridge Isotope Generator ORIGENARP Oak Ridge Isotope Generator Automated Rapid Processing PWR ...nuclear reactors, both because of the possibility of increased reactivity due to boiling and the potential loss of effectiveness of coolant heat transfer
The ISS Water Processor Catalytic Reactor as a Post Processor for Advanced Water Reclamation Systems
NASA Technical Reports Server (NTRS)
Nalette, Tim; Snowdon, Doug; Pickering, Karen D.; Callahan, Michael
2007-01-01
Advanced water processors being developed for NASA s Exploration Initiative rely on phase change technologies and/or biological processes as the primary means of water reclamation. As a result of the phase change, volatile compounds will also be transported into the distillate product stream. The catalytic reactor assembly used in the International Space Station (ISS) water processor assembly, referred to as Volatile Removal Assembly (VRA), has demonstrated high efficiency oxidation of many of these volatile contaminants, such as low molecular weight alcohols and acetic acid, and is considered a viable post treatment system for all advanced water processors. To support this investigation, two ersatz solutions were defined to be used for further evaluation of the VRA. The first solution was developed as part of an internal research and development project at Hamilton Sundstrand (HS) and is based primarily on ISS experience related to the development of the VRA. The second ersatz solution was defined by NASA in support of a study contract to Hamilton Sundstrand to evaluate the VRA as a potential post processor for the Cascade Distillation system being developed by Honeywell. This second ersatz solution contains several low molecular weight alcohols, organic acids, and several inorganic species. A range of residence times, oxygen concentrations and operating temperatures have been studied with both ersatz solutions to provide addition performance capability of the VRA catalyst.
NASA Astrophysics Data System (ADS)
Bonne, François; Alamir, Mazen; Hoa, Christine; Bonnay, Patrick; Bon-Mardion, Michel; Monteiro, Lionel
2015-12-01
In this article, we present a new Simulink library of cryogenics components (such as valve, phase separator, mixer, heat exchanger...) to assemble to generate model-based control schemes. Every component is described by its algebraic or differential equation and can be assembled with others to build the dynamical model of a complete refrigerator or the model of a subpart of it. The obtained model can be used to automatically design advanced model based control scheme. It also can be used to design a model based PI controller. Advanced control schemes aim to replace classical user experience designed approaches usually based on many independent PI controllers. This is particularly useful in the case where cryoplants are submitted to large pulsed thermal loads, expected to take place in future fusion reactors such as those expected in the cryogenic cooling systems of the International Thermonuclear Experimental Reactor (ITER) or the Japan Torus-60 Super Advanced Fusion Experiment (JT- 60SA). The paper gives the example of the generation of the dynamical model of the 400W@1.8K refrigerator and shows how to build a Constrained Model Predictive Control for it. Based on the scheme, experimental results will be given. This work is being supported by the French national research agency (ANR) through the ANR-13-SEED-0005 CRYOGREEN program.
NASA Astrophysics Data System (ADS)
Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.; Pioro, Igor
Increases in the power generation efficiency of nuclear power plants (NPPs) are mainly limited by the permissible temperatures in nuclear reactors and the corresponding temperatures and pressures of the coolants in reactors. Coolant parameters are limited by the corrosion rates of materials and nuclear-reactor safety constraints. The advanced construction materials for the next generation of CANDU reactors, which employ supercritical water (SCW) as a coolant and heat carrier, permit improved “steam” parameters (outlet temperatures up to 625°C and pressures of about 25 MPa). An increase in the temperature of steam allows it to be utilized in thermochemical water splitting cycles to produce hydrogen. These methods are considered by many to be among the most efficient ways to produce hydrogen from water and to have advantages over traditional low-temperature water electrolysis. However, even lower temperature water splitting cycles (Cu-Cl, UT-3, etc.) require an intensive heat supply at temperatures higher than 550-600°C. A sufficient increase in the heat transfer from the nuclear reactor to a thermochemical water splitting cycle, without jeopardizing nuclear reactor safety, might be effectively achieved by application of a heat pump, which increases the temperature of the heat supplied by virtue of a cyclic process driven by mechanical or electrical work. Here, a high-temperature chemical heat pump, which employs the reversible catalytic methane conversion reaction, is proposed. The reaction shift from exothermic to endothermic and back is achieved by a change of the steam concentration in the reaction mixture. This heat pump, coupled with the second steam cycle of a SCW nuclear power generation plant on one side and a thermochemical water splitting cycle on the other, increases the temperature of the “nuclear” heat and, consequently, the intensity of heat transfer into the water splitting cycle. A comparative preliminary thermodynamic analysis is conducted of the combined system comprising a SCW nuclear power generation plant and a chemical heat pump, which provides high-temperature heat to a thermochemical water splitting cycle for hydrogen production. It is concluded that the proposed chemical heat pump permits the utilization efficiency of nuclear energy to be improved by at least 2% without jeopardizing nuclear reactor safety. Based on this analysis, further research appears to be merited on the proposed advanced design of a nuclear power generation plant combined with a chemical heat pump, and implementation in appropriate applications seems worthwhile.
Syngas Production By Thermochemical Conversion Of H2o And Co2 Mixtures Using A Novel Reactor Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pearlman, Howard; Chen, Chien-Hua
The Department of Energy awarded Advanced Cooling Technologies, Inc. (ACT) an SBIR Phase II contract (#DE-SC0004729) to develop a high-temperature solar thermochemical reactor for syngas production using water and/or carbon dioxide as feedstocks. The technology aims to provide a renewable and sustainable alternative to fossil fuels, promote energy independence and mitigate adverse issues associated with climate change by essentially recycling carbon from carbon dioxide emitted by the combustion of hydrocarbon fuels. To commercialize the technology and drive down the cost of solar fuels, new advances are needed in materials development and reactor design, both of which are integral elements inmore » this program.« less
Technical Basis for Physical Fidelity of NRC Control Room Training Simulators for Advanced Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minsk, Brian S.; Branch, Kristi M.; Bates, Edward K.
2009-10-09
The objective of this study is to determine how simulator physical fidelity influences the effectiveness of training the regulatory personnel responsible for examination and oversight of operating personnel and inspection of technical systems at nuclear power reactors. It seeks to contribute to the U.S. Nuclear Regulatory Commission’s (NRC’s) understanding of the physical fidelity requirements of training simulators. The goal of the study is to provide an analytic framework, data, and analyses that inform NRC decisions about the physical fidelity requirements of the simulators it will need to train its staff for assignment at advanced reactors. These staff are expected tomore » come from increasingly diverse educational and experiential backgrounds.« less
NASA Astrophysics Data System (ADS)
Bart, Gerhard; Aerne, Ernst Tino; Burri, Martin; Zwicky, Hans-Urs
1986-11-01
Cladding carburization during irradiation of advanced mixed uranium plutonium carbide fast breeder reactor fuel is possibly a life limiting fuel pin factor. The quantitative assessment of such clad carbon embrittlement is difficult to perform by electron microprobe analysis because of sample surface contamination, and due to the very low energy of the carbon K α X-ray transition. The work presented here describes a method developed at the Swiss Federal Institute for Reactor Research (EIR) to use shielded secondary ion mass spectrometry (SIMS) as an accurate tool to determine radial distribution profiles of carbon in radioactive stainless steel fuel pin cladding. Compared with nuclear microprobe analysis (NMA) [1], which is also an accurate method for carbon analysis, the SIMS method distinguishes itself by its versatility for simultaneous determination of additional impurities.
Materials challenges for nuclear systems
Allen, Todd; Busby, Jeremy; Meyer, Mitch; ...
2010-11-26
The safe and economical operation of any nuclear power system relies to a great extent, on the success of the fuel and the materials of construction. During the lifetime of a nuclear power system which currently can be as long as 60 years, the materials are subject to high temperature, a corrosive environment, and damage from high-energy particles released during fission. The fuel which provides the power for the reactor has a much shorter life but is subject to the same types of harsh environments. This article reviews the environments in which fuels and materials from current and proposed nuclearmore » systems operate and then describes how the creation of the Advanced Test Reactor National Scientific User Facility is allowing researchers from across the U.S. to test their ideas for improved fuels and materials.« less
Real-time MSE measurements for current profile control on KSTAR.
De Bock, M F M; Aussems, D; Huijgen, R; Scheffer, M; Chung, J
2012-10-01
To step up from current day fusion experiments to power producing fusion reactors, it is necessary to control long pulse, burning plasmas. Stability and confinement properties of tokamak fusion reactors are determined by the current or q profile. In order to control the q profile, it is necessary to measure it in real-time. A real-time motional Stark effect diagnostic is being developed at Korean Superconducting Tokamak for Advanced Research for this purpose. This paper focuses on 3 topics important for real-time measurements: minimize the use of ad hoc parameters, minimize external influences and a robust and fast analysis algorithm. Specifically, we have looked into extracting the retardance of the photo-elastic modulators from the signal itself, minimizing the influence of overlapping beam spectra by optimizing the optical filter design and a multi-channel, multiharmonic phase locking algorithm.
High Efficiency Solar Thermochemical Reactor for Hydrogen Production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDaniel, Anthony H.
2017-09-30
This research and development project is focused on the advancement of a technology that produces hydrogen at a cost that is competitive with fossil-based fuels for transportation. A twostep, solar-driven WS thermochemical cycle is theoretically capable of achieving an STH conversion ratio that exceeds the DOE target of 26% at a scale large enough to support an industrialized economy [1]. The challenge is to transition this technology from the laboratory to the marketplace and produce hydrogen at a cost that meets or exceeds DOE targets.
Advanced Small Modular Reactor Economics Status Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, Thomas J.
2014-10-01
This report describes the data collection work performed for an advanced small modular reactor (AdvSMR) economics analysis activity at the Oak Ridge National Laboratory. The methodology development and analytical results are described in separate, stand-alone documents as listed in the references. The economics analysis effort for the AdvSMR program combines the technical and fuel cycle aspects of advanced (non-light water reactor [LWR]) reactors with the market and production aspects of SMRs. This requires the collection, analysis, and synthesis of multiple unrelated and potentially high-uncertainty data sets from a wide range of data sources. Further, the nature of both economic andmore » nuclear technology analysis requires at least a minor attempt at prediction and prognostication, and the far-term horizon for deployment of advanced nuclear systems introduces more uncertainty. Energy market uncertainty, especially the electricity market, is the result of the integration of commodity prices, demand fluctuation, and generation competition, as easily seen in deregulated markets. Depending on current or projected values for any of these factors, the economic attractiveness of any power plant construction project can change yearly or quarterly. For long-lead construction projects such as nuclear power plants, this uncertainty generates an implied and inherent risk for potential nuclear power plant owners and operators. The uncertainty in nuclear reactor and fuel cycle costs is in some respects better understood and quantified than the energy market uncertainty. The LWR-based fuel cycle has a long commercial history to use as its basis for cost estimation, and the current activities in LWR construction provide a reliable baseline for estimates for similar efforts. However, for advanced systems, the estimates and their associated uncertainties are based on forward-looking assumptions for performance after the system has been built and has achieved commercial operation. Advanced fuel materials and fabrication costs have large uncertainties based on complexities of operation, such as contact-handled fuel fabrication versus remote handling, or commodity availability. Thus, this analytical work makes a good faith effort to quantify uncertainties and provide qualifiers, caveats, and explanations for the sources of these uncertainties. The overall result is that this work assembles the necessary information and establishes the foundation for future analyses using more precise data as nuclear technology advances.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmony, S.C.; Steiner, J.L.; Stumpf, H.J.
The PIUS advanced reactor is a 640-MWe pressurized water reactor developed by Asea Brown Boveri (ABB). A unique feature of the PIUS concept is the absence of mechanical control and shutdown rods. Reactivity is controlled by coolant boron concentration and the temperature of the moderator coolant. As part of the preapplication and eventual design certification process, advanced reactor applicants are required to submit neutronic and thermal-hydraulic safety analyses over a sufficient range of normal operation, transient conditions, and specified accident sequences. Los Alamos is supporting the US Nuclear Regulatory Commission`s preapplication review of the PIUS reactor. A fully one-dimensional modelmore » of the PIUS reactor has been developed for the Transient Reactor Analysis Code, TRACPF1/MOD2. Early in 1992, ABB submitted a Supplemental Information Package describing recent design modifications. An important feature of the PIUS Supplement design was the addition of an active scram system that will function for most transient and accident conditions. A one-dimensional Transient Reactor Analysis Code baseline calculation of the PIUS Supplement design were performed for a break in the main steam line at the outlet nozzle of the loop 3 steam generator. Sensitivity studies were performed to explore the robustness of the PIUS concept to severe off-normal conditions following a main steam line break. The sensitivity study results provide insights into the robustness of the design.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Rooyen, Isabella Johanna; Lillo, Thomas Martin; Wen, Haiming
2017-01-01
A series of up to seven irradiation experiments are planned for the Advanced Gas Reactor (AGR) Fuel Development and Quantification Program, with irradiation completed at the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) for the first experiment (i.e., AGR-1) in November 2009 for an effective 620 full power days. The objective of the AGR-1 experiment was primarily to provide lessons learned on the multi-capsule test train design and to provide early data on fuel performance for use in fuel fabrication process development and post-irradiation safety testing data at high temperatures. This report describes the advanced microscopy and micro-analysismore » results on selected AGR-1 coated particles.« less
Cross-Section Measurements in the Fast Neutron Energy Range
NASA Astrophysics Data System (ADS)
Plompen, Arjan
2006-04-01
Generation IV focuses research for advanced nuclear reactors on six concepts. Three of these concepts, the lead, gas and sodium fast reactors (LFR, GFR and SFR) have fast neutron spectra, whereas a fourth, the super-critical water reactor (SCWR), can be configured to have a fast spectrum. Such fast neutron spectra are essential to meet the sustainability objective of GenIV. Nuclear data requirements for GenIV concepts will therefore emphasize the energy region from about 1 keV to 10 MeV. Here, the potential is illustrated of the GELINA neutron time-of-flight facility and the Van de Graaff laboratory at IRMM to measure the relevant nuclear data in this energy range: the total, capture, fission and inelastic-scattering cross sections. In particular, measurement results will be shown for lead and bismuth inelastic scattering for which the need was recently expressed in a quantitative way by Aliberti et al. for Accelerator Driven Systems. Even without completion of the quantitative assessment of the data needs for GenIV concepts at ANL it is clear that this particular effort is of relevance to LFR system studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report presents the results of Run 260 performed at the Advanced Coal Liquefaction R&D Facility in Wilsonville. The run was started on July 17, 1990 and continued until November 14, 1990, operating in the Close-Coupled Integrated Two-Stage Liquefaction mode processing Black Thunder mine subbituminous coal (Wyodak-Anderson seam from Wyoming Powder River Basin). Both thermal/catalytic and catalytic/thermal tests were performed to determine the methods for reducing solids buildup in a subbituminous coal operation, and to improve product yields. A new, smaller interstage separator was tested to reduce solids buildup by increasing the slurry space velocity in the separator. In ordermore » to obtain improved coal and resid conversions (compared to Run 258) full-volume thermal reactor and 3/4-volume catalytic reactor were used. Shell 324 catalyst, 1/16 in. cylindrical extrudate, at a replacement rate of 3 lb/ton of MF coal was used in the catalytic stage. Iron oxide was used as slurry catalyst at a rate of 2 wt % MF coal throughout the run. (TNPS was the sulfiding agent.)« less
10 CFR 110.41 - Executive Branch review.
Code of Federal Regulations, 2011 CFR
2011-01-01
.... (6) An export involving assistance to end uses related to isotope separation, chemical reprocessing, heavy water production, advanced reactors, or the fabrication of nuclear fuel containing plutonium... equipment to a foreign reactor. (8) An export involving radioactive waste. (9) An export to any country...
NASA Astrophysics Data System (ADS)
Chang, G. S.; Lillo, M. A.
2009-08-01
The National Nuclear Security Administrations (NNSA) Reduced Enrichment for Research and Test Reactors (RERTR) program assigned to the Idaho National Laboratory (INL) the responsibility of developing and demonstrating high uranium density research reactor fuel forms to enable the use of low enriched uranium (LEU) in research and test reactors around the world. A series of full-size fuel plate experiments have been proposed for irradiation testing in the center flux trap (CFT) position of the Advanced Test Reactor (ATR). These full-size fuel plate tests are designated as the AFIP tests. The AFIP nominal fuel zone is rectangular in shape having a designed length of 21.5-in (54.61-cm), width of 1.6-in (4.064-cm), and uniform thickness of 0.014-in (0.03556-cm). This gives a nominal fuel zone volume of 0.482 in3 (7.89 cm3) per fuel plate. The AFIP test assembly has two test positions. Each test position is designed to hold 2 full-size plates, for a total of 4 full-size plates per test assembly. The AFIP test plates will be irradiated at a peak surface heat flux of about 350 W/cm2 and discharged at a peak U-235 burn-up of about 70 at.%. Based on limited irradiation testing of the monolithic (U-10Mo) fuel form, it is desirable to keep the peak fuel temperature below 250°C to achieve this, it will be necessary to keep plate heat fluxes below 500 W/cm2. Due to the heavy U-235 loading and a plate width of 1.6-in (4.064-cm), the neutron self-shielding will increase the local-to-average-ratio (L2AR) fission power near the sides of the fuel plates. To demonstrate that the AFIP experiment will meet the ATR safety requirements, a very detailed 2-dimensional (2D) Y-Z fission power profile was evaluated in order to best predict the fuel plate temperature distribution. The ability to accurately predict fuel plate power and burnup are essential to both the design of the AFIP tests as well as evaluation of the irradiated fuel performance. To support this need, a detailed MCNP Y-Z mini-plate fuel model was developed. The Y-Z model divides each fuel plate into 30 equal intervals in both the Y and Z directions. The MCNP-calculated results and the detailed Y-Z fission power mapping were used to help design the AFIP fuel test assembly to demonstrate that the AFIP test assembly thermal-hydraulic limits will not exceed the ATR safety limits.
Summary of space nuclear reactor power systems, 1983--1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buden, D.
1993-08-11
This report summarizes major developments in the last ten years which have greatly expanded the space nuclear reactor power systems technology base. In the SP-100 program, after a competition between liquid-metal, gas-cooled, thermionic, and heat pipe reactors integrated with various combinations of thermoelectric thermionic, Brayton, Rankine, and Stirling energy conversion systems, three concepts:were selected for further evaluation. In 1985, the high-temperature (1,350 K), lithium-cooled reactor with thermoelectric conversion was selected for full scale development. Since then, significant progress has been achieved including the demonstration of a 7-y-life uranium nitride fuel pin. Progress on the lithium-cooled reactor with thermoelectrics has progressedmore » from a concept, through a generic flight system design, to the design, development, and testing of specific components. Meanwhile, the USSR in 1987--88 orbited a new generation of nuclear power systems beyond the, thermoelectric plants on the RORSAT satellites. The US has continued to advance its own thermionic fuel element development, concentrating on a multicell fuel element configuration. Experimental work has demonstrated a single cell operating time of about 1 1/2-y. Technology advances have also been made in the Stirling engine; an advanced engine that operates at 1,050 K is ready for testing. Additional concepts have been studied and experiments have been performed on a variety of systems to meet changing needs; such as powers of tens-to-hundreds of megawatts and highly survivable systems of tens-of-kilowatts power.« less
FFTF Passive Safety Test Data for Benchmarks for New LMR Designs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wootan, David W.; Casella, Andrew M.
Liquid Metal Reactors (LMRs) continue to be considered as an attractive concept for advanced reactor design. Software packages such as SASSYS are being used to im-prove new LMR designs and operating characteristics. Significant cost and safety im-provements can be realized in advanced liquid metal reactor designs by emphasizing inherent or passive safety through crediting the beneficial reactivity feedbacks associ-ated with core and structural movement. This passive safety approach was adopted for the Fast Flux Test Facility (FFTF), and an experimental program was conducted to characterize the structural reactivity feedback. The FFTF passive safety testing pro-gram was developed to examine howmore » specific design elements influenced dynamic re-activity feedback in response to a reactivity input and to demonstrate the scalability of reactivity feedback results to reactors of current interest. The U.S. Department of En-ergy, Office of Nuclear Energy Advanced Reactor Technology program is in the pro-cess of preserving, protecting, securing, and placing in electronic format information and data from the FFTF, including the core configurations and data collected during the passive safety tests. Benchmarks based on empirical data gathered during operation of the Fast Flux Test Facility (FFTF) as well as design documents and post-irradiation examination will aid in the validation of these software packages and the models and calculations they produce. Evaluation of these actual test data could provide insight to improve analytical methods which may be used to support future licensing applications for LMRs« less
Summary of space nuclear reactor power systems, 1983 - 1992
NASA Astrophysics Data System (ADS)
Buden, D.
1993-08-01
This report summarizes major developments in the last ten years which have greatly expanded the space nuclear reactor power systems technology base. In the SP-100 program, after a competition between liquid-metal, gas-cooled, thermionic, and heat pipe reactors integrated with various combinations of thermoelectric thermionic, Brayton, Rankine, and Stirling energy conversion systems, three concepts were selected for further evaluation. In 1985, the high-temperature (1,350 K), lithium-cooled reactor with thermoelectric conversion was selected for full scale development. Since then, significant progress has been achieved including the demonstration of a 7-y-life uranium nitride fuel pin. Progress on the lithium-cooled reactor with thermoelectrics has progressed from a concept, through a generic flight system design, to the design, development, and testing of specific components. Meanwhile, the USSR in 1987-88 orbited a new generation of nuclear power systems beyond the, thermoelectric plants on the RORSAT satellites. The US has continued to advance its own thermionic fuel element development, concentrating on a multicell fuel element configuration. Experimental work has demonstrated a single cell operating time of about 1 1/2-y. Technology advances have also been made in the Stirling engine; an advanced engine that operates at 1,050 K is ready for testing. Additional concepts have been studied and experiments have been performed on a variety of systems to meet changing needs; such as powers of tens-to-hundreds of megawatts and highly survivable systems of tens-of-kilowatts power.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Rui
2017-09-03
Mixing, thermal-stratification, and mass transport phenomena in large pools or enclosures play major roles for the safety of reactor systems. Depending on the fidelity requirement and computational resources, various modeling methods, from the 0-D perfect mixing model to 3-D Computational Fluid Dynamics (CFD) models, are available. Each is associated with its own advantages and shortcomings. It is very desirable to develop an advanced and efficient thermal mixing and stratification modeling capability embedded in a modern system analysis code to improve the accuracy of reactor safety analyses and to reduce modeling uncertainties. An advanced system analysis tool, SAM, is being developedmore » at Argonne National Laboratory for advanced non-LWR reactor safety analysis. While SAM is being developed as a system-level modeling and simulation tool, a reduced-order three-dimensional module is under development to model the multi-dimensional flow and thermal mixing and stratification in large enclosures of reactor systems. This paper provides an overview of the three-dimensional finite element flow model in SAM, including the governing equations, stabilization scheme, and solution methods. Additionally, several verification and validation tests are presented, including lid-driven cavity flow, natural convection inside a cavity, laminar flow in a channel of parallel plates. Based on the comparisons with the analytical solutions and experimental results, it is demonstrated that the developed 3-D fluid model can perform very well for a wide range of flow problems.« less
The Nuclear Renaissance — Implications on Quantitative Nondestructive Evaluations
NASA Astrophysics Data System (ADS)
Matzie, Regis A.
2007-03-01
The world demand for energy is growing rapidly, particularly in developing countries that are trying to raise the standard of living for billions of people, many of whom do not even have access to electricity. With this increased energy demand and the high and volatile price of fossil fuels, nuclear energy is experiencing resurgence. This so-called nuclear renaissance is broad based, reaching across Asia, the United States, Europe, as well as selected countries in Africa and South America. Some countries, such as Italy, that have actually turned away from nuclear energy are reconsidering the advisability of this design. This renaissance provides the opportunity to deploy more advanced reactor designs that are operating today, with improved safety, economy, and operations. In this keynote address, I will briefly present three such advanced reactor designs in whose development Westinghouse is participating. These designs include the advanced passive PWR, AP1000, which recently received design certification for the US Nuclear Regulatory Commission; the Pebble Bed Modular reactor (PBMR) which is being demonstrated in South Africa; and the International Reactor Innovative and Secure (IRIS), which was showcased in the US Department of Energy's recently announced Global Nuclear Energy Partnership (GNEP), program. The salient features of these designs that impact future requirements on quantitative nondestructive evaluations will be discussed. Such features as reactor vessel materials, operating temperature regimes, and new geometric configurations will be described, and mention will be made of the impact on quantitative nondestructive evaluation (NDE) approaches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forsberg, Charles W.; Lam, Stephen; Carpenter, David M.
Three advanced nuclear power systems use liquid salt coolants that generate tritium and thus face the common challenges of containing and capturing tritium to prevent its release to the environment. The fluoride salt–cooled high-temperature reactor (FHR) uses clean fluoride salt coolants and the same graphite-matrix coated-particle fuel as high-temperature gas-cooled reactors. Molten salt reactors (MSRs) dissolve the fuel in a fluoride or chloride salt with release of fission product tritium into the salt. In most FHR and MSR systems, the baseline salts contain lithium where isotopically separated 7Li is proposed to minimize tritium production from neutron interactions with the salt.more » The Chinese Academy of Sciences plans to start operation of a 2-MW(thermal) molten salt test reactor by 2020. For high-magnetic-field fusion machines, the use of lithium enriched in 6Li is proposed to maximize tritium generation—the fuel for a fusion machine. Advances in superconductors that enable higher power densities may require the use of molten lithium salts for fusion blankets and as coolants. Recent technical advances in these three reactor classes have resulted in increased government and private interest and the beginning of a coordinated effort to address the tritium control challenges in 700°C liquid salt systems. In this paper, we describe characteristics of salt-cooled fission and fusion machines, the basis for growing interest in these technologies, tritium generation in molten salts, the environment for tritium capture, models for high-temperature tritium transport in salt systems, alternative strategies for tritium control, and ongoing experimental work. Several methods to control tritium appear viable. Finally, limited experimental data are the primary constraint for designing efficient cost-effective methods of tritium control.« less
Forsberg, Charles W.; Lam, Stephen; Carpenter, David M.; ...
2017-02-26
Three advanced nuclear power systems use liquid salt coolants that generate tritium and thus face the common challenges of containing and capturing tritium to prevent its release to the environment. The fluoride salt–cooled high-temperature reactor (FHR) uses clean fluoride salt coolants and the same graphite-matrix coated-particle fuel as high-temperature gas-cooled reactors. Molten salt reactors (MSRs) dissolve the fuel in a fluoride or chloride salt with release of fission product tritium into the salt. In most FHR and MSR systems, the baseline salts contain lithium where isotopically separated 7Li is proposed to minimize tritium production from neutron interactions with the salt.more » The Chinese Academy of Sciences plans to start operation of a 2-MW(thermal) molten salt test reactor by 2020. For high-magnetic-field fusion machines, the use of lithium enriched in 6Li is proposed to maximize tritium generation—the fuel for a fusion machine. Advances in superconductors that enable higher power densities may require the use of molten lithium salts for fusion blankets and as coolants. Recent technical advances in these three reactor classes have resulted in increased government and private interest and the beginning of a coordinated effort to address the tritium control challenges in 700°C liquid salt systems. In this paper, we describe characteristics of salt-cooled fission and fusion machines, the basis for growing interest in these technologies, tritium generation in molten salts, the environment for tritium capture, models for high-temperature tritium transport in salt systems, alternative strategies for tritium control, and ongoing experimental work. Several methods to control tritium appear viable. Finally, limited experimental data are the primary constraint for designing efficient cost-effective methods of tritium control.« less
PRELIMINARY DATA CALL REPORT ADVANCED BURNER REACTOR START UP FUEL FABRICATION FACILITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. T. Khericha
2007-04-01
The purpose of this report is to provide data for preparation of a NEPA Environmental Impact Statement in support the U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives is to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu) -239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn these actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept has been proposed tomore » achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR is proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu will be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) is being considered for fabrication of WG Pu fuel for the ABR. This report is provided in response to ‘Data Call’ for the construction of startup fuel fabrication facility. It is anticipated that the facility will provide the startup fuel for 10-15 years and will take to 3 to 5 years to construct.« less
Multi-physics design and analyses of long life reactors for lunar outposts
NASA Astrophysics Data System (ADS)
Schriener, Timothy M.
Future human exploration of the solar system is likely to include establishing permanent outposts on the surface of the Moon. These outposts will require reliable sources of electrical power in the range of 10's to 100's of kWe to support exploration and resource utilization activities. This need is best met using nuclear reactor power systems which can operate steadily throughout the long ˜27.3 day lunar rotational period, irrespective of location. Nuclear power systems can potentially open up the entire lunar surface for future exploration and development. Desirable features of nuclear power systems for the lunar surface include passive operation, the avoidance of single point failures in reactor cooling and the integrated power system, moderate operating temperatures to enable the use of conventional materials with proven irradiation experience, utilization of the lunar regolith for radiation shielding and as a supplemental neutron reflector, and safe post-operation decay heat removal and storage for potential retrieval. In addition, it is desirable for the reactor to have a long operational life. Only a limited number of space nuclear reactor concepts have previously been developed for the lunar environment, and these designs possess only a few of these desirable design and operation features. The objective of this research is therefore to perform design and analyses of long operational life lunar reactors and power systems which incorporate the desirable features listed above. A long reactor operational life could be achieved either by increasing the amount of highly enriched uranium (HEU) fuel in the core or by improving the neutron economy in the reactor through reducing neutron leakage and parasitic absorption. The amount of fuel in surface power reactors is constrained by the launch safety requirements. These include ensuring that the bare reactor core remains safely subcritical when submerged in water or wet sand and flooded with seawater in the unlikely event of a launch abort accident. Increasing the amount of fuel in the reactor core, and hence its operational life, would be possible by launching the reactor unfueled and fueling it on the Moon. Such a reactor would, thus, not be subject to launch criticality safety requirements. However, loading the reactor with fuel on the Moon presents a challenge, requiring special designs of the core and the fuel elements, which lend themselves to fueling on the lunar surface. This research investigates examples of both a solid core reactor that would be fueled at launch as well as an advanced concept which could be fueled on the Moon. Increasing the operational life of a reactor fueled at launch is exercised for the NaK-78 cooled Sectored Compact Reactor (SCoRe). A multi-physics design and analyses methodology is developed which iteratively couples together detailed Monte Carlo neutronics simulations with 3-D Computational Fluid Dynamics (CFD) and thermal-hydraulics analyses. Using this methodology the operational life of this compact, fast spectrum reactor is increased by reconfiguring the core geometry to reduce neutron leakage and parasitic absorption, for the same amount of HEU in the core, and meeting launch safety requirements. The multi-physics analyses determine the impacts of the various design changes on the reactor's neutronics and thermal-hydraulics performance. The option of increasing the operational life of a reactor by loading it on the Moon is exercised for the Pellet Bed Reactor (PeBR). The PeBR uses spherical fuel pellets and is cooled by He-Xe gas, allowing the reactor core to be loaded with fuel pellets and charged with working fluid on the lunar surface. The performed neutronics analyses ensure the PeBR design achieves a long operational life, and develops safe launch canister designs to transport the spherical fuel pellets to the lunar surface. The research also investigates loading the PeBR core with fuel pellets on the Moon using a transient Discrete Element Method (DEM) analysis in lunar gravity. In addition, this research addresses the post-operation storage of the SCoRe and PeBR concepts, below the lunar surface, to determine the time required for the radioactivity in the used fuel to decrease to a low level to allow for its safe recovery. The SCoRe and PeBR concepts are designed to operate at coolant temperatures ≤ 900 K and use conventional stainless steels and superalloys for the structure in the reactor core and power system. They are emplaced below grade on the Moon to take advantage of the regolith as a supplemental neutron reflector and as shielding of the lunar outpost from the reactors' neutron and gamma radiation.
Development of ASTM Standard for SiC-SiC Joint Testing Final Scientific/Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobsen, George; Back, Christina
2015-10-30
As the nuclear industry moves to advanced ceramic based materials for cladding and core structural materials for a variety of advanced reactors, new standards and test methods are required for material development and licensing purposes. For example, General Atomics (GA) is actively developing silicon carbide (SiC) based composite cladding (SiC-SiC) for its Energy Multiplier Module (EM2), a high efficiency gas cooled fast reactor. Through DOE funding via the advanced reactor concept program, GA developed a new test method for the nominal joint strength of an endplug sealed to advanced ceramic tubes, Fig. 1-1, at ambient and elevated temperatures called themore » endplug pushout (EPPO) test. This test utilizes widely available universal mechanical testers coupled with clam shell heaters, and specimen size is relatively small, making it a viable post irradiation test method. The culmination of this effort was a draft of an ASTM test standard that will be submitted for approval to the ASTM C28 ceramic committee. Once the standard has been vetted by the ceramics test community, an industry wide standard methodology to test joined tubular ceramic components will be available for the entire nuclear materials community.« less
Preliminary design and hazards report. Boiling Reactor Experiment V (BORAX V)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rice, R. E.
1960-02-01
The preliminary objectives of the proposed BORAX V program are to test nuclear superheating concepts and to advance the technology of boiling-water-reactor design by performing experiments which will improve the understanding of factors limiting the stability of boiling reactors at high power densities. The reactor vessel is a cylinder with ellipsoidal heads, made of carbon steel clad internally with stainless steel. Each of the three cores is 24 in. high and has an effective diameter of 39 in. This is a preliminary report. (W.D.M.)
Conceptual Design of In-Space Vehicles for Human Exploration of the Outer Planets
NASA Technical Reports Server (NTRS)
Adams, R. B.; Alexander, R. A.; Chapman, J. M.; Fincher, S. S.; Hopkins, R. C.; Philips, A. D.; Polsgrove, T. T.; Litchford, R. J.; Patton, B. W.; Statham, G.
2003-01-01
During FY-2002, a team of engineers from TD30/Advanced Concepts and TD40/Propulsion Research Center embarked on a study of potential crewed missions to the outer solar system. The study was conducted under the auspices of the Revolutionary Aerospace Systems Concepts activity administered by Langley Research Center (LaRC). The Marshall Space Flight Center (MSFC) team interacted heavily with teams from other Centers including Glenn Research Center, LaRC, Jet Propulsion Laboratory, and Johnson Space Center. The MSFC team generated five concept missions for this project. The concept missions use a variety of technologies, including magnetized target fusion (MTF), magnetoplasmadynamic thrusters, solid core reactors, and molten salt reactors in various combinations. The Technical Publication (TP) reviews these five concepts and the methods used to generate them. The analytical methods used are described for all significant disciplines and subsystems. The propulsion and power technologies selected for each vehicle are reviewed in detail. The MSFC team also expended considerable effort refining the MTF concept for use with this mission. The results from this effort are also contained within this TP. Finally, the lessons learned from this activity are summarized in the conclusions section.
U.S. Department of Energy Accident Resistant SiC Clad Nuclear Fuel Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
George W. Griffith
2011-10-01
A significant effort is being placed on silicon carbide ceramic matrix composite (SiC CMC) nuclear fuel cladding by Light Water Reactor Sustainability (LWRS) Advanced Light Water Reactor Nuclear Fuels Pathway. The intent of this work is to invest in a high-risk, high-reward technology that can be introduced in a relatively short time. The LWRS goal is to demonstrate successful advanced fuels technology that suitable for commercial development to support nuclear relicensing. Ceramic matrix composites are an established non-nuclear technology that utilizes ceramic fibers embedded in a ceramic matrix. A thin interfacial layer between the fibers and the matrix allows formore » ductile behavior. The SiC CMC has relatively high strength at high reactor accident temperatures when compared to metallic cladding. SiC also has a very low chemical reactivity and doesn't react exothermically with the reactor cooling water. The radiation behavior of SiC has also been studied extensively as structural fusion system components. The SiC CMC technology is in the early stages of development and will need to mature before confidence in the developed designs can created. The advanced SiC CMC materials do offer the potential for greatly improved safety because of their high temperature strength, chemical stability and reduced hydrogen generation.« less
Thermodynamic analysis of the advanced zero emission power plant
NASA Astrophysics Data System (ADS)
Kotowicz, Janusz; Job, Marcin
2016-03-01
The paper presents the structure and parameters of advanced zero emission power plant (AZEP). This concept is based on the replacement of the combustion chamber in a gas turbine by the membrane reactor. The reactor has three basic functions: (i) oxygen separation from the air through the membrane, (ii) combustion of the fuel, and (iii) heat transfer to heat the oxygen-depleted air. In the discussed unit hot depleted air is expanded in a turbine and further feeds a bottoming steam cycle (BSC) through the main heat recovery steam generator (HRSG). Flue gas leaving the membrane reactor feeds the second HRSG. The flue gas consist mainly of CO2 and water vapor, thus, CO2 separation involves only the flue gas drying. Results of the thermodynamic analysis of described power plant are presented.
Strengthening IAEA Safeguards for Research Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reid, Bruce D.; Anzelon, George A.; Budlong-Sylvester, Kory
During their December 10-11, 2013, workshop in Grenoble France, which focused on the history and future of safeguarding research reactors, the United States, France and the United Kingdom (UK) agreed to conduct a joint study exploring ways to strengthen the IAEA’s safeguards approach for declared research reactors. This decision was prompted by concerns about: 1) historical cases of non-compliance involving misuse (including the use of non-nuclear materials for production of neutron generators for weapons) and diversion that were discovered, in many cases, long after the violations took place and as part of broader pattern of undeclared activities in half amore » dozen countries; 2) the fact that, under the Safeguards Criteria, the IAEA inspects some reactors (e.g., those with power levels under 25 MWt) less than once per year; 3) the long-standing precedent of States using heavy water research reactors (HWRR) to produce plutonium for weapons programs; 4) the use of HEU fuel in some research reactors; and 5) various technical characteristics common to some types of research reactors that could provide an opportunity for potential proliferators to misuse the facility or divert material with low probability of detection by the IAEA. In some research reactors it is difficult to detect diversion or undeclared irradiation. In addition, infrastructure associated with research reactors could pose a safeguards challenge. To strengthen the effectiveness of safeguards at the State level, this paper advocates that the IAEA consider ways to focus additional attention and broaden its safeguards toolbox for research reactors. This increase in focus on the research reactors could begin with the recognition that the research reactor (of any size) could be a common path element on a large number of technically plausible pathways that must be considered when performing acquisition pathway analysis (APA) for developing a State Level Approach (SLA) and Annual Implementation Plan (AIP). To broaden the IAEA safeguards toolbox, the study recommends that the Agency consider closing potential gaps in safeguards coverage by, among other things: 1) adapting its safeguards measures based on a case-by-case assessment; 2) using more frequent and expanded/enhanced mailbox declarations (ideally with remote transmission of the data to IAEA Headquarters in Vienna) coupled with short-notice or unannounced inspections; 3) putting more emphasis on the collection and analysis of environmental samples at hot cells and waste storage tanks; 4) taking Safeguards by Design into account for the construction of new research reactors and best practices for existing research reactors; 5) utilizing fully all legal authorities to enhance inspection access (including a strengthened and continuing DIV process); and 6) utilizing new approaches to improve auditing activities, verify reactor operating data history, and track/monitor the movement and storage of spent fuel.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Link, B.W.; Miller, R.L.
1983-08-01
This document summarizes information from the decommissioning of the NCSUR-3 (R-3), a 10 KWt university research and training reactor. The decommissioning data were placed in a computerized information retrieval/manipulation system which permits future utilization of this information in pre-decommissioning activities with other university reactors of similar design. The information is presented both in some detail in its computer output form and also as a manually assembled summarization which highlights the more significant aspects of the decommissioning project. Decommissioning data from a generic study, NUREG/CR 1756, Technology, Safety and Costs of Decommissioning Nuclear Research and Test Reactors, and the decommissioning ofmore » the Ames Laboratory Research Reactor (ALRR), a 5 MWt research reactor, is also included for comparison.« less
Supply of enriched uranium for research reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, H.
1997-08-01
Since the RERTR-meeting In Newport/USA in 1990 the author delivered a series of papers in connection with the fuel cycle for research reactors dealing with its front-end. In these papers the author underlined the need for unified specifications for enriched uranium metal suitable for the production of fuel elements and made proposals with regard to the re-use of in Europe reprocessed highly enriched uranium. With regard to the fuel cycle of research reactors the research reactor community was since 1989 more concentrating on the problems of its back-end since the USA stopped the acceptance of spent research reactor fuel onmore » December 31, 1988. Now, since it is apparent that these back-end problem have been solved by AEA`s ability to reprocess and the preparedness of the USA to again accept physically spent research reactor fuel the author is focusing with this paper again on the front-end of the fuel cycle on the question whether there is at all a safe supply of low and high enriched uranium for research reactors in the future.« less
Reactor Application for Coaching Newbies
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-06-17
RACCOON is a Moose based reactor physics application designed to engage undergraduate and first-year graduate students. The code contains capabilities to solve the multi group Neutron Diffusion equation in eigenvalue and fixed source form and will soon have a provision to provide simple thermal feedback. These capabilities are sufficient to solve example problems found in Duderstadt & Hamilton (the typical textbook of senior level reactor physics classes). RACCOON does not contain any advanced capabilities as found in YAK.
THE ARMOUR DUST FUELED REACTOR (ADFR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krucoff, D.
1958-01-01
The A-DFR is based on the use of a fissionable dust carried in a gas. This fuel ferm offers promise of a major economic advance through the use of 2,000 to 3,000 F operating temperatures and a low cost fuel cycle. The development program is described that was initiated to investigate experimentally the proposed fuel and study analytically other reactor characteristics. A brief review of the reactor concept is presented. (W.D.M.)
ADX: a high field, high power density, advanced divertor and RF tokamak
NASA Astrophysics Data System (ADS)
LaBombard, B.; Marmar, E.; Irby, J.; Terry, J. L.; Vieira, R.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; Baek, S.; Beck, W.; Bonoli, P.; Brunner, D.; Doody, J.; Ellis, R.; Ernst, D.; Fiore, C.; Freidberg, J. P.; Golfinopoulos, T.; Granetz, R.; Greenwald, M.; Hartwig, Z. S.; Hubbard, A.; Hughes, J. W.; Hutchinson, I. H.; Kessel, C.; Kotschenreuther, M.; Leccacorvi, R.; Lin, Y.; Lipschultz, B.; Mahajan, S.; Minervini, J.; Mumgaard, R.; Nygren, R.; Parker, R.; Poli, F.; Porkolab, M.; Reinke, M. L.; Rice, J.; Rognlien, T.; Rowan, W.; Shiraiwa, S.; Terry, D.; Theiler, C.; Titus, P.; Umansky, M.; Valanju, P.; Walk, J.; White, A.; Wilson, J. R.; Wright, G.; Zweben, S. J.
2015-05-01
The MIT Plasma Science and Fusion Center and collaborators are proposing a high-performance Advanced Divertor and RF tokamak eXperiment (ADX)—a tokamak specifically designed to address critical gaps in the world fusion research programme on the pathway to next-step devices: fusion nuclear science facility (FNSF), fusion pilot plant (FPP) and/or demonstration power plant (DEMO). This high-field (⩾6.5 T, 1.5 MA), high power density facility (P/S ˜ 1.5 MW m-2) will test innovative divertor ideas, including an ‘X-point target divertor’ concept, at the required performance parameters—reactor-level boundary plasma pressures, magnetic field strengths and parallel heat flux densities entering into the divertor region—while simultaneously producing high-performance core plasma conditions that are prototypical of a reactor: equilibrated and strongly coupled electrons and ions, regimes with low or no torque, and no fuelling from external heating and current drive systems. Equally important, the experimental platform will test innovative concepts for lower hybrid current drive and ion cyclotron range of frequency actuators with the unprecedented ability to deploy launch structures both on the low-magnetic-field side and the high-magnetic-field side—the latter being a location where energetic plasma-material interactions can be controlled and favourable RF wave physics leads to efficient current drive, current profile control, heating and flow drive. This triple combination—advanced divertors, advanced RF actuators, reactor-prototypical core plasma conditions—will enable ADX to explore enhanced core confinement physics, such as made possible by reversed central shear, using only the types of external drive systems that are considered viable for a fusion power plant. Such an integrated demonstration of high-performance core-divertor operation with steady-state sustainment would pave the way towards an attractive pilot plant, as envisioned in the ARC concept (affordable, robust, compact) (Sorbom et al 2015 Fusion Eng. Des. submitted (arXiv:1409.3540)) that makes use of high-temperature superconductor technology—a high-field (9.25 T) tokamak the size of the Joint European Torus that produces 270 MW of net electricity.
10 CFR 110.41 - Executive Branch review.
Code of Federal Regulations, 2010 CFR
2010-01-01
... export involving assistance to end uses related to isotope separation, chemical reprocessing, heavy water production, advanced reactors, or the fabrication of nuclear fuel containing plutonium, except for exports of... foreign reactor. (8) An export involving radioactive waste. (9) An export to any country listed in § 110...
Advanced Diesel Oil Fuel Processor Development
1986-06-01
water exit 29 sample quencher: gas sample line inlet 30 sample quencher: gas sample line exit 31 sample quencher: cooling water inlet 32 desulfuriser ...exit line 33, 34 desulfurimer 35 heat exchanger: process gas exit (to desulfuriser ) 38 shift reactor inlet (top) 37 shift reactor: cooling air exit
NASA Astrophysics Data System (ADS)
Sutherland, D. A.; Jarboe, T. R.; Marklin, G.; Morgan, K. D.; Nelson, B. A.
2013-10-01
A high-beta spheromak reactor system has been designed with an overnight capital cost that is competitive with conventional power sources. This reactor system utilizes recently discovered imposed-dynamo current drive (IDCD) and a molten salt blanket system for first wall cooling, neutron moderation and tritium breeding. Currently available materials and ITER developed cryogenic pumping systems were implemented in this design on the basis of technological feasibility. A tritium breeding ratio of greater than 1.1 has been calculated using a Monte Carlo N-Particle (MCNP5) neutron transport simulation. High-temperature superconducting tapes (YBCO) were used for the equilibrium coil set, substantially reducing the recirculating power fraction when compared to previous spheromak reactor studies. Using zirconium hydride for neutron shielding, a limiting equilibrium coil lifetime of at least thirty full-power years has been achieved. The primary FLiBe loop was coupled to a supercritical carbon dioxide Brayton cycle due to attractive economics and high thermal efficiencies. With these advancements, an electrical output of 1000 MW from a thermal output of 2486 MW was achieved, yielding an overall plant efficiency of approximately 40%. A paper concerning the Dynomak reactor design is currently being reviewed for publication.
Autonomous Control of Space Nuclear Reactors
NASA Technical Reports Server (NTRS)
Merk, John
2013-01-01
Nuclear reactors to support future robotic and manned missions impose new and innovative technological requirements for their control and protection instrumentation. Long-duration surface missions necessitate reliable autonomous operation, and manned missions impose added requirements for failsafe reactor protection. There is a need for an advanced instrumentation and control system for space-nuclear reactors that addresses both aspects of autonomous operation and safety. The Reactor Instrumentation and Control System (RICS) consists of two functionally independent systems: the Reactor Protection System (RPS) and the Supervision and Control System (SCS). Through these two systems, the RICS both supervises and controls a nuclear reactor during normal operational states, as well as monitors the operation of the reactor and, upon sensing a system anomaly, automatically takes the appropriate actions to prevent an unsafe or potentially unsafe condition from occurring. The RPS encompasses all electrical and mechanical devices and circuitry, from sensors to actuation device output terminals. The SCS contains a comprehensive data acquisition system to measure continuously different groups of variables consisting of primary measurement elements, transmitters, or conditioning modules. These reactor control variables can be categorized into two groups: those directly related to the behavior of the core (known as nuclear variables) and those related to secondary systems (known as process variables). Reliable closed-loop reactor control is achieved by processing the acquired variables and actuating the appropriate device drivers to maintain the reactor in a safe operating state. The SCS must prevent a deviation from the reactor nominal conditions by managing limitation functions in order to avoid RPS actions. The RICS has four identical redundancies that comply with physical separation, electrical isolation, and functional independence. This architecture complies with the safety requirements of a nuclear reactor and provides high availability to the host system. The RICS is intended to interface with a host computer (the computer of the spacecraft where the reactor is mounted). The RICS leverages the safety features inherent in Earth-based reactors and also integrates the wide range neutron detector (WRND). A neutron detector provides the input that allows the RICS to do its job. The RICS is based on proven technology currently in use at a nuclear research facility. In its most basic form, the RICS is a ruggedized, compact data-acquisition and control system that could be adapted to support a wide variety of harsh environments. As such, the RICS could be a useful instrument outside the scope of a nuclear reactor, including military applications where failsafe data acquisition and control is required with stringent size, weight, and power constraints.
Experiences in utilization of research reactors in Yugoslavia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Copic, M.; Gabrovsek, Z.; Pop-Jordanov, J.
1971-06-15
The nuclear institutes in Yugoslavia possess three research reactors. Since 1958, two heavy-water reactors have been in operation at the 'Boris Kidric' Institute, a zero-power reactor RB and a 6. 5-MW reactor RA. At the Jozef Stefan Institute, a 250-kW TRIGA Mark II reactor has been operating since 1966. All reactors are equipped with the necessary experimental facilities. The main activities based on these reactors are: (1) fundamental research in solid-state and nuclear physics; (2) R and D activities related to nuclear power program; and (3) radioisotope production. In fundamental physics, inelastic neutron scattering and diffraction phenomena are studied bymore » means of the neutron beam tubes and applied to investigations of the structures of solids and liquids. Valuable results are also obtained in n - γ reaction studies. Experiments connected with the fuel -element development program, owing to the characteristics of the existing reactors, are limited to determination of the fuel element parameters, to studies on the purity of uranium, and to a small number of capsule irradiations. All three reactors are also used for the verification of different methods applied in the analysis of power reactors, particularly concerning neutron flux distributions, the optimization of reactor core configurations and the shielding effects. An appreciable irradiation space in the reactors is reserved for isotope production. Fruitful international co-operation has been established in all these activities, on the basis of either bilateral or multilateral arrangements. The paper gives a critical analysis of the utilization of research reactors in a developing country such as Yugoslavia. The investments in and the operational costs of research reactors are compared with the benefits obtained in different areas of reactor application. The impact on the general scientific, technological and educational level in the country is also considered. In particular, an attempt is made ro envisage the role of research reactors in the promotion of nuclear power programs in relation to the size of the program, the competence of domestic industries and the degree of independence where fuel supply is concerned. (author)« less
Online Monitoring of Induction Motors
DOE Office of Scientific and Technical Information (OSTI.GOV)
McJunkin, Timothy R.; Agarwal, Vivek; Lybeck, Nancy Jean
2016-01-01
The online monitoring of active components project, under the Advanced Instrumentation, Information, and Control Technologies Pathway of the Light Water Reactor Sustainability Program, researched diagnostic and prognostic models for alternating current induction motors (IM). Idaho National Laboratory (INL) worked with the Electric Power Research Institute (EPRI) to augment and revise the fault signatures previously implemented in the Asset Fault Signature Database of EPRI’s Fleet Wide Prognostic and Health Management (FW PHM) Suite software. Induction Motor diagnostic models were researched using the experimental data collected by Idaho State University. Prognostic models were explored in the set of literature and through amore » limited experiment with 40HP to seek the Remaining Useful Life Database of the FW PHM Suite.« less
Reactivity Initiated Accident Simulation to Inform Transient Testing of Candidate Advanced Cladding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Nicholas R; Wysocki, Aaron J; Terrani, Kurt A
2016-01-01
Abstract. Advanced cladding materials with potentially enhanced accident tolerance will yield different light water reactor performance and safety characteristics than the present zirconium-based cladding alloys. These differences are due to different cladding material properties and responses to the transient, and to some extent, reactor physics, thermal, and hydraulic characteristics. Some of the differences in reactors physics characteristics will be driven by the fundamental properties (e.g., absorption in iron for an iron-based cladding) and others will be driven by design modifications necessitated by the candidate cladding materials (e.g., a larger fuel pellet to compensate for parasitic absorption). Potential changes in thermalmore » hydraulic limits after transition from the current zirconium-based cladding to the advanced materials will also affect the transient response of the integral fuel. This paper leverages three-dimensional reactor core simulation capabilities to inform on appropriate experimental test conditions for candidate advanced cladding materials in a control rod ejection event. These test conditions are using three-dimensional nodal kinetics simulations of a reactivity initiated accident (RIA) in a representative state-of-the-art pressurized water reactor with both nuclear-grade iron-chromium-aluminum (FeCrAl) and silicon carbide based (SiC-SiC) cladding materials. The effort yields boundary conditions for experimental mechanical tests, specifically peak cladding strain during the power pulse following the rod ejection. The impact of candidate cladding materials on the reactor kinetics behavior of RIA progression versus reference zirconium cladding is predominantly due to differences in: (1) fuel mass/volume/specific power density, (2) spectral effects due to parasitic neutron absorption, (3) control rod worth due to hardened (or softened) spectrum, and (4) initial conditions due to power peaking and neutron transport cross sections in the equilibrium cycle cores due to hardened (or softened) spectrum. This study shows minimal impact of SiC-based cladding configurations on the transient response versus reference zirconium-based cladding. However, the FeCrAl cladding response indicates similar energy deposition, but with significantly shorter pulses of higher magnitude. Therefore the FeCrAl-based cases have a more rapid fuel thermal expansion rate and the resultant pellet-cladding interaction occurs more rapidly.« less
NASA Astrophysics Data System (ADS)
Porter, Ian Edward
A nuclear reactor systems code has the ability to model the system response in an accident scenario based on known initial conditions at the onset of the transient. However, there has been a tendency for these codes to lack the detailed thermo-mechanical fuel rod response models needed for accurate prediction of fuel rod failure. This proposed work will couple today's most widely used steady-state (FRAPCON) and transient (FRAPTRAN) fuel rod models with a systems code TRACE for best-estimate modeling of system response in accident scenarios such as a loss of coolant accident (LOCA). In doing so, code modifications will be made to model gamma heating in LWRs during steady-state and accident conditions and to improve fuel rod thermal/mechanical analysis by allowing axial nodalization of burnup-dependent phenomena such as swelling, cladding creep and oxidation. With the ability to model both burnup-dependent parameters and transient fuel rod response, a fuel dispersal study will be conducted using a hypothetical accident scenario under both PWR and BWR conditions to determine the amount of fuel dispersed under varying conditions. Due to the fuel fragmentation size and internal rod pressure both being dependent on burnup, this analysis will be conducted at beginning, middle and end of cycle to examine the effects that cycle time can play on fuel rod failure and dispersal. Current fuel rod and system codes used by the Nuclear Regulatory Commission (NRC) are compilations of legacy codes with only commonly used light water reactor materials, Uranium Dioxide (UO2), Mixed Oxide (U/PuO 2) and zirconium alloys. However, the events at Fukushima Daiichi and Three Mile Island accident have shown the need for exploration into advanced materials possessing improved accident tolerance. This work looks to further modify the NRC codes to include silicon carbide (SiC), an advanced cladding material proposed by current DOE funded research on accident tolerant fuels (ATF). Several additional fuels will also be analyzed, including uranium nitride (UN), uranium carbide (UC) and uranium silicide (U3Si2). Focusing on the system response in an accident scenario, an emphasis is placed on the fracture mechanics of the ceramic cladding by design the fuel rods to eliminate pellet cladding mechanical interaction (PCMI). The time to failure and how much of the fuel in the reactor fails with an advanced fuel design will be analyzed and compared to the current UO2/Zircaloy design using a full scale reactor model.
NASA Astrophysics Data System (ADS)
Cole, Christopher J. P.
Nuclear power has several unique advantages over other air independent energy sources for nuclear combat submarines. An inherently safe, small nuclear reactor, capable of supply the hotel load of the Victoria Class submarines, has been conceptually developed. The reactor is designed to complement the existing diesel electric power generation plant presently onboard the submarine. The reactor, rated at greater than 1 MW thermal, will supply electricity to the submarine's batteries through an organic Rankine cycle energy conversion plant at 200 kW. This load will increase the operational envelope of the submarine by providing up to 28 continuous days submerged, allowing for an enhanced indiscretion ratio (ratio of time spent on the surface versus time submerged) and a limited under ice capability. The power plant can be fitted into the existing submarine by inserting a 6 m hull plug. With its simplistic design and inherent safety features, the reactor plant will require a minimal addition to the crew. The reactor employs TRISO fuel particles for increased safety. The light water coolant remains at atmospheric pressure, exiting the core at 96°C. Burn-up control and limiting excess reactivity is achieved through movable reflector plates. Shut down and regulatory control is achieved through the thirteen hafnium control rods. Inherent safety is achieved through the negative prompt and delayed temperature coefficients, as well as the negative void coefficient. During a transient, the boiling of the moderator results in a sudden drop in reactivity, essentially shutting down the reactor. It is this characteristic after which the reactor has been named. The design of the reactor was achieved through modelling using computer codes such as MCNP5, WIMS-AECL, FEMLAB, and MicroShield5, in addition to specially written software for kinetics, heat transfer and fission product poisoning calculations. The work has covered a broad area of research and has highlighted additional areas that should be investigated. These include developing a detailed point nodel kinetic model coupled with a finite element heat transfer model, undertaking radiation protection shielding calculations in accordance with international and national regulations, and exploring the effects of advanced fuels.
Development of monolithic nuclear fuels for RERTR by hot isostatic pressing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jue, J.-F.; Park, Blair; Chapple, Michael
2008-07-15
The RERTR Program (Reduced Enrichment for Research and Test Reactors) is developing advanced nuclear fuels for high power test reactors. Monolithic fuel design provides a higher uranium loading than that of the traditional dispersion fuel design. In order to bond monolithic fuel meat to aluminum cladding, several bonding methods such as roll bonding, friction stir bonding and hot isostatic pressing, have been explored. Hot isostatic pressing is a promising process for low cost, batch fabrication of monolithic RERTR fuel plates. The progress on the development of this process at the Idaho National Laboratory will be presented. Due to the relativelymore » high processing temperature used, the reaction between fuel meat and aluminum cladding to form brittle intermetallic phases may be a concern. The effect of processing temperature and time on the fuel/cladding reaction will be addressed. The influence of chemical composition on the reaction will also be discussed. (author)« less
NASA Astrophysics Data System (ADS)
Tompkins, Casey A.
A research team at University of Wisconsin - Madison designed and constructed a 1/4 height scaled experimental facility to study two-phase natural circulation cooling in a water-based reactor cavity cooling system (WRCCS) for decay heat removal in an advanced high temperature reactor. The facility is capable of natural circulation operation scaled for simulated decay heat removal (up to 28.5 kW m-2 (45 kW) input power, which is equivalent to 14.25 kW m-2 (6.8 MW) at full scale) and pressurized up to 2 bar. The UW-WRCCS facility has been used to study instabilities and oscillations observed during natural circulation flow due to evaporation of the water inventory. During two-phase operation, the system exhibits flow oscillations and excursions, which cause thermal oscillations in the structure. This can cause degradation in the mechanical structure at welds and limit heat transfer to the coolant. The facility is equipped with wire mesh sensors (WMS) that enable high-resolution measurements of the void fraction and steam velocities in order to study the instability's and oscillation's growth and decay during transient operation. Multiple perturbations to the system's operating point in pressure and inlet throttling have shown that the oscillatory behavior present under normal two-phase operating conditions can be damped and removed. Furthermore, with steady-state modeling it was discovered that a flow regime transition instability is the primary cause of oscillations in the UW-WRCCS facility under unperturbed conditions and that proper orifice selection can move the system into a stable operating regime.
NASA Astrophysics Data System (ADS)
Hallman, Luther, Jr.
Uranium carbide (UC) has long been considered a potential alternative to uranium dioxide (UO2) fuel, especially in the context of Gen IV gas-cooled reactors. It has shown promise because of its high uranium density, good irradiation stability, and especially high thermal conductivity. Despite its many benefits, UC is known to swell at a rate twice that of UO2. However, the swelling phenomenon is not well understood, and we are limited to a weak empirical understanding of the swelling mechanism. One suggested cladding for UC is silicon carbide (SiC), a ceramic that demonstrates a number of desirable properties. Among them are an increased corrosion resistance, high mechanical strength, and irradiation stability. However, with increased temperatures, SiC exhibits an extremely brittle nature. The brittle behavior of SiC is not fully understood and thus it is unknown how SiC would respond to the added stress of a swelling UC fuel. To better understand the interaction between these advanced materials, each has been implemented into FRAPCON, the preferred fuel performance code of the Nuclear Regulatory Commission (NRC); additionally, the material properties for a helium coolant have been incorporated. The implementation of UC within FRAPCON required the development of material models that described not only the thermophysical properties of UC, such as thermal conductivity and thermal expansion, but also models for the swelling, densification, and fission gas release associated with the fuel's irradiation behavior. This research is intended to supplement ongoing analysis of the performance and behavior of uranium carbide and silicon carbide in a helium-cooled reactor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D.M. McEligot; K. G. Condie; G. E. McCreery
2005-10-01
Background: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of Generation IV reactor systems such as supercritical water reactors (SCWR) for higher efficiency, improved performance and operation, design simplification, enhanced safety and reduced waste and cost. The objective of this Korean / US / laboratory / university collaboration of coupled fundamental computational and experimental studies is to develop the supporting knowledge needed for improved predictive techniques for use in the technology development of Generation IV reactor concepts and their passive safety systems. The present study emphasizes SCWR concepts in the Generationmore » IV program.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-20
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0010] Knowledge and Abilities Catalog for Nuclear Power... comment a draft NUREG, NUREG-2104, Revision 0, ``Knowledge and Abilities Catalog for Nuclear Power Plant... developed using this Catalog along with the Operator Licensing Examination Standards for Power Reactors...
An eye on reactor and computer control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schryver, J.; Knee, B.
1992-01-01
At ORNL computer software has been developed to make possible an improved eye-gaze measurement technology. Such an inovation could be the basis for advanced eye-gaze systems that may have applications in reactor control, software development, cognitive engineering, evaluation of displays, prediction of mental workloads, and military target recognition.
48 CFR 2009.570-3 - Criteria for recognizing contractor organizational conflicts of interest.
Code of Federal Regulations, 2011 CFR
2011-10-01
... reactor component that is unique to one type of advanced reactor. As is the case with other technically... contractor prepares plans for specific approaches or methodologies that are to be incorporated into competitive procurements using the approaches or methodologies. (iii) Where the offeror or contractor is...
48 CFR 2009.570-3 - Criteria for recognizing contractor organizational conflicts of interest.
Code of Federal Regulations, 2010 CFR
2010-10-01
... reactor component that is unique to one type of advanced reactor. As is the case with other technically... contractor prepares plans for specific approaches or methodologies that are to be incorporated into competitive procurements using the approaches or methodologies. (iii) Where the offeror or contractor is...
48 CFR 2009.570-3 - Criteria for recognizing contractor organizational conflicts of interest.
Code of Federal Regulations, 2013 CFR
2013-10-01
... reactor component that is unique to one type of advanced reactor. As is the case with other technically... contractor prepares plans for specific approaches or methodologies that are to be incorporated into competitive procurements using the approaches or methodologies. (iii) Where the offeror or contractor is...
48 CFR 2009.570-3 - Criteria for recognizing contractor organizational conflicts of interest.
Code of Federal Regulations, 2014 CFR
2014-10-01
... reactor component that is unique to one type of advanced reactor. As is the case with other technically... contractor prepares plans for specific approaches or methodologies that are to be incorporated into competitive procurements using the approaches or methodologies. (iii) Where the offeror or contractor is...
48 CFR 2009.570-3 - Criteria for recognizing contractor organizational conflicts of interest.
Code of Federal Regulations, 2012 CFR
2012-10-01
... reactor component that is unique to one type of advanced reactor. As is the case with other technically... contractor prepares plans for specific approaches or methodologies that are to be incorporated into competitive procurements using the approaches or methodologies. (iii) Where the offeror or contractor is...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belles, Randy; Jain, Prashant K.; Powers, Jeffrey J.
The Oak Ridge National Laboratory (ORNL) has a rich history of support for light water reactor (LWR) and non-LWR technologies. The ORNL history involves operation of 13 reactors at ORNL including the graphite reactor dating back to World War II, two aqueous homogeneous reactors, two molten salt reactors (MSRs), a fast-burst health physics reactor, and seven LWRs. Operation of the High Flux Isotope Reactor (HFIR) has been ongoing since 1965. Expertise exists amongst the ORNL staff to provide non-LWR training; support evaluation of non-LWR licensing and safety issues; perform modeling and simulation using advanced computational tools; run laboratory experiments usingmore » equipment such as the liquid salt component test facility; and perform in-depth fuel performance and thermal-hydraulic technology reviews using a vast suite of computer codes and tools. Summaries of this expertise are included in this paper.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grabaskas, David; Bucknor, Matthew; Jerden, James
2016-10-01
The potential release of radioactive material during a plant incident, referred to as the source term, is a vital design metric and will be a major focus of advanced reactor licensing. The U.S. Nuclear Regulatory Commission has stated an expectation for advanced reactor vendors to present a mechanistic assessment of the potential source term in their license applications. The mechanistic source term presents an opportunity for vendors to realistically assess the radiological consequences of an incident, and may allow reduced emergency planning zones and smaller plant sites. However, the development of a mechanistic source term for advanced reactors is notmore » without challenges, as there are often numerous phenomena impacting the transportation and retention of radionuclides. This project sought to evaluate U.S. capabilities regarding the mechanistic assessment of radionuclide release from core damage incidents at metal fueled, pool-type sodium fast reactors (SFRs). The purpose of the analysis was to identify, and prioritize, any gaps regarding computational tools or data necessary for the modeling of radionuclide transport and retention phenomena. To accomplish this task, a parallel-path analysis approach was utilized. One path, led by Argonne and Sandia National Laboratories, sought to perform a mechanistic source term assessment using available codes, data, and models, with the goal to identify gaps in the current knowledge base. The second path, performed by an independent contractor, performed sensitivity analyses to determine the importance of particular radionuclides and transport phenomena in regards to offsite consequences. The results of the two pathways were combined to prioritize gaps in current capabilities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyack, B.E.; Steiner, J.L.; Harmony, S.C.
The PIUS advanced reactor is a 640-MWe pressurized water reactor concept developed by Asea Brown Boveri. A unique feature of PIUS is the absence of mechanical control and shutdown rods. Reactivity is controlled by coolant boron concentration and the temperature of the moderator coolant. Los Alamos supported the US Nuclear Regulatory Commission`s preapplication review of the PIUS reactor. Baseline calculations of the PIUS design were performed for active and passive reactor scrams using TRAC-PF1/MOD2. Additional sensitivity studies examined flow blockage and boron dilution events to explore the robustness of the PIUS concept for low-probability combination events following active-system scrams.
NASA Astrophysics Data System (ADS)
Gates, David
2013-10-01
The QUAsi-Axisymmetric Research (QUASAR) stellarator is a new facility which can solve two critical problems for fusion, disruptions and steady-state, and which provides new insights into the role of magnetic symmetry in plasma confinement. If constructed it will be the only quasi-axisymmetric stellarator in the world. The innovative principle of quasi-axisymmetry (QA) will be used in QUASAR to study how ``tokamak-like'' systems can be made: 1) Disruption-free, 2) Steady-state with low recirculating power, while preserving or improving upon features of axisymmetric tokamaks, such as 1) Stable at high pressure simultaneous with 2) High confinement (similar to tokamaks), and 3) Scalable to a compact reactor Stellarator research is critical to fusion research in order to establish the physics basis for a magnetic confinement device that can operate efficiently in steady-state, without disruptions at reactor-relevant parameters. The two large stellarator experiments - LHD in Japan and W7-X under construction in Germany are pioneering facilities capable of developing 3D physics understanding at large scale and for very long pulses. The QUASAR design is unique in being QA and optimized for confinement, stability, and moderate aspect ratio (4.5). It projects to a reactor with a major radius of ~8 m similar to advanced tokamak concepts. It is striking that (a) the EU DEMO is a pulsed (~2.5 hour) tokamak with major R ~ 9 m and (b) the ITER physics scenarios do not presume steady-state behavior. Accordingly, QUASAR fills a critical gap in the world stellarator program. This work supported by DoE Contract No. DEAC02-76CH03073.
Post-treatment of reclaimed waste water based on an electrochemical advanced oxidation process
NASA Technical Reports Server (NTRS)
Verostko, Charles E.; Murphy, Oliver J.; Hitchens, G. D.; Salinas, Carlos E.; Rogers, Tom D.
1992-01-01
The purification of reclaimed water is essential to water reclamation technology life-support systems in lunar/Mars habitats. An electrochemical UV reactor is being developed which generates oxidants, operates at low temperatures, and requires no chemical expendables. The reactor is the basis for an advanced oxidation process in which electrochemically generated ozone and hydrogen peroxide are used in combination with ultraviolet light irradiation to produce hydroxyl radicals. Results from this process are presented which demonstrate concept feasibility for removal of organic impurities and disinfection of water for potable and hygiene reuse. Power, size requirements, Faradaic efficiency, and process reaction kinetics are discussed. At the completion of this development effort the reactor system will be installed in JSC's regenerative water recovery test facility for evaluation to compare this technique with other candidate processes.
NEET Enhanced Micro-Pocket Fission Detector for High Temperature Reactors - FY16 Status Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unruh, Troy; Reichenberger, Michael; Stevenson, Sarah
2016-09-01
A collaboration between the Idaho National Laboratory (INL), the Kansas State University (KSU), and the French Atomic Energy Agency, Commissariat à l'Énergie Atomique et aux Energies Alternatives, (CEA), has been initiated by the Nuclear Energy Enabling Technologies (NEET) Advanced Sensors and Instrumentation (ASI) program for developing and testing High Temperature Micro-Pocket Fission Detectors (HT MPFD), which are compact fission chambers capable of simultaneously measuring thermal neutron flux, fast neutron flux and temperature within a single package for temperatures up to 800 °C. The MPFD technology utilizes a small, multi-purpose, robust, in-core fission chambers and thermocouple. As discussed within this report,more » the small size, variable sensitivity, and increased accuracy of the MPFD technology represent a revolutionary improvement over current methods used to support irradiations in US Material Test Reactors (MTRs). Previous research conducted through NEET ASI1-3 has shown that the MPFD technology could be made robust and was successfully tested in a reactor core. This new project will further the MPFD technology for higher temperature regimes and other reactor applications by developing a HT MPFD suitable for temperatures up to 800 °C. This report summarizes the research progress for year two of this three year project. Highlights from research accomplishments include: • Continuation of a joint collaboration between INL, KSU, and CEA. Note that CEA is participating at their own expense because of interest in this unique new sensor. • An updated parallel wire HT MPFD design was developed. • Program support for HT MPFD deployments was given to Accident Tolerant Fuels (ATF) and Advanced Gas-cooled Reactor (AGR) irradiation test programs. • Quality approved materials for HT MPFD construction were procured by irradiation test programs for upcoming deployments. • KSU improved and performed electrical contact and fissile material plating. • KSU delivered fissile HT MPFD parts to INL for final construction of HT MPFD prototype. • A prototype HT MPFD was constructed and analyzed at INL. • The HT MPFD has been modeled in MCNP to optimize the amount of fissile material deposition. • The HT MPFD has been modeled in MCNP to optimize the sensor location in the irradiation test. • The fissile material deposition is undergoing independent verifications. • Detector amplifier electronics have been revised and tested by KSU. • Several project meetings were held at INL and KSU to discuss the roles and responsibilities between INL, KSU, and CEA for development and deployment of the HT MPFDs. As documented in this report, FY16 funding has allowed the project to meet year two planned accomplishments to develop a HT MPFD. In addition, the accomplishments of this project have attracted independent funding from other Department of Energy Office of Nuclear Energy (DOE-NE) programs for MTR irradiations of the MPFD technology. These are significant opportunities for this NEET Enhanced Micro-Pocket Fission Detector for High Temperature Reactors project because the irradiation expense of these experiments could not be included in the original project scope.« less
NASA Astrophysics Data System (ADS)
Natesan, K.; Li, Meimei; Chopra, O. K.; Majumdar, S.
2009-07-01
Sodium environmental effects are key limiting factors in the high temperature structural design of advanced sodium-cooled reactors. A guideline is needed to incorporate environmental effects in the ASME design rules to improve the performance reliability over long operating times. This paper summarizes the influence of sodium exposure on mechanical performance of selected austenitic stainless and ferritic/martensitic steels. Focus is on Type 316SS and mod.9Cr-1Mo. The sodium effects were evaluated by comparing the mechanical properties data in air and sodium. Carburization and decarburization were found to be the key factors that determine the tensile and creep properties of the steels. A beneficial effect of sodium exposure on fatigue life was observed under fully reversed cyclic loading in both austenitic stainless steels and ferritic/martensitic steels. However, when hold time was applied during cyclic loading, the fatigue life was significantly reduced. Based on the mechanical performance of the steels in sodium, consideration of sodium effects in high temperature structural design of advanced fast reactors is discussed.
Improving online risk assessment with equipment prognostics and health monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coble, Jamie B.; Liu, Xiaotong; Briere, Chris
The current approach to evaluating the risk of nuclear power plant (NPP) operation relies on static probabilities of component failure, which are based on industry experience with the existing fleet of nominally similar light water reactors (LWRs). As the nuclear industry looks to advanced reactor designs that feature non-light water coolants (e.g., liquid metal, high temperature gas, molten salt), this operating history is not available. Many advanced reactor designs use advanced components, such as electromagnetic pumps, that have not been used in the US commercial nuclear fleet. Given the lack of rich operating experience, we cannot accurately estimate the evolvingmore » probability of failure for basic components to populate the fault trees and event trees that typically comprise probabilistic risk assessment (PRA) models. Online equipment prognostics and health management (PHM) technologies can bridge this gap to estimate the failure probabilities for components under operation. The enhanced risk monitor (ERM) incorporates equipment condition assessment into the existing PRA and risk monitor framework to provide accurate and timely estimates of operational risk.« less
Assessment for advanced fuel cycle options in CANDU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morreale, A.C.; Luxat, J.C.; Friedlander, Y.
2013-07-01
The possible options for advanced fuel cycles in CANDU reactors including actinide burning options and thorium cycles were explored and are feasible options to increase the efficiency of uranium utilization and help close the fuel cycle. The actinide burning TRUMOX approach uses a mixed oxide fuel of reprocessed transuranic actinides from PWR spent fuel blended with natural uranium in the CANDU-900 reactor. This system reduced actinide content by 35% and decreased natural uranium consumption by 24% over a PWR once through cycle. The thorium cycles evaluated used two CANDU-900 units, a generator and a burner unit along with a drivermore » fuel feedstock. The driver fuels included plutonium reprocessed from PWR, from CANDU and low enriched uranium (LEU). All three cycles were effective options and reduced natural uranium consumption over a PWR once through cycle. The LEU driven system saw the largest reduction with a 94% savings while the plutonium driven cycles achieved 75% savings for PWR and 87% for CANDU. The high neutron economy, online fuelling and flexible compact fuel make the CANDU system an ideal reactor platform for many advanced fuel cycles.« less
PIE on Safety-Tested AGR-1 Compact 5-1-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunn, John D.; Morris, Robert Noel; Baldwin, Charles A.
Post-irradiation examination (PIE) is being performed in support of tristructural isotropic (TRISO) coated particle fuel development and qualification for High-Temperature Gas-cooled Reactors (HTGRs). AGR-1 was the first in a series of TRISO fuel irradiation experiments initiated in 2006 under the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program; this work continues to be funded by the Department of Energy's Office of Nuclear Energy as part of the Advanced Reactor Technologies (ART) initiative. AGR-1 fuel compacts were fabricated at Oak Ridge National Laboratory (ORNL) in 2006 and irradiated for three years in the Idaho National Laboratory (INL) Advanced Test Reactormore » (ATR) to demonstrate and evaluate fuel performance under HTGR irradiation conditions. PIE is being performed at INL and ORNL to study how the fuel behaved during irradiation, and to examine fuel performance during exposure to elevated temperatures at or above temperatures that could occur during a depressurized conduction cooldown event. This report summarizes safety testing of irradiated AGR-1 Compact 5-1-1 in the ORNL Core Conduction Cooldown Test Facility (CCCTF) and post-safety testing PIE.« less
Interface requirements for coupling a containment code to a reactor system thermal hydraulic codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baratta, A.J.
1997-07-01
To perform a complete analysis of a reactor transient, not only the primary system response but the containment response must also be accounted for. Such transients and accidents as a loss of coolant accident in both pressurized water and boiling water reactors and inadvertent operation of safety relief valves all challenge the containment and may influence flows because of containment feedback. More recently, the advanced reactor designs put forth by General Electric and Westinghouse in the US and by Framatome and Seimens in Europe rely on the containment to act as the ultimate heat sink. Techniques used by analysts andmore » engineers to analyze the interaction of the containment and the primary system were usually iterative in nature. Codes such as RELAP or RETRAN were used to analyze the primary system response and CONTAIN or CONTEMPT the containment response. The analysis was performed by first running the system code and representing the containment as a fixed pressure boundary condition. The flows were usually from the primary system to the containment initially and generally under choked conditions. Once the mass flows and timing are determined from the system codes, these conditions were input into the containment code. The resulting pressures and temperatures were then calculated and the containment performance analyzed. The disadvantage of this approach becomes evident when one performs an analysis of a rapid depressurization or a long term accident sequence in which feedback from the containment can occur. For example, in a BWR main steam line break transient, the containment heats up and becomes a source of energy for the primary system. Recent advances in programming and computer technology are available to provide an alternative approach. The author and other researchers have developed linkage codes capable of transferring data between codes at each time step allowing discrete codes to be coupled together.« less
Inert matrix fuel neutronic, thermal-hydraulic, and transient behavior in a light water reactor
NASA Astrophysics Data System (ADS)
Carmack, W. J.; Todosow, M.; Meyer, M. K.; Pasamehmetoglu, K. O.
2006-06-01
Currently, commercial power reactors in the United States operate on a once-through or open cycle, with the spent nuclear fuel eventually destined for long-term storage in a geologic repository. Since the fissile and transuranic (TRU) elements in the spent nuclear fuel present a proliferation risk, limit the repository capacity, and are the major contributors to the long-term toxicity and dose from the repository, methods and systems are needed to reduce the amount of TRU that will eventually require long-term storage. An option to achieve a reduction in the amount, and modify the isotopic composition of TRU requiring geological disposal is 'burning' the TRU in commercial light water reactors (LWRs) and/or fast reactors. Fuel forms under consideration for TRU destruction in light water reactors (LWRs) include mixed-oxide (MOX), advanced mixed-oxide, and inert matrix fuels. Fertile-free inert matrix fuel (IMF) has been proposed for use in many forms and studied by several researchers. IMF offers several advantages relative to MOX, principally it provides a means for reducing the TRU in the fuel cycle by burning the fissile isotopes and transmuting the minor actinides while producing no new TRU elements from fertile isotopes. This paper will present and discuss the results of a four-bundle, neutronic, thermal-hydraulic, and transient analyses of proposed inert matrix materials in comparison with the results of similar analyses for reference UOX fuel bundles. The results of this work are to be used for screening purposes to identify the general feasibility of utilizing specific inert matrix fuel compositions in existing and future light water reactors. Compositions identified as feasible using the results of these analyses still require further detailed neutronic, thermal-hydraulic, and transient analysis study coupled with rigorous experimental testing and qualification.
Complete Report on the Development of Welding Parameters for Irradiated Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frederick, Greg; Sutton, Benjamin J.; Tatman, Jonathan K.
The advanced welding facility at the Radiochemical Engineering Development Center of Oak Ridge National Laboratory, which was conceived to enable research and development of weld repair techniques for nuclear power plant life extension, is now operational. The development of the facility and its advanced welding capabilities, along with the model materials for initial welding trials, were funded jointly by the U.S. Department of Energy, Office of Nuclear Energy, Light Water Reactor Sustainability Program, the Electric Power Research Institute, Long Term Operations Program and the Welding and Repair Technology Center, with additional support from Oak Ridge National Laboratory. Welding of irradiatedmore » materials was initiated on November 17, 2017, which marked a significant step in the development of the facility and the beginning of extensive welding research and development campaigns on irradiated materials that will eventually produce validated techniques and guidelines for weld repair activities carried out to extend the operational lifetimes of nuclear power plants beyond 60 years. This report summarizes the final steps that were required to complete weld process development, initial irradiated materials welding activities, near-term plans for irradiated materials welding, and plans for post-weld analyses that will be carried out to assess the ability of the advanced welding processes to make repairs on irradiated materials.« less
Next Generation Nuclear Plant Methods Research and Development Technical Program Plan -- PLN-2498
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg
2008-09-01
One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope ofmore » the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.« less
Irradiated Beryllium Disposal Workshop, Idaho Falls, ID, May 29-30, 2002
DOE Office of Scientific and Technical Information (OSTI.GOV)
Longhurst, Glen Reed; Anderson, Gail; Mullen, Carlan K
2002-07-01
In 2001, while performing routine radioactive decay heat rate calculations for beryllium reflector blocks for the Advanced Test Reactor (ATR), it became evident that there may be sufficient concentrations of transuranic isotopes to require classification of this irradiated beryllium as transuranic waste. Measurements on samples from ATR reflector blocks and further calculations confirmed that for reflector blocks and outer shim control cylinders now in the ATR canal, transuranic activities are about five times the threshold for classification. That situation implies that there is no apparent disposal pathway for this material. The problem is not unique to the ATR. The Highmore » Flux Isotope Reactor at Oak Ridge National Laboratory, the Missouri University Research Reactor at Columbia, Missouri and other reactors abroad must also deal with this issue. A workshop was held in Idaho Falls Idaho on May 29-30, 2002 to acquaint stakeholders with these findings and consider a path forward in resolving the issues attendant to disposition of irradiated material. Among the findings from this workshop were (1) there is a real potential for the US to be dependent on foreign sources for metallic beryllium within about a decade; (2) there is a need for a national policy on beryllium utilization and disposition and for a beryllium coordinating committee to be assembled to provide guidance on that policy; (3) it appears it will be difficult to dispose of this material at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico due to issues of Defense classification, facility radioactivity inventory limits, and transportation to WIPP; (4) there is a need for a funded DOE program to seek resolution of these issues including research on processing techniques that may make this waste acceptable in an existing disposal pathway or allow for its recycle.« less
A physical description of fission product behavior fuels for advanced power reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaganas, G.; Rest, J.; Nuclear Engineering Division
2007-10-18
The Global Nuclear Energy Partnership (GNEP) is considering a list of reactors and nuclear fuels as part of its chartered initiative. Because many of the candidate materials have not been explored experimentally under the conditions of interest, and in order to economize on program costs, analytical support in the form of combined first principle and mechanistic modeling is highly desirable. The present work is a compilation of mechanistic models developed in order to describe the fission product behavior of irradiated nuclear fuel. The mechanistic nature of the model development allows for the possibility of describing a range of nuclear fuelsmore » under varying operating conditions. Key sources include the FASTGRASS code with an application to UO{sub 2} power reactor fuel and the Dispersion Analysis Research Tool (DART ) with an application to uranium-silicide and uranium-molybdenum research reactor fuel. Described behavior mechanisms are divided into subdivisions treating fundamental materials processes under normal operation as well as the effect of transient heating conditions on these processes. Model topics discussed include intra- and intergranular gas-atom and bubble diffusion, bubble nucleation and growth, gas-atom re-solution, fuel swelling and ?scion gas release. In addition, the effect of an evolving microstructure on these processes (e.g., irradiation-induced recrystallization) is considered. The uranium-alloy fuel, U-xPu-Zr, is investigated and behavior mechanisms are proposed for swelling in the {alpha}-, intermediate- and {gamma}-uranium zones of this fuel. The work reviews the FASTGRASS kinetic/mechanistic description of volatile ?scion products and, separately, the basis for the DART calculation of bubble behavior in amorphous fuels. Development areas and applications for physical nuclear fuel models are identified.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrovic, Bojan; Maldonado, Ivan
2016-04-14
The research performed in this project addressed the issue of low heavy metal loading and the resulting reduced cycle length with increased refueling frequency, inherent to all FHR designs with solid, non-movable fuel based on TRISO particles. Studies performed here focused on AHTR type of reactor design with plate (“plank”) fuel. Proposal to FY12 NEUP entitled “Fuel and Core Design Options to Overcome the Heavy Metal Loading Limit and Improve Performance and Safety of Liquid Salt Cooled Reactors” was selected for award, and the 3-year project started in August 2012. A 4-month NCE was granted and the project completed onmore » December 31, 2015. The project was performed by Georgia Tech (Prof. Bojan Petrovic, PI) and University of Tennessee (Prof. Ivan Maldonado, Co-PI), with a total funding of $758,000 over 3 years. In addition to two Co-PIs, the project directly engaged 6 graduate students (at doctoral or MS level) and 2 postdoctoral researchers. Additionally, through senior design projects and graduate advanced design projects, another 23 undergraduate and 12 graduate students were exposed to and trained in the salt reactor technology. We see this as one of the important indicators of the project’s success and effectiveness. In the process, 1 journal article was published (with 3 journal articles in preparation), together with 8 peer-reviewed full conference papers, 8 peer-reviewed extended abstracts, as well as 1 doctoral dissertation and 2 master theses. The work included both development of models and methodologies needed to adequately analyze this type of reactor, fuel, and its fuel cycle, as well as extensive analyses and optimization of the fuel and core design.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-22
... Fuel Elements for Use in Research and Test Reactors AGENCY: Nuclear Regulatory Commission. ACTION... Plate-Type Uranium-Aluminum Fuel Elements for Use in Research and Test Reactors.'' This guide describes... plate-type uranium-aluminum fuel elements used in research and test reactors (RTRs). DATES: Submit...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frederick, Greg; Sutton, Benjamin J.; Tatman, Jonathan K.
The advanced welding facility within a hot cell at the Radiochemical Engineering Development Center of Oak Ridge National Laboratory (ORNL), which has been jointly funded by the U.S. Department of Energy (DOE), Office of Nuclear Energy, Light Water Reactor Sustainability Program and the Electric Power Research Institute, Long Term Operations Program and the Welding and Repair Technology Center, is in the final phase of development. Research and development activities in this facility will involve direct testing of advanced welding technologies on irradiated materials in order to address the primary technical challenge of helium induced cracking that can arise when conventionalmore » fusion welding techniques are utilized on neutron irradiated stainless steels and nickel-base alloys. This report details the effort that has been required since the beginning of fiscal year 2017 to initiate welding research and development activities on irradiated materials within the hot cell cubicle, which houses welding sub-systems that include laser beam welding (LBW) and friction stir welding (FSW) and provides material containment within the hot cell.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-16
... NUCLEAR REGULATORY COMMISSION [Docket Nos (Redacted), License Nos (Redacted), EA (Redacted); NRC- 2010-0351] In the Matter of All Power Reactor Licensees and Research Reactor Licensees Who Transport Spent Nuclear Fuel; Order Modifying License (Effective Immediately) I. The licensees identified in...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-20
... NUCLEAR REGULATORY COMMISSION [Docket Nos. (Redacted), License Nos.: (Redacted), EA (Redacted); NRC- 2010-0351] In the Matter of All Power Reactor Licensees and Research Reactor Licensees Who Transport Spent Nuclear Fuel; Order Modifying License (Effective Immediately) I The licensees identified in...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jubin, R.T.
This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July--September 1997. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within nine major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Biotechnology, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnologymore » Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information.« less
Wireless, in-vessel neutron monitor for initial core-loading of advanced breeder reactors
NASA Technical Reports Server (NTRS)
Delorenzo, J. T.; Kennedy, E. J.; Blalock, T. V.; Rochelle, J. M.; Chiles, M. M.; Valentine, K. H.
1981-01-01
An experimental wireless, in-vessel neutron monitor was developed to measure the reactivity of an advanced breeder reactor as the core is loaded for the first time to preclude an accidental critically incident. The environment is liquid sodium at a temperature of approx. 220 C, with negligible gamma or neutron radiation. With ultrasonic transmission of neutron data, no fundamental limitation was observed after tests at 230 C for 2000 h. The neutron sensitivity was approx. 1 count/s-nv, and the potential data transmission rate was approx. 10,000 counts/s.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-12-31
The US Department of Energy (DOE) Morgantown Energy Technology Center (METC) is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal gas) streams of integrated gasification combined-cycle (IGCC) power systems. The programs focus on hot-gas particulate removal and desulfurization technologies that match or nearly match the temperatures and pressures of the gasifier, cleanup system, and power generator. The work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. The goal of this project is to continue further development of the zinc titanate desulfurizationmore » and direct sulfur recovery process (DSRP) technologies by (1) scaling up the zinc titanate reactor system; (2) developing an integrated skid-mounted zinc titanate desulfurization-DSRP reactor system; (3) testing the integrated system over an extended period with real coal-as from an operating gasifier to quantify the degradative effect, if any, of the trace contaminants present in cola gas; (4) developing an engineering database suitable for system scaleup; and (5) designing, fabricating and commissioning a larger DSRP reactor system capable of operating on a six-fold greater volume of gas than the DSRP reactor used in the bench-scale field test. The work performed during the April 1 through June 30, 1996 period is described.« less
Treating domestic effluent wastewater treatment by aerobic biofilter with bioballs medium
NASA Astrophysics Data System (ADS)
Permatasari, R.; Rinanti, A.; Ratnaningsih, R.
2018-01-01
This laboratory scale research aimed to treat wastewater effluent with advanced treatment utilizing aerobic biofilter with bio-balls medium to obtain effluent quality in accordance with DKI Jakarta Governor Regulation No. 122 of 2005. The seeding and acclimatization were conducted in 4 weeks. The effluent were accommodated in a 150 L water barrel supported by a submersible pump. The effluent were treated in two boxes shaped reactors made of glasses with 36 L of each capacity. These reactors were equipped with aquarium aerators, sampling tap is 10 cm from the base of reactors, and bio-balls with 3 cm diameter are made of PVC. Reactors operated continuously with variations of retention time of 4 hours, 8 hours, 12 hours, 18 hours, and 24 hours and also variations of Carbon: Nitrogen: Phosphor = C: N: P ratio were, 100:5:1, 100:8:1, 100:10:1, 100:12:1, 100:15:1. The results showed that the optimum variance of retention time was 24 hours and the ratio of C:N:P was 100:10:1 yielded the largest removal efficiency for 83,33% of COD, 87,33% of BOD, 82,5% of Ammonia, 79,1% of Nitrate, 92% of Nitrite, 84,82% of Oil and Grease. The concentration parameter resulted from outlet biofilter has met the domestic wastewater quality standard of DKI Jakarta.
CHF Enhancement by Vessel Coating for External Reactor Vessel Cooling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan-Bill Cheung; Joy L. Rempe
2004-06-01
In-vessel retention (IVR) is a key severe accident management (SAM) strategy that has been adopted by some operating nuclear power plants and advanced light water reactors (ALWRs). One viable means for IVR is the method of external reactor vessel cooling (ERVC) by flooding of the reactor cavity during a severe accident. As part of a joint Korean – United States International Nuclear Energy Research Initiative (K-INERI), an experimental study has been conducted to investigate the viability of using an appropriate vessel coating to enhance the critical heat flux (CHF) limits during ERVC. Toward this end, transient quenching and steady-state boilingmore » experiments were performed in the SBLB (Subscale Boundary Layer Boiling) facility at Penn State using test vessels with micro-porous aluminum coatings. Local boiling curves and CHF limits were obtained in these experiments. When compared to the corresponding data without coatings, substantial enhancement in the local CHF limits for the case with surface coatings was observed. Results of the steady state boiling experiments showed that micro-porous aluminum coatings were very durable. Even after many cycles of steady state boiling, the vessel coatings remained rather intact, with no apparent changes in color or structure. Moreover, the heat transfer performance of the coatings was found to be highly desirable with an appreciable CHF enhancement in all locations on the vessel outer surface but with very little effect of aging.« less
Improvements to Nuclear Data and Its Uncertainties by Theoretical Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danon, Yaron; Nazarewicz, Witold; Talou, Patrick
2013-02-18
This project addresses three important gaps in existing evaluated nuclear data libraries that represent a significant hindrance against highly advanced modeling and simulation capabilities for the Advanced Fuel Cycle Initiative (AFCI). This project will: Develop advanced theoretical tools to compute prompt fission neutrons and gamma-ray characteristics well beyond average spectra and multiplicity, and produce new evaluated files of U and Pu isotopes, along with some minor actinides; Perform state-of-the-art fission cross-section modeling and calculations using global and microscopic model input parameters, leading to truly predictive fission cross-sections capabilities. Consistent calculations for a suite of Pu isotopes will be performed; Implementmore » innovative data assimilation tools, which will reflect the nuclear data evaluation process much more accurately, and lead to a new generation of uncertainty quantification files. New covariance matrices will be obtained for Pu isotopes and compared to existing ones. The deployment of a fleet of safe and efficient advanced reactors that minimize radiotoxic waste and are proliferation-resistant is a clear and ambitious goal of AFCI. While in the past the design, construction and operation of a reactor were supported through empirical trials, this new phase in nuclear energy production is expected to rely heavily on advanced modeling and simulation capabilities. To be truly successful, a program for advanced simulations of innovative reactors will have to develop advanced multi-physics capabilities, to be run on massively parallel super- computers, and to incorporate adequate and precise underlying physics. And all these areas have to be developed simultaneously to achieve those ambitious goals. Of particular interest are reliable fission cross-section uncertainty estimates (including important correlations) and evaluations of prompt fission neutrons and gamma-ray spectra and uncertainties.« less
NASA Astrophysics Data System (ADS)
1980-08-01
The technologies selected for the detailed characterization were: solar technology; terrestrial photovoltaic (200 MWe); coal technologies; conventional high sulfur coal combustion with advanced fine gas desulfurization (1250 MWe), and open cycle gas turbine combined cycle plant with low Btu gasifier (1250 MWe); and nuclear technologies: conventional light water reactor (1250 MWe), liquid metal fast breeder reactor (1250 MWe), and magnetic fusion reactor (1320 MWe). A brief technical summary of each power plant design is given.
Fabrication of Monolithic RERTR Fuels by Hot Isostatic Pressing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jan-Fong Jue; Blair H. Park; Curtis R. Clark
2010-11-01
The RERTR (Reduced Enrichment for Research and Test Reactors) Program is developing advanced nuclear fuels for high-power test reactors. Monolithic fuel design provides higher uranium loading than that of the traditional dispersion fuel design. Hot isostatic pressing is a promising process for low-cost batch fabrication of monolithic RERTR fuel plates for these high-power reactors. Bonding U Mo fuel foil and 6061 Al cladding by hot isostatic press bonding was successfully developed at Idaho National Laboratory. Due to the relatively high processing temperature, the interaction between fuel meat and aluminum cladding is a concern. Two different methods were employed to mitigatemore » this effect: (1) a diffusion barrier and (2) a doping addition to the interface. Both types of fuel plates have been fabricated by hot isostatic press bonding. Preliminary results show that the direct fuel/cladding interaction during the bonding process was eliminated by introducing a thin zirconium diffusion barrier layer between the fuel and the cladding. Fuel plates were also produced and characterized with a silicon-rich interlayer between fuel and cladding. This paper reports the recent progress of this developmental effort and identifies the areas that need further attention.« less
Dose Rate Calculation of TRU Metal Ingot in Pyroprocessing - 12202
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Yoon Hee; Lee, Kunjai
Spent fuel management has been a main problem to be solved for continuous utilization of nuclear energy. Spent fuel management policy of Korea is 'Wait and See'. It is focused on Pyro-process and SFR (Sodium-cooled Fast Reactor) for closed-fuel cycle research and development in Korea. For peaceful use of nuclear facilities, the proliferation resistance has to be proved. Proliferation resistance is one of key constraints in the deployment of advanced nuclear energy systems. Non-proliferation and safeguard issues have been strengthening internationally. Barriers to proliferation are that reduces desirability or attractiveness as an explosive and makes it difficult to gain accessmore » to the materials, or makes it difficult to misuse facilities and/or technologies for weapons applications. Barriers to proliferation are classified into intrinsic and extrinsic barriers. Intrinsic barrier is inherent quality of reactor materials or the fuel cycle that is built into the reactor design and operation such as material and technical barriers. As one of the intrinsic measures, the radiation from the material is considered significantly. Therefore the radiation of TRU metal ingot from the pyro-process was calculated using ORIGEN and MCNP code. (authors)« less
Measurement of 235U(n,n'γ) and 235U(n,2nγ) reaction cross sections
NASA Astrophysics Data System (ADS)
Kerveno, M.; Thiry, J. C.; Bacquias, A.; Borcea, C.; Dessagne, P.; Drohé, J. C.; Goriely, S.; Hilaire, S.; Jericha, E.; Karam, H.; Negret, A.; Pavlik, A.; Plompen, A. J. M.; Romain, P.; Rouki, C.; Rudolf, G.; Stanoiu, M.
2013-02-01
The design of generation IV nuclear reactors and the studies of new fuel cycles require knowledge of the cross sections of various nuclear reactions. Our research is focused on (n,xnγ) reactions occurring in these new reactors. The aim is to measure unknown cross sections and to reduce the uncertainty on present data for reactions and isotopes of interest for transmutation or advanced reactors. The present work studies the 235U(n,n'γ) and 235U(n,2nγ) reactions in the fast neutron energy domain (up to 20 MeV). The experiments were performed with the Geel electron linear accelerator GELINA, which delivers a pulsed white neutron beam. The time characteristics enable measuring neutron energies with the time-of-flight (TOF) technique. The neutron induced reactions [in this case inelastic scattering and (n,2n) reactions] are identified by on-line prompt γ spectroscopy with an experimental setup including four high-purity germanium (HPGe) detectors. A fission ionization chamber is used to monitor the incident neutron flux. The experimental setup and analysis methods are presented and the model calculations performed with the TALYS-1.2 code are discussed.
Institute for Advanced Materials at University of Louisville
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sunkara, Mahendra; Sumaneskara, Gamini; Starr, Thomas L
2009-10-29
In this project, a university-wide, academic center has been established entitled Institute for Advanced Materials and Renewable Energy. In this institute, a comprehensive materials characterization facility has been established by co-locating several existing characterization equipment and acquiring several state of the art instrumentation such as field emission transmission electron microscope, scanning electron microscope, high resolution X-ray diffractometer, Particle Size Distribution/Zeta Potential measurement system, and Ultra-microtome for TEM specimen. In addition, a renewable energy conversion and storage research facility was also established by acquiring instrumentation such as UV-Vis absorption spectroscopy, Atomic Layer Deposition reactor, Solar light simulator, oxygen-free glove box, potentiostat/galvanostatsmore » and other miscellaneous items. The institute is staffed with three full-time staff members (one senior research technologist, a senior PhD level research scientist and a junior research scientist) to enable proper use of the techniques. About thirty faculty, fifty graduate students and several researchers access the facilities on a routine basis. Several industry R&D organizations (SudChemie, Optical Dynamics and Hexion) utilize the facility. The established Institute for Advanced Materials at UofL has three main objectives: (a) enable a focused research effort leading to the rapid discovery of new materials and processes for advancing alternate energy conversion and storage technologies; (b) enable offering of several laboratory courses on advanced materials science and engineering; and (c) develop university-industry partnerships based on the advanced materials research. The Institute's efforts were guided by an advisory board comprising eminent researchers from outside KY. Initial research efforts were focused on the discovery of new materials and processes for solar cells and Li ion battery electrodes. Initial sets of results helped PIs to secure a successful EPSCoR cluster implementation grant by teaming with additional researchers from UK. In addition to research efforts, the project enabled several other outcomes: (a) helped recruit a junior faculty member (Dr. Moises Carreon) and establish a lab focused on meso-porous materials toward separation and catalysis; (b) enabled offering of three new, graduate level courses (Materials characterization using spectroscopy and microscopy; Electron and x-ray diffraction; and renewable energy systems); and (c) mentoring of a junior faculty members (Dr. Gerold Willing).« less
Utilizing the power of Cerenkov light with nanotechnology.
Shaffer, Travis M; Pratt, Edwin C; Grimm, Jan
2017-02-07
The characteristic blue glow of Cerenkov luminescence (CL) arises from the interaction between a charged particle travelling faster than the phase velocity of light and a dielectric medium, such as water or tissue. As CL emanates from a variety of sources, such as cosmic events, particle accelerators, nuclear reactors and clinical radionuclides, it has been used in applications such as particle detection, dosimetry, and medical imaging and therapy. The combination of CL and nanoparticles for biomedicine has improved diagnosis and therapy, especially in oncological research. Although radioactive decay itself cannot be easily modulated, the associated CL can be through the use of nanoparticles, thus offering new applications in biomedical research. Advances in nanoparticles, metamaterials and photonic crystals have also yielded new behaviours of CL. Here, we review the physics behind Cerenkov luminescence and associated applications in biomedicine. We also show that by combining advances in nanotechnology and materials science with CL, new avenues for basic and applied sciences have opened.
Outcomes from the DOE Workshop on Turbulent Flow Simulation at the Exascale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sprague, Michael; Boldyrev, Stanislav; Chang, Choong-Seock
This paper summarizes the outcomes from the Turbulent Flow Simulation at the Exascale: Opportunities and Challenges Workshop, which was held 4-5 August 2015, and was sponsored by the U.S. Department of Energy Office of Advanced Scientific Computing Research. The workshop objective was to define and describe the challenges and opportunities that computing at the exascale will bring to turbulent-flow simulations in applied science and technology. The need for accurate simulation of turbulent flows is evident across the U.S. Department of Energy applied-science and engineering portfolios, including combustion, plasma physics, nuclear-reactor physics, wind energy, and atmospheric science. The workshop brought togethermore » experts in turbulent-flow simulation, computational mathematics, and high-performance computing. Building upon previous ASCR workshops on exascale computing, participants defined a research agenda and path forward that will enable scientists and engineers to continually leverage, engage, and direct advances in computational systems on the path to exascale computing.« less
Utilizing the power of Cerenkov light with nanotechnology
Shaffer, Travis M.; Pratt, Edwin C.; Grimm, Jan
2017-01-01
The characteristic blue glow of Cerenkov luminescence (CL) arises from the interaction between a charged particle travelling faster than the phase velocity of light and a dielectric medium, such as water or tissue. As CL emanates from a variety of sources, such as cosmic events, particle accelerators, nuclear reactors and clinical radionuclides, it has been used in applications such as particle detection, dosimetry, and medical imaging and therapy. The combination of CL and nanoparticles for biomedicine has improved diagnosis and therapy, especially in oncological research. Although radioactive decay itself cannot be easily modulated, the associated CL can be through the use of nanoparticles, thus offering new applications in biomedical research. Advances in nanoparticles, metamaterials and photonic crystals have also yielded new behaviours of CL. Here, we review the physics behind Cerenkov luminescence and associated applications in biomedicine. We also show that by combining advances in nanotechnology and materials science with CL, new avenues for basic and applied sciences have opened. PMID:28167827
Utilizing the power of Cerenkov light with nanotechnology
NASA Astrophysics Data System (ADS)
Shaffer, Travis M.; Pratt, Edwin C.; Grimm, Jan
2017-02-01
The characteristic blue glow of Cerenkov luminescence (CL) arises from the interaction between a charged particle travelling faster than the phase velocity of light and a dielectric medium, such as water or tissue. As CL emanates from a variety of sources, such as cosmic events, particle accelerators, nuclear reactors and clinical radionuclides, it has been used in applications such as particle detection, dosimetry, and medical imaging and therapy. The combination of CL and nanoparticles for biomedicine has improved diagnosis and therapy, especially in oncological research. Although radioactive decay itself cannot be easily modulated, the associated CL can be through the use of nanoparticles, thus offering new applications in biomedical research. Advances in nanoparticles, metamaterials and photonic crystals have also yielded new behaviours of CL. Here, we review the physics behind Cerenkov luminescence and associated applications in biomedicine. We also show that by combining advances in nanotechnology and materials science with CL, new avenues for basic and applied sciences have opened.
Core Design Characteristics of the Fluoride Salt-Cooled High Temperature Demonstration Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Nicholas R; Qualls, A L; Betzler, Benjamin R
2016-01-01
Fluoride salt-cooled high temperature reactors (FHRs) are a promising reactor technology option with significant knowledge gaps to implementation. One potential approach to address those technology gaps is via a small-scale demonstration reactor with the goal of increasing the technology readiness level (TRL) of the overall system for the longer term. The objective of this paper is to outline a notional concept for such a system, and to address how the proposed concept would advance the TRL of FHR concepts. Development of the proposed FHR Demonstration Reactor (DR) will enable commercial FHR deployment through disruptive and rapid technology development and demonstration.more » The FHR DR will close remaining gaps to commercial viability. Lower risk technologies are included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated within an acceptable budget and schedule. Important capabilities that will be demonstrated by building and operating the FHR DR include core design methodologies; fabrication and operation of high temperature reactors; salt procurement, handling, maintenance, and ultimate disposal; salt chemistry control to maximize vessel life; tritium management; heat exchanger performance; pump performance; and reactivity control. The FHR DR is considered part of a broader set of FHR technology development and demonstration efforts, some of which are already underway. Nonreactor test efforts (e.g., heated salt loops or loops using simulant fluids) can demonstrate many technologies necessary for commercial deployment of FHRs. The FHR DR, however, fulfills a crucial role in FHR technology development by advancing the technical maturity and readiness level of the system as a whole.« less
NASA Astrophysics Data System (ADS)
Antariksawan, Anhar R.; Wahyono, Puradwi I.; Taxwim
2018-02-01
Safety is the priority for nuclear installations, including research reactors. On the other hand, many studies have been done to validate the applicability of nuclear power plant based best estimate computer codes to the research reactor. This study aims to assess the applicability of the RELAP5/SCDAP code to Kartini research reactor. The model development, steady state and transient due to LOCA calculations have been conducted by using RELAP5/SCDAP. The calculation results are compared with available measurements data from Kartini research reactor. The results show that the RELAP5/SCDAP model steady state calculation agrees quite well with the available measurement data. While, in the case of LOCA transient simulations, the model could result in reasonable physical phenomena during the transient showing the characteristics and performances of the reactor against the LOCA transient. The role of siphon breaker hole and natural circulation in the reactor tank as passive system was important to keep reactor in safe condition. It concludes that the RELAP/SCDAP could be use as one of the tool to analyse the thermal-hydraulic safety of Kartini reactor. However, further assessment to improve the model is still needed.
Electro-Fenton as a feasible advanced treatment process to produce reclaimed water.
Durán Moreno, A; Frontana-Uribe, B A; Ramírez Zamora, R M
2004-01-01
The feasibility of the electro-Fenton process to generate simultaneously both of the Fenton's reagent species (Fe2+/H2O2), was assessed as a potentially more economical alternative to the classical Fenton's reaction to produce reclaimed water. An air-saturated combined wastewater (mixture of municipal and laboratory effluents) was treated in discontinuous and continuous reactors at pH = 3.5. The discontinuous reactor was a 2 L electrochemical laboratory cell fitted with concentric graphite and iron electrodes. The continuous reactor tests used a pilot treatment system comprising the aforementioned electrochemical cell, two clarifiers and one sand filter. Several tests were carried out at different conditions of reaction time (0-60 min) and electrical current values (0.2-1.0 A) in the discontinuous reactor. The best operating conditions were 60 min and 1 A without filtration of effluents. At these conditions, in discontinuous and continuous reactors with filtration, the COD, turbidity and color removal were 65-74.8%, 77-92.3% and 80-100%, respectively. Fecal and total coliforms, Escherichia coli, Shigella and Salmonella sp. were not detected at the end of the pilot treatment system. Electrogeneration of the Fenton's reagent is also economical; its cost is one-fifth the cost reported for Advanced Primary Treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Digital instrumentation and controls system technique is being introduced in new constructed research reactor or life extension of older research reactor. Digital systems are easy to change and optimize but the validated process for them is required. Also, to reduce project risk or cost, we have to make it sure that configuration and control functions is right before the commissioning phase on research reactor. For this purpose, simulators have been widely used in developing control systems in automotive and aerospace industries. In these literatures, however, very few of these can be found regarding test on the control system of researchmore » reactor with simulator. Therefore, this paper proposes a simulation platform to verify the performance of RRS (Reactor Regulating System) for research reactor. This simulation platform consists of the reactor simulation model and the interface module. This simulation platform is applied to I and C upgrade project of TRIGA reactor, and many problems of RRS configuration were found and solved. And it proved that the dynamic performance testing based on simulator enables significant time saving and improves economics and quality for RRS in the system test phase. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moisseytsev, Anton; Sienicki, James J.
2016-01-01
Supercritical carbon dioxide (S-CO2) Brayton cycles are under development as advanced energy converters for advanced nuclear reactors, especially the Sodium-Cooled Fast Reactor (SFR). The use of dry air cooling for direct heat rejection to the atmosphere ultimate heat sink is increasingly becoming a requirement in many regions due to restrictions on water use. The transient load following and control behavior of an SFR with an S-CO2 cycle power converter utilizing dry air cooling have been investigated. With extension and adjustment of the previously existing control strategy for direct water cooling, S-CO2 cycle power converters can also be used for loadmore » following operation in regions where dry air cooling is a requirement« less
FY 2017-Influence of Sodium Environment on the Tensile Properties of Advanced Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Natesan, K.; Li, Meimei; Chen, Wei-Ying
This report provides an update on the understanding of the effects of sodium exposures on tensile properties of advanced alloy 709 in support of the design and operation of structural components in sodium-cooled fast reactors (SFRs). The report is a Level 3 deliverable in FY17 (M3AT-17AN1602093), under the Work Package AT-17AN160209, “Sodium Compatibility” performed by Argonne National Laboratory (ANL), as part of Advanced Reactor Technologies Program. Three laboratory-size heats of Alloy 709 austenitic steel were investigated in liquid sodium environments at 550-650°C to understand its corrosion behaviour, microstructural evolution, and tensile properties. In addition, a commercial scale heat has beenmore » produced and hot-rolled into plates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberto, J.; Diaz de la Rubia, T.; Gibala, R.
2006-10-01
The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 newmore » nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X-ray sources, neutron sources, nanoscale science research centers, and supercomputers, offer the opportunity to transform and accelerate the fundamental materials and chemical sciences that underpin technology development for advanced nuclear energy systems. The fundamental challenge is to understand and control chemical and physical phenomena in multi-component systems from femto-seconds to millennia, at temperatures to 1000?C, and for radiation doses to hundreds of displacements per atom (dpa). This is a scientific challenge of enormous proportions, with broad implications in the materials science and chemistry of complex systems. New understanding is required for microstructural evolution and phase stability under relevant chemical and physical conditions, chemistry and structural evolution at interfaces, chemical behavior of actinide and fission-product solutions, and nuclear and thermomechanical phenomena in fuels and waste forms. First-principles approaches are needed to describe f-electron systems, design molecules for separations, and explain materials failure mechanisms. Nanoscale synthesis and characterization methods are needed to understand and design materials and interfaces with radiation, temperature, and corrosion resistance. Dynamical measurements are required to understand fundamental physical and chemical phenomena. New multiscale approaches are needed to integrate this knowledge into accurate models of relevant phenomena and complex systems across multiple length and time scales.« less
Materials technology for an advanced space power nuclear reactor concept: Program summary
NASA Technical Reports Server (NTRS)
Gluyas, R. E.; Watson, G. K.
1975-01-01
The results of a materials technology program for a long-life (50,000 hr), high-temperature (950 C coolant outlet), lithium-cooled, nuclear space power reactor concept are reviewed and discussed. Fabrication methods and compatibility and property data were developed for candidate materials for fuel pins and, to a lesser extent, for potential control systems, reflectors, reactor vessel and piping, and other reactor structural materials. The effects of selected materials variables on fuel pin irradiation performance were determined. The most promising materials for fuel pins were found to be 85 percent dense uranium mononitride (UN) fuel clad with tungsten-lined T-111 (Ta-8W-2Hf).
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-14
...., Aerotest Radiography and Research Reactor; Notice of Consideration of Approval of Transfer and Conforming Amendment, Opportunity for a Hearing, and Order Imposing Procedures for Access to Sensitive Unclassified Non... Manager, Research and Test Reactors Licensing Branch, Division of Policy and Rulemaking, Office of Nuclear...
A Potential NASA Research Reactor to Support NTR Development
NASA Technical Reports Server (NTRS)
Eades, Michael; Gerrish, Harold; Hardin, Leroy
2013-01-01
In support of efforts for research into the design and development of a man rated Nuclear Thermal Rocket (NTR) engine, the National Aeronautics and Space Administration (NASA), Marshall Space Flight Center (MSFC), is evaluating the potential for building a Nuclear Regulatory Commission (NRC) licensed research reactor. The proposed reactor would be licensed by NASA and operated jointly by NASA and university partners. The purpose of this reactor would be to perform further research into the technologies and systems needed for a successful NTR project and promote nuclear training and education.
High Efficiency Nuclear Power Plants Using Liquid Fluoride Thorium Reactor Technology
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.; Rarick, Richard A.; Rangarajan, Rajmohan
2009-01-01
An overall system analysis approach is used to propose potential conceptual designs of advanced terrestrial nuclear power plants based on Oak Ridge National Laboratory (ORNL) Molten Salt Reactor (MSR) experience and utilizing Closed Cycle Gas Turbine (CCGT) thermal-to-electric energy conversion technology. In particular conceptual designs for an advanced 1 GWe power plant with turbine reheat and compressor intercooling at a 950 K turbine inlet temperature (TIT), as well as near term 100 MWe demonstration plants with TITs of 950 and 1200 K are presented. Power plant performance data were obtained for TITs ranging from 650 to 1300 K by use of a Closed Brayton Cycle (CBC) systems code which considered the interaction between major sub-systems, including the Liquid Fluoride Thorium Reactor (LFTR), heat source and heat sink heat exchangers, turbo-generator machinery, and an electric power generation and transmission system. Optional off-shore submarine installation of the power plant is a major consideration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheeler, Timothy A.; Liao, Huafei
2014-12-01
United States nuclear power plant Licensee Event Reports (LERs), submitted to the United States Nuclear Regulatory Commission (NRC) under law as required by 10 CFR 50.72 and 50.73 were evaluated for reliance to the United Kingdom’s Health and Safety Executive – Office for Nuclear Regulation’s (ONR) general design assessment of the Advanced Boiling Water Reactor (ABWR) design. An NRC compendium of LERs, compiled by Idaho National Laboratory over the time period January 1, 2000 through March 31, 2014, were sorted by BWR safety system and sorted into two categories: those events leading to a SCRAM, and those events which constitutedmore » a safety system failure. The LERs were then evaluated as to the relevance of the operational experience to the ABWR design.« less
Advanced Space Nuclear Reactors from Fiction to Reality
NASA Astrophysics Data System (ADS)
Popa-Simil, L.
The advanced nuclear power sources are used in a large variety of science fiction movies and novels, but their practical development is, still, in its early conceptual stages, some of the ideas being confirmed by collateral experiments. The novel reactor concept uses the direct conversion of nuclear energy into electricity, has electronic control of reactivity, being surrounded by a transmutation blanket and very thin shielding being small and light that at its very limit may be suitable to power an autonomously flying car. It also provides an improved fuel cycle producing minimal negative impact to environment. The key elements started to lose the fiction attributes, becoming viable actual concepts and goals for the developments to come, and on the possibility to achieve these objectives started to become more real because the theory shows that using the novel nano-technologies this novel reactor might be achievable in less than a century.
High intensity positron source at HFR: Basic concept, scoring and design optimisation
NASA Astrophysics Data System (ADS)
Zeman, A.; Tuček, K.; Debarberis, L.; Hogenbirk, A.
2012-01-01
Recent applications of positron beam techniques in various fields of research have led to an increasing demand for high intensity positron sources required for advanced applications, particularly in materials science. Considerable efforts are being made worldwide to design and set-up high intensity positron sources and beam systems that are based on several principles. Such positron sources could be used in fundamental and applied research experiments, as well as in industrial applications, especially in the field of condensed matter characterisation at the nanometre scale. Phenomena involving positrons are also important in other applied science fields such as medicine, biology, physics, energy, etc. However, such studies are often limited due to the relative lack of suitable positron sources. Results from the recently completed Exploratory Research Project called "HIPOS" are discussed in this paper, which describes the principles behind such a powerful very high intensity positron beam experimental facility that is based on a reactor source. Details of a proposed concept that uses nuclear reactions [(n, γ) and (γ, pair)] within a designed positron generator at the High Flux Reactor (HFR) in Petten are also discussed. The HIPOS source has been designed to produce slow positrons with intensity of the order of 10 10 e +/s.
Innovations in Nuclear Infrastructure and Education
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Bernard
The decision to implement the Innovation in Nuclear Infrastructure and Engineering Program (INIE) was an important first step towards ensuring that the United States preserves its worldwide leadership role in the field of nuclear science and engineering. Prior to INIE, university nuclear science and engineering programs were waning, undergraduate student enrollment was down, university research reactors were being shut down, while others faced the real possibility of closure. For too long, cutting edge research in the areas of nuclear medicine, neutron scattering, radiochemistry, and advanced materials was undervalued and therefore underfunded. The INIE program corrected this lapse in focus andmore » direction and started the process of drawing a new blueprint with positive goals and objectives that supports existing as well the next generation of educators, students and researchers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Philip E. MacDonald
2005-01-01
The supercritical water-cooled reactor (SCWR) is one of the six reactor technologies selected for research and development under the Generation IV program. SCWRs are promising advanced nuclear systems because of their high thermal efficiency (i.e., about 45% versus about 33% efficiency for current Light Water Reactors [LWRs]) and considerable plant simplification. SCWRs are basically LWRs operating at higher pressure and temperatures with a direct once-through cycle. Operation above the critical pressure eliminates coolant boiling, so the coolant remains single-phase throughout the system. Thus, the need for a pressurizer, steam generators, steam separators, and dryers is eliminated. The main mission ofmore » the SCWR is generation of low-cost electricity. It is built upon two proven technologies: LWRs, which are the most commonly deployed power generating reactors in the world, and supercritical fossil-fired boilers, a large number of which are also in use around the world. The reference SCWR design for the U.S. program is a direct cycle system operating at 25.0 MPa, with core inlet and outlet temperatures of 280 and 500 C, respectively. The coolant density decreases from about 760 kg/m3 at the core inlet to about 90 kg/m3 at the core outlet. The inlet flow splits with about 10% of the inlet flow going down the space between the core barrel and the reactor pressure vessel (the downcomer) and about 90% of the inlet flow going to the plenum at the top of the rector pressure vessel, to then flow down through the core in special water rods to the inlet plenum. Here it mixes with the feedwater from the downcomer and flows upward to remove the heat in the fuel channels. This strategy is employed to provide good moderation at the top of the core. The coolant is heated to about 500 C and delivered to the turbine. The purpose of this NERI project was to assess the reference U.S. Generation IV SCWR design and explore alternatives to determine feasibility. The project was organized into three tasks: Task 1. Fuel-cycle Neutronic Analysis and Reactor Core Design Task 2. Fuel Cladding and Structural Material Corrosion and Stress Corrosion Cracking Task 3. Plant Engineering and Reactor Safety Analysis. moderator rods. materials.« less
Control console replacement at the WPI Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-01-01
With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Upgrade Program (DOE Grant No. DE-FG02-90ER12982), the original control console at the Worcester Polytechnic Institute (WPI) Reactor has been replaced with a modern system. The new console maintains the original design bases and functionality while utilizing current technology. An advanced remote monitoring system has been added to augment the educational capabilities of the reactor. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduatemore » use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The reactor power level was upgraded from 1 to 10 kill in 1969, and its operating license was renewed for 20 years in 1983. In 1988, the reactor was converted to low enriched uranium. The low power output of the reactor and ergonomic facility design make it an ideal tool for undergraduate nuclear engineering education and other training.« less
Disposition of fuel elements from the Aberdeen and Sandia pulse reactor (SPR-II) assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mckerley, Bill; Bustamante, Jacqueline M; Costa, David A
2010-01-01
We describe the disposition of fuel from the Aberdeen (APR) and the Sandia Pulse Reactors (SPR-II) which were used to provide intense neutron bursts for radiation effects testing. The enriched Uranium - 10% Molybdenum fuel from these reactors was shipped to the Los Alamos National Laboratory (LANL) for size reduction prior to shipment to the Savannah River Site (SRS) for final disposition in the H Canyon facility. The Shipper/Receiver Agreements (SRA), intra-DOE interfaces, criticality safety evaluations, safety and quality requirements and key materials management issues required for the successful completion of this project will be presented. This work is inmore » support of the DOE Consolidation and Disposition program. Sandia National Laboratories (SNL) has operated pulse nuclear reactor research facilities for the Department of Energy since 1961. The Sandia Pulse Reactor (SPR-II) was a bare metal Godiva-type reactor. The reactor facilities have been used for research and development of nuclear and non-nuclear weapon systems, advanced nuclear reactors, reactor safety, simulation sources and energy related programs. The SPR-II was a fast burst reactor, designed and constructed by SNL that became operational in 1967. The SPR-ll core was a solid-metal fuel enriched to 93% {sup 235}U. The uranium was alloyed with 10 weight percent molybdenum to ensure the phase stabilization of the fuel. The core consisted of six fuel plates divided into two assemblies of three plates each. Figure 1 shows a cutaway diagram of the SPR-II Reactor with its decoupling shroud. NNSA charged Sandia with removing its category 1 and 2 special nuclear material by the end of 2008. The main impetus for this activity was based on NNSA Administrator Tom D'Agostino's six focus areas to reenergize NNSA's nuclear material consolidation and disposition efforts. For example, the removal of SPR-II from SNL to DAF was part of this undertaking. This project was in support of NNSA's efforts to consolidate the locations of special nuclear material (SNM) to reduce the cost of securing many SNM facilities. The removal of SPR-II from SNL was a significant accomplishment in SNL's de-inventory efforts and played a key role in reducing the number of locations requiring the expensive security measures required for category 1 and 2 SNM facilities. A similar pulse reactor was fabricated at the Y-12 National Security Complex beginning in the late 1960's. This Aberdeen Pulse Reactor (APR) was operated at the Army Pulse Radiation Facility (APRF) located at the Aberdeen Test Center (ATC) in Maryland. When the APRF was shut down in 2003, a portion of the DOE-owned Special Nuclear Material (SNM) was shipped to an interim facility for storage. Subsequently, the DOE determined that the material from both the SPR-II and the APR would be processed in the H-Canyon at the Savannah River Site (SRS). Because of the SRS receipt requirements some of the material was sent to the Los Alamos National Laboratory (LANL) for size-reduction prior to shipment to the SRS for final disposition.« less
Integrated Decision-Making Tool to Develop Spent Fuel Strategies for Research Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beatty, Randy L; Harrison, Thomas J
IAEA Member States operating or having previously operated a Research Reactor are responsible for the safe and sustainable management and disposal of associated radioactive waste, including research reactor spent nuclear fuel (RRSNF). This includes the safe disposal of RRSNF or the corresponding equivalent waste returned after spent fuel reprocessing. One key challenge to developing general recommendations lies in the diversity of spent fuel types, locations and national/regional circumstances rather than mass or volume alone. This is especially true given that RRSNF inventories are relatively small, and research reactors are rarely operated at a high power level or duration typical ofmore » commercial power plants. Presently, many countries lack an effective long-term policy for managing RRSNF. This paper presents results of the International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) #T33001 on Options and Technologies for Managing the Back End of the Research Reactor Nuclear Fuel Cycle which includes an Integrated Decision Making Tool called BRIDE (Back-end Research reactor Integrated Decision Evaluation). This is a multi-attribute decision-making tool that combines the Total Estimated Cost of each life-cycle scenario with Non-economic factors such as public acceptance, technical maturity etc and ranks optional back-end scenarios specific to member states situations in order to develop a specific member state strategic plan with a preferred or recommended option for managing spent fuel from Research Reactors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humbird, David; Sitaraman, Hariswaran; Stickel, Jonathan
If advanced biofuels are to measurably displace fossil fuels in the near term, they will have to operate at levels of scale, efficiency, and margin unprecedented in the current biotech industry. For aerobically-grown products in particular, scale-up is complex and the practical size, cost, and operability of extremely large reactors is not well understood. Put simply, the problem of how to attain fuel-class production scales comes down to cost-effective delivery of oxygen at high mass transfer rates and low capital and operating costs. To that end, very large reactor vessels (>500 m3) are proposed in order to achieve favorable economiesmore » of scale. Additionally, techno-economic evaluation indicates that bubble-column reactors are more cost-effective than stirred-tank reactors in many low-viscosity cultures. In order to advance the design of extremely large aerobic bioreactors, we have performed computational fluid dynamics (CFD) simulations of bubble-column reactors. A multiphase Euler-Euler model is used to explicitly account for the spatial distribution of air (i.e., gas bubbles) in the reactor. Expanding on the existing bioreactor CFD literature (typically focused on the hydrodynamics of bubbly flows), our simulations include interphase mass transfer of oxygen and a simple phenomenological reaction representing the uptake and consumption of dissolved oxygen by submerged cells. The simulations reproduce the expected flow profiles, with net upward flow in the center of column and downward flow near the wall. At high simulated oxygen uptake rates (OUR), oxygen-depleted regions can be observed in the reactor. By increasing the gas flow to enhance mixing and eliminate depleted areas, a maximum oxygen transfer (OTR) rate is obtained as a function of superficial velocity. These insights regarding minimum superficial velocity and maximum reactor size are incorporated into NREL's larger techno-economic models to supplement standard reactor design equations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Ryan M.; Coble, Jamie B.; Hirt, Evelyn H.
2013-05-17
This report identifies a number of requirements for prognostics health management of passive systems in AdvSMRs, documents technical gaps in establishing a prototypical prognostic methodology for this purpose, and describes a preliminary research plan for addressing these technical gaps. AdvSMRs span multiple concepts; therefore a technology- and design-neutral approach is taken, with the focus being on characteristics that are likely to be common to all or several AdvSMR concepts. An evaluation of available literature is used to identify proposed concepts for AdvSMRs along with likely operational characteristics. Available operating experience of advanced reactors is used in identifying passive components thatmore » may be subject to degradation, materials likely to be used for these components, and potential modes of degradation of these components. This information helps in assessing measurement needs for PHM systems, as well as defining functional requirements of PHM systems. An assessment of current state-of-the-art approaches to measurements, sensors and instrumentation, diagnostics and prognostics is also documented. This state-of-the-art evaluation, combined with the requirements, may be used to identify technical gaps and research needs in the development, evaluation, and deployment of PHM systems for AdvSMRs. A preliminary research plan to address high-priority research needs for the deployment of PHM systems to AdvSMRs is described, with the objective being the demonstration of prototypic prognostics technology for passive components in AdvSMRs. Greater efficiency in achieving this objective can be gained through judicious selection of materials and degradation modes that are relevant to proposed AdvSMR concepts, and for which significant knowledge already exists. These selections were made based on multiple constraints including the analysis performed in this document, ready access to laboratory-scale facilities for materials testing and measurement, and potential synergies with other national laboratory and university partners.« less
A KINETIC MODEL FOR H2O2/UV PROCESS IN A COMPLETELY MIXED BATCH REACTOR. (R825370C076)
A dynamic kinetic model for the advanced oxidation process (AOP) using hydrogen peroxide and ultraviolet irradiation (H2O2/UV) in a completely mixed batch reactor (CMBR) is developed. The model includes the known elementary chemical and photochemical reac...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Logan, B.G.
A recently completed two-year study of a commercial tandem mirror reactor design (Mirror Advanced Reactor Study (MARS)) is briefly reviewed. The end plugs are designed for trapped particle stability, MHD ballooning, balanced geodesic curvature, and small radial electric fields in the central cell. New technologies such as lithium-lead blankets, 24T hybrid coils, gridless direct converters and plasma halo vacuum pumps are highlighted.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-30
..., Office of New Reactors, U.S. Nuclear Regulatory Commission, Washington DC, 20555- 0001; telephone: 301...) application for two units of Westinghouse Electric Company's AP1000 advanced pressurized water reactors to be... Bellefonte Nuclear Plant, Units 3 and 4 (BLN 3&4) COL application on January 28, 2008. On September 29, 2010...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-30
..., Maryland 20852. FOR FURTHER INFORMATION CONTACT: Anthony Minarik, Office of New Reactors, U.S. Nuclear... advanced pressurized water reactors to be constructed and operated at the Bellefonte site, located near the... 052000-15). The NRC docketed the Bellefonte Nuclear Plant, Units 3 and 4 (BLN 3&4) COL application on...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nester, Dean; Crocker, Ben; Smart, Bill
2012-07-01
As part of the Plateau Remediation Project at US Department of Energy's Hanford, Washington site, CH2M Hill Plateau Remediation Company (CHPRC) contracted with IMPACT Services, LLC to receive and deactivate approximately 28 cubic meters of sodium metal contaminated debris from two sodium-cooled research reactors (Enrico Fermi Unit 1 and the Fast Flux Test Facility) which had been stored at Hanford for over 25 years. CHPRC found an off-site team composed of IMPACT Services and Commodore Advanced Sciences, Inc., with the facilities and technological capabilities to safely and effectively perform deactivation of this sodium metal contaminated debris. IMPACT Services provided themore » licensed fixed facility and the logistical support required to receive, store, and manage the waste materials before treatment, and the characterization, manifesting, and return shipping of the cleaned material after treatment. They also provided a recycle outlet for the liquid sodium hydroxide byproduct resulting from removal of the sodium from reactor parts. Commodore Advanced Sciences, Inc. mobilized their patented AMANDA unit to the IMPACT Services site and operated the unit to perform the sodium removal process. Approximately 816 Kg of metallic sodium were removed and converted to sodium hydroxide, and the project was accomplished in 107 days, from receipt of the first shipment at the IMPACT Services facility to the last outgoing shipment of deactivated scrap metal. There were no safety incidents of any kind during the performance of this project. The AMANDA process has been demonstrated in this project to be both safe and effective for deactivation of sodium and NaK. It has also been used in other venues to treat other highly reactive alkali metals, such as lithium (Li), potassium (K), NaK and Cesium (Cs). (authors)« less
SUPERFUND TREATABILITY CLEARINGHOUSE ...
This newsletter reports on the Huber Technology Groups (HTG) high temperature advanced hazardous waste treatment technology capable of very high destruction and removal efficiencies of various hazardous wastes. This newsletter addresses the destruction of PCBs in an EPA certification test of the HTG Advanced Electric Reactor. provide information
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanderhaegen, M.; Laboratory of Waves and Acoustic, Institut Langevin, ESPCI ParisTech, 10 rue Vauquelin, 75005 Paris; Paumel, K.
2011-07-01
In support of the French ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration) reactor program, which aims to demonstrate the industrial applicability of sodium fast reactors with an increased level of safety demonstration and availability compared to the past French sodium fast reactors, emphasis is placed on reactor instrumentation. It is in this framework that CEA studies continuous core monitoring to detect as early as possible the onset of sodium boiling. Such a detection system is of particular interest due to the rapid progress and the consequences of a Total Instantaneous Blockage (TIB) at a subassembly inlet, where sodium boilingmore » intervenes in an early phase. In this paper, the authors describe all the particularities which intervene during the different boiling stages and explore possibilities for their detection. (authors)« less
CHAP-2 heat-transfer analysis of the Fort St. Vrain reactor core
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotas, J.F.; Stroh, K.R.
1983-01-01
The Los Alamos National Laboratory is developing the Composite High-Temperature Gas-Cooled Reactor Analysis Program (CHAP) to provide advanced best-estimate predictions of postulated accidents in gas-cooled reactor plants. The CHAP-2 reactor-core model uses the finite-element method to initialize a two-dimensional temperature map of the Fort St. Vrain (FSV) core and its top and bottom reflectors. The code generates a finite-element mesh, initializes noding and boundary conditions, and solves the nonlinear Laplace heat equation using temperature-dependent thermal conductivities, variable coolant-channel-convection heat-transfer coefficients, and specified internal fuel and moderator heat-generation rates. This paper discusses this method and analyzes an FSV reactor-core accident thatmore » simulates a control-rod withdrawal at full power.« less
Structural materials issues for the next generation fission reactors
NASA Astrophysics Data System (ADS)
Chant, I.; Murty, K. L.
2010-09-01
Generation-IV reactor design concepts envisioned thus far cater to a common goal of providing safer, longer lasting, proliferation-resistant, and economically viable nuclear power plants. The foremost consideration in the successful development and deployment of Gen-W reactor systems is the performance and reliability issues involving structural materials for both in-core and out-of-core applications. The structural materials need to endure much higher temperatures, higher neutron doses, and extremely corrosive environments, which are beyond the experience of the current nuclear power plants. Materials under active consideration for use in different reactor components include various ferritic/martensitic steels, austenitic stainless steels, nickel-base superalloys, ceramics, composites, etc. This article addresses the material requirements for these advanced fission reactor types, specifically addressing structural materials issues depending on the specific application areas.
Development of Cross Section Library and Application Programming Interface (API)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, C. H.; Marin-Lafleche, A.; Smith, M. A.
2014-04-09
The goal of NEAMS neutronics is to develop a high-fidelity deterministic neutron transport code termed PROTEUS for use on all reactor types of interest, but focused primarily on sodium-cooled fast reactors. While PROTEUS-SN has demonstrated good accuracy for homogeneous fast reactor problems and partially heterogeneous fast reactor problems, the simulation results were not satisfactory when applied on fully heterogeneous thermal problems like the Advanced Test Reactor (ATR). This is mainly attributed to the quality of cross section data for heterogeneous geometries since the conventional cross section generation approach does not work accurately for such irregular and complex geometries. Therefore, onemore » of the NEAMS neutronics tasks since FY12 has been the development of a procedure to generate appropriate cross sections for a heterogeneous geometry core.« less
The ENABLER - Based on proven NERVA technology
NASA Astrophysics Data System (ADS)
Livingston, Julie M.; Pierce, Bill L.
The ENABLER reactor for use in a nuclear thermal propulsion engine uses the technology developed in the NERVA/Rover program, updated to incorporate advances in the technology. Using composite fuel, higher power densities per fuel element, improved radiation resistant control components and the advancements in use of carbon-carbon materials; the ENABLER can provide a specific impulse of 925 seconds, an engine thrust to weight (excluding reactor shield) approaching five, an improved initial mass in low Earth orbit and a consequent reduction in launch costs and logistics problems. This paper describes the 75,000 lbs thrust ENABLER design which is a low cost, low risk approach to meeting tommorrow's space propulsion needs.
A Practical Approach to Starting Fission Surface Power Development
NASA Technical Reports Server (NTRS)
Mason, Lee S.
2006-01-01
The Prometheus Power and Propulsion Program has been reformulated to address NASA needs relative to lunar and Mars exploration. Emphasis has switched from the Jupiter Icy Moons Orbiter (JIMO) flight system development to more generalized technology development addressing Fission Surface Power (FSP) and Nuclear Thermal Propulsion (NTP). Current NASA budget priorities and the deferred mission need date for nuclear systems prohibit a fully funded reactor Flight Development Program. However, a modestly funded Advanced Technology Program can and should be conducted to reduce the risk and cost of future flight systems. A potential roadmap for FSP technology development leading to possible flight applications could include three elements: 1) Conceptual Design Studies, 2) Advanced Component Technology, and 3) Non-Nuclear System Testing. The Conceptual Design Studies would expand on recent NASA and DOE analyses while increasing the depth of study in areas of greatest uncertainty such as reactor integration and human-rated shielding. The Advanced Component Technology element would address the major technology risks through development and testing of reactor fuels, structural materials, primary loop components, shielding, power conversion, heat rejection, and power management and distribution (PMAD). The Non-Nuclear System Testing would provide a modular, technology testbed to investigate and resolve system integration issues.
ASME Material Challenges for Advanced Reactor Concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piyush Sabharwall; Ali Siahpush
2013-07-01
This study presents the material Challenges associated with Advanced Reactor Concept (ARC) such as the Advanced High Temperature Reactor (AHTR). ACR are the next generation concepts focusing on power production and providing thermal energy for industrial applications. The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The heat exchanger required for AHTR is subjected to a unique set of conditions that bring with them several design challenges not encountered in standard heat exchangers. The corrosive molten salts, especially at highermore » temperatures, require materials throughout the system to avoid corrosion, and adverse high-temperature effects such as creep. Given the very high steam generator pressure of the supercritical steam cycle, it is anticipated that water tube and molten salt shell steam generators heat exchanger will be used. In this paper, the ASME Section III and the American Society of Mechanical Engineers (ASME) Section VIII requirements (acceptance criteria) are discussed. Also, the ASME material acceptance criteria (ASME Section II, Part D) for high temperature environment are presented. Finally, lack of ASME acceptance criteria for thermal design and analysis are discussed.« less
Infrastructure development for radioactive materials at the NSLS-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sprouster, D. J.; Weidner, R.; Ghose, S. K.
2018-02-01
The X-ray Powder Diffraction (XPD) Beamline at the National Synchrotron Light Source-II is a multipurpose instrument designed for high-resolution, high-energy X-ray scattering techniques. In this article, the capabilities, opportunities and recent developments in the characterization of radioactive materials at XPD are described. The overarching goal of this work is to provide researchers access to advanced synchrotron techniques suited to the structural characterization of materials for advanced nuclear energy systems. XPD is a new beamline providing high photon flux for X-ray Diffraction, Pair Distribution Function analysis and Small Angle X-ray Scattering. The infrastructure and software described here extend the existing capabilitiesmore » at XPD to accommodate radioactive materials. Such techniques will contribute crucial information to the characterization and quantification of advanced materials for nuclear energy applications. We describe the automated radioactive sample collection capabilities and recent X-ray Diffraction and Small Angle X-ray Scattering results from neutron irradiated reactor pressure vessel steels and oxide dispersion strengthened steels.« less