Science.gov

Sample records for advanced research tokamak

  1. DIII-D Advanced Tokamak Research Overview

    SciTech Connect

    V.S. Chan; C.M. Greenfield; L.L. Lao; T.C. Luce; C.C. Petty; G.M. Staebler

    1999-12-01

    This paper reviews recent progress in the development of long-pulse, high performance discharges on the DIII-D tokamak. It is highlighted by a discharge achieving simultaneously {beta}{sub N}H of 9, bootstrap current fraction of 0.5, noninductive current fraction of 0.75, and sustained for 16 energy confinement times. The physics challenge has changed in the long-pulse regime. Non-ideal MHD modes are limiting the stability, fast ion driven modes may play a role in fast ion transport which limits the stored energy and plasma edge behavior can affect the global performance. New control tools are being developed to address these issues.

  2. Development of frequency modulation reflectometer for Korea Superconducting Tokamak Advanced Research tokamak

    NASA Astrophysics Data System (ADS)

    Seo, Seong-Heon; Park, Jinhyung; Wi, H. M.; Lee, W. R.; Kim, H. S.; Lee, T. G.; Kim, Y. S.; Kang, Jin-Seob; Bog, M. G.; Yokota, Y.; Mase, A.

    2013-08-01

    Frequency modulation reflectometer has been developed to measure the plasma density profile of the Korea Superconducting Tokamak Advanced Research tokamak. Three reflectometers are operating in extraordinary polarization mode in the frequency range of Q band (33.6-54 GHz), V band (48-72 GHz), and W band (72-108 GHz) to measure the density up to 7 × 1019 m-3 when the toroidal magnetic field is 2 T on axis. The antenna is installed inside of the vacuum vessel. A new vacuum window is developed by using 50 μm thick mica film and 0.1 mm thick gold gasket. The filter bank of low pass filter, notch filter, and Faraday isolator is used to reject the electron cyclotron heating high power at attenuation of 60 dB. The full frequency band is swept in 20 μs. The mixer output is directly digitized with sampling rate of 100 MSamples/s. The phase is obtained by using wavelet transform. The whole hardware and software system is described in detail and the measured density profile is presented as a result.

  3. Development of frequency modulation reflectometer for Korea Superconducting Tokamak Advanced Research tokamak

    SciTech Connect

    Seo, Seong-Heon; Wi, H. M.; Lee, W. R.; Kim, H. S.; Lee, T. G.; Kim, Y. S.; Park, Jinhyung; Kang, Jin-Seob; Bog, M. G.; Yokota, Y.; Mase, A.

    2013-08-15

    Frequency modulation reflectometer has been developed to measure the plasma density profile of the Korea Superconducting Tokamak Advanced Research tokamak. Three reflectometers are operating in extraordinary polarization mode in the frequency range of Q band (33.6–54 GHz), V band (48–72 GHz), and W band (72–108 GHz) to measure the density up to 7 × 10{sup 19} m{sup −3} when the toroidal magnetic field is 2 T on axis. The antenna is installed inside of the vacuum vessel. A new vacuum window is developed by using 50 μm thick mica film and 0.1 mm thick gold gasket. The filter bank of low pass filter, notch filter, and Faraday isolator is used to reject the electron cyclotron heating high power at attenuation of 60 dB. The full frequency band is swept in 20 μs. The mixer output is directly digitized with sampling rate of 100 MSamples/s. The phase is obtained by using wavelet transform. The whole hardware and software system is described in detail and the measured density profile is presented as a result.

  4. Probe diagnostics in the far scrape-off layer plasma of Korea Superconducting Tokamak Advanced Research tokamak using a sideband harmonic method

    SciTech Connect

    Kim, Dong-Hwan; Hong, Suk-Ho; Park, Il-Seo; Lee, Hyo-Chang; Kang, Hyun-Ju; Chung, Chin-Wook

    2015-12-15

    Plasma characteristics in the far scrape-off layer region of tokamak play a crucial role in the stable plasma operation and its sustainability. Due to the huge facility, electrical diagnostic systems to measure plasma properties have extremely long cable length resulting in large stray current. To overcome this problem, a sideband harmonic method was applied to the Korea Superconducting Tokamak Advanced Research tokamak plasma. The sideband method allows the measurement of the electron temperature and the plasma density without the effect of the stray current. The measured plasma densities are compared with those from the interferometer, and the results show reliability of the method.

  5. Probe diagnostics in the far scrape-off layer plasma of Korea Superconducting Tokamak Advanced Research tokamak using a sideband harmonic method

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Hwan; Hong, Suk-Ho; Park, Il-Seo; Lee, Hyo-Chang; Kang, Hyun-Ju; Chung, Chin-Wook

    2015-12-01

    Plasma characteristics in the far scrape-off layer region of tokamak play a crucial role in the stable plasma operation and its sustainability. Due to the huge facility, electrical diagnostic systems to measure plasma properties have extremely long cable length resulting in large stray current. To overcome this problem, a sideband harmonic method was applied to the Korea Superconducting Tokamak Advanced Research tokamak plasma. The sideband method allows the measurement of the electron temperature and the plasma density without the effect of the stray current. The measured plasma densities are compared with those from the interferometer, and the results show reliability of the method.

  6. Probe diagnostics in the far scrape-off layer plasma of Korea Superconducting Tokamak Advanced Research tokamak using a sideband harmonic method.

    PubMed

    Kim, Dong-Hwan; Hong, Suk-Ho; Park, Il-Seo; Lee, Hyo-Chang; Kang, Hyun-Ju; Chung, Chin-Wook

    2015-12-01

    Plasma characteristics in the far scrape-off layer region of tokamak play a crucial role in the stable plasma operation and its sustainability. Due to the huge facility, electrical diagnostic systems to measure plasma properties have extremely long cable length resulting in large stray current. To overcome this problem, a sideband harmonic method was applied to the Korea Superconducting Tokamak Advanced Research tokamak plasma. The sideband method allows the measurement of the electron temperature and the plasma density without the effect of the stray current. The measured plasma densities are compared with those from the interferometer, and the results show reliability of the method.

  7. Probe diagnostics in the far scrape-off layer plasma of Korea Superconducting Tokamak Advanced Research tokamak using a sideband harmonic method.

    PubMed

    Kim, Dong-Hwan; Hong, Suk-Ho; Park, Il-Seo; Lee, Hyo-Chang; Kang, Hyun-Ju; Chung, Chin-Wook

    2015-12-01

    Plasma characteristics in the far scrape-off layer region of tokamak play a crucial role in the stable plasma operation and its sustainability. Due to the huge facility, electrical diagnostic systems to measure plasma properties have extremely long cable length resulting in large stray current. To overcome this problem, a sideband harmonic method was applied to the Korea Superconducting Tokamak Advanced Research tokamak plasma. The sideband method allows the measurement of the electron temperature and the plasma density without the effect of the stray current. The measured plasma densities are compared with those from the interferometer, and the results show reliability of the method. PMID:26724028

  8. Advanced commercial tokamak study

    SciTech Connect

    Thomson, S.L.; Dabiri, A.E.; Keeton, D.C.; Brown, T.G.; Bussell, G.T.

    1985-12-01

    Advanced commercial tokamak studies were performed by the Fusion Engineering Design Center (FEDC) as a participant in the Tokamak Power Systems Studies (TPSS) project coordinated by the Office of Fusion Energy. The FEDC studies addressed the issues of tokamak reactor cost, size, and complexity. A scoping study model was developed to determine the effect of beta on tokamak economics, and it was found that a competitive cost of electricity could be achieved at a beta of 10 to 15%. The implications of operating at a beta of up to 25% were also addressed. It was found that the economics of fusion, like those of fission, improve as unit size increases. However, small units were found to be competitive as elements of a multiplex plant, provided that unit cost and maintenance time reductions are realized for the small units. The modular tokamak configuration combined several new approaches to develop a less complex and lower cost reactor. The modular design combines the toroidal field coil with the reactor structure, locates the primary vacuum boundary at the reactor cell wall, and uses a vertical assembly and maintenance approach. 12 refs., 19 figs.

  9. Optical system design for the charge exchange spectroscopy of the Korea superconducting tokamak advanced research device

    NASA Astrophysics Data System (ADS)

    Oh, Seungtae; Ko, Won-Ha

    2011-04-01

    The collective optical design is described for the charge exchange spectroscopy (CES) of the Korea superconducting tokamak advanced research (KSTAR) device. The CES diagnostic measures the ion temperature of carbon and other impurities, in conjunction with the neutral heating beam in KSTAR. The visible light from the plasma is concentrated via collection optics and imaged onto quartz fibers. The collection optics in the system is the key component for the CES system. The final design is derived through four steps and its performance is examined in a simulation step. In this paper, the design details of the collective optical system for the KSTAR CES are discussed.

  10. Analysis of line integrated electron density using plasma position data on Korea Superconducting Tokamak Advanced Research

    SciTech Connect

    Nam, Y. U.; Chung, J.

    2010-10-15

    A 280 GHz single-channel horizontal millimeter-wave interferometer system has been installed for plasma electron density measurements on the Korea Superconducting Tokamak Advanced Research (KSTAR) device. This system has a triangular beam path that does not pass through the plasma axis due to geometrical constraints in the superconducting tokamak. The term line density on KSTAR has a different meaning from the line density of other tokamaks. To estimate the peak density and the mean density from the measured line density, information on the position of the plasma is needed. The information has been calculated from tangentially viewed visible images using the toroidal symmetry of the plasma. Interface definition language routines have been developed for this purpose. The calculated plasma position data correspond well to calculation results from magnetic analysis. With the position data and an estimated plasma profile, the peak density and the mean density have been obtained from the line density. From these results, changes of plasma density themselves can be separated from effects of the plasma movements, so they can give valuable information on the plasma status.

  11. Combined hydrogen and lithium beam emission spectroscopy observation system for Korea Superconducting Tokamak Advanced Research.

    PubMed

    Lampert, M; Anda, G; Czopf, A; Erdei, G; Guszejnov, D; Kovácsik, Á; Pokol, G I; Réfy, D; Nam, Y U; Zoletnik, S

    2015-07-01

    A novel beam emission spectroscopy observation system was designed, built, and installed onto the Korea Superconducting Tokamak Advanced Research tokamak. The system is designed in a way to be capable of measuring beam emission either from a heating deuterium or from a diagnostic lithium beam. The two beams have somewhat complementary capabilities: edge density profile and turbulence measurement with the lithium beam and two dimensional turbulence measurement with the heating beam. Two detectors can be used in parallel: a CMOS camera provides overview of the scene and lithium beam light intensity distribution at maximum few hundred Hz frame rate, while a 4 × 16 pixel avalanche photo-diode (APD) camera gives 500 kHz bandwidth data from a 4 cm × 16 cm region. The optics use direct imaging through lenses and mirrors from the observation window to the detectors, thus avoid the use of costly and inflexible fiber guides. Remotely controlled mechanisms allow adjustment of the APD camera's measurement location on a shot-to-shot basis, while temperature stabilized filter holders provide selection of either the Doppler shifted deuterium alpha or lithium resonance line. The capabilities of the system are illustrated by measurements of basic plasma turbulence properties. PMID:26233377

  12. Combined hydrogen and lithium beam emission spectroscopy observation system for Korea Superconducting Tokamak Advanced Research

    NASA Astrophysics Data System (ADS)

    Lampert, M.; Anda, G.; Czopf, A.; Erdei, G.; Guszejnov, D.; Kovácsik, Á.; Pokol, G. I.; Réfy, D.; Nam, Y. U.; Zoletnik, S.

    2015-07-01

    A novel beam emission spectroscopy observation system was designed, built, and installed onto the Korea Superconducting Tokamak Advanced Research tokamak. The system is designed in a way to be capable of measuring beam emission either from a heating deuterium or from a diagnostic lithium beam. The two beams have somewhat complementary capabilities: edge density profile and turbulence measurement with the lithium beam and two dimensional turbulence measurement with the heating beam. Two detectors can be used in parallel: a CMOS camera provides overview of the scene and lithium beam light intensity distribution at maximum few hundred Hz frame rate, while a 4 × 16 pixel avalanche photo-diode (APD) camera gives 500 kHz bandwidth data from a 4 cm × 16 cm region. The optics use direct imaging through lenses and mirrors from the observation window to the detectors, thus avoid the use of costly and inflexible fiber guides. Remotely controlled mechanisms allow adjustment of the APD camera's measurement location on a shot-to-shot basis, while temperature stabilized filter holders provide selection of either the Doppler shifted deuterium alpha or lithium resonance line. The capabilities of the system are illustrated by measurements of basic plasma turbulence properties.

  13. Combined hydrogen and lithium beam emission spectroscopy observation system for Korea Superconducting Tokamak Advanced Research

    SciTech Connect

    Lampert, M.; Anda, G.; Réfy, D.; Zoletnik, S.; Czopf, A.; Erdei, G.; Guszejnov, D.; Kovácsik, Á.; Pokol, G. I.; Nam, Y. U.

    2015-07-15

    A novel beam emission spectroscopy observation system was designed, built, and installed onto the Korea Superconducting Tokamak Advanced Research tokamak. The system is designed in a way to be capable of measuring beam emission either from a heating deuterium or from a diagnostic lithium beam. The two beams have somewhat complementary capabilities: edge density profile and turbulence measurement with the lithium beam and two dimensional turbulence measurement with the heating beam. Two detectors can be used in parallel: a CMOS camera provides overview of the scene and lithium beam light intensity distribution at maximum few hundred Hz frame rate, while a 4 × 16 pixel avalanche photo-diode (APD) camera gives 500 kHz bandwidth data from a 4 cm × 16 cm region. The optics use direct imaging through lenses and mirrors from the observation window to the detectors, thus avoid the use of costly and inflexible fiber guides. Remotely controlled mechanisms allow adjustment of the APD camera’s measurement location on a shot-to-shot basis, while temperature stabilized filter holders provide selection of either the Doppler shifted deuterium alpha or lithium resonance line. The capabilities of the system are illustrated by measurements of basic plasma turbulence properties.

  14. Combined hydrogen and lithium beam emission spectroscopy observation system for Korea Superconducting Tokamak Advanced Research.

    PubMed

    Lampert, M; Anda, G; Czopf, A; Erdei, G; Guszejnov, D; Kovácsik, Á; Pokol, G I; Réfy, D; Nam, Y U; Zoletnik, S

    2015-07-01

    A novel beam emission spectroscopy observation system was designed, built, and installed onto the Korea Superconducting Tokamak Advanced Research tokamak. The system is designed in a way to be capable of measuring beam emission either from a heating deuterium or from a diagnostic lithium beam. The two beams have somewhat complementary capabilities: edge density profile and turbulence measurement with the lithium beam and two dimensional turbulence measurement with the heating beam. Two detectors can be used in parallel: a CMOS camera provides overview of the scene and lithium beam light intensity distribution at maximum few hundred Hz frame rate, while a 4 × 16 pixel avalanche photo-diode (APD) camera gives 500 kHz bandwidth data from a 4 cm × 16 cm region. The optics use direct imaging through lenses and mirrors from the observation window to the detectors, thus avoid the use of costly and inflexible fiber guides. Remotely controlled mechanisms allow adjustment of the APD camera's measurement location on a shot-to-shot basis, while temperature stabilized filter holders provide selection of either the Doppler shifted deuterium alpha or lithium resonance line. The capabilities of the system are illustrated by measurements of basic plasma turbulence properties.

  15. Investigation of relativistic runaway electrons in electron cyclotron resonance heating discharges on Korea Superconducting Tokamak Advanced Research

    SciTech Connect

    Kang, C. S.; Lee, S. G.

    2014-07-15

    The behavior of relativistic runaway electrons during Electron Cyclotron Resonance Heating (ECRH) discharges is investigated in the Korea Superconducting Tokamak Advanced Research device. The effect of the ECRH on the runaway electron population is discussed. Observations on the generation of superthermal electrons during ECRH will be reported, which will be shown to be consistent with existing theory for the development of a superthermal electron avalanche during ECRH [A. Lazaros, Phys. Plasmas 8, 1263 (2001)].

  16. First results on disruption mitigation by massive gas injection in Korea Superconducting Tokamak Advanced Research

    SciTech Connect

    Yu Yaowei; Kim, Young-Ok; Kim, Hak-Kun; Kim, Hong-Tack; Kim, Woong-Chae; Kim, Kwang-Pyo; Son, Soo-Hyun; Bang, Eun-Nam; Hong, Suk-Ho; Yoon, Si-Woo; Zhuang Huidong; Chen Zhongyong

    2012-12-15

    Massive gas injection (MGI) system was developed on Korea Superconducting Tokamak Advanced Research (KSTAR) in 2011 campaign for disruption studies. The MGI valve has a volume of 80 ml and maximum injection pressure of 50 bar, the diameter of valve orifice to vacuum vessel is 18.4 mm, the distance between MGI valve and plasma edge is {approx}3.4 m. The MGI power supply employs a large capacitor of 1 mF with the maximum voltage of 3 kV, the valve can be opened in less than 0.1 ms, and the amount of MGI can be controlled by the imposed voltage. During KSTAR 2011 campaign, MGI disruptions are carried out by triggering MGI during the flat top of circular and limiter discharges with plasma current 400 kA and magnetic field 2-3.5 T, deuterium injection pressure 39.7 bar, and imposed voltage 1.1-1.4 kV. The results show that MGI could mitigate the heat load and prevent runaway electrons with proper MGI amount, and MGI penetration is deeper under higher amount of MGI or lower magnetic field. However, plasma start-up is difficult after some of D{sub 2} MGI disruptions due to the high deuterium retention and consequently strong outgassing of deuterium in next shot, special effort should be made to get successful plasma start-up after deuterium MGI under the graphite first wall.

  17. First results on disruption mitigation by massive gas injection in Korea Superconducting Tokamak Advanced Research

    NASA Astrophysics Data System (ADS)

    Yu, Yaowei; Kim, Young-Ok; Kim, Hak-Kun; Kim, Hong-Tack; Kim, Woong-Chae; Kim, Kwang-Pyo; Son, Soo-Hyun; Bang, Eun-Nam; Zhuang, Huidong; Chen, Zhongyong; Hong, Suk-Ho; Yoon, Si-Woo

    2012-12-01

    Massive gas injection (MGI) system was developed on Korea Superconducting Tokamak Advanced Research (KSTAR) in 2011 campaign for disruption studies. The MGI valve has a volume of 80 ml and maximum injection pressure of 50 bar, the diameter of valve orifice to vacuum vessel is 18.4 mm, the distance between MGI valve and plasma edge is ˜3.4 m. The MGI power supply employs a large capacitor of 1 mF with the maximum voltage of 3 kV, the valve can be opened in less than 0.1 ms, and the amount of MGI can be controlled by the imposed voltage. During KSTAR 2011 campaign, MGI disruptions are carried out by triggering MGI during the flat top of circular and limiter discharges with plasma current 400 kA and magnetic field 2-3.5 T, deuterium injection pressure 39.7 bar, and imposed voltage 1.1-1.4 kV. The results show that MGI could mitigate the heat load and prevent runaway electrons with proper MGI amount, and MGI penetration is deeper under higher amount of MGI or lower magnetic field. However, plasma start-up is difficult after some of D2 MGI disruptions due to the high deuterium retention and consequently strong outgassing of deuterium in next shot, special effort should be made to get successful plasma start-up after deuterium MGI under the graphite first wall.

  18. First results on disruption mitigation by massive gas injection in Korea Superconducting Tokamak Advanced Research.

    PubMed

    Yu, Yaowei; Kim, Young-Ok; Kim, Hak-Kun; Kim, Hong-Tack; Kim, Woong-Chae; Kim, Kwang-Pyo; Son, Soo-Hyun; Bang, Eun-Nam; Zhuang, Huidong; Chen, Zhongyong; Hong, Suk-Ho; Yoon, Si-Woo

    2012-12-01

    Massive gas injection (MGI) system was developed on Korea Superconducting Tokamak Advanced Research (KSTAR) in 2011 campaign for disruption studies. The MGI valve has a volume of 80 ml and maximum injection pressure of 50 bar, the diameter of valve orifice to vacuum vessel is 18.4 mm, the distance between MGI valve and plasma edge is ~3.4 m. The MGI power supply employs a large capacitor of 1 mF with the maximum voltage of 3 kV, the valve can be opened in less than 0.1 ms, and the amount of MGI can be controlled by the imposed voltage. During KSTAR 2011 campaign, MGI disruptions are carried out by triggering MGI during the flat top of circular and limiter discharges with plasma current 400 kA and magnetic field 2-3.5 T, deuterium injection pressure 39.7 bar, and imposed voltage 1.1-1.4 kV. The results show that MGI could mitigate the heat load and prevent runaway electrons with proper MGI amount, and MGI penetration is deeper under higher amount of MGI or lower magnetic field. However, plasma start-up is difficult after some of D(2) MGI disruptions due to the high deuterium retention and consequently strong outgassing of deuterium in next shot, special effort should be made to get successful plasma start-up after deuterium MGI under the graphite first wall.

  19. Edge localized mode characteristics during edge localized mode mitigation by supersonic molecular beam injection in Korea Superconducting Tokamak Advanced Research

    NASA Astrophysics Data System (ADS)

    Lee, H. Y.; Hahn, S. H.; Ghim, Y.-C.; Bak, J. G.; Lee, J. H.; Ko, W. H.; Lee, K. D.; Lee, S. H.; Lee, H. H.; Juhn, J.-W.; Kim, H. S.; Yoon, S. W.; Han, H.; Hong, J. H.; Jang, J. H.; Park, J. S.; Choe, Wonho

    2015-12-01

    It has been reported that supersonic molecular beam injection (SMBI) is an effective means of edge localized mode (ELM) mitigation. This paper newly reports the changes in the ELM, plasma profiles, and fluctuation characteristics during ELM mitigation by SMBI in Korea Superconducting Tokamak Advanced Research. During the mitigated ELM phase, the ELM frequency increased by a factor of 2-3 and the ELM size, which was estimated from the Dα amplitude, the fractional changes in the plasma-stored energy and the line-averaged electron density, and divertor heat flux during an ELM burst, decreased by a factor of 0.34-0.43. Reductions in the electron and ion temperatures rather than in the electron density were observed during the mitigated ELM phase. In the natural ELM phase, frequency chirping of the plasma fluctuations was observed before the ELM bursts; however, the ELM bursts occurred without changes in the plasma fluctuation frequency in the mitigated ELM phase.

  20. Design of a collective scattering system for small scale turbulence study in Korea Superconducting Tokamak Advanced Research

    NASA Astrophysics Data System (ADS)

    Lee, W.; Park, H. K.; Lee, D. J.; Nam, Y. U.; Leem, J.; Kim, T. K.

    2016-04-01

    The design characteristics of a multi-channel collective (or coherent) scattering system for small scale turbulence study in Korea Superconducting Tokamak Advanced Research (KSTAR), which is planned to be installed in 2017, are given in this paper. A few critical issues are discussed in depth such as the Faraday and Cotton-Mouton effects on the beam polarization, radial spatial resolution, probe beam frequency, polarization, and power. A proper and feasible optics with the 300 GHz probe beam, which was designed based on these issues, provides a simultaneous measurement of electron density fluctuations at four discrete poloidal wavenumbers up to 24 cm-1. The upper limit corresponds to the normalized wavenumber kθρe of ˜0.15 in nominal KSTAR plasmas. To detect the scattered beam power and extract phase information, a quadrature detection system consisting of four-channel antenna/detector array and electronics will be employed.

  1. Design of a collective scattering system for small scale turbulence study in Korea Superconducting Tokamak Advanced Research.

    PubMed

    Lee, W; Park, H K; Lee, D J; Nam, Y U; Leem, J; Kim, T K

    2016-04-01

    The design characteristics of a multi-channel collective (or coherent) scattering system for small scale turbulence study in Korea Superconducting Tokamak Advanced Research (KSTAR), which is planned to be installed in 2017, are given in this paper. A few critical issues are discussed in depth such as the Faraday and Cotton-Mouton effects on the beam polarization, radial spatial resolution, probe beam frequency, polarization, and power. A proper and feasible optics with the 300 GHz probe beam, which was designed based on these issues, provides a simultaneous measurement of electron density fluctuations at four discrete poloidal wavenumbers up to 24 cm(-1). The upper limit corresponds to the normalized wavenumber kθρe of ∼0.15 in nominal KSTAR plasmas. To detect the scattered beam power and extract phase information, a quadrature detection system consisting of four-channel antenna/detector array and electronics will be employed.

  2. ADX - Advanced Divertor and RF Tokamak Experiment

    NASA Astrophysics Data System (ADS)

    Greenwald, Martin; Labombard, Brian; Bonoli, Paul; Irby, Jim; Terry, Jim; Wallace, Greg; Vieira, Rui; Whyte, Dennis; Wolfe, Steve; Wukitch, Steve; Marmar, Earl

    2015-11-01

    The Advanced Divertor and RF Tokamak Experiment (ADX) is a design concept for a compact high-field tokamak that would address boundary plasma and plasma-material interaction physics challenges whose solution is critical for the viability of magnetic fusion energy. This device would have two crucial missions. First, it would serve as a Divertor Test Tokamak, developing divertor geometries, materials and operational scenarios that could meet the stringent requirements imposed in a fusion power plant. By operating at high field, ADX would address this problem at a level of power loading and other plasma conditions that are essentially identical to those expected in a future reactor. Secondly, ADX would investigate the physics and engineering of high-field-side launch of RF waves for current drive and heating. Efficient current drive is an essential element for achieving steady-state in a practical, power producing fusion device and high-field launch offers the prospect of higher efficiency, better control of the current profile and survivability of the launching structures. ADX would carry out this research in integrated scenarios that simultaneously demonstrate the required boundary regimes consistent with efficient current drive and core performance.

  3. Edge localized mode characteristics during edge localized mode mitigation by supersonic molecular beam injection in Korea Superconducting Tokamak Advanced Research

    SciTech Connect

    Lee, H. Y.; Hong, J. H.; Jang, J. H.; Park, J. S.; Choe, Wonho; Hahn, S. H.; Bak, J. G.; Lee, J. H.; Ko, W. H.; Lee, K. D.; Lee, S. H.; Lee, H. H.; Juhn, J.-W.; Kim, H. S.; Yoon, S. W.; Han, H.; Ghim, Y.-C.

    2015-12-15

    It has been reported that supersonic molecular beam injection (SMBI) is an effective means of edge localized mode (ELM) mitigation. This paper newly reports the changes in the ELM, plasma profiles, and fluctuation characteristics during ELM mitigation by SMBI in Korea Superconducting Tokamak Advanced Research. During the mitigated ELM phase, the ELM frequency increased by a factor of 2–3 and the ELM size, which was estimated from the D{sub α} amplitude, the fractional changes in the plasma-stored energy and the line-averaged electron density, and divertor heat flux during an ELM burst, decreased by a factor of 0.34–0.43. Reductions in the electron and ion temperatures rather than in the electron density were observed during the mitigated ELM phase. In the natural ELM phase, frequency chirping of the plasma fluctuations was observed before the ELM bursts; however, the ELM bursts occurred without changes in the plasma fluctuation frequency in the mitigated ELM phase.

  4. Fluid-particle hybrid simulation on the transports of plasma, recycling neutrals, and carbon impurities in the Korea Superconducting Tokamak Advanced Research divertor region

    NASA Astrophysics Data System (ADS)

    Kim, Deok-Kyu; Hong, Sang Hee

    2005-06-01

    A two-dimensional simulation modeling that has been performed in a self-consistent way for analysis on the fully coupled transports of plasma, recycling neutrals, and intrinsic carbon impurities in the divertor domain of tokamaks is presented. The numerical model coupling the three major species transports in the tokamak edge is based on a fluid-particle hybrid approach where the plasma is described as a single magnetohydrodynamic fluid while the neutrals and impurities are treated as kinetic particles using the Monte Carlo technique. This simulation code is applied to the KSTAR (Korea Superconducting Tokamak Advanced Research) tokamak [G. S. Lee, J. Kim, S. M. Hwang et al., Nucl. Fusion 40, 575 (2000)] to calculate the peak heat flux on the divertor plate and to explore the divertor plasma behavior depending on the upstream conditions in its base line operation mode for various values of input heating power and separatrix plasma density. The numerical modeling for the KSTAR tokamak shows that its full-powered operation is subject to the peak heat loads on the divertor plate exceeding an engineering limit, and reveals that the recycling zone is formed in front of the divertor by increasing plasma density and by reducing power flow into the scrape-off layer. Compared with other researchers' work, the present hybrid simulation more rigorously reproduces severe electron pressure losses along field lines by the presence of recycling zone accounting for the transitions between the sheath limited and the detached divertor regimes. The substantial profile changes in carbon impurity population and ionic composition also represent the key features of this divertor regime transition.

  5. Development in Diagnostics Application to Control Advanced Tokamak Plasma

    SciTech Connect

    Koide, Y.

    2008-03-12

    For continuous operation expected in DEMO, all the plasma current must be non-inductively driven, with self-generated neoclassical bootstrap current being maximized. The control of such steady state high performance tokamak plasma (so-called 'Advanced Tokamak Plasma') is a challenge because of the strong coupling between the current density, the pressure profile and MHD stability. In considering diagnostic needs for the advanced tokamak research, diagnostics for MHD are the most fundamental, since discharges which violate the MHD stability criteria either disrupt or have significantly reduced confinement. This report deals with the development in diagnostic application to control advanced tokamak plasma, with emphasized on recent progress in active feedback control of the current profile and the pressure profile under DEMO-relevant high bootstrap-current fraction. In addition, issues in application of the present-day actuators and diagnostics for the advanced control to DEMO will be briefly addressed, where port space for the advanced control may be limited so as to keep sufficient tritium breeding ratio (TBR)

  6. (High beta tokamak research and plasma theory)

    SciTech Connect

    Not Available

    1990-01-01

    Our activities on High Beta Tokamak Research during the past 12 months of the present budget period can be divided into four areas: completion of kink mode studies in HBT; completion of carbon impurity transport studies in HBT; design of HBT-EP; and construction of HBT-EP. Each of these is described briefly in the sections of this progress report.

  7. Summer Research Experiences with a Laboratory Tokamak

    NASA Astrophysics Data System (ADS)

    Farley, N.; Mauel, M.; Navratil, G.; Cates, C.; Maurer, D.; Mukherjee, S.; Shilov, M.; Taylor, E.

    1998-11-01

    Columbia University's Summer Research Program for Secondary School Science Teachers seeks to improve middle and high school student understanding of science. The Program enhances science teachers' understanding of the practice of science by having them participate for two consecutive summers as members of laboratory research teams led by Columbia University faculty. In this poster, we report the research and educational activities of two summer internships with the HBT-EP research tokamak. Research activities have included (1) computer data acquisition and the representation of complex plasma wave phenomena as audible sounds, and (2) the design and construction of pulsed microwave systems to experience the design and testing of special-purpose equipment in order to achieve a specific technical goal. We also present an overview of the positive impact this type of plasma research involvement has had on high school science teaching.

  8. The ARIES Advanced And Conservative Tokamak (ACT) Power Plant Study

    SciTech Connect

    Kessel, C. E.; Poli, F. M.; Ghantous, K.; Gorelenkov, N.; Tillack, M. S.; Najmabadi, F.; Wang, X. R.; Navaei, D.; Toudeshki, H. H.; Koehly, C.; El-Guebaly, L.; Blanchard, J. P.; Martin, C. J.; Mynsburge, L.; Humrickhouse, P.; Rensink, M. E.; Rognlien, T. D.; Yoda, M.; Abdel-Khalik, S. I.; Hageman, M. D.; Mills, B. H.; Radar, J. D.; Sadowski, D. L.; Snyder, P. B.; St. John, H.; Turnbull, A. D.; Waganer, L. M.; Malang, S.; Rowcliffe, A. F.

    2014-03-05

    Tokamak power plants are studied with advanced and conservative design philosophies in order to identify the impacts on the resulting designs and to provide guidance to critical research needs. Incorporating updated physics understanding, and using more sophisticated engineering and physics analysis, the tokamak configurations have developed a more credible basis compared to older studies. The advanced configuration assumes a self-cooled lead lithium (SCLL) blanket concept with SiC composite structural material with 58% thermal conversion efficiency. This plasma has a major radius of 6.25 m, a toroidal field of 6.0 T, a q95 of 4.5, a {beta}N{sup total} of 5.75, H{sub 98} of 1.65, n/nGr of 1.0, and peak divertor heat flux of 13.7 MW/m{sup 2}. The conservative configuration assumes a dual coolant lead lithium (DCLL) blanket concept with ferritic steel structural material and helium coolant, achieving a thermal conversion efficiency of 45%. The plasma major radius is 9.75 m, a toroidal field of 8.75 T, a q95 of 8.0, a {beta}N{sup total} of 2.5, H{sub 98} of 1.25, n/n{sub Gr} of 1.3, and peak divertor heat flux of 10 MW/m{sup 2}. The divertor heat flux treatment with a narrow power scrape-off width has driven the plasmas to larger major radius. Edge and divertor plasma simulations are targeting a basis for high radiated power fraction in the divertor, which is necessary for solutions to keep the peak heat flux in the range of 10-15 MW/m{sup 2}. Combinations of the advanced and conservative approaches show intermediate sizes. A new systems code using a database approach has been used and shows that the operating point is really an operating zone with some range of plasma and engineering parameters and very similar costs of electricity. Papers in this issue provide more detailed discussion of the work summarized here.

  9. The ARIES Advanced and Conservative Tokamak Power Plant Study

    SciTech Connect

    Kessel, C. E; Tillak, M. S; Najmabadi, F.; Poli, F. M.; Ghantous, K.; Gorelenkov, N.; Wang, X. R.; Navaei, D.; Toudeshki, H. H.; Koehly, C.; EL-Guebaly, L.; Blanchard, J. P.; Martin, C. J.; Mynsburge, L.; Humrickhouse, P.; Rensink, M. E.; Rognlien, T. D.; Yoda, M.; Abdel-Khalik, S. I.; Hageman, M. D.; Mills, B. H.; Rader, J. D.; Sadowski, D. L.; Snyder, P. B.; St. John, H.; Turnbull, A. D.; Waganer, L. M.; Malang, S.; Rowcliffe, A. F.

    2015-12-22

    Tokamak power plants are studied with advanced and conservative design philosophies to identify the impacts on the resulting designs and to provide guidance to critical research needs. Incorporating updated physics understanding and using more sophisticated engineering and physics analysis, the tokamak configurations have developed a more credible basis compared with older studies. The advanced configuration assumes a self-cooled lead lithium blanket concept with SiC composite structural material with 58% thermal conversion efficiency. This plasma has a major radius of 6.25 m, a toroidal field of 6.0 T, a q₉₅ of 4.5, aᵦtotal N of 5.75, an H98 of 1.65, an n/nGr of 1.0, and a peak divertor heat flux of 13.7 MW/m² . The conservative configuration assumes a dual-coolant lead lithium blanket concept with reduced activation ferritic martensitic steel structural material and helium coolant, achieving a thermal conversion efficiency of 45%. The plasma has a major radius of 9.75 m, a toroidal field of 8.75 T, a q₉₅ of 8.0, aᵦtotalN of 2.5, an H₉₈ of 1.25, an n/nGr of 1.3, and a peak divertor heat flux of 10 MW/m² . The divertor heat flux treatment with a narrow power scrape off width has driven the plasmas to larger major radius. Edge and divertor plasma simulations are targeting a basis for high radiated power fraction in the divertor, which is necessary for solutions to keep the peak heat flux in the range 10 to 15 MW/m² . Combinations of the advanced and conservative approaches show intermediate sizes. A new systems code using a database approach has been used and shows that the operating point is really an operating zone with some range of plasma and engineering parameters and very similar costs of electricity. Other papers in this issue provide more detailed discussion of the work summarized here.

  10. The ARIES Advanced and Conservative Tokamak Power Plant Study

    DOE PAGES

    Kessel, C. E; Tillak, M. S; Najmabadi, F.; Poli, F. M.; Ghantous, K.; Gorelenkov, N.; Wang, X. R.; Navaei, D.; Toudeshki, H. H.; Koehly, C.; et al

    2015-12-22

    Tokamak power plants are studied with advanced and conservative design philosophies to identify the impacts on the resulting designs and to provide guidance to critical research needs. Incorporating updated physics understanding and using more sophisticated engineering and physics analysis, the tokamak configurations have developed a more credible basis compared with older studies. The advanced configuration assumes a self-cooled lead lithium blanket concept with SiC composite structural material with 58% thermal conversion efficiency. This plasma has a major radius of 6.25 m, a toroidal field of 6.0 T, a q₉₅ of 4.5, aᵦtotal N of 5.75, an H98 of 1.65, anmore » n/nGr of 1.0, and a peak divertor heat flux of 13.7 MW/m² . The conservative configuration assumes a dual-coolant lead lithium blanket concept with reduced activation ferritic martensitic steel structural material and helium coolant, achieving a thermal conversion efficiency of 45%. The plasma has a major radius of 9.75 m, a toroidal field of 8.75 T, a q₉₅ of 8.0, aᵦtotalN of 2.5, an H₉₈ of 1.25, an n/nGr of 1.3, and a peak divertor heat flux of 10 MW/m² . The divertor heat flux treatment with a narrow power scrape off width has driven the plasmas to larger major radius. Edge and divertor plasma simulations are targeting a basis for high radiated power fraction in the divertor, which is necessary for solutions to keep the peak heat flux in the range 10 to 15 MW/m² . Combinations of the advanced and conservative approaches show intermediate sizes. A new systems code using a database approach has been used and shows that the operating point is really an operating zone with some range of plasma and engineering parameters and very similar costs of electricity. Other papers in this issue provide more detailed discussion of the work summarized here.« less

  11. Shape Optimization for DIII-D Advanced Tokamak Plasmas

    SciTech Connect

    C.E. Kesse; J.R. Ferron; C.M. Greenfield; J.E. Menard; T.S. Taylor

    2003-07-30

    The advanced tokamak program on DIII-D is targeting the full integration of high-beta and high-bootstrap/noninductive current fraction for long-pulse lengths and the high confinement consistent with these features. Central to achieving these simultaneously is access to the highest ideal beta limits possible to maximize the headroom for experimental operation with RWM control. A study of the ideal-MHD stability is done for plasmas modeled after DIII-D advanced tokamak plasmas, varying the plasma elongation, triangularity, and outboard squareness. The highest beta(sub)N limits reach 6-7 for the n=1 kink mode for all elongation, outer squareness values, and plasma triangularity equals 0.8.

  12. Research Advances

    ERIC Educational Resources Information Center

    King, Angela G.

    2004-01-01

    Research advances, a new feature in Journal of Chemical Engineering that brings information about innovations in current areas of research to high school and college science faculty with an intent to provide educators with timely descriptions of latest progress in research that can be integrated into existing courses to update course content and…

  13. LIDAR Thomson scattering for advanced tokamaks. Final report

    SciTech Connect

    Molvik, A.W.; Lerche, R.A.; Nilson, D.G.

    1996-03-18

    The LIDAR Thomson Scattering for Advanced Tokamaks project made a valuable contribution by combining LLNL expertise from the MFE Program: tokamak design and diagnostics, and the ICF Program and Physics Dept.: short-pulse lasers and fast streak cameras. This multidisciplinary group evaluated issues involved in achieving a factor of 20 higher high spatial resolution (to as small as 2-3 mm) from the present state of the art in LIDAR Thomson scattering, and developed conceptual designs to apply LIDAR Thomson scattering to three tokamaks: Upgraded divertor measurements in the existing DIII-D tokamak; Both core and divertor LIDAR Thomson scattering in the proposed (now cancelled) TPX; and core, edge, and divertor LIDAR Thomson scattering on the presently planned International Tokamak Experimental Reactor, ITER. Other issues were evaluated in addition to the time response required for a few millimeter spatial resolution. These include the optimum wavelength, 100 Hz operation of the laser and detectors, minimizing stray light - always the Achilles heel of Thomson scattering, and time dispersion in optics that could prevent good spatial resolution. Innovative features of our work included: custom short pulsed laser concepts to meet specific requirements, use of a prism spectrometer to maintain a constant optical path length for high temporal and spatial resolution, the concept of a laser focus outside the plasma to ionize gas and form an external fiducial to use in locating the plasma edge as well as to spread the laser energy over a large enough area of the inner wall to avoid laser ablation of wall material, an improved concept for cleaning windows between shots by means of laser ablation, and the identification of a new physics issue - nonlinear effects near a laser focus which could perturb the plasma density and temperature that are to be measured.

  14. OVERVIEW OF RECENT EXPERIMENTAL RESULTS FROM THE DIII-D ADVANCED TOKAMAK PROGRAM

    SciTech Connect

    BURRELL,KH

    2002-11-01

    OAK A271 OVERVIEW OF RECENT EXPERIMENTAL RESULTS FROM THE DIII-D ADVANCED TOKAMAK PROGRAM. The DIII-D research program is developing the scientific basis for advanced tokamak (AT) modes of operation in order to enhance the attractiveness of the tokamak as an energy producing system. Since the last International Atomic Energy Agency (IAEA) meeting, the authors have made significant progress in developing the building blocks needed for AT operation: (1) the authors have doubled the magnetohydrodynamic (MHD) stable tokamak operating space through rotational stabilization of the resistive wall mode; (2) using this rotational stabilization, they have achieved {beta}{sub N}H{sub 89} {le} 10 for 4 {tau}{sub E} limited by the neoclassical tearing mode; (3) using real-time feedback of the electron cyclotron current drive (ECCD) location, they have stabilized the (m,n) = (3,2) neoclassical tearing mode and then increased {beta}{sub T} by 60%; (4) they have produced ECCD stabilization of the (2,1) neoclassical tearing mode in initial experiments; (5) they have made the first integrated AT demonstration discharges with current profile control using ECCD; (6) ECCD and electron cyclotron heating (ECH) have been used to control the pressure profile in high performance plasmas; and (7) they have demonstrated stationary tokamak operation for 6.5 s (36 {tau}{sub E}) at the same fusion gain parameter of {beta}{sub N}H{sub 89}/q{sub 95}{sup 2} {approx} 0.4 as ITER but at much higher q{sub 95} = 4.2. They have developed general improvements applicable to conventional and advanced tokamak operating modes: (1) they have an existence proof of a mode of tokamak operation, quiescent H-mode, which has no pulsed, ELM heat load to the divertor and which can run for long periods of time (3.8 s or 25 {tau}{sub E}) with constant density and constant radiation power; (2) they have demonstrated real-time disruption detection and mitigation for vertical disruption events using high pressure gas jet

  15. Halo current diagnostic system of experimental advanced superconducting tokamak

    SciTech Connect

    Chen, D. L.; Shen, B.; Sun, Y.; Qian, J. P. Wang, Y.; Xiao, B. J.; Granetz, R. S.

    2015-10-15

    The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well.

  16. Halo current diagnostic system of experimental advanced superconducting tokamak.

    PubMed

    Chen, D L; Shen, B; Granetz, R S; Sun, Y; Qian, J P; Wang, Y; Xiao, B J

    2015-10-01

    The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well.

  17. Status of and prospects for advanced tokamak regimes from multi-machine comparisons using the 'International Tokamak Physics Activity' database

    NASA Astrophysics Data System (ADS)

    Litaudon, X.; Barbato, E.; Bécoulet, A.; Doyle, E. J.; Fujita, T.; Gohil, P.; Imbeaux, F.; Sauter, O.; Sips, G.; ITPA Group on Transport; Internal ITB Physics; Connor, J. W.; Doyle, E. J.; Esipchuk, Yu; Fujita, T.; Fukuda, T.; Gohil, P.; Kinsey, J.; Kirneva, N.; Lebedev, S.; Litaudon, X.; Mukhovatov, V.; Rice, J.; Synakowski, E.; Toi, K.; Unterberg, B.; Vershkov, V.; Wakatani, M.; International ITB Database Working Group; Aniel, T.; Baranov, Yu F.; Barbato, E.; Bécoulet, A.; Behn, R.; Bourdelle, C.; Bracco, G.; Budny, R. V.; Buratti, P.; Doyle, E. J.; Esipchuk, Yu; Esposito, B.; Ide, S.; Field, A. R.; Fujita, T.; Fukuda, T.; Gohil, P.; Gormezano, C.; Greenfield, C.; Greenwald, M.; Hahm, T. S.; Hoang, G. T.; Hobirk, J.; Hogeweij, D.; Ide, S.; Isayama, A.; Imbeaux, F.; Joffrin, E.; Kamada, Y.; Kinsey, J.; Kirneva, N.; Litaudon, X.; Luce, T. C.; Murakami, M.; Parail, V.; Peng, Y.-K. M.; Ryter, F.; Sakamoto, Y.; Shirai, H.; Sips, G.; Suzuki, T.; Synakowski, E.; Takenaga, H.; Takizuka, T.; Tala, T.; Wade, M. R.; Weiland, J.

    2004-05-01

    Advanced tokamak regimes obtained in ASDEX Upgrade, DIII-D, FT-U, JET, JT-60U, TCV and Tore Supra experiments are assessed both in terms of their fusion performance and capability for ultimately reaching steady-state using data from the international internal transport barrier database. These advanced modes of tokamak operation are characterized by an improved core confinement and a modified current profile compared to the relaxed Ohmically driven one. The present results obtained in these experiments are studied in view of their prospect for achieving either long pulses ('hybrid' scenario with inductive and non-inductive current drive) or ultimately steady-state purely non-inductive current drive operation in next step devices such as ITER. A new operational diagram for advanced tokamak operation is proposed where the figure of merit characterizing the fusion performances and confinement, H\\times \\beta _{\\rm N}/q^{2}_{95} , is drawn versus the fraction of the plasma current driven by the bootstrap effect. In this diagram, present day advanced tokamak regimes have now reached an operational domain that is required in the non-inductive ITER current drive operation with typically 50% of the plasma current driven by the bootstrap effect (Green et al 2003 Plasma Phys. Control. Fusion 45 587). In addition, the existence domain of the advanced mode regimes is also mapped in terms of dimensionless plasmas physics quantities such as normalized Larmor radius, normalized collisionality, Mach number and ratio of ion to electron temperature. The gap between present day and future advanced tokamak experiments is quantitatively assessed in terms of these dimensionless parameters. A preliminary version of this study was presented in the 29th EPS Conf. on Plasma Phys. and Control. Fusion (Montreux, Switzerland, 17 21 June 2002) [1].

  18. Development on JET of advanced tokamak operations for ITER

    NASA Astrophysics Data System (ADS)

    Tuccillo, A. A.; Crisanti, F.; Litaudon, X.; Baranov, Yu. F.; Becoulet, A.; Becoulet, M.; Bertalot, L.; Castaldo, C.; Challis, C. D.; Cesario, R.; DeBaar, M. R.; de Vries, P. C.; Esposito, B.; Frigione, D.; Garzotti, L.; Giovannozzi, E.; Giroud, C.; Gorini, G.; Gormezano, C.; Hawkes, N. C.; Hobirk, J.; Imbeaux, F.; Joffrin, E.; Lomas, P. J.; Mailloux, J.; Mantica, P.; Mantsinen, M. J.; Mazon, D.; Moreau, D.; Murari, A.; Pericoli-Ridolfini, V.; Rimini, F.; Sips, A. C. C.; Sozzi, C.; Tudisco, O.; Van Eester, D.; Zastrow, K.-D.; work-programme contributors, JET-EFDA

    2006-02-01

    Recent research on advanced tokamak in JET has focused on scenarios with both monotonic and reversed shear q-profiles having plasma parameters as relevant as possible for extrapolation to ITER. Wide internal transport barriers (ITBs), r/a ~ 0.7, are formed at ITER relevant triangularity δ ~ 0.45 and moderate plasma current, IP = 1.5-2.5 MA, with ne/nG ~ 60% when ELMs are moderated by Ne injection. At higher current (IP <= 3.5 MA, δ ~ 0.25) wide ITBs sitting at r/a >= 0.5, in the positive shear region, have been developed. Generally MHD events terminate these barriers otherwise limited in strength by power availability. ITBs with core density close to Greenwald value, Te ~ Ti and low toroidal rotation (4 times lower than standard ITBs) are obtained in plasma target preformed by opportune timing of lower hybrid current drive (LHCD), pellet injection and a small amount of NBI power. Wide ITBs, r/a ~ 0.6, of moderate strength, can be sustained without impurities accumulation for a time close to neoclassical resistive time in 3 T/1.8 MA discharges that exhibit reversed magnetic shear profiles and type-III ELMy edge. These discharges have been extended to the maximum duration allowed by JET subsystems (20 s) bringing to the record of injected energy in a JET discharge: E ~ 330 MJ. Portability of ITB physics has been addressed through dedicated similarity experiments. The ITB is identified as a layer of reduced diffusivity studying the propagation of the heat wave generated by modulating the ICRF mode conversion (MC) electron heating. Impressive results, QDT ~ 0.25, are obtained in these deuterium discharges with 3He minority when the MC layer is located in the core. The ion behaviour has been investigated in pure LHCD electron ITBs optimizing the 3He minority concentration for direct ion heating. Preliminary results of particle transport, studied via injection of a trace of tritium and an Ar-Ne mixture, will be presented.

  19. Filterscope diagnostic system on the Experimental Advanced Superconducting Tokamak (EAST)

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Wu, Z. W.; Gao, W.; Chen, Y. J.; Wu, C. R.; Zhang, L.; Huang, J.; Chang, J. F.; Yao, X. J.; Gao, W.; Zhang, P. F.; Jin, Z.; Hou, Y. M.; Guo, H. Y.

    2016-11-01

    A filterscope diagnostic system has been mounted to observe the line emission and visible bremsstrahlung emission from plasma on the experimental advanced superconducting tokamak during the 2014 campaign. By this diagnostic system, multiple wavelengths including Dα (656.1 nm), Dγ (433.9 nm), He ii (468.5 nm), Li i (670.8 nm), Li ii (548.3 nm), C iii (465.0 nm), O ii (441.5 nm), Mo i (386.4 nm), W i (400.9 nm), and visible bremsstrahlung radiation (538.0 nm) are monitored with corresponding wavelength filters. All these multi-channel signals are digitized at up to 200 kHz simultaneously. This diagnostic plays a crucial role in studying edge localized modes and H-mode plasmas, due to the high temporal resolution and spatial resolution that have been designed into it.

  20. Status of neutron diagnostics on the experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Zhong, G. Q.; Hu, L. Q.; Pu, N.; Zhou, R. J.; Xiao, M.; Cao, H. R.; Zhu, Y. B.; Li, K.; Fan, T. S.; Peng, X. Y.; Du, T. F.; Ge, L. J.; Huang, J.; Xu, G. S.; Wan, B. N.

    2016-11-01

    Neutron diagnostics have become a significant means to study energetic particles in high power auxiliary heating plasmas on the Experimental Advanced Superconducting Tokamak (EAST). Several kinds of neutron diagnostic systems have been implemented for time-resolved measurements of D-D neutron flux, fluctuation, emission profile, and spectrum. All detectors have been calibrated in laboratory, and in situ calibration using 252Cf neutron source in EAST is in preparation. A new technology of digitized pulse signal processing is adopted in a wide dynamic range neutron flux monitor, compact recoil proton spectrometer, and time of flight spectrometer. Improvements will be made continuously to the system to achieve better adaptation to the EAST's harsh γ-ray and electro-magnetic radiation environment.

  1. Advanced ICRF antenna design for R-TOKAMAK

    NASA Astrophysics Data System (ADS)

    Kako, E.; Ando, R.; Ichimura, M.; Ogawa, Y.; Amano, T.; Watari, T.

    1986-01-01

    The advanced ICRF antennas designed for the R-TOKAMAK (a proposal in the Institute of Plasma Physics, Nagoya University) are described. They are a standard loop antenna and a panel heater antenna for fast wave heating, and a waveguide antenna for ion Bernstein wave heating. The standard loop antenna is made of Al-alloy and has a simple structure to install because of radioactivation by D-T neutrons. For high power heating, a new type antenna called Panel heater antenna is proposed. It has a wide radiation area and is able to select a parallel wave number k. The field pattern of the panel heater antenna is measured. The feasibility of the waveguide antenna is discussed for ion Bernstein wave heating. The radiation from the aperture of the double ridge waveguide is experimentally estimated with a load simulating the plasma.

  2. Design of vibration compensation interferometer for Experimental Advanced Superconducting Tokamak.

    PubMed

    Yang, Y; Li, G S; Liu, H Q; Jie, Y X; Ding, W X; Brower, D L; Zhu, X; Wang, Z X; Zeng, L; Zou, Z Y; Wei, X C; Lan, T

    2014-11-01

    A vibration compensation interferometer (wavelength at 0.532 μm) has been designed and tested for Experimental Advanced Superconducting Tokamak (EAST). It is designed as a sub-system for EAST far-infrared (wavelength at 432.5 μm) poloarimeter/interferometer system. Two Acoustic Optical Modulators have been applied to produce the 1 MHz intermediate frequency. The path length drift of the system is lower than 2 wavelengths within 10 min test, showing the system stability. The system sensitivity has been tested by applying a periodic vibration source on one mirror in the system. The vibration is measured and the result matches the source period. The system is expected to be installed on EAST by the end of 2014.

  3. A flowing liquid lithium limiter for the Experimental Advanced Superconducting Tokamak.

    PubMed

    Ren, J; Zuo, G Z; Hu, J S; Sun, Z; Yang, Q X; Li, J G; Zakharov, L E; Xie, H; Chen, Z X

    2015-02-01

    A program involving the extensive and systematic use of lithium (Li) as a "first," or plasma-facing, surface in Tokamak fusion research devices located at Institute of Plasma Physics, Chinese Academy of Sciences, was started in 2009. Many remarkable results have been obtained by the application of Li coatings in Experimental Advanced Superconducting Tokamak (EAST) and liquid Li limiters in the HT-7 Tokamak-both located at the institute. In furtherance of the lithium program, a flowing liquid lithium (FLiLi) limiter system has been designed and manufactured for EAST. The design of the FLiLi limiter is based on the concept of a thin flowing film which was previously tested in HT-7. Exploiting the capabilities of the existing material and plasma evaluation system on EAST, the limiter will be pre-wetted with Li and mechanically translated to the edge of EAST during plasma discharges. The limiter will employ a novel electro-magnetic pump which is designed to drive liquid Li flow from a collector at the bottom of limiter into a distributor at its top, and thus supply a continuously flowing liquid Li film to the wetted plasma-facing surface. This paper focuses on the major design elements of the FLiLi limiter. In addition, a simulation of incoming heat flux has shown that the distribution of heat flux on the limiter surface is acceptable for a future test of power extraction on EAST. PMID:25725839

  4. A flowing liquid lithium limiter for the Experimental Advanced Superconducting Tokamak.

    PubMed

    Ren, J; Zuo, G Z; Hu, J S; Sun, Z; Yang, Q X; Li, J G; Zakharov, L E; Xie, H; Chen, Z X

    2015-02-01

    A program involving the extensive and systematic use of lithium (Li) as a "first," or plasma-facing, surface in Tokamak fusion research devices located at Institute of Plasma Physics, Chinese Academy of Sciences, was started in 2009. Many remarkable results have been obtained by the application of Li coatings in Experimental Advanced Superconducting Tokamak (EAST) and liquid Li limiters in the HT-7 Tokamak-both located at the institute. In furtherance of the lithium program, a flowing liquid lithium (FLiLi) limiter system has been designed and manufactured for EAST. The design of the FLiLi limiter is based on the concept of a thin flowing film which was previously tested in HT-7. Exploiting the capabilities of the existing material and plasma evaluation system on EAST, the limiter will be pre-wetted with Li and mechanically translated to the edge of EAST during plasma discharges. The limiter will employ a novel electro-magnetic pump which is designed to drive liquid Li flow from a collector at the bottom of limiter into a distributor at its top, and thus supply a continuously flowing liquid Li film to the wetted plasma-facing surface. This paper focuses on the major design elements of the FLiLi limiter. In addition, a simulation of incoming heat flux has shown that the distribution of heat flux on the limiter surface is acceptable for a future test of power extraction on EAST.

  5. Lessons learned from the tokamak Advanced Reactor Innovation and Evaluation Study (ARIES)

    SciTech Connect

    Krakowski, R.A.; Bathke, C.G.; Miller, R.L.; Werley, K.A.

    1994-07-01

    Lessons from the four-year ARIES (Advanced Reactor Innovation and Evaluation Study) investigation of a number of commercial magnetic-fusion-energy (MFE) power-plant embodiments of the tokamak are summarized. These lessons apply to physics, engineering and technology, and environmental, safety, and health (ES&H) characteristics of projected tokamak power plants. Summarized herein are the composite conclusions and lessons developed in the course of four conceptual tokamak power-plant designs. A general conclusion from this extensive investigation of the commercial potential of tokamak power plants is the need for combined, symbiotic advances in both physics, engineering, and materials before economic competitiveness with developing advanced energy sources can be realized. Advances in materials are also needed for the exploitation of environmental advantages otherwise inherent in fusion power.

  6. OVERVIEW OF RECENT EXPERIMENTAL RESULTS FROM THE DIII-D ADVANCED TOKAMAK PROGRAM

    SciTech Connect

    BURRELL,HK

    2002-11-01

    OAK A271 OVERVIEW OF RECENT EXPERIMENTAL RESULTS FROM THE DIII-D ADVANCED TOKAMAK PROGRAM. The DIII-D research program is developing the scientific basis for advanced tokamak (AT) modes of operation in order to enhance the attractiveness of the tokamak as an energy producing system. Since the last International Atomic Energy Agency (IAEA) meeting, they have made significant progress in developing the building blocks needed for AT operation: (1) they have doubled the magnetohydrodynamic (MHD) stable tokamak operating space through rotational stabilization of the resistive wall mode; (2) using this rotational stabilization, they have achieved {beta}{sub N}H{sub 89} {ge} 10 for 4 {tau}{sub E} limited by the neoclassical tearing mode; (3) using real-time feedback of the electron cyclotron current drive (ECCD) location, they have stabilized the (m,n) = (3,2) neoclassical tearing mode and then increased {beta}{sub T} by 60%; (4) they have produced ECCD stabilization of the (2,1) neoclassical tearing mode in initial experiments; (5) they have made the first integrated AT demonstration discharges with current profile control using ECCD; (6) ECCD and electron cyclotron heating (ECH) have been used to control the pressure profile in high performance plasmas; and (7) they have demonstrated stationary tokamak operation for 6.5 s (36 {tau}{sub E}) at the same fusion gain parameter of {beta}{sub N}H{sub 89}/q{sub 95}{sup 2} {approx} 0.4 as ITER but at much higher q{sub 95} = 4.2. The authors have developed general improvements applicable to conventional and advanced tokamak operating modes: (1) they have an existence proof of a mode of tokamak operation, quiescent H-mode, which has no pulsed, ELM heat load to the divertor and which can run for long periods of time (3.8 s or 25 {tau}{sub E}) with constant density and constant radiated power; (2) they have demonstrated real-time disruption detection and mitigation for vertical disruption events using high pressure gas jet

  7. Radial and poloidal correlation reflectometry on Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Qu, Hao; Zhang, Tao; Han, Xiang; Wen, Fei; Zhang, Shoubiao; Kong, Defeng; Wang, Yumin; Gao, Yu; Huang, Canbin; Cai, Jianqing; Gao, Xiang

    2015-08-15

    An X-mode polarized V band (50 GHz–75 GHz) radial and poloidal correlation reflectometry is designed and installed on Experimental Advanced Superconducting Tokamak (EAST). Two frequency synthesizers (12 GHz–19 GHz) are used as sources. Signals from the sources are up-converted to V band using active quadruplers and then coupled together for launching through one single pyramidal antenna. Two poloidally separated antennae are installed to receive the reflected waves from plasma. This reflectometry system can be used for radial and poloidal correlation measurement of the electron density fluctuation. In ohmically heated plasma, the radial correlation length is about 1.5 cm measured by the system. The poloidal correlation analysis provides a means to estimate the fluctuation velocity perpendicular to the main magnetic field. In the present paper, the distance between two poloidal probing points is calculated with ray-tracing code and the propagation time is deduced from cross-phase spectrum. Fluctuation velocity perpendicular to the main magnetic field in the core of ohmically heated plasma is about from −1 km/s to −3 km/s.

  8. Radial and poloidal correlation reflectometry on Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Qu, Hao; Zhang, Tao; Han, Xiang; Wen, Fei; Zhang, Shoubiao; Kong, Defeng; Wang, Yumin; Gao, Yu; Huang, Canbin; Cai, Jianqing; Gao, Xiang

    2015-08-01

    An X-mode polarized V band (50 GHz-75 GHz) radial and poloidal correlation reflectometry is designed and installed on Experimental Advanced Superconducting Tokamak (EAST). Two frequency synthesizers (12 GHz-19 GHz) are used as sources. Signals from the sources are up-converted to V band using active quadruplers and then coupled together for launching through one single pyramidal antenna. Two poloidally separated antennae are installed to receive the reflected waves from plasma. This reflectometry system can be used for radial and poloidal correlation measurement of the electron density fluctuation. In ohmically heated plasma, the radial correlation length is about 1.5 cm measured by the system. The poloidal correlation analysis provides a means to estimate the fluctuation velocity perpendicular to the main magnetic field. In the present paper, the distance between two poloidal probing points is calculated with ray-tracing code and the propagation time is deduced from cross-phase spectrum. Fluctuation velocity perpendicular to the main magnetic field in the core of ohmically heated plasma is about from -1 km/s to -3 km/s.

  9. Radial and poloidal correlation reflectometry on Experimental Advanced Superconducting Tokamak.

    PubMed

    Qu, Hao; Zhang, Tao; Han, Xiang; Wen, Fei; Zhang, Shoubiao; Kong, Defeng; Wang, Yumin; Gao, Yu; Huang, Canbin; Cai, Jianqing; Gao, Xiang

    2015-08-01

    An X-mode polarized V band (50 GHz-75 GHz) radial and poloidal correlation reflectometry is designed and installed on Experimental Advanced Superconducting Tokamak (EAST). Two frequency synthesizers (12 GHz-19 GHz) are used as sources. Signals from the sources are up-converted to V band using active quadruplers and then coupled together for launching through one single pyramidal antenna. Two poloidally separated antennae are installed to receive the reflected waves from plasma. This reflectometry system can be used for radial and poloidal correlation measurement of the electron density fluctuation. In ohmically heated plasma, the radial correlation length is about 1.5 cm measured by the system. The poloidal correlation analysis provides a means to estimate the fluctuation velocity perpendicular to the main magnetic field. In the present paper, the distance between two poloidal probing points is calculated with ray-tracing code and the propagation time is deduced from cross-phase spectrum. Fluctuation velocity perpendicular to the main magnetic field in the core of ohmically heated plasma is about from -1 km/s to -3 km/s.

  10. Research Advances

    ERIC Educational Resources Information Center

    King, Angela G.

    2005-01-01

    Researchers in the Department of Bioengineering at Rice University are developing a new approach for fighting cancer, based on nanoshells that can both detect and destroy cancerous cells. The aim is to locate the cells, and be able to make a rational choice about whether they need to be destroyed and if possible they should immediately be sent for…

  11. Research Advances

    ERIC Educational Resources Information Center

    King, Angela G.

    2004-01-01

    Nanotechnology are employed by researchers at Northwestern University to develop a method of labeling disease markers present in blood with unique DNA tags they have dubbed "bio-bar-codes". The preparation of nanoparticle and magnetic microparticle probes and a nanoparticle-based PSR-less DNA amplification scheme are involved by the DNA-BCA assay.

  12. Plasma Shape and Current Density Profile Control in Advanced Tokamak Operating Scenarios

    NASA Astrophysics Data System (ADS)

    Shi, Wenyu

    The need for new sources of energy is expected to become a critical problem within the next few decades. Nuclear fusion has sufficient energy density to potentially supply the world population with its increasing energy demands. The tokamak is a magnetic confinement device used to achieve controlled fusion reactions. Experimental fusion technology has now reached a level where tokamaks are able to produce about as much energy as is expended in heating the fusion fuel. The next step towards the realization of a nuclear fusion tokamak power plant is ITER, which will be capable of exploring advanced tokamak (AT) modes, characterized by a high fusion gain and plasma stability. The extreme requirements of the advanced modes motivates researchers to improve the modeling of the plasma response as well as the design of feedback controllers. This dissertation focuses on several magnetic and kinetic control problems, including the plasma current, position and shape control, and data-driven and first-principles-driven modeling and control of plasma current density profile and the normalized plasma pressure ratio betaN. The plasma is confined within the vacuum vessel by an external electromagnetic field, produced primarily by toroidal and poloidal field coils. The outermost closed plasma surface or plasma boundary is referred to as the shape of the plasma. A central characteristic of AT plasma regimes is an extreme elongated shape. The equilibrium among the electromagnetic forces acting on an elongated plasma is unstable. Moreover, the tokamak performance is improved if the plasma is located in close proximity to the torus wall, which guarantees an efficient use of available volume. As a consequence, feedback control of the plasma position and shape is necessary. In this dissertation, an Hinfinity-based, multi-input-multi-output (MIMO) controller for the National Spherical Torus Experiment (NSTX) is developed, which is used to control the plasma position, shape, and X

  13. A flowing liquid lithium limiter for the Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Ren, J.; Zuo, G. Z.; Hu, J. S.; Sun, Z.; Yang, Q. X.; Li, J. G.; Xie, H.; Chen, Z. X.; Zakharov, L. E.

    2015-02-15

    A program involving the extensive and systematic use of lithium (Li) as a “first,” or plasma-facing, surface in Tokamak fusion research devices located at Institute of Plasma Physics, Chinese Academy of Sciences, was started in 2009. Many remarkable results have been obtained by the application of Li coatings in Experimental Advanced Superconducting Tokamak (EAST) and liquid Li limiters in the HT-7 Tokamak—both located at the institute. In furtherance of the lithium program, a flowing liquid lithium (FLiLi) limiter system has been designed and manufactured for EAST. The design of the FLiLi limiter is based on the concept of a thin flowing film which was previously tested in HT-7. Exploiting the capabilities of the existing material and plasma evaluation system on EAST, the limiter will be pre-wetted with Li and mechanically translated to the edge of EAST during plasma discharges. The limiter will employ a novel electro-magnetic pump which is designed to drive liquid Li flow from a collector at the bottom of limiter into a distributor at its top, and thus supply a continuously flowing liquid Li film to the wetted plasma-facing surface. This paper focuses on the major design elements of the FLiLi limiter. In addition, a simulation of incoming heat flux has shown that the distribution of heat flux on the limiter surface is acceptable for a future test of power extraction on EAST.

  14. ADX: a high field, high power density, advanced divertor and RF tokamak

    NASA Astrophysics Data System (ADS)

    LaBombard, B.; Marmar, E.; Irby, J.; Terry, J. L.; Vieira, R.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; Baek, S.; Beck, W.; Bonoli, P.; Brunner, D.; Doody, J.; Ellis, R.; Ernst, D.; Fiore, C.; Freidberg, J. P.; Golfinopoulos, T.; Granetz, R.; Greenwald, M.; Hartwig, Z. S.; Hubbard, A.; Hughes, J. W.; Hutchinson, I. H.; Kessel, C.; Kotschenreuther, M.; Leccacorvi, R.; Lin, Y.; Lipschultz, B.; Mahajan, S.; Minervini, J.; Mumgaard, R.; Nygren, R.; Parker, R.; Poli, F.; Porkolab, M.; Reinke, M. L.; Rice, J.; Rognlien, T.; Rowan, W.; Shiraiwa, S.; Terry, D.; Theiler, C.; Titus, P.; Umansky, M.; Valanju, P.; Walk, J.; White, A.; Wilson, J. R.; Wright, G.; Zweben, S. J.

    2015-05-01

    The MIT Plasma Science and Fusion Center and collaborators are proposing a high-performance Advanced Divertor and RF tokamak eXperiment (ADX)—a tokamak specifically designed to address critical gaps in the world fusion research programme on the pathway to next-step devices: fusion nuclear science facility (FNSF), fusion pilot plant (FPP) and/or demonstration power plant (DEMO). This high-field (⩾6.5 T, 1.5 MA), high power density facility (P/S ˜ 1.5 MW m-2) will test innovative divertor ideas, including an ‘X-point target divertor’ concept, at the required performance parameters—reactor-level boundary plasma pressures, magnetic field strengths and parallel heat flux densities entering into the divertor region—while simultaneously producing high-performance core plasma conditions that are prototypical of a reactor: equilibrated and strongly coupled electrons and ions, regimes with low or no torque, and no fuelling from external heating and current drive systems. Equally important, the experimental platform will test innovative concepts for lower hybrid current drive and ion cyclotron range of frequency actuators with the unprecedented ability to deploy launch structures both on the low-magnetic-field side and the high-magnetic-field side—the latter being a location where energetic plasma-material interactions can be controlled and favourable RF wave physics leads to efficient current drive, current profile control, heating and flow drive. This triple combination—advanced divertors, advanced RF actuators, reactor-prototypical core plasma conditions—will enable ADX to explore enhanced core confinement physics, such as made possible by reversed central shear, using only the types of external drive systems that are considered viable for a fusion power plant. Such an integrated demonstration of high-performance core-divertor operation with steady-state sustainment would pave the way towards an attractive pilot plant, as envisioned in the ARC concept

  15. Advances in Dust Detection and Removal for Tokamaks

    NASA Astrophysics Data System (ADS)

    Campos, A.; Skinner, C. H.; Roquemore, A. L.; Leisure, J. O. V.; Wagner, S.

    2008-11-01

    Dust diagnostics and removal techniques are vital for the safe operation of next step fusion devices such as ITER. An electrostatic dust detector[1] developed in the laboratory is being applied to NSTX. In the tokamak environment, large particles or fibres can fall on the grid potentially causing a permanent short. We report on the development of a gas puff system that uses helium to clear such particles from the detector. Experiments with varying nozzle designs, backing pressures, puff durations, and exit flow orientations have obtained an optimal configuration that effectively removes particles from a 25 cm^2 area. Dust removal from next step tokamaks will be required to meet regulatory dust limits. A tripolar grid of fine interdigitated traces has been designed that generates an electrostatic travelling wave for conveying dust particles to a ``drain.'' First trials have shown particle motion in optical microscope images. [1] C. H. Skinner et al., J. Nucl. Mater., 376 (2008) 29.

  16. Numerical study of Alfvén eigenmodes in the Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Hu, Youjun; Li, Guoqiang; Yang, Wenjun; Zhou, Deng; Ren, Qilong; Gorelenkov, N. N.; Cai, Huishan

    2014-05-15

    Alfvén eigenmodes in up-down asymmetric tokamak equilibria are studied by a new magnetohydrodynamic eigenvalue code. The code is verified with the NOVA code for the Solovév equilibrium and then is used to study Alfvén eigenmodes in a up-down asymmetric equilibrium of the Experimental Advanced Superconducting Tokamak. The frequency and mode structure of toroidicity-induced Alfvén eigenmodes are calculated. It is demonstrated numerically that up-down asymmetry induces phase variation in the eigenfunction across the major radius on the midplane.

  17. ADX: A high Power Density, Advanced RF-Driven Divertor Test Tokamak for PMI studies

    NASA Astrophysics Data System (ADS)

    Whyte, Dennis; ADX Team

    2015-11-01

    The MIT PSFC and collaborators are proposing an advanced divertor experiment, ADX; a divertor test tokamak dedicated to address critical gaps in plasma-material interactions (PMI) science, and the world fusion research program, on the pathway to FNSF/DEMO. Basic ADX design features are motivated and discussed. In order to assess the widest range of advanced divertor concepts, a large fraction (>50%) of the toroidal field volume is purpose-built with innovative magnetic topology control and flexibility for assessing different surfaces, including liquids. ADX features high B-field (>6 Tesla) and high global power density (P/S ~ 1.5 MW/m2) in order to access the full range of parallel heat flux and divertor plasma pressures foreseen for reactors, while simultaneously assessing the effect of highly dissipative divertors on core plasma/pedestal. Various options for efficiently achieving high field are being assessed including the use of Alcator technology (cryogenic cooled copper) and high-temperature superconductors. The experimental platform would also explore advanced lower hybrid current drive and ion-cyclotron range of frequency actuators located at the high-field side; a location which is predicted to greatly reduce the PMI effects on the launcher while minimally perturbing the core plasma. The synergistic effects of high-field launchers with high total B on current and flow drive can thus be studied in reactor-relevant boundary plasmas.

  18. ADVANCES IN DUST DETECTION AND REMOVAL FOR TOKAMAKS

    SciTech Connect

    Campos, A.; Skinner, C.H.

    2009-01-01

    Dust diagnostics and removal techniques are vital for the safe operation of next step fusion devices such as ITER. In the tokamak environment, large particles or fi bers can fall on the electrostatic detector potentially causing a permanent short. An electrostatic dust detector developed in the laboratory is being applied to the National Spherical Torus Experiment (NSTX). We report on the development of a gas puff system that uses helium to clear such particles from the detector. Experiments at atmospheric pressure with varying nozzle designs, backing pressures, puff durations and exit fl ow orientations have given an optimal confi guration that effectively removes particles from a 25 cm² area. Similar removal effi ciencies were observed under a vacuum base pressure of 1 mTorr. Dust removal from next step tokamaks will be required to meet regulatory dust limits. A tri-polar grid of fi ne interdigitated traces has been designed that generates an electrostatic traveling wave for conveying dust particles to a “drain.” First trials with only two working electrodes have shown particle motion in optical microscope images.

  19. Profile control of advanced tokamak plasmas in view of continuous operation

    NASA Astrophysics Data System (ADS)

    Mazon, D.

    2015-07-01

    The concept of the tokamak is a very good candidate to lead to a fusion reactor. In fact, certain regimes of functioning allow today the tokamaks to attain performances close to those requested by a reactor. Among the various scenarios of functioning nowadays considered for the reactor option, certain named 'advanced scenarios' are characterized by an improvement of the stability and confinement in the plasma core, as well as by a modification of the current profile, notably thank to an auto-generated 'bootstrap' current. The general frame of this paper treats the perspective of a real-time control of advanced regimes. Concrete examples will underline the impact of diagnostics on the identification of plasma models, from which the control algorithms are constructed. Several preliminary attempts will be described.

  20. ADVANCES IN COMPREHENSIVE GYROKINETIC SIMULATIONS OF TRANSPORT IN TOKAMAKS

    SciTech Connect

    WALTZ,R.E; CANDY,J; HINTON,F.L; ESTRADA-MILA,C; KINSEY,J.E

    2004-10-01

    A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate core turbulent transport in actual experimental profiles and enable direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite {beta}, equilibrium ExB shear stabilization, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius ({rho}{sub *}) so as to treat the profile shear stabilization and nonlocal effects which can break gyroBohm scaling. The code operates in either a cyclic flux-tube limit (which allows only gyroBohm scaling) or globally with physical profile variation. Bohm scaling of DIII-D L-mode has been simulated with power flows matching experiment within error bars on the ion temperature gradient. Mechanisms for broken gyroBohm scaling, neoclassical ion flows embedded in turbulence, turbulent dynamos and profile corrugations, are illustrated.

  1. ADVANCES IN COMPREHENSIVE GYROKINETIC SIMULATIONS OF TRANSPORT IN TOKAMAKS

    SciTech Connect

    WALTZ RE; CANDY J; HINTON FL; ESTRADA-MILA C; KINSEY JE

    2004-10-01

    A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate core turbulent transport in actual experimental profiles and enable direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite {beta}, equilibrium ExB shear stabilization, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius ({rho}{sub *}) so as to treat the profile shear stabilization and nonlocal effects which can break gyroBohm scaling. The code operates in either a cyclic flux-tube limit (which allows only gyroBohm scaling) or a globally with physical profile variation. Rohm scaling of DIII-D L-mode has been simulated with power flows matching experiment within error bars on the ion temperature gradient. Mechanisms for broken gyroBohm scaling, neoclassical ion flows embedded in turbulence, turbulent dynamos and profile corrugations, plasma pinches and impurity flow, and simulations at fixed flow rather than fixed gradient are illustrated and discussed.

  2. Absolute intensity calibration of the 32-channel heterodyne radiometer on experimental advanced superconducting tokamak

    SciTech Connect

    Liu, X.; Zhao, H. L.; Liu, Y. Li, E. Z.; Han, X.; Ti, A.; Hu, L. Q.; Zhang, X. D.; Domier, C. W.; Luhmann, N. C.

    2014-09-15

    This paper presents the results of the in situ absolute intensity calibration for the 32-channel heterodyne radiometer on the experimental advanced superconducting tokamak. The hot/cold load method is adopted, and the coherent averaging technique is employed to improve the signal to noise ratio. Measured spectra and electron temperature profiles are compared with those from an independent calibrated Michelson interferometer, and there is a relatively good agreement between the results from the two different systems.

  3. Overview of physics research on the TCV tokamak

    NASA Astrophysics Data System (ADS)

    Fasoli, A.; TCV Team

    2009-10-01

    The Tokamak à Configuration Variable (TCV) tokamak is equipped with high-power (4.5 MW), real-time-controllable EC systems and flexible shaping, and plays an important role in fusion research by broadening the parameter range of reactor relevant regimes, by investigating tokamak physics questions and by developing new control tools. Steady-state discharges are achieved, in which the current is entirely self-generated through the bootstrap mechanism, a fundamental ingredient for ITER steady-state operation. The discharge remains quiescent over several current redistribution times, demonstrating that a self-consistent, 'bootstrap-aligned' equilibrium state is possible. Electron internal transport barrier regimes sustained by EC current drive have also been explored. MHD activity is shown to be crucial in scenarios characterized by large and slow oscillations in plasma confinement, which in turn can be modified by small Ohmic current perturbations altering the barrier strength. In studies of the relation between anomalous transport and plasma shape, the observed dependences of the electron thermal diffusivity on triangularity (direct) and collisionality (inverse) are qualitatively reproduced by non-linear gyro-kinetic simulations and shown to be governed by TEM turbulence. Parallel SOL flows are studied for their importance for material migration. Flow profiles are measured using a reciprocating Mach probe by changing from lower to upper single-null diverted equilibria and shifting the plasmas vertically. The dominant, field-direction-dependent Pfirsch-Schlüter component is found to be in good agreement with theoretical predictions. A field-direction-independent component is identified and is consistent with flows generated by transient over-pressure due to ballooning-like interchange turbulence. Initial high-resolution infrared images confirm that ELMs have a filamentary structure, while fast, localized radiation measurements reveal that ELM activity first appears

  4. Observation of Energetic Particle Driven Modes Relevant to Advanced Tokamak Regimes

    SciTech Connect

    R. Nazikian; B. Alper; H.L. Berk; D. Borba; C. Boswell; R.V. Budny; K.H. Burrell; C.Z. Cheng; E.J. Doyle; E. Edlund; R.J. Fonck; A. Fukuyama; N.N. Gorelenkov; C.M. Greenfield; D.J. Gupta; M. Ishikawa; R.J. Jayakumar; G.J. Kramer; Y. Kusama; R.J. La Haye; G.R. McKee; W.A. Peebles; S.D. Pinches; M. Porkolab; J. Rapp; T.L. Rhodes; S.E. Sharapov; K. Shinohara; J.A. Snipes; W.M. Solomon; E.J. Strait; M. Takechi; M.A. Van Zeeland; W.P. West; K.L. Wong; S. Wukitch; L. Zeng

    2004-10-21

    Measurements of high-frequency oscillations in JET [Joint European Torus], JT-60U, Alcator C-Mod, DIII-D, and TFTR [Tokamak Fusion Test Reactor] plasmas are contributing to a new understanding of fast ion-driven instabilities relevant to Advanced Tokamak (AT) regimes. A model based on the transition from a cylindrical-like frequency-chirping mode to the Toroidal Alfven Eigenmode (TAE) has successfully encompassed many of the characteristics seen in experiments. In a surprising development, the use of internal density fluctuation diagnostics has revealed many more modes than has been detected on edge magnetic probes. A corollary discovery is the observation of modes excited by fast particles traveling well below the Alfven velocity. These observations open up new opportunities for investigating a ''sea of Alfven Eigenmodes'' in present-scale experiments, and highlight the need for core fluctuation and fast ion measurements in a future burning-plasma experiment.

  5. Advanced tokamak reactors based on the spherical torus (ATR/ST). Preliminary design considerations

    SciTech Connect

    Miller, R.L.; Krakowski, R.A.; Bathke, C.G.; Copenhaver, C.; Schnurr, N.M.; Engelhardt, A.G.; Seed, T.J.; Zubrin, R.M.

    1986-06-01

    Preliminary design results relating to an advanced magnetic fusion reactor concept based on the high-beta, low-aspect-ratio, spherical-torus tokamak are summarized. The concept includes resistive (demountable) toroidal-field coils, magnetic-divertor impurity control, oscillating-field current drive, and a flowing liquid-metal breeding blanket. Results of parametric tradeoff studies, plasma engineering modeling, fusion-power-core mechanical design, neutronics analyses, and blanket thermalhydraulics studies are described. The approach, models, and interim results described here provide a basis for a more detailed design. Key issues quantified for the spherical-torus reactor center on the need for an efficient drive for this high-current (approx.40 MA) device as well as the economic desirability to increase the net electrical power from the nominal 500-MWe(net) value adopted for the baseline system. Although a direct extension of present tokamak scaling, the stablity and transport of this high-beta (approx.0.3) plasma is a key unknown that is resoluble only by experiment. The spherical torus generally provides a route to improved tokamak reactors as measured by considerably simplified coil technology in a configuration that allows a realistic magnetic divertor design, both leading to increased mass power density and reduced cost.

  6. Progress toward long-pulse high-performance Advanced Tokamak discharges on the DIII-D tokamak

    NASA Astrophysics Data System (ADS)

    Wade, M. R.; Luce, T. C.; Politzer, P. A.; Ferron, J. R.; Allen, S. L.; Austin, M. E.; Baker, D. R.; Bray, B.; Brennen, D. P.; Burrell, K. H.; Casper, T. A.; Chu, M. S.; DeBoo, J. C.; Doyle, E. J.; Garofalo, A. M.; Gohil, P.; Gorelov, I. A.; Greenfield, C. M.; Groebner, R. J.; Heidbrink, W. W.; Hsieh, C.-L.; Hyatt, A. W.; Jayakumar, R.; Kinsey, J. E.; La Haye, R. J.; Lao, L. L.; Lasnier, C. J.; Lazarus, E. A.; Leonard, A. W.; Lin-Liu, Y. R.; Lohr, J.; Mahdavi, M. A.; Makowski, M. A.; Murakami, M.; Petty, C. C.; Pinsker, R. I.; Prater, R.; Rettig, C. L.; Rhodes, T. L.; Rice, B. W.; Strait, E. J.; Taylor, T. S.; Thomas, D. M.; Turnbull, A. D.; Watkins, J. G.; West, W. P.; Wong, K.-L.

    2001-05-01

    Significant progress has been made in obtaining high-performance discharges for many energy confinement times in the DIII-D tokamak [J. L. Luxon et al., Plasma Physics and Controlled Fusion Research (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159]. Normalized performance (measured by the product of βNH89 and indicative of the proximity to both conventional β limits and energy confinement quality, respectively) ˜10 has been sustained for >5 τE with qmin>1.5. These edge localized modes (ELMing) H-mode discharges have β˜5%, which is limited by the onset of resistive wall modes slightly above the ideal no-wall n=1 limit, with approximately 75% of the current driven noninductively. The remaining Ohmic current is localized near the half-radius. The DIII-D electron cyclotron heating system is being upgraded to replace this inductively driven current with localized electron cyclotron current drive (ECCD). Density control, which is required for effective ECCD, has been successfully demonstrated in long-pulse high-performance ELMing H-mode discharges with βNH89˜7 for up to 6.3 s. In plasma shapes compatible with good density control in the present divertor configuration, the achieved βN is somewhat less than that in the high βNH89=10 discharges.

  7. Performance of current measurement system in poloidal field power supply for Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Liu, D. M.; Li, J.; Wan, B. N.; Lu, Z.; Wang, L. S.; Jiang, L.; Lu, C. H.; Huang, J.

    2016-11-01

    As one of the core subsystems of the Experimental Advanced Superconducting Tokamak (EAST), the poloidal field power system supplies energy to EAST's superconducting coils. To measure the converter current in the poloidal field power system, a current measurement system has been designed. The proposed measurement system is composed of a Rogowski coil and a newly designed integrator. The results of the resistor-inductor-capacitor discharge test and the converter equal current test show that the current measurement system provides good reliability and stability, and the maximum error of the proposed system is less than 1%.

  8. Conceptual design of a fast-ion D-alpha diagnostic on experimental advanced superconducting tokamak

    SciTech Connect

    Huang, J. Wan, B.; Hu, L.; Hu, C.; Heidbrink, W. W.; Zhu, Y.; Hellermann, M. G. von; Gao, W.; Wu, C.; Li, Y.; Fu, J.; Lyu, B.; Yu, Y.; Ye, M.; Shi, Y.

    2014-11-15

    To investigate the fast ion behavior, a fast ion D-alpha (FIDA) diagnostic system has been planned and is presently under development on Experimental Advanced Superconducting Tokamak. The greatest challenges for the design of a FIDA diagnostic are its extremely low intensity levels, which are usually significantly below the continuum radiation level and several orders of magnitude below the bulk-ion thermal charge-exchange feature. Moreover, an overlaying Motional Stark Effect (MSE) feature in exactly the same wavelength range can interfere. The simulation of spectra code is used here to guide the design and evaluate the diagnostic performance. The details for the parameters of design and hardware are presented.

  9. Conceptual design of a fast-ion D-alpha diagnostic on experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Huang, J.; Heidbrink, W. W.; Wan, B.; von Hellermann, M. G.; Zhu, Y.; Gao, W.; Wu, C.; Li, Y.; Fu, J.; Lyu, B.; Yu, Y.; Shi, Y.; Ye, M.; Hu, L.; Hu, C.

    2014-11-01

    To investigate the fast ion behavior, a fast ion D-alpha (FIDA) diagnostic system has been planned and is presently under development on Experimental Advanced Superconducting Tokamak. The greatest challenges for the design of a FIDA diagnostic are its extremely low intensity levels, which are usually significantly below the continuum radiation level and several orders of magnitude below the bulk-ion thermal charge-exchange feature. Moreover, an overlaying Motional Stark Effect (MSE) feature in exactly the same wavelength range can interfere. The simulation of spectra code is used here to guide the design and evaluate the diagnostic performance. The details for the parameters of design and hardware are presented.

  10. Conceptual design of a fast-ion D-alpha diagnostic on experimental advanced superconducting tokamak.

    PubMed

    Huang, J; Heidbrink, W W; Wan, B; von Hellermann, M G; Zhu, Y; Gao, W; Wu, C; Li, Y; Fu, J; Lyu, B; Yu, Y; Shi, Y; Ye, M; Hu, L; Hu, C

    2014-11-01

    To investigate the fast ion behavior, a fast ion D-alpha (FIDA) diagnostic system has been planned and is presently under development on Experimental Advanced Superconducting Tokamak. The greatest challenges for the design of a FIDA diagnostic are its extremely low intensity levels, which are usually significantly below the continuum radiation level and several orders of magnitude below the bulk-ion thermal charge-exchange feature. Moreover, an overlaying Motional Stark Effect (MSE) feature in exactly the same wavelength range can interfere. The simulation of spectra code is used here to guide the design and evaluate the diagnostic performance. The details for the parameters of design and hardware are presented.

  11. 20 years of research on the Alcator C-Mod tokamak

    SciTech Connect

    Greenwald, M.; Baek, S.; Barnard, H.; Beck, W.; Bonoli, P.; Brunner, D.; Burke, W.; Ennever, P.; Ernst, D.; Faust, I.; Fiore, C.; Fredian, T.; Gao, C.; Golfinopoulos, T.; Granetz, R.; Hartwig, Z.; Hubbard, A.; Hughes, J.; Hutchinson, I.; Irby, J.; and others

    2014-11-15

    The object of this review is to summarize the achievements of research on the Alcator C-Mod tokamak [Hutchinson et al., Phys. Plasmas 1, 1511 (1994) and Marmar, Fusion Sci. Technol. 51, 261 (2007)] and to place that research in the context of the quest for practical fusion energy. C-Mod is a compact, high-field tokamak, whose unique design and operating parameters have produced a wealth of new and important results since it began operation in 1993, contributing data that extends tests of critical physical models into new parameter ranges and into new regimes. Using only high-power radio frequency (RF) waves for heating and current drive with innovative launching structures, C-Mod operates routinely at reactor level power densities and achieves plasma pressures higher than any other toroidal confinement device. C-Mod spearheaded the development of the vertical-target divertor and has always operated with high-Z metal plasma facing components—approaches subsequently adopted for ITER. C-Mod has made ground-breaking discoveries in divertor physics and plasma-material interactions at reactor-like power and particle fluxes and elucidated the critical role of cross-field transport in divertor operation, edge flows and the tokamak density limit. C-Mod developed the I-mode and the Enhanced Dα H-mode regimes, which have high performance without large edge localized modes and with pedestal transport self-regulated by short-wavelength electromagnetic waves. C-Mod has carried out pioneering studies of intrinsic rotation and demonstrated that self-generated flow shear can be strong enough in some cases to significantly modify transport. C-Mod made the first quantitative link between the pedestal temperature and the H-mode's performance, showing that the observed self-similar temperature profiles were consistent with critical-gradient-length theories and followed up with quantitative tests of nonlinear gyrokinetic models. RF research highlights include direct experimental

  12. Development of an integrated energetic neutral particle measurement system on experimental advanced full superconducting tokamak

    SciTech Connect

    Zhu, Y. B. Liu, D.; Heidbrink, W. W.; Zhang, J. Z.; Qi, M. Z.; Xia, S. B.; Wan, B. N.; Li, J. G.

    2014-11-15

    Full function integrated, compact silicon photodiode based solid state neutral particle analyzers (ssNPA) have been developed for energetic particle (EP) relevant studies on the Experimental Advanced Superconducting Tokamak (EAST). The ssNPAs will be mostly operated in advanced current mode with a few channels to be operated in conventional pulse-counting mode, aiming to simultaneously achieve individually proved ultra-fast temporal, spatial, and spectral resolution capabilities. The design details together with considerations on EAST specific engineering realities and physics requirements are presented. The system, including a group of single detectors on two vertical ports and two 16-channel arrays on a horizontal port, can provide both active and passive charge exchange measurements. ssNPA detectors, with variable thickness of ultra thin tungsten dominated foils directly deposited on the front surface, are specially fabricated and utilized to achieve about 22 keV energy resolution for deuterium particle detection.

  13. First results from solid state neutral particle analyzer on experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Zhang, J. Z.; Zhu, Y. B.; Zhao, J. L.; Wan, B. N.; Li, J. G.; Heidbrink, W. W.

    2016-11-01

    Full function integrated, compact solid state neutral particle analyzers (ssNPA) based on absolute extreme ultraviolet silicon photodiode have been successfully implemented on the experimental advanced superconducting tokamak to measure energetic particle. The ssNPA system has been operated in advanced current mode with fast temporal and spatial resolution capabilities, with both active and passive charge exchange measurements. It is found that the ssNPA flux signals are increased substantially with neutral beam injection (NBI). The horizontal active array responds to modulated NBI beam promptly, while weaker change is presented on passive array. Compared to near-perpendicular beam, near-tangential beam brings more passive ssNPA flux and a broader profile, while no clear difference is observed on active ssNPA flux and its profile. Significantly enhanced intensities on some ssNPA channels have been observed during ion cyclotron resonant heating.

  14. Development of an integrated energetic neutral particle measurement system on experimental advanced full superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Zhu, Y. B.; Zhang, J. Z.; Qi, M. Z.; Xia, S. B.; Liu, D.; Heidbrink, W. W.; Wan, B. N.; Li, J. G.

    2014-11-01

    Full function integrated, compact silicon photodiode based solid state neutral particle analyzers (ssNPA) have been developed for energetic particle (EP) relevant studies on the Experimental Advanced Superconducting Tokamak (EAST). The ssNPAs will be mostly operated in advanced current mode with a few channels to be operated in conventional pulse-counting mode, aiming to simultaneously achieve individually proved ultra-fast temporal, spatial, and spectral resolution capabilities. The design details together with considerations on EAST specific engineering realities and physics requirements are presented. The system, including a group of single detectors on two vertical ports and two 16-channel arrays on a horizontal port, can provide both active and passive charge exchange measurements. ssNPA detectors, with variable thickness of ultra thin tungsten dominated foils directly deposited on the front surface, are specially fabricated and utilized to achieve about 22 keV energy resolution for deuterium particle detection.

  15. Development of an integrated energetic neutral particle measurement system on experimental advanced full superconducting tokamak.

    PubMed

    Zhu, Y B; Zhang, J Z; Qi, M Z; Xia, S B; Liu, D; Heidbrink, W W; Wan, B N; Li, J G

    2014-11-01

    Full function integrated, compact silicon photodiode based solid state neutral particle analyzers (ssNPA) have been developed for energetic particle (EP) relevant studies on the Experimental Advanced Superconducting Tokamak (EAST). The ssNPAs will be mostly operated in advanced current mode with a few channels to be operated in conventional pulse-counting mode, aiming to simultaneously achieve individually proved ultra-fast temporal, spatial, and spectral resolution capabilities. The design details together with considerations on EAST specific engineering realities and physics requirements are presented. The system, including a group of single detectors on two vertical ports and two 16-channel arrays on a horizontal port, can provide both active and passive charge exchange measurements. ssNPA detectors, with variable thickness of ultra thin tungsten dominated foils directly deposited on the front surface, are specially fabricated and utilized to achieve about 22 keV energy resolution for deuterium particle detection.

  16. The ARIES tokamak reactor study

    SciTech Connect

    Not Available

    1989-10-01

    The ARIES study is a community effort to develop several visions of tokamaks as fusion power reactors. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Three ARIES visions are planned, each having a different degree of extrapolation from the present data base in physics and technology. The ARIES-I design assumes a minimum extrapolation from current tokamak physics (e.g., 1st stability) and incorporates technological advances that can be available in the next 20 to 30 years. ARIES-II is a DT-burning tokamak which would operate at a higher beta in the 2nd MHD stability regime. It employs both potential advances in the physics and expected advances in technology and engineering. ARIES-II will examine the potential of the tokamak and the D{sup 3}He fuel cycle. This report is a collection of 14 papers on the results of the ARIES study which were presented at the IEEE 13th Symposium on Fusion Engineering (October 2-6, 1989, Knoxville, TN). This collection describes the ARIES research effort, with emphasis on the ARIES-I design, summarizing the major results, the key technical issues, and the central conclusions.

  17. Twenty Years of Research on the Alcator C-Mod Tokamak

    NASA Astrophysics Data System (ADS)

    Greenwald, Martin

    2013-10-01

    Alcator C-Mod is a compact, high-field tokamak, whose unique design and operating parameters have produced a wealth of new and important results since its start in 1993, contributing data that extended tests of critical physical models into new parameter ranges and into new regimes. Using only RF for heating and current drive with innovative launching structures, C-Mod operates routinely at very high power densities. Research highlights include direct experimental observation of ICRF mode-conversion, ICRF flow drive, demonstration of Lower-Hybrid current drive at ITER-like densities and fields and, using a set of powerful new diagnostics, extensive validation of advanced RF codes. C-Mod spearheaded the development of the vertical-target divertor and has always operated with high-Z metal plasma facing components--an approach adopted for ITER. C-Mod has made ground-breaking discoveries in divertor physics and plasma-material interactions at reactor-like power and particle fluxes and elucidated the critical role of cross-field transport in divertor operation, edge flows and the tokamak density limit. C-Mod developed the I-mode and EDA H-mode regimes which have high performance without large ELMs and with pedestal transport self-regulated by short-wavelength electromagnetic waves. C-Mod has carried out pioneering studies of intrinsic rotation and found that self-generated flow shear can be strong enough to significantly modify transport. C-Mod made the first quantitative link between pedestal temperature and H-mode performance, showing that the observed self-similar temperature profiles were consistent with critical-gradient-length theories and followed up with quantitative tests of nonlinear gyrokinetic models. Disruption studies on C-Mod provided the first observation of non-axisymmetric halo currents and non-axisymmetric radiation in mitigated disruptions. Work supported by U.S. DoE

  18. Overview of recent and current research on the TCV tokamak

    NASA Astrophysics Data System (ADS)

    S. Codathe TCV Team

    2013-10-01

    Through a diverse research programme, the Tokamak à Configuration Variable (TCV) addresses physics issues and develops tools for ITER and for the longer term goals of nuclear fusion, relying especially on its extreme plasma shaping and electron cyclotron resonance heating (ECRH) launching flexibility and preparing for an ECRH and NBI power upgrade. Localized edge heating was unexpectedly found to decrease the period and relative energy loss of edge localized modes (ELMs). Successful ELM pacing has been demonstrated by following individual ELM detection with an ECRH power cut before turning the power back up to trigger the next ELM, the duration of the cut determining the ELM period. Negative triangularity was also seen to reduce the ELM energy release. H-mode studies have focused on the L-H threshold dependence on the main ion species and on the divertor leg length. Both L- and H-modes have been explored in the snowflake configuration with emphasis on edge measurements, revealing that the heat flux to the strike points on the secondary separatrix increases as the X-points approach each other, well before they coalesce. In L-mode, a systematic scan of the auxiliary power deposition profile, with no effect on confinement, has ruled it out as the cause of confinement degradation. An ECRH power absorption observer based on transmitted stray radiation was validated for eventual polarization control. A new profile control methodology was introduced, relying on real-time modelling to supplement diagnostic information; the RAPTOR current transport code in particular has been employed for joint control of the internal inductance and central temperature. An internal inductance controller using the ohmic transformer has also been demonstrated. Fundamental investigations of neoclassical tearing mode (NTM) seed island formation by sawtooth crashes and of NTM destabilization in the absence of a sawtooth trigger were carried out. Both stabilizing and destabilizing agents

  19. Fishbone activity in experimental advanced superconducting tokamak neutral beam injection plasma

    SciTech Connect

    Xu, Liqing; Zhang, Jizong; Chen, Kaiyun E-mail: lqhu@ipp.cas.cn; Hu, Liqun E-mail: lqhu@ipp.cas.cn; Li, Erzhong; Lin, Shiyao; Shi, Tonghui; Duan, Yanmin; Zhu, Yubao

    2015-12-15

    Repetitive fishbones near the trapped ion procession frequency were observed for the first time in the neutral beam injection high confinement plasmas in Experimental Advanced Superconducting Tokamak (EAST) tokamak, and diagnosed using a solid-state neutral particle analyzer based on a compact silicon photodiode together with an upgraded high spatial-temporal-resolution multi-arrays soft X-ray (SX) system. This 1/1 typical internal kink mode propagates in the ion-diamagnetism direction with a rotation speed faster than the bulk plasma in the plasma frame. From the SX measurements, this mode frequency is typical of chirping down and the energetic particle effect related to the twisting mode structure. This ion fishbone was found able to trigger a multiple core sawtooth crashes with edge-2/1 sideband modes, as well as to lead to a transition from fishbone to long lived saturated kink mode to fishbone. Furthermore, using SX tomography, a correlation between mode amplitude and mode frequency was found. Finally, a phenomenological prey–predator model was found to reproduce the fishbone nonlinear process well.

  20. New dual gas puff imaging system with up-down symmetry on experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Liu, S. C.; Shao, L. M.; Zweben, S. J.; Xu, G. S.; Guo, H. Y.; Cao, B.; Wang, H. Q.; Wang, L.; Yan, N.; Xia, S. B.; Zhang, W.; Chen, R.; Chen, L.; Ding, S. Y.; Xiong, H.; Zhao, Y.; Wan, B. N.; Gong, X. Z.; Gao, X.

    2012-12-01

    Gas puff imaging (GPI) offers a direct and effective diagnostic to measure the edge turbulence structure and velocity in the edge plasma, which closely relates to edge transport and instability in tokamaks. A dual GPI diagnostic system has been installed on the low field side on experimental advanced superconducting tokamak (EAST). The two views are up-down symmetric about the midplane and separated by a toroidal angle of 66.6°. A linear manifold with 16 holes apart by 10 mm is used to form helium gas cloud at the 130×130 mm (radial versus poloidal) objective plane. A fast camera is used to capture the light emission from the image plane with a speed up to 390 804 frames/s with 64×64 pixels and an exposure time of 2.156 μs. The spatial resolution of the system is 2 mm at the objective plane. A total amount of 200 Pa.L helium gas is puffed into the plasma edge for each GPI viewing region for about 250 ms. The new GPI diagnostic has been applied on EAST for the first time during the recent experimental campaign under various plasma conditions, including ohmic, L-mode, and type-I, and type-III ELMy H-modes. Some of these initial experimental results are also presented.

  1. Fishbone activity in experimental advanced superconducting tokamak neutral beam injection plasma

    NASA Astrophysics Data System (ADS)

    Xu, Liqing; Zhang, Jizong; Chen, Kaiyun; Hu, Liqun; Li, Erzhong; Lin, Shiyao; Shi, Tonghui; Duan, Yanmin; Zhu, Yubao

    2015-12-01

    Repetitive fishbones near the trapped ion procession frequency were observed for the first time in the neutral beam injection high confinement plasmas in Experimental Advanced Superconducting Tokamak (EAST) tokamak, and diagnosed using a solid-state neutral particle analyzer based on a compact silicon photodiode together with an upgraded high spatial-temporal-resolution multi-arrays soft X-ray (SX) system. This 1/1 typical internal kink mode propagates in the ion-diamagnetism direction with a rotation speed faster than the bulk plasma in the plasma frame. From the SX measurements, this mode frequency is typical of chirping down and the energetic particle effect related to the twisting mode structure. This ion fishbone was found able to trigger a multiple core sawtooth crashes with edge-2/1 sideband modes, as well as to lead to a transition from fishbone to long lived saturated kink mode to fishbone. Furthermore, using SX tomography, a correlation between mode amplitude and mode frequency was found. Finally, a phenomenological prey-predator model was found to reproduce the fishbone nonlinear process well.

  2. Design of a magnetic shielding system for the time of flight enhanced diagnostics neutron spectrometer at Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Cui, Z. Q.; Chen, Z. J.; Xie, X. F.; Peng, X. Y.; Hu, Z. M.; Du, T. F.; Ge, L. J.; Zhang, X.; Yuan, X.; Fan, T. S.; Chen, J. X.; Li, X. Q. E-mail: guohuizhang@pku.edu.cn; Zhang, G. H. E-mail: guohuizhang@pku.edu.cn; Xia, Z. W.; Hu, L. Q.; Zhong, G. Q.; Lin, S. Y.; Wan, B. N.

    2014-11-15

    The novel neutron spectrometer TOFED (Time of Flight Enhanced Diagnostics), comprising 90 individual photomultiplier tubes coupled with 85 plastic scintillation detectors through light guides, has been constructed and installed at Experimental Advanced Superconducting Tokamak. A dedicated magnetic shielding system has been constructed for TOFED, and is designed to guarantee the normal operation of photomultiplier tubes in the stray magnetic field leaking from the tokamak device. Experimental measurements and numerical simulations carried out employing the finite element method are combined to optimize the design of the magnetic shielding system. The system allows detectors to work properly in an external magnetic field of 200 G.

  3. Design of a magnetic shielding system for the time of flight enhanced diagnostics neutron spectrometer at Experimental Advanced Superconducting Tokamak.

    PubMed

    Cui, Z Q; Chen, Z J; Xie, X F; Peng, X Y; Hu, Z M; Du, T F; Ge, L J; Zhang, X; Yuan, X; Xia, Z W; Hu, L Q; Zhong, G Q; Lin, S Y; Wan, B N; Fan, T S; Chen, J X; Li, X Q; Zhang, G H

    2014-11-01

    The novel neutron spectrometer TOFED (Time of Flight Enhanced Diagnostics), comprising 90 individual photomultiplier tubes coupled with 85 plastic scintillation detectors through light guides, has been constructed and installed at Experimental Advanced Superconducting Tokamak. A dedicated magnetic shielding system has been constructed for TOFED, and is designed to guarantee the normal operation of photomultiplier tubes in the stray magnetic field leaking from the tokamak device. Experimental measurements and numerical simulations carried out employing the finite element method are combined to optimize the design of the magnetic shielding system. The system allows detectors to work properly in an external magnetic field of 200 G.

  4. Development of Burning Plasma and Advanced Scenarios in the DIII-D Tokamak

    SciTech Connect

    Luce, T C

    2004-12-01

    Significant progress in the development of burning plasma scenarios, steady-state scenarios at high fusion performance, and basic tokamak physics has been made by the DIII-D Team. Discharges similar to the ITER baseline scenario have demonstrated normalized fusion performance nearly 50% higher than required for Q = 10 in ITER, under stationary conditions. Discharges that extrapolate to Q {approx} 10 for longer than one hour in ITER at reduced current have also been demonstrated in DIII-D under stationary conditions. Proof of high fusion performance with full noninductive operation has been obtained. Underlying this work are studies validating approaches to confinement extrapolation, disruption avoidance and mitigation, tritium retention, ELM avoidance, and operation above the no-wall pressure limit. In addition, the unique capabilities of the DIII-D facility have advanced studies of the sawtooth instability with unprecedented time and space resolution, threshold behavior in the electron heat transport, and rotation in plasmas in the absence of external torque.

  5. Development of Burning Plasma and Advanced Scenarios in the DIII-D Tokamak

    SciTech Connect

    Luce, T C

    2004-10-18

    Significant progress in the development of burning plasma scenarios, steady-state scenarios at high fusion performance, and basic tokamak physics has been made by the DIII-D Team. Discharges similar to the ITER baseline scenario have demonstrated normalized fusion performance nearly 50% higher than required for Q = 10 in ITER, under stationary conditions. Discharges that extrapolate to Q {approx} 10 for longer than one hour in ITER at reduced current have also been demonstrated in DIII-D under stationary conditions. Proof of high fusion performance with full noninductive operation has been obtained. Underlying this work are studies validating approaches to confinement extrapolation, disruption avoidance and mitigation, tritium retention, ELM avoidance, and operation above the no-wall pressure limit. In addition, the unique capabilities of the DIII-D facility have advanced studies of the sawtooth instability with unprecedented time and space resolution, threshold behavior in the electron heat transport, and rotation in plasmas in the absence of external torque.

  6. Application of visible bremsstrahlung to Z{sub eff} measurement on the Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Chen, Yingjie; Wu, Zhenwei; Gao, Wei; Ti, Ang; Zhang, Ling; Jie, Yinxian; Zhang, Jizong; Huang, Juan; Xu, Zong; Zhao, Junyu

    2015-02-15

    The multi-channel visible bremsstrahlung measurement system has been developed on Experimental Advanced Superconducting Tokamak (EAST). In addition to providing effective ion charge Z{sub eff} as a routine diagnostic, this diagnostic can also be used to estimate other parameters. With the assumption that Z{sub eff} can be seen as constant across the radius and does not change significantly during steady state discharges, central electron temperature, averaged electron density, electron density profile, and plasma current density profile have been obtained based on the scaling of Z{sub eff} with electron density and the relations between Z{sub eff} and these parameters. The estimated results are in good coincidence with measured values, providing an effective and convenient method to estimate other plasma parameters.

  7. Application of visible bremsstrahlung to Z(eff) measurement on the Experimental Advanced Superconducting Tokamak.

    PubMed

    Chen, Yingjie; Wu, Zhenwei; Gao, Wei; Ti, Ang; Zhang, Ling; Jie, Yinxian; Zhang, Jizong; Huang, Juan; Xu, Zong; Zhao, Junyu

    2015-02-01

    The multi-channel visible bremsstrahlung measurement system has been developed on Experimental Advanced Superconducting Tokamak (EAST). In addition to providing effective ion charge Zeff as a routine diagnostic, this diagnostic can also be used to estimate other parameters. With the assumption that Zeff can be seen as constant across the radius and does not change significantly during steady state discharges, central electron temperature, averaged electron density, electron density profile, and plasma current density profile have been obtained based on the scaling of Zeff with electron density and the relations between Zeff and these parameters. The estimated results are in good coincidence with measured values, providing an effective and convenient method to estimate other plasma parameters.

  8. Development of an alternating integrator for magnetic measurements for experimental advanced superconducting tokamak.

    PubMed

    Liu, D M; Wan, B N; Zhao, W Z; Shen, B; He, Y G; Chen, B; Huang, J; Liu, H Q

    2014-11-01

    A high-performance integrator is one of the key electronic devices for reliably controlling plasma in the experimental advanced superconducting tokamak for long pulse operation. We once designed an integrator system of real-time drift compensation, which has a low integration drift. However, it is not feasible for really continuous operations due to capacitive leakage error and nonlinearity error. To solve the above-mentioned problems, this paper presents a new alternating integrator. In the new integrator, the integrator system of real-time drift compensation is adopted as one integral cell while two such integral cells work alternately. To achieve the alternate function, a Field Programmable Gate Array built in the digitizer is utilized. The performance test shows that the developed integrator with the integration time constant of 20 ms has a low integration drift (<15 mV) for 1000 s.

  9. Development of an alternating integrator for magnetic measurements for experimental advanced superconducting tokamak

    SciTech Connect

    Liu, D. M. Zhao, W. Z.; He, Y. G.; Chen, B.; Wan, B. N.; Shen, B.; Huang, J.; Liu, H. Q.

    2014-11-15

    A high-performance integrator is one of the key electronic devices for reliably controlling plasma in the experimental advanced superconducting tokamak for long pulse operation. We once designed an integrator system of real-time drift compensation, which has a low integration drift. However, it is not feasible for really continuous operations due to capacitive leakage error and nonlinearity error. To solve the above-mentioned problems, this paper presents a new alternating integrator. In the new integrator, the integrator system of real-time drift compensation is adopted as one integral cell while two such integral cells work alternately. To achieve the alternate function, a Field Programmable Gate Array built in the digitizer is utilized. The performance test shows that the developed integrator with the integration time constant of 20 ms has a low integration drift (<15 mV) for 1000 s.

  10. Advancing empirical resilience research.

    PubMed

    Kalisch, Raffael; Müller, Marianne B; Tüscher, Oliver

    2015-01-01

    We are delighted by the broad, intense, and fruitful discussion in reaction to our target article. A major point we take from the many comments is a prevailing feeling in the research community that we need significantly and urgently to advance resilience research, both by sharpening concepts and theories and by conducting empirical studies at a much larger scale and with a much more extended and sophisticated methodological arsenal than is the case currently. This advancement can be achieved only in a concerted international collaborative effort. In our response, we try to argue that an explicitly atheoretical, purely observational definition of resilience and a transdiagnostic, quantitative study framework can provide a suitable basis for empirically testing different competing resilience theories (sects. R1, R2, R6, R7). We are confident that it should be possible to unite resilience researchers from different schools, including from sociology and social psychology, behind such a pragmatic and theoretically neutral research strategy. In sections R3 to R5, we further specify and explain the positive appraisal style theory of resilience (PASTOR). We defend PASTOR as a comparatively parsimonious and translational theory that makes sufficiently concrete predictions to be evaluated empirically. PMID:26815844

  11. DIII-D research operations

    SciTech Connect

    Baker, D.

    1993-05-01

    This report discusses the research on the following topics: DIII-D program overview; divertor and boundary research program; advanced tokamak studies; tokamak physics; operations; program development; support services; contribution to ITER physics R D; and collaborative efforts.

  12. NASA advanced propeller research

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Bober, Lawrence J.

    1988-01-01

    Acoustic and aerodynamic research at NASA Lewis Research Center on advanced propellers is reviewed including analytical and experimental results on both single and counterrotation. Computational tools used to calculate the detailed flow and acoustic fields are described along with wind tunnel tests to obtain data for code verification. Results from two kinds of experiments are reviewed: (1) performance and near field noise at cruise conditions as measured in the NASA Lewis 8- by 6-foot Wind Tunnel; and (2) far field noise and performance for takeoff/approach conditions as measured in the NASA Lewis 9- by 15-foot Anechoic Wind Tunnel. Detailed measurements of steady blade surface pressures are described along with vortex flow phenomena at off-design conditions. Near field noise at cruise is shown to level out or decrease as tip relative Mach number is increased beyond 1.15. Counterrotation interaction noise is shown to be a dominant source at takeoff but a secondary source at cruise. Effects of unequal rotor diameters and rotor-to-rotor spacing on interaction noise are also illustrated. Comparisons of wind tunnel acoustic measurements to flight results are made. Finally, some future directions in advanced propeller research such as swirl recovery vanes, higher sweep, forward sweep, and ducted propellers are discussed.

  13. NASA Advanced Propeller Research

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Bober, Lawrence J.

    1988-01-01

    Acoustic and aerodynamic research at NASA Lewis Research Center on advanced propellers is reviewed including analytical and experimental results on both single and counterrotation. Computational tools used to calculate the detailed flow and acoustic i e l d s a r e described along with wind tunnel tests to obtain data for code verification . Results from two kinds of experiments are reviewed: ( 1 ) performance and near field noise at cruise conditions as measured in the NASA Lewis 8-by 6-Foot Wind Tunnel and ( 2 ) farfield noise and performance for takeoff/approach conditions as measured in the NASA Lewis 9-by 15-Font Anechoic Wind Tunnel. Detailed measurements of steady blade surface pressures are described along with vortex flow phenomena at off design conditions . Near field noise at cruise is shown to level out or decrease as tip relative Mach number is increased beyond 1.15. Counterrotation interaction noise is shown to be a dominant source at take off but a secondary source at cruise. Effects of unequal rotor diameters and rotor-to-rotor spacing on interaction noise a real so illustrated. Comparisons of wind tunnel acoustic measurements to flight results are made. Finally, some future directions in advanced propeller research such as swirl recovery vanes, higher sweep, forward sweep, and ducted propellers are discussed.

  14. Advanced Fuels Reactor using Aneutronic Rodless Ultra Low Aspect Ratio Tokamak Hydrogenic Plasmas

    NASA Astrophysics Data System (ADS)

    Ribeiro, Celso

    2015-11-01

    The use of advanced fuels for fusion reactor is conventionally envisaged for field reversed configuration (FRC) devices. It is proposed here a preliminary study about the use of these fuels but on an aneutronic Rodless Ultra Low Aspect Ratio (RULART) hydrogenic plasmas. The idea is to inject micro-size boron pellets vertically at the inboard side (HFS, where TF is very high and the tokamak electron temperature is relatively low because of profile), synchronised with a proton NBI pointed to this region. Therefore, p-B reactions should occur and alpha particles produced. These pellets will act as an edge-like disturbance only (cp. killer pellet, although the vertical HFS should make this less critical, since the unablated part should appear in the bottom of the device). The boron cloud will appear at midplance, possibly as a MARFE-look like. Scaling of the p-B reactions by varying the NBI energy should be compared with the predictions of nuclear physics. This could be an alternative to the FRC approach, without the difficulties of the optimization of the FRC low confinement time. Instead, a robust good tokamak confinement with high local HFS TF (enhanced due to the ultra low aspect ratio and low pitch angle) is used. The plasma central post makes the RULART concept attractive because of the proximity of NBI path and also because a fraction of born alphas will cross the plasma post and dragged into it in the direction of the central plasma post current, escaping vertically into a hole in the bias plate and reaching the direct electricity converter, such as in the FRC concept.

  15. Development of advanced superconducting coil technologies for the National Centralized Tokamak

    NASA Astrophysics Data System (ADS)

    Kizu, K.; Miura, Y. M.; Tsuchiya, K.; Ando, T.; Koizumi, N.; Matsui, K.; Sakasai, A.; Tamai, H.; Matsukawa, M.; Ishida, S.; Okuno, K.

    2005-11-01

    Advanced technologies for fabrication of superconducting coils have been developed for the National Centralized Tokamak which is based on modification of JT-60. One of the technologies developed is the application of the react-and-wind (R&W) method of fabrication of a Nb3Al D-shaped coil. The bending strain of 0.4% due to the R&W method did not affect the critical current characteristics. This finding indicates the possibilities that the manufacturing cost of large size coils can be reduced further by downsizing the heat treatment furnace, and large complicated shape coils can be manufactured by using the Nb3Al conductor. Another technology is an advanced winding technique for the reduction of the ac losses of Nb3Sn coils by loading bending strain on the conductor. It was found that 0.2% bending strain is enough to reduce the ac losses to one-fifth at the virgin state. The newly developed NbTi conductor attained both (i) low ac loss of 116 ms in coupling time constant and (ii) low cost owing to the stainless steel wrap of the sub-cables and Ni plated NbTi strands with 11 µm filaments.

  16. Advanced propeller research

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Bober, Lawrence J.

    1987-01-01

    Resent results of aerodynamic and acoustic research on both single and counter-rotation propellers are reviewed. Data and analytical results are presented for three propellers: SR-7A, the single rotation design used in the NASA Propfan Test Assessment (PTA); and F7-A7, the 8+8 counterrotating design used in the proof-of-concept Unducted Fan (UDF) engine. In addition to propeller efficiencies, cruise and takeoff noise, and blade pressure data, off-design phenomena involving formation of leading edge vortices are described. Aerodynamic and acoustic computational results derived from three-dimensional Euler and acoustic radiation codes are presented. Research on unsteady flows, which are particularly important for understanding counterrotation interaction noise, unsteady loading effects on acoustics, and flutter or forced response is described. The first results of three-dimensional unsteady Euler solutions are illustrated for a single rotation propeller at an angle of attack and for a counterrotation propeller. Basic experimental and theoretical results from studies of the unsteady aerodynamics of oscillating cascades are outlined. Finally, advanced concepts involving swirl recovery vanes and ultra bypass ducted propellers are discussed.

  17. Texas Experimental Tokamak, a plasma research facility: Technical progress report

    SciTech Connect

    Wootton, A.J.

    1995-08-01

    In the year just past, the authors made major progress in understanding turbulence and transport in both core and edge. Development of the capability for turbulence measurements throughout the poloidal cross section and intelligent consideration of the observed asymmetries, played a critical role in this work. In their confinement studies, a limited plasma with strong, H-mode-like characteristics serendipitously appeared and received extensive study though a diverted H-mode remains elusive. In the plasma edge, they appear to be close to isolating a turbulence drive mechanism. These are major advances of benefit to the community at large, and they followed from incremental improvements in diagnostics, in the interpretation of the diagnostics, and in TEXT itself. Their general philosophy is that the understanding of plasma physics must be part of any intelligent fusion program, and that basic experimental research is the most important part of any such program. The work here demonstrates a continuing dedication to the problems of plasma transport which continue to plague the community and are an impediment to the design of future devices. They expect to show here that they approach this problem consistently, systematically, and effectively.

  18. Edge multi-energy soft x-ray diagnostic in Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Li, Y. L.; Xu, G. S.; Wan, B. N.; Lan, H.; Liu, Y. L.; Wei, J.; Zhang, W.; Hu, G. H.; Wang, H. Q.; Duan, Y. M.; Zhao, J. L.; Wang, L.; Liu, S. C.; Ye, Y.; Li, J.; Lin, X.; Li, X. L.; Tritz, K.; Zhu, Y. B.

    2015-12-15

    A multi-energy soft x-ray (ME-SXR) diagnostic has been built for electron temperature profile in the edge plasma region in Experimental Advanced Superconducting Tokamak (EAST) after two rounds of campaigns. Originally, five preamplifiers were mounted inside the EAST vacuum vessel chamber attached to five vertically stacked compact diode arrays. A custom mechanical structure was designed to protect the detectors and electronics under constraints of the tangential field of view for plasma edge and the allocation of space. In the next experiment, the mechanical structure was redesigned with a barrel structure to absolutely isolate it from the vacuum vessel. Multiple shielding structures were mounted at the pinhole head to protect the metal foils from lithium coating. The pre-amplifiers were moved to the outside of the vacuum chamber to avoid introducing interference. Twisted copper cooling tube was embedded into the back-shell near the diode to limit the temperature of the preamplifiers and diode arrays during vacuum vessel baking when the temperature reached 150 °C. Electron temperature profiles were reconstructed from ME-SXR measurements using neural networks.

  19. The circuit of polychromator for Experimental Advanced Superconducting Tokamak edge Thomson scattering diagnostic

    SciTech Connect

    Zang, Qing; Zhao, Junyu; Chen, Hui; Li, Fengjuan; Hsieh, C. L.

    2013-09-15

    The detector circuit is the core component of filter polychromator which is used for scattering light analysis in Thomson scattering diagnostic, and is responsible for the precision and stability of a system. High signal-to-noise and stability are primary requirements for the diagnostic. Recently, an upgraded detector circuit for weak light detecting in Experimental Advanced Superconducting Tokamak (EAST) edge Thomson scattering system has been designed, which can be used for the measurement of large electron temperature (T{sub e}) gradient and low electron density (n{sub e}). In this new circuit, a thermoelectric-cooled avalanche photodiode with the aid circuit is involved for increasing stability and enhancing signal-to-noise ratio (SNR), especially the circuit will never be influenced by ambient temperature. These features are expected to improve the accuracy of EAST Thomson diagnostic dramatically. Related mechanical construction of the circuit is redesigned as well for heat-sinking and installation. All parameters are optimized, and SNR is dramatically improved. The number of minimum detectable photons is only 10.

  20. Upgrades of the high resolution imaging x-ray crystal spectrometers on experimental advanced superconducting tokamak

    SciTech Connect

    Lu, B.; Wang, F.; Fu, J.; Li, Y.; Wan, B.; Shi, Y.; Bitter, M.; Hill, K. W.; Lee, S. G.

    2012-10-15

    Two imaging x-ray crystal spectrometers, the so-called 'poloidal' and 'tangential' spectrometers, were recently implemented on experimental advanced superconducting tokamak (EAST) to provide spatially and temporally resolved impurity ion temperature (T{sub i}), electron temperature (T{sub e}) and rotation velocity profiles. They are derived from Doppler width of W line for Ti, the intensity ratio of Li-like satellites to W line for Te, and Doppler shift of W line for rotation. Each spectrometer originally consisted of a spherically curved crystal and a two-dimensional multi-wire proportional counter (MWPC) detector. Both spectrometers have now been upgraded. The layout of the tangential spectrometer was modified, since it had to be moved to a different port, and the spectrometer was equipped with two high count rate Pilatus detectors (Model 100 K) to overcome the count rate limitation of the MWPC and to improve its time resolution. The poloidal spectrometer was equipped with two spherically bent crystals to record the spectra of He-like and H-like argon simultaneously and side by side on the original MWPC. These upgrades are described, and new results from the latest EAST experimental campaign are presented.

  1. Edge multi-energy soft x-ray diagnostic in Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Li, Y. L.; Xu, G. S.; Tritz, K.; Zhu, Y. B.; Wan, B. N.; Lan, H.; Liu, Y. L.; Wei, J.; Zhang, W.; Hu, G. H.; Wang, H. Q.; Duan, Y. M.; Zhao, J. L.; Wang, L.; Liu, S. C.; Ye, Y.; Li, J.; Lin, X.; Li, X. L.

    2015-12-01

    A multi-energy soft x-ray (ME-SXR) diagnostic has been built for electron temperature profile in the edge plasma region in Experimental Advanced Superconducting Tokamak (EAST) after two rounds of campaigns. Originally, five preamplifiers were mounted inside the EAST vacuum vessel chamber attached to five vertically stacked compact diode arrays. A custom mechanical structure was designed to protect the detectors and electronics under constraints of the tangential field of view for plasma edge and the allocation of space. In the next experiment, the mechanical structure was redesigned with a barrel structure to absolutely isolate it from the vacuum vessel. Multiple shielding structures were mounted at the pinhole head to protect the metal foils from lithium coating. The pre-amplifiers were moved to the outside of the vacuum chamber to avoid introducing interference. Twisted copper cooling tube was embedded into the back-shell near the diode to limit the temperature of the preamplifiers and diode arrays during vacuum vessel baking when the temperature reached 150 °C. Electron temperature profiles were reconstructed from ME-SXR measurements using neural networks.

  2. Analysis of pedestal gradient characteristic on the Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Wang, Teng Fei; Han, Xiao Feng; Zang, Qing; Xiao, Shu Mei; Tian, Bao Gang; Hu, Ai Lan; Zhao, Jun Yu

    2016-05-01

    A pedestal database was built based on type I edge localized mode H-modes in the Experimental Advanced Superconducting Tokamak. The most common functional form hyperbolic tangent function (tanh) method is used to analyze pedestal characteristics. The pedestal gradient scales linearly with its pedestal top and the normalized pedestal pressure gradient α shows a strong correlation with electron collisionality. The connection among pedestal top value, gradient, and width is established with the normalized pedestal pressure gradient. In the core region of the plasma, the nature of the electron temperature stiffness reflects a proportionality between core and pedestal temperature while the increase proportion is lower than that expected in the high temperature region. However, temperature profile stiffness is limited or even disappears at the edge of the plasma, while the gradient length ratio ( ηe ) on the pedestal is important. The range of ηe is from 0.5 to 2, varying with the plasma parameters. The pedestal temperature brings a more significant impact on ηe than pedestal density.

  3. The circuit of polychromator for Experimental Advanced Superconducting Tokamak edge Thomson scattering diagnostic.

    PubMed

    Zang, Qing; Hsieh, C L; Zhao, Junyu; Chen, Hui; Li, Fengjuan

    2013-09-01

    The detector circuit is the core component of filter polychromator which is used for scattering light analysis in Thomson scattering diagnostic, and is responsible for the precision and stability of a system. High signal-to-noise and stability are primary requirements for the diagnostic. Recently, an upgraded detector circuit for weak light detecting in Experimental Advanced Superconducting Tokamak (EAST) edge Thomson scattering system has been designed, which can be used for the measurement of large electron temperature (T(e)) gradient and low electron density (n(e)). In this new circuit, a thermoelectric-cooled avalanche photodiode with the aid circuit is involved for increasing stability and enhancing signal-to-noise ratio (SNR), especially the circuit will never be influenced by ambient temperature. These features are expected to improve the accuracy of EAST Thomson diagnostic dramatically. Related mechanical construction of the circuit is redesigned as well for heat-sinking and installation. All parameters are optimized, and SNR is dramatically improved. The number of minimum detectable photons is only 10.

  4. Multi-channel poloidal correlation reflectometry on experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Qu, H.; Zhang, T.; Han, X.; Xiang, H. M.; Wen, F.; Geng, K. N.; Wang, Y. M.; Kong, D. F.; Cai, J. Q.; Huang, C. B.; Gao, Y.; Gao, X.; Zhang, S.

    2016-11-01

    A new multi-channel poloidal correlation reflectometry is developed at Experimental Advanced Superconducting Tokamak. Eight dielectric resonator oscillators with frequencies of 12.5 GHz, 13.5 GHz, 14.5 GHz, 15 GHz, 15.5 GHz, 16 GHz, 17 GHz, and 18 GHz are used as sources. Signals from the sources are up-converted to V band using active quadruplers and then coupled together. The output waves are launched by one single antenna after passing through a 20 dB directional coupler which can provide the reference signal. Two poloidally separated antennae are installed to receive the reflected waves from plasma. The reference and reflected signals are down-converted by mixing with a quadrupled signal from a phase-locked source with a frequency of 14.2 GHz and the IF signals pass through the filter bank. The resulting signals from the mixers are detected by I/Q demodulators. The setup enables the measurement of density fluctuation at 8 (radial) × 2 (poloidal) spatial points. A coherent mode with an increasing velocity from 50 kHz to 100 kHz is observed by using the system. The mode is located in the steep gradient region of the pedestal.

  5. New steady-state quiescent high-confinement plasma in an experimental advanced superconducting tokamak.

    PubMed

    Hu, J S; Sun, Z; Guo, H Y; Li, J G; Wan, B N; Wang, H Q; Ding, S Y; Xu, G S; Liang, Y F; Mansfield, D K; Maingi, R; Zou, X L; Wang, L; Ren, J; Zuo, G Z; Zhang, L; Duan, Y M; Shi, T H; Hu, L Q

    2015-02-01

    A critical challenge facing the basic long-pulse high-confinement operation scenario (H mode) for ITER is to control a magnetohydrodynamic (MHD) instability, known as the edge localized mode (ELM), which leads to cyclical high peak heat and particle fluxes at the plasma facing components. A breakthrough is made in the Experimental Advanced Superconducting Tokamak in achieving a new steady-state H mode without the presence of ELMs for a duration exceeding hundreds of energy confinement times, by using a novel technique of continuous real-time injection of a lithium (Li) aerosol into the edge plasma. The steady-state ELM-free H mode is accompanied by a strong edge coherent MHD mode (ECM) at a frequency of 35-40 kHz with a poloidal wavelength of 10.2 cm in the ion diamagnetic drift direction, providing continuous heat and particle exhaust, thus preventing the transient heat deposition on plasma facing components and impurity accumulation in the confined plasma. It is truly remarkable that Li injection appears to promote the growth of the ECM, owing to the increase in Li concentration and hence collisionality at the edge, as predicted by GYRO simulations. This new steady-state ELM-free H-mode regime, enabled by real-time Li injection, may open a new avenue for next-step fusion development.

  6. Edge multi-energy soft x-ray diagnostic in Experimental Advanced Superconducting Tokamak.

    PubMed

    Li, Y L; Xu, G S; Tritz, K; Zhu, Y B; Wan, B N; Lan, H; Liu, Y L; Wei, J; Zhang, W; Hu, G H; Wang, H Q; Duan, Y M; Zhao, J L; Wang, L; Liu, S C; Ye, Y; Li, J; Lin, X; Li, X L

    2015-12-01

    A multi-energy soft x-ray (ME-SXR) diagnostic has been built for electron temperature profile in the edge plasma region in Experimental Advanced Superconducting Tokamak (EAST) after two rounds of campaigns. Originally, five preamplifiers were mounted inside the EAST vacuum vessel chamber attached to five vertically stacked compact diode arrays. A custom mechanical structure was designed to protect the detectors and electronics under constraints of the tangential field of view for plasma edge and the allocation of space. In the next experiment, the mechanical structure was redesigned with a barrel structure to absolutely isolate it from the vacuum vessel. Multiple shielding structures were mounted at the pinhole head to protect the metal foils from lithium coating. The pre-amplifiers were moved to the outside of the vacuum chamber to avoid introducing interference. Twisted copper cooling tube was embedded into the back-shell near the diode to limit the temperature of the preamplifiers and diode arrays during vacuum vessel baking when the temperature reached 150 °C. Electron temperature profiles were reconstructed from ME-SXR measurements using neural networks.

  7. The high beta tokamak-extended pulse magnetohydrodynamic mode control research program

    NASA Astrophysics Data System (ADS)

    Maurer, D. A.; Bialek, J.; Byrne, P. J.; De Bono, B.; Levesque, J. P.; Li, B. Q.; Mauel, M. E.; Navratil, G. A.; Pedersen, T. S.; Rath, N.; Shiraki, D.

    2011-07-01

    The high beta tokamak-extended pulse (HBT-EP) magnetohydrodynamic (MHD) mode control research program is studying ITER relevant internal modular feedback control coil configurations and their impact on kink mode rigidity, advanced digital control algorithms and the effects of plasma rotation and three-dimensional magnetic fields on MHD mode stability. A new segmented adjustable conducting wall has been installed on the HBT-EP and is made up of 20 independent, movable, wall shell segments instrumented with three distinct sets of 40 saddle coils, totaling 120 in-vessel modular feedback control coils. Each internal coil set has been designed with varying toroidal angular coil coverage of 5, 10 and 15°, spanning the toroidal angle range of an ITER port plug based internal coil to test resistive wall mode (RWM) interaction and multimode MHD plasma response to such highly localized control fields. In addition, we have implemented 336 new poloidal and radial magnetic sensors to quantify the applied three-dimensional fields of our control coils along with the observed plasma response. This paper describes the design and implementation of the new control shell incorporating these control and sensor coils on the HBT-EP, and the research program plan on the upgraded HBT-EP to understand how best to optimize the use of modular feedback coils to control instability growth near the ideal wall stabilization limit, answer critical questions about the role of plasma rotation in active control of the RWM and the ferritic resistive wall mode, and to improve the performance of MHD control systems used in fusion experiments and future burning plasma systems.

  8. Physics basis for an advanced physics and advanced technology tokamak power plant configuration: ARIES-ACT1

    SciTech Connect

    Kessel, C. E.; Poli, F. M.; Ghantous, K.; Gorelenkov, N. N.; Rensink, M. E.; Rognlien, T. D.; Snyder, P. B.; St. John, H.; Turnbull, A. D.

    2015-01-01

    Here, the advanced physics and advanced technology tokamak power plant ARIES-ACT1 has a major radius of 6.25 m at an aspect ratio of 4.0, toroidal field of 6.0 T, strong shaping with elongation of 2.2, and triangularity of 0.63. The broadest pressure cases reached wall-stabilized βN ~ 5.75, limited by n = 3 external kink mode requiring a conducting shell at b/a = 0.3, requiring plasma rotation, feedback, and/or kinetic stabilization. The medium pressure peaking case reaches βN = 5.28 with BT = 6.75, while the peaked pressure case reaches βN < 5.15. Fast particle magnetohydrodynamic stability shows that the alpha particles are unstable, but this leads to redistribution to larger minor radius rather than loss from the plasma. Edge and divertor plasma modeling shows that 75% of the power to the divertor can be radiated with an ITER-like divertor geometry, while >95% can be radiated in a stable detached mode with an orthogonal target and wide slot geometry. The bootstrap current fraction is 91% with a q95 of 4.5, requiring ~1.1 MA of external current drive. This current is supplied with 5 MW of ion cyclotron radio frequency/fast wave and 40 MW of lower hybrid current drive. Electron cyclotron is most effective for safety factor control over ρ~0.2 to 0.6 with 20 MW. The pedestal density is ~0.9×1020/m3, and the temperature is ~4.4 keV. The H98 factor is 1.65, n/nGr = 1.0, and the ratio of net power to threshold power is 2.8 to 3.0 in the flattop.

  9. The Physics Basis For An Advanced Physics And Advanced Technology Tokamak Power Plant Configuration, ARIES-ACT1

    SciTech Connect

    Charles Kessel, et al

    2014-03-05

    The advanced physics and advanced technology tokamak power plant ARIES-ACT1 has a major radius of 6.25 m at aspect ratio of 4.0, toroidal field of 6.0 T, strong shaping with elongation of 2.2 and triangularity of 0.63. The broadest pressure cases reached wall stabilized βN ~ 5.75, limited by n=3 external kink mode requiring a conducting shell at b/a = 0.3, and requiring plasma rotation, feedback, and or kinetic stabilization. The medium pressure peaking case reached βN = 5.28 with BT = 6.75, while the peaked pressure case reaches βN < 5.15. Fast particle MHD stability shows that the alpha particles are unstable, but this leads to redistribution to larger minor radius rather than loss from the plasma. Edge and divertor plasma modeling show that about 75% of the power to the divertor can be radiated with an ITER-like divertor geometry, while over 95% can be radiated in a stable detached mode with an orthogonal target and wide slot geometry. The bootstrap current fraction is 91% with a q95 of 4.5, requiring about ~ 1.1 MA of external current drive. This current is supplied with 5 MW of ICRF/FW and 40 MW of LHCD. EC was examined and is most effective for safety factor control over ρ ~ 0.2-0.6 with 20 MW. The pedestal density is ~ 0.9x1020 /m3 and the temperature is ~ 4.4 keV. The H98 factor is 1.65, n/nGr = 1.0, and the net power to LH threshold power is 2.8- 3.0 in the flattop.

  10. Physics basis for an advanced physics and advanced technology tokamak power plant configuration: ARIES-ACT1

    DOE PAGES

    Kessel, C. E.; Poli, F. M.; Ghantous, K.; Gorelenkov, N. N.; Rensink, M. E.; Rognlien, T. D.; Snyder, P. B.; St. John, H.; Turnbull, A. D.

    2015-01-01

    Here, the advanced physics and advanced technology tokamak power plant ARIES-ACT1 has a major radius of 6.25 m at an aspect ratio of 4.0, toroidal field of 6.0 T, strong shaping with elongation of 2.2, and triangularity of 0.63. The broadest pressure cases reached wall-stabilized βN ~ 5.75, limited by n = 3 external kink mode requiring a conducting shell at b/a = 0.3, requiring plasma rotation, feedback, and/or kinetic stabilization. The medium pressure peaking case reaches βN = 5.28 with BT = 6.75, while the peaked pressure case reaches βN < 5.15. Fast particle magnetohydrodynamic stability shows that themore » alpha particles are unstable, but this leads to redistribution to larger minor radius rather than loss from the plasma. Edge and divertor plasma modeling shows that 75% of the power to the divertor can be radiated with an ITER-like divertor geometry, while >95% can be radiated in a stable detached mode with an orthogonal target and wide slot geometry. The bootstrap current fraction is 91% with a q95 of 4.5, requiring ~1.1 MA of external current drive. This current is supplied with 5 MW of ion cyclotron radio frequency/fast wave and 40 MW of lower hybrid current drive. Electron cyclotron is most effective for safety factor control over ρ~0.2 to 0.6 with 20 MW. The pedestal density is ~0.9×1020/m3, and the temperature is ~4.4 keV. The H98 factor is 1.65, n/nGr = 1.0, and the ratio of net power to threshold power is 2.8 to 3.0 in the flattop.« less

  11. Texas Experimental Tokamak: A plasma research facility. Technical progress report, November 1, 1993--October 31, 1994

    SciTech Connect

    Wootton, A.J.

    1994-07-01

    The purpose is to operate and maintain TEXT Upgrade as a complete facility for applied tokamak physics in order to elucidate the mechanisms of working gas, impurity, and thermal transport in tokamaks and in particular to understand the role of turbulence. So that they can continue to study the physics that is most relevant to the fusion program, TEXT completed a significant device upgrade this year. The new capabilities of the device and new and innovative diagnostics were exploited in all main program areas including: (1) configuration studies; (2) electron cyclotron heating physics; (3) improved confinement modes; (4) edge physics/impurity studies; (5) central turbulence and transport; and (6) transient transport. Details of the progress in each of the research areas are described.

  12. Physics Basis for the Advanced Tokamak Fusion Power Plant ARIES-AT

    SciTech Connect

    S.C. Jardin; C.E. Kessel; T.K. Mau; R.L. Miller; F. Najmabadi; V.S. Chan; M.S. Chu; R. LaHaye; L.L. Lao; T.W. Petrie; P. Politzer; H.E. St. John; P. Snyder; G.M. Staebler; A.D. Turnbull; W.P. West

    2003-10-07

    The advanced tokamak is considered as the basis for a fusion power plant. The ARIES-AT design has an aspect ratio of A always equal to R/a = 4.0, an elongation and triangularity of kappa = 2.20, delta = 0.90 (evaluated at the separatrix surface), a toroidal beta of beta = 9.1% (normalized to the vacuum toroidal field at the plasma center), which corresponds to a normalized beta of bN * 100 x b/(I(sub)P(MA)/a(m)B(T)) = 5.4. These beta values are chosen to be 10% below the ideal-MHD stability limit. The bootstrap-current fraction is fBS * I(sub)BS/I(sub)P = 0.91. This leads to a design with total plasma current I(sub)P = 12.8 MA, and toroidal field of 11.1 T (at the coil edge) and 5.8 T (at the plasma center). The major and minor radii are 5.2 and 1.3 m, respectively. The effects of H-mode edge gradients and the stability of this configuration to non-ideal modes is analyzed. The current-drive system consists of ICRF/FW for on-axis current drive and a lower-hybrid system for off-axis. Tran sport projections are presented using the drift-wave based GLF23 model. The approach to power and particle exhaust using both plasma core and scrape-off-layer radiation is presented.

  13. Advancing Scientific Research in Education

    ERIC Educational Resources Information Center

    Towne, Lisa, Ed.; Wise, Lauress L., Ed.; Winters, Tina M., Ed.

    2005-01-01

    The title of this report reveals its purpose precisely: to spur actions that will advance scientific research in education. The recommendations for accomplishing this goal, detailed in this report, build on the National Research Council (NRC) report "Scientific Research in Education" (National Research Council, 2002). That report offers an…

  14. [Research advances in dendrochronology].

    PubMed

    Fang, Ke-Yan; Chen, Qiu-Yan; Liu, Chang-Zhi; Cao, Chun-Fu; Chen, Ya-Jun; Zhou, Fei-Fei

    2014-07-01

    Tree-ring studies in China have achieved great advances since the 1990s, particularly for the dendroclimatological studies which have made some influence around the world. However, because of the uneven development, limited attention has been currently paid on the other branches of dendrochronology. We herein briefly compared the advances of dendrochronology in China and of the world and presented suggestions on future dendrochronological studies. Large-scale tree-ring based climate reconstructions in China are highly needed by employing mathematical methods and a high quality tree-ring network of the ring-width, density, stable isotope and wood anatomy. Tree-ring based field climate reconstructions provide potentials on explorations of climate forcings during the reconstructed periods via climate diagnosis and process simulation.

  15. [Research advances in dendrochronology].

    PubMed

    Fang, Ke-Yan; Chen, Qiu-Yan; Liu, Chang-Zhi; Cao, Chun-Fu; Chen, Ya-Jun; Zhou, Fei-Fei

    2014-07-01

    Tree-ring studies in China have achieved great advances since the 1990s, particularly for the dendroclimatological studies which have made some influence around the world. However, because of the uneven development, limited attention has been currently paid on the other branches of dendrochronology. We herein briefly compared the advances of dendrochronology in China and of the world and presented suggestions on future dendrochronological studies. Large-scale tree-ring based climate reconstructions in China are highly needed by employing mathematical methods and a high quality tree-ring network of the ring-width, density, stable isotope and wood anatomy. Tree-ring based field climate reconstructions provide potentials on explorations of climate forcings during the reconstructed periods via climate diagnosis and process simulation. PMID:25345035

  16. Angular-divergence calculation for Experimental Advanced Superconducting Tokamak neutral beam injection ion source based on spectroscopic measurements

    SciTech Connect

    Chi, Yuan; Hu, Chundong; Zhuang, Ge

    2014-02-15

    Calorimetric method has been primarily applied for several experimental campaigns to determine the angular divergence of high-current ion source for the neutral beam injection system on the Experimental Advanced Superconducting Tokamak (EAST). A Doppler shift spectroscopy has been developed to provide the secondary measurement of the angular divergence to improve the divergence measurement accuracy and for real-time and non-perturbing measurement. The modified calculation model based on the W7AS neutral beam injectors is adopted to accommodate the slot-type accelerating grids used in the EAST's ion source. Preliminary spectroscopic experimental results are presented comparable to the calorimetrically determined value of theoretical calculation.

  17. Advanced desiccant materials research

    SciTech Connect

    Czanderna, A.W.; Thomas, T.M.

    1986-05-01

    The long-range goal of this task is to understand the role of surface phenomena in desiccant cooling materials. The background information includes a brief introduction to desiccant cooling systems (DCS) and the role of the desiccant as a system component. The purpose, background, rationale, and long-term technical approach for studying advanced desiccant materials are then treated. Experimental methods for measuring water vapor sorption by desiccants are described, and the rationale is then given for choosing a quartz crystal microbalance (QCM) for measuring sorption isotherms, rates, and cyclic stability. Background information is given about the QCM, including the quartz crystal resonator itself, the support structure for the quartz crystal, and the advantages and limitations of a QCM. The apparatus assembled and placed into operation during CY 1985 is described. The functions of the principal components of the equipment, i.e., the QCM, vacuum system, pressure gauges, residual gas analyzer, constant temperature bath, and data acquisition system, are described as they relate to the water vapor sorption measurements now under way. The criteria for narrowing the potential candidates as advanced desiccant materials for the initial studies are given. Also given is a list of 20 principal candidate materials identified based on the criteria and data available in the literature.

  18. DIII-D research operations. Annual report, October 1, 1991--September 30, 1992

    SciTech Connect

    Baker, D.

    1993-05-01

    This report discusses the research on the following topics: DIII-D program overview; divertor and boundary research program; advanced tokamak studies; tokamak physics; operations; program development; support services; contribution to ITER physics R&D; and collaborative efforts.

  19. Research on advanced spacecraft

    NASA Astrophysics Data System (ADS)

    Iwata, Tsutomu; Etou, Takao; Imai, Ryouichi; Oota, Kazuo; Kaneko, Yutaka; Maeda, Toshihide; Takano, Yutaka

    1992-08-01

    Engineering test satellite systems to validate element technologies required for spacecraft composing advanced space infrastructures are studied. Case studies are conducted on element technologies for diversified manned space technology and the outline of the engineering test satellite systems is demonstrated. Debris observing systems, their debris collection and retrieval methods which are being reviewed in many countries are examined. Technical problems are picked up, and the fundamental concept of experiment satellites is determined. Missions deemed to be suitable for micro-satellites and various civil on-ground technologies focusing on electronic technology applicable to them are picked up. Functions of extravehicular operation systems required by the missions, and fundamental concept of the systems and subsystems are made clear. Missions to which artificial gravity experiment satellites that are effective are examined and preparatory review is conducted on artificial gravity generation methods, methods to retrieve experiment equipment and samples, and outline of the satellite systems. Technical problems of engineering test satellites to validate on-orbit cryogenic propellant storage and transportation technologies are picked up and the fundamental concept of the satellites are determined. A review is conducted on electrical propulsion Orbit Transfer Vehicle (OTV) technology satellite to validate fundamental technology for large electrical propulsion engine and electrical propulsion engine OTV operation technology, and to pick up problems on the orbit of electrical propulsion OTV.

  20. Advances in Electrophysiological Research

    PubMed Central

    Kamarajan, Chella; Porjesz, Bernice

    2015-01-01

    Electrophysiological measures of brain function are effective tools to understand neurocognitive phenomena and sensitive indicators of pathophysiological processes associated with various clinical conditions, including alcoholism. Individuals with alcohol use disorder (AUD) and their high-risk offspring have consistently shown dysfunction in several electrophysiological measures in resting state (i.e., electroencephalogram) and during cognitive tasks (i.e., event-related potentials and event-related oscillations). Researchers have recently developed sophisticated signal-processing techniques to characterize different aspects of brain dynamics, which can aid in identifying the neural mechanisms underlying alcoholism and other related complex disorders. These quantitative measures of brain function also have been successfully used as endophenotypes to identify and help understand genes associated with AUD and related disorders. Translational research also is examining how brain electrophysiological measures potentially can be applied to diagnosis, prevention, and treatment. PMID:26259089

  1. Advanced Remote Sensing Research

    USGS Publications Warehouse

    Slonecker, Terrence; Jones, John W.; Price, Susan D.; Hogan, Dianna

    2008-01-01

    'Remote sensing' is a generic term for monitoring techniques that collect information without being in physical contact with the object of study. Overhead imagery from aircraft and satellite sensors provides the most common form of remotely sensed data and records the interaction of electromagnetic energy (usually visible light) with matter, such as the Earth's surface. Remotely sensed data are fundamental to geographic science. The Eastern Geographic Science Center (EGSC) of the U.S. Geological Survey (USGS) is currently conducting and promoting the research and development of three different aspects of remote sensing science: spectral analysis, automated orthorectification of historical imagery, and long wave infrared (LWIR) polarimetric imagery (PI).

  2. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect

    Unknown

    2000-01-01

    The activities of the Advanced Gas Turbine Systems Research (AGRSR) program are described in the quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education) and Research. Items worthy of note are presented in extended bullet format following the appropriate heading.

  3. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect

    Unknown

    2002-04-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  4. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect

    Unknown

    2002-02-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  5. Advancing Scientific Research in Education

    ERIC Educational Resources Information Center

    Towne, Lisa, Ed.; Wise, Lauress L., Ed.; Winters, Tina M., Ed.

    2004-01-01

    Transforming education into an evidence-based field depends in no small part on a strong base of scientific knowledge to inform educational policy and practice. Advancing Scientific Research in Education makes select recommendations for strengthening scientific education research and targets federal agencies, professional associations, and…

  6. Advanced propeller research

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Bober, Lawrence J.

    1990-01-01

    Recent results of aerodynamic and acoustic research on both single rotation and counterrotation propellers are reviewed. Data and analytical results are presented for three propellers: SR-7A, the single rotation design used in the NASA Propfan Test Assessment (PTA) flight program; CRP-X1, the initial 5+5 Hamilton Standard counterrotating design; and F7-A7, the 8+8 counterrotating G.E. design used in the proof of concept Unducted Fan (UDF) engine. In addition to propeller efficiencies, cruise and takeoff noise, and blade pressure data, off-design phenomena involving formation of leading edge vortexes are described. Aerodynamic and acoustic computational results derived from 3-D Euler and acoustic radiation codes are presented. Research on unsteady flows which are particularly important for understanding counterrotation interaction noise, unsteady loading effects on acoustics, and flutter or forced response is described. The first results of 3-D unsteady Euler solutions are illustrated for a single rotation propeller at angle of attack and for a counterrotation propeller. Basic experimental and theoretical results from studies on the unsteady aerodynamics of oscillating cascades are outlined.

  7. Prospects for Tokamak Fusion Reactors

    SciTech Connect

    Sheffield, J.; Galambos, J.

    1995-04-01

    This paper first reviews briefly the status and plans for research in magnetic fusion energy and discusses the prospects for the tokamak magnetic configuration to be the basis for a fusion power plant. Good progress has been made in achieving fusion reactor-level, deuterium-tritium (D-T) plasmas with the production of significant fusion power in the Joint European Torus (up to 2 MW) and the Tokamak Fusion Test Reactor (up to 10 MW) tokamaks. Advances on the technologies of heating, fueling, diagnostics, and materials supported these achievements. The successes have led to the initiation of the design phases of two tokamaks, the International Thermonuclear Experimental Reactor (ITER) and the US Toroidal Physics Experiment (TPX). ITER will demonstrate the controlled ignition and extended bum of D-T plasmas with steady state as an ultimate goal. ITER will further demonstrate technologies essential to a power plant in an integrated system and perform integrated testing of the high heat flux and nuclear components required to use fusion energy for practical purposes. TPX will complement ITER by testing advanced modes of steady-state plasma operation that, coupled with the developments in ITER, will lead to an optimized demonstration power plant.

  8. Advances in phytase research.

    PubMed

    Mullaney, E J; Daly, C B; Ullah, A H

    2000-01-01

    Since its discovery in 1907, a complex of technological developments has created a potential $500 million market for phytase as an animal feed additive. During the last 30 years, research has led to increased use of soybean meal and other plant material as protein sources in animal feed. One problem that had to be overcome was the presence of antinutritional factors, including phytate, in plant meal. Phytate phosphorus is not digested by monogastric animals (e.g., hogs and poultry), and in order to supply enough of this nutrient, additional phosphate was required in the feed ration. Rock phosphate soon proved to be a cost-effective means of supplying this additional phosphorus, and the excess phytin phosphorus could be disposed of easily with the animals' manure. However, this additional phosphorus creates a massive environmental problem when the land's ability to bind it is exceeded. Over the last decade, numerous feed studies have established the efficacy of a fungal phytase, A. niger NRRL 3135, to hydrolyze phytin phosphorus in an animal's digestive tract, which benefits the animal while reducing total phosphorus levels in manure. The gene for phytase has now been cloned and overexpressed to provide a commercial source of phytase. This monomeric enzyme, a type of histidine acid phophatase (HAP), has been characterized and extensively studied. HAPs are also found in other fungi, plants, and animals. Several microbial and plant HAPs are known to have significant phytase activity. A second A. niger phytase (phyB), a tetramer, is known and, like phyA, has had its X-ray crystal structure determined. The model provided by this crystal structure research has provided an enhanced understanding of how these molecules function. In addition to the HAP phytase, several other phytases that lack the unique HAP active site motif RHGXRXP have been studied. The best known group of the non-HAPs is phytase C (phyC) from the genus Bacillus. While a preliminary X

  9. Advanced ion thruster research

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1984-01-01

    A simple model describing the discharge chamber performance of high strength, cusped magnetic field ion thrusters is developed. The model is formulated in terms of the energy cost of producing ions in the discharge chamber and the fraction of ions produced in the discharge chamber that are extracted to form the ion beam. The accuracy of the model is verified experimentally in a series of tests wherein the discharge voltage, propellant, grid transparency to neutral atoms, beam diameter and discharge chamber wall temperature are varied. The model is exercised to demonstrate what variations in performance might be expected by varying discharge chamber parameters. The results of a study of xenon and argon orificed hollow cathodes are reported. These results suggest that a hollow cathode model developed from research conducted on mercury cathodes can also be applied to xenon and argon. Primary electron mean free paths observed in argon and xenon cathodes that are larger than those found in mercury cathodes are identified as a cause of performance differences between mercury and inert gas cathodes. Data required as inputs to the inert gas cathode model are presented so it can be used as an aid in cathode design.

  10. Advances in phytase research.

    PubMed

    Mullaney, E J; Daly, C B; Ullah, A H

    2000-01-01

    Since its discovery in 1907, a complex of technological developments has created a potential $500 million market for phytase as an animal feed additive. During the last 30 years, research has led to increased use of soybean meal and other plant material as protein sources in animal feed. One problem that had to be overcome was the presence of antinutritional factors, including phytate, in plant meal. Phytate phosphorus is not digested by monogastric animals (e.g., hogs and poultry), and in order to supply enough of this nutrient, additional phosphate was required in the feed ration. Rock phosphate soon proved to be a cost-effective means of supplying this additional phosphorus, and the excess phytin phosphorus could be disposed of easily with the animals' manure. However, this additional phosphorus creates a massive environmental problem when the land's ability to bind it is exceeded. Over the last decade, numerous feed studies have established the efficacy of a fungal phytase, A. niger NRRL 3135, to hydrolyze phytin phosphorus in an animal's digestive tract, which benefits the animal while reducing total phosphorus levels in manure. The gene for phytase has now been cloned and overexpressed to provide a commercial source of phytase. This monomeric enzyme, a type of histidine acid phophatase (HAP), has been characterized and extensively studied. HAPs are also found in other fungi, plants, and animals. Several microbial and plant HAPs are known to have significant phytase activity. A second A. niger phytase (phyB), a tetramer, is known and, like phyA, has had its X-ray crystal structure determined. The model provided by this crystal structure research has provided an enhanced understanding of how these molecules function. In addition to the HAP phytase, several other phytases that lack the unique HAP active site motif RHGXRXP have been studied. The best known group of the non-HAPs is phytase C (phyC) from the genus Bacillus. While a preliminary X

  11. Integrated magnetic and kinetic control of advanced tokamak plasmas on DIII-D based on data-driven models

    NASA Astrophysics Data System (ADS)

    Moreau, D.; Walker, M. L.; Ferron, J. R.; Liu, F.; Schuster, E.; Barton, J. E.; Boyer, M. D.; Burrell, K. H.; Flanagan, S. M.; Gohil, P.; Groebner, R. J.; Holcomb, C. T.; Humphreys, D. A.; Hyatt, A. W.; Johnson, R. D.; La Haye, R. J.; Lohr, J.; Luce, T. C.; Park, J. M.; Penaflor, B. G.; Shi, W.; Turco, F.; Wehner, W.; the ITPA-IOS Group members; experts

    2013-06-01

    The first real-time profile control experiments integrating magnetic and kinetic variables were performed on DIII-D in view of regulating and extrapolating advanced tokamak scenarios to steady-state devices and burning plasma experiments. Device-specific, control-oriented models were obtained from experimental data using a generic two-time-scale method that was validated on JET, JT-60U and DIII-D under the framework of the International Tokamak Physics Activity for Integrated Operation Scenarios (Moreau et al 2011 Nucl. Fusion 51 063009). On DIII-D, these data-driven models were used to synthesize integrated magnetic and kinetic profile controllers. The neutral beam injection (NBI), electron cyclotron current drive (ECCD) systems and ohmic coil provided the heating and current drive (H&CD) sources. The first control actuator was the plasma surface loop voltage (i.e. the ohmic coil), and the available beamlines and gyrotrons were grouped to form five additional H&CD actuators: co-current on-axis NBI, co-current off-axis NBI, counter-current NBI, balanced NBI and total ECCD power from all gyrotrons (with off-axis current deposition). Successful closed-loop experiments showing the control of (a) the poloidal flux profile, Ψ(x), (b) the poloidal flux profile together with the normalized pressure parameter, βN, and (c) the inverse of the safety factor profile, \\bar{\\iota}(x)=1/q(x) , are described.

  12. ISAAC Advanced Composites Research Testbed

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Stewart, Brian K.; Martin, Robert A.

    2014-01-01

    The NASA Langley Research Center is acquiring a state-of-art composites fabrication capability to support the Center's advanced research and technology mission. The system introduced in this paper is named ISAAC (Integrated Structural Assembly of Advanced Composites). The initial operational capability of ISAAC is automated fiber placement, built around a commercial system from Electroimpact, Inc. that consists of a multi-degree of freedom robot platform, a tool changer mechanism, and a purpose-built fiber placement end effector. Examples are presented of the advanced materials, structures, structural concepts, fabrication processes and technology development that may be enabled using the ISAAC system. The fiber placement end effector may be used directly or with appropriate modifications for these studies, or other end effectors with different capabilities may either be bought or developed with NASA's partners in industry and academia.

  13. Translational research on advanced therapies.

    PubMed

    Belardelli, Filippo; Rizza, Paola; Moretti, Franca; Carella, Cintia; Galli, Maria Cristina; Migliaccio, Giovanni

    2011-01-01

    Fostering translational research of advanced therapies has become a major priority of both scientific community and national governments. Advanced therapy medicinal products (ATMP) are a new medicinal product category comprising gene therapy and cell-based medicinal products as well as tissue engineered medicinal products. ATMP development opens novel avenues for therapeutic approaches in numerous diseases, including cancer and neurodegenerative and cardiovascular diseases. However, there are important bottlenecks for their development due to the complexity of the regulatory framework, the high costs and the needs for good manufacturing practice (GMP) facilities and new end-points for clinical experimentation. Thus, a strategic cooperation between different stakeholders (academia, industry and experts in regulatory issues) is strongly needed. Recently, a great importance has been given to research infrastructures dedicated to foster translational medicine of advanced therapies. Some ongoing European initiatives in this field are presented and their potential impact is discussed.

  14. Optical layout and mechanical structure of polarimeter-interferometer system for Experimental Advanced Superconducting Tokamak.

    PubMed

    Zou, Z Y; Liu, H Q; Jie, Y X; Ding, W X; Brower, D L; Wang, Z X; Shen, J S; An, Z H; Yang, Y; Zeng, L; Wei, X C; Li, G S; Zhu, X; Lan, T

    2014-11-01

    A Far-InfaRed (FIR) three-wave POlarimeter-INTerferometer (POINT) system for measurement current density profile and electron density profile is under development for the EAST tokamak. The FIR beams are transmitted from the laser room to the optical tower adjacent to EAST via ∼20 m overmoded dielectric waveguide and then divided into 5 horizontal chords. The optical arrangement was designed using ZEMAX, which provides information on the beam spot size and energy distribution throughout the optical system. ZEMAX calculations used to optimize the optical layout design are combined with the mechanical design from CATIA, providing a 3D visualization of the entire POINT system.

  15. Optical layout and mechanical structure of polarimeter-interferometer system for Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Zou, Z. Y.; Liu, H. Q. Jie, Y. X.; Wang, Z. X.; Shen, J. S.; An, Z. H.; Yang, Y.; Zeng, L.; Wei, X. C.; Li, G. S.; Zhu, X.; Ding, W. X.; Brower, D. L.; Lan, T.

    2014-11-15

    A Far-InfaRed (FIR) three-wave POlarimeter-INTerferometer (POINT) system for measurement current density profile and electron density profile is under development for the EAST tokamak. The FIR beams are transmitted from the laser room to the optical tower adjacent to EAST via ∼20 m overmoded dielectric waveguide and then divided into 5 horizontal chords. The optical arrangement was designed using ZEMAX, which provides information on the beam spot size and energy distribution throughout the optical system. ZEMAX calculations used to optimize the optical layout design are combined with the mechanical design from CATIA, providing a 3D visualization of the entire POINT system.

  16. Design and characterization of a 32-channel heterodyne radiometer for electron cyclotron emission measurements on experimental advanced superconducting tokamak

    SciTech Connect

    Han, X.; Liu, X.; Liu, Y. Li, E. Z.; Hu, L. Q.; Gao, X.; Domier, C. W.; Luhmann, N. C.

    2014-07-15

    A 32-channel heterodyne radiometer has been developed for the measurement of electron cyclotron emission (ECE) on the experimental advanced superconducting tokamak (EAST). This system collects X-mode ECE radiation spanning a frequency range of 104–168 GHz, where the frequency coverage corresponds to a full radial coverage for the case with a toroidal magnetic field of 2.3 T. The frequency range is equally spaced every 2 GHz from 105.1 to 167.1 GHz with an RF bandwidth of ∼500 MHz and the video bandwidth can be switched among 50, 100, 200, and 400 kHz. Design objectives and characterization of the system are presented in this paper. Preliminary results for plasma operation are also presented.

  17. First results obtained from the soft x-ray pulse height analyzer on experimental advanced superconducting tokamak

    SciTech Connect

    Xu, P.; Lin, S. Y.; Hu, L. Q.; Duan, Y. M.; Zhang, J. Z.; Chen, K. Y.; Zhong, G. Q.

    2010-06-15

    An assembly of soft x-ray pulse height analyzer system, based on silicon drift detector (SDD), has been successfully established on the experimental advanced superconducting tokamak (EAST) to measure the spectrum of soft x-ray emission (E=1-20 keV). The system, including one 15-channel SDD linear array, is installed on EAST horizontal port C. The time-resolved radial profiles of electron temperature and K{sub {alpha}} intensities of metallic impurities have been obtained with a spatial resolution of around 7 cm during a single discharge. It was found that the electron temperatures derived from the system are in good agreement with the values from Thomson scattering measurements. The system can also be applied to the measurement of the long pulse discharge for EAST. The diagnostic system is introduced and some typical experimental results obtained from the system are also presented.

  18. Observations of compound sawteeth in ion cyclotron resonant heating plasma using ECE imaging on experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Hussain, Azam; Zhao, Zhenling; Xie, Jinlin; Zhu, Ping; Liu, Wandong; Ti, Ang

    2016-04-01

    The spatial and temporal evolutions of compound sawteeth were directly observed using 2D electron cyclotron emission imaging on experimental advanced superconducting tokamak. The compound sawtooth consists of partial and full collapses. After partial collapse, the hot core survives as only a small amount of heat disperses outwards, whereas in the following full collapse a large amount of heat is released and the hot core dissipates. The presence of two q = 1 surfaces was not observed. Instead, the compound sawtooth occurs mainly at the beginning of an ion cyclotron resonant frequency heating pulse and during the L-H transition phase, which may be related to heat transport suppression caused by a decrease in electron heat diffusivity.

  19. Effect of gas puffing from different side on lower hybrid wave-plasma coupling in experimental advanced superconductive tokamak

    NASA Astrophysics Data System (ADS)

    Ding, B. J.; Kong, E. H.; Zhang, T.; Ekedahl, A.; Li, M. H.; Zhang, L.; Wei, W.; Li, Y. C.; Wu, J. H.; Xu, G. S.; Zhao, H. L.; Wang, M.; Gong, X. Z.; Shan, J. F.; Liu, F. K.; EAST Team

    2013-10-01

    Effect of gas puffing from electron-side and ion-side on lower hybrid wave (LHW)-plasma is investigated in experimental advanced superconductive tokamak for the first time. Experimental results with different gas flow rates show that electron density at the grill is higher in the case of gas puffing from electron-side; consequently, a lower reflection coefficient is observed, suggesting better effect of puffing from electron-side on LHW-plasma. The difference in edge density between electron- and ion-side cases suggests that local ionization of puffed gas plays a dominant role in affecting the density at the grill due to different movement direction of ionized electrons and that part of gas has been locally ionized near the gas pipe before diffusing into the grill region. Such difference could be enlarged and important in ITER due to the improvement of plasma parameters and LHW power.

  20. Observation of pedestal turbulence in edge localized mode-free H-mode on experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Han, X.; Zhang, T.; Zhang, S. B.; Wang, Y. M.; Shi, T. H.; Liu, Z. X.; Kong, D. F.; Qu, H.; Gao, X.

    2014-10-01

    Two different pedestal turbulence structures have been observed in edge localized mode-free phase of H-mode heated by lower hybrid wave and RF wave in ion cyclotron range of frequencies (ICRF) on experimental advanced superconducting tokamak. When the fraction of ICRF power PICRF/Ptotal exceeds 0.7, coherent mode is observed. The mode is identified as an electromagnetic mode, rotating in electron diamagnetic direction with a frequency around 50 kHz and toroidal mode number n = -3. Whereas when PICRF/Ptotal is less than 0.7, harmonic mode with frequency f = 40-300 kHz appears instead. The characteristics of these two modes are demonstrated preliminarily. The threshold value of heating power and also the plasma parameters are distinct.

  1. ELMy H-mode linear simulation with 3-field model on experimental advanced superconducting tokamak using BOUT++

    SciTech Connect

    Liu, Z. X.; Gao, X.; Liu, S. C.; Ding, S. Y.; Li, J. G.; Xia, T. Y.; Xu, X. Q.; Hughes, J. W.

    2012-10-15

    H-mode plasmas with ELM (edge localized mode) have been realized on experimental advanced superconducting tokamak (EAST) with 2.45 GHz low hybrid wave at P{sub LHW}{approx}1 MW in 2010. Data from EAST experiments including magnetic geometry, measured pressure profiles, and calculated current profiles are used to investigate the physics of ELM utilizing the BOUT++ code. Results from linear simulations show that the ELMs in EAST are dominated by resistive ballooning modes. When the Lundquist number (dimensionless ratio of the resistive diffusion time to the Alfven time) is equal to or less than 10{sup 7}, the resistive ballooning modes are found to become unstable in the ELMy H-mode plasma. For a fixed pedestal pressure profile, increasing plasma current generates more activities of low-n ELMs.

  2. Observation of pedestal turbulence in edge localized mode-free H-mode on experimental advanced superconducting tokamak

    SciTech Connect

    Han, X. Zhang, T.; Zhang, S. B.; Wang, Y. M.; Shi, T. H.; Liu, Z. X.; Kong, D. F.; Qu, H.; Gao, X.

    2014-10-15

    Two different pedestal turbulence structures have been observed in edge localized mode-free phase of H-mode heated by lower hybrid wave and RF wave in ion cyclotron range of frequencies (ICRF) on experimental advanced superconducting tokamak. When the fraction of ICRF power P{sub ICRF}/P{sub total} exceeds 0.7, coherent mode is observed. The mode is identified as an electromagnetic mode, rotating in electron diamagnetic direction with a frequency around 50 kHz and toroidal mode number n = −3. Whereas when P{sub ICRF}/P{sub total} is less than 0.7, harmonic mode with frequency f = 40–300 kHz appears instead. The characteristics of these two modes are demonstrated preliminarily. The threshold value of heating power and also the plasma parameters are distinct.

  3. Fast valve based on double-layer eddy-current repulsion for disruption mitigation in Experimental Advanced Superconducting Tokamak.

    PubMed

    Zhuang, H D; Zhang, X D

    2015-05-01

    A fast valve based on the double-layer eddy-current repulsion mechanism has been developed on Experimental Advanced Superconducting Tokamak (EAST). In addition to a double-layer eddy-current coil, a preload system was added to improve the security of the valve, whereby the valve opens more quickly and the open-valve time becomes shorter, making it much safer than before. In this contribution, testing platforms, open-valve characteristics, and throughput of the fast valve are discussed. Tests revealed that by choosing appropriate parameters the valve opened within 0.15 ms, and open-valve times were no longer than 2 ms. By adjusting working parameter values, the maximum number of particles injected during this open-valve time was estimated at 7 × 10(22). The fast valve will become a useful tool to further explore disruption mitigation experiments on EAST in 2015.

  4. Simulations of the L-H transition on experimental advanced superconducting Tokamak

    SciTech Connect

    Weiland, Jan

    2014-12-15

    We have simulated the L-H transition on the EAST tokamak [Baonian Wan, EAST and HT-7 Teams, and International Collaborators, “Recent experiments in the EAST and HT-7 superconducting tokamaks,” Nucl. Fusion 49, 104011 (2009)] using a predictive transport code where ion and electron temperatures, electron density, and poloidal and toroidal momenta are simulated self consistently. This is, as far as we know, the first theory based simulation of an L-H transition including the whole radius and not making any assumptions about where the barrier should be formed. Another remarkable feature is that we get H-mode gradients in agreement with the α – α{sub d} diagram of Rogers et al. [Phys. Rev. Lett. 81, 4396 (1998)]. Then, the feedback loop emerging from the simulations means that the L-H power threshold increases with the temperature at the separatrix. This is a main feature of the C-mod experiments [Hubbard et al., Phys. Plasmas 14, 056109 (2007)]. This is also why the power threshold depends on the direction of the grad B drift in the scrape off layer and also why the power threshold increases with the magnetic field. A further significant general H-mode feature is that the density is much flatter in H-mode than in L-mode.

  5. Simulations of the L-H transition on experimental advanced superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Weiland, Jan

    2014-12-01

    We have simulated the L-H transition on the EAST tokamak [Baonian Wan, EAST and HT-7 Teams, and International Collaborators, "Recent experiments in the EAST and HT-7 superconducting tokamaks," Nucl. Fusion 49, 104011 (2009)] using a predictive transport code where ion and electron temperatures, electron density, and poloidal and toroidal momenta are simulated self consistently. This is, as far as we know, the first theory based simulation of an L-H transition including the whole radius and not making any assumptions about where the barrier should be formed. Another remarkable feature is that we get H-mode gradients in agreement with the α - αd diagram of Rogers et al. [Phys. Rev. Lett. 81, 4396 (1998)]. Then, the feedback loop emerging from the simulations means that the L-H power threshold increases with the temperature at the separatrix. This is a main feature of the C-mod experiments [Hubbard et al., Phys. Plasmas 14, 056109 (2007)]. This is also why the power threshold depends on the direction of the grad B drift in the scrape off layer and also why the power threshold increases with the magnetic field. A further significant general H-mode feature is that the density is much flatter in H-mode than in L-mode.

  6. Advanced Component Research Facility (ACRES)

    SciTech Connect

    Bohn, M.

    1980-07-01

    A detailed description of the SERI Advanced Component Research Facility (ACRES) is given. Background information explicates the facility's history, developed around the two Omnium-G parabolic dish concentrators. The Omnium-G concentrators and electrical power plant are described. The purpose and a detailed descripttion of ACRES is also given. Included is a description of the measurement capabilities, the controls, and each component of the facility.

  7. Electron cyclotron emission diagnostics on KSTAR tokamak.

    PubMed

    Jeong, S H; Lee, K D; Kogi, Y; Kawahata, K; Nagayama, Y; Mase, A; Kwon, M

    2010-10-01

    A new electron cyclotron emission (ECE) diagnostics system was installed for the Second Korea Superconducting Tokamak Advanced Research (KSTAR) campaign. The new ECE system consists of an ECE collecting optics system, an overmode circular corrugated waveguide system, and 48 channel heterodyne radiometer with the frequency range of 110-162 GHz. During the 2 T operation of the KSTAR tokamak, the electron temperatures as well as its radial profiles at the high field side were measured and sawtooth phenomena were also observed. We also discuss the effect of a window on in situ calibration.

  8. Electron cyclotron emission diagnostics on KSTAR tokamak

    SciTech Connect

    Jeong, S. H.; Lee, K. D.; Kwon, M.; Kogi, Y.; Kawahata, K.; Nagayama, Y.; Mase, A.

    2010-10-15

    A new electron cyclotron emission (ECE) diagnostics system was installed for the Second Korea Superconducting Tokamak Advanced Research (KSTAR) campaign. The new ECE system consists of an ECE collecting optics system, an overmode circular corrugated waveguide system, and 48 channel heterodyne radiometer with the frequency range of 110-162 GHz. During the 2 T operation of the KSTAR tokamak, the electron temperatures as well as its radial profiles at the high field side were measured and sawtooth phenomena were also observed. We also discuss the effect of a window on in situ calibration.

  9. Advances in multi-megawatt lower hybrid technology in support of steady-state tokamak operation

    NASA Astrophysics Data System (ADS)

    Delpech, L.; Achard, J.; Armitano, A.; Artaud, J. F.; Bae, Y. S.; Belo, J. H.; Berger-By, G.; Bouquey, F.; Cho, M. H.; Corbel, E.; Decker, J.; Do, H.; Dumont, R.; Ekedahl, A.; Garibaldi, P.; Goniche, M.; Guilhem, D.; Hillairet, J.; Hoang, G. T.; Kim, H. S.; Kim, J. H.; Kim, H.; Kwak, J. G.; Magne, R.; Mollard, P.; Na, Y. S.; Namkung, W.; Oh, Y. K.; Park, S.; Park, H.; Peysson, Y.; Poli, S.; Prou, M.; Samaille, F.; Yang, H. L.; The Tore Supra Team

    2014-10-01

    It has been demonstrated that lower hybrid current drive (LHCD) systems play a crucial role for steady-state tokamak operation, owing to their high current drive (CD) efficiency and hence their capability to reduce flux consumption. This paper describes the extensive technology programmes developed for the Tore Supra (France) and the KSTAR (Korea) tokamaks in order to bring continuous wave (CW) LHCD systems into operation. The Tore Supra LHCD generator at 3.7 GHz is fully CW compatible, with RF power PRF = 9.2 MW available at the generator to feed two actively water-cooled launchers. On Tore Supra, the most recent and novel passive active multijunction (PAM) launcher has sustained 2.7 MW (corresponding to its design value of 25 MW m-2 at the launcher mouth) for a 78 s flat-top discharge, with low reflected power even at large plasma-launcher gaps. The fully active multijunction (FAM) launcher has reached 3.8 MW of coupled power (24 MW m-2 at the launcher mouth) with the new TH2103C klystrons. By combining both the PAM and FAM launchers, 950 MJ of energy, using 5.2 MW of LHCD and 1 MW of ICRH (ion cyclotron resonance heating), was injected for 160 s in 2011. The 3.7 GHz CW LHCD system will be a key element within the W (for tungsten) environment in steady-state Tokamak (WEST) project, where the aim is to test ITER technologies for high heat flux components in relevant heat flux density and particle fluence conditions. On KSTAR, a 2 MW LHCD system operating at 5 GHz is under development. Recently the 5 GHz prototype klystron has reached 500 kW/600 s on a matched load, and studies are ongoing to design a PAM launcher. In addition to the studies of technology, a combination of ray-tracing and Fokker-Planck calculations have been performed to evaluate the driven current and the power deposition due to LH waves, and to optimize the N∥ spectrum for the future launcher design. Furthermore, an LHCD system at 5 GHz is being considered for a future upgrade of the ITER

  10. Advancing neurosurgery through translational research.

    PubMed

    Lacey, Claire; Sutherland, Garnette

    2013-01-01

    Every year, the number of published research articles increases significantly. However, many potentially useful ideas are lost in this flood of data. Translational research provides a framework through which investigators or laboratories can maximize the likelihood that the product of their research will be adopted in medical practice. There are 2 recognizable models of translation appropriate for the majority of research: investigator driven and industry enabled. Investigator-driven research has more range because it does not have to consider the profit margin of research, but it is a slow process. The industry-enabled model accelerates the translational research process through the power of industry funding but is interested primarily in products with potential for profit. Two cases are examined to illustrate different methods of partnering with industry. IMRIS is a company founded by investigators to distribute intraoperative magnetic resonance imaging technology based on a movable high-field magnet. It took 7 years for IMRIS to make its first sale, but it is now a successful company. With neuroArm, a surgical robot, investigators decided to sell the intellectual property to an established company to ensure successful global commercialization. Translational research advances medicine by creating and distributing effective solutions to contemporary problems. PMID:23254806

  11. Advanced methods in global gyrokinetic full f particle simulation of tokamak transport

    SciTech Connect

    Ogando, F.; Heikkinen, J. A.; Henriksson, S.; Janhunen, S. J.; Kiviniemi, T. P.; Leerink, S.

    2006-11-30

    A new full f nonlinear gyrokinetic simulation code, named ELMFIRE, has been developed for simulating transport phenomena in tokamak plasmas. The code is based on a gyrokinetic particle-in-cell algorithm, which can consider electrons and ions jointly or separately, as well as arbitrary impurities. The implicit treatment of the ion polarization drift and the use of full f methods allow for simulations of strongly perturbed plasmas including wide orbit effects, steep gradients and rapid dynamic changes. This article presents in more detail the algorithms incorporated into ELMFIRE, as well as benchmarking comparisons to both neoclassical theory and other codes.Code ELMFIRE calculates plasma dynamics by following the evolution of a number of sample particles. Because of using an stochastic algorithm its results are influenced by statistical noise. The effect of noise on relevant magnitudes is analyzed.Turbulence spectra of FT-2 plasma has been calculated with ELMFIRE, obtaining results consistent with experimental data.

  12. Research on advanced transportation systems

    NASA Astrophysics Data System (ADS)

    Nagai, Hirokazu; Hashimoto, Ryouhei; Nosaka, Masataka; Koyari, Yukio; Yamada, Yoshio; Noda, Keiichirou; Shinohara, Suetsugu; Itou, Tetsuichi; Etou, Takao; Kaneko, Yutaka

    1992-08-01

    An overview of the researches on advanced space transportation systems is presented. Conceptual study is conducted on fly back boosters with expendable upper stage rocket systems assuming a launch capacity of 30 tons and returning to the launch site by the boosters, and prospect of their feasibility is obtained. Reviews are conducted on subjects as follows: (1) trial production of 10 tons sub scale engines for the purpose of acquiring hardware data and picking up technical problems for full scale 100 tons thrust engines using hydrocarbon fuels; (2) development techniques for advanced liquid propulsion systems from the aspects of development schedule, cost; (3) review of conventional technologies, and common use of component; (4) oxidant switching propulsion systems focusing on feasibility of Liquefied Air Cycle Engine (LACE) and Compressed Air Cycle Engine (CACE); (5) present status of slosh hydrogen manufacturing, storage, and handling; (6) construction of small high speed dynamometer for promoting research on mini pump development; (7) hybrid solid boosters under research all over the world as low-cost and clean propulsion systems; and (8) high performance solid propellant for upper stage and lower stage propulsion systems.

  13. Intermediate/Advanced Research Design and Statistics

    NASA Technical Reports Server (NTRS)

    Ploutz-Snyder, Robert

    2009-01-01

    The purpose of this module is To provide Institutional Researchers (IRs) with an understanding of the principles of advanced research design and the intermediate/advanced statistical procedures consistent with such designs

  14. Advancing Concentrating Solar Power Research (Fact Sheet)

    SciTech Connect

    Not Available

    2014-02-01

    Researchers at the National Renewable Energy Laboratory (NREL) provide scientific, engineering, and analytical expertise to help advance innovation in concentrating solar power (CSP). This fact sheet summarizes how NREL is advancing CSP research.

  15. A need for non-tokamak approaches to magnetic fusion energy

    NASA Astrophysics Data System (ADS)

    Bathke, C. G.; Krakowski, R. A.; Miller, R. L.

    Focusing exclusively on conventional tokamak physics in the quest for commercial fusion power is premature, and the options for both advanced-tokamak and non-tokamak concepts need continued investigation. The basis for this claim is developed, and promising advanced-tokamak and non-tokamak options are suggested.

  16. [Research advances in ecosystem flux].

    PubMed

    Zhang, Xudong; Peng, Zhenhua; Qi, Lianghua; Zhou, Jinxing

    2005-10-01

    To develop the long-term localized observation and investigation on ecosystem flux is of great importance. On the basis of generalizing the concepts and connotations of ecosystem flux, this paper introduced the construction and development histories of Global Flux Networks, Regional Flux Networks (Ameri-Flux, Euro-Flux and Asia-Flux) and China-Flux, as well as the main methodologies, including micrometeorological methods (such as eddy correlation method, mass balance method, energy balance method and air dynamic method)and chamber methods (static and dynamic chamber methods), and their basic operation principles. The research achievements, approaches and advances of CO2, N2O, CH4, and heat fluxes in forest ecosystem, farmland ecosystem, grassland ecosystem and water ecosystem were also summarized. In accordance with the realities and necessities of ecosystem flux research in China, some suggestions and prospects were put forward.

  17. Advanced limiter test (ALT-1) in the TEXTOR tokamak: concept and experimental design

    SciTech Connect

    Conn, R.W.; Grontz, S.P.; Prinja, A.K.; Gauster, W.B.; Malinowski, H.E.; Pontau, A.E.; Blewer, R.S.; Whitley, J.B.; Dippel, K.H.; Fuchs, G.

    1983-01-01

    The concept and experimental design of a pump-limiter for the TEXTOR tokamak is described. The module is constructed of stainless steel with a compound curvature head designed to limit the maximum heat flux to 300 W/cm/sup 2/. The head is made of TiC-coated graphite containing a variable-aperture slot to admit plasma to a deflector plate for ballistic pumping action. The assembly is actively pumped using Zr-Al getters with an estimated hydrogen pumping speed of 3 x 10/sup 4/ 1/s. The aspect ratio of the pump duct and the length of the plasma channel are both variable to permit study of plasma plugging, ballistic scattering, and enhanced gas-conduction effects. The module can be moved radially by 10 cm to permit its operation either as the primary or secondary limiter. Major diagnostics include Langmuir and solid state probes, bolometers, infrared thermography, thermocouples, ion gauges, manometers, and a gas mass analyzer.

  18. Magnetic confinement experiment -- 1: Tokamaks

    SciTech Connect

    Goldston, R.J.

    1994-12-31

    This report reviews presentations made at the 15th IAEA Conference on Plasma Physics and Controlled Nuclear Fusion on experimental tokamak physics, particularly on advances in core plasma physics, divertor and edge physics, heating and current drive, and tokamak concept optimization.

  19. RESEARCH ADVANCES IN NEUROBLASTOMA IMMUNOTHERAPY.

    PubMed

    Booker, Latania Y; Ishola, Titilope A; Bowen, Kanika A; Chung, Dai H

    2009-05-01

    Neuroblastoma is the third most common pediatric cancer in the United States and is responsible for 15% of pediatric cancer-related deaths. Despite major advances in multimodal therapy, the clinical outcome for several patients remains poor. Due to the desperate need for innovativation and improved success in the treatment and management of neuroblastoma, research interests in immunotherapy have been on the rise in recent years. Current immunotherapeutic approaches under investigation include antibodies targeting the neuroblastoma antigen GD2, cytokine stimulation of immune cells, use of immunocytokine conjugates, radioimmunotherapy, and tumor-primed dendritic cells. Immunotherapy could serve as a safe alternative or adjunct to current therapeutic protocols and would presumptively have fewer deleterious effects making it more favorable to patients.

  20. The Fusion Science Research Plan for the Major U.S. Tokamaks. Advisory report

    SciTech Connect

    none,

    1996-05-31

    In summary, the community has developed a research plan for the major tokamak facilities that will produce impressive scientific benefits over the next two years. The plan is well aligned with the new mission and goals of the restructured fusion energy sciences program recommended by FEAC. Budget increases for all three facilities will allow their programs to move forward in FY 1997, increasing their rate of scientific progress. With a shutdown deadline now established, the TFTR will forego all but a few critical upgrades and maximize operation to achieve a set of high-priority scientific objectives with deuterium-tritium plasmas. The DIII-D and Alcator C-Mod facilities will still fall well short of full utilization. Increasing the run time in – vii – DIII-D is recommended to increase the scientific output using its existing capabilities, even if scheduled upgrades must be further delayed. An increase in the Alcator C-Mod budget is recommended, at the expense of equal and modest reductions (~1%) in the other two facilities if necessary, to develop its capabilities for the long-term and increase its near-term scientific output.

  1. Combined magnetic and kinetic control of advanced tokamak steady state scenarios based on semi-empirical modelling

    NASA Astrophysics Data System (ADS)

    Moreau, D.; Artaud, J. F.; Ferron, J. R.; Holcomb, C. T.; Humphreys, D. A.; Liu, F.; Luce, T. C.; Park, J. M.; Prater, R.; Turco, F.; Walker, M. L.

    2015-06-01

    This paper shows that semi-empirical data-driven models based on a two-time-scale approximation for the magnetic and kinetic control of advanced tokamak (AT) scenarios can be advantageously identified from simulated rather than real data, and used for control design. The method is applied to the combined control of the safety factor profile, q(x), and normalized pressure parameter, βN, using DIII-D parameters and actuators (on-axis co-current neutral beam injection (NBI) power, off-axis co-current NBI power, electron cyclotron current drive power, and ohmic coil). The approximate plasma response model was identified from simulated open-loop data obtained using a rapidly converging plasma transport code, METIS, which includes an MHD equilibrium and current diffusion solver, and combines plasma transport nonlinearity with 0D scaling laws and 1.5D ordinary differential equations. The paper discusses the results of closed-loop METIS simulations, using the near-optimal ARTAEMIS control algorithm (Moreau D et al 2013 Nucl. Fusion 53 063020) for steady state AT operation. With feedforward plus feedback control, the steady state target q-profile and βN are satisfactorily tracked with a time scale of about 10 s, despite large disturbances applied to the feedforward powers and plasma parameters. The robustness of the control algorithm with respect to disturbances of the H&CD actuators and of plasma parameters such as the H-factor, plasma density and effective charge, is also shown.

  2. Study on lower hybrid current drive efficiency at high density towards long-pulse regimes in Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Li, M. H.; Ding, B. J.; Zhang, J. Z.; Gan, K. F.; Wang, H. Q.; Peysson, Y.; Decker, J.; Zhang, L.; Wei, W.; Li, Y. C.; Wu, Z. G.; Ma, W. D.; Jia, H.; Chen, M.; Yang, Y.; Feng, J. Q.; Wang, M.; Xu, H. D.; Shan, J. F.; Liu, F. K.

    2014-06-01

    Significant progress on both L- and H-mode long-pulse discharges has been made recently in Experimental Advanced Superconducting Tokamak (EAST) with lower hybrid current drive (LHCD) [J. Li et al., Nature Phys. 9, 817 (2013) And B. N. Wan et al., Nucl. Fusion 53, 104006 (2013).]. In this paper, LHCD experiments at high density in L-mode plasmas have been investigated in order to explore possible methods of improving current drive (CD) efficiency, thus to extend the operational space in long-pulse and high performance plasma regime. It is observed that the normalized bremsstrahlung emission falls much more steeply than 1/ne_av (line-averaged density) above ne_av = 2.2 × 1019 m-3 indicating anomalous loss of CD efficiency. A large broadening of the operating line frequency (f = 2.45 GHz), measured by a radio frequency (RF) probe located outside the EAST vacuum vessel, is generally observed during high density cases, which is found to be one of the physical mechanisms resulting in the unfavorable CD efficiency. Collisional absorption of lower hybrid wave in the scrape off layer (SOL) may be another cause, but this assertion needs more experimental evidence and numerical analysis. It is found that plasmas with strong lithiation can improve CD efficiency largely, which should be benefited from the changes of edge parameters. In addition, several possible methods are proposed to recover good efficiency in future experiments for EAST.

  3. Experimental investigation of density behaviors in front of the lower hybrid launcher in experimental advanced superconducting tokamak

    SciTech Connect

    Zhang, L.; Ding, B. J.; Li, M. H.; Kong, E. H.; Wei, W.; Liu, F. K.; Shan, J. F.; Wu, Z. G.; Zhu, L.; Ma, W. D.; Tong, Y. Y.; Li, Y. C.; Wang, M.; Zhao, L. M.; Hu, H. C.; Liu, L.; Collaboration: EAST Team

    2013-06-15

    A triple Langmuir probe is mounted on the top of the Lower Hybrid (LH) antenna to measure the electron density near the LH grills in Experimental Advanced Superconducting Tokamak. In this work, the LH power density ranges from 2.3 MWm{sup −2} to 10.3 MWm{sup −2} and the rate of puffing gas varies from 1.7 × 10{sup 20} el/s to 14 × 10{sup 20} el/s. The relation between the edge density (from 0.3 × n{sub e-cutoff} to 20 × n{sub e-cutoff}, where n{sub e-cutoff} is the cutoff density, n{sub e-cutoff} = 0.74 × 10{sup 17} m{sup −3} for 2.45 GHz lower hybrid current drive) near the LH grill and the LH power reflection coefficients is investigated. The factors, including the gap between the LH grills and the last closed magnetic flux surface, line-averaged density, LH power, edge safety factor, and gas puffing, are analyzed. The experiments show that injection of LH power is beneficial for increasing edge density. Gas puffing is beneficial for increasing grill density but excess gas puffing is unfavorable for coupling and current drive.

  4. 32 CFR 37.1210 - Advanced research.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Definitions of Terms Used in This Part § 37.1210 Advanced... technology to new products and processes in a general way. Advanced research is most closely analogous to... 32 National Defense 1 2014-07-01 2014-07-01 false Advanced research. 37.1210 Section...

  5. 32 CFR 37.1210 - Advanced research.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Definitions of Terms Used in This Part § 37.1210 Advanced... technology to new products and processes in a general way. Advanced research is most closely analogous to... 32 National Defense 1 2013-07-01 2013-07-01 false Advanced research. 37.1210 Section...

  6. 32 CFR 37.1210 - Advanced research.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Definitions of Terms Used in This Part § 37.1210 Advanced... technology to new products and processes in a general way. Advanced research is most closely analogous to... 32 National Defense 1 2012-07-01 2012-07-01 false Advanced research. 37.1210 Section...

  7. 32 CFR 37.1210 - Advanced research.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Advanced research. 37.1210 Section 37.1210... research. Research that creates new technology or demonstrates the viability of applying existing technology to new products and processes in a general way. Advanced research is most closely analogous...

  8. 32 CFR 37.1210 - Advanced research.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 1 2011-07-01 2011-07-01 false Advanced research. 37.1210 Section 37.1210... research. Research that creates new technology or demonstrates the viability of applying existing technology to new products and processes in a general way. Advanced research is most closely analogous...

  9. Impact of E × B flow shear on turbulence and resulting power fall-off width in H-mode plasmas in experimental advanced superconducting tokamak

    SciTech Connect

    Yang, Q. Q. Zhong, F. C. E-mail: fczhong@dhu.edu.cn; Jia, M. N.; Xu, G. S. E-mail: fczhong@dhu.edu.cn; Wang, L.; Wang, H. Q.; Chen, R.; Yan, N.; Liu, S. C.; Chen, L.; Li, Y. L.; Liu, J. B.

    2015-06-15

    The power fall-off width in the H-mode scrape-off layer (SOL) in tokamaks shows a strong inverse dependence on the plasma current, which was noticed by both previous multi-machine scaling work [T. Eich et al., Nucl. Fusion 53, 093031 (2013)] and more recent work [L. Wang et al., Nucl. Fusion 54, 114002 (2014)] on the Experimental Advanced Superconducting Tokamak. To understand the underlying physics, probe measurements of three H-mode discharges with different plasma currents have been studied in this work. The results suggest that a higher plasma current is accompanied by a stronger E×B shear and a shorter radial correlation length of turbulence in the SOL, thus resulting in a narrower power fall-off width. A simple model has also been applied to demonstrate the suppression effect of E×B shear on turbulence in the SOL and shows relatively good agreement with the experimental observations.

  10. Dynamically stable, self-similarly evolving, and self-organized states of high beta tokamak and reversed pinch plasmas and advanced active control

    SciTech Connect

    Kondoh, Yoshiomi; Fukasawa, Toshinobu

    2009-11-15

    Generalized simultaneous eigenvalue equations derived from a generalized theory of self-organization are applied to a set of simultaneous equations for two-fluid model plasmas. An advanced active control by using theoretical time constants is proposed by predicting quantities to be controlled. Typical high beta numerical configurations are presented for the ultra low q tokamak plasmas and the reversed-field pinch (RFP) ones in cylindrical geometry by solving the set of simultaneous eigenvalue equations. Improved confinement with no detectable saw-teeth oscillations in tokamak experiments is reasonably explained by the shortest time constant of ion flow. The shortest time constant of poloidal ion flow is shown to be a reasonable mechanism for suppression of magnetic fluctuations by pulsed poloidal current drives in RFP experiments. The bifurcation from basic eigenmodes to mixed ones deduced from stability conditions for eigenvalues is shown to be a good candidate for the experimental bifurcation from standard RFP plasmas to their improved confinement regimes.

  11. Impact of E × B flow shear on turbulence and resulting power fall-off width in H-mode plasmas in experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Yang, Q. Q.; Xu, G. S.; Zhong, F. C.; Wang, L.; Wang, H. Q.; Chen, R.; Yan, N.; Liu, S. C.; Chen, L.; Jia, M. N.; Li, Y. L.; Liu, J. B.

    2015-06-01

    The power fall-off width in the H-mode scrape-off layer (SOL) in tokamaks shows a strong inverse dependence on the plasma current, which was noticed by both previous multi-machine scaling work [T. Eich et al., Nucl. Fusion 53, 093031 (2013)] and more recent work [L. Wang et al., Nucl. Fusion 54, 114002 (2014)] on the Experimental Advanced Superconducting Tokamak. To understand the underlying physics, probe measurements of three H-mode discharges with different plasma currents have been studied in this work. The results suggest that a higher plasma current is accompanied by a stronger E × B shear and a shorter radial correlation length of turbulence in the SOL, thus resulting in a narrower power fall-off width. A simple model has also been applied to demonstrate the suppression effect of E × B shear on turbulence in the SOL and shows relatively good agreement with the experimental observations.

  12. Bibliography of fusion product physics in tokamaks

    SciTech Connect

    Hively, L. M.; Sigmar, D. J.

    1989-09-01

    Almost 700 citations have been compiled as the first step in reviewing the recent research on tokamak fusion product effects in tokamaks. The publications are listed alphabetically by the last name of the first author and by subject category.

  13. Fusion Plasma Theory: Task 3, Auxiliary radiofrequency heating of tokamaks

    SciTech Connect

    Scharer, J.E.

    1992-01-01

    The research performed under this grant during the past year has been concentrated on the following several key tokamak ICRF (Ion Cyclotron Range of Frequencies) coupling, heating and current drive issues: Efficient coupling during the L- to H- mode transition by analysis and computer simulation of ICRF antennas; analysis of ICRF cavity-backed coil antenna coupling to plasma edge profiles including fast and ion Bernstein wave coupling for heating and current drive; benchmarking the codes to compare with current JET, D-IIID and ASDEX experimental results and predictions for advanced tokamaks such as BPX and SSAT (Steady-State Advanced Tokamak); ICRF full-wave field solutions, power conservation, heating analyses and minority ion current drive; and the effects of fusion alpha particle or ion tail populations on the ICRF absorption. Research progress, publications, and conference and workshop presentations are summarized in this report.

  14. DIII-D research towards resolving key issues for ITER and steady-state tokamaks

    NASA Astrophysics Data System (ADS)

    Hill, D. N.; the DIII-D Team

    2013-10-01

    The DIII-D research program is addressing key ITER research needs and developing the physics basis for future steady-state tokamaks. Pellet pacing edge-localized mode (ELM) control in the ITER configuration reduces ELM energy loss in proportion to 1/fpellet by inducing ELMs at up to 12× the natural ELM rate. Complete suppression of ELMs with resonant magnetic perturbations has been extended to the q95 expected for ITER baseline scenario discharges, and long-duration ELM-free QH-mode discharges have been produced with ITER-relevant co-current neutral-beam injection (NBI) using external n = 3 coils to generate sufficient counter-Ip torque. ITER baseline discharges at βN ˜ 2 and scaled NBI torque have been maintained in stationary conditions for more than four resistive times using electron cyclotron current drive (ECCD) for tearing mode suppression and disruption avoidance; active tracking with steerable launchers and feedback control catch these modes at small amplitude, reducing the ECCD power required to suppress them. Massive high-Z gas injection into disruption-induced 300-600 kA 20 MeV runaway electron (RE) beams yield dissipation rates ˜10× faster than expected from e-e collisions and demonstrate the possibility of benign dissipation of such REs should they occur in ITER. Other ITER-related experiments show measured intrinsic plasma torque in good agreement with a physics-based model over a wide range of conditions, while first-time main-ion rotation measurements show it to be lower than expected from neoclassical theory. Core turbulence measurements show increased temperature fluctuations correlated with sharply enhanced electron transport when \

  15. Recent advances in betalain research.

    PubMed

    Strack, Dieter; Vogt, Thomas; Schliemann, Willibald

    2003-02-01

    Betalains replace the anthocyanins in flowers and fruits of plants of most families of the Caryophyllales. Unexpectedly, they were also found in some higher fungi. Whereas the anthocyanin-analogous functions of betalains in flower and fruit colouration are obvious, their role in fungi remains obscure. The nature of newly identified betalains as well as final structure elucidation of earlier putatively described compounds published within the last decade is compiled in this report. Recent advances in research on betalain biosynthesis is also covered, including description of some 'early' reactions, i.e. betalain-specific dopa formation in plants and fungi and extradiolic dopa cleavage in fungi. Work on betalain-specific glucosyltransferases (GTs) has given new insights into the evolution of secondary plant enzymes. It is proposed that these GTs are phylogenetically related to flavonoid GTs. It was found that the decisive steps in betalain biosynthesis, i.e. condensation of the betalain chromophore betalamic acid with cyclo-dopa and amino acids or amines in the respective aldimine formation of the red-violet betacyanins and the yellow betaxanthins, are most likely to be non-enzymatic. Betalains have attracted workers in applied fields because of their use for food colouring and their antioxidant and radical scavenging properties for protection against certain oxidative stress-related disorders. PMID:12620337

  16. Advance Organizer Research: One Step Further.

    ERIC Educational Resources Information Center

    Zeitoun, Hassan Hussein

    The purpose of this paper is to: (1) explore some possible explanations for the lack of empirical support of advance organizers; (2) suggest a plan for improving the empirical research on advance organizers; and (3) recommend some further investigations needed in the area of advance organizers. Some explanations for this lack of support are…

  17. Investigation of lower hybrid wave coupling and current drive experiments at different configurations in experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Ding, B. J.; Qin, Y. L.; Li, W. K.; Li, M. H.; Kong, E. H.; Zhang, L.; Ekedahl, A.; Peysson, Y.; Decker, J.; Wang, M.; Xu, H. D.; Hu, H. C.; Xu, G. S.; Shan, J. F.; Liu, F. K.; Zhao, Y. P.; Wan, B. N.; Li, J. G.; Group, EAST

    2011-08-01

    Using a 2 MW 2.45 GHz lower hybrid wave (LHW) system installed in experimental advanced superconducting tokamak, we have systematically carried out LHW-plasma coupling and lower hybrid current drive experiments in both divertor (double null and lower single null) and limiter plasma configuration with plasma current (Ip) ˜ 250 kA and central line averaged density (ne) ˜ 1.0-1.3 × 1019 m-3 recently. Results show that the reflection coefficient (RC) first is flat up to some distance between plasma and LHW grill, and then increases with the distance. Studies indicate that with the same plasma parameters, the best coupling is obtained in the limiter case (with plasma leaning on the inner wall), followed by the lower single null, and the one with the worst coupling is the double null configuration, explained by different magnetic connection length. The RCs in the different poloidal rows show that they have different coupling characteristics, possibly due to local magnetic connection length. Current drive efficiency has been investigated by a least squares fit with N//peak=2.1, where N//peak is the peak value of parallel refractive index of the launched wave. Results show that there is no obvious difference in the current drive efficiency between double null and lower single null cases, whereas the efficiency is somewhat small in the limiter configuration. This is in agreement with the ray tracing/Fokker-Planck code simulation by LUKE/C3PO and can be interpreted by the power spectrum up-shift factor in different plasma configurations. A transformer recharge is realized with ˜0.8 MW LHW power and the energy conversion efficiency from LHW to poloidal field energy is about 2%.

  18. Resistive edge mode instability in stellarator and tokamak geometries

    NASA Astrophysics Data System (ADS)

    Mahmood, M. Ansar; Rafiq, T.; Persson, M.; Weiland, J.

    2008-09-01

    Geometrical effects on linear stability of electrostatic resistive edge modes are investigated in the three-dimensional Wendelstein 7-X stellarator [G. Grieger et al., Plasma Physics and Controlled Nuclear Fusion Research 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 525] and the International Thermonuclear Experimental Reactor [Progress in the ITER Physics Basis, Nucl. Fusion 7, S1, S285 (2007)]-like equilibria. An advanced fluid model is used for the ions together with the reduced Braghinskii equations for the electrons. Using the ballooning mode representation, the drift wave problem is set as an eigenvalue equation along a field line and is solved numerically using a standard shooting technique. A significantly larger magnetic shear and a less unfavorable normal curvature in the tokamak equilibrium are found to give a stronger finite-Larmor radius stabilization and a more narrow mode spectrum than in the stellarator. The effect of negative global magnetic shear in the tokamak is found to be stabilizing. The growth rate on a tokamak magnetic flux surface is found to be comparable to that on a stellarator surface with the same global magnetic shear but the eigenfunction in the tokamak is broader than in the stellarator due to the presence of large negative local magnetic shear (LMS) on the tokamak surface. A large absolute value of the LMS in a region of unfavorable normal curvature is found to be stabilizing in the stellarator, while in the tokamak case, negative LMS is found to be stabilizing and positive LMS destabilizing.

  19. Resistive edge mode instability in stellarator and tokamak geometries

    SciTech Connect

    Mahmood, M. Ansar; Rafiq, T.; Persson, M.; Weiland, J.

    2008-09-15

    Geometrical effects on linear stability of electrostatic resistive edge modes are investigated in the three-dimensional Wendelstein 7-X stellarator [G. Grieger et al., Plasma Physics and Controlled Nuclear Fusion Research 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 525] and the International Thermonuclear Experimental Reactor [Progress in the ITER Physics Basis, Nucl. Fusion 7, S1, S285 (2007)]-like equilibria. An advanced fluid model is used for the ions together with the reduced Braghinskii equations for the electrons. Using the ballooning mode representation, the drift wave problem is set as an eigenvalue equation along a field line and is solved numerically using a standard shooting technique. A significantly larger magnetic shear and a less unfavorable normal curvature in the tokamak equilibrium are found to give a stronger finite-Larmor radius stabilization and a more narrow mode spectrum than in the stellarator. The effect of negative global magnetic shear in the tokamak is found to be stabilizing. The growth rate on a tokamak magnetic flux surface is found to be comparable to that on a stellarator surface with the same global magnetic shear but the eigenfunction in the tokamak is broader than in the stellarator due to the presence of large negative local magnetic shear (LMS) on the tokamak surface. A large absolute value of the LMS in a region of unfavorable normal curvature is found to be stabilizing in the stellarator, while in the tokamak case, negative LMS is found to be stabilizing and positive LMS destabilizing.

  20. Progress in physics and control of the resistive wall mode in advanced tokamaks

    SciTech Connect

    Liu Yueqiang; Chapman, I. T.; Gimblett, C. G.; Hastie, R. J.; Hender, T. C.; Reimerdes, H.; Villone, F.; Ambrosino, G.; Pironti, A.; Portone, A.

    2009-05-15

    Self-consistent computations are carried out to study the stability of the resistive wall mode (RWM) in DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] plasmas with slow plasma rotation, using the hybrid kinetic-magnetohydrodynamic code MARS-K[Y. Q. Liu et al., Phys. Plasmas 15, 112503 (2008)]. Based on kinetic resonances between the mode and the thermal particle toroidal precession drifts, the self-consistent modeling predicts less stabilization of the mode compared to perturbative approaches, and with the DIII-D experiments. A simple analytic model is proposed to explain the MARS-K results, which also gives a qualitative interpretation of the recent experimental results observed in JT-60U [S. Takeji et al., Nucl. Fusion 42, 5 (2002)]. Our present analysis does not include the kinetic contribution from hot ions, which may give additional damping on the mode. The effect of particle collision is not included either. Using the CARMA code [R. Albanese et al., IEEE Trans. Magn. 44, 1654 (2008)], a stability and control analysis is performed for the RWM in ITER [R. Aymar et al., Plasma Phys. Controlled Fusion 44, 519 (2002)] steady state advanced plasmas, taking into account the influence of three-dimensional conducting structures.

  1. A fast-time-response extreme ultraviolet spectrometer for measurement of impurity line emissions in the Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Morita, Shigeru; Xu, Zong; Wu, Zhenwei; Zhang, Pengfei; Wu, Chengrui; Gao, Wei; Ohishi, Tetsutarou; Goto, Motoshi; Shen, Junsong; Chen, Yingjie; Liu, Xiang; Wang, Yumin; Dong, Chunfeng; Zhang, Hongmin; Huang, Xianli; Gong, Xianzu; Hu, Liqun; Chen, Junlin; Zhang, Xiaodong; Wan, Baonian; Li, Jiangang

    2015-12-01

    A flat-field extreme ultraviolet (EUV) spectrometer working in the 20-500 Å wavelength range with fast time response has been newly developed to measure line emissions from highly ionized tungsten in the Experimental Advanced Superconducting Tokamak (EAST) with a tungsten divertor, while the monitoring of light and medium impurities is also an aim in the present development. A flat-field focal plane for spectral image detection is made by a laminar-type varied-line-spacing concave holographic grating with an angle of incidence of 87°. A back-illuminated charge-coupled device (CCD) with a total size of 26.6 × 6.6 mm2 and pixel numbers of 1024 × 255 (26 × 26 μm2/pixel) is used for recording the focal image of spectral lines. An excellent spectral resolution of Δλ0 = 3-4 pixels, where Δλ0 is defined as full width at the foot position of a spectral line, is obtained at the 80-400 Å wavelength range after careful adjustment of the grating and CCD positions. The high signal readout rate of the CCD can improve the temporal resolution of time-resolved spectra when the CCD is operated in the full vertical binning mode. It is usually operated at 5 ms per frame. If the vertical size of the CCD is reduced with a narrow slit, the time response becomes faster. The high-time response in the spectral measurement therefore makes possible a variety of spectroscopic studies, e.g., impurity behavior in long pulse discharges with edge-localized mode bursts. An absolute intensity calibration of the EUV spectrometer is also carried out with a technique using the EUV bremsstrahlung continuum at 20-150 Å for quantitative data analysis. Thus, the high-time resolution tungsten spectra have been successfully observed with good spectral resolution using the present EUV spectrometer system. Typical tungsten spectra in the EUV wavelength range observed from EAST discharges are presented with absolute intensity and spectral identification.

  2. A fast-time-response extreme ultraviolet spectrometer for measurement of impurity line emissions in the Experimental Advanced Superconducting Tokamak.

    PubMed

    Zhang, Ling; Morita, Shigeru; Xu, Zong; Wu, Zhenwei; Zhang, Pengfei; Wu, Chengrui; Gao, Wei; Ohishi, Tetsutarou; Goto, Motoshi; Shen, Junsong; Chen, Yingjie; Liu, Xiang; Wang, Yumin; Dong, Chunfeng; Zhang, Hongmin; Huang, Xianli; Gong, Xianzu; Hu, Liqun; Chen, Junlin; Zhang, Xiaodong; Wan, Baonian; Li, Jiangang

    2015-12-01

    A flat-field extreme ultraviolet (EUV) spectrometer working in the 20-500 Å wavelength range with fast time response has been newly developed to measure line emissions from highly ionized tungsten in the Experimental Advanced Superconducting Tokamak (EAST) with a tungsten divertor, while the monitoring of light and medium impurities is also an aim in the present development. A flat-field focal plane for spectral image detection is made by a laminar-type varied-line-spacing concave holographic grating with an angle of incidence of 87°. A back-illuminated charge-coupled device (CCD) with a total size of 26.6 × 6.6 mm(2) and pixel numbers of 1024 × 255 (26 × 26 μm(2)/pixel) is used for recording the focal image of spectral lines. An excellent spectral resolution of Δλ0 = 3-4 pixels, where Δλ0 is defined as full width at the foot position of a spectral line, is obtained at the 80-400 Å wavelength range after careful adjustment of the grating and CCD positions. The high signal readout rate of the CCD can improve the temporal resolution of time-resolved spectra when the CCD is operated in the full vertical binning mode. It is usually operated at 5 ms per frame. If the vertical size of the CCD is reduced with a narrow slit, the time response becomes faster. The high-time response in the spectral measurement therefore makes possible a variety of spectroscopic studies, e.g., impurity behavior in long pulse discharges with edge-localized mode bursts. An absolute intensity calibration of the EUV spectrometer is also carried out with a technique using the EUV bremsstrahlung continuum at 20-150 Å for quantitative data analysis. Thus, the high-time resolution tungsten spectra have been successfully observed with good spectral resolution using the present EUV spectrometer system. Typical tungsten spectra in the EUV wavelength range observed from EAST discharges are presented with absolute intensity and spectral identification. PMID:26724029

  3. A fast-time-response extreme ultraviolet spectrometer for measurement of impurity line emissions in the Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Zhang, Ling; Xu, Zong; Wu, Zhenwei; Zhang, Pengfei; Wu, Chengrui; Gao, Wei; Shen, Junsong; Chen, Yingjie; Liu, Xiang; Wang, Yumin; Gong, Xianzu; Hu, Liqun; Chen, Junlin; Zhang, Xiaodong; Wan, Baonian; Li, Jiangang; Morita, Shigeru; Ohishi, Tetsutarou; Goto, Motoshi; Dong, Chunfeng; and others

    2015-12-15

    A flat-field extreme ultraviolet (EUV) spectrometer working in the 20-500 Å wavelength range with fast time response has been newly developed to measure line emissions from highly ionized tungsten in the Experimental Advanced Superconducting Tokamak (EAST) with a tungsten divertor, while the monitoring of light and medium impurities is also an aim in the present development. A flat-field focal plane for spectral image detection is made by a laminar-type varied-line-spacing concave holographic grating with an angle of incidence of 87°. A back-illuminated charge-coupled device (CCD) with a total size of 26.6 × 6.6 mm{sup 2} and pixel numbers of 1024 × 255 (26 × 26 μm{sup 2}/pixel) is used for recording the focal image of spectral lines. An excellent spectral resolution of Δλ{sub 0} = 3-4 pixels, where Δλ{sub 0} is defined as full width at the foot position of a spectral line, is obtained at the 80-400 Å wavelength range after careful adjustment of the grating and CCD positions. The high signal readout rate of the CCD can improve the temporal resolution of time-resolved spectra when the CCD is operated in the full vertical binning mode. It is usually operated at 5 ms per frame. If the vertical size of the CCD is reduced with a narrow slit, the time response becomes faster. The high-time response in the spectral measurement therefore makes possible a variety of spectroscopic studies, e.g., impurity behavior in long pulse discharges with edge-localized mode bursts. An absolute intensity calibration of the EUV spectrometer is also carried out with a technique using the EUV bremsstrahlung continuum at 20-150 Å for quantitative data analysis. Thus, the high-time resolution tungsten spectra have been successfully observed with good spectral resolution using the present EUV spectrometer system. Typical tungsten spectra in the EUV wavelength range observed from EAST discharges are presented with absolute intensity and spectral identification.

  4. A fast-time-response extreme ultraviolet spectrometer for measurement of impurity line emissions in the Experimental Advanced Superconducting Tokamak.

    PubMed

    Zhang, Ling; Morita, Shigeru; Xu, Zong; Wu, Zhenwei; Zhang, Pengfei; Wu, Chengrui; Gao, Wei; Ohishi, Tetsutarou; Goto, Motoshi; Shen, Junsong; Chen, Yingjie; Liu, Xiang; Wang, Yumin; Dong, Chunfeng; Zhang, Hongmin; Huang, Xianli; Gong, Xianzu; Hu, Liqun; Chen, Junlin; Zhang, Xiaodong; Wan, Baonian; Li, Jiangang

    2015-12-01

    A flat-field extreme ultraviolet (EUV) spectrometer working in the 20-500 Å wavelength range with fast time response has been newly developed to measure line emissions from highly ionized tungsten in the Experimental Advanced Superconducting Tokamak (EAST) with a tungsten divertor, while the monitoring of light and medium impurities is also an aim in the present development. A flat-field focal plane for spectral image detection is made by a laminar-type varied-line-spacing concave holographic grating with an angle of incidence of 87°. A back-illuminated charge-coupled device (CCD) with a total size of 26.6 × 6.6 mm(2) and pixel numbers of 1024 × 255 (26 × 26 μm(2)/pixel) is used for recording the focal image of spectral lines. An excellent spectral resolution of Δλ0 = 3-4 pixels, where Δλ0 is defined as full width at the foot position of a spectral line, is obtained at the 80-400 Å wavelength range after careful adjustment of the grating and CCD positions. The high signal readout rate of the CCD can improve the temporal resolution of time-resolved spectra when the CCD is operated in the full vertical binning mode. It is usually operated at 5 ms per frame. If the vertical size of the CCD is reduced with a narrow slit, the time response becomes faster. The high-time response in the spectral measurement therefore makes possible a variety of spectroscopic studies, e.g., impurity behavior in long pulse discharges with edge-localized mode bursts. An absolute intensity calibration of the EUV spectrometer is also carried out with a technique using the EUV bremsstrahlung continuum at 20-150 Å for quantitative data analysis. Thus, the high-time resolution tungsten spectra have been successfully observed with good spectral resolution using the present EUV spectrometer system. Typical tungsten spectra in the EUV wavelength range observed from EAST discharges are presented with absolute intensity and spectral identification.

  5. Advancing Research on Undergraduate Science Learning

    ERIC Educational Resources Information Center

    Singer, Susan Rundell

    2013-01-01

    This special issue of "Journal of Research in Science Teaching" reflects conclusions and recommendations in the "Discipline-Based Education Research" (DBER) report and makes a substantial contribution to advancing the field. Research on undergraduate science learning is currently a loose affiliation of related fields. The…

  6. Advances in Education Research. Volume 2, 1997.

    ERIC Educational Resources Information Center

    Advances in Education Research, 1997

    1997-01-01

    "Advances in Education Research" reprints previously published journal articles reporting on research supported in whole or in part by the Office of Educational Research and Improvement (OERI). The articles are selected from peer-reviewed/referred journals; the journals used are described briefy at the end of the volume. The articles in this…

  7. Therapists and researchers: Advancing collaboration

    PubMed Central

    GARLAND, ANN F.; BROOKMAN-FRAZEE, LAUREN

    2016-01-01

    Collaborative partnerships between community-based clinicians and academic researchers have the potential to improve the relevance, utility, and feasibility of research, as well as the effectiveness of practice. Collaborative partnership research from a variety of fields can inform the development and maintenance of effective partnerships. In this paper we present a conceptual model of research-community practice partnership derived from literature across disciplines and then illustrate application of this model to one case example. The case example is a multi-year partnership between an interdisciplinary group of community-based psychotherapists and a team of mental health researchers. This partnership was initiated to support federally funded research on community-based out-patient mental health care for children with disruptive behavior problems, but it has evolved to drive and support new intervention studies with different clinical foci. Lessons learned from this partnership process will be shared and interpreted in the context of the presented research-practice partnership model. PMID:24224554

  8. Bringing Advanced Computational Techniques to Energy Research

    SciTech Connect

    Mitchell, Julie C

    2012-11-17

    Please find attached our final technical report for the BACTER Institute award. BACTER was created as a graduate and postdoctoral training program for the advancement of computational biology applied to questions of relevance to bioenergy research.

  9. Advancing Educational Policy by Advancing Research on Instruction

    ERIC Educational Resources Information Center

    Raudenbush, Stephen W.

    2008-01-01

    Understanding the impact of "instructional regimes" on student learning is central to advancing educational policy. Research on instructional regimes has parallels with clinical trials in medicine yet poses unique challenges because of the social nature of instruction: A child's potential outcome under a given regime depends on peers and teachers,…

  10. Advances in developmental prosopagnosia research.

    PubMed

    Susilo, Tirta; Duchaine, Bradley

    2013-06-01

    Developmental prosopagnosia (DP) refers to face recognition deficits in the absence of brain damage. DP affects ∼2% of the population, and it often runs in families. DP studies have made considerable progress in identifying the cognitive and neural characteristics of the disorder. A key challenge is to develop a valid taxonomy of DP that will facilitate many aspects of research.

  11. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect

    Unknown

    1999-10-01

    The activities of the AGTSR Program during this reporting period are described in this quarterly report. The report text is divided into discussions on Membership, Administration, Technology Transfer (Workshop/Education) and Research. Items worthy of note are highlighted below with additional detail following in the text of the report.

  12. Advancements in Cotton Harvesting Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton harvesting research within USDA ARS is focused on improving harvest productivity, cotton quality, and producer profitability. In recent years, our work has encompassed efforts to improve both spindle picker and brush-roll stripper harvesting systems. Specifically, work with cotton pickers i...

  13. Research Advances: Onions Battle Osteoporosis

    ERIC Educational Resources Information Center

    King, Angela G.

    2005-01-01

    Researchers at the University of Bern in Switzerland have identified a compound in the popular vegetable that appears to decrease bone loss in laboratory studies using rat bone cells. It is suggested that eating onions might help prevent bone loss and osteoporosis, a disease, which predominantly affects older women.

  14. Texas Experimental Tokamak

    SciTech Connect

    Wootton, A.J.

    1993-04-01

    This progress report covers the period from November 1, 1990 to April 30, 1993. During that period, TEXT was operated as a circular tokamak with a material limiter. It was devoted to the study of basic plasma physics, in particular to study of fluctuations, turbulence, and transport. The purpose is to operate and maintain TEXT Upgrade as a complete facility for applied tokamak physics, specifically to conduct a research program under the following main headings: (1) to elucidate the mechanisms of working gas, impurity, and thermal transport in tokamaks, in particular to understand the role of turbulence; (2) to study physics of the edge plasma, in particular the turbulence; (3) to study the physics or resonant magnetic fields (ergodic magnetic divertors, intra island pumping); and (4) to study the physics of electron cyclotron heating (ECRH). Results of studies in each of these areas are reported.

  15. ARIES tokamak reactor study

    SciTech Connect

    Steiner, D.; Embrechts, M.

    1990-07-01

    This is a status report on technical progress relative to the tasks identified for the fifth year of Grant No. FG02-85-ER52118. The ARIES tokamak reactor study is a multi-institutional effort to develop several visions of the tokamak as an attractive fusion reactor with enhanced economic, safety, and environmental features. The ARIES study is being coordinated by UCLA and involves a number of institutions, including RPI. The RPI group has been pursuing the following areas of research in the context of the ARIES-I design effort: MHD equilibrium and stability analyses; plasma-edge modeling and blanket materials issues. Progress in these areas is summarized herein.

  16. Transport of Dust Particles in Tokamak Devices

    SciTech Connect

    Pigarov, A Y; Smirnov, R D; Krasheninnikov, S I; Rognlien, T D; Rozenberg, M

    2006-06-06

    Recent advances in the dust transport modeling in tokamak devices are discussed. Topics include: (1) physical model for dust transport; (2) modeling results on dynamics of dust particles in plasma; (3) conditions necessary for particle growth in plasma; (4) dust spreading over the tokamak; (5) density profiles for dust particles and impurity atoms associated with dust ablation in tokamak plasma; and (6) roles of dust in material/tritium migration.

  17. Advances in Activity Cliff Research.

    PubMed

    Dimova, Dilyana; Bajorath, Jürgen

    2016-05-01

    Activity cliffs, i.e. similar compounds with large potency differences, are of interest from a chemical and informatics viewpoint; as a source of structure-activity relationship information, for compound optimization, and activity prediction. Herein, recent highlights of activity cliff research are discussed including studies that have further extended our understanding of activity cliffs, yielded unprecedented insights, or paved the way for practical applications.

  18. Advances in Activity Cliff Research.

    PubMed

    Dimova, Dilyana; Bajorath, Jürgen

    2016-05-01

    Activity cliffs, i.e. similar compounds with large potency differences, are of interest from a chemical and informatics viewpoint; as a source of structure-activity relationship information, for compound optimization, and activity prediction. Herein, recent highlights of activity cliff research are discussed including studies that have further extended our understanding of activity cliffs, yielded unprecedented insights, or paved the way for practical applications. PMID:27492084

  19. Advancing Manufacturing Research Through Competitions

    SciTech Connect

    Balakirsky, Stephen; Madhavan, Raj

    2009-01-01

    Competitions provide a technique for building interest and collaboration in targeted research areas. This paper will present a new competition that aims to increase collaboration amongst Universities, automation end-users, and automation manufacturers through a virtual competition. The virtual nature of the competition allows for reduced infrastructure requirements while maintaining realism in both the robotic equipment deployed and the scenarios. Details of the virtual environment as well as the competitions objectives, rules, and scoring metrics will be presented.

  20. Research priorities for advanced fibrous composites

    NASA Technical Reports Server (NTRS)

    Baumann, K. J.; Swedlow, J. L.

    1981-01-01

    Priorities for research in advanced laminated fibrous composite materials are presented. Supporting evidence is presented in two bodies, including a general literature survey and a survey of aerospace composite hardware and service experience. Both surveys were undertaken during 1977-1979. Specific results and conclusions indicate that a significant portion of contemporary published research diverges from recommended priorites.

  1. Advances in personality theory and research.

    PubMed Central

    Stelmack, R M

    1991-01-01

    This paper briefly describes important advances in personality research that have been achieved during the past 20 years in the development of a fundamental personality typology and in the determination of the heritability of personality traits. Research conducted at the University of Ottawa that has contributed to the exploration of the biological bases of the extraversion trait is summarized. PMID:1958646

  2. Advances in agricultural research. [Review

    SciTech Connect

    Leepson, M.

    1981-05-22

    Several factors could have disastrous consequences for the world's food supply, namely: shrinking agricultural acreage; increasing population; decreasing productivity gains in most crops; heavy dependence on petroleum-based pesticides and fertilizers; and genetic vulnerability. Many feel that solutions to these potentially grave problems lie in expanding agricultural research, with particular focus on age-old plant-breeding techniques. The newest plant-breeding technology, genetic engineering (also called recombinant DNA technology), could some day allow biologists to design actually new genetic material rather than just manipulate genetic material already present in crops. Most scientists foresee imminent breakthroughs with recombinant DNA technology and plant breeding, but warn the practial applications may be decades away - perhaps 20 to 50 years. Many of the larger chemical companies are working in the following areas of agriculture R and D: nitrogen fixation; plant growth regulants; photosynthesis; recombinant DNA; plant genetics; and soybean hybrids. New progress in hydroponic technology is reported briefly. Germ plasm collection and storage is being pursued in the US, Soviet Union, and Mexico; US activities are summarized. In addition to the chemical-company efforts in R and D, there have been many acquisitions of seed companies by some of the nation's largest corporations in the last decade; a significant difference of opinion exists as to what this growing corporate involvement portends for agriculture. 49 references, 1 figure, 3 tables.

  3. ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM

    SciTech Connect

    Lawrence P. Golan

    2002-07-01

    The quarterly activities of the Advanced Gas Turbine Systems Research (AGTSR) program are described in this quarterly report. As this program administers research, we have included all program activity herein within the past quarter as dated. More specific research progress reports are provided weekly at the request of the AGTSR COR and are being sent to NETL As for the administration of this program, items worthy of note are presented in extended bullet format following the appropriate heading.

  4. ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM

    SciTech Connect

    Lawrence P. Golan

    2001-07-01

    The quarterly activities of the Advanced Gas Turbine Systems Research (AGTSR) program are described in this quarterly report. As this program administers research, we have included all program activity herein within the past quarter as dated. More specific research progress reports are provided weekly at the request of the AGTSR COR and are being sent to NETL. As for the administration of this program, items worthy of note are presented in extended bullet format following the appropriate heading.

  5. ECH tokamak

    SciTech Connect

    Firestone, M.A.; Mau, T.K.; Conn, R.W.

    1985-04-01

    A small steady-state tokamak capable of producing power in the 100 to 300 MWe range and relying on electron cyclotron RF heating (ECH) for both heating and current drive is described. Working in the first MHD stability regime for tokamaks, the approach adheres to the recently discovered maximum beta limit. An appropriate figure of merit is the ratio of the fusion power to absorbed RF power. Efficient devices are feasible at both small and large values of fusion power, thereby pointing to a development path for an attractive commercial fusion reactor.

  6. Basic Physics of Tokamak Transport Final Technical Report.

    SciTech Connect

    Sen, Amiya K.

    2014-05-12

    The goal of this grant has been to study the basic physics of various sources of anomalous transport in tokamaks. Anomalous transport in tokamaks continues to be one of the major problems in magnetic fusion research. As a tokamak is not a physics device by design, direct experimental observation and identification of the instabilities responsible for transport, as well as physics studies of the transport in tokamaks, have been difficult and of limited value. It is noted that direct experimental observation, identification and physics study of microinstabilities including ITG, ETG, and trapped electron/ion modes in tokamaks has been very difficult and nearly impossible. The primary reasons are co-existence of many instabilities, their broadband fluctuation spectra, lack of flexibility for parameter scans and absence of good local diagnostics. This has motivated us to study the suspected tokamak instabilities and their transport consequences in a simpler, steady state Columbia Linear Machine (CLM) with collisionless plasma and the flexibility of wide parameter variations. Earlier work as part of this grant was focused on both ITG turbulence, widely believed to be a primary source of ion thermal transport in tokamaks, and the effects of isotope scaling on transport levels. Prior work from our research team has produced and definitively identified both the slab and toroidal branches of this instability and determined the physics criteria for their existence. All the experimentally observed linear physics corroborate well with theoretical predictions. However, one of the large areas of research dealt with turbulent transport results that indicate some significant differences between our experimental results and most theoretical predictions. Latter years of this proposal were focused on anomalous electron transport with a special focus on ETG. There are several advanced tokamak scenarios with internal transport barriers (ITB), when the ion transport is reduced to

  7. Design of the radiation shielding for the time of flight enhanced diagnostics neutron spectrometer at Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Du, T. F.; Chen, Z. J.; Peng, X. Y.; Yuan, X.; Zhang, X.; Hu, Z. M.; Cui, Z. Q.; Xie, X. F.; Ge, L. J.; Li, X. Q.; Zhang, G. H.; Chen, J. X.; Fan, T. S.; Gorini, G.; Nocente, M.; Tardocchi, M.; Hu, L. Q.; Zhong, G. Q.; Lin, S. Y.; Wan, B. N.

    2014-11-15

    A radiation shielding has been designed to reduce scattered neutrons and background gamma-rays for the new double-ring Time Of Flight Enhanced Diagnostics (TOFED). The shielding was designed based on simulation with the Monte Carlo code MCNP5. Dedicated model of the EAST tokamak has been developed together with the emission neutron source profile and spectrum; the latter were simulated with the Nubeam and GENESIS codes. Significant reduction of background radiation at the detector can be achieved and this satisfies the requirement of TOFED. The intensities of the scattered and direct neutrons in the line of sight of the TOFED neutron spectrometer at EAST are studied for future data interpretation.

  8. Design of the radiation shielding for the time of flight enhanced diagnostics neutron spectrometer at Experimental Advanced Superconducting Tokamak.

    PubMed

    Du, T F; Chen, Z J; Peng, X Y; Yuan, X; Zhang, X; Gorini, G; Nocente, M; Tardocchi, M; Hu, Z M; Cui, Z Q; Xie, X F; Ge, L J; Hu, L Q; Zhong, G Q; Lin, S Y; Wan, B N; Li, X Q; Zhang, G H; Chen, J X; Fan, T S

    2014-11-01

    A radiation shielding has been designed to reduce scattered neutrons and background gamma-rays for the new double-ring Time Of Flight Enhanced Diagnostics (TOFED). The shielding was designed based on simulation with the Monte Carlo code MCNP5. Dedicated model of the EAST tokamak has been developed together with the emission neutron source profile and spectrum; the latter were simulated with the Nubeam and GENESIS codes. Significant reduction of background radiation at the detector can be achieved and this satisfies the requirement of TOFED. The intensities of the scattered and direct neutrons in the line of sight of the TOFED neutron spectrometer at EAST are studied for future data interpretation.

  9. Monte Carlo simulation of a Bonner sphere spectrometer for application to the determination of neutron field in the Experimental Advanced Superconducting Tokamak experimental hall

    SciTech Connect

    Hu, Z. M.; Xie, X. F.; Chen, Z. J.; Peng, X. Y.; Du, T. F.; Cui, Z. Q.; Ge, L. J.; Li, T.; Yuan, X.; Zhang, X.; Li, X. Q.; Zhang, G. H.; Chen, J. X.; Fan, T. S.; Hu, L. Q.; Zhong, G. Q.; Lin, S. Y.; Wan, B. N.; Gorini, G.

    2014-11-15

    To assess the neutron energy spectra and the neutron dose for different positions around the Experimental Advanced Superconducting Tokamak (EAST) device, a Bonner Sphere Spectrometer (BSS) was developed at Peking University, with totally nine polyethylene spheres and a SP9 {sup 3}He counter. The response functions of the BSS were calculated by the Monte Carlo codes MCNP and GEANT4 with dedicated models, and good agreement was found between these two codes. A feasibility study was carried out with a simulated neutron energy spectrum around EAST, and the simulated “experimental” result of each sphere was obtained by calculating the response with MCNP, which used the simulated neutron energy spectrum as the input spectrum. With the deconvolution of the “experimental” measurement, the neutron energy spectrum was retrieved and compared with the preset one. Good consistence was found which offers confidence for the application of the BSS system for dose and spectrum measurements around a fusion device.

  10. Monte Carlo simulation of a Bonner sphere spectrometer for application to the determination of neutron field in the Experimental Advanced Superconducting Tokamak experimental hall.

    PubMed

    Hu, Z M; Xie, X F; Chen, Z J; Peng, X Y; Du, T F; Cui, Z Q; Ge, L J; Li, T; Yuan, X; Zhang, X; Hu, L Q; Zhong, G Q; Lin, S Y; Wan, B N; Gorini, G; Li, X Q; Zhang, G H; Chen, J X; Fan, T S

    2014-11-01

    To assess the neutron energy spectra and the neutron dose for different positions around the Experimental Advanced Superconducting Tokamak (EAST) device, a Bonner Sphere Spectrometer (BSS) was developed at Peking University, with totally nine polyethylene spheres and a SP9 (3)He counter. The response functions of the BSS were calculated by the Monte Carlo codes MCNP and GEANT4 with dedicated models, and good agreement was found between these two codes. A feasibility study was carried out with a simulated neutron energy spectrum around EAST, and the simulated "experimental" result of each sphere was obtained by calculating the response with MCNP, which used the simulated neutron energy spectrum as the input spectrum. With the deconvolution of the "experimental" measurement, the neutron energy spectrum was retrieved and compared with the preset one. Good consistence was found which offers confidence for the application of the BSS system for dose and spectrum measurements around a fusion device.

  11. Advanced Sciences and Technology Research for Astrodynamics

    NASA Astrophysics Data System (ADS)

    Jah, M.

    The Advanced Sciences and Technology Research Institute for Astrodynamics (ASTRIA) has been created as a research endeavor that focuses all astrodynamics R&D within the Air Force Research Laboratory (AFRL). ASTRIA is mainly a consortium of academic partners brought together to bear on the nation's challenges as related to astrodynamics sciences and technologies. An overview of ASTRIA is presented as well as examples of several research efforts that are relevant to data/track association, UCT/cross-tagging mitigation, and attitude recovery from light curve data.

  12. ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM

    SciTech Connect

    Lawrence P. Golan

    2003-05-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for the reporting period October 1, 2002 to December 31, 2002 are described in this quarterly report. No new membership, workshops, research projects, internships, faculty fellowships or special studies were initiated during this reporting period. Contract completion is set for June 30, 2003. During the report period, six research progress reports were received (3 final reports and 3 semi-annual reports). The University of Central Florida contract SR080 was terminated during this period, as UCF was unable to secure research facilities. AGTSR now projects that it will under spend DOE obligated funds by approximately 340-350K$.

  13. Proposed research on advanced accelerator concepts

    SciTech Connect

    Davidson, R.C.; Wurtele, J.S.

    1991-09-01

    This report summarizes technical progress and accomplishments during the proposed three-year research on advanced accelerator concepts supported by the Department of Energy under Contract No. DE-FG02-88ER40465. A vigorous theoretical program has been pursued in critical problem areas related to advanced accelerator concepts and the basic equilibrium, stability, and radiation properties of intense charged particle beams. Broadly speaking, our research has made significant contributions in the following three major areas: Investigations of physics issues related to particle acceleration including two-beam accelerators and cyclotron resonance laser (CRL) accelerators; Investigations of RF sources including the free- electron lasers, cyclotron resonance masers, and relativistic magnetrons; Studies of coherent structures in electron plasmas and beams ranging from a low-density, nonrelativistic, pure electron plasma column to high-density, relativistic, non-neutral electron flow in a high-voltage diode. The remainder of this report presents theoretical and computational advances in these areas.

  14. Coordinating Space Nuclear Research Advancement and Education

    SciTech Connect

    John D. Bess; Jonathon A. Webb; Brian J. Gross; Aaron E. Craft

    2009-11-01

    The advancement of space exploration using nuclear science and technology has been a goal sought by many individuals over the years. The quest to enable space nuclear applications has experienced many challenges such as funding restrictions; lack of political, corporate, or public support; and limitations in educational opportunities. The Center for Space Nuclear Research (CSNR) was established at the Idaho National Laboratory (INL) with the mission to address the numerous challenges and opportunities relevant to the promotion of space nuclear research and education.1 The CSNR is operated by the Universities Space Research Association and its activities are overseen by a Science Council comprised of various representatives from academic and professional entities with space nuclear experience. Program participants in the CSNR include academic researchers and students, government representatives, and representatives from industrial and corporate entities. Space nuclear educational opportunities have traditionally been limited to various sponsored research projects through government agencies or industrial partners, and dedicated research centers. Centralized research opportunities are vital to the growth and development of space nuclear advancement. Coordinated and focused research plays a key role in developing the future leaders in the space nuclear field. The CSNR strives to synchronize research efforts and provide means to train and educate students with skills to help them excel as leaders.

  15. Research Opportunities in Advanced Aerospace Concepts

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S.; Bangert, Linda S.; Garber, Donald P.; Huebner, Lawrence D.; McKinley, Robert E.; Sutton, Kenneth; Swanson, Roy C., Jr.; Weinstein, Leonard

    2000-01-01

    This report is a review of a team effort that focuses on advanced aerospace concepts of the 21st Century. The paper emphasis advanced technologies, rather than cataloging every unusual aircraft that has ever been attempted. To dispel the myth that "aerodynamics is a mature science" an extensive list of "What we cannot do, or do not know" was enumerated. A zeit geist, a feeling for the spirit of the times, was developed, based on existing research goals. Technological drivers and the constraints that might influence these technological developments in a future society were also examined. The present status of aeronautics, space exploration, and non-aerospace applications, both military and commercial, including enabling technologies are discussed. A discussion of non-technological issues affecting advanced concepts research is presented. The benefit of using the study of advanced vehicles as a tool to uncover new directions for technology development is often necessary. An appendix is provided containing examples of advanced vehicle configurations currently of interest.

  16. Fabrication and Characterization of Samples for a Material Migration Experiment on the Experimental Advanced Superconducting Tokamak (EAST).

    SciTech Connect

    Wampler, William R.; Van Deusen, Stuart B.

    2015-12-01

    This report documents work done for the ITER International Fusion Energy Organization (Sponsor) under a Funds-In Agreement FI 011140916 with Sandia National Laboratories. The work consists of preparing and analyzing samples for an experiment to measure material erosion and deposition in the EAST Tokamak. Sample preparation consisted of depositing thin films of carbon and aluminum onto molybdenum tiles. Analysis consists of measuring the thickness of films before and after exposure to helium plasma in EAST. From these measurements the net erosion and deposition of material will be quantified. Film thickness measurements are made at the Sandia Ion Beam Laboratory using Rutherford backscattering spectrometry and nuclear reaction analysis, as described in this report. This report describes the film deposition and pre-exposure analysis. Results from analysis after plasma exposure will be given in a subsequent report.

  17. Upgrade of Langmuir probe diagnostic in ITER-like tungsten mono-block divertor on experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Xu, J. C.; Wang, L.; Xu, G. S.; Luo, G. N.; Yao, D. M.; Li, Q.; Cao, L.; Chen, L.; Zhang, W.; Liu, S. C.; Wang, H. Q.; Jia, M. N.; Feng, W.; Deng, G. Z.; Hu, L. Q.; Wan, B. N.; Li, J.; Sun, Y. W.; Guo, H. Y.

    2016-08-01

    In order to withstand rapid increase in particle and power impact onto the divertor and demonstrate the feasibility of the ITER design under long pulse operation, the upper divertor of the EAST tokamak has been upgraded to actively water-cooled, ITER-like tungsten mono-block structure since the 2014 campaign, which is the first attempt for ITER on the tokamak devices. Therefore, a new divertor Langmuir probe diagnostic system (DivLP) was designed and successfully upgraded on the tungsten divertor to obtain the plasma parameters in the divertor region such as electron temperature, electron density, particle and heat fluxes. More specifically, two identical triple probe arrays have been installed at two ports of different toroidal positions (112.5-deg separated toroidally), which can provide fundamental data to study the toroidal asymmetry of divertor power deposition and related 3-dimension (3D) physics, as induced by resonant magnetic perturbations, lower hybrid wave, and so on. The shape of graphite tip and fixed structure of the probe are designed according to the structure of the upper tungsten divertor. The ceramic support, small graphite tip, and proper connector installed make it possible to be successfully installed in the very narrow interval between the cassette body and tungsten mono-block, i.e., 13.5 mm. It was demonstrated during the 2014 and 2015 commissioning campaigns that the newly upgraded divertor Langmuir probe diagnostic system is successful. Representative experimental data are given and discussed for the DivLP measurements, then proving its availability and reliability.

  18. Upgrade of Langmuir probe diagnostic in ITER-like tungsten mono-block divertor on experimental advanced superconducting tokamak.

    PubMed

    Xu, J C; Wang, L; Xu, G S; Luo, G N; Yao, D M; Li, Q; Cao, L; Chen, L; Zhang, W; Liu, S C; Wang, H Q; Jia, M N; Feng, W; Deng, G Z; Hu, L Q; Wan, B N; Li, J; Sun, Y W; Guo, H Y

    2016-08-01

    In order to withstand rapid increase in particle and power impact onto the divertor and demonstrate the feasibility of the ITER design under long pulse operation, the upper divertor of the EAST tokamak has been upgraded to actively water-cooled, ITER-like tungsten mono-block structure since the 2014 campaign, which is the first attempt for ITER on the tokamak devices. Therefore, a new divertor Langmuir probe diagnostic system (DivLP) was designed and successfully upgraded on the tungsten divertor to obtain the plasma parameters in the divertor region such as electron temperature, electron density, particle and heat fluxes. More specifically, two identical triple probe arrays have been installed at two ports of different toroidal positions (112.5-deg separated toroidally), which can provide fundamental data to study the toroidal asymmetry of divertor power deposition and related 3-dimension (3D) physics, as induced by resonant magnetic perturbations, lower hybrid wave, and so on. The shape of graphite tip and fixed structure of the probe are designed according to the structure of the upper tungsten divertor. The ceramic support, small graphite tip, and proper connector installed make it possible to be successfully installed in the very narrow interval between the cassette body and tungsten mono-block, i.e., 13.5 mm. It was demonstrated during the 2014 and 2015 commissioning campaigns that the newly upgraded divertor Langmuir probe diagnostic system is successful. Representative experimental data are given and discussed for the DivLP measurements, then proving its availability and reliability. PMID:27587120

  19. Upgrade of Langmuir probe diagnostic in ITER-like tungsten mono-block divertor on experimental advanced superconducting tokamak.

    PubMed

    Xu, J C; Wang, L; Xu, G S; Luo, G N; Yao, D M; Li, Q; Cao, L; Chen, L; Zhang, W; Liu, S C; Wang, H Q; Jia, M N; Feng, W; Deng, G Z; Hu, L Q; Wan, B N; Li, J; Sun, Y W; Guo, H Y

    2016-08-01

    In order to withstand rapid increase in particle and power impact onto the divertor and demonstrate the feasibility of the ITER design under long pulse operation, the upper divertor of the EAST tokamak has been upgraded to actively water-cooled, ITER-like tungsten mono-block structure since the 2014 campaign, which is the first attempt for ITER on the tokamak devices. Therefore, a new divertor Langmuir probe diagnostic system (DivLP) was designed and successfully upgraded on the tungsten divertor to obtain the plasma parameters in the divertor region such as electron temperature, electron density, particle and heat fluxes. More specifically, two identical triple probe arrays have been installed at two ports of different toroidal positions (112.5-deg separated toroidally), which can provide fundamental data to study the toroidal asymmetry of divertor power deposition and related 3-dimension (3D) physics, as induced by resonant magnetic perturbations, lower hybrid wave, and so on. The shape of graphite tip and fixed structure of the probe are designed according to the structure of the upper tungsten divertor. The ceramic support, small graphite tip, and proper connector installed make it possible to be successfully installed in the very narrow interval between the cassette body and tungsten mono-block, i.e., 13.5 mm. It was demonstrated during the 2014 and 2015 commissioning campaigns that the newly upgraded divertor Langmuir probe diagnostic system is successful. Representative experimental data are given and discussed for the DivLP measurements, then proving its availability and reliability.

  20. Advanced energy projects FY 1997 research summaries

    SciTech Connect

    1997-09-01

    The mission of the Advanced Energy Projects (AEP) program is to explore the scientific feasibility of novel energy-related concepts that are high risk, in terms of scientific feasibility, yet have a realistic potential for a high technological payoff. The concepts supported by the AEP are typically at an early stage of scientific development. They often arise from advances in basic research and are premature for consideration by applied research or technology development programs. Some are based on discoveries of new scientific phenomena or involve exploratory ideas that span multiple scientific and technical disciplines which do not fit into an existing DOE program area. In all cases, the objective is to support evaluation of the scientific or technical feasibility of the novel concepts involved. Following AEP support, it is expected that each concept will be sufficiently developed to attract further funding from other sources to realize its full potential. Projects that involve evolutionary research or technology development and demonstration are not supported by AEP. Furthermore, research projects more appropriate for another existing DOE research program are not encouraged. There were 65 projects in the AEP research portfolio during Fiscal Year 1997. Eigheen projects were initiated during that fiscal year. This document consists of short summaries of projects active in FY 1997. Further information of a specific project may be obtained by contacting the principal investigator.

  1. ISAAC - A Testbed for Advanced Composites Research

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Stewart, Brian K.; Martin, Robert A.

    2014-01-01

    The NASA Langley Research Center is acquiring a state-of-art composites fabrication environment to support the Center's research and technology development mission. This overall system described in this paper is named ISAAC, or Integrated Structural Assembly of Advanced Composites. ISAAC's initial operational capability is a commercial robotic automated fiber placement system from Electroimpact, Inc. that consists of a multi-degree of freedom commercial robot platform, a tool changer mechanism, and a specialized automated fiber placement end effector. Examples are presented of how development of advanced composite materials, structures, fabrication processes and technology are enabled by utilizing the fiber placement end effector directly or with appropriate modifications. Alternatively, end effectors with different capabilities may either be bought or developed with NASA's partners in industry and academia.

  2. Systems Engineering Building Advances Power Grid Research

    SciTech Connect

    Virden, Jud; Huang, Henry; Skare, Paul; Dagle, Jeff; Imhoff, Carl; Stoustrup, Jakob; Melton, Ron; Stiles, Dennis; Pratt, Rob

    2015-08-19

    Researchers and industry are now better equipped to tackle the nation’s most pressing energy challenges through PNNL’s new Systems Engineering Building – including challenges in grid modernization, buildings efficiency and renewable energy integration. This lab links real-time grid data, software platforms, specialized laboratories and advanced computing resources for the design and demonstration of new tools to modernize the grid and increase buildings energy efficiency.

  3. [Research Advances in Cyprinid Herpesvirus 3].

    PubMed

    Zheng, Shucheng; Wang, Qing; Li, Yingying; Zeng, Weiwei; Wang, Yingying; Liu, Chun; Liang, Hongru; Shi, Cunbin

    2016-01-01

    Cyprinid herpesvirus 3 (CyHV-3) is the causative agent of an extremely contagious and aggressive disease afflicting common corp Cyprinus carpio L. termed koi herpesvirus disease (KHVD). Since it was first reported in 1997, the virus has spread worldwide rapidly, leading to enormous financial losses in industries based on common carp and koi carp. This review summarizes recent advances in CyHV-3 research on the etiology, epidemiology, pathogenesis, diagnosis, prevention, and control of KHVD. PMID:27295892

  4. Medical technology advances from space research

    NASA Technical Reports Server (NTRS)

    Pool, S. L.

    1972-01-01

    Details of medical research and development programs, particularly an integrated medical laboratory, as derived from space technology are given. The program covers digital biotelemetry systems, automatic visual field mapping equipment, sponge electrode caps for clinical electroencephalograms, and advanced respiratory analysis equipment. The possibility of using the medical laboratory in ground based remote areas and regional health care facilities, as well as long duration space missions is discussed.

  5. Superconducting magnet system for the TPX Tokamak

    SciTech Connect

    Hassenzahl, W.V.; Chaplin, M.R.; Heim, J.R.

    1993-09-15

    The Tokamak Physics Experiment (TPX) will be the first Tokamak using superconducting magnets for both the poloidal and toroidal field. It is designed for advanced Tokamak physics experiments in steady-state and long-pulse operation. The TPX superconducting magnets use an advanced cable-in-conduit conductor (CICC) design similar to that developed in support of the International Thermonuclear Experimental Reactor (ITER). The toroidal field magnets provide 4.0 T at 2.25 m with a stored energy of 1.05 GJ. The poloidal field magnets provide 18.0 V-s to ohmically start and control long burns of a 2.0 MA plasma.

  6. Research Institute for Advanced Computer Science

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R. (Technical Monitor); Leiner, Barry M.

    2000-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administration's missions. RIACS is located at the NASA Ames Research Center. It currently operates under a multiple year grant/cooperative agreement that began on October 1, 1997 and is up for renewal in the year 2002. Ames has been designated NASA's Center of Excellence in Information Technology. In this capacity, Ames is charged with the responsibility to build an Information Technology Research Program that is preeminent within NASA. RIACS serves as a bridge between NASA Ames and the academic community, and RIACS scientists and visitors work in close collaboration with NASA scientists. RIACS has the additional goal of broadening the base of researchers in these areas of importance to the nation's space and aeronautics enterprises. RIACS research focuses on the three cornerstones of information technology research necessary to meet the future challenges of NASA missions: (1) Automated Reasoning for Autonomous Systems. Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth; (2) Human-Centered Computing. Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities; (3) High Performance Computing and Networking. Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to data analysis of large datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply information technology research to a

  7. L to H mode transitions and associated phenomena in divertor tokamaks

    NASA Astrophysics Data System (ADS)

    Punjabi, A.

    1990-09-01

    This is the final report for the research project titled, L to H Mode Transitions and Associated Phenomena in Divertor Tokamaks. The period covered by this project is the fiscal year 1990. This report covers the development of Advanced Two Chamber Model.

  8. UZIG USGS research: Advances through interdisciplinary interaction

    USGS Publications Warehouse

    Nimmo, J.R.; Andraski, B.J.; Rafael, M.-C.

    2009-01-01

    Because vadose zone research relates to diverse disciplines, applications, and modes of research, collaboration across traditional operational and topical divisions is especially likely to yield major advances in understanding. The Unsaturated Zone Interest Group (UZIG) is an informal organization sponsored by the USGS to encourage and support interdisciplinary collaboration in vadose or unsaturated zone hydrologic research across organizational boundaries. It includes both USGS and non-USGS scientists. Formed in 1987, the UZIG operates to promote communication, especially through periodic meetings with presentations, discussions, and fi eld trips. The 10th meeting of the UZIG at Los Alamos, NM, in August 2007 was jointly sponsored by the USGS and Los Alamos National Laboratory. Presentations at this meeting served as the initial basis for selecting papers for this special section of Vadose Zone Journal, the purpose of which is to present noteworthy cuting-edge unsaturated zone research promoted by, facilitated by, or presented in connection with the UZIG. ?? Soil Science Society of America.

  9. ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM

    SciTech Connect

    Lawrence P. Golan

    2003-05-01

    The quarterly activities of the Advanced Gas Turbine Systems Research (AGTSR) program are described in this quarterly report. As this program administers research, we have included all program activity herein within the past quarter as dated. More specific research progress reports are provided weekly at the request of the AGTSR COR and are being sent to NETL As for the administration of this program, items worthy of note are presented in extended bullet format following the appropriate heading. No new memberships, workshops, research projects, internships, faculty fellowships or special studies were initiated during this reporting period. Contract completion is set for June 30, 2003. During the report period, nine subcontractor reports were received (5 final reports and 4 semi-annual reports). The report technology distribution is as follows: 3--aero-heat transfer, 2--combustion and 4--materials. AGTSR continues to project that it will under spend DOE obligated funds by approximately $329K.

  10. The Texas Experimental Tokamak: A plasma research facility. A proposal submitted to the Department of Energy in response to Program Notice 95-10: Innovations in toroidal magnetic confinement systems

    SciTech Connect

    1995-06-12

    The Fusion Research Center (FRC) at the University Texas will operate the tokamak TEXT-U and its associated systems for experimental research in basic plasma physics. While the tokamak is not innovative, the research program, diagnostics and planned experiments are. The fusion community will reap the benefits of the success in completing the upgrades (auxiliary heating, divertor, diagnostics, wall conditioning), developing diverted discharges in both double and single null configurations, exploring improved confinement regimes including a limiter H-mode, and developing unique, critical turbulence diagnostics. With these new regimes, the authors are poised to perform the sort of turbulence and transport studies for which the TEXT group has distinguished itself and for which the upgrade was intended. TEXT-U is also a facility for collaborators to perform innovative experiments and develop diagnostics before transferring them to larger machines. The general philosophy is that the understanding of plasma physics must be part of any intelligent fusion program, and that basic experimental research is the most important part of any such program. The emphasis of the proposed research is to provide well-documented plasmas which will be used to suggest and evaluate theories, to explore control techniques, to develop advanced diagnostics and analysis techniques, and to extend current drive techniques. Up to 1 MW of electron cyclotron heating (ECH) will be used not only for heating but as a localized, perturbative tool. Areas of proposed research are: (1) core turbulence and transport; (2) edge turbulence and transport; (3) turbulence analysis; (4) improved confinement; (5) ECH physics; (6) Alfven wave current drive; and (7) diagnostic development.

  11. JPL basic research review. [research and advanced development

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Current status, projected goals, and results of 49 research and advanced development programs at the Jet Propulsion Laboratory are reported in abstract form. Areas of investigation include: aerodynamics and fluid mechanics, applied mathematics and computer sciences, environment protection, materials science, propulsion, electric and solar power, guidance and navigation, communication and information sciences, general physics, and chemistry.

  12. Advanced energy projects FY 1994 research summaries

    SciTech Connect

    Not Available

    1994-09-01

    The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are premature for consideration by applied research or technology development programs. The AEP also supports high-risk, exploratory concepts that do not readily fit into a program area but could have several applications that may span scientific disciplines or technical areas. Projects supported by the Division arise from unsolicited ideas and concepts submitted by researchers. The portfolio of projects is dynamic and reflects the broad role of the Department in supporting research and development for improving the Nation`s energy outlook. FY 1994 projects include the following topical areas: novel materials for energy technology; renewable and biodegradable materials; exploring uses of new scientific discoveries; alternate pathways to energy efficiency; alternative energy sources; and innovative approaches to waste treatment and reduction. Summaries are given for 66 projects.

  13. Advanced Satellite Research Project: SCAR Research Database. Bibliographic analysis

    NASA Technical Reports Server (NTRS)

    Pelton, Joseph N.

    1991-01-01

    The literature search was provided to locate and analyze the most recent literature that was relevant to the research. This was done by cross-relating books, articles, monographs, and journals that relate to the following topics: (1) Experimental Systems - Advanced Communications Technology Satellite (ACTS), and (2) Integrated System Digital Network (ISDN) and Advance Communication Techniques (ISDN and satellites, ISDN standards, broadband ISDN, flame relay and switching, computer networks and satellites, satellite orbits and technology, satellite transmission quality, and network configuration). Bibliographic essay on literature citations and articles reviewed during the literature search task is provided.

  14. Research for Lunar Exploration: ADVANCE Program

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina

    2009-01-01

    This viewgraph presentation reviews the work that the author has been involved with in her undergraduate and graduate education and the ADVANCE Program. One project was the Lunar Entry and Approach Platform For Research On Ground (LEAPFROG). This vehicle was to be a completely autonomous vehicle, and was developed in successive academic years with increases in the perofmamnce and capability of the simulated lander. Another research project for the PhD was on long-term lunar radiation degradation of materials to be used for construction of lunar habitats. This research has concentrated on developing and testing light-weight composite materials with high strength characteristics, and the ability of these composite materials to withstand the lunar radiation environment.

  15. D3-D research operations

    NASA Astrophysics Data System (ADS)

    Lahaye, R. J.

    1994-05-01

    The DIII-D tokamak research program is carried out by General Atomics (GA) for the U.S. Department of Energy (DOE). The DIII-D is the most flexible tokamak in the world. The primary goal of the DIII-D tokamak research program is to provide data to develop a conceptual physics blueprint for a commercially attractive electrical demonstration plant (DEMO) that would open a path to fusion power commercialization. In doing so, the DIII-D program provides physics and technology R&D outputs to aid the Tokamak Physics Experiment (TPX) and the International Thermonuclear Experimental Reactor (ITER). Specific DIII-D objectives include the steady-state sustainment of plasma current as well as demonstrating techniques for microwave heating, divertor heat removal, fuel exhaust and tokamak plasma control. The DIII-D program is addressing these objectives in an integrated fashion with high beta and with good confinement. The long-range plan is organized into two major thrusts; the development of an advanced divertor and the development of advanced tokamak concepts. These two thrusts have a common goal: an improved DEMO reactor with lower cost and smaller size than the present DEMO which can be extrapolated from the conventional ITER operational scenario. In order to prepare for the long-range program, in FY93 the DIII-D research program concentrated on three major areas: Divertor and Boundary Physics, Advanced Tokamak Studies, and Tokamak Physics. The major goals of the Divertor and Boundary Physics studies are the control of impurities, efficient heat removal and understanding the strong role that the edge plasma plays in the global energy confinement of the plasma. The advanced tokamak studies initiated the investigation into new techniques for improving energy confinement, controlling particle fueling and increasing plasma beta. The major goal of the Tokamak Physics Studies is the understanding of energy and particle transport in a reactor relevant plasma.

  16. Advanced instrumentation for aircraft icing research

    NASA Technical Reports Server (NTRS)

    Bachalo, W.; Smith, J.; Rudoff, R.

    1990-01-01

    A compact and rugged probe based on the phase Doppler method was evaluated as a means for characterizing icing clouds using airborne platforms and for advancing aircraft icing research in large scale wind tunnels. The Phase Doppler Particle Analyzer (PDPA) upon which the new probe was based is now widely recognized as an accurate method for the complete characterization of sprays. The prototype fiber optic-based probe was evaluated in simulated aircraft icing clouds and found to have the qualities essential to providing information that will advance aircraft icing research. Measurement comparisons of the size and velocity distributions made with the standard PDPA and the fiber optic probe were in excellent agreement as were the measurements of number density and liquid water content. Preliminary testing in the NASA Lewis Icing Research Tunnel (IRT) produced reasonable results but revealed some problems with vibration and signal quality at high speeds. The cause of these problems were identified and design changes were proposed to eliminate the shortcomings of the probe.

  17. Advances in neural networks research: an introduction.

    PubMed

    Kozma, Robert; Bressler, Steven; Perlovsky, Leonid; Venayagamoorthy, Ganesh Kumar

    2009-01-01

    The present Special Issue "Advances in Neural Networks Research: IJCNN2009" provides a state-of-art overview of the field of neural networks. It includes 39 papers from selected areas of the 2009 International Joint Conference on Neural Networks (IJCNN2009). IJCNN2009 took place on June 14-19, 2009 in Atlanta, Georgia, USA, and it represents an exemplary collaboration between the International Neural Networks Society and the IEEE Computational Intelligence Society. Topics in this issue include neuroscience and cognitive science, computational intelligence and machine learning, hybrid techniques, nonlinear dynamics and chaos, various soft computing technologies, intelligent signal processing and pattern recognition, bioinformatics and biomedicine, and engineering applications. PMID:19632811

  18. Advances in neural networks research: an introduction.

    PubMed

    Kozma, Robert; Bressler, Steven; Perlovsky, Leonid; Venayagamoorthy, Ganesh Kumar

    2009-01-01

    The present Special Issue "Advances in Neural Networks Research: IJCNN2009" provides a state-of-art overview of the field of neural networks. It includes 39 papers from selected areas of the 2009 International Joint Conference on Neural Networks (IJCNN2009). IJCNN2009 took place on June 14-19, 2009 in Atlanta, Georgia, USA, and it represents an exemplary collaboration between the International Neural Networks Society and the IEEE Computational Intelligence Society. Topics in this issue include neuroscience and cognitive science, computational intelligence and machine learning, hybrid techniques, nonlinear dynamics and chaos, various soft computing technologies, intelligent signal processing and pattern recognition, bioinformatics and biomedicine, and engineering applications.

  19. Research on Advanced Thin Film Batteries

    SciTech Connect

    Goldner, Ronald B.

    2003-11-24

    During the past 7 years, the Tufts group has been carrying out research on advanced thin film batteries composed of a thin film LiCo02 cathode (positive electrode), a thin film LiPON (lithium phosphorous oxynitride) solid electrolyte, and a thin film graphitic carbon anode (negative electrode), under grant DE FG02-95ER14578. Prior to 1997, the research had been using an rfsputter deposition process for LiCoOi and LiPON and an electron beam evaporation or a controlled anode arc evaporation method for depositing the carbon layer. The pre-1997 work led to the deposition of a single layer cell that was successfully cycled for more than 400 times [1,2] and the research also led to the deposition of a monolithic double-cell 7 volt battery that was cycled for more than 15 times [3]. Since 1997, the research has been concerned primarily with developing a research-worthy and, possibly, a production-worthy, thin film deposition process, termed IBAD (ion beam assisted deposition) for depositing each ofthe electrodes and the electrolyte of a completely inorganic solid thin film battery. The main focus has been on depositing three materials - graphitic carbon as the negative electrode (anode), lithium cobalt oxide (nominally LiCoCb) as the positive electrode (cathode), and lithium phosphorus oxynitride (LiPON) as the electrolyte. Since 1998, carbon, LiCoOa, and LiPON films have been deposited using the IBAD process with the following results.

  20. Advanced Energy Projects FY 1996 research summaries

    SciTech Connect

    1996-09-01

    The mission of the Advanced Energy Projects Division (AEP) is to explore the scientific feasibility of novel energy-related concepts. These concepts are typically at an early stage of scientific development and, therefore, are premature for consideration by applied research or technology development programs. The portfolio of projects is dynamic, but reflects the broad role of the Department in supporting research and development for improving the Nation`s energy posture. Topical areas presently receiving support include: alternative energy sources; innovative concepts for energy conversion and storage; alternate pathways to energy efficiency; exploring uses of new scientific discoveries; biologically-based energy concepts; renewable and biodegradable materials; novel materials for energy technology; and innovative approaches to waste treatment and reduction. Summaries of the 70 projects currently being supported are presented. Appendices contain budget information and investigator and institutional indices.

  1. Roadblocks to translational advances on metastasis research.

    PubMed

    Brabletz, Thomas; Lyden, David; Steeg, Patricia S; Werb, Zena

    2013-09-01

    Promising advances in cancer therapy stemming from an increasing understanding of the molecular and genetic underpinnings of the tumorigenic process have been fueled by a strong, determined scientific community, influential patient advocacy groups and committed funding bodies. Despite these efforts, the development of effective drugs to prevent systemic dissemination of cancer cells or to eliminate overt metastasis in secondary organs remains a challenge to both researchers and physicians. In an attempt to tackle the most relevant and timely translational issues, a meeting held in 2012 as a result of a successful partnership between the Volkswagen Foundation and Nature Medicine brought together a group of metastasis research experts to identify the most important hurdles and help create a framework for potential clinical and translational strategies. PMID:24013756

  2. Advanced Scientific Computing Research Network Requirements

    SciTech Connect

    Bacon, Charles; Bell, Greg; Canon, Shane; Dart, Eli; Dattoria, Vince; Goodwin, Dave; Lee, Jason; Hicks, Susan; Holohan, Ed; Klasky, Scott; Lauzon, Carolyn; Rogers, Jim; Shipman, Galen; Skinner, David; Tierney, Brian

    2013-03-08

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In October 2012, ESnet and the Office of Advanced Scientific Computing Research (ASCR) of the DOE SC organized a review to characterize the networking requirements of the programs funded by the ASCR program office. The requirements identified at the review are summarized in the Findings section, and are described in more detail in the body of the report.

  3. Preliminary investigation of the effects of lower hybrid power on asymmetric behaviors in the scrape-off layer in experimental advanced superconducting tokamak

    SciTech Connect

    Zhang, L.; Ding, B. J. Li, M. H.; Liu, F. K.; Shan, J. F.; Wei, W.; Li, Y. C.; Yang, J. H.; Wu, Z. G.; Liu, L.; Wang, M.; Zhao, L. M.; Ma, W. D.; Xiu, H. D.; Wang, X. J.; Jia, H.; Yang, Y.; Cheng, M.; Wu, D. J.; Xu, L.; and others

    2014-02-15

    The striations in front of the lower hybrid (LH) launcher have been observed during LH injection by a visible video camera in the Experimental Advanced Superconducting Tokamak. Edge density at the top of the LH launcher tends to be much larger in reversed magnetic field (B{sub t}) than that in the normal B{sub t}. To study the mechanisms of the observations, the diffusive-convective model is employed. Simulations show that the LH power makes the density in scrape-off layer asymmetric in poloidal direction with five density peaks. The locations of the striations are approximately in agreement with the locations of the density peaks in different directions of B{sub t}. Higher LH power strengths the asymmetry of the density and leads to a bad coupling which is in conflict with the experimental results showing a good coupling with a higher power. Furthermore, an ionization term is introduced into this model and the increase of edge density with LH power can be qualitatively explained. The simulations also show that the density peaks in front of the waveguides become clearer when taking into account gas puffing.

  4. Effects of heating power on divertor in-out asymmetry and scrape-off layer flow in reversed field on Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Liu, S. C. Wang, H. Q.; Gan, K. F.; Xia, T. Y.; Xu, G. S.; Liu, Z. X.; Chen, L.; Zhang, W.; Chen, R.; Shao, L. M.; Ding, S.; Hu, G. H.; Liu, Y. L.; Zhao, N.; Li, Y. L.; Gong, X. Z.; Gao, X.; Guo, H. Y.; Wang, L.; Xu, X. Q.; and others

    2014-12-15

    The dependence of divertor asymmetry and scrape-off layer (SOL) flow on heating power has been investigated in the Experimental Advanced Superconducting Tokamak (EAST). Divertor plasma exhibits an outboard-enhanced in-out asymmetry in heat flux in lower single null configuration for in reversed (ion ∇B drift direction toward the upper X-point) field directions. Upper single null exhibits an inboard-favored asymmetry in low heating power condition, while exhibits an outboard-favored asymmetry when increasing the heating power. Double null has the strongest in-out asymmetry in heat flux, favoring the outer divertor. The in-out asymmetry ratios of q{sub t,out}/q{sub t,in} and P{sub out}/P{sub total} increase with the power across the separatrix P{sub loss}, which is probably induced by the enhanced radial particle transport due to a large pressure gradient. The characteristics of the measured SOL parallel flow under various discharge conditions are consistent with the Pfirsch-Schlüter (PS) flow with the parallel Mach number M{sub ∥} decreasing with the line averaged density but increasing with P{sub loss}, in the same direction as the PS flow. The contributions of both poloidal E×B drift and parallel flow on poloidal particle transport in SOL on EAST are also assessed.

  5. Physics and control of ELMing H-mode negative-central-shear advanced tokamak ITER scenario based on experimental profiles from DIII-D

    NASA Astrophysics Data System (ADS)

    Lao, L. L.; Chan, V. S.; Chu, M. S.; Evans, T.; Humphreys, D. A.; Leuer, J. A.; Mahdavi, M. A.; Petrie, T. W.; Snyder, P. B.; St. John, H. E.; Staebler, G. M.; Stambaugh, R. D.; Taylor, T. S.; Turnbull, A. D.; West, W. P.; Brennan, D. P.

    2003-10-01

    Key DIII-D advanced tokamak (AT) experimental and modelling results are applied to examine the physics and control issues for ITER to operate in a negative central shear (NCS) AT scenario. The effects of a finite edge pressure pedestal and current density are included based on the DIII-D experimental profiles. Ideal and resistive stability analyses demonstrate that feedback control of resistive wall modes by rotational drive or flux conserving intelligent coils is crucial for these AT configurations to operate at attractive bgrN values in the range 3.0-3.5. Vertical stability and halo current analyses show that reliable disruption mitigation is essential and mitigation control using an impurity gas can significantly reduce the local mechanical stress to an acceptable level. Core transport and turbulence analyses indicate that control of the rotational shear profile is essential to reduce the pedestal temperature required for high bgr. Consideration of edge stability and core transport suggests that a sufficiently wide pedestal is necessary for the projected fusion performance. Heat flux analyses indicate that, with core-only radiation enhancement, the outboard peak divertor heat load is near the design limit of 10 MW m-2. Detached operation may be necessary to reduce the heat flux to a more manageable level. Evaluation of the ITER pulse length using a local step response approach indicates that the 3000 s ITER long-pulse scenario is probably both necessary and sufficient for demonstration of local current profile control.

  6. Mode Conversion of High-Field-Side-Launched Fast Waves at the Second Harmonic of Minority Hydrogen in Advanced Tokamak Reactors

    NASA Astrophysics Data System (ADS)

    Sund, R.; Scharer, J.

    2003-12-01

    Under advanced tokamak reactor conditions, the Ion-Bernstein wave (IBW) can be generated by mode conversion of a fast magnetosonic wave incident from the high-field side on the second harmonic resonance of a minority hydrogen component, with near 100% efficiency. IBWs have the recognized capacity to create internal transport barriers through sheared plasma flows resulting from ion absorption. The relatively high frequency (around 200 MHz) minimizes parasitic electron absorption and permits the converted IBW to approach the 5th tritium harmonic. It also facilitates compact antennas and feeds, and efficient fast wave launch. The scheme is applicable to reactors with aspect ratios < 3 such that the conversion and absorption layers are both on the high field side of the magnetic axis. Large machine size and adequate separation of the mode conversion layer from the magnetic axis minimize poloidal field effects in the conversion zone and permit a 1-D full-wave analysis. 2-D ray tracing of the IBW indicates a slightly bean-shaped equilibrium allows access to the tritium resonance.

  7. Geysers advanced direct contact condenser research

    SciTech Connect

    Henderson, J.; Bahning, T.; Bharathan, D.

    1997-12-31

    The first geothermal application of the Advanced Direct Contact Condenser (ADCC) technology developed by the National Renewable Energy Laboratory (NREL) is now operational and is being tested at The Geysers Power Plant Unit 11. This major research effort is being supported through the combined efforts of NREL, The Department of Energy (DOE), and Pacific Gas and Electric (PG&E). NREL and PG&E have entered into a Cooperative Research And Development Agreement (CRADA) for a project to improve the direct-contact condenser performance at The Geysers Power Plant. This project is the first geothermal adaptation of an advanced condenser design developed for the Ocean Thermal Energy Conversion (OTEC) systems. PG&E expects this technology to improve power plant performance and to help extend the life of the steam field by using steam more efficiently. In accordance with the CRADA, no money is transferred between the contracting parties. In this case the Department of Energy is funding NREL for their efforts in this project and PG&E is contributing funds in kind. Successful application of this technology at The Geysers will provide a basis for NREL to continue to develop this technology for other geothermal and fossil power plant systems.

  8. Recent advances in color vision research.

    PubMed

    Buchanan-Smith, Hannah M

    2005-12-01

    The remarkable variation in color vision both among and within primate species is receiving increasing attention from geneticists, psychophysicists, physiologists, and behavioral ecologists. It is known that color vision ability affects foraging behavior. Color vision is also likely to have implications for predation avoidance, social behavior, mate choice, and group dynamics, and should also influence the choice of stimuli for cognitive experiments. Therefore, understanding the color vision of a study species is important and of particular significance to scientists studying species with polymorphic color vision (most platyrrhines and some strepsirrhines). The papers in this issue were inspired by a symposium held during the 20th Congress of the International Primatological Society at Turin, Italy, in August 2004. The aim of the symposium was to bring together research from a range of disciplines, using recent methodological advances in molecular, modeling, and experimental techniques, to help elucidate the evolution, ecological importance, and distribution of color vision genotypes and phenotypes. The symposium achieved its aim, and as with most research in expanding disciplines, there are surprises and many questions still to be answered. Further advances will be made using a combination of different approaches involving analyses at the level of molecu1es, types of cell and neural networks, detailed and long-term field work, modeling, and carefully controlled experimentation. PMID:16342071

  9. Power and particle exhaust in tokamaks

    SciTech Connect

    Stambaugh, R.D.

    1998-01-01

    The status of power and particle exhaust research in tokamaks is reviewed in the light of ITER requirements. There is a sound basis for ITER`s nominal design positions; important directions for further research are identified.

  10. Fusion Plasma Theory: Task 3, Auxiliary radiofrequency heating of tokamaks. Annual report, November 16, 1991--November 15, 1992

    SciTech Connect

    Scharer, J.E.

    1992-12-31

    The research performed under this grant during the past year has been concentrated on the following several key tokamak ICRF (Ion Cyclotron Range of Frequencies) coupling, heating and current drive issues: Efficient coupling during the L- to H- mode transition by analysis and computer simulation of ICRF antennas; analysis of ICRF cavity-backed coil antenna coupling to plasma edge profiles including fast and ion Bernstein wave coupling for heating and current drive; benchmarking the codes to compare with current JET, D-IIID and ASDEX experimental results and predictions for advanced tokamaks such as BPX and SSAT (Steady-State Advanced Tokamak); ICRF full-wave field solutions, power conservation, heating analyses and minority ion current drive; and the effects of fusion alpha particle or ion tail populations on the ICRF absorption. Research progress, publications, and conference and workshop presentations are summarized in this report.

  11. Advances in biomarker research for pancreatic cancer.

    PubMed

    Bhat, Kruttika; Wang, Fengfei; Ma, Qingyong; Li, Qinyu; Mallik, Sanku; Hsieh, Tze-Chen; Wu, Erxi

    2012-01-01

    Pancreatic cancer (PC) is a leading cause of cancer related deaths in United States. The lack of early symptoms results in latestage detection and a high mortality rate. Currently, the only potentially curative approach for PC is surgical resection, which is often unsuccessful because the invasive and metastatic nature of the tumor masses makes their complete removal difficult. Consequently, patients suffer relapses from remaining cancer stem cells or drug resistance that eventually lead to death. To improve the survival rate, the early detection of PC is critical. Current biomarker research in PC indicates that a serum carbohydrate antigen, CA 19-9, is the only available biomarker with approximately 90% specificity to PC. However, the efficacy of CA 19-9 for assessing prognosis and monitoring patients with PC remains contentious. Thus, advances in technology and the detection of new biomarkers with high specificity to PC are needed to reduce the mortality rate of pancreatic cancer.

  12. Advanced Materials for Exploration Task Research Results

    NASA Technical Reports Server (NTRS)

    Cook, M. B. (Compiler); Murphy, K. L.; Schneider, T.

    2008-01-01

    The Advanced Materials for Exploration (AME) Activity in Marshall Space Flight Center s (MSFC s) Exploration Science and Technology Directorate coordinated activities from 2001 to 2006 to support in-space propulsion technologies for future missions. Working together, materials scientists and mission planners identified materials shortfalls that are limiting the performance of long-term missions. The goal of the AME project was to deliver improved materials in targeted areas to meet technology development milestones of NASA s exploration-dedicated activities. Materials research tasks were targeted in five areas: (1) Thermal management materials, (2) propulsion materials, (3) materials characterization, (4) vehicle health monitoring materials, and (5) structural materials. Selected tasks were scheduled for completion such that these new materials could be incorporated into customer development plans.

  13. Advances in nicotine research in Addiction Biology.

    PubMed

    Bernardi, Rick E

    2015-09-01

    The aim of Addiction Biology is to advance our understanding of the action of drugs of abuse and addictive processes via the publication of high-impact clinical and pre-clinical findings resulting from behavioral, molecular, genetic, biochemical, neurobiological and pharmacological research. As of 2013, Addiction Biology is ranked number 1 in the category of Substance Abuse journals (SCI). Occasionally, Addiction Biology likes to highlight via review important findings focused on a particular topic and recently published in the journal. The current review summarizes a number of key publications from Addiction Biology that have contributed to the current knowledge of nicotine research, comprising a wide spectrum of approaches, both clinical and pre-clinical, at the cellular, molecular, systems and behavioral levels. A number of findings from human studies have identified, using imaging techniques, alterations in common brain circuits, as well as morphological and network activity changes, associated with tobacco use. Furthermore, both clinical and pre-clinical studies have characterized a number of mechanistic targets critical to understanding the effects of nicotine and tobacco addiction. Together, these findings will undoubtedly drive future studies examining the dramatic impact of tobacco use and the development of treatments to counter nicotine dependence. PMID:25997723

  14. Advances in nicotine research in Addiction Biology.

    PubMed

    Bernardi, Rick E

    2015-09-01

    The aim of Addiction Biology is to advance our understanding of the action of drugs of abuse and addictive processes via the publication of high-impact clinical and pre-clinical findings resulting from behavioral, molecular, genetic, biochemical, neurobiological and pharmacological research. As of 2013, Addiction Biology is ranked number 1 in the category of Substance Abuse journals (SCI). Occasionally, Addiction Biology likes to highlight via review important findings focused on a particular topic and recently published in the journal. The current review summarizes a number of key publications from Addiction Biology that have contributed to the current knowledge of nicotine research, comprising a wide spectrum of approaches, both clinical and pre-clinical, at the cellular, molecular, systems and behavioral levels. A number of findings from human studies have identified, using imaging techniques, alterations in common brain circuits, as well as morphological and network activity changes, associated with tobacco use. Furthermore, both clinical and pre-clinical studies have characterized a number of mechanistic targets critical to understanding the effects of nicotine and tobacco addiction. Together, these findings will undoubtedly drive future studies examining the dramatic impact of tobacco use and the development of treatments to counter nicotine dependence.

  15. [Research advances in wheat (Triticum aestivum) allelopathy].

    PubMed

    Zhang, Xiaoke; Jiang, Yong; Liang, Wenju; Kong, Chuihua

    2004-10-01

    Wheat (Triticum aestivum) is the main food crop in the world, and plays an important role in agricultural production. In order to enhance wheat yield, herbicides and germicides were intensively applied and made negative effects on the environment. Wheat possesses allelopathic potential for weed suppression and disease control through the release of secondary metabolites from its living plants or residues, which could avoid the environment pollution brought by herbicides and germicides. This paper reviewed the research advances in wheat allelopathy. Hydroxamic acids and phenolic acids are the predominant allelochemicals frequently reported which could produce plant natural defense against weed, pest and disease. The allelopathic activity of allelochemicals is determined not only by the allelochemicals, but also by the factors of inheritance, environment and biology. The retention, transportation and transformation processes of allelochemicals, and the relationship between wheat allelopathy and soil biota and its mechanism were seldom studied and still needed to be researched profoundly. Utilizing wheat allelopathy in plant protection, environment protection and crop breeding would improve the stress-resistance, yield and quality of wheat in agricultural production. PMID:15624846

  16. Eagleworks Laboratories: Advanced Propulsion Physics Research

    NASA Technical Reports Server (NTRS)

    White, Harold; March, Paul; Williams, Nehemiah; ONeill, William

    2011-01-01

    NASA/JSC is implementing an advanced propulsion physics laboratory, informally known as "Eagleworks", to pursue propulsion technologies necessary to enable human exploration of the solar system over the next 50 years, and enabling interstellar spaceflight by the end of the century. This work directly supports the "Breakthrough Propulsion" objectives detailed in the NASA OCT TA02 In-space Propulsion Roadmap, and aligns with the #10 Top Technical Challenge identified in the report. Since the work being pursued by this laboratory is applied scientific research in the areas of the quantum vacuum, gravitation, nature of space-time, and other fundamental physical phenomenon, high fidelity testing facilities are needed. The lab will first implement a low-thrust torsion pendulum (<1 uN), and commission the facility with an existing Quantum Vacuum Plasma Thruster. To date, the QVPT line of research has produced data suggesting very high specific impulse coupled with high specific force. If the physics and engineering models can be explored and understood in the lab to allow scaling to power levels pertinent for human spaceflight, 400kW SEP human missions to Mars may become a possibility, and at power levels of 2MW, 1-year transit to Neptune may also be possible. Additionally, the lab is implementing a warp field interferometer that will be able to measure spacetime disturbances down to 150nm. Recent work published by White [1] [2] [3] suggests that it may be possible to engineer spacetime creating conditions similar to what drives the expansion of the cosmos. Although the expected magnitude of the effect would be tiny, it may be a "Chicago pile" moment for this area of physics.

  17. Land reclamation: Advances in research technology

    SciTech Connect

    Younos, T.; Diplas, P.; Mostaghimi, S.

    1992-01-01

    Land reclamation encompasses remediation of industrial wasteland, improvement of infertile land for agricultural production, preservation of wetlands, and restoration of disturbed areas. Land reclamation is an integral part of sustainable development which aims to reconcile economic productivity with environmental preservation. During the 1980s, significant progress was achieved in the application of advanced technologies to sustainable development projects. The goal of this international symposium was to serve as a forum to review current research and state-of-the-art technology dealing with various aspects of land reclamation, and provide an opportunity for professional interaction and exchange of information in a multi-disciplinary setting. The scope of the symposium was as broad as the topic itself. The keynote address by Professor John Cairns focused on a systems approach in land restoration projects and challenges facing scientists in global biotic impoverishment. Other topics discussed in ten mechanical sessions included development and applications of computer models, geographic information systems, remote sensing technology, salinity problems, surface and ground water monitoring, reclamation of mine areas, soil amendment methods and impacts, wetland restoration techniques, and land use planning for resource protection.

  18. Advances in Mycotoxin Research: Public Health Perspectives.

    PubMed

    Lee, Hyun Jung; Ryu, Dojin

    2015-12-01

    Aflatoxins, ochratoxins, fumonisins, deoxynivalenol, and zearalenone are of significant public health concern as they can cause serious adverse effects in different organs including the liver, kidney, and immune system in humans. These toxic secondary metabolites are produced by filamentous fungi mainly in the genus Aspergillus, Penicillium, and Fusarium. It is challenging to control the formation of mycotoxins due to the worldwide occurrence of these fungi in food and the environment. In addition to raw agricultural commodities, mycotoxins tend to remain in finished food products as they may not be destroyed by conventional processing techniques. Hence, much of our concern is directed to chronic health effects through long-term exposure to one or multiple mycotoxins from contaminated foods. Ideally risk assessment requires a comprehensive data, including toxicological and epidemiological studies as well as surveillance and exposure assessment. Setting of regulatory limits for mycotoxins is considered necessary to protect human health from mycotoxin exposure. Although advances in analytical techniques provide basic yet critical tool in regulation as well as all aspects of scientific research, it has been acknowledged that different forms of mycotoxins such as analogs and conjugated mycotoxins may constitute a significant source of dietary exposure. Further studies should be warranted to correlate mycotoxin exposure and human health possibly via identification and validation of suitable biomarkers.

  19. [Research advances on interactions among bryophytes].

    PubMed

    Bu, Zhao-Jun; Chen, Xu; Jiang, Li-Hong; Li, Hong-Kai; Zhao, Hong-Yan

    2009-02-01

    This paper summarized the present research status and advances on the intra- and interspecific positive interaction, intra- and inter-specific competition, niche, and coexistence of bryophytes. Bryophytes are generally the dominant plants in harsh environments, and there is a trade-off between their water retention and light and nutrient resource availability. Because of the lesser importance of competition in harsh environments, the positive interaction among bryophytes is common, but the intra- and inter-specific competition among bryophytes and the competition between bryophytes and vascular plants are not rare. Competition hierarchy may exist among some bryophytes, but often changes with environments. In the process of bryophyte community formation, the random process, nature of colonization, and difference in regeneration strategy can result in the niche overlap and coexistence of bryophytes, and the niche differentiation resulted from competition is also one of the mechanisms for bryophytes coexistence. Bryophytes should not be simply classified as stress tolerated-ruderal life history strategists, and competition is still one of important factors for constructing some bryophyte communities and vegetations co-existed by bryophytes and vascular plants.

  20. Indentation Methods in Advanced Materials Research Introduction

    SciTech Connect

    Pharr, George Mathews; Cheng, Yang-Tse; Hutchings, Ian; Sakai, Mototsugu; Moody, Neville; Sundararajan, G.; Swain, Michael V.

    2009-01-01

    Since its commercialization early in the 20th century, indentation testing has played a key role in the development of new materials and understanding their mechanical behavior. Progr3ess in the field has relied on a close marriage between research in the mechanical behavior of materials and contact mechanics. The seminal work of Hertz laid the foundations for bringing these two together, with his contributions still widely utilized today in examining elastic behavior and the physics of fracture. Later, the pioneering work of Tabor, as published in his classic text 'The Hardness of Metals', exapdned this understanding to address the complexities of plasticity. Enormous progress in the field has been achieved in the last decade, made possible both by advances in instrumentation, for example, load and depth-sensing indentation and scanning electron microscopy (SEM) and transmission electron microscopy (TEM) based in situ testing, as well as improved modeling capabilities that use computationally intensive techniques such as finite element analysis and molecular dynamics simulation. The purpose of this special focus issue is to present recent state of the art developments in the field.

  1. Observation of Molybdenum Emission from Impurity-Induced Long-Lived m = 1 Mode on the Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Yong-Cai, Shen; Bo, Lyu; Fu-Di, Wang; Yue-Jiang, Shi; Bin, Wu; Ying-Ying, Li; Jia, Fu; Bao-Nian, Wan; EAST Team

    2016-06-01

    Not Available Supported by the National Magnetic Confinement Fusion Science Program of China under Grant Nos 2013GB112004 and 2015GB103002, the Natural Science Research Key Project of Education Department of Anhui Province under Grant No KJ2016A434, the Doctoral Scientific Research Foundation of Anqing Normal University under Grant No 044-140001000024, the National Natural Science Foundation of China under Grant Nos 11275231, 11305212, 11405212 and 11261140328, the Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology under Grant No 2014FXCX003, and the Hefei Science Center CAS Users with Potential Project under Grant No 2015HSC-UP007.

  2. Tokamak Systems Code

    SciTech Connect

    Reid, R.L.; Barrett, R.J.; Brown, T.G.; Gorker, G.E.; Hooper, R.J.; Kalsi, S.S.; Metzler, D.H.; Peng, Y.K.M.; Roth, K.E.; Spampinato, P.T.

    1985-03-01

    The FEDC Tokamak Systems Code calculates tokamak performance, cost, and configuration as a function of plasma engineering parameters. This version of the code models experimental tokamaks. It does not currently consider tokamak configurations that generate electrical power or incorporate breeding blankets. The code has a modular (or subroutine) structure to allow independent modeling for each major tokamak component or system. A primary benefit of modularization is that a component module may be updated without disturbing the remainder of the systems code as long as the imput to or output from the module remains unchanged.

  3. 2010 Summary of Advances in Autism Spectrum Disorder Research

    ERIC Educational Resources Information Center

    Interagency Autism Coordinating Committee, 2010

    2010-01-01

    As part of the Combating Autism Act of 2006, the members of the Interagency Autism Coordinating Committee (IACC) are required to develop an annual "Summary of Advances" to describe each year's top advances in autism spectrum disorder (ASD) research. These advances represent significant progress in the early diagnosis of ASD, understanding the…

  4. 77 FR 19744 - Advanced BioPhotonics, Inc., Advanced Viral Research Corp., Brantley Capital Corp., Brilliant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION Advanced BioPhotonics, Inc., Advanced Viral Research Corp., Brantley Capital Corp., Brilliant... information concerning the securities of Advanced BioPhotonics, Inc. because it has not filed any...

  5. Advanced research workshop: nuclear materials safety

    SciTech Connect

    Jardine, L J; Moshkov, M M

    1999-01-28

    The Advanced Research Workshop (ARW) on Nuclear Materials Safety held June 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 U.S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuclear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuclear material safety topics on the storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, including vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This ARW completed discussions by experts of the nuclear materials safety topics that were not covered in the previous, companion ARW on Nuclear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuclear material aspects of the storage and disposition operations required for excess HEU and plutonium. As a result, specific experts in nuclear materials safety have been identified, know each other from their participation in t he two ARW interactions, and have developed a partial consensus and dialogue on the most urgent nuclear materials safety topics to be addressed in a formal bilateral program on t he subject. A strong basis now exists for maintaining and developing a continuing dialogue between Russian, European, and U.S. experts in nuclear materials safety that will improve the safety of future nuclear materials operations in all the countries involved because of t he positive synergistic effects of focusing these diverse backgrounds of

  6. Prospects for pilot plants based on the tokamak, spherical tokamak and stellarator

    NASA Astrophysics Data System (ADS)

    Menard, J. E.; Bromberg, L.; Brown, T.; Burgess, T.; Dix, D.; El-Guebaly, L.; Gerrity, T.; Goldston, R. J.; Hawryluk, R. J.; Kastner, R.; Kessel, C.; Malang, S.; Minervini, J.; Neilson, G. H.; Neumeyer, C. L.; Prager, S.; Sawan, M.; Sheffield, J.; Sternlieb, A.; Waganer, L.; Whyte, D.; Zarnstorff, M.

    2011-10-01

    A potentially attractive next-step towards fusion commercialization is a pilot plant, i.e. a device ultimately capable of small net electricity production in as compact a facility as possible and in a configuration scalable to a full-size power plant. A key capability for a pilot-plant programme is the production of high neutron fluence enabling fusion nuclear science and technology (FNST) research. It is found that for physics and technology assumptions between those assumed for ITER and nth-of-a-kind fusion power plant, it is possible to provide FNST-relevant neutron wall loading in pilot devices. Thus, it may be possible to utilize a single facility to perform FNST research utilizing reactor-relevant plasma, blanket, coil and auxiliary systems and maintenance schemes while also targeting net electricity production. In this paper three configurations for a pilot plant are considered: the advanced tokamak, spherical tokamak and compact stellarator. A range of configuration issues is considered including: radial build and blanket design, magnet systems, maintenance schemes, tritium consumption and self-sufficiency, physics scenarios and a brief assessment of research needs for the configurations.

  7. Advanced Materials and Solids Analysis Research Core (AMSARC)

    EPA Science Inventory

    The Advanced Materials and Solids Analysis Research Core (AMSARC), centered at the U.S. Environmental Protection Agency's (EPA) Andrew W. Breidenbach Environmental Research Center in Cincinnati, Ohio, is the foundation for the Agency's solids and surfaces analysis capabilities. ...

  8. Advanced cogeneration research study: Executive summary

    NASA Technical Reports Server (NTRS)

    Bluhm, S. A.; Moore, N.; Rosenberg, L.; Slonski, M.

    1983-01-01

    This study provides a broad based overview of selected areas relevant to the development of a comprehensive Southern California Edison (SCE) advanced cogeneration project. The areas studied are: (1) Cogeneration potential in the SCE service territory; (2) Advanced cogeneration technologies; and (3) Existing cogeneration computer models. An estimated 3700 MW sub E could potentially be generated from existing industries in the Southern California Edison service territory using cogeneration technology. Of this total, current technology could provide 2600 MW sub E and advanced technology could provide 1100 MW sub E. The manufacturing sector (SIC Codes 20-39) was found to have the highest average potential for current cogeneration technology. The mining sector (SIC Codes 10-14) was found to have the highest potential for advanced technology.

  9. Ethics, Professional Expectations, and Graduate Education: Advancing Research in Kinesiology

    ERIC Educational Resources Information Center

    DePauw, Karen P.

    2009-01-01

    The university is a social institution and as such has a social responsibility to advance knowledge through research that is ultimately meaningful and beneficial to society. As we seek to advance research and graduate education in kinesiology, we must accept ethical standards and professional expectations not only as an institutional value but as…

  10. Magnetic confinement experiment. I: Tokamaks

    SciTech Connect

    Goldston, R.J.

    1995-08-01

    Reports were presented at this conference of important advances in all the key areas of experimental tokamak physics: Core Plasma Physics, Divertor and Edge Physics, Heating and Current Drive, and Tokamak Concept Optimization. In the area of Core Plasma Physics, the biggest news was certainly the production of 9.2 MW of fusion power in the Tokamak Fusion Test Reactor, and the observation of unexpectedly favorable performance in DT plasmas. There were also very important advances in the performance of ELM-free H- (and VH-) mode plasmas and in quasi-steady-state ELM`y operation in JT-60U, JET, and DIII-D. In all three devices ELM-free H-modes achieved nT{tau}`s {approximately} 2.5x greater than ELM`ing H-modes, but had not been sustained in quasi-steady-state. Important progress has been made on the understanding of the physical mechanism of the H-mode in DIII-D, and on the operating range in density for the H-mode in Compass and other devices.

  11. SPECIAL TOPIC: A two-time-scale dynamic-model approach for magnetic and kinetic profile control in advanced tokamak scenarios on JET

    NASA Astrophysics Data System (ADS)

    Moreau, D.; Mazon, D.; Ariola, M.; DeTommasi, G.; Laborde, L.; Piccolo, F.; Sartori, F.; Tala, T.; Zabeo, L.; Boboc, A.; Bouvier, E.; Brix, M.; Brzozowski, J.; Challis, C. D.; Cocilovo, V.; Cordoliani, V.; Crisanti, F.; DeLa Luna, E.; Felton, R.; Hawkes, N.; King, R.; Litaudon, X.; Loarer, T.; Mailloux, J.; Mayoral, M.; Nunes, I.; Surrey, E.; Zimmerman, O.; EFDA Contributors, JET

    2008-10-01

    Real-time simultaneous control of several radially distributed magnetic and kinetic plasma parameters is being investigated on JET, in view of developing integrated control of advanced tokamak scenarios. This paper describes the new model-based profile controller which has been implemented during the 2006-2007 experimental campaigns. The controller aims to use the combination of heating and current drive (H&CD) systems—and optionally the poloidal field (PF) system—in an optimal way to regulate the evolution of plasma parameter profiles such as the safety factor, q(x), and gyro-normalized temperature gradient, \\rho _Te^*(x) . In the first part of the paper, a technique for the experimental identification of a minimal dynamic plasma model is described, taking into account the physical structure and couplings of the transport equations, but making no quantitative assumptions on the transport coefficients or on their dependences. To cope with the high dimensionality of the state space and the large ratio between the time scales involved, the model identification procedure and the controller design both make use of the theory of singularly perturbed systems by means of a two-time-scale approximation. The second part of the paper provides the theoretical basis for the controller design. The profile controller is articulated around two composite feedback loops operating on the magnetic and kinetic time scales, respectively, and supplemented by a feedforward compensation of density variations. For any chosen set of target profiles, the closest self-consistent state achievable with the available actuators is uniquely defined. It is reached, with no steady state offset, through a near-optimal proportional-integral control algorithm. Conventional optimal control is recovered in the limiting case where the ratio of the plasma confinement time to the resistive diffusion time tends to zero. Closed-loop simulations of the controller response have been performed in

  12. Advances in Education Research, Fall 1998.

    ERIC Educational Resources Information Center

    Craig, Judy A., Ed.

    1998-01-01

    This report provides peer-reviewed, scholarly research supported in whole or in part by the Office of Educational Research and Improvement through its educational research and development programs. It includes 13 previously published articles from selected refereed journals identifying the best research on community service learning. Section 1,…

  13. Integrated Advanced Energy Systems Research at IIT

    SciTech Connect

    Hamid Arastoopour

    2010-09-30

    This report consists of Two research projects; Sustainable Buildings and Hydrogen Storage. Sustainable Building Part includes: Wind and the self powered built environment by professor P. Land and his research group and experimental and computational works by professor D. Rempfer and his research group. Hydrogen Storage part includes: Hydrogen Storage Using Mg-Mixed Metal Hydrides by professor H. Arastoopour and his research team and Carbon Nanostructure as Hydrogen Storage Material by professor J. Prakash and his research team.

  14. Tokamak Physics Experiment (TPX) power supply design and development

    SciTech Connect

    Neumeyer, C.; Bronner, G.; Lu, E.; Ramakrishnan, S.

    1995-04-01

    The Tokamak Physics Experiment (TPX) is an advanced tokamak project aimed at the production of quasi-steady state plasmas with advanced shape, heating, and particle control. TPX is to be built at the Princeton Plasma Physics Laboratory (PPPL) using many of the facilities from the Tokamak Fusion Test Reactor (TFTR). TPX will be the first tokamak to utilize superconducting (SC) magnets in both the toroidal field (TF) and poloidal field (PF) systems. This new feature requires a departure from the traditional tokamak power supply schemes. This paper describes the plan for the adaptation of the PPPL/FTR power system facilities to supply TPX. Five major areas are addressed, namely the AC power system, the TF, PF and Fast Plasma Position Control (FPPC) power supplies, and quench protection for the TF and PF systems. Special emphasis is placed on the development of new power supply and protection schemes.

  15. Analysis of neutral hydrogenic emission spectra in a tokamak

    NASA Astrophysics Data System (ADS)

    Ko, J.; Chung, J.; Jaspers, R. J. E.

    2015-10-01

    Balmer-α radiation by the excitation of thermal and fast neutral hydrogenic particles has been investigated in a magnetically confined fusion device, or tokamak, from the Korea Superconducting Tokamak Advanced Research (KSTAR). From the diagnostic point of view, the emission from thermal neutrals is associated with passive spectroscopy and that from energetic neutrals that are usually injected from the outside of the tokamak to the active spectroscopy. The passive spectroscopic measurement for the thermal Balmer-α emission from deuterium and hydrogen estimates the relative concentration of hydrogen in a deuterium-fueled plasma and therefore, makes a useful tool to monitor the vacuum wall condition. The ratio of hydrogen to deuterium obtained from this measurement qualitatively correlates with the energy confinement of the plasma. The Doppler-shifted Balmer-α components from the fast neutrals features the spectrum of the motional Stark effect (MSE) which is an essential principle for the measurement of the magnetic pitch angle profile. Characterization of this active MSE spectra, especially with multiple neutral beam lines crossing along the observation line of sight, has been done for the guideline of the multi-ion-source heating beam operation and for the optimization of the narrow bandpass filters that are required for the polarimeter-based MSE diagnostic system under construction at KSTAR.

  16. Advances in Education Research, Fall 1999.

    ERIC Educational Resources Information Center

    Advances in Education Research, 1999

    1999-01-01

    This volume presents selected research articles related to early intervention for college programs. This is part of a two volume set designed to showcase some of the best cutting edge research on early intervention programs. Providing an introduction to the types of these programs, this issue: presents research on why the programs are necessary;…

  17. Medical technology advances from space research.

    NASA Technical Reports Server (NTRS)

    Pool, S. L.

    1971-01-01

    NASA-sponsored medical R & D programs for space applications are reviewed with particular attention to the benefits of these programs to earthbound medical services and to the general public. Notable among the results of these NASA programs is an integrated medical laboratory equipped with numerous advanced systems such as digital biotelemetry and automatic visual field mapping systems, sponge electrode caps for electroencephalograms, and sophisticated respiratory analysis equipment.

  18. Advanced Radioisotope Power Systems Segmented Thermoelectric Research

    NASA Technical Reports Server (NTRS)

    Caillat, Thierry

    2004-01-01

    Flight times are long; - Need power systems with >15 years life. Mass is at an absolute premium; - Need power systems with high specific power and scalability. 3 orders of magnitude reduction in solar irradiance from Earth to Pluto. Nuclear power sources preferable. The Overall objective is to develop low mass, high efficiency, low-cost Advanced Radioisotope Power System with double the Specific Power and Efficiency over state-of-the-art Radioisotope Thermoelectric Generators (RTGs).

  19. Advanced Life Support Research and Technology Development

    NASA Technical Reports Server (NTRS)

    Kliss, Mark

    2001-01-01

    A videograph outlining life support research. The Human Exploration and Development of Space (HEDS) Enterprise's goals are to provide life support self-sufficiency for human beings to carry out research and exploration productively in space, to open the door for planetary exploration, and for benefits on Earth. Topics presented include the role of NASA Ames, funding, and technical monitoring. The focused research areas discussed include air regeneration, carbon dioxide removal, Mars Life Support, water recovery, Vapor Phase Catalytic Ammonia Removal (VPCAR), solid waste treatment, and Supercritical Water Oxidation (SCWC). Focus is placed on the utilization of Systems Integration, Modeling and Analysis (SIMA) and Dynamic Systems Modeling in this research.

  20. Research opportunities to advance solar energy utilization.

    PubMed

    Lewis, Nathan S

    2016-01-22

    Major developments, as well as remaining challenges and the associated research opportunities, are evaluated for three technologically distinct approaches to solar energy utilization: solar electricity, solar thermal, and solar fuels technologies. Much progress has been made, but research opportunities are still present for all approaches. Both evolutionary and revolutionary technology development, involving foundational research, applied research, learning by doing, demonstration projects, and deployment at scale will be needed to continue this technology-innovation ecosystem. Most of the approaches still offer the potential to provide much higher efficiencies, much lower costs, improved scalability, and new functionality, relative to the embodiments of solar energy-conversion systems that have been developed to date.

  1. Advanced research in solar-energy storage

    SciTech Connect

    Luft, W.

    1983-01-01

    The Solar Energy Storage Program at the Solar Energy Research Institute is reviewed. The program provides research, systems analyses, and economic assessments of thermal and thermochemical energy storage and transport. Current activities include experimental research into very high temperature (above 800/sup 0/C) thermal energy storage and assessment of novel thermochemical energy storage and transport systems. The applications for such high-temperature storage are thermochemical processes, solar thermal-electric power generation, cogeneration of heat and electricity, industrial process heat, and thermally regenerative electrochemical systems. The research results for five high-temperature thermal energy storage technologies and two thermochemical systems are described.

  2. Addressing Risks to Advance Mental Health Research

    PubMed Central

    Iltis, Ana S.; Misra, Sahana; Dunn, Laura B.; Brown, Gregory K.; Campbell, Amy; Earll, Sarah A.; Glowinski, Anne; Hadley, Whitney B.; Pies, Ronald; DuBois, James M.

    2015-01-01

    Objective Risk communication and management are essential to the ethical conduct of research, yet addressing risks may be time consuming for investigators and institutional review boards (IRBs) may reject study designs that appear too risky. This can discourage needed research, particularly in higher risk protocols or those enrolling potentially vulnerable individuals, such as those with some level of suicidality. Improved mechanisms for addressing research risks may facilitate much needed psychiatric research. This article provides mental health researchers with practical approaches to: 1) identify and define various intrinsic research risks; 2) communicate these risks to others (e.g., potential participants, regulatory bodies, society); 3) manage these risks during the course of a study; and 4) justify the risks. Methods As part of a National Institute of Mental Health (NIMH)-funded scientific meeting series, a public conference and a closed-session expert panel meeting were held on managing and disclosing risks in mental health clinical trials. The expert panel reviewed the literature with a focus on empirical studies and developed recommendations for best practices and further research on managing and disclosing risks in mental health clinical trials. IRB review was not required because there were no human subjects. The NIMH played no role in developing or reviewing the manuscript. Results Challenges, current data, practical strategies, and topics for future research are addressed for each of four key areas pertaining to management and disclosure of risks in clinical trials: identifying and defining risks, communicating risks, managing risks during studies, and justifying research risks. Conclusions Empirical data on risk communication, managing risks, and the benefits of research can support the ethical conduct of mental health research and may help investigators better conceptualize and confront risks and to gain IRB approval. PMID:24173618

  3. UCLA program in reactor studies: The ARIES tokamak reactor study

    SciTech Connect

    Not Available

    1991-01-01

    The ARIES research program is a multi-institutional effort to develop several visions of tokamak reactors with enhanced economic, safety, and environmental features. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Four ARIES visions are currently planned for the ARIES program. The ARIES-1 design is a DT-burning reactor based on modest'' extrapolations from the present tokamak physics database and relies on either existing technology or technology for which trends are already in place, often in programs outside fusion. ARIES-2 and ARIES-4 are DT-burning reactors which will employ potential advances in physics. The ARIES-2 and ARIES-4 designs employ the same plasma core but have two distinct fusion power core designs; ARIES-2 utilize the lithium as the coolant and breeder and vanadium alloys as the structural material while ARIES-4 utilizes helium is the coolant, solid tritium breeders, and SiC composite as the structural material. Lastly, the ARIES-3 is a conceptual D-{sup 3}He reactor. During the period Dec. 1, 1990 to Nov. 31, 1991, most of the ARIES activity has been directed toward completing the technical work for the ARIES-3 design and documenting the results and findings. We have also completed the documentation for the ARIES-1 design and presented the results in various meetings and conferences. During the last quarter, we have initiated the scoping phase for ARIES-2 and ARIES-4 designs.

  4. Ozone Research with Advanced Cooperative Lidar Experiment (ORACLE) Implementation Study

    NASA Technical Reports Server (NTRS)

    Stadler, John H.; Browell, Edward V.; Ismail, Syed; Dudelzak, Alexander E.; Ball, Donald J.

    1998-01-01

    New technological advances have made possible new active remote sensing capabilities from space. Utilizing these technologies, the Ozone Research with Advanced Cooperative Lidar Experiment (ORACLE) will provide high spatial resolution measurements of ozone, clouds and aerosols in the stratosphere and lower troposphere. Simultaneous measurements of ozone, clouds and aerosols will assist in the understanding of global change, atmospheric chemistry and meteorology.

  5. Advanced technology airfoil research, volume 2. [conferences

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A comprehensive review of airfoil research is presented. The major thrust of the research is in three areas: development of computational aerodynamic codes for airfoil analysis and design, development of experimental facilities and test techniques, and all types of airfoil applications.

  6. Advancing Administrative Supports for Research Development

    ERIC Educational Resources Information Center

    Briar-Lawson, Katharine; Korr, Wynne; White, Barbara; Vroom, Phyllis; Zabora, James; Middleton, Jane; Shank, Barbara; Schatz, Mona

    2008-01-01

    Research administrative supports must parallel and reinforce faculty initiatives in research grant procurement. This article features several types of developments that draw on presentations at the National Association of Deans and Directors of Schools of Social Work meetings. Key changes in social work programs are addressed, including the…

  7. Research and Development: Advances in Education.

    ERIC Educational Resources Information Center

    Office of Education (DHEW), Washington, DC. Bureau of Research.

    This document presents vignettes illustrating improvements in learning resulting from educational innovations developed through research sponsored by the Cooperative Research Act of 1954, the National Defense Education Act of 1958, the Vocational Education Act of 1963, the Higher Education Act of 1965, and the Elementary and Secondary Education…

  8. Special Education Research Advances Knowledge in Education

    ERIC Educational Resources Information Center

    Vaughn, Sharon; Swanson, Elizabeth A.

    2015-01-01

    Research in special education has yielded beneficial outcomes for students with disabilities as well as typical achieving students. The authors provide examples of the valuable knowledge special education research has generated, including the elements of response to intervention (e.g., screening and progress monitoring), instructional practices…

  9. Methodological Advances in Uses and Gratifications Research.

    ERIC Educational Resources Information Center

    Becker, Lee B.

    One of the most difficult problems facing scholars interested in conducting empirical research concerning the gratification that audience members seek or receive from the media is measurement of gratification itself. This paper outlines the strategies commonly used by researchers and describes some of the limitations of each. Particular attention…

  10. Japanese advances in fuzzy systems research

    NASA Astrophysics Data System (ADS)

    Schwartz, Daniel G.

    1992-07-01

    During this past summer (1991), I spent two months on an appointment as visiting researcher at Kansai University, Osaka, Japan, and five weeks at the Laboratory for International Fuzzy Engineering Research (LIFE), in Yokohama. Part of the expenses for the time in Osaka, and all the expenses for the visit at LIFE, were covered by ONR. While there I met with most of the key researchers in both fuzzy systems and case-based reasoning. This involved trips to numerous universities and research laboratories at Matsushita/Panasonic, Omron, and Hitachi Corporations. In addition, I spent three days at the Fuzzy Logic Systems Institute (FLSI), Iizuka, and I attended the annual meeting of the Japan Society for Fuzzy Theory and Research (SOFT-91) in Nagoya. The following report elaborates what I learned as a result of those activities.

  11. Prostate Cancer Stem Cells: Research Advances

    PubMed Central

    Jaworska, Dagmara; Król, Wojciech; Szliszka, Ewelina

    2015-01-01

    Cancer stem cells have been defined as cells within a tumor that possesses the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. Experimental evidence showed that these highly tumorigenic cells might be responsible for initiation and progression of cancer into invasive and metastatic disease. Eradicating prostate cancer stem cells, the root of the problem, has been considered as a promising target in prostate cancer treatment to improve the prognosis for patients with advanced stages of the disease. PMID:26593898

  12. Prostate Cancer Stem Cells: Research Advances.

    PubMed

    Jaworska, Dagmara; Król, Wojciech; Szliszka, Ewelina

    2015-01-01

    Cancer stem cells have been defined as cells within a tumor that possesses the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. Experimental evidence showed that these highly tumorigenic cells might be responsible for initiation and progression of cancer into invasive and metastatic disease. Eradicating prostate cancer stem cells, the root of the problem, has been considered as a promising target in prostate cancer treatment to improve the prognosis for patients with advanced stages of the disease.

  13. Strategy to Promote Active Learning of an Advanced Research Method

    ERIC Educational Resources Information Center

    McDermott, Hilary J.; Dovey, Terence M.

    2013-01-01

    Research methods courses aim to equip students with the knowledge and skills required for research yet seldom include practical aspects of assessment. This reflective practitioner report describes and evaluates an innovative approach to teaching and assessing advanced qualitative research methods to final-year psychology undergraduate students. An…

  14. Advancements in Research Synthesis Methods: From a Methodologically Inclusive Perspective

    ERIC Educational Resources Information Center

    Suri, Harsh; Clarke, David

    2009-01-01

    The dominant literature on research synthesis methods has positivist and neo-positivist origins. In recent years, the landscape of research synthesis methods has changed rapidly to become inclusive. This article highlights methodologically inclusive advancements in research synthesis methods. Attention is drawn to insights from interpretive,…

  15. Symposium on research advances in clinical PET. Final performance report

    SciTech Connect

    J. Michael McGehee

    1992-01-01

    The Institute for Clinical PET and the U.S. Department of Energy (DOE) co-sponsored a symposium entitled 'Research in PET: International and Institutional Perspectives' that highlighted the activities of many leading investigators in the U.S. and throughout the world. Research programs at the DOE were discussed as were potential directions of PET research. International as well as institutional perspectives on PET research were presented. This symposium was successful in reaching those interested in research advances of clinical PET.

  16. Advanced energy systems and technologies research programme

    NASA Astrophysics Data System (ADS)

    Lund, P.; Tuominen, E.

    NEMO 2 is a national energy research program for the evaluation, development and promotion of new and renewable forms of energy. NEMO 2 is one of the energy research programs of the Finnish Ministry of Trade and Industry for the years 1993-1998. In NEMO 2 -program, new energy technology is developed as a whole in close collaboration between industry, universities and research institutes, as well as with customers and consumers. The overall budget of NEMO 2 is close to 125 MFIM (1 dollar = 5.7 FIM, Nov. 1993). The main emphasis of the program is on wind and solar energy.

  17. Descriptions of a linear device developed for research on advanced plasma imaging and dynamics

    SciTech Connect

    Chung, J.; Lee, K. D.; Seo, D. C.; Nam, Y. U.; Ko, W. H.; Lee, J. H.; Choi, M. C.

    2009-10-15

    The research on advanced plasma imaging and dynamics (RAPID) device is a newly developed linear electron cyclotron resonance (ECR) plasma device. It has a variety of axial magnetic field profiles provided by eight water-cooled magnetic coils and two dc power supplies. The positions of the magnetic coils are freely adjustable along the axial direction and the power supplies can be operated with many combinations of electrical wiring to the coils. A 6 kW 2.45 GHz magnetron is used to produce steady-state ECR plasmas with central magnetic fields of 875 and/or 437.5 G (second harmonic). The cylindrical stainless steel vacuum chamber is 300 mm in diameter and 750 mm in length and has eight radial and ten axial ports including 6-in. and 8-in. viewing windows for heating and diagnostics. Experimental observation of ECR plasma heating has been recently carried out during the initial plasma operation. The main diagnostic systems including a 94 GHz heterodyne interferometer, a high-resolution 25 channel one-dimensional array spectrometer, a single channel survey spectrometer, and an electric probe have been also prepared. The RAPID device is a flexible simulator for the understanding of tokamak edge plasma physics and new diagnostic system development. In this work, we describe the RAPID device and initial operation results.

  18. Method and ethics in advancing jury research.

    PubMed

    Robertshaw, P

    1998-10-01

    In this article the contemporary problems of the jury and jury research are considered. This is timely, in view of the current Home Office Consultation Paper on the future of, and alternatives to, the jury in serious fraud trials, to which the author has submitted representations on its jury aspects. The research position is dominated by the prohibitions in the Contempt of Court Act 1981. The types of indirect research on jury deliberation which have been achieved within this stricture are outlined. In the USA, direct research of the jury is possible but, for historical reasons, it has been in television documentaries that direct observation of the deliberation process has been achieved. The first issue is discussed and the problems of inauthenticity, 'the observer effect', and of existential invalidity in 'mock' or 'shadow' juries are noted. Finally, the kinds of issues that could be addressed if licensed jury deliberation research was legalized, are proposed. It is also suggested that there are methods available to transcend the problems associated with American direct research. PMID:9808945

  19. NIAAA: Advancing Alcohol Research for 40 Years

    PubMed Central

    Warren, Kenneth R.; Hewitt, Brenda G.

    2010-01-01

    The National Institute on Alcohol Abuse and Alcoholism (NIAAA) has been the lead Federal agency responsible for scientific research on alcohol and its effects for 40 years. During that time, NIAAA has conducted and funded groundbreaking research, distilled and disseminated those research findings to a broad audience, and ultimately improved public health. Among NIAAA’s many significant contributions are the National Epidemiologic Survey on Alcohol and Related Conditions, the largest survey ever conducted on alcohol and associated psychiatric and medical conditions; investment in research to identify the genes underlying vulnerability to alcoholism; creation of the Collaborative Studies on Genetics of Alcoholism, a study of the genetics of alcoholism in a human population; leadership in exploring the effects of alcohol on fetal development and on a variety of diseases and organ systems; fostering alcoholism treatment, including supporting a medications development program that has funded more than 30 Phase 2 trials and 15 human laboratory studies; international collaborations and work across the National Institutes of Health; influential research on preventing alcohol problems through community programs as well as policy changes; and the translation of research findings to everyday practice, including the production of award-winning clinician training materials. PMID:23579932

  20. Educating Scientifically - Advances in Physics Education Research

    SciTech Connect

    Finkelstein, Noah

    2007-05-16

    It is now fairly well documented that traditionally taught, large-scale introductory physics courses fail to teach our students the basics. In fact, often these same courses have been found to teach students things we do not want. Building on a tradition of research in physics, the physics education research community has been researching the effects of educational practice and reforms at the undergraduate level for many decades. From these efforts and those within the fields of education, cognitive science, and psychology we have learned a great deal about student learning and environments that support learning for an increasingly diverse population of students in the physics classroom. This talk will introduce some of the ideas from physics education research, discuss a variety of effective classroom practices/ surrounding educational structures, and begin to examine why these do (and do not) work. I will present both a survey of physics education research and some of the exciting theoretical and experimental developments emerging from the University of Colorado.

  1. Educating Scientifically: Advances in Physics Education Research

    SciTech Connect

    Finkelstein, Noah

    2007-05-16

    It is now fairly well documented that traditionally taught, large-scale introductory physics courses fail to teach our students the basics. In fact, often these same courses have been found to teach students things we do not want. Building on a tradition of research in physics, the physics education research community has been researching the effects of educational practice and reforms at the undergraduate level for many decades. From these efforts and those within the fields of education, cognitive science, and psychology we have learned a great deal about student learning and environments that support learning for an increasingly diverse population of students in the physics classroom. This talk will introduce some of the ideas from physics education research, discuss a variety of effective classroom practices/ surrounding educational structures, and begin to examine why these do (and do not) work. I will present both a survey of physics education research and some of the exciting theoretical and experimental developments emerging from the University of Colorado.

  2. Conceptualizing and Advancing Research Networking Systems.

    PubMed

    Schleyer, Titus; Butler, Brian S; Song, Mei; Spallek, Heiko

    2012-03-01

    Science in general, and biomedical research in particular, is becoming more collaborative. As a result, collaboration with the right individuals, teams, and institutions is increasingly crucial for scientific progress. We propose Research Networking Systems (RNS) as a new type of system designed to help scientists identify and choose collaborators, and suggest a corresponding research agenda. The research agenda covers four areas: foundations, presentation, architecture, and evaluation. Foundations includes project-, institution- and discipline-specific motivational factors; the role of social networks; and impression formation based on information beyond expertise and interests. Presentation addresses representing expertise in a comprehensive and up-to-date manner; the role of controlled vocabularies and folksonomies; the tension between seekers' need for comprehensive information and potential collaborators' desire to control how they are seen by others; and the need to support serendipitous discovery of collaborative opportunities. Architecture considers aggregation and synthesis of information from multiple sources, social system interoperability, and integration with the user's primary work context. Lastly, evaluation focuses on assessment of collaboration decisions, measurement of user-specific costs and benefits, and how the large-scale impact of RNS could be evaluated with longitudinal and naturalistic methods. We hope that this article stimulates the human-computer interaction, computer-supported cooperative work, and related communities to pursue a broad and comprehensive agenda for developing research networking systems.

  3. Conceptualizing and Advancing Research Networking Systems

    PubMed Central

    SCHLEYER, TITUS; BUTLER, BRIAN S.; SONG, MEI; SPALLEK, HEIKO

    2013-01-01

    Science in general, and biomedical research in particular, is becoming more collaborative. As a result, collaboration with the right individuals, teams, and institutions is increasingly crucial for scientific progress. We propose Research Networking Systems (RNS) as a new type of system designed to help scientists identify and choose collaborators, and suggest a corresponding research agenda. The research agenda covers four areas: foundations, presentation, architecture, and evaluation. Foundations includes project-, institution- and discipline-specific motivational factors; the role of social networks; and impression formation based on information beyond expertise and interests. Presentation addresses representing expertise in a comprehensive and up-to-date manner; the role of controlled vocabularies and folksonomies; the tension between seekers’ need for comprehensive information and potential collaborators’ desire to control how they are seen by others; and the need to support serendipitous discovery of collaborative opportunities. Architecture considers aggregation and synthesis of information from multiple sources, social system interoperability, and integration with the user’s primary work context. Lastly, evaluation focuses on assessment of collaboration decisions, measurement of user-specific costs and benefits, and how the large-scale impact of RNS could be evaluated with longitudinal and naturalistic methods. We hope that this article stimulates the human-computer interaction, computer-supported cooperative work, and related communities to pursue a broad and comprehensive agenda for developing research networking systems. PMID:24376309

  4. Educating Scientifically - Advances in Physics Education Research

    ScienceCinema

    Finkelstein, Noah [University of Colorado, Colorado, USA

    2016-07-12

    It is now fairly well documented that traditionally taught, large-scale introductory physics courses fail to teach our students the basics. In fact, often these same courses have been found to teach students things we do not want. Building on a tradition of research in physics, the physics education research community has been researching the effects of educational practice and reforms at the undergraduate level for many decades. From these efforts and those within the fields of education, cognitive science, and psychology we have learned a great deal about student learning and environments that support learning for an increasingly diverse population of students in the physics classroom. This talk will introduce some of the ideas from physics education research, discuss a variety of effective classroom practices/ surrounding educational structures, and begin to examine why these do (and do not) work. I will present both a survey of physics education research and some of the exciting theoretical and experimental developments emerging from the University of Colorado.

  5. INEEL Advanced Radiotherapy Research Program Annual Report 2001

    SciTech Connect

    Venhuizen, James R.

    2002-04-30

    This report summarizes the major activities and accomplishments of the Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Radiotherapy Research Program for calendar year 2001. Applications of supportive research and development, as well as technology deployment in the fields of chemistry, radiation physics and dosimetry, and neutron source design and demonstration are described. Contributions in the fields of physics and biophysics include development of advanced patient treatment planning software, feasibility studies of accelerator neutron source technology for Neutron Capture Therapy (NCT), and completion of major modifications to the research reactor at Washington State University to produce an epithermal-neutron beam for NCT research applications.

  6. INEEL Advanced Radiotherapy Research Program Annual Report 2001

    SciTech Connect

    Venhuizen, James Robert

    2002-04-01

    This report summarizes the major activities and accomplishments of the Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Radiotherapy Research Program for calendar year 2001. Applications of supportive research and development, as well as technology deployment in the fields of chemistry, radiation physics and dosimetry, and neutron source design and demonstration are described. Contributions in the fields of physics and biophysics include development of advanced patient treatment planning software, feasibility studies of accelerator neutron source technology for Neutron Capture Therapy (NCT), and completion of major modifications to the research reactor at Washington State University to produce an epithermal-neutron beam for NCT research applications.

  7. Recent advances in Tourette syndrome research.

    PubMed

    Albin, Roger L; Mink, Jonathan W

    2006-03-01

    Tourette syndrome (TS) is a developmentally regulated neurobehavioral disorder characterized by involuntary, stereotyped, repetitive movements. Recent anatomical and neuroimaging studies have provided evidence for abnormal basal ganglia and dopaminergic function in TS. Basic research on striatal inhibitory mechanisms and dopaminergic function complements the recent neuroimaging and anatomical data. Parallel studies of basal ganglia participation in the normal performance and learning of stereotyped repetitive behaviors or habits has provided additional insight. These lines of research have provided new pieces to the TS puzzle, and their increasing convergence is showing how those pieces can be put together.

  8. Advanced energy projects; FY 1995 research summaries

    SciTech Connect

    1995-09-01

    The AEP Division supports projects to explore novel energy-related concepts which are typically at an early stage of scientific development, and high-risk, exploratory concepts. Topical areas presently receiving support are: novel materials for energy technology, renewable and biodegradable materials, exploring uses of new scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, and innovative approaches to waste treatment and reduction. There were 46 research projects during FY 1995; ten were initiated during that fiscal year. The summaries are separated into grant and laboratory programs, and small business innovation research programs.

  9. DIII-D research operations. Annual report to the Department of Energy, October 1, 1991--September 30, 1992

    SciTech Connect

    Simonen, T.C.; Baker, D.

    1993-01-01

    The DIII-D tokamak research program is carried out by General Atomics for the U.S. Department of Energy. The DIII-D is the most flexible and best diagnosed tokamak in the world and the second largest tokamak in the U.S. The primary goal of the DIII-D tokamak research program is to provide data needed by ITER and to develop a conceptual physics blueprint for a commercially attractive electrical demonstration plant (DEMO) that would open a path to fusion power commercialization. Specific DIII-D objectives include the steady-state sustainment of plasma current as well as demonstrating techniques for microwave heating, divertor heat removal, fuel exhaust and tokamak plasma control. The DIII-D program is addressing these objectives in an integrated fashion with high beta and with good confinement. The DIII-D long-range plan is organized into two major thrusts; the development of advanced divertor and the development of advanced tokamak concepts. These two thrusts have a common goal: an improved DEMO reactor with lower cost and smaller size than the present DEMO which can be extrapolated from the conventional ITER operational scenario. In order to prepare for the long-range program, in FY92 the DIII-D research program concentrated in three major areas: Tokamak Physics, Divertor and Boundary Physics, and Advanced Tokamak Studies.

  10. Load research manual. Volume 3. Load research for advanced technologies

    SciTech Connect

    Brandenburg, L.; Clarkson, G.; Grund, Jr., C.; Leo, J.; Asbury, J.; Brandon-Brown, F.; Derderian, H.; Mueller, R.; Swaroop, R.

    1980-11-01

    This three-volume manual presents technical guidelines for electric utility load research. Special attention is given to issues raised by the load data reporting requirements of the Public Utility Regulatory Policies Act of 1978 and to problems faced by smaller utilities that are initiating load research programs. The manual includes guides to load research literature and glossaries of load research and statistical terms. In Volume 3, special load research procedures are presented for solar, wind, and cogeneration technologies.

  11. Effects of neoclassical toroidal viscosity induced by the intrinsic error fields and toroidal field ripple on the toroidal rotation in tokamaks

    NASA Astrophysics Data System (ADS)

    Lee, H. H.; Seol, J.; Ko, W. H.; Terzolo, L.; Aydemir, A. Y.; In, Y.; Ghim, Y.-c.; Lee, S. G.

    2016-08-01

    Effects of neoclassical toroidal viscosity (NTV) induced by intrinsic error fields and toroidal field ripple on cocurrent toroidal rotation in H-mode tokamak plasmas are investigated. It is expected that large NTV torque can be localized at the edge region through the 1/ν-regime in the vicinity of E r ˜ 0 in the cocurrent rotating H-mode plasma. Numerical simulation on toroidal rotation demonstrates that the edge localized NTV torque determined by the intrinsic error fields and toroidal field ripples in the level of most tokamaks can damp the toroidal rotation velocity over the whole region while reducing the toroidal rotation pedestal which is clearly observed in Korea Superconducting Tokamak Advanced Research (KSTAR) tokamak. It is found that the NTV torque changes the toroidal rotation gradient in the pedestal region dramatically, but the toroidal rotation profile in the core region responds rigidly without a change in the gradient. On the other hand, it shows that the NTV torque induced by the intrinsic error fields and toroidal field ripple in the level of the KSTAR tokamak, which are expected to be smaller than most tokamaks by at least one order of magnitude, is negligible in determining the toroidal rotation velocity profile. Experimental observation on the toroidal rotation change by the externally applied nonaxisymmetric magnetic fields on KSTAR also suggests that NTV torque arising from nonaxisymmetric magnetic fields can damp the toroidal rotation over the whole region while diminishing the toroidal rotation pedestal.

  12. Advances in Bayesian Modeling in Educational Research

    ERIC Educational Resources Information Center

    Levy, Roy

    2016-01-01

    In this article, I provide a conceptually oriented overview of Bayesian approaches to statistical inference and contrast them with frequentist approaches that currently dominate conventional practice in educational research. The features and advantages of Bayesian approaches are illustrated with examples spanning several statistical modeling…

  13. Advances in Music-Reading Research

    ERIC Educational Resources Information Center

    Gudmundsdottir, Helga Rut

    2010-01-01

    The purpose of this paper is to construct a comprehensive review of the research literature in the reading of western staff notation. Studies in music perception, music cognition, music education and music neurology are cited. The aim is to establish current knowledge in music-reading acquisition and what is needed for further progress in this…

  14. Advances in Child Development: Theory and Research.

    ERIC Educational Resources Information Center

    Nesdale, Andrew R., Ed.; And Others

    This book consists of 31 papers focusing on aspects of child development. Mainly reports of research, papers are grouped topically into four sections dealing respectively with perceptual, language/communication, cognitive, and social development. Most of the nine papers in section 1 focus on the perceptual development of infants. Topics include…

  15. Advancing Research on the Community College

    ERIC Educational Resources Information Center

    Bers, Trudy H.

    2007-01-01

    Arthur M. Cohen and his colleagues at the Center for the Study of Community Colleges have made significant and broad contributions to the scholarly literature and empirical research about community colleges. Although Cohen's interests are comprehensive and his writings touch on multiple issues associated with community colleges, his empirical work…

  16. Advanced Energy Projects: FY 1993, Research summaries

    SciTech Connect

    Not Available

    1993-09-01

    AEP has been supporting research on novel materials for energy technology, renewable and biodegradable materials, new uses for scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, innovative approaches to waste treatment and reduction, etc. The summaries are grouped according to projects active in FY 1993, Phase I SBIR projects, and Phase II SBIR projects. Investigator and institutional indexes are included.

  17. Advances in Design-Based Research

    ERIC Educational Resources Information Center

    Svihla, Vanessa

    2014-01-01

    Design-based research (DBR) is a core methodology of the Learning Sciences. Historically rooted as a movement away from the methods of experimental psychology, it is a means to develop "humble" theory that takes into account numerous contextual effects for understanding how and why a design supported learning. DBR involves iterative…

  18. Advanced AE Techniques in Composite Materials Research

    NASA Technical Reports Server (NTRS)

    Prosser, William H.

    1996-01-01

    Advanced, waveform based acoustic emission (AE) techniques have been successfully used to evaluate damage mechanisms in laboratory testing of composite coupons. An example is presented in which the initiation of transverse matrix cracking was monitored. In these tests, broad band, high fidelity acoustic sensors were used to detect signals which were then digitized and stored for analysis. Analysis techniques were based on plate mode wave propagation characteristics. This approach, more recently referred to as Modal AE, provides an enhanced capability to discriminate and eliminate noise signals from those generated by damage mechanisms. This technique also allows much more precise source location than conventional, threshold crossing arrival time determination techniques. To apply Modal AE concepts to the interpretation of AE on larger composite specimens or structures, the effects of modal wave propagation over larger distances and through structural complexities must be well characterized and understood. To demonstrate these effects, measurements of the far field, peak amplitude attenuation of the extensional and flexural plate mode components of broad band simulated AE signals in large composite panels are discussed. These measurements demonstrated that the flexural mode attenuation is dominated by dispersion effects. Thus, it is significantly affected by the thickness of the composite plate. Furthermore, the flexural mode attenuation can be significantly larger than that of the extensional mode even though its peak amplitude consists of much lower frequency components.

  19. Microfluidic Devices in Advanced Caenorhabditis elegans Research.

    PubMed

    Muthaiyan Shanmugam, Muniesh; Subhra Santra, Tuhin

    2016-01-01

    The study of model organisms is very important in view of their potential for application to human therapeutic uses. One such model organism is the nematode worm, Caenorhabditis elegans. As a nematode, C. elegans have ~65% similarity with human disease genes and, therefore, studies on C. elegans can be translated to human, as well as, C. elegans can be used in the study of different types of parasitic worms that infect other living organisms. In the past decade, many efforts have been undertaken to establish interdisciplinary research collaborations between biologists, physicists and engineers in order to develop microfluidic devices to study the biology of C. elegans. Microfluidic devices with the power to manipulate and detect bio-samples, regents or biomolecules in micro-scale environments can well fulfill the requirement to handle worms under proper laboratory conditions, thereby significantly increasing research productivity and knowledge. The recent development of different kinds of microfluidic devices with ultra-high throughput platforms has enabled researchers to carry out worm population studies. Microfluidic devices primarily comprises of chambers, channels and valves, wherein worms can be cultured, immobilized, imaged, etc. Microfluidic devices have been adapted to study various worm behaviors, including that deepen our understanding of neuromuscular connectivity and functions. This review will provide a clear account of the vital involvement of microfluidic devices in worm biology. PMID:27490525

  20. Progress and prospects in understanding the physics of tokamak experiments

    SciTech Connect

    Hutchinson, I.

    1992-12-01

    A whistle-stop tour of the diverse physics of tokamak plasma confinement. This talk will illustrate the way in which fusion research on tokamaks has led to important and interesting physics results, and discuss some of the scientific challenges still ahead before fusion`s potential can be established.

  1. DIII-D research operations. Annual report, October 1, 1992--September 30, 1993

    SciTech Connect

    La Haye, R.J.

    1994-05-01

    The DIII-D tokamak research program is carried out by General Atomics (GA) for the U.S. Department of Energy (DOE). The DIII-D is the most flexible tokamak in the world. The primary goal of the DIII-D tokamak research program is to provide data to develop a conceptual physics blueprint for a commercially attractive electrical demonstration plant (DEMO) that would open a path to fusion power commercialization. In doing so, the DIII-D program provides physics and technology R&D outputs to aid the Tokamak Physics Experiment (TPX) and the International Thermonuclear Experimental Reactor (ITER). Specific DIII-D objectives include the steady-state sustainment of plasma current as well as demonstrating techniques for microwave heating, divertor heat removal, fuel exhaust and tokamak plasma control. The DIII-D program is addressing these objectives in an integrated fashion with high beta and with good confinement. The long-range plan is organized into two major thrusts; the development of an advanced divertor and the development of advanced tokamak concepts. These two thrusts have a common goal: an improved DEMO reactor with lower cost and smaller size than the present DEMO which can be extrapolated from the conventional ITER operational scenario. In order to prepare for the long-range program, in FY93 the DIII-D research program concentrated on three major areas: Divertor and Boundary Physics, Advanced Tokamak Studies, and Tokamak Physics. The major goals of the Divertor and Boundary Physics studies are the control of impurities, efficient heat removal and understanding the strong role that the edge plasma plays in the global energy confinement of the plasma. The advanced tokamak studies initiated the investigation into new techniques for improving energy confinement, controlling particle fueling and increasing plasma beta. The major goal of the Tokamak Physics Studies is the understanding of energy and particle transport in a reactor relevant plasma.

  2. Advancing translational research with the Semantic Web

    PubMed Central

    Ruttenberg, Alan; Clark, Tim; Bug, William; Samwald, Matthias; Bodenreider, Olivier; Chen, Helen; Doherty, Donald; Forsberg, Kerstin; Gao, Yong; Kashyap, Vipul; Kinoshita, June; Luciano, Joanne; Marshall, M Scott; Ogbuji, Chimezie; Rees, Jonathan; Stephens, Susie; Wong, Gwendolyn T; Wu, Elizabeth; Zaccagnini, Davide; Hongsermeier, Tonya; Neumann, Eric; Herman, Ivan; Cheung, Kei-Hoi

    2007-01-01

    Background A fundamental goal of the U.S. National Institute of Health (NIH) "Roadmap" is to strengthen Translational Research, defined as the movement of discoveries in basic research to application at the clinical level. A significant barrier to translational research is the lack of uniformly structured data across related biomedical domains. The Semantic Web is an extension of the current Web that enables navigation and meaningful use of digital resources by automatic processes. It is based on common formats that support aggregation and integration of data drawn from diverse sources. A variety of technologies have been built on this foundation that, together, support identifying, representing, and reasoning across a wide range of biomedical data. The Semantic Web Health Care and Life Sciences Interest Group (HCLSIG), set up within the framework of the World Wide Web Consortium, was launched to explore the application of these technologies in a variety of areas. Subgroups focus on making biomedical data available in RDF, working with biomedical ontologies, prototyping clinical decision support systems, working on drug safety and efficacy communication, and supporting disease researchers navigating and annotating the large amount of potentially relevant literature. Results We present a scenario that shows the value of the information environment the Semantic Web can support for aiding neuroscience researchers. We then report on several projects by members of the HCLSIG, in the process illustrating the range of Semantic Web technologies that have applications in areas of biomedicine. Conclusion Semantic Web technologies present both promise and challenges. Current tools and standards are already adequate to implement components of the bench-to-bedside vision. On the other hand, these technologies are young. Gaps in standards and implementations still exist and adoption is limited by typical problems with early technology, such as the need for a critical mass of

  3. Do spherical tokamaks have a thermonuclear future?

    NASA Astrophysics Data System (ADS)

    Mirnov, S. V.

    2012-12-01

    This work has been initiated by the publication of a review by B.V.Kuteev et al., "Intense Fusion Neutron Sources" [Plasma Physics Reports 36, 281 (2010)]. It is stated that the key thesis of the above review that a spherical tokamak can be recommended for research neutron sources and for demonstration hybrid systems as an alternative to expensive "classical" tokamaks of the JET and ITER type is inconsistent. The analysis of the experimental material obtained during the last 10 years in the course of studies on the existing spherical tokamaks shows that the TIN-ST fusion neutron source spherical tokamak proposed by the authors of the review and intended, according to the authors' opinion, to replace "monsters" in view of its table-top dimensions (2 m3) and laboratory-level energetics cannot be transformed into any noticeable stationary megawatt-power neutron source competing with the existing classical tokamaks (in particular, with JET with its quasi-steady DT fusion power at a level of 5 MW). Namely, the maximum plasma current in the proposed tokamak will be not 3 MA, as the authors suppose erroneously, but, according to the present-day practice of spherical tokamaks, within 0.6-0.7 MA, which will lead to a reduction on the neutron flux by two to three orders of magnitude from the expected 5 MW. The possibility of the maintenance of the stationary process itself even in such a "weakened" spherical tokamak is very doubtful. The experience of the largest existing devices of this type (such as NSTX and MAST) has shown that they are incapable of operating even in a quasi-steady operating mode, because the discharge in them is spontaneously interrupted about 1 s after the beginning of the current pulse, although its expected duration is of up to 5 s. The nature of this phenomenon is the subject of further study of the physics of spherical tokamaks. This work deals with a critical analysis of the available experimental data concerning such tokamaks and a discussion of

  4. Advanced ASON prototyping research activities in China

    NASA Astrophysics Data System (ADS)

    Hu, WeiSheng; Jin, Yaohui; Guo, Wei; Su, Yikai; He, Hao; Sun, Weiqiang

    2005-02-01

    This paper provides an overview of prototyping research activities of automatically switched optical networks and transport networks (ASONs/ASTNs) in China. In recent years, China has recognized the importance and benefits of the emerging ASON/ASTN techniques. During the period of 2001 and 2002, the national 863 Program of China started the preliminary ASON research projects with the main objectives to build preliminary ASON testbeds, develop control plane protocols and test their performance in the testbeds. During the period of 2003 and 2004, the 863 program started ASTN prototyping equipment projects for more practical applications. Totally 12 ASTN equipments are being developed by three groups led by Chinese venders: ZTE with Beijing University of Posts and Telecommunications (BUPT), Wuhan Research Institute of Posts and Telecommunication (WRI) with Shanghai Jiao Tong University (SJTU), and Huawei Inc. Meanwhile, as the ASTN is maturing, some of the China"s carries are participating in the OIF"s World Interoperability Demonstration, carrying out ASTN test, or deploying ASTN backbone networks. Finally, several ASTN backbone networks being tested or deployed now will be operated by the carries in 2005. The 863 Program will carry out an ASTN field trail in Yangtse River Delta, and finally deploy the 3TNET. 3TNET stands for Tbps transmission, Tbps switching, and Tbps routing, as well as a network integrating the above techniques. A task force under the "863" program is responsible for ASTN equipment specifications and interoperation agreements, technical coordination among all the participants, schedule of the whole project during the project undergoing, and organization of internetworking of all the equipments in the laboratories and field trials.

  5. Advanced research in instrumentation and diagnostics technology

    SciTech Connect

    Sheen, S.H.; Lawrence, W.P.; Raptis, A.C.

    1992-09-01

    this research project will develop an ultrasonic flow imaging system based on tomographic technique. Initially, we will demonstrate both the reflection and diffraction tomographic applied to flow imaging. Then, the direct inversion problem will be examined. In this paper, we present the initial assessment of the feasibility and the evaluation of practical wedge designs. Major tasks of the project include (1) a feasibility study, (2) evaluation of sensing geometry and wedge design, (3) development of image reconstruction algorithm, and (4) flow tests of the imaging system. At present, we have completed the feasibility study and are in the process of evaluating wedge design.

  6. Advances in nanostructured permanent magnets research

    SciTech Connect

    Poudyal, N; Liu, JP

    2012-12-14

    This paper reviews recent developments in research in nanostructured permanent magnets ( hard magnetic materials) with emphasis on bottom-up approaches to fabrication of hard/soft nanocomposite bulk magnets. Theoretical and experimental findings on the effects of soft phase and interface conditions on interphase exchange interactions are given. Synthesis techniques for hard magnetic nanoparticles, including chemical solution methods, surfactant-assisted ball milling and other physical deposition methods are reviewed. Processing and magnetic properties of warm compacted and plastically deformed bulk magnets with nanocrystalline morphology are discussed. Prospects of producing bulk anisotropic hard/soft nanocomposite magnets are presented.

  7. First observation of a new zonal-flow cycle state in the H-mode transport barrier of the experimental advanced superconducting Tokamak

    SciTech Connect

    Xu, G. S.; Wang, H. Q.; Wan, B. N.; Guo, H. Y.; Zhang, W.; Chang, J. F.; Wang, L.; Chen, R.; Liu, S. C.; Ding, S. Y.; Shao, L. M.; Xiong, H.; Naulin, V.; Diamond, P. H.; Tynan, G. R.; Xu, M.; Yan, N.; Zhao, H. L.

    2012-12-15

    A new turbulence-flow cycle state has been discovered after the formation of a transport barrier in the H-mode plasma edge during a quiescent phase on the EAST superconducting tokamak. Zonal-flow modulation of high-frequency-broadband (0.05-1 MHz) turbulence was observed in the steep-gradient region leading to intermittent transport events across the edge transport barrier. Good confinement (H{sub 98y,2} {approx} 1) has been achieved in this state, even with input heating power near the L-H transition threshold. A novel model based on predator-prey interaction between turbulence and zonal flows reproduced this state well.

  8. Research priorities and history of advanced composite compression testing

    NASA Technical Reports Server (NTRS)

    Baumann, K. J.

    1981-01-01

    Priorities for standard compression testing research in advanced laminated fibrous composite materials are presented along with a state of the art survey (completed in 1979) including history and commentary on industrial test methods. Historically apparent research priorities and consequent (lack of) progress are supporting evidence for newly derived priorities.

  9. Clinical Research Informatics: Recent Advances and Future Directions

    PubMed Central

    2015-01-01

    Summary Objectives To summarize significant developments in Clinical Research Informatics (CRI) over the past two years and discuss future directions. Methods Survey of advances, open problems and opportunities in this field based on exploration of current literature. Results Recent advances are structured according to three use cases of clinical research: Protocol feasibility, patient identification/recruitment and clinical trial execution. Discussion CRI is an evolving, dynamic field of research. Global collaboration, open metadata, content standards with semantics and computable eligibility criteria are key success factors for future developments in CRI. PMID:26293865

  10. Students in Advanced Research for Sky Surveillance

    NASA Astrophysics Data System (ADS)

    Gehrels, Tom

    1997-11-01

    Spacewatch program discovers small bodies (asteroids and comets) in the solar system and analyzes their distributions with orbital parameters and absolute magnitude. Scanning of the night sky is conducted 18-20 nights per month with tbe 0.9-m Spacewatch Telescope on Kitt Peak. About 1200. to 2000 sqare degrees of sky are searched each year to a V magnitude level of 21.3. Spacewatch discoveries support studies of the evolution of the Centaur, Trojan, Main-Belt, and Earth-approaching asteroid populations. Space watch also finds potential targets for space missions, finds objects that might present a hazard of impact on the Earth, provides accurate astrometry of about 30,000 asteroids annually, and recovers comets and asteroids that are too faint for most other observers. This AASERT grant supported several undergraduate students working on upgrades to instrumentation and analyses of date under the supervision of spacewatch engineers and researchers. The opportunity to have young, energetic new members of the group accomplished a great del of work, simulated and exxelerated our research efforts, and enhanced the students' career opportunities.

  11. Geneticization and bioethics: advancing debate and research.

    PubMed

    Arnason, Vilhjálmur; Hjörleifsson, Stefán

    2007-12-01

    In the present paper, we focus on the role that the concept of geneticization has played in the discussion about health care, bioethics and society. The concept is discussed and examples from the evolving discourse about geneticization are critically analyzed. The relationship between geneticization, medicalization and biomedicalization is described, emphasizing how debates about the latter concepts can inspire future research on geneticization. It is shown how recurrent themes from the media coverage of genetics portray typical traits of geneticization and thus contribute to the process. We look at examples of small-scale studies from the literature where geneticization of medical practice has been demonstrated. Methodological disputes about the relevance of empirical evidence for the geneticization thesis and the normative status of the concept are discussed. We consider arguments to the effect that ideas from mainstream bioethics have facilitated geneticization by emphasizing individualistic notions of autonomy and responsibility while ignoring the role of genetics in the wider social context. It is shown how a concept like geneticization, which can be used to draw the attention of philosophers, social scientists and others to challenges that tend to be neglected by mainstream bioethics, also has the potential to move people's attention away from other pertinent issues. This may happen if researchers become preoccupied with the transformative effects of genetics, and we argue that a wider reading of geneticization should inspire critical analysis of the sociocultural preconditions under which genetics is currently evolving. PMID:17705026

  12. Materials and light thermal structures research for advanced space exploration

    NASA Technical Reports Server (NTRS)

    Thornton, Earl A.; Starke, Edgar A., Jr.; Herakovich, Carl T.

    1991-01-01

    The Light Thermal Structures Center at the University of Virginia sponsors educational and research programs focused on the development of reliable, lightweight structures to function in hostile thermal environments. Technology advances in materials and design methodology for light thermal structures will contribute to improved space vehicle design concepts with attendant weight savings. This paper highlights current research activities in three areas relevant to space exploration: low density, high temperature aluminum alloys, composite materials, and structures with thermal gradients. Advances in the development of new aluminum-lithium alloys and mechanically alloyed aluminum alloys are described. Material properties and design features of advanced composites are highlighted. Research studies in thermal structures with temperature gradients include inelastic panel buckling and thermally induced unstable oscillations. Current and future research is focused on the integration of new materials with applications to structural components with thermal gradients.

  13. Research on geothermal chemistry and advanced instrumentation

    NASA Astrophysics Data System (ADS)

    Robertus, R. J.; Shannon, D. W.; Sullivan, R. G.; Kindle, C. H.; Pool, K. H.

    1985-09-01

    Research at the Pacific Northwest Laboratory (PNL) focuses on long-term geothermal power plant reliability. Past work concentrated on development of continuous high-temperature probes for monitoring process variables. PNL also completed a comprehensive handbook of brine treatment processes as they relate to injection well longevity. A recently completed study analyzed corrosion in the hydrocarbon system of a binary cycle plant. Over the two-year monitoring period, corrosion rates were less than 1 MPY in any part of the hydrocarbon system. The system was kept completely dry so the rates seem reasonable. Present projects include: (1) determination of gas breakout conditions at the Herber Binary Demonstration Plant operated by San Diego Gas and Electric Company; (2) generation of water mixing solubility data; (3) installation of prototype leak detectors at the Herber Plant; and (4) evaluation of state-of-the-art particle counters.

  14. idaho Accelerator Center Advanced Fuel Cycle Research

    SciTech Connect

    Wells, Douglas; Dale, Dan

    2011-10-20

    The technical effort has been in two parts called; Materials Science and Instrumentation Development. The Materials Science technical program has been based on a series of research and development achievements in Positron-Annihilation Spectroscopy (PAS) for defect detection in structural materials. This work is of particular importance in nuclear power and its supporting systems as the work included detection of defects introduced by mechanical and thermal phenomena as well as those caused by irradiation damage. The second part of the program has focused on instrumentation development using active interrogation techniques supporting proliferation resistant recycling methodologies and nuclear material safeguards. This effort has also lead to basic physics studies of various phenomena relating to photo-fission. Highlights of accomplishments and facility improvement legacies in these areas over the program period include

  15. Advances in the CIS research at NREL

    SciTech Connect

    Ramanathan, K.; Bhattacharya, R.N.; Granata, J.; Webb, J.; Niles, D.; Contreras, M.A.; Wiesner, H.; Hasoon, F.S.; Noufi, R.

    1997-12-31

    This paper summarizes the research of the CIS Team at NREL in three major areas: absorber deposition; understanding the role of chemical bath deposited (CBD) CdS in CIS junctions; and in the development of devices without CdS. Low cost, scaleable processes chosen for absorber fabrication include sputtering, electrodeposition (ED), and close spaced sublimation (CSS). The interaction between the CBD and the CIS has been investigated and the results show that Cd might be instrumental in shaping the interface. The authors have also developed a process to fabricate a 13.5% efficiency ZnO/CuInGaSe{sub 2} device without CdS or other buffer layers.

  16. Advanced moisture sensor research and development

    SciTech Connect

    De Los Santos, A.

    1992-10-31

    During this period, testing of the system continued at the American Fructose (AF) plant in Dimmitt, Texas. Testing at the first two sites (dryer output and dryer input) was completed. Following the testing at the second site, the sensor was returned to the Southwest Research Institute (SwRI) laboratories for modifications and for fitting of the additional components required to allow sampling of the material to be measured at the third site. These modifications were completed during this reporting period, and the system is scheduled to be installed at the third site (Rotary Vacuum Filter output) early in the next period. Laboratory measurements of corn germ (to be measured at the fourth site) and a variety of fruits and vegetables (one of which will be measured at the fifth site) have also continued during this period.

  17. Sensitivity of magnetic field-line pitch angle measurements to sawtooth events in tokamaks

    NASA Astrophysics Data System (ADS)

    Ko, J.

    2016-11-01

    The sensitivity of the pitch angle profiles measured by the motional Stark effect (MSE) diagnostic to the evolution of the safety factor, q, profiles during the tokamak sawtooth events has been investigated for Korea Superconducting Tokamak Advanced Research (KSTAR). An analytic relation between the tokamak pitch angle, γ, and q estimates that Δγ ˜ 0.1° is required for detecting Δq ˜ 0.05 near the magnetic axis (not at the magnetic axis, though). The pitch angle becomes less sensitive to the same Δq for the middle and outer regions of the plasma (Δγ ˜ 0.5°). At the magnetic axis, it is not straightforward to directly relate the γ sensitivity to Δq since the gradient of γ(R), where R is the major radius of the tokamak, is involved. Many of the MSE data obtained from the 2015 KSTAR campaign, when calibrated carefully, can meet these requirements with the time integration down to 10 ms. The analysis with the measured data shows that the pitch angle profiles and their gradients near the magnetic axis can resolve the change of the q profiles including the central safety factor, q0, during the sawtooth events.

  18. Tokamak ARC damage

    SciTech Connect

    Murray, J.G.; Gorker, G.E.

    1985-01-01

    Tokamak fusion reactors will have large plasma currents of approximately 10 MA with hundreds of megajoules stored in the magnetic fields. When a major plasma instability occurs, the disruption of the plasma current induces voltage in the adjacent conducting structures, giving rise to large transient currents. The induced voltages may be sufficiently high to cause arcing across sector gaps or from one protruding component to another. This report reviews a tokamak arcing scenario and provides guidelines for designing tokamaks to minimize the possibility of arc damage.

  19. Expert Meeting Report: Advanced Envelope Research for Factory Built Housing

    SciTech Connect

    Levy, E.; Mullens, M.; Tompos, E.; Kessler, B.; Rath, P.

    2012-04-01

    This report provides information about the Building America expert meeting on advanced envelope research for factory built housing, hosted by the ARIES Collaborative on October 11, 2011, in Phoenix, Arizona. The goals of this meeting were to provide a comprehensive solution to the use of three previously selected advanced alternatives for factory-built wall construction, assess each option focusing on major issues relating to viability and commercial potential, and determine additional steps are required to reach this potential.

  20. Expert Meeting Report: Advanced Envelope Research for Factory Built Housing

    SciTech Connect

    Levy, E.; Mullens, M.; Tompos, E.; Kessler, B.; Rath, P.

    2012-04-01

    This report provides information about the expert meeting on advanced envelope research for factory built housing, hosted by the ARIES Collaborative on October 11, 2011, in Phoenix, Arizona. The goals of this meeting were to provide a comprehensive solution to the use of three previously selected advanced alternatives for factory-built wall construction, assess each option focusing on major issues relating to viability and commercial potential, and determine additional steps are required to reach this potential.

  1. Georgia Tech Studies of Sub-Critical Advanced Burner Reactors with a D-T Fusion Tokamak Neutron Source for the Transmutation of Spent Nuclear Fuel

    NASA Astrophysics Data System (ADS)

    Stacey, W. M.

    2009-09-01

    The possibility that a tokamak D-T fusion neutron source, based on ITER physics and technology, could be used to drive sub-critical, fast-spectrum nuclear reactors fueled with the transuranics (TRU) in spent nuclear fuel discharged from conventional nuclear reactors has been investigated at Georgia Tech in a series of studies which are summarized in this paper. It is found that sub-critical operation of such fast transmutation reactors is advantageous in allowing longer fuel residence time, hence greater TRU burnup between fuel reprocessing stages, and in allowing higher TRU loading without compromising safety, relative to what could be achieved in a similar critical transmutation reactor. The required plasma and fusion technology operating parameter range of the fusion neutron source is generally within the anticipated operational range of ITER. The implications of these results for fusion development policy, if they hold up under more extensive and detailed analysis, is that a D-T fusion tokamak neutron source for a sub-critical transmutation reactor, built on the basis of the ITER operating experience, could possibly be a logical next step after ITER on the path to fusion electrical power reactors. At the same time, such an application would allow fusion to contribute to meeting the nation's energy needs at an earlier stage by helping to close the fission reactor nuclear fuel cycle.

  2. Connectomics in psychiatric research: advances and applications.

    PubMed

    Cao, Miao; Wang, Zhijiang; He, Yong

    2015-01-01

    Psychiatric disorders disturb higher cognitive functions and severely compromise human health. However, the pathophysiological mechanisms underlying psychiatric disorders are very complex, and understanding these mechanisms remains a great challenge. Currently, many psychiatric disorders are hypothesized to reflect "faulty wiring" or aberrant connectivity in the brains. Imaging connectomics is arising as a promising methodological framework for describing the structural and functional connectivity patterns of the human brain. Recently, alterations of brain networks in the connectome have been reported in various psychiatric disorders, and these alterations may provide biomarkers for disease diagnosis and prognosis for the evaluation of treatment efficacy. Here, we summarize the current achievements in both the structural and functional connectomes in several major psychiatric disorders (eg, schizophrenia, attention-deficit/hyperactivity disorder, and autism) based on multi-modal neuroimaging data. We highlight the current progress in the identification of these alterations and the hypotheses concerning the aberrant brain networks in individuals with psychiatric disorders and discuss the research questions that might contribute to a further mechanistic understanding of these disorders from a connectomic perspective. PMID:26604764

  3. Further advances in orchid mycorrhizal research.

    PubMed

    Dearnaley, John D W

    2007-09-01

    Orchid mycorrhizas are mutualistic interactions between fungi and members of the Orchidaceae, the world's largest plant family. The majority of the world's orchids are photosynthetic, a small number of species are myco-heterotrophic throughout their lifetime, and recent research indicates a third mode (mixotrophy) whereby green orchids supplement their photosynthetically fixed carbon with carbon derived from their mycorrhizal fungus. Molecular identification studies of orchid-associated fungi indicate a wide range of fungi might be orchid mycobionts, show common fungal taxa across the globe and support the view that some orchids have specific fungal interactions. Confirmation of mycorrhizal status requires isolation of the fungi and restoration of functional mycorrhizas. New methods may now be used to store orchid-associated fungi and store and germinate seed, leading to more efficient culture of orchid species. However, many orchid mycorrhizas must be synthesised before conservation of these associations can be attempted in the field. Further gene expression studies of orchid mycorrhizas are needed to better understand the establishment and maintenance of the interaction. These data will add to efforts to conserve this diverse and valuable association. PMID:17582535

  4. Research advancements in palm oil nutrition*

    PubMed Central

    May, Choo Yuen; Nesaretnam, Kalanithi

    2014-01-01

    Palm oil is the major oil produced, with annual world production in excess of 50 million tonnes. About 85% of global palm oil produced is used in food applications. Over the past three decades, research on nutritional benefits of palm oil have demonstrated the nutritional adequacy of palm oil and its products, and have resulted in transitions in the understanding these attributes. Numerous studies have demonstrated that palm oil was similar to unsaturated oils with regards to effects on blood lipids. Palm oil provides a healthy alternative to trans-fatty acid containing hydrogenated fats that have been demonstrated to have serious deleterious effects on health. The similar effects of palm oil on blood lipids, comparable to other vegetable oils could very well be due to the structure of the major triglycerides in palm oil, which has an unsaturated fatty acid in the stereospecific numbers (sn)-2 position of the glycerol backbone. In addition, palm oil is well endowed with a bouquet of phytonutrients beneficial to health, such as tocotrienols, carotenoids, and phytosterols. This review will provide an overview of studies that have established palm oil as a balanced and nutritious oil. PMID:25821404

  5. Nanotoxicology: advances and pitfalls in research methodology.

    PubMed

    Azhdarzadeh, Morteza; Saei, Amir Ata; Sharifi, Shahriar; Hajipour, Mohammad J; Alkilany, Alaaldin M; Sharifzadeh, Mohammad; Ramazani, Fatemeh; Laurent, Sophie; Mashaghi, Alireza; Mahmoudi, Morteza

    2015-01-01

    As research progresses, nanoparticles (NPs) are becoming increasingly promising tools for medical diagnostics and therapeutics. Despite this rise, their potential risks to human health, together with environmental issues, has led to increasing concerns regarding their use. As such, a comprehensive understanding of the interactions that occur at the nano-bio interface is required in order to design safe, reliable and efficient NPs for biomedical applications. To this end, extensive studies have been dedicated to probing the factors that define various properties of the nano-bio interface. However, the literature remains unclear and contains conflicting reports on cytotoxicity and biological fates, even for seemingly identical NPs. This uncertainty reveals that we frequently fail to identify and control relevant parameters that unambiguously and reproducibly determine the toxicity of nanoparticles, both in vitro and in vivo. An effective understanding of the toxicological impact of NPs requires the consideration of relevant factors, including the temperature of the target tissue, plasma gradient, cell shape, interfacial effects and personalized protein corona. In this review, we discuss the factors that play a critical role in nano-bio interface processes and nanotoxicity. A proper combinatorial assessment of these factors substantially changes our insight into the cytotoxicity, distribution and biological fate of NPs.

  6. Advanced fiber optic seismic sensors (geophone) research

    NASA Astrophysics Data System (ADS)

    Zhang, Yan

    The systematical research on the fiber optic seismic sensors based on optical Fiber Bragg Grating (FBG) sensing technology is presented in this thesis. Optical fiber sensors using fiber Bragg gratings have a number of advantages such as immunity to electromagnetic interference, lightweight, low power consumption. The FBG sensor is intrinsically sensitive to dynamic strain signals and the strain sensitivity can approach sub micro-strain. Furthermore, FBG sensors are inherently suited for multiplexing, which makes possible networked/arrayed deployment on a large scale. The basic principle of the FBG geophone is that it transforms the acceleration of ground motion into the strain signal of the FBG sensor through mechanical design, and after the optical demodulation generates the analog voltage output proportional to the strain changes. The customized eight-channel FBG seismic sensor prototype is described here which consists of FBG sensor/demodulation grating pairs attached on the spring-mass mechanical system. The sensor performance is evaluated systematically in the laboratory using the conventional accelerometer and geophone as the benchmark, Two major applications of FBG seismic sensor are demonstrated. One is in the battlefield remote monitoring system to detect the presence of personnel, wheeled vehicles, and tracked vehicles. The other application is in the seismic reflection survey of oilfield exploration to collect the seismic waves from the earth. The field tests were carried out in the air force base and the oilfield respectively. It is shown that the FBG geophone has higher frequency response bandwidth and sensitivity than conventional moving-coil electromagnetic geophone and the military Rembass-II S/A sensor. Our objective is to develop a distributed FBG seismic sensor network to recognize and locate the presence of seismic sources with high inherent detection capability and a low false alarm rate in an integrated system.

  7. Magnetized Target Fusion in Advanced Propulsion Research

    NASA Technical Reports Server (NTRS)

    Cylar, Rashad

    2003-01-01

    The Magnetized Target Fusion (MTF) Propulsion lab at NASA Marshall Space Flight Center in Huntsville, Alabama has a program in place that has adopted to attempt to create a faster, lower cost and more reliable deep space transportation system. In this deep space travel the physics and development of high velocity plasma jets must be understood. The MTF Propulsion lab is also in attempt to open up the solar system for human exploration and commercial use. Fusion, as compared to fission, is just the opposite. Fusion involves the light atomic nuclei combination to produce denser nuclei. In the process, the energy is created by destroying the mass according to the distinguished equation: E = mc2 . Fusion energy development is being pursued worldwide as a very sustainable form of energy that is environmentally friendly. For the purposes of space exploration fusion reactions considered include the isotopes of hydrogen-deuterium (D2) and tritium (T3). Nuclei have an electrostatic repulsion between them and in order for the nuclei to fuse this repulsion must be overcome. One technique to bypass repulsion is to heat the nuclei to very high temperatures. The temperatures vary according to the type of reactions. For D-D reactions, one billion degrees Celsius is required, and for D-T reactions, one hundred million degrees is sufficient. There has to be energy input for useful output to be obtained form the fusion To make fusion propulsion practical, the mass, the volume, and the cost of the equipment to produce the reactions (generally called the reactor) need to be reduced by an order of magnitude or two from the state-of-the-art fusion machines. Innovations in fusion schemes are therefore required, especially for obtaining thrust for propulsive applications. Magnetized target fusion (MTF) is one of the innovative fusion concepts that have emerged over the last several years. MSFC is working with Los Alamos National Laboratory and other research groups in studying the

  8. Linguistic Alternatives to Quantitative Research Strategies. Part One: How Linguistic Mechanisms Advance Research Outcomes

    ERIC Educational Resources Information Center

    Yeager, Joseph; Sommer, Linda

    2007-01-01

    Combining psycholinguistic technologies and systems analysis created advances in motivational profiling and numerous new behavioral engineering applications. These advances leapfrog many mainstream statistical research methods, producing superior research results via cause-effect language mechanisms. Entire industries explore motives ranging from…

  9. Quantify Plasma Response to Non-Axisymmetric (3D) Magnetic Fields in Tokamaks, Final Report for FES (Fusion Energy Sciences) FY2014 Joint Research Target

    SciTech Connect

    Strait, E. J.; Park, J. -K.; Marmar, E. S.; Ahn, J. -W.; Berkery, J. W.; Burrell, K. H.; Canik, J. M.; Delgado-Aparicio, L.; Ferraro, N. M.; Garofalo, A. M.; Gates, D. A.; Greenwald, M.; Kim, K.; King, J. D.; Lanctot, M. J.; Lazerson, S. A.; Liu, Y. Q.; Lore, J. D.; Menard, J. E.; Nazikian, R.; Shafer, M. W.; Paz-Soldan, C.; Reiman, A. H.; Rice, J. E.; Sabbagh, S. A.; Sugiyama, L.; Turnbull, A. D.; Volpe, F.; Wang, Z. R.; Wolfe, S. M.

    2014-09-30

    The goal of the 2014 Joint Research Target (JRT) has been to conduct experiments and analysis to investigate and quantify the response of tokamak plasmas to non-axisymmetric (3D) magnetic fields. Although tokamaks are conceptually axisymmetric devices, small asymmetries often result from inaccuracies in the manufacture and assembly of the magnet coils, or from nearby magnetized objects. In addition, non-axisymmetric fields may be deliberately applied for various purposes. Even at small amplitudes of order 10-4 of the main axisymmetric field, such “3D” fields can have profound impacts on the plasma performance. The effects are often detrimental (reduction of stabilizing plasma rotation, degradation of energy confinement, localized heat flux to the divertor, or excitation of instabilities) but may in some case be beneficial (maintenance of rotation, or suppression of instabilities). In general, the magnetic response of the plasma alters the 3D field, so that the magnetic field configuration within the plasma is not simply the sum of the external 3D field and the original axisymmetric field. Typically the plasma response consists of a mixture of local screening of the external field by currents induced at resonant surfaces in the plasma, and amplification of the external field by stable kink modes. Thus, validated magnetohydrodynamic (MHD) models of the plasma response to 3D fields are crucial to the interpretation of existing experiments and the prediction of plasma performance in future devices. The non-axisymmetric coil sets available at each facility allow well-controlled studies of the response to external 3D fields. The work performed in support of the 2014 Joint Research Target has included joint modeling and analysis of existing experimental data, and collaboration on new experiments designed to address the goals of the JRT. A major focus of the work was validation of numerical models through quantitative comparison to experimental data, in

  10. Modular tokamak magnetic system

    DOEpatents

    Yang, Tien-Fang

    1988-01-01

    A modular tokamak system comprised of a plurality of interlocking moldules. Each module is comprised of a vacuum vessel section, a toroidal field coil, moldular saddle coils which generate a poloidal magnetic field and ohmic heating coils.

  11. Advanced technology airfoil research, volume 1, part 2

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This compilation contains papers presented at the NASA Conference on Advanced Technology Airfoil Research held at Langley Research Center on March 7-9, 1978, which have unlimited distribution. This conference provided a comprehensive review of all NASA airfoil research, conducted in-house and under grant and contract. A broad spectrum of airfoil research outside of NASA was also reviewed. The major thrust of the technical sessions were in three areas: development of computational aerodynamic codes for airfoil analysis and design, development of experimental facilities and test techniques, and all types of airfoil applications.

  12. Construction of databases: advances and significance in clinical research.

    PubMed

    Long, Erping; Huang, Bingjie; Wang, Liming; Lin, Xiaoyu; Lin, Haotian

    2015-12-01

    Widely used in clinical research, the database is a new type of data management automation technology and the most efficient tool for data management. In this article, we first explain some basic concepts, such as the definition, classification, and establishment of databases. Afterward, the workflow for establishing databases, inputting data, verifying data, and managing databases is presented. Meanwhile, by discussing the application of databases in clinical research, we illuminate the important role of databases in clinical research practice. Lastly, we introduce the reanalysis of randomized controlled trials (RCTs) and cloud computing techniques, showing the most recent advancements of databases in clinical research. PMID:27215009

  13. [The advances of suppression in research of amblyopia].

    PubMed

    Liu, S; Liu, H

    2016-04-11

    Suppression that is the result of interocular competition is an important machanism of amblyopia. The imbalance of suppression may lead the consequence to amblyopia. In the early study, researchers had raised the theory of II. Quadratic Summation which had revealed the relationship of interocular interaction and suppression. In some basic researches, other studies had showed the most possible anatomic location of suppression. Recently, researchers found a new method to quantify the interocular suppression named the noise model. Further studies found a novel disinhibition therapy to treat amblyopia. We summarized the research advances in suppression and disinhibition treatment in amblyopia. (Chin J Ophthalmol, 2016, 52: 305-308). PMID:27094069

  14. Bifurcated helical core equilibrium states in tokamaks

    NASA Astrophysics Data System (ADS)

    Cooper, W. A.; Chapman, I. T.; Schmitz, O.; Turnbull, A. D.; Tobias, B. J.; Lazarus, E. A.; Turco, F.; Lanctot, M. J.; Evans, T. E.; Graves, J. P.; Brunetti, D.; Pfefferlé, D.; Reimerdes, H.; Sauter, O.; Halpern, F. D.; Tran, T. M.; Coda, S.; Duval, B. P.; Labit, B.; Pochelon, A.; Turnyanskiy, M. R.; Lao, L.; Luce, T. C.; Buttery, R.; Ferron, J. R.; Hollmann, E. M.; Petty, C. C.; van Zeeland, M.; Fenstermacher, M. E.; Hanson, J. M.; Lütjens, H.

    2013-07-01

    Tokamaks with weak to moderate reversed central shear in which the minimum inverse rotational transform (safety factor) qmin is in the neighbourhood of unity can trigger bifurcated magnetohydrodynamic equilibrium states, one of which is similar to a saturated ideal internal kink mode. Peaked prescribed pressure profiles reproduce the ‘snake’ structures observed in many tokamaks which has led to a novel explanation of the snake as a bifurcated equilibrium state. Snake equilibrium structures are computed in simulations of the tokamak à configuration variable (TCV), DIII-D and mega amp spherical torus (MAST) tokamaks. The internal helical deformations only weakly modulate the plasma-vacuum interface which is more sensitive to ripple and resonant magnetic perturbations. On the other hand, the external perturbations do not alter the helical core deformation in a significant manner. The confinement of fast particles in MAST simulations deteriorate with the amplitude of the helical core distortion. These three-dimensional bifurcated solutions constitute a paradigm shift that motivates the applications of tools developed for stellarator research in tokamak physics investigations.

  15. A rotating directional probe for the measurements of fast ion losses and plasma rotation at Tokamak Experiment for Technology Oriented Research.

    PubMed

    Rack, M; Liang, Y; Jaegers, H; Assmann, J; Satheeswaran, G; Xu, Y; Pearson, J; Yang, Y; Denner, P; Zeng, L

    2013-08-01

    This work discusses a new directional probe designed for measurements of fast ion losses and the plasma rotation with a high angular resolution in magnetically confined plasmas. Directional and especially Mach probes are commonly used diagnostics for plasma flow measurements, and their applicability for the fast ion losses detection has been demonstrated. A limitation of static Mach probes is their low angular resolution. At the Tokamak Experiment for Technology Oriented Research, the angular resolution is strongly restricted by the finite number of available measurement channels. In a dynamic plasma, where instabilities can lead to local changes of the field line pitch-angle, plasma flow, or fast ion losses, a low angular resolution makes a precise data analysis difficult and reduces the quality of the measured data. The new probe design, the rotating directional probe, combines the features of early directional probes and Mach probes. It consists of two radially aligned arrays of nine Langmuir probe pins with each array facing opposite directions. During the measurement the probe head rotates along its axis to measure the ion saturation current from all directions. As a result, the rotating directional probe simultaneously provides an angular dependent plasma flow and fast ion losses measurement at different radial positions. Based on the angular dependent data, a precise determination of the current density is made. In addition, the simultaneous measurement of the ion saturation current at different radial positions allows for resolving radially varying field line pitch-angles and identifying the radial dynamic of processes like fast ion losses.

  16. [Research advance in rare and endemic plant Tetraena mongolica Maxim].

    PubMed

    Zhen, Jiang-Hong; Liu, Guo-Hou

    2008-02-01

    In this paper, the research advance in rare and endemic plant Tetraena mongolica Maxim. was summarized from the aspects of morphology, anatomy, palynology, cytology, seed-coat micro-morphology, embryology, physiology, biology, ecology, genetic diversity, chemical constituents, endangered causes, and conservation approaches, and the further research directions were prospected. It was considered that population viability, idioplasm conservation and artificial renewal, molecular biology of ecological adaptability, and assessment of habitat suitability should be the main aspects for the future study of T. mongolica.

  17. INL Advanced Radiotherapy Research Program Annual Report 2004

    SciTech Connect

    James Venhuizen

    2005-06-01

    This report summarizes the activities and major accomplishments for the Idaho National Laboratory Advanced Radiotherapy Research Program for calendar year 2004. Topics covered include boron analysis in biological samples, computational dosimetry and treatment planning software development, medical neutron source development and characterization, and collaborative dosimetry studies at the RA-1 facility in Buenos Aires, Argentina.

  18. Advanced materials research for long-haul aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Signorelli, R. A.; Blankenship, C. P.

    1978-01-01

    The status of research efforts to apply low to intermediate temperature composite materials and advanced high temperature materials to engine components is reviewed. Emerging materials technologies and their potential benefits to aircraft gas turbines were emphasized. The problems were identified, and the general state of the technology for near term use was assessed.

  19. Advanced Composite Structures At NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Eldred, Lloyd B.

    2015-01-01

    Dr. Eldred's presentation will discuss several NASA efforts to improve and expand the use of composite structures within aerospace vehicles. Topics will include an overview of NASA's Advanced Composites Project (ACP), Space Launch System (SLS) applications, and Langley's ISAAC robotic composites research tool.

  20. INEEL Advanced Radiotherapy Research Program Annual Report for 2002

    SciTech Connect

    J. R. Venhuizen

    2003-05-01

    This report summarizes the activities and major accomplishments for the Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Radiotherapy Research Program for calendar year 2002. Topics covered include computational dosimetry and treatment planning software development, medical neutron source development and characterization, and boron analytical chemistry.

  1. INEEL Advanced Radiotherapy Research Program Annual Report 2002

    SciTech Connect

    Venhuizen, J.R.

    2003-05-23

    This report summarizes the activities and major accomplishments for the Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Radiotherapy Research Program for calendar year 2002. Topics covered include computational dosimetry and treatment planning software development, medical neutron source development and characterization, and boron analytical chemistry.

  2. Advancing underactive bladder research through public-private collaboration.

    PubMed

    Chancellor, David D

    2014-09-01

    Underactive bladder (UAB) represents an unmet medical need. The proceeds of the 1st international CURE-UAB support allocation of resources and attention via public-private partnerships to advance UAB research. Small investments on the part of public institutes in collaboration with the private sectors can vanguard a serious and sustained global effort toward helping UAB patients.

  3. Summary of Advances in Autism Spectrum Disorder Research, 2009

    ERIC Educational Resources Information Center

    Interagency Autism Coordinating Committee, 2009

    2009-01-01

    Each year the members of the Interagency Autism Coordinating Committee identify recent research findings that made the most impact on the field. For the 2009 Summary of Advances, the IACC selected and summarized 20 studies that gave significant insight into the prevalence of autism spectrum disorder (ASD), the biology of the disorder, potential…

  4. Defining Neighborhood Boundaries for Social Measurement: Advancing Social Work Research

    ERIC Educational Resources Information Center

    Foster, Kirk A.; Hipp, J. Aaron

    2011-01-01

    Much of the current neighborhood-based research uses variables aggregated on administrative boundaries such as zip codes, census tracts, and block groups. However, other methods using current technological advances in geographic sciences may broaden our ability to explore the spatial concentration of neighborhood factors affecting individuals and…

  5. Clinical Application and Research Advances of CT Myocardial Perfusion Imaging.

    PubMed

    2016-06-10

    Computed tomography (CT)-based myocardial perfusion imaging (CTP)has been widely recognized as a one-station solution for the imaging of myocardial ischemia-related diseases. This article reviews the clinical scanning protocols,analytical methods,and research advances of CTP in recent years and briefly discusses its limitations and future development. PMID:27469926

  6. Origin of Tokamak Density Limit Scalings

    NASA Astrophysics Data System (ADS)

    Gates, D. A.; Delgado-Aparicio, L.

    2012-04-01

    The onset criterion for radiation driven islands [P. H. Rebut and M. Hugon, Plasma Physics and Controlled Nuclear Fusion Research 1984: Proc. 10th Int. Conf. London, 1984, (IAEA, Vienna, 1985), Vol. 2] in combination with a simple cylindrical model of tokamak current channel behavior is consistent with the empirical scaling of the tokamak density limit [M. Greenwald, Nucl. Fusion 28, 2199 (1988)NUFUAU0029-551510.1088/0029-5515/28/12/009]. Many other unexplained phenomena at the density limit are consistent with this novel physics mechanism.

  7. Quiescent double barrier high-confinement mode plasmas in the DIII-D tokamak

    NASA Astrophysics Data System (ADS)

    Burrell, K. H.; Austin, M. E.; Brennan, D. P.; DeBoo, J. C.; Doyle, E. J.; Fenzi, C.; Fuchs, C.; Gohil, P.; Greenfield, C. M.; Groebner, R. J.; Lao, L. L.; Luce, T. C.; Makowski, M. A.; McKee, G. R.; Moyer, R. A.; Petty, C. C.; Porkolab, M.; Rettig, C. L.; Rhodes, T. L.; Rost, J. C.; Stallard, B. W.; Strait, E. J.; Synakowski, E. J.; Wade, M. R.; Watkins, J. G.; West, W. P.

    2001-05-01

    High-confinement (H-mode) operation is the choice for next-step tokamak devices based either on conventional or advanced tokamak physics. This choice, however, comes at a significant cost for both the conventional and advanced tokamaks because of the effects of edge localized modes (ELMs). ELMs can produce significant erosion in the divertor and can affect the beta limit and reduced core transport regions needed for advanced tokamak operation. Experimental results from DIII-D [J. L. Luxon et al., Plasma Physics and Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] this year have demonstrated a new operating regime, the quiescent H-mode regime, which solves these problems. We have achieved quiescent H-mode operation that is ELM-free and yet has good density and impurity control. In addition, we have demonstrated that an internal transport barrier can be produced and maintained inside the H-mode edge barrier for long periods of time (>3.5 s or >25 energy confinement times τE), yielding a quiescent double barrier regime. By slowly ramping the input power, we have achieved βNH89=7 for up to 5 times the τE of 150 ms. The βNH89 values of 7 substantially exceed the value of 4 routinely achieved in the standard ELMing H mode. The key factors in creating the quiescent H-mode operation are neutral beam injection in the direction opposite to the plasma current (counter injection) plus cryopumping to reduce the density. Density and impurity control in the quiescent H mode is possible because of the presence of an edge magnetohydrodynamic (MHD) oscillation, the edge harmonic oscillation, which enhances the edge particle transport while leaving the energy transport unaffected.

  8. Activities of the Research Institute for Advanced Computer Science

    NASA Technical Reports Server (NTRS)

    Oliger, Joseph

    1994-01-01

    The Research Institute for Advanced Computer Science (RIACS) was established by the Universities Space Research Association (USRA) at the NASA Ames Research Center (ARC) on June 6, 1983. RIACS is privately operated by USRA, a consortium of universities with research programs in the aerospace sciences, under contract with NASA. The primary mission of RIACS is to provide research and expertise in computer science and scientific computing to support the scientific missions of NASA ARC. The research carried out at RIACS must change its emphasis from year to year in response to NASA ARC's changing needs and technological opportunities. Research at RIACS is currently being done in the following areas: (1) parallel computing; (2) advanced methods for scientific computing; (3) high performance networks; and (4) learning systems. RIACS technical reports are usually preprints of manuscripts that have been submitted to research journals or conference proceedings. A list of these reports for the period January 1, 1994 through December 31, 1994 is in the Reports and Abstracts section of this report.

  9. Advanced Life Support Research and Technology Development Metric

    NASA Technical Reports Server (NTRS)

    Hanford, A. J.

    2004-01-01

    The Metric is one of several measures employed by the NASA to assess the Agency s progress as mandated by the United States Congress and the Office of Management and Budget. Because any measure must have a reference point, whether explicitly defined or implied, the Metric is a comparison between a selected ALS Project life support system and an equivalently detailed life support system using technology from the Environmental Control and Life Support System (ECLSS) for the International Space Station (ISS). This document provides the official calculation of the Advanced Life Support (ALS) Research and Technology Development Metric (the Metric) for Fiscal Year 2004. The values are primarily based on Systems Integration, Modeling, and Analysis (SIMA) Element approved software tools or reviewed and approved reference documents. For Fiscal Year 2004, the Advanced Life Support Research and Technology Development Metric value is 2.03 for an Orbiting Research Facility and 1.62 for an Independent Exploration Mission.

  10. Burning plasma simulation and environmental assessment of tokamak, spherical tokamak and helical reactors

    NASA Astrophysics Data System (ADS)

    Yamazaki, K.; Uemura, S.; Oishi, T.; Garcia, J.; Arimoto, H.; Shoji, T.

    2009-05-01

    Reference 1-GWe DT reactors (tokamak TR-1, spherical tokamak ST-1 and helical HR-1 reactors) are designed using physics, engineering and cost (PEC) code, and their plasma behaviours with internal transport barrier operations are analysed using toroidal transport analysis linkage (TOTAL) code, which clarifies the requirement of deep penetration of pellet fuelling to realize steady-state advanced burning operation. In addition, economical and environmental assessments were performed using extended PEC code, which shows the advantage of high beta tokamak reactors in the cost of electricity (COE) and the advantage of compact spherical tokamak in life-cycle CO2 emission reduction. Comparing with other electric power generation systems, the COE of the fusion reactor is higher than that of the fission reactor, but on the same level as the oil thermal power system. CO2 reduction can be achieved in fusion reactors the same as in the fission reactor. The energy payback ratio of the high-beta tokamak reactor TR-1 could be higher than that of other systems including the fission reactor.

  11. Advanced Propulsion Research Interest in Materials for Propulsion

    NASA Technical Reports Server (NTRS)

    Cole, John

    2003-01-01

    This viewgraph presentation provides an overview of material science and technology in the area of propulsion energetics. The authors note that conventional propulsion systems are near peak performance and further refinements in manufacturing, engineering design and materials will only provide incremental increases in performance. Energetic propulsion technologies could potential solve the problems of energy storage density and energy-to-thrust conversion efficiency. Topics considered include: the limits of thermal propulsion systems, the need for energetic propulsion research, emerging energetic propulsion technologies, materials research needed for advanced propulsion, and potential research opportunities.

  12. First Aviation System Technology Advanced Research (AvSTAR) Workshop

    NASA Technical Reports Server (NTRS)

    Denery, Dallas G. (Editor); Weathers, Del W. (Editor); Rosen, Robert (Technical Monitor); Edwards, Tom (Technical Monitor)

    2001-01-01

    This Conference Proceedings documents the results of a two-day NASA/FAA/Industry workshop that was held at the NASA Ames Research Center, located at Moffett Field, CA, on September 21-22, 2000. The purpose of the workshop was to bring together a representative cross section of leaders in air traffic management, from industry. FAA, and academia, to assist in defining the requirements for a new research effort, referred to as AvSTAR Aviation Systems Technology Advanced Research). The Conference Proceedings includes the individual presentation, and summarizes the workshop discussions and recommendations.

  13. Transnationalism: A Framework for Advancing Nursing Research With Contemporary Immigrants.

    PubMed

    Rosemberg, Marie-Anne S; Boutain, Doris M; Mohammed, Selina A

    2016-01-01

    This article advances nursing research by presenting transnationalism as a framework for inquiry with contemporary immigrants. Transnationalism occurs when immigrants maintain relationships that transcend the geographical borders of their origin and host countries. Immigrants use those relationships to experience health differently within concurrent socioeconomic, political, and cultural contexts than national situated populations. Nurse researchers are called upon to consider these trans-border relationships when exploring the health of contemporary immigrants. Such consideration is needed to develop relevant research designs, methods, analysis, and dissemination strategies. PMID:26836998

  14. DIII-D research operations. Annual report to the Department of Energy, October 1, 1991--September 30, 1992

    SciTech Connect

    Baker, D.

    1993-05-01

    The DIII-D tokamak research program is carried out by, General Atomics (GA) for the U.S. Department of Energy (DOE). The DIII-D is the most flexible tokamak in the world. The primary goal of the DIII-D tokamak research program is to provide data needed by International Thermonuclear Experimental Reactor (ITER) and to develop a conceptual physics blueprint for a commercially attractive electrical demonstration plant (DEMO) that would open a path to fusion power commercialization. Specific DIII-D objectives include the steady-state sustainment of plasma current as well as demonstrating techniques for microwave heating, divertor heat removal, fuel exhaust and tokamak plasma control. The DIII-D program is addressing these objectives in an integrated fashion with high beta and with good confinement. The DIII-D long-range plan is organized into two major thrusts; the development of an advanced divertor and the development of advanced tokamak concepts. These two thrusts have a common goal: an improved DEMO reactor with lower cost and smaller size than the present DEMO which can be extrapolated from the conventional ITER operational scenario. In order to prepare for the long-range program, in FY92 the DIII-D research program concentrated on three major areas: Divertor and Boundary Physics, Advanced Tokamak Studies, and Tokamak Physics.

  15. Advances in Statistical Methods for Substance Abuse Prevention Research

    PubMed Central

    MacKinnon, David P.; Lockwood, Chondra M.

    2010-01-01

    The paper describes advances in statistical methods for prevention research with a particular focus on substance abuse prevention. Standard analysis methods are extended to the typical research designs and characteristics of the data collected in prevention research. Prevention research often includes longitudinal measurement, clustering of data in units such as schools or clinics, missing data, and categorical as well as continuous outcome variables. Statistical methods to handle these features of prevention data are outlined. Developments in mediation, moderation, and implementation analysis allow for the extraction of more detailed information from a prevention study. Advancements in the interpretation of prevention research results include more widespread calculation of effect size and statistical power, the use of confidence intervals as well as hypothesis testing, detailed causal analysis of research findings, and meta-analysis. The increased availability of statistical software has contributed greatly to the use of new methods in prevention research. It is likely that the Internet will continue to stimulate the development and application of new methods. PMID:12940467

  16. Advancing the research agenda for diagnostic error reduction.

    PubMed

    Zwaan, Laura; Schiff, Gordon D; Singh, Hardeep

    2013-10-01

    Diagnostic errors remain an underemphasised and understudied area of patient safety research. We briefly summarise the methods that have been used to conduct research on epidemiology, contributing factors and interventions related to diagnostic error and outline directions for future research. Research methods that have studied epidemiology of diagnostic error provide some estimate on diagnostic error rates. However, there appears to be a large variability in the reported rates due to the heterogeneity of definitions and study methods used. Thus, future methods should focus on obtaining more precise estimates in different settings of care. This would lay the foundation for measuring error rates over time to evaluate improvements. Research methods have studied contributing factors for diagnostic error in both naturalistic and experimental settings. Both approaches have revealed important and complementary information. Newer conceptual models from outside healthcare are needed to advance the depth and rigour of analysis of systems and cognitive insights of causes of error. While the literature has suggested many potentially fruitful interventions for reducing diagnostic errors, most have not been systematically evaluated and/or widely implemented in practice. Research is needed to study promising intervention areas such as enhanced patient involvement in diagnosis, improving diagnosis through the use of electronic tools and identification and reduction of specific diagnostic process 'pitfalls' (eg, failure to conduct appropriate diagnostic evaluation of a breast lump after a 'normal' mammogram). The last decade of research on diagnostic error has made promising steps and laid a foundation for more rigorous methods to advance the field.

  17. [Activities of Research Institute for Advanced Computer Science

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R. (Technical Monitor); Leiner, Barry M.

    2001-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administrations missions. RIACS is located at the NASA Ames Research Center, Moffett Field, California. RIACS research focuses on the three cornerstones of IT research necessary to meet the future challenges of NASA missions: 1. Automated Reasoning for Autonomous Systems Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth. 2. Human-Centered Computing Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities. 3. High Performance Computing and Networking Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to analysis of large scientific datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply IT research to a variety of NASA application domains. RIACS also engages in other activities, such as workshops, seminars, visiting scientist programs and student summer programs, designed to encourage and facilitate collaboration between the university and NASA IT research communities.

  18. Advanced Physics Labs and Undergraduate Research: Helping Them Work Together

    NASA Astrophysics Data System (ADS)

    Peterson, Richard W.

    2009-10-01

    The 2009 Advanced Lab Topical Conference in Ann Arbor affirmed the importance of advanced labs that teach crucial skills and methodologies by carefully conducting a time-honored experiment. Others however argued that such a constrained experiment can play a complementary role to more open-ended, project experiences. A genuine ``experiment'' where neither student or faculty member is exactly sure of the best approach or anticipated result can often trigger real excitement, creativity, and career direction for students while reinforcing the advanced lab and undergraduate research interface. Several examples are cited in areas of AMO physics, optics, fluids, and acoustics. Colleges and universities that have dual-degree engineering, engineering physics, or applied physics programs may especially profit from interdisciplinary projects that utilize optical, electromagnetic, and acoustical measurements in conjunction with computational physics and simulation.

  19. Completely bootstrapped tokamak

    SciTech Connect

    Weening, R.H. ); Boozer, A.H. )

    1992-01-01

    Numerical simulations of the evolution of large-scale magnetic fields have been developed using a mean-field Ohm's law. The Ohm's law is coupled to a {Delta}{prime} stabilty analysis and a magnetic island growth equation in order to simulate the behavior of tokamak plasmas that are subject to tearing modes. In one set of calculations, the magnetohydrodynamic (MHD)-stable regime of the tokamak is examined via the construction of an {ital l}{sub {ital i}} -{ital q}{sub {ital a}} diagram. The results confirm previous calculations that show that tearing modes introduce a stability boundary into the {ital l}{sub {ital i}} -{ital q}{sub {ital a}} space. In another series of simulations, the interaction between tearing modes and the bootstrap current is investigated. The results indicate that a completely bootstrapped tokamak may be possible, even in the absence of any externally applied loop voltage or current drive.

  20. Physics of Tokamak Plasma Start-up

    NASA Astrophysics Data System (ADS)

    Mueller, Dennis

    2012-10-01

    This tutorial describes and reviews the state-of-art in tokamak plasma start-up and its importance to next step devices such as ITER, a Fusion Nuclear Science Facility and a Tokamak/ST demo. Tokamak plasma start-up includes breakdown of the initial gas, ramp-up of the plasma current to its final value and the control of plasma parameters during those phases. Tokamaks rely on an inductive component, typically a central solenoid, which has enabled attainment of high performance levels that has enabled the construction of the ITER device. Optimizing the inductive start-up phase continues to be an area of active research, especially in regards to achieving ITER scenarios. A new generation of superconducting tokamaks, EAST and KSTAR, experiments on DIII-D and operation with JET's ITER-like wall are contributing towards this effort. Inductive start-up relies on transformer action to generate a toroidal loop voltage and successful start-up is determined by gas breakdown, avalanche physics and plasma-wall interaction. The goal of achieving steady-sate tokamak operation has motivated interest in other methods for start-up that do not rely on the central solenoid. These include Coaxial Helicity Injection, outer poloidal field coil start-up, and point source helicity injection, which have achieved 200, 150 and 100 kA respectively of toroidal current on closed flux surfaces. Other methods including merging reconnection startup and Electron Bernstein Wave (EBW) plasma start-up are being studied on various devices. EBW start-up generates a directed electron channel due to wave particle interaction physics while the other methods mentioned rely on magnetic helicity injection and magnetic reconnection which are being modeled and understood using NIMROD code simulations.

  1. Recent advances in research on Crimean-Congo hemorrhagic fever

    PubMed Central

    Papa, Anna; Mirazimi, Ali; Köksal, Iftihar; Estrada-Pena, Augustin; Feldmann, Heinz

    2014-01-01

    Crimean-Congo hemorrhagic fever (CCHF) is an expanding tick-borne hemorrhagic disease with increasing human and animal health impact. Immense knowledge was gained over the past 10 years mainly due to advances in molecular biology, but also driven by an increased global interest in CCHFV as an emerging/re-emerging zoonotic pathogen. In the present article we discuss the advances in research with focus on CCHF ecology, epidemiology, pathogenesis, diagnostics, prophylaxis and treatment. Despite tremendous achievements, future activities have to concentrate on the development of vaccines and antivirals/therapeutics to combat CCHF. Vector studies need to continue for better public and animal health preparedness and response. We conclude with a roadmap for future research priorities. PMID:25453328

  2. [Economic perspectives of the research on advanced therapies].

    PubMed

    Pamo Larrauri, Jose María

    2014-11-03

    Since a new advanced therapy medicinal product is discovered until finally allowed its sale in the domestic market, it has to overcome a series of stages. Biomedical research is the first phase, currently its situation is encouraging to the increase in the number of clinical trials in Spain and in the rest of the world, despite the economic situation and the various difficulties that have faced the pharmaceutical laboratories. The next phase consists in obtaining the authorization of marketing of the European Medicines Agency. After authorization, will attempt to set a fair and moderate price for inclusion in the list of health provision of Social Security. A price for a drug that provides added value to health and society, a price that is generated profits for the pharmaceutical companies that hope to make up for the years of work and investment. Commitment to advanced therapy must be clear and forceful, to fund ongoing research projects and encouraging their creation with economic aid.

  3. Magnetohydrodynamics Accelerator Research into Advanced Hypersonics (MARIAH). Part 2

    NASA Technical Reports Server (NTRS)

    Baughman, Jack A.; Micheletti, David A.; Nelson, Gordon L.; Simmons, Gloyd A.

    1997-01-01

    This report documents the activities, results, conclusions and recommendations of the Magnetohydrodynamics Accelerator Research Into Advanced Hypersonics (MARIAH) Project in which the use of magnetohydrodynamics (MHD) technology is investigated for its applicability to augment hypersonic wind tunnels. The long range objective of this investigation is to advance the development of ground test facilities to support the development of hypervelocity flight vehicles. The MHD accelerator adds kinetic energy directly to the wind tunnel working fluid, thereby increasing its Mach number to hypervelocity levels. Several techniques for MHD augmentation, as well as other physical characteristics of the process are studied to enhance the overall performance of hypersonic wind tunnel design. Specific recommendations are presented to improve the effectiveness of ground test facilities. The work contained herein builds on nearly four decades of research and experimentation by the aeronautics ground test and evaluation community, both foreign and domestic.

  4. Magnetohydrodynamics Accelerator Research Into Advanced Hypersonics (MARIAH). Part 1

    NASA Technical Reports Server (NTRS)

    Micheletti, David A.; Baughman, Jack A.; Nelson, Gordon L.; Simmons, Gloyd A.

    1997-01-01

    This report documents the activities, results, conclusions and recommendations of the Magnetohydrodynamics Accelerator Research Into Advanced Hypersonics (MARIAH) Project in which the use of magnetohydrodynamics (MHD) technology is investigated for its applicability to augment hypersonic wind tunnels. The long range objective of this investigation is to advance the development of ground test facilities to support the development of hypervelocity flight vehicles. The MHD accelerator adds kinetic energy directly to the wind tunnel working fluid, thereby increasing its Mach number to hypervelocity levels. Several techniques for MHD augmentation, as well as other physical characteristics of the process are studied to enhance the overall performance of hypersonic wind tunnel design. Specific recommendations are presented to improve the effectiveness of ground test facilities. The work contained herein builds on nearly four decades of research and experimentation by the aeronautics ground test and evaluation community, both foreign and domestic.

  5. Advances and future directions of research on spectral methods

    NASA Technical Reports Server (NTRS)

    Patera, A. T.

    1986-01-01

    Recent advances in spectral methods are briefly reviewed and characterized with respect to their convergence and computational complexity. Classical finite element and spectral approaches are then compared, and spectral element (or p-type finite element) approximations are introduced. The method is applied to the full Navier-Stokes equations, and examples are given of the application of the technique to several transitional flows. Future directions of research in the field are outlined.

  6. Collaboration in Research and Engineering for Advanced Technology.

    SciTech Connect

    Vrieling, P. Douglas

    2016-01-01

    SNL/CA proposes the Collaboration in Research and Engineering for Advanced Technology and Education (CREATE) facility to support customer-driven national security mission requirements while demonstrating a fiscally responsible approach to cost-control. SNL/CA realizes that due to the current backlog of capital projects in NNSA that following the normal Line Item process to procure capital funding is unlikely and therefore SNL/CA will be looking at all options including Alternative Financing.

  7. Langley Research Center contributions in advancing active control technology

    NASA Technical Reports Server (NTRS)

    Abel, I.; Newsom, J. R.

    1981-01-01

    The application of active control technology to reduce aeroelastic response of aircraft structures offers a potential for significant payoffs in terms of aerodynamic efficiency and weight savings. Some of the contributions of the Langley Research Center in advancing active control technology are described. Contributions are categorized into the development of appropriate analysis tools, control law synthesis methodology, and experimental investigations aimed at verifying both analysis and synthesis methodology.

  8. Fossil Energy Advanced Research and Technology Development Materials Program

    SciTech Connect

    Cole, N.C.; Judkins, R.R.

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  9. Recent Progress on Spherical Torus Research

    SciTech Connect

    Ono, Masayuki; Kaita, Robert

    2014-01-01

    The spherical torus or spherical tokamak (ST) is a member of the tokamak family with its aspect ratio (A = R0/a) reduced to A ~ 1.5, well below the normal tokamak operating range of A ≥ 2.5. As the aspect ratio is reduced, the ideal tokamak beta β (radio of plasma to magnetic pressure) stability limit increases rapidly, approximately as β ~ 1/A. The plasma current it can sustain for a given edge safety factor q-95 also increases rapidly. Because of the above, as well as the natural elongation κ, which makes its plasma shape appear spherical, the ST configuration can yield exceptionally high tokamak performance in a compact geometry. Due to its compactness and high performance, the ST configuration has various near term applications, including a compact fusion neutron source with low tritium consumption, in addition to its longer term goal of attractive fusion energy power source. Since the start of the two megaampere class ST facilities in 2000, National Spherical Torus Experiment (NSTX) in the US and Mega Ampere Spherical Tokamak (MAST) in UK, active ST research has been conducted worldwide. More than sixteen ST research facilities operating during this period have achieved remarkable advances in all of fusion science areas, involving fundamental fusion energy science as well as innovation. These results suggest exciting future prospects for ST research both near term and longer term. The present paper reviews the scientific progress made by the worldwide ST research community during this new mega-ampere-ST era.

  10. Advanced High-Level Waste Glass Research and Development Plan

    SciTech Connect

    Peeler, David K.; Vienna, John D.; Schweiger, Michael J.; Fox, Kevin M.

    2015-07-01

    The U.S. Department of Energy Office of River Protection (ORP) has implemented an integrated program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product quality requirements. The integrated ORP program is focused on providing a technical, science-based foundation from which key decisions can be made regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities. The fundamental data stemming from this program will support development of advanced glass formulations, key process control models, and tactical processing strategies to ensure safe and successful operations for both the low-activity waste (LAW) and high-level waste (HLW) vitrification facilities with an appreciation toward reducing overall mission life. The purpose of this advanced HLW glass research and development plan is to identify the near-, mid-, and longer-term research and development activities required to develop and validate advanced HLW glasses and their associated models to support facility operations at WTP, including both direct feed and full pretreatment flowsheets. This plan also integrates technical support of facility operations and waste qualification activities to show the interdependence of these activities with the advanced waste glass (AWG) program to support the full WTP mission. Figure ES-1 shows these key ORP programmatic activities and their interfaces with both WTP facility operations and qualification needs. The plan is a living document that will be updated to reflect key advancements and mission strategy changes. The research outlined here is motivated by the potential for substantial economic benefits (e.g., significant increases in waste throughput and reductions in glass volumes) that will be realized when advancements in glass formulation continue and models supporting facility operations are implemented. Developing and applying advanced

  11. Tokamaks: from A D Sakharov to the present (the 60-year history of tokamaks)

    NASA Astrophysics Data System (ADS)

    Azizov, E. A.

    2012-02-01

    The paper is prepared on the basis of the report presented at the session of the Physical Sciences Division of the Russian Academy of Sciences (RAS) at the Lebedev Physical Institute, RAS on 25 May 2011, devoted to the 90-year jubilee of Academician Andrei D Sakharov - the initiator of controlled nuclear fusion research in the USSR. The 60-year history of plasma research work in toroidal devices with a longitudinal magnetic field suggested by Andrei D Sakharov and Igor E Tamm in 1950 for the confinement of fusion plasma and known at present as tokamaks is described in brief. The recent (2006) agreement among Russia, the EU, the USA, Japan, China, the Republic of Korea, and India on the joint construction of the international thermonuclear experimental reactor (ITER) in France based on the tokamak concept is discussed. Prospects for using the tokamak as a thermonuclear (14 MeV) neutron source are examined.

  12. Recent advances in research on climate and human conflict

    NASA Astrophysics Data System (ADS)

    Hsiang, S. M.

    2014-12-01

    A rapidly growing body of empirical, quantitative research examines whether rates of human conflict can be systematically altered by climatic changes. We discuss recent advances in this field, including Bayesian meta-analyses of the effect of temperature and rainfall on current and future large-scale conflicts, the impact of climate variables on gang violence and suicides in Mexico, and probabilistic projections of personal violence and property crime in the United States under RCP scenarios. Criticisms of this research field will also be explained and addressed.

  13. Advancing Research to Action in Global Child Mental Health.

    PubMed

    Ordóñez, Anna E; Collins, Pamela Y

    2015-10-01

    Most mental and substance use disorders begin during childhood and adolescence and are the leading cause of disability in this population. Prenatal and postnatal genetic, familial, social, and environmental exposures interact to influence risk for mental disorders and trajectories of cognitive development. Efforts to advance prevention and implement early interventions to reduce the burden of mental disorders require a global research workforce, intersectoral cooperation, attention to environmental contexts, and the development and testing of evidence-based interventions. The authors describe challenges and resources for building mental health research capacity that stands to influence children's mental health outcomes around the globe.

  14. DSC -- Disruption Simulation Code for Tokamaks and ITER applications

    NASA Astrophysics Data System (ADS)

    Galkin, S. A.; Grubert, J. E.; Zakharov, L. E.

    2010-11-01

    Arguably the most important issue facing the further development of magnetic fusion via advanced tokamaks is to predict, avoid, or mitigate disruptions. This recently became the hottest challenging topic in fusion research because of several potentially damaging effects, which could impact the ITER device. To address this issue, two versions of a new 3D adaptive Disruption Simulation Code (DSC) will be developed. The first version will solve the ideal reduced 3D MHD model in the real geometry with a thin conducting wall structure, utilizing the adaptive meshless technique. The second version will solve the resistive reduced 3D MHD model in the real geometry of the conducting structure of the tokamak vessel and will finally be parallelized. The DSC will be calibrated against the JET disruption data and will be capable of predicting the disruption effects in ITER, as well as contributing to the development of the disruption mitigation scheme and suppression of the RE generation. The progress on the first version of the 3D DSC development will be presented.

  15. Technological advances in mucositis research: new insights and new issues.

    PubMed

    Gibson, Rachel J; Bowen, Joanne M; Keefe, Dorothy M K

    2008-08-01

    The last decade has seen a significant acceleration in the introduction of molecular tools used in cancer diagnosis and treatment. Driving factors have been the movement of advanced technologies from the laboratory to the clinic and the shift to a more genetically individualised patient approach. With this has followed an increased ability to study the toxic side effects of cancer treatment, some of which are newly emerging, by utilising many of the same technologies. Mucositis research in particular has reached a golden period of investigation and understanding of the pathobiological mechanisms that contribute to the development of the condition. This paper has selected a few of the emerging technologies that are highly relevant to mucositis research to discuss in detail. These technologies include target therapies, toxicogenomics, nanomedicine, pharmacogenetics and pharmacogenomics, with a particular focus on microarray technology. These technologies are critical to discuss in the context of mucositis research not only because they are widely applicable to cutting edge research, but they also provide opportunities for further advances both in the laboratory and clinical setting. In addition, some of these technologies have the potential to be implemented immediately in the field of mucositis research.

  16. NIDR--40 years of research advances in dental health.

    PubMed

    Sheridan, P G

    1988-01-01

    The National Institute of Dental Research (NIDR) was created by President Harry S Truman on June 24, 1948, as the third of the National Institutes of Health. NIDR's legislation contained the mandate to conduct research and research training to improve oral health. An impetus for federally funded dental research was the finding in World War II that the major cause of rejection for military service was missing teeth. Because of the population's widespread tooth decay problems, early NIDR research focused on eliminating dental caries. NIDR scientists confirmed the safety and effectiveness of the use of fluoride in tooth decay prevention, leading to one of the nation's most successful public health efforts, community water fluoridation. During the past 40 years, NIDR scientists have provided research advances and fostered technologies which changed the philosophy and practice of dentistry and brought dental sciences into the mainstream of biomedical research. Dental researchers contribute to studies of such diseases and problems as AIDS, cancer, arthritis, cystic fibrosis, diabetes, herpes, craniofacial anomalies, pain, and bone and joint disorders. NIDR's 40th anniversary in 1988 recognizes its continuing commitment to oral disease prevention and health research, and to achieving the goal of people maintaining their natural dentition for a lifetime.

  17. NIDR--40 years of research advances in dental health.

    PubMed Central

    Sheridan, P G

    1988-01-01

    The National Institute of Dental Research (NIDR) was created by President Harry S Truman on June 24, 1948, as the third of the National Institutes of Health. NIDR's legislation contained the mandate to conduct research and research training to improve oral health. An impetus for federally funded dental research was the finding in World War II that the major cause of rejection for military service was missing teeth. Because of the population's widespread tooth decay problems, early NIDR research focused on eliminating dental caries. NIDR scientists confirmed the safety and effectiveness of the use of fluoride in tooth decay prevention, leading to one of the nation's most successful public health efforts, community water fluoridation. During the past 40 years, NIDR scientists have provided research advances and fostered technologies which changed the philosophy and practice of dentistry and brought dental sciences into the mainstream of biomedical research. Dental researchers contribute to studies of such diseases and problems as AIDS, cancer, arthritis, cystic fibrosis, diabetes, herpes, craniofacial anomalies, pain, and bone and joint disorders. NIDR's 40th anniversary in 1988 recognizes its continuing commitment to oral disease prevention and health research, and to achieving the goal of people maintaining their natural dentition for a lifetime. Images p495-a p495-b p496-a p496-b p497-a p497-b p498-a PMID:3140276

  18. Advances in microfluidics-based experimental methods for neuroscience research.

    PubMed

    Park, Jae Woo; Kim, Hyung Joon; Kang, Myeong Woo; Jeon, Noo Li

    2013-02-21

    The application of microfluidics to neuroscience applications has always appealed to neuroscientists because of the capability to control the cellular microenvironment in both a spatial and temporal manner. Recently, there has been rapid development of biological micro-electro-mechanical systems (BioMEMS) for both fundamental and applied neuroscience research. In this review, we will discuss the applications of BioMEMS to various topics in the field of neuroscience. The purpose of this review is to summarise recent advances in the components and design of the BioMEMS devices, in vitro disease models, electrophysiology and neural stem cell research. We envision that microfluidics will play a key role in future neuroscience research, both fundamental and applied research.

  19. UCLA Tokamak Program Close Out Report.

    SciTech Connect

    Taylor, Robert John

    2014-02-04

    The results of UCLA experimental fusion program are summarized. Starting with smaller devices like Microtor, Macrotor, CCT and ending the research on the large (5 m) Electric Tokamak. CCT was the most diagnosed device for H-mode like physics and the effects of rotation induced radial fields. ICRF heating was also studied but plasma heating of University Type Tokamaks did not produce useful results due to plasma edge disturbances of the antennae. The Electric Tokamak produced better confinement in the seconds range. However, it presented very good particle confinement due to an "electric particle pinch". This effect prevented us from reaching a quasi steady state. This particle accumulation effect was numerically explained by Shaing's enhanced neoclassical theory. The PI believes that ITER will have a good energy confinement time but deleteriously large particle confinement time and it will disrupt on particle pinching at nominal average densities. The US fusion research program did not study particle transport effects due to its undue focus on the physics of energy confinement time. Energy confinement time is not an issue for energy producing tokamaks. Controlling the ash flow will be very expensive.

  20. Advancing Aeronautics: A Decision Framework for Selecting Research Agendas

    NASA Technical Reports Server (NTRS)

    Anton, Philip S.; Ecola, Liisa; Kallimani, James G.; Light, Thomas; Ohlandt, Chad J. R.; Osburg, Jan; Raman, Raj; Grammich, Clifford A.

    2011-01-01

    Publicly funded research has long played a role in the development of aeronautics, ranging from foundational research on airfoils to development of the air-traffic control system. Yet more than a century after the research and development of successful controlled, sustained, heavier-than-air flight vehicles, there are questions over the future of aeronautics research. The field of aeronautics is relatively mature, technological developments within it have become more evolutionary, and funding decisions are sometimes motivated by the continued pursuit of these evolutionary research tracks rather than by larger factors. These developments raise questions over whether public funding of aeronautics research continues to be appropriate or necessary and at what levels. Tightened federal budgets and increasing calls to address other public demands make these questions sharper still. To help it address the questions of appropriate directions for publicly funded aeronautics research, the National Aeronautics and Space Administration's (NASA's) Aeronautics Research Mission Directorate (ARMD) asked the RAND Corporation to assess the elements required to develop a strategic view of aeronautics research opportunities; identify candidate aeronautic grand challenges, paradigms, and concepts; outline a framework for evaluating them; and exercise the framework as an example of how to use it. Accordingly, this research seeks to address these questions: What aeronautics research should be supported by the U.S. government? What compelling and desirable benefits drive government-supported research? How should the government--especially NASA--make decisions about which research to support? Advancing aeronautics involves broad policy and decisionmaking challenges. Decisions involve tradeoffs among competing perspectives, uncertainties, and informed judgment.

  1. The advanced neutron source research and development plan

    SciTech Connect

    Selby, D.L.

    1995-08-01

    The Advanced Neutron Source (ANS) is being designed as a user-oriented neutron research laboratory centered around the most intense continuous beams of thermal and subthermal neutrons in the world (an order of magnitude more intense than beams available from the most advanced existing reactors). The ANS will be built around a new research reactor of 330-MW fission power, producing an unprecedented peak thermal flux of >7 {center_dot} 10{sup 19} {center_dot} m{sup -2} {center_dot} s{sup -1}. Primarily a research facility, the ANS will accommodate more than 1000 academic, industrial, and government researchers each year. They will conduct basic research in all branches of science as well as applied research leading to better understanding of new materials, including high temperature super conductors, plastics, and thin films. Some 48 neutron beam stations will be set up in the ANS beam rooms and the neutron guide hall for neutron scattering and for fundamental and nuclear physics research. There also will be extensive facilities for materials irradiation, isotope production, and analytical chemistry. The top level work breakdown structure (WBS) for the project. As noted in this figure, one component of the project is a research and development (R&D) program (WBS 1.1). This program interfaces with all of the other project level two WBS activities. Because one of the project guidelines is to meet minimum performance goals without relying on new inventions, this R&D activity is not intended to produce new concepts to allow the project to meet minimum performance goals. Instead, the R&D program will focus on the four objectives described.

  2. A hypothesis of inductive drive to explain the sawtooth measurements of tokamak experiment for technology oriented research (TEXTOR)

    NASA Astrophysics Data System (ADS)

    Chu, T. K.

    2006-07-01

    A hypothesis, based on the current density profile determined from the principle of minimum dissipation of magnetic energy, is applied to explain the measurement of q (0) and current variation in a sawtooth cycle in tokomak experiment for technology oriented research (TEXTOR) [Plasma Physics and Controlled Nuclear Fusion Research (IAEA, Vienna, 1985), Vol. I, p. 193]. A sawtooth oscillation is triggered when the on-axis current density in a configuration with m =0 and n =0 symmetry is driven inductively to a limit.

  3. A hypothesis of inductive drive to explain the sawtooth measurements of tokamak experiment for technology oriented research (TEXTOR)

    SciTech Connect

    Chu, T. K.

    2006-07-15

    A hypothesis, based on the current density profile determined from the principle of minimum dissipation of magnetic energy, is applied to explain the measurement of q(0) and current variation in a sawtooth cycle in tokomak experiment for technology oriented research (TEXTOR) [Plasma Physics and Controlled Nuclear Fusion Research (IAEA, Vienna, 1985), Vol. I, p. 193]. A sawtooth oscillation is triggered when the on-axis current density in a configuration with m=0 and n=0 symmetry is driven inductively to a limit.

  4. Advanced Radioisotope Power Conversion Technology Research and Development

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.

    2004-01-01

    NASA's Radioisotope Power Conversion Technology program is developing next generation power conversion technologies that will enable future missions that have requirements that cannot be met by either the ubiquitous photovoltaic systems or by current Radioisotope Power System (RPS) technology. Performance goals of advanced radioisotope power systems include improvement over the state-of-practice General Purpose Heat Source/Radioisotope Thermoelectric Generator by providing significantly higher efficiency to reduce the number of radioisotope fuel modules, and increase specific power (watts/kilogram). Other Advanced RPS goals include safety, long-life, reliability, scalability, multi-mission capability, resistance to radiation, and minimal interference with the scientific payload. NASA has awarded ten contracts in the technology areas of Brayton, Stirling, Thermoelectric, and Thermophotovoltaic power conversion including five development contracts that deal with more mature technologies and five research contracts. The Advanced RPS Systems Assessment Team includes members from NASA GRC, JPL, DOE and Orbital Sciences whose function is to review the technologies being developed under the ten Radioisotope Power Conversion Technology contracts and assess their relevance to NASA's future missions. Presented is an overview of the ten radioisotope power conversion technology contracts and NASA's Advanced RPS Systems Assessment Team.

  5. Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research

    SciTech Connect

    John Jackson; Todd Allen; Frances Marshall; Jim Cole

    2013-03-01

    The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials

  6. Tearing Modes in Tokamaks

    SciTech Connect

    White, R. B.

    2008-05-14

    This lecture gives a basic introduction to magnetic pound elds, magnetic surface destruction, toroidal equilibrium and tearing modes in a tokamak, including the linear and nonlinear development of these modes and their modi pound cation by current drive and bootstrap current, and sawtooth oscillations and disruptions.

  7. Facing up to the Challenges of Advancing Craniofacial Research

    PubMed Central

    Trainor, Paul A.; Richtsmeier, Joan T.

    2015-01-01

    Craniofacial anomalies are among the most common human birth defects and have considerable functional, aesthetic, and social consequences. The early developmental origin as well as the anatomical complexity of the head and face render these tissues prone to genetic and environmental insult. The establishment of craniofacial clinics offering comprehensive care for craniofacial patients at a single site together with international research networks focused on the origins and treatment of craniofacial disorders has led to tremendous advances in our understanding of the etiology and pathogenesis of congenital craniofacial anomalies. However, the genetic, environmental, and developmental sources of many craniofacial disorders remain unknown. To overcome this problem and further advance craniofacial research, we must recognize current challenges in the field and establish priority areas for study. We still need (i) a deeper understanding of variation during normal development and within the context of any disorder, (ii) improved genotyping and phenotyping and understanding of the impact of epigenetics, (iii) continued development of animal models and functional analyses of genes and variants, and (iv) integration of patient derived cells and tissues together with 3D printing and quantitative assessment of surgical outcomes for improved practice. Only with fundamental advances in each of these areas will we be able to meet the challenge of translating potential therapeutic and preventative approaches into clinical solutions and reduce the financial and emotional burden of craniofacial anomalies. PMID:25820983

  8. Facing up to the challenges of advancing Craniofacial Research.

    PubMed

    Trainor, Paul A; Richtsmeier, Joan T

    2015-07-01

    Craniofacial anomalies are among the most common human birth defects and have considerable functional, aesthetic, and social consequences. The early developmental origin as well as the anatomical complexity of the head and face render these tissues prone to genetic and environmental insult. The establishment of craniofacial clinics offering comprehensive care for craniofacial patients at a single site together with international research networks focused on the origins and treatment of craniofacial disorders has led to tremendous advances in our understanding of the etiology and pathogenesis of congenital craniofacial anomalies. However, the genetic, environmental, and developmental sources of many craniofacial disorders remain unknown. To overcome this problem and further advance craniofacial research, we must recognize current challenges in the field and establish priority areas for study. We still need (i) a deeper understanding of variation during normal development and within the context of any disorder, (ii) improved genotyping and phenotyping and understanding of the impact of epigenetics, (iii) continued development of animal models and functional analyses of genes and variants, and (iv) integration of patient derived cells and tissues together with 3D printing and quantitative assessment of surgical outcomes for improved practice. Only with fundamental advances in each of these areas will we be able to meet the challenge of translating potential therapeutic and preventative approaches into clinical solutions and reduce the financial and emotional burden of craniofacial anomalies.

  9. Simulated Interactive Research Experiments as Educational Tools for Advanced Science

    NASA Astrophysics Data System (ADS)

    Tomandl, Mathias; Mieling, Thomas; Losert-Valiente Kroon, Christiane M.; Hopf, Martin; Arndt, Markus

    2015-09-01

    Experimental research has become complex and thus a challenge to science education. Only very few students can typically be trained on advanced scientific equipment. It is therefore important to find new tools that allow all students to acquire laboratory skills individually and independent of where they are located. In a design-based research process we have investigated the feasibility of using a virtual laboratory as a photo-realistic and scientifically valid representation of advanced scientific infrastructure to teach modern experimental science, here, molecular quantum optics. We found a concept based on three educational principles that allows undergraduate students to become acquainted with procedures and concepts of a modern research field. We find a significant increase in student understanding using our Simulated Interactive Research Experiment (SiReX), by evaluating the learning outcomes with semi-structured interviews in a pre/post design. This suggests that this concept of an educational tool can be generalized to disseminate findings in other fields.

  10. Simulated Interactive Research Experiments as Educational Tools for Advanced Science.

    PubMed

    Tomandl, Mathias; Mieling, Thomas; Losert-Valiente Kroon, Christiane M; Hopf, Martin; Arndt, Markus

    2015-09-15

    Experimental research has become complex and thus a challenge to science education. Only very few students can typically be trained on advanced scientific equipment. It is therefore important to find new tools that allow all students to acquire laboratory skills individually and independent of where they are located. In a design-based research process we have investigated the feasibility of using a virtual laboratory as a photo-realistic and scientifically valid representation of advanced scientific infrastructure to teach modern experimental science, here, molecular quantum optics. We found a concept based on three educational principles that allows undergraduate students to become acquainted with procedures and concepts of a modern research field. We find a significant increase in student understanding using our Simulated Interactive Research Experiment (SiReX), by evaluating the learning outcomes with semi-structured interviews in a pre/post design. This suggests that this concept of an educational tool can be generalized to disseminate findings in other fields.

  11. Simulated Interactive Research Experiments as Educational Tools for Advanced Science

    PubMed Central

    Tomandl, Mathias; Mieling, Thomas; Losert-Valiente Kroon, Christiane M.; Hopf, Martin; Arndt, Markus

    2015-01-01

    Experimental research has become complex and thus a challenge to science education. Only very few students can typically be trained on advanced scientific equipment. It is therefore important to find new tools that allow all students to acquire laboratory skills individually and independent of where they are located. In a design-based research process we have investigated the feasibility of using a virtual laboratory as a photo-realistic and scientifically valid representation of advanced scientific infrastructure to teach modern experimental science, here, molecular quantum optics. We found a concept based on three educational principles that allows undergraduate students to become acquainted with procedures and concepts of a modern research field. We find a significant increase in student understanding using our Simulated Interactive Research Experiment (SiReX), by evaluating the learning outcomes with semi-structured interviews in a pre/post design. This suggests that this concept of an educational tool can be generalized to disseminate findings in other fields. PMID:26370627

  12. EarthCube Activities: Community Engagement Advancing Geoscience Research

    NASA Astrophysics Data System (ADS)

    Kinkade, D.

    2015-12-01

    Our ability to advance scientific research in order to better understand complex Earth systems, address emerging geoscience problems, and meet societal challenges is increasingly dependent upon the concept of Open Science and Data. Although these terms are relatively new to the world of research, Open Science and Data in this context may be described as transparency in the scientific process. This includes the discoverability, public accessibility and reusability of scientific data, as well as accessibility and transparency of scientific communication (www.openscience.org). Scientists and the US government alike are realizing the critical need for easy discovery and access to multidisciplinary data to advance research in the geosciences. The NSF-supported EarthCube project was created to meet this need. EarthCube is developing a community-driven common cyberinfrastructure for the purpose of accessing, integrating, analyzing, sharing and visualizing all forms of data and related resources through advanced technological and computational capabilities. Engaging the geoscience community in EarthCube's development is crucial to its success, and EarthCube is providing several opportunities for geoscience involvement. This presentation will provide an overview of the activities EarthCube is employing to entrain the community in the development process, from governance development and strategic planning, to technical needs gathering. Particular focus will be given to the collection of science-driven use cases as a means of capturing scientific and technical requirements. Such activities inform the development of key technical and computational components that collectively will form a cyberinfrastructure to meet the research needs of the geoscience community.

  13. Los Alamos NEP research in advanced plasma thrusters

    NASA Technical Reports Server (NTRS)

    Schoenberg, Kurt; Gerwin, Richard

    1991-01-01

    Research was initiated in advanced plasma thrusters that capitalizes on lab capabilities in plasma science and technology. The goal of the program was to examine the scaling issues of magnetoplasmadynamic (MPD) thruster performance in support of NASA's MPD thruster development program. The objective was to address multi-megawatt, large scale, quasi-steady state MPD thruster performance. Results to date include a new quasi-steady state operating regime which was obtained at space exploration initiative relevant power levels, that enables direct coaxial gun-MPD comparisons of thruster physics and performance. The radiative losses are neglible. Operation with an applied axial magnetic field shows the same operational stability and exhaust plume uniformity benefits seen in MPD thrusters. Observed gun impedance is in close agreement with the magnetic Bernoulli model predictions. Spatial and temporal measurements of magnetic field, electric field, plasma density, electron temperature, and ion/neutral energy distribution are underway. Model applications to advanced mission logistics are also underway.

  14. Advances in Inner Magnetosphere Passive and Active Wave Research

    NASA Technical Reports Server (NTRS)

    Green, James L.; Fung, Shing F.

    2004-01-01

    This review identifies a number of the principal research advancements that have occurred over the last five years in the study of electromagnetic (EM) waves in the Earth's inner magnetosphere. The observations used in this study are from the plasma wave instruments and radio sounders on Cluster, IMAGE, Geotail, Wind, Polar, Interball, and others. The data from passive plasma wave instruments have led to a number of advances such as: determining the origin and importance of whistler mode waves in the plasmasphere, discovery of the source of kilometric continuum radiation, mapping AKR source regions with "pinpoint" accuracy, and correlating the AKR source location with dipole tilt angle. Active magnetospheric wave experiments have shown that long range ducted and direct echoes can be used to obtain the density distribution of electrons in the polar cap and along plasmaspheric field lines, providing key information on plasmaspheric filling rates and polar cap outflows.

  15. High Beta Tokamaks

    SciTech Connect

    Cowley, S.

    1998-11-14

    Perhaps the ideal tokamak would have high {beta} ({beta} {approx}> 1) and classical confinement. Such a tokamak has not been found, and we do not know if one does exist. We have searched for such a possibility, so far without success. In 1990, we obtained analytic equilibrium solutions for large aspect ratio tokamaks at {beta} {approx} {Omicron}(1) [1]. These solutions and the extension at high {beta} poloidal to finite aspect ratio [2] provided a basis for the study of high {beta} tokamaks. We have shown that these configurations can be stable to short scale MHD modes [3], and that they have reduced neoclassical transport [4]. Microinstabilities (such as the {del}T{sub i} mode) seem to be stabilized at high {beta} [5] - this is due to the large local shear [3] and the magnetic well. We have some concerns about modes associated with the compressional branch which may appear at high {beta}. Bill Dorland and Mike Kotschenreuther have studied this issue and our concerns may be unfounded. It is certainly tantalizing, especially given the lowered neoclassical transport values, that these configurations could have no microinstabilities and, one could assume, no anomalous transport. Unfortunately, while this work is encouraging, the key question for high {beta} tokamaks is the stability to large scale kink modes. The MHD {beta} limit (Troyon limit) for kink modes at large aspect ratio is problematically low. There is ample evidence from computations that the limit exists. However, it is not known if stable equilibria exist at much higher {beta}--none have been found. We have explored this question in the asymptotic high {beta} poloidal limit. Unfortunately, we are unable to find stable equilibrium and also unable to show that they don't exist. The results of these calculations will be published when a more definitive answer is found.

  16. [Research advances in pediatric nonalcoholic fatty liver disease].

    PubMed

    Dai, Dong-Ling

    2015-01-01

    In recent years, nonalcoholic fatty liver disease (NAFLD) has increased because of the growing prevalence of obesity and overweight in the pediatric population. It has become the most common form of chronic liver diseases in children and the related research on NAFLD is expanded. The "two-hit" and "multiple hit" hypothesis have been widely accepted, and some research has shown that genetic, diet structure and environmental factors appear to play a crucial role in the development of pediatric NAFLD. Though it is expected by researchers, there is not an available satisfactory noninvasive marker for the diagnosis of this disease. Fortunately, some new non-invasive prediction scores for pediatric NAFLD have been developed. There is currently no established special therapy, and lifestyle intervention should be adequate for most cases of NAFLD in children. This article reviews the advances in the current knowledge and ideas concerning pediatric NAFLD, and discusses the diagnosis, perspective therapies and scoring methods for this disease.

  17. Advanced NDE research in electromagnetic, thermal, and coherent optics

    NASA Technical Reports Server (NTRS)

    Skinner, S. Ballou

    1992-01-01

    A new inspection technology called magneto-optic/eddy current imaging was investigated. The magneto-optic imager makes readily visible irregularities and inconsistencies in airframe components. Other research observed in electromagnetics included (1) disbond detection via resonant modal analysis; (2) AC magnetic field frequency dependence of magnetoacoustic emission; and (3) multi-view magneto-optic imaging. Research observed in the thermal group included (1) thermographic detection and characterization of corrosion in aircraft aluminum; (2) a multipurpose infrared imaging system for thermoelastic stress detection; (3) thermal diffusivity imaging of stress induced damage in composites; and (4) detection and measurement of ice formation on the space shuttle main fuel tank. Research observed in the optics group included advancements in optical nondestructive evaluation (NDE).

  18. Assessment of Research Needs for Advanced Fuel Cells

    SciTech Connect

    Penner, S.S.

    1985-11-01

    The DOE Advanced Fuel Cell Working Group (AFCWG) was formed and asked to perform a scientific evaluation of the current status of fuel cells, with emphasis on identification of long-range research that may have a significant impact on the practical utilization of fuel cells in a variety of applications. The AFCWG held six meetings at locations throughout the country where fuel cell research and development are in progress, for presentations by experts on the status of fuel cell research and development efforts, as well as for inputs on research needs. Subsequent discussions by the AFCWG have resulted in the identification of priority research areas that should be explored over the long term in order to advance the design and performance of fuel cells of all types. Surveys describing the salient features of individual fuel cell types are presented in Chapters 2 to 6 and include elaborations of long-term research needs relating to the expeditious introduction of improved fuel cells. The Introduction and the Summary (Chapter 1) were prepared by AFCWG. They were repeatedly revised in response to comments and criticism. The present version represents the closest approach to a consensus that we were able to reach, which should not be interpreted to mean that each member of AFCWG endorses every statement and every unexpressed deletion. The Introduction and Summary always represent a majority view and, occasionally, a unanimous judgment. Chapters 2 to 6 provide background information and carry the names of identified authors. The identified authors of Chapters 2 to 6, rather than AFCWG as a whole, bear full responsibility for the scientific and technical contents of these chapters.

  19. Spontaneous generation of rotation in tokamak plasmas

    SciTech Connect

    Parra Diaz, Felix

    2013-12-24

    Three different aspects of intrinsic rotation have been treated. i) A new, first principles model for intrinsic rotation [F.I. Parra, M. Barnes and P.J. Catto, Nucl. Fusion 51, 113001 (2011)] has been implemented in the gyrokinetic code GS2. The results obtained with the code are consistent with several experimental observations, namely the rotation peaking observed after an L-H transition, the rotation reversal observed in Ohmic plasmas, and the change in rotation that follows Lower Hybrid wave injection. ii) The model in [F.I. Parra, M. Barnes and P.J. Catto, Nucl. Fusion 51, 113001 (2011)] has several simplifying assumptions that seem to be satisfied in most tokamaks. To check the importance of these hypotheses, first principles equations that do not rely on these simplifying assumptions have been derived, and a version of these new equations has been implemented in GS2 as well. iii) A tokamak cross-section that drives large intrinsic rotation has been proposed for future large tokamaks. In large tokamaks, intrinsic rotation is expected to be very small unless some up-down asymmetry is introduced. The research conducted under this contract indicates that tilted ellipticity is the most efficient way to drive intrinsic rotation.

  20. First Engineering Commissioning of EAST Tokamak

    NASA Astrophysics Data System (ADS)

    Wan, Yuanxi; Li, Jiangang; Weng, Peide; EAST Team

    2006-05-01

    Experimental Advanced Superconducting Tokamak (EAST) is the first fully superconducting tokamak. The first commissioning started on Feb. 1st of 2006 and finished on March 30th of 2006 at the Institute of Plasma Physics, Chinese Academy of Sciences. It consists of leakage testing at both room temperature and low temperature, pumping down, cooling down all coils, current leads, bus bar and the thermal shielding, exciting all the coils, measuring magnetic configuration and warming up the magnets. The electromagnetic, thermal hydraulic and mechanical performance of EAST Toroidal Field (TF) and Poloidal Field (PF) magnets have also been tested. All sub-systems, including pumping system, cryogenic system, PF& TF power supply systems, magnet instrumentation system, quench detection and protection system, water cooling system, data acquisition system, main control system, plasma control system (PCS), interlock and safety system have been successfully tested.

  1. Recent trends and advances in berry health benefits research.

    PubMed

    Seeram, Navindra P

    2010-04-14

    Recent advances have been made in our scientific understanding of how berries promote human health and prevent chronic illnesses such as some cancers, heart disease, and neurodegenerative diseases. Cancer is rapidly overtaking heart disease as the number one killer disease in developed countries, and this phenomenon is coupled with a growing aging population and concomitant age-related diseases. Therefore, it is not surprising that consumers are turning toward foods with medicinal properties as promising dietary interventions for disease prevention and health maintenance. Among fruits, berries of all colors have emerged as champions with substantial research data supporting their abilities to positively affect multiple disease states. Apart from several essential dietary components found in berries, such as vitamins, minerals, and fiber, berries also contain numerous bioactives that provide health benefits that extend beyond basic nutrition. Berry bioactives encompass a wide diversity of phytochemicals (phytonutrients) ranging from fat-soluble/lipophilic to water-soluble/hydrophilic compounds. Recent research from laboratories across the globe has provided useful insights into the biological effects and underlying mechanisms of actions resulting from eating berries. The cluster of papers included here represents a cross section of topics discussed at the 2009 International Berry Health Benefits Symposium. Together, these papers provide valuable insight into recent research trends and advances made into evaluating the various health benefits that may result from the consumption of berries and their derived products.

  2. Recent trends and advances in berry health benefits research.

    PubMed

    Seeram, Navindra P

    2010-04-14

    Recent advances have been made in our scientific understanding of how berries promote human health and prevent chronic illnesses such as some cancers, heart disease, and neurodegenerative diseases. Cancer is rapidly overtaking heart disease as the number one killer disease in developed countries, and this phenomenon is coupled with a growing aging population and concomitant age-related diseases. Therefore, it is not surprising that consumers are turning toward foods with medicinal properties as promising dietary interventions for disease prevention and health maintenance. Among fruits, berries of all colors have emerged as champions with substantial research data supporting their abilities to positively affect multiple disease states. Apart from several essential dietary components found in berries, such as vitamins, minerals, and fiber, berries also contain numerous bioactives that provide health benefits that extend beyond basic nutrition. Berry bioactives encompass a wide diversity of phytochemicals (phytonutrients) ranging from fat-soluble/lipophilic to water-soluble/hydrophilic compounds. Recent research from laboratories across the globe has provided useful insights into the biological effects and underlying mechanisms of actions resulting from eating berries. The cluster of papers included here represents a cross section of topics discussed at the 2009 International Berry Health Benefits Symposium. Together, these papers provide valuable insight into recent research trends and advances made into evaluating the various health benefits that may result from the consumption of berries and their derived products. PMID:20020687

  3. Twelfth International Symposium on Recent Advances in Environmental Health Research

    PubMed Central

    Tchounwou, Paul B.

    2016-01-01

    During the past century, environmental hazards have become a major concern, not only to public health professionals, but also to the society at large because of their tremendous health, socio-cultural and economic impacts. Various anthropogenic or natural factors have been implicated in the alteration of ecosystem integrity, as well as in the development of a wide variety of acute and/or chronic diseases in humans. It has also been demonstrated that many environmental agents, acting either independently or in combination with other toxins, may induce a wide range of adverse health outcomes. Understanding the role played by the environment in the etiology of human diseases is critical to designing cost-effective control/prevention measures. This special issue of International Journal of Environmental Research and Public Health includes the proceedings of the Twelfth International Symposium on Recent Advances in Environmental Health Research. The Symposium provided an excellent opportunity to discuss the scientific advances in biomedical, environmental, and public health research that addresses global environmental health issues. PMID:27153079

  4. Twelfth International Symposium on Recent Advances in Environmental Health Research.

    PubMed

    Tchounwou, Paul B

    2016-05-04

    During the past century, environmental hazards have become a major concern, not only to public health professionals, but also to the society at large because of their tremendous health, socio-cultural and economic impacts. Various anthropogenic or natural factors have been implicated in the alteration of ecosystem integrity, as well as in the development of a wide variety of acute and/or chronic diseases in humans. It has also been demonstrated that many environmental agents, acting either independently or in combination with other toxins, may induce a wide range of adverse health outcomes. Understanding the role played by the environment in the etiology of human diseases is critical to designing cost-effective control/prevention measures. This special issue of International Journal of Environmental Research and Public Health includes the proceedings of the Twelfth International Symposium on Recent Advances in Environmental Health Research. The Symposium provided an excellent opportunity to discuss the scientific advances in biomedical, environmental, and public health research that addresses global environmental health issues.

  5. Tokamak plasma modelling and atomic processes

    NASA Astrophysics Data System (ADS)

    Kawamura, T.

    1986-06-01

    Topics addressed include: particle control in a tokomak device; ionizing and recombining plasmas; effects of data accuracy on tokamak impurity transport modeling; plasma modeling of tokamaks; and ultraviolet and X-ray spectroscopy of tokamak plasmas.

  6. Oklahoma State University proposed Advanced Technology Research Center. Environmental Assessment

    SciTech Connect

    1995-06-01

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA) evaluating the construction and equipping of the proposed Advanced Technology Research Center (ATRC) at Oklahoma State University (OSU) in Stillwater, Oklahoma. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement is not required.

  7. [Advances in the research of treatment of hydrofluoric acid burn].

    PubMed

    Wang, Xin-gang; Zhang, Yuan-hai; Han, Chun-mao

    2013-08-01

    Hydrofluoric acid (HF) is one of the most common inorganic acids used widely in industrial circle. HF not only causes cutaneous burn, but also induces systemic toxicity by its unique injury mechanism. Accurate and timely diagnosis and treatment are critical after HF burns. To date, the strategies for treating HF burns have been developed, mainly including topical treatments and systematic support. However, there is no standard treatment strategy with wide acceptance in the world. This paper presents a comprehensive overview of the advances in the research of strategies for the treatment of HF burns.

  8. Impact of new instrumentation on advanced turbine research

    NASA Technical Reports Server (NTRS)

    Graham, R. W.

    1980-01-01

    A description is presented of an orderly test program that progresses from the simplest stationary geometry to the more complex, three dimensional, rotating turbine stage. The instrumentation requirements for this evolution of testing are described. The heat transfer instrumentation is emphasized. Recent progress made in devising new measurement techniques has greatly improved the development and confirmation of more accurate analytical methods for the prediction of turbine performance and heat transfer. However, there remain challenging requirements for novel measurement techniques that could advance the future research to be done in rotating blade rows of turbomachines.

  9. 76 FR 52954 - Workshop: Advancing Research on Mixtures; New Perspectives and Approaches for Predicting Adverse...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Workshop: Advancing Research on Mixtures; New Perspectives and Approaches for Predicting... ``Advancing Research on Mixtures: New Perspectives and Approaches for Predicting Adverse Human Health...

  10. Oil shale, tar sand, coal research, advanced exploratory process technology jointly sponsored research

    SciTech Connect

    Not Available

    1992-01-01

    Accomplishments for the quarter are presented for the following areas of research: oil shale, tar sand, coal, advanced exploratory process technology, and jointly sponsored research. Oil shale research includes; oil shale process studies, environmental base studies for oil shale, and miscellaneous basic concept studies. Tar sand research covers process development. Coal research includes; underground coal gasification, coal combustion, integrated coal processing concepts, and solid waste management. Advanced exploratory process technology includes; advanced process concepts, advanced mitigation concepts, and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO[sub 2] HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesa Verde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced recovery techniques; and menu driven access to the WDEQ Hydrologic Data Management Systems.

  11. Tokamak foundation in USSR/Russia 1950-1990

    NASA Astrophysics Data System (ADS)

    Smirnov, V. P.

    2010-01-01

    In the USSR, nuclear fusion research began in 1950 with the work of I.E. Tamm, A.D. Sakharov and colleagues. They formulated the principles of magnetic confinement of high temperature plasmas, that would allow the development of a thermonuclear reactor. Following this, experimental research on plasma initiation and heating in toroidal systems began in 1951 at the Kurchatov Institute. From the very first devices with vessels made of glass, porcelain or metal with insulating inserts, work progressed to the operation of the first tokamak, T-1, in 1958. More machines followed and the first international collaboration in nuclear fusion, on the T-3 tokamak, established the tokamak as a promising option for magnetic confinement. Experiments continued and specialized machines were developed to test separately improvements to the tokamak concept needed for the production of energy. At the same time, research into plasma physics and tokamak theory was being undertaken which provides the basis for modern theoretical work. Since then, the tokamak concept has been refined by a world-wide effort and today we look forward to the successful operation of ITER.

  12. Advanced Stirling Technology Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Wong, Wayne A.

    2007-01-01

    The NASA Glenn Research Center has been developing advanced energy-conversion technologies for use with both radioisotope power systems and fission surface power systems for many decades. Under NASA's Science Mission Directorate, Planetary Science Theme, Technology Program, Glenn is developing the next generation of advanced Stirling convertors (ASCs) for use in the Department of Energy/Lockheed Martin Advanced Stirling Radioisotope Generator (ASRG). The next-generation power-conversion technologies require high efficiency and high specific power (watts electric per kilogram) to meet future mission requirements to use less of the Department of Energy's plutonium-fueled general-purpose heat source modules and reduce system mass. Important goals include long-life (greater than 14-yr) reliability and scalability so that these systems can be considered for a variety of future applications and missions including outer-planet missions and continual operation on the surface of Mars. This paper provides an update of the history and status of the ASC being developed for Glenn by Sunpower Inc. of Athens, Ohio.

  13. Major clinical research advances in gynecologic cancer in 2015

    PubMed Central

    2016-01-01

    In 2015, fourteen topics were selected as major research advances in gynecologic oncology. For ovarian cancer, high-level evidence for annual screening with multimodal strategy which could reduce ovarian cancer deaths was reported. The best preventive strategies with current status of evidence level were also summarized. Final report of chemotherapy or upfront surgery (CHORUS) trial of neoadjuvant chemotherapy in advanced stage ovarian cancer and individualized therapy based on gene characteristics followed. There was no sign of abating in great interest in immunotherapy as well as targeted therapies in various gynecologic cancers. The fifth Ovarian Cancer Consensus Conference which was held in November 7–9 in Tokyo was briefly introduced. For cervical cancer, update of human papillomavirus vaccines regarding two-dose regimen, 9-valent vaccine, and therapeutic vaccine was reviewed. For corpus cancer, the safety concern of power morcellation in presumed fibroids was explored again with regard to age and prevalence of corpus malignancy. Hormone therapy and endometrial cancer risk, trabectedin as an option for leiomyosarcoma, endometrial cancer and Lynch syndrome, and the radiation therapy guidelines were also discussed. In addition, adjuvant therapy in vulvar cancer and the updated of targeted therapy in gynecologic cancer were addressed. For breast cancer, palbociclib in hormone-receptor-positive advanced disease, oncotype DX Recurrence Score in low-risk patients, regional nodal irradiation to internal mammary, supraclavicular, and axillary lymph nodes, and cavity shave margins were summarized as the last topics covered in this review. PMID:27775259

  14. [Research advances in methyl bromide in the ocean].

    PubMed

    Du, Hui-na; Xie, Wen-xia; Cui, Yu-qian; Chen, Jian-lei; Ye, Si-yuan

    2014-12-01

    Methyl bromide is an important atmospheric trace gas, which plays significant roles in the global warming and atmospheric chemistry. The ocean plays important and complex roles in the global biogeochemical cycles of methyl bromide, not only the source of atmospheric methyl bromide, but also the sink. Therefore, developing the chemical research of the soluble methyl bromide in the ocean, will not only have a certain guiding significance to the atmospheric ozone layer protection, but also provide a theoretical basis for estimating methyl bromide's contribution to the global environmental change on global scale. This paper reviewed the research advances on methyl bromide in the ocean, from the aspects of the biogeochemical cycle of methyl bromide in the ocean, the analysis and determination method, the concentration distribution, the sea-to-air flux and its sources and sinks in the atmosphere. Some deficiencies in the current studies were put forward, and the directions of the future studies were prospected. PMID:25876424

  15. [Research advances in methyl bromide in the ocean].

    PubMed

    Du, Hui-na; Xie, Wen-xia; Cui, Yu-qian; Chen, Jian-lei; Ye, Si-yuan

    2014-12-01

    Methyl bromide is an important atmospheric trace gas, which plays significant roles in the global warming and atmospheric chemistry. The ocean plays important and complex roles in the global biogeochemical cycles of methyl bromide, not only the source of atmospheric methyl bromide, but also the sink. Therefore, developing the chemical research of the soluble methyl bromide in the ocean, will not only have a certain guiding significance to the atmospheric ozone layer protection, but also provide a theoretical basis for estimating methyl bromide's contribution to the global environmental change on global scale. This paper reviewed the research advances on methyl bromide in the ocean, from the aspects of the biogeochemical cycle of methyl bromide in the ocean, the analysis and determination method, the concentration distribution, the sea-to-air flux and its sources and sinks in the atmosphere. Some deficiencies in the current studies were put forward, and the directions of the future studies were prospected.

  16. [Research advances on anaerobic ferrous-oxidizing microorganisms].

    PubMed

    Zhang, Meng; Zheng, Ping; Ji, Jun-yuan

    2013-08-01

    Anaerobic ferrous-oxidizing microorganisms (AFOM) are one of the important discoveries in microbiology, geology and environmental science. The study of AFOM is of significance to make clear the banded iron formations (BIFs), promote the biogeochemical cycles of iron, nitrogen and carbon, enrich the microbiological content, develop new biotechnologies for anaerobic iron oxidation, and explore the ancient earth environment and extraterrestrial life. This paper summarized the research advances on AFOM, introduced the habitats of AFOM, discussed the biodiversity and the nutritive and metabolic characteristics of AFOM, and assessed the potential functions of AFOM. An outlook was made on the future researches of new species AFOM, their microbial metabolism mechanisms, and their development and applications. PMID:24380362

  17. PREFACE: 7th EEIGM International Conference on Advanced Materials Research

    NASA Astrophysics Data System (ADS)

    Joffe, Roberts

    2013-12-01

    The 7th EEIGM Conference on Advanced Materials Research (AMR 2013) was held at Luleå University of Technology on the 21-22 March 2013 in Luleå, SWEDEN. This conference is intended as a meeting place for researchers involved in the EEIGM programme, in the 'Erasmus Mundus' Advanced Materials Science and Engineering Master programme (AMASE) and the 'Erasmus Mundus' Doctoral Programme in Materials Science and Engineering (DocMASE). This is great opportunity to present their on-going research in the various fields of Materials Science and Engineering, exchange ideas, strengthen co-operation as well as establish new contacts. More than 60 participants representing six countries attended the meeting, in total 26 oral talks and 19 posters were presented during two days. This issue of IOP Conference Series: Materials Science and Engineering presents a selection of articles from EEIGM-7 conference. Following tradition from previous EEIGM conferences, it represents the interdisciplinary nature of Materials Science and Engineering. The papers presented in this issue deal not only with basic research but also with applied problems of materials science. The presented topics include theoretical and experimental investigations on polymer composite materials (synthetic and bio-based), metallic materials and ceramics, as well as nano-materials of different kind. Special thanks should be directed to the senior staff of Division of Materials Science at LTU who agreed to review submitted papers and thus ensured high scientific level of content of this collection of papers. The following colleagues participated in the review process: Professor Lennart Walström, Professor Roberts Joffe, Professor Janis Varna, Associate Professor Marta-Lena Antti, Dr Esa Vuorinen, Professor Aji Mathew, Professor Alexander Soldatov, Dr Andrejs Purpurs, Dr Yvonne Aitomäki, Dr Robert Pederson. Roberts Joffe October 2013, Luleå Conference photograph EEIGM7 conference participants, 22 March 2013 The PDF

  18. [Economic perspectives of the research on advanced therapies].

    PubMed

    Pamo Larrauri, Jose María

    2014-01-01

    Since a new advanced therapy medicinal product is discovered until finally allowed its sale in the domestic market, it has to overcome a series of stages. Biomedical research is the first phase, currently its situation is encouraging to the increase in the number of clinical trials in Spain and in the rest of the world, despite the economic situation and the various difficulties that have faced the pharmaceutical laboratories. The next phase consists in obtaining the authorization of marketing of the European Medicines Agency. After authorization, will attempt to set a fair and moderate price for inclusion in the list of health provision of Social Security. A price for a drug that provides added value to health and society, a price that is generated profits for the pharmaceutical companies that hope to make up for the years of work and investment. Commitment to advanced therapy must be clear and forceful, to fund ongoing research projects and encouraging their creation with economic aid. PMID:25542659

  19. Advanced Virtual Reality Simulations in Aerospace Education and Research

    NASA Astrophysics Data System (ADS)

    Plotnikova, L.; Trivailo, P.

    2002-01-01

    Recent research developments at Aerospace Engineering, RMIT University have demonstrated great potential for using Virtual Reality simulations as a very effective tool in advanced structures and dynamics applications. They have also been extremely successful in teaching of various undergraduate and postgraduate courses for presenting complex concepts in structural and dynamics designs. Characteristic examples are related to the classical orbital mechanics, spacecraft attitude and structural dynamics. Advanced simulations, reflecting current research by the authors, are mainly related to the implementation of various non-linear dynamic techniques, including using Kane's equations to study dynamics of space tethered satellite systems and the Co-rotational Finite Element method to study reconfigurable robotic systems undergoing large rotations and large translations. The current article will describe the numerical implementation of the modern methods of dynamics, and will concentrate on the post-processing stage of the dynamic simulations. Numerous examples of building Virtual Reality stand-alone animations, designed by the authors, will be discussed in detail. These virtual reality examples will include: The striking feature of the developed technology is the use of the standard mathematical packages, like MATLAB, as a post-processing tool to generate Virtual Reality Modelling Language files with brilliant interactive, graphics and audio effects. These stand-alone demonstration files can be run under Netscape or Microsoft Explorer and do not require MATLAB. Use of this technology enables scientists to easily share their results with colleagues using the Internet, contributing to the flexible learning development at schools and Universities.

  20. Improvement of tokamak performance by injection of electrons

    SciTech Connect

    Ono, Masayuki.

    1992-12-01

    Concepts for improving tokamak performance by utilizing injection of hot electrons are discussed. Motivation of this paper is to introduce the research work being performed in this area and to refer the interested readers to the literature for more detail. The electron injection based concepts presented here have been developed in the CDX, CCT, and CDX-U tokamak facilities. The following three promising application areas of electron injection are described here: 1. Non-inductive current drive, 2. Plasma preionization for tokamak start-up assist, and 3. Charging-up of tokamak flux surfaces for improved plasma confinement. The main motivation for the dc-helicity injection current drive is in its efficiency that, in theory, is independent of plasma density. This property makes it attractive for driving currents in high density reactor plasmas.

  1. Area Reports. Advanced materials and devices research area. Silicon materials research task, and advanced silicon sheet task

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The objectives of the Silicon Materials Task and the Advanced Silicon Sheet Task are to identify the critical technical barriers to low-cost silicon purification and sheet growth that must be overcome to produce a PV cell substrate material at a price consistent with Flat-plate Solar Array (FSA) Project objectives and to overcome these barriers by performing and supporting appropriate R&D. Progress reports are given on silicon refinement using silane, a chemical vapor transport process for purifying metallurgical grade silicon, silicon particle growth research, and modeling of silane pyrolysis in fluidized-bed reactors.

  2. Tritium catalyzed deuterium tokamaks

    SciTech Connect

    Greenspan, E.; Miley, G.H.; Jung, J.; Gilligan, J.

    1984-04-01

    A preliminary assessment of the promise of the Tritium Catalyzed Deuterium (TCD) tokamak power reactors relative to that of deuterium-tritium (D-T) and catalyzed deuterium (Cat-D) tokamaks is undertaken. The TCD mode of operation is arrived at by converting the /sup 3/He from the D(D,n)/sup 3/He reaction into tritium, by neutron capture in the blanket; the tritium thus produced is fed into the plasma. There are three main parts to the assessment: blanket study, reactor design and economic analysis and an assessment of the prospects for improvements in the performance of TCD reactors (and in the promise of the TCD mode of operation, in general).

  3. The Advanced Neutron Source research and development plan

    SciTech Connect

    Selby, D.L.

    1992-11-30

    The Advanced Neutron Source (ANS) is being designed as a user-oriented neutron research laboratory centered around the most intense continuous beams of thermal and subthermal neutrons in the world. The ANS will be built around a new research reactor of {approximately} 330 MW fission power, producing an unprecedented peak thermal flux of > 7 {times} 10{sup 19} M{sup {minus}2} {center_dot} S{sup {minus}1}. Primarily a research facility, the ANS will accommodate more than 1000 academic, industrial, and government researchers each year. They will conduct basic research in all branches of science-as well as applied research-leading to better understanding of new materials, including high temperature super conductors, plastics, and thin films. Some 48 neutron beam stations will be set up in the ANS beam rooms and the neutron guide hall for neutron scattering and for fundamental and nuclear physics research. There also will be extensive facilities for materials irradiation, isotope production, and analytical chemistry. The R&D program will focus on the four objectives: Address feasibility issues; provide analysis support; evaluate options for improvement in performance beyond minimum requirements; and provide prototype demonstrations for unique facilities. The remainder of this report presents (1) the process by which the R&D activities are controlled and (2) a discussion of the individual tasks that have been identified for the R&D program, including their justification, schedule and costs. The activities discussed in this report will be performed by Martin Marietta Energy Systems, Inc. (MMES) through the Oak Ridge National Laboratory (ORNL) and through subcontracts with industry, universities, and other national laboratories. It should be noted that in general a success path has been assumed for all tasks.

  4. The Advanced Neutron Source research and development plan

    SciTech Connect

    Selby, D.L.

    1992-11-30

    The Advanced Neutron Source (ANS) is being designed as a user-oriented neutron research laboratory centered around the most intense continuous beams of thermal and subthermal neutrons in the world. The ANS will be built around a new research reactor of [approximately] 330 MW fission power, producing an unprecedented peak thermal flux of > 7 [times] 10[sup 19] M[sup [minus]2] [center dot] S[sup [minus]1]. Primarily a research facility, the ANS will accommodate more than 1000 academic, industrial, and government researchers each year. They will conduct basic research in all branches of science-as well as applied research-leading to better understanding of new materials, including high temperature super conductors, plastics, and thin films. Some 48 neutron beam stations will be set up in the ANS beam rooms and the neutron guide hall for neutron scattering and for fundamental and nuclear physics research. There also will be extensive facilities for materials irradiation, isotope production, and analytical chemistry. The R D program will focus on the four objectives: Address feasibility issues; provide analysis support; evaluate options for improvement in performance beyond minimum requirements; and provide prototype demonstrations for unique facilities. The remainder of this report presents (1) the process by which the R D activities are controlled and (2) a discussion of the individual tasks that have been identified for the R D program, including their justification, schedule and costs. The activities discussed in this report will be performed by Martin Marietta Energy Systems, Inc. (MMES) through the Oak Ridge National Laboratory (ORNL) and through subcontracts with industry, universities, and other national laboratories. It should be noted that in general a success path has been assumed for all tasks.

  5. Energy confinement in tokamaks

    SciTech Connect

    Sugihara, M.; Singer, C.

    1986-08-01

    A straightforward generalization is made of the ohmic heating energy confinement scalings of Pfeiffer and Waltz and Blackwell et. al. The resulting model is systematically calibrated to published data from limiter tokamaks with ohmic, electron cyclotron, and neutral beam heating. With considerably fewer explicitly adjustable free parameters, this model appears to give a better fit to the available data for limiter discharges than the combined ohmic/auxiliary heating model of Goldston.

  6. Power supplies and quench protection for the Tokamak Physics Experiment

    SciTech Connect

    Neumeyer, C.L.

    1994-07-01

    The Tokamak Physics Experiment (TPX) is an advanced tokamak project aimed at the production of quasi-steady state plasmas with advanced shape, heating, and particle control. TPX is to be built at the Princeton Plasma Physics Laboratory (PPPL) using many of the facilities from the Tokamak Fusion Test Reactor (TFTR). First plasma is scheduled for the year 2000. TPX will be the first tokamak to utilize superconducting (SC) magnets in both the toroidal field (TF) and poloidal field (PF) systems. This is a new feature which requires not only a departure from the traditional tokamak power supply schemes but also that ultra-reliable quench protection devices be used to rapidly discharge the stored energy from the magnets in the event of a quench. This paper describes the plan and basis for the adaptation and augmentation of the PPPL/TFTR power system facilities to supply TPX. Following a description of the basic operational requirements, four major areas are addressed, namely the AC power system, the TF power supply, the PF power supply, and quench protection for the TF and PF systems.

  7. Future directions of C3 research at DARPA (Defense Advanced Research Projects Agency)

    NASA Astrophysics Data System (ADS)

    Perry, D. G.; Dahmann, J. S.

    Research into C3 related problems is a major effort of the Information Science and Technology Office of the Defense Advanced Research Projects Agency. The major thrusts of projects are in the area of future, high-risk efforts, often resulting in the development of a conceptual model or prototype. Some of these prototypes are then further developed to provide an infrastructure for future research. The programs can be divided into two groups: base technology research programs and testbed programs. The testbeds provide a focus for the technology programs.

  8. [Advances in cancer research. Cancer research and clinical oncology in the 21st century].

    PubMed

    Kanamaru, R

    1999-06-01

    It is my great pleasure to congradulate the Japanese Journal of Cancer and Chemotherapy on its 25 th anniversary. During this period, great progress has been made in cancer research, mainly owing to the advances in technology in molecular biology. Recently, not only researchers, but lay people as well have come to understand that cancer is mainly a genetic disease. Advances in the human genome project, DNA chip technology and gene technology; including gene targeting and cloning techniques, will enable us to accelerate progress forward the final goal of cancer research in the coming century. Major changes are coming in both cancer research and clinical oncology, which will completely transform the human social environment.

  9. TPX tokamak construction management

    SciTech Connect

    Knutson, D.; Kungl, D.; Seidel, P.; Halfast, C.

    1995-12-31

    A construction management contract normally involves the acquisition of a construction management firm to assist in the design, planning, budget conformance, and coordination of the construction effort. In addition the construction management firm acts as an agent in the awarding of lower tier contracts. The TPX Tokamak Construction Management (TCM) approach differs in that the construction management firm is also directly responsible for the assembly and installation of the tokamak including the design and fabrication of all tooling required for assembly. The Systems Integration Support (SIS) contractor is responsible for the architect-engineering design of ancillary systems, such as heating and cooling, buildings, modifications and site improvements, and a variety of electrical requirements, including switchyards and >4kV power distribution. The TCM will be responsible for the procurement of materials and the installation of the ancillary systems, which can either be performed directly by the TCM or subcontracted to a lower tier subcontractor. Assurance that the TPX tokamak is properly assembled and ready for operation when turned over to the operations team is the primary focus of the construction management effort. To accomplish this a disciplined constructability program will be instituted. The constructability effort will involve the effective and timely integration of construction expertise into the planning, component design, and field operations. Although individual component design groups will provide liaison during the machine assembly operations, the construction management team is responsible for assembly.

  10. Tokamak divertor maps

    NASA Astrophysics Data System (ADS)

    Punjabi, Alkesh; Verma, Arun; Boozer, Allen

    1994-08-01

    A mapping method is developed to investigate the problem of determination and control of heat-deposition patterns on the plates of a tokamak divertor. The deposition pattern is largely determined by the magnetic field lines, which are mathematically equivalent to the trajectories of a single-degree-of-freedom time-dependent Hamiltonian system. Maps are natural tools to study the generic features of such systems. The general theory of maps is presented, and methods for incorporating various features of the magnetic field and particle motion in divertor tokamaks are given. Features of the magnetic field include the profile of the rotational transform, single- versus double-null divertor, reverse map, the effects of naturally occurring low M and N, and externally imposed high-M, high-N perturbations. Particle motion includes radial diffusion, pitch angle and energy scattering, and the electric sheath at the plate. The method is illustrated by calculating the stochastic broadening in a single- null divertor tokamak. Maps provide an efficient, economic and elegant method to study the problem of motion of plasma particles in the stochastic scrape-off layer.

  11. Impurity transport in Tokamaks

    NASA Astrophysics Data System (ADS)

    Amano, T.

    1983-12-01

    Theoretical and experimental efforts directed towards gaining an understanding of impurity behavior in Tokamaks are reviewed. In the Alcator Tokamak experiments, a laser blow-off technique was used to introduce trace amounts of impurities into ohmically heated plasmas. After a series of experiments in which they injected Si, Al, Fe, Mo impurities, an equation representing empirical impurity confinement time was derived. The scaling of this equation was compared with the results of impurity injection experiments on other Tokamaks, FT-I, PDX, TFR, ISX-B. Impurity confinement times in all these cases agree remarkably well, except for the TFR confinement times, which were about a factor of two larger than predicted. In the presence of intense neutral beam injection impurity ions behave differently. Specifically, in the ISX-B experiments, a marked accumulation of impurity ions toward the center of the plasma was observed in the case of counter neutral beam injection. This was interpreted semi-quantitatively by the neoclassical effect of the rotation of the plasma driven by the neutral beam.

  12. Advanced parallel programming models research and development opportunities.

    SciTech Connect

    Wen, Zhaofang.; Brightwell, Ronald Brian

    2004-07-01

    There is currently a large research and development effort within the high-performance computing community on advanced parallel programming models. This research can potentially have an impact on parallel applications, system software, and computing architectures in the next several years. Given Sandia's expertise and unique perspective in these areas, particularly on very large-scale systems, there are many areas in which Sandia can contribute to this effort. This technical report provides a survey of past and present parallel programming model research projects and provides a detailed description of the Partitioned Global Address Space (PGAS) programming model. The PGAS model may offer several improvements over the traditional distributed memory message passing model, which is the dominant model currently being used at Sandia. This technical report discusses these potential benefits and outlines specific areas where Sandia's expertise could contribute to current research activities. In particular, we describe several projects in the areas of high-performance networking, operating systems and parallel runtime systems, compilers, application development, and performance evaluation.

  13. Advancing cancer control research in an emerging news media environment.

    PubMed

    Smith, Katherine C; Niederdeppe, Jeff; Blake, Kelly D; Cappella, Joseph N

    2013-12-01

    Cancer is both highly feared and highly newsworthy, and there is a robust body of research documenting the content and effects of cancer news coverage on health behaviors and policy. Recent years have witnessed ongoing, transformative shifts in American journalism alongside rapid advances in communication technology and the public information environment. These changes create a pressing need to consider a new set of research questions, sampling strategies, measurement techniques, and theories of media effects to ensure continued relevance and adaptation of communication research to address critical cancer control concerns. This paper begins by briefly reviewing what we know about the role of cancer news in shaping cancer-related beliefs, attitudes, behaviors, and policies. We then outline challenges and opportunities, both theoretical and methodological, posed by the rapidly changing news media environment and the nature of audience engagement. We organize our discussion around three major shifts associated with the emerging news media environment as it relates to health communication: 1) speed and dynamism of news diffusion, 2) increased narrowcasting of media content for specialized audiences, and 3) broadened participation in shaping media content. In so doing, we articulate a set of questions for future theory and research, in an effort to catalyze innovative communication scholarship to improve cancer prevention and control. PMID:24395988

  14. PREFACE: 6th EEIGM International Conference on Advanced Materials Research

    NASA Astrophysics Data System (ADS)

    Horwat, David; Ayadi, Zoubir; Jamart, Brigitte

    2012-02-01

    The 6th EEIGM Conference on Advanced Materials Research (AMR 2011) was held at the European School of Materials Engineering (EEIGM) on the 7-8 November 2011 in Nancy, France. This biennial conference organized by the EEIGM is a wonderful opportunity for all scientists involved in the EEIGM programme, in the 'Erasmus Mundus' Advanced Materials Science and Engineering Master programme (AMASE) and the 'Erasmus Mundus' Doctoral Programme in Materials Science and Engineering (DocMASE), to present their research in the various fields of Materials Science and Engineering. This conference is also open to other universities who have strong links with the EEIGM and provides a forum for the exchange of ideas, co-operation and future orientations by means of regular presentations, posters and a round-table discussion. This edition of the conference included a round-table discussion on composite materials within the Interreg IVA project '+Composite'. Following the publication of the proceedings of AMR 2009 in Volume 5 of this journal, it is with great pleasure that we present this selection of articles to the readers of IOP Conference Series: Materials Science and Engineering. Once again it represents the interdisciplinary nature of Materials Science and Engineering, covering basic and applicative research on organic and composite materials, metallic materials and ceramics, and characterization methods. The editors are indebted to all the reviewers for reviewing the papers at very short notice. Special thanks are offered to the sponsors of the conference including EEIGM-Université de Lorraine, AMASE, DocMASE, Grand Nancy, Ville de Nancy, Region Lorraine, Fédération Jacques Villermaux, Conseil Général de Meurthe et Moselle, Casden and '+Composite'. Zoubir Ayadi, David Horwat and Brigitte Jamart

  15. The benefits of basic research: advances in reproductive physiology.

    PubMed

    1995-06-01

    At the Population Council's Center for Biomedical Research basic research is being conducted on the reproductive system with a view to develop new contraceptive and reproductive health technologies. Research in the Reproductive Physiology Program at the Center is carried out by reproductive endocrinologists, molecular biologists, and biochemists working in eight laboratories. In several of the laboratories the function of hormones that regulate spermatogenesis is studied. Scientists in Milan Bagchi's laboratory have developed a model system, composed of cellular components in a test tube, that allows them to study the full sequence of events involved in signal transduction. In James Catterall's laboratory, scientists study how androgens regulate sexual development at the molecular level. The steroid hormones cortisol and corticosterone play critical roles in mammalian fetal development. Scientists in several laboratories study the function of two specialized testicular cells: the Leydig and Sertoli cells. The Leydig cell synthesizes and secretes testosterone, an androgen that regulates spermatogenesis. The Sertoli cell maintains the environment in which spermatogenesis occurs. Researchers in Glen Gunsalus's laboratory study an androgen-binding protein secreted by the Sertoli cell. In collaboration with scientists at the Shanghai Research Center of Biotechnology, they used advanced genetic techniques to create a biologically active form of the protein in silk worm larvae. Scientists in Patricia Morris's laboratory recently identified molecular signals that control the interactions between developing sperm and Sertoli and Leydig cells. In the laboratory of David Phillips, scientists are investigating how the HIV virus penetrates the outer layer of cells in the genital tract and infects underlying cells. In 1994 a vaginally applied microbicide was developed that may inhibit infection by sexually transmitted diseases including HIV. Applications of basic research such

  16. Tokamak pump limiters

    NASA Astrophysics Data System (ADS)

    Conn, Robert W.

    1984-12-01

    Experiments with pump limiters on several operating tokamaks have established them as efficient collectors of particles. The gas pressure rise within the chamber behind the limiters has been as high as 50 mTorr when there is no internal chamber pumping. Observations of the plasma power distribution over the front face of these limiter modules yield estimates for the scale length of radial power decay consistent with predictions of relatively simple theory. Interaction of the in-flowing plasma with recycling neutral gas near the limiter deflector plate is predicted to become important when the effective ionization mean free path is comparable to or less than the neutral atom mean path length within the throat structure of the limiter. Recent experiments with a scoop limiter without active internal pumping have been carried out in the PDX tokamak with up to 6 MW of auxiliary neutral beam heating. Experiments have also been performed with a rotating head pump limiter in the PLT tokamak in conjunction with RF plasma heating. Extensive experiments have been done in the ISX-B tokamak and first experiments have been completed with the ALT-I limiter in TEXTOR. The pump limiter modules in these latter two machines have internal getter pumping. Experiments in ISX-B are with ohmic and auxiliary neutral beam heating. The results in ISX-B and TEXTOR show that active density control and particle removal is achieved with pump limiters. In ISX-B, the boundary layer (or scape-off layer) plasma partially screens the core plasma from gas injection. In both ISX-B and TEXTOR, the pressure internal to the module scales linearly with plasma density but in ISX-B, with neutral beam injection, a nonlinear increase is observed at the highest densities studied. Plasma plugging is the suspected cause. Results from PDX suggest that a regime may exist in which core plasma energy confinement improves using a pump limiter during neutral beam injection. Asymmetric radial profiles and an increased

  17. High speed research system study. Advanced flight deck configuration effects

    NASA Technical Reports Server (NTRS)

    Swink, Jay R.; Goins, Richard T.

    1992-01-01

    In mid-1991 NASA contracted with industry to study the high-speed civil transport (HSCT) flight deck challenges and assess the benefits, prior to initiating their High Speed Research Program (HSRP) Phase 2 efforts, then scheduled for FY-93. The results of this nine-month effort are presented, and a number of the most significant findings for the specified advanced concepts are highlighted: (1) a no nose-droop configuration; (2) a far forward cockpit location; and (3) advanced crew monitoring and control of complex systems. The results indicate that the no nose-droop configuration is critically dependent upon the design and development of a safe, reliable, and certifiable Synthetic Vision System (SVS). The droop-nose configuration would cause significant weight, performance, and cost penalties. The far forward cockpit location, with the conventional side-by-side seating provides little economic advantage; however, a configuration with a tandem seating arrangement provides a substantial increase in either additional payload (i.e., passengers) or potential downsizing of the vehicle with resulting increases in performance efficiencies and associated reductions in emissions. Without a droop nose, forward external visibility is negated and takeoff/landing guidance and control must rely on the use of the SVS. The technologies enabling such capabilities, which de facto provides for Category 3 all-weather operations on every flight independent of weather, represent a dramatic benefits multiplier in a 2005 global ATM network: both in terms of enhanced economic viability and environmental acceptability.

  18. Recent Advances in Research on Widow Spider Venoms and Toxins.

    PubMed

    Yan, Shuai; Wang, Xianchun

    2015-11-27

    Widow spiders have received much attention due to the frequently reported human and animal injures caused by them. Elucidation of the molecular composition and action mechanism of the venoms and toxins has vast implications in the treatment of latrodectism and in the neurobiology and pharmaceutical research. In recent years, the studies of the widow spider venoms and the venom toxins, particularly the α-latrotoxin, have achieved many new advances; however, the mechanism of action of the venom toxins has not been completely clear. The widow spider is different from many other venomous animals in that it has toxic components not only in the venom glands but also in other parts of the adult spider body, newborn spiderlings, and even the eggs. More recently, the molecular basis for the toxicity outside the venom glands has been systematically investigated, with four proteinaceous toxic components being purified and preliminarily characterized, which has expanded our understanding of the widow spider toxins. This review presents a glance at the recent advances in the study on the venoms and toxins from the Latrodectus species.

  19. Advances in targeted proteomics and applications to biomedical research

    PubMed Central

    Shi, Tujin; Song, Ehwang; Nie, Song; Rodland, Karin D.; Liu, Tao; Qian, Wei-Jun; Smith, Richard D.

    2016-01-01

    Targeted proteomics technique has emerged as a powerful protein quantification tool in systems biology, biomedical research, and increasing for clinical applications. The most widely used targeted proteomics approach, selected reaction monitoring (SRM), also known as multiple reaction monitoring (MRM), can be used for quantification of cellular signaling networks and preclinical verification of candidate protein biomarkers. As an extension to our previous review on advances in SRM sensitivity herein we review recent advances in the method and technology for further enhancing SRM sensitivity (from 2012 to present), and highlighting its broad biomedical applications in human bodily fluids, tissue and cell lines. Furthermore, we also review two recently introduced targeted proteomics approaches, parallel reaction monitoring (PRM) and data-independent acquisition (DIA) with targeted data extraction on fast scanning high-resolution accurate-mass (HR/AM) instruments. Such HR/AM targeted quantification with monitoring all target product ions addresses SRM limitations effectively in specificity and multiplexing; whereas when compared to SRM, PRM and DIA are still in the infancy with a limited number of applications. Thus, for HR/AM targeted quantification we focus our discussion on method development, data processing and analysis, and its advantages and limitations in targeted proteomics. Finally, general perspectives on the potential of achieving both high sensitivity and high sample throughput for large-scale quantification of hundreds of target proteins are discussed. PMID:27302376

  20. The biology of infertility: research advances and clinical challenges

    PubMed Central

    Matzuk, Martin M; Lamb, Dolores J

    2013-01-01

    Reproduction is required for the survival of all mammalian species, and thousands of essential ‘sex’ genes are conserved through evolution. Basic research helps to define these genes and the mechanisms responsible for the development, function and regulation of the male and female reproductive systems. However, many infertile couples continue to be labeled with the diagnosis of idiopathic infertility or given descriptive diagnoses that do not provide a cause for their defect. For other individuals with a known etiology, effective cures are lacking, although their infertility is often bypassed with assisted reproductive technologies (ART), some accompanied by safety or ethical concerns. Certainly, progress in the field of reproduction has been realized in the twenty-first century with advances in the understanding of the regulation of fertility, with the production of over 400 mutant mouse models with a reproductive phenotype and with the promise of regenerative gonadal stem cells. Indeed, the past six years have witnessed a virtual explosion in the identification of gene mutations or polymorphisms that cause or are linked to human infertility. Translation of these findings to the clinic remains slow, however, as do new methods to diagnose and treat infertile couples. Additionally, new approaches to contraception remain elusive. Nevertheless, the basic and clinical advances in the understanding of the molecular controls of reproduction are impressive and will ultimately improve patient care. PMID:18989307

  1. Recent Advances in Research on Widow Spider Venoms and Toxins

    PubMed Central

    Yan, Shuai; Wang, Xianchun

    2015-01-01

    Widow spiders have received much attention due to the frequently reported human and animal injures caused by them. Elucidation of the molecular composition and action mechanism of the venoms and toxins has vast implications in the treatment of latrodectism and in the neurobiology and pharmaceutical research. In recent years, the studies of the widow spider venoms and the venom toxins, particularly the α-latrotoxin, have achieved many new advances; however, the mechanism of action of the venom toxins has not been completely clear. The widow spider is different from many other venomous animals in that it has toxic components not only in the venom glands but also in other parts of the adult spider body, newborn spiderlings, and even the eggs. More recently, the molecular basis for the toxicity outside the venom glands has been systematically investigated, with four proteinaceous toxic components being purified and preliminarily characterized, which has expanded our understanding of the widow spider toxins. This review presents a glance at the recent advances in the study on the venoms and toxins from the Latrodectus species. PMID:26633495

  2. Advances in targeted proteomics and applications to biomedical research.

    PubMed

    Shi, Tujin; Song, Ehwang; Nie, Song; Rodland, Karin D; Liu, Tao; Qian, Wei-Jun; Smith, Richard D

    2016-08-01

    Targeted proteomics technique has emerged as a powerful protein quantification tool in systems biology, biomedical research, and increasing for clinical applications. The most widely used targeted proteomics approach, selected reaction monitoring (SRM), also known as multiple reaction monitoring (MRM), can be used for quantification of cellular signaling networks and preclinical verification of candidate protein biomarkers. As an extension to our previous review on advances in SRM sensitivity (Shi et al., Proteomics, 12, 1074-1092, 2012) herein we review recent advances in the method and technology for further enhancing SRM sensitivity (from 2012 to present), and highlighting its broad biomedical applications in human bodily fluids, tissue and cell lines. Furthermore, we also review two recently introduced targeted proteomics approaches, parallel reaction monitoring (PRM) and data-independent acquisition (DIA) with targeted data extraction on fast scanning high-resolution accurate-mass (HR/AM) instruments. Such HR/AM targeted quantification with monitoring all target product ions addresses SRM limitations effectively in specificity and multiplexing; whereas when compared to SRM, PRM and DIA are still in the infancy with a limited number of applications. Thus, for HR/AM targeted quantification we focus our discussion on method development, data processing and analysis, and its advantages and limitations in targeted proteomics. Finally, general perspectives on the potential of achieving both high sensitivity and high sample throughput for large-scale quantification of hundreds of target proteins are discussed.

  3. Major clinical research advances in gynecologic cancer in 2014.

    PubMed

    Suh, Dong Hoon; Lee, Kyung Hun; Kim, Kidong; Kang, Sokbom; Kim, Jae Weon

    2015-04-01

    In 2014, 9 topics were selected as major advances in clinical research for gynecologic oncology: 2 each in cervical and corpus cancer, 4 in ovarian cancer, and 1 in breast cancer. For cervical cancer, several therapeutic agents showed viable antitumor clinical response in recurrent and metastatic disease: bevacizumab, cediranib, and immunotherapies including human papillomavirus (HPV)-tumor infiltrating lymphocytes and Z-100. The HPV test received FDA approval as the primary screening tool of cervical cancer in women aged 25 and older, based on the results of the ATHENA trial, which suggested that the HPV test was a more sensitive and efficient strategy for cervical cancer screening than methods based solely on cytology. For corpus cancers, results of a phase III Gynecologic Oncology Group (GOG) 249 study of early-stage endometrial cancer with high-intermediate risk factors are followed by the controversial topic of uterine power morcellation in minimally invasive gynecologic surgery. Promising results of phase II studies regarding the effectiveness of olaparib in various ovarian cancer settings are summarized. After a brief review of results from a phase III study on pazopanib maintenance therapy in advanced ovarian cancer, 2 outstanding 2014 ASCO presentations cover the topic of using molecular subtypes in predicting response to bevacizumab. A review of the use of opportunistic bilateral salpingectomy as an ovarian cancer preventive strategy in the general population is presented. Two remarkable studies that discussed the effectiveness of adjuvant ovarian suppression in premenopausal early breast cancer have been selected as the last topics covered in this review.

  4. Advanced Stirling Convertor Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore M.; Blaze, Gina M.

    2007-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Space Systems (LMSS), Sunpower Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science and exploration missions. This generator will make use of the free-piston Stirling convertors to achieve higher conversion efficiency than currently available alternatives. The ASRG will utilize two Advanced Stirling Convertors (ASC) to convert thermal energy from a radioisotope heat source to electricity. NASA GRC has initiated several experiments to demonstrate the functionality of the ASC, including: in-air extended operation, thermal vacuum extended operation, and ASRG simulation for mobile applications. The in-air and thermal vacuum test articles are intended to provide convertor performance data over an extended operating time. These test articles mimic some features of the ASRG without the requirement of low system mass. Operation in thermal vacuum adds the element of simulating deep space. This test article is being used to gather convertor performance and thermal data in a relevant environment. The ASRG simulator was designed to incorporate a minimum amount of support equipment, allowing integration onto devices powered directly by the convertors, such as a rover. This paper discusses the design, fabrication, and implementation of these experiments.

  5. Astonishing advances in mouse genetic tools for biomedical research.

    PubMed

    Kaczmarczyk, Lech; Jackson, Walker S

    2015-01-01

    The humble house mouse has long been a workhorse model system in biomedical research. The technology for introducing site-specific genome modifications led to Nobel Prizes for its pioneers and opened a new era of mouse genetics. However, this technology was very time-consuming and technically demanding. As a result, many investigators continued to employ easier genome manipulation methods, though resulting models can suffer from overlooked or underestimated consequences. Another breakthrough, invaluable for the molecular dissection of disease mechanisms, was the invention of high-throughput methods to measure the expression of a plethora of genes in parallel. However, the use of samples containing material from multiple cell types could obfuscate data, and thus interpretations. In this review we highlight some important issues in experimental approaches using mouse models for biomedical research. We then discuss recent technological advances in mouse genetics that are revolutionising human disease research. Mouse genomes are now easily manipulated at precise locations thanks to guided endonucleases, such as transcription activator-like effector nucleases (TALENs) or the CRISPR/Cas9 system, both also having the potential to turn the dream of human gene therapy into reality. Newly developed methods of cell type-specific isolation of transcriptomes from crude tissue homogenates, followed by detection with next generation sequencing (NGS), are vastly improving gene regulation studies. Taken together, these amazing tools simplify the creation of much more accurate mouse models of human disease, and enable the extraction of hitherto unobtainable data. PMID:26513700

  6. Astonishing advances in mouse genetic tools for biomedical research.

    PubMed

    Kaczmarczyk, Lech; Jackson, Walker S

    2015-01-01

    The humble house mouse has long been a workhorse model system in biomedical research. The technology for introducing site-specific genome modifications led to Nobel Prizes for its pioneers and opened a new era of mouse genetics. However, this technology was very time-consuming and technically demanding. As a result, many investigators continued to employ easier genome manipulation methods, though resulting models can suffer from overlooked or underestimated consequences. Another breakthrough, invaluable for the molecular dissection of disease mechanisms, was the invention of high-throughput methods to measure the expression of a plethora of genes in parallel. However, the use of samples containing material from multiple cell types could obfuscate data, and thus interpretations. In this review we highlight some important issues in experimental approaches using mouse models for biomedical research. We then discuss recent technological advances in mouse genetics that are revolutionising human disease research. Mouse genomes are now easily manipulated at precise locations thanks to guided endonucleases, such as transcription activator-like effector nucleases (TALENs) or the CRISPR/Cas9 system, both also having the potential to turn the dream of human gene therapy into reality. Newly developed methods of cell type-specific isolation of transcriptomes from crude tissue homogenates, followed by detection with next generation sequencing (NGS), are vastly improving gene regulation studies. Taken together, these amazing tools simplify the creation of much more accurate mouse models of human disease, and enable the extraction of hitherto unobtainable data.

  7. The neutron texture diffractometer at the China Advanced Research Reactor

    NASA Astrophysics Data System (ADS)

    Li, Mei-Juan; Liu, Xiao-Long; Liu, Yun-Tao; Tian, Geng-Fang; Gao, Jian-Bo; Yu, Zhou-Xiang; Li, Yu-Qing; Wu, Li-Qi; Yang, Lin-Feng; Sun, Kai; Wang, Hong-Li; Santisteban, J. r.; Chen, Dong-Feng

    2016-03-01

    The first neutron texture diffractometer in China has been built at the China Advanced Research Reactor, due to strong demand for texture measurement with neutrons from the domestic user community. This neutron texture diffractometer has high neutron intensity, moderate resolution and is mainly applied to study texture in commonly used industrial materials and engineering components. In this paper, the design and characteristics of this instrument are described. The results for calibration with neutrons and quantitative texture analysis of zirconium alloy plate are presented. The comparison of texture measurements with the results obtained in HIPPO at LANSCE and Kowari at ANSTO illustrates the reliability of the texture diffractometer. Supported by National Nature Science Foundation of China (11105231, 11205248, 51327902) and International Atomic Energy Agency-TC program (CPR0012)

  8. [Advances in the researches of lutein and alzheimer's disease].

    PubMed

    Xu, Xianrong; Lin, Xiaoming

    2015-05-01

    Lutein, a kind of oxycarotenoid, can pass the blood brain barrier and preferentially accumulate in the human brain, which is the most abundant carotenoid in human brain. Evidence from multiple studies suggested that lutein was closely related to age-related cognitive decline and risk of Alzheimer's disease (AD) in human. Dietary, plasma and brain concentrations of lutein were negatively associated with age-related cognitive decline. Lutein concentrations in plasma and brain were significantly lower in AD patients than those of health control. In human brain, lutein was the sole carotenoid which consistently associated with a range of cognitive function measures. In elderly women, lutein supplement can improve the cognitive function. In this article, we systematically reviewed the literature on the role of lutein in age-related cognitive decline and alzheimer's disease and its possible mechanisms. It may prove some benefit information for the advanced research and prevention of AD.

  9. Recent advances in research applications of nanophase hydroxyapatite.

    PubMed

    Fox, Kate; Tran, Phong A; Tran, Nhiem

    2012-07-16

    Hydroxyapatite, the main inorganic material in natural bone, has been used widely for orthopaedic applications. Due to size effects and surface phenomena at the nanoscale, nanophase hydroxyapatite possesses unique properties compared to its bulk-phase counterpart. The high surface-to-volume ratio, reactivities, and biomimetic morphologies make nano-hydroxyapatite more favourable in applications such as orthopaedic implant coating or bone substitute filler. Recently, more efforts have been focused on the possibility of combining hydroxyapatite with other drugs and materials for multipurpose applications, such as antimicrobial treatments, osteoporosis treatments and magnetic manipulation. To build more effective nano-hydroxyapatite and composite systems, the particle synthesis processes, chemistry, and toxicity have to be thoroughly investigated. In this Minireview, we report the recent advances in research regarding nano-hydroxyapatite. Synthesis routes and a wide range of applications of hydroxyapatite nanoparticles will be discussed. The Minireview also addresses several challenges concerning the biosafety of the nanoparticles.

  10. Invited review article: Advanced light microscopy for biological space research.

    PubMed

    De Vos, Winnok H; Beghuin, Didier; Schwarz, Christian J; Jones, David B; van Loon, Jack J W A; Bereiter-Hahn, Juergen; Stelzer, Ernst H K

    2014-10-01

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy. PMID:25362364

  11. Invited Review Article: Advanced light microscopy for biological space research

    SciTech Connect

    De Vos, Winnok H.; Beghuin, Didier; Schwarz, Christian J.; Jones, David B.; Loon, Jack J. W. A. van

    2014-10-15

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  12. Invited review article: Advanced light microscopy for biological space research.

    PubMed

    De Vos, Winnok H; Beghuin, Didier; Schwarz, Christian J; Jones, David B; van Loon, Jack J W A; Bereiter-Hahn, Juergen; Stelzer, Ernst H K

    2014-10-01

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  13. Invited Review Article: Advanced light microscopy for biological space research

    NASA Astrophysics Data System (ADS)

    De Vos, Winnok H.; Beghuin, Didier; Schwarz, Christian J.; Jones, David B.; van Loon, Jack J. W. A.; Bereiter-Hahn, Juergen; Stelzer, Ernst H. K.

    2014-10-01

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  14. FY09 Advanced Instrumentation and Active Interrogation Research for Safeguards

    SciTech Connect

    D. L. Chichester; S. A. Pozzi; E. H. Seabury; J. L. Dolan; M. Flaska; J. T. Johnson; S. M. Watson; J. Wharton

    2009-08-01

    Multiple small-scale projects have been undertaken to investigate advanced instrumentation solutions for safeguard measurement challenges associated with advanced fuel cycle facilities and next-generation fuel reprocessing installations. These activities are in support of the U.S. Department of Energy's Fuel Cycle Research and Development program and its Materials Protection, Accounting, and Control for Transmutation (MPACT) campaign. 1) Work was performed in a collaboration with the University of Michigan (Prof. Sara Pozzi, co-PI) to investigate the use of liquid-scintillator radiation detectors for assaying mixed-oxide (MOX) fuel, to characterize its composition and to develop advanced digital pulse-shape discrimination algorithms for performing time-correlation measurements in the MOX fuel environment. This work included both simulations and experiments and has shown that these techniques may provide a valuable approach for use within advanced safeguard measurement scenarios. 2) Work was conducted in a collaboration with Oak Ridge National Laboratory (Dr. Paul Hausladen, co-PI) to evaluate the strengths and weaknesses of the fast-neutron coded-aperture imaging technique for locating and characterizing fissile material, and as a tool for performing hold-up measurements in fissile material handling facilities. This work involved experiments at Idaho National Laboratory, using MOX fuel and uranium metal, in both passive and active interrogation configurations. A complete analysis has not yet been completed but preliminary results suggest several potential uses for the fast neutron imaging technique. 3) Work was carried out to identify measurement approaches for determining nitric acid concentration in the range of 1 – 4 M and beyond. This work included laboratory measurements to investigate the suitability of prompt-gamma neutron activation analysis for this measurement and product reviews of other commercial solutions. Ultrasonic density analysis appears to be

  15. Advanced research and technology programs for advanced high-pressure oxygen-hydrogen rocket propulsion

    NASA Technical Reports Server (NTRS)

    Marsik, S. J.; Morea, S. F.

    1985-01-01

    A research and technology program for advanced high pressure, oxygen-hydrogen rocket propulsion technology is presently being pursued by the National Aeronautics and Space Administration (NASA) to establish the basic discipline technologies, develop the analytical tools, and establish the data base necessary for an orderly evolution of the staged combustion reusable rocket engine. The need for the program is based on the premise that the USA will depend on the Shuttle and its derivative versions as its principal Earth-to-orbit transportation system for the next 20 to 30 yr. The program is focused in three principal areas of enhancement: (1) life extension, (2) performance, and (3) operations and diagnosis. Within the technological disciplines the efforts include: rotordynamics, structural dynamics, fluid and gas dynamics, materials fatigue/fracture/life, turbomachinery fluid mechanics, ignition/combustion processes, manufacturing/producibility/nondestructive evaluation methods and materials development/evaluation. An overview of the Advanced High Pressure Oxygen-Hydrogen Rocket Propulsion Technology Program Structure and Working Groups objectives are presented with highlights of several significant achievements.

  16. Fossil energy: From laboratory to marketplace. Part 2, The role of advanced research

    SciTech Connect

    Not Available

    1992-03-01

    The purpose of this work is to provide a summary description of the role of advanced research in the overall Fossil Energy R&D program successes. It presents the specific Fossil Energy advanced research products that have been adopted commercially or fed into other R&D programs as part of the crosscutting enabling technology base upon which advanced systems are based.

  17. Adaptive grid finite element model of the tokamak scrapeoff layer

    SciTech Connect

    Kuprat, A.P.; Glasser, A.H.

    1995-07-01

    The authors discuss unstructured grids for application to transport in the tokamak edge SOL. They have developed a new metric with which to judge element elongation and resolution requirements. Using this method, the authors apply a standard moving finite element technique to advance the SOL equations while inserting/deleting dynamically nodes that violate an elongation criterion. In a tokamak plasma, this method achieves a more uniform accuracy, and results in highly stretched triangular finite elements, except near separatrix X-point where transport is more isotropic.

  18. Current Status and Future Technical Challenges for Tokamak Magnets

    SciTech Connect

    Martovetsky, N; Minervini, J; Okuno, K; Salpiero, E; Filatov, O

    2002-11-11

    Magnet technology for fusion in the last decade has been focusing mostly on the development of magnets for tokamaks--the most advanced fusion concept at the moment. The largest and the most complex tokamak under development is ITER. To demonstrate adequate design approaches to large magnets for ITER and to develop industrial capabilities, two large model coils and three insert coils, all using full-scale conductor, were built and tested by the international collaboration during 1994-2002. The status of the magnet technology and directions of future developments are discussed in this paper.

  19. Design and Analysis of the Thermal Shield of EAST Tokamak

    NASA Astrophysics Data System (ADS)

    Xie, Han; Liao, Ziying

    2008-04-01

    EAST (Experimental Advanced Superconducting Tokamak) is a tokamak with superconducting toroidal and poloidal magnets operated at 4.5 K. In order to reduce the thermal load applied on the surfaces of all cryogenically cooled components and keep the heat load of the cryogenic system at a minimum, a continuous radiation shield system located between the magnet system and warm components is adopted. The main loads to which the thermal shield system is subjected are gravity, seismic, electromagnetic and thermal gradients. This study employed NASTRAN and ANSYS finite element codes to analyze the stress under a spectrum of loading conditions and combinations, providing a theoretical basis for an optimization design of the structure.

  20. Simulation of EAST vertical displacement events by tokamak simulation code

    NASA Astrophysics Data System (ADS)

    Qiu, Qinglai; Xiao, Bingjia; Guo, Yong; Liu, Lei; Xing, Zhe; Humphreys, D. A.

    2016-10-01

    Vertical instability is a potentially serious hazard for elongated plasma. In this paper, the tokamak simulation code (TSC) is used to simulate vertical displacement events (VDE) on the experimental advanced superconducting tokamak (EAST). Key parameters from simulations, including plasma current, plasma shape and position, flux contours and magnetic measurements match experimental data well. The growth rates simulated by TSC are in good agreement with TokSys results. In addition to modeling the free drift, an EAST fast vertical control model enables TSC to simulate the course of VDE recovery. The trajectories of the plasma current center and control currents on internal coils (IC) fit experimental data well.

  1. Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 1 -- Base program. Final report, October 1986--September 1993

    SciTech Connect

    Smith, V.E.

    1994-05-01

    Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

  2. [Research advances in cadmium pollution of peanut (Arachis hypogaea L.)].

    PubMed

    Wang, Kai-rong; Zhang, Lei

    2008-12-01

    Peanut (Arachis hypogaea L.) is a major oil-bearing crop in the world, and as well, an important resource of plant protein and a main raw material for food processing. With the increasing of its direct human consumption and food processing, the Cd concentration in peanut kernel has aroused great concern in recent years. China is a main country of the production and exportation of peanut, but the Cd enrichment in peanut kernel is the main obstacle for its peanut export trade. In this paper, the research advances in Cd pollution of peanut kernel were reviewed, based on the characteristics and mechanisms of Cd accumulation and distribution in peanut kernel, the intra-specific variation of kernel Cd content, and the measures in controlling kernel Cd content. Two strategies were put forward for controlling Cd pollution of peanut kernel, i.e., to reduce the Cd uptake by main root system of peanut plant, and to control the transference of Cd from root to fruit (kernel). In order to applying the strategies effectively, researches on the mechanisms of Cd accumulation in peanut kernel should be enhanced in three aspects, i.e., root vitality and its relationship with Cd accumulation in kernel, mechanism of fruit Cd absorption and its contribution to kernel Cd content, and mechanism of Cd transference in plants and its effects on kernel Cd content.

  3. Advanced 3D Optical Microscopy in ENS Research.

    PubMed

    Vanden Berghe, Pieter

    2016-01-01

    Microscopic techniques are among the few approaches that have survived the test of time. Being invented half way the seventeenth century by Antonie van Leeuwenhoek and Robert Hooke, this technology is still essential in modern biomedical labs. Many microscopy techniques have been used in ENS research to guide researchers in their dissections and later to enable electrode recordings. Apart from this, microscopy has been instrumental in the identification of subpopulations of cells in the ENS, using a variety of staining methods. A significant step forward in the use of microscopy was the introduction of fluorescence approaches. Due to the fact that intense excitation light is now filtered away from the longer wavelength emission light, the contrast can be improved drastically, which helped to identify subpopulations of enteric neurons in a variety of species. Later functionalized fluorescent probes were used to measure and film activity in muscle and neuronal cells. Another important impetus to the use of microscopy was the discovery and isolation of the green fluorescent protein (GFP), as it gave rise to the development of many different color variants and functionalized constructs. Recent advances in microscopy are the result of a continuous search to enhance contrast between the item of interest and its background but also to improve resolving power to tell two small objects apart. In this chapter three different microscopy approaches will be discussed that can aid to improve our understanding of ENS function within the gut wall. PMID:27379646

  4. Fingerprint identification: advances since the 2009 National Research Council report

    PubMed Central

    Champod, Christophe

    2015-01-01

    This paper will discuss the major developments in the area of fingerprint identification that followed the publication of the National Research Council (NRC, of the US National Academies of Sciences) report in 2009 entitled: Strengthening Forensic Science in the United States: A Path Forward. The report portrayed an image of a field of expertise used for decades without the necessary scientific research-based underpinning. The advances since the report and the needs in selected areas of fingerprinting will be detailed. It includes the measurement of the accuracy, reliability, repeatability and reproducibility of the conclusions offered by fingerprint experts. The paper will also pay attention to the development of statistical models allowing assessment of fingerprint comparisons. As a corollary of these developments, the next challenge is to reconcile a traditional practice dominated by deterministic conclusions with the probabilistic logic of any statistical model. There is a call for greater candour and fingerprint experts will need to communicate differently on the strengths and limitations of their findings. Their testimony will have to go beyond the blunt assertion of the uniqueness of fingerprints or the opinion delivered ispe dixit. PMID:26101284

  5. Advances in knowledge management for pharmaceutical research and development.

    PubMed

    Torr-Brown, Sheryl

    2005-05-01

    There are two assumptions that are taken for granted in the pharmaceutical industry today. Firstly, that we can generate an unprecedented amount of drug-related information along the research and development (R&D) pipeline, and secondly, that researchers are more connected to each other than they have ever been, owing to the internet revolution of the past 15 years or so. Both of these aspects of the modern pharmaceutical company have brought many benefits to the business. However, the pharmaceutical industry is currently under fire due to allegations of decreased productivity despite significant investments in R&D, which if left to continue at the present pace, will reach almost US 60 billion dollars by 2006. This article explores the role of knowledge in the industry and reviews recent developments and emerging opportunities in the field of knowledge management (KM) as it applies to pharmaceutical R&D. It is argued that systematic KM will be increasingly necessary to optimize the value of preceding advances in high-throughput approaches to R&D, and to fully realize the anticipated increase in productivity. The application of KM principles and practices to the business can highlight opportunities for balancing the current reliance on blockbuster drugs with a more patient-centric focus on human health, which is now becoming possible. PMID:15892246

  6. Advances in knowledge management for pharmaceutical research and development.

    PubMed

    Torr-Brown, Sheryl

    2005-05-01

    There are two assumptions that are taken for granted in the pharmaceutical industry today. Firstly, that we can generate an unprecedented amount of drug-related information along the research and development (R&D) pipeline, and secondly, that researchers are more connected to each other than they have ever been, owing to the internet revolution of the past 15 years or so. Both of these aspects of the modern pharmaceutical company have brought many benefits to the business. However, the pharmaceutical industry is currently under fire due to allegations of decreased productivity despite significant investments in R&D, which if left to continue at the present pace, will reach almost US 60 billion dollars by 2006. This article explores the role of knowledge in the industry and reviews recent developments and emerging opportunities in the field of knowledge management (KM) as it applies to pharmaceutical R&D. It is argued that systematic KM will be increasingly necessary to optimize the value of preceding advances in high-throughput approaches to R&D, and to fully realize the anticipated increase in productivity. The application of KM principles and practices to the business can highlight opportunities for balancing the current reliance on blockbuster drugs with a more patient-centric focus on human health, which is now becoming possible.

  7. Research advances in plant-made flavivirus antigens.

    PubMed

    Martínez, C A; Giulietti, A M; Talou, J Rodríguez

    2012-01-01

    Outbreaks of flaviviruses such as dengue (DV), yellow fever (YFV), Japanese encephalitis (JEV), tick-borne encephalitis (TBEV) and West Nile (WNV) affect numerous countries around the world. The fast spread of these viruses is the result of increases in the human population, rapid urbanisation and globalisation. While vector control is an important preventive measure against vector-borne diseases, it has failed to prevent the spread of these diseases, particularly in developing countries where the implementation of control measures is intermittent. As antiviral drugs against flaviviruses are not yet available, vaccination remains the most important tool for prevention. Although human vaccines for YFV, TBEV and JEV are available, on-going vaccination efforts are insufficient to prevent infection. No vaccines against DENV and WNV are available. Research advances have provided important tools for flavivirus vaccine development, such as the use of plants as a recombinant antigen production platform. This review summarises the research efforts in this area and highlights why a plant system is considered a necessary alternative production platform for high-tech subunit vaccines. PMID:22480936

  8. Advanced 3D Optical Microscopy in ENS Research.

    PubMed

    Vanden Berghe, Pieter

    2016-01-01

    Microscopic techniques are among the few approaches that have survived the test of time. Being invented half way the seventeenth century by Antonie van Leeuwenhoek and Robert Hooke, this technology is still essential in modern biomedical labs. Many microscopy techniques have been used in ENS research to guide researchers in their dissections and later to enable electrode recordings. Apart from this, microscopy has been instrumental in the identification of subpopulations of cells in the ENS, using a variety of staining methods. A significant step forward in the use of microscopy was the introduction of fluorescence approaches. Due to the fact that intense excitation light is now filtered away from the longer wavelength emission light, the contrast can be improved drastically, which helped to identify subpopulations of enteric neurons in a variety of species. Later functionalized fluorescent probes were used to measure and film activity in muscle and neuronal cells. Another important impetus to the use of microscopy was the discovery and isolation of the green fluorescent protein (GFP), as it gave rise to the development of many different color variants and functionalized constructs. Recent advances in microscopy are the result of a continuous search to enhance contrast between the item of interest and its background but also to improve resolving power to tell two small objects apart. In this chapter three different microscopy approaches will be discussed that can aid to improve our understanding of ENS function within the gut wall.

  9. Fingerprint identification: advances since the 2009 National Research Council report.

    PubMed

    Champod, Christophe

    2015-08-01

    This paper will discuss the major developments in the area of fingerprint identification that followed the publication of the National Research Council (NRC, of the US National Academies of Sciences) report in 2009 entitled: Strengthening Forensic Science in the United States: A Path Forward. The report portrayed an image of a field of expertise used for decades without the necessary scientific research-based underpinning. The advances since the report and the needs in selected areas of fingerprinting will be detailed. It includes the measurement of the accuracy, reliability, repeatability and reproducibility of the conclusions offered by fingerprint experts. The paper will also pay attention to the development of statistical models allowing assessment of fingerprint comparisons. As a corollary of these developments, the next challenge is to reconcile a traditional practice dominated by deterministic conclusions with the probabilistic logic of any statistical model. There is a call for greater candour and fingerprint experts will need to communicate differently on the strengths and limitations of their findings. Their testimony will have to go beyond the blunt assertion of the uniqueness of fingerprints or the opinion delivered ispe dixit.

  10. Research advances in plant-made flavivirus antigens.

    PubMed

    Martínez, C A; Giulietti, A M; Talou, J Rodríguez

    2012-01-01

    Outbreaks of flaviviruses such as dengue (DV), yellow fever (YFV), Japanese encephalitis (JEV), tick-borne encephalitis (TBEV) and West Nile (WNV) affect numerous countries around the world. The fast spread of these viruses is the result of increases in the human population, rapid urbanisation and globalisation. While vector control is an important preventive measure against vector-borne diseases, it has failed to prevent the spread of these diseases, particularly in developing countries where the implementation of control measures is intermittent. As antiviral drugs against flaviviruses are not yet available, vaccination remains the most important tool for prevention. Although human vaccines for YFV, TBEV and JEV are available, on-going vaccination efforts are insufficient to prevent infection. No vaccines against DENV and WNV are available. Research advances have provided important tools for flavivirus vaccine development, such as the use of plants as a recombinant antigen production platform. This review summarises the research efforts in this area and highlights why a plant system is considered a necessary alternative production platform for high-tech subunit vaccines.

  11. ARCHES: Advancing Research & Capacity in Hydrologic Education and Science

    NASA Astrophysics Data System (ADS)

    Milewski, A.; Fryar, A. E.; Durham, M. C.; Schroeder, P.; Agouridis, C.; Hanley, C.; Rotz, R. R.

    2013-12-01

    Educating young scientists and building capacity on a global scale is pivotal towards better understanding and managing our water resources. Based on this premise the ARCHES (Advancing Research & Capacity in Hydrologic Education and Science) program has been established. This abstract provides an overview of the program, links to access information, and describes the activities and outcomes of student participants from the Middle East and North Africa. The ARCHES program (http://arches.wrrs.uga.edu) is an integrated hydrologic education approach using online courses, field programs, and various hands-on workshops. The program aims to enable young scientists to effectively perform the high level research that will ultimately improve quality of life, enhance science-based decision making, and facilitate collaboration. Three broad, interlinked sets of activities are incorporated into the ARCHES program: (A1) the development of technical expertise, (A2) the development of professional contacts and skills, and (A3) outreach and long-term sustainability. The development of technical expertise (A1) is implemented through three progressive instructional sections. Section 1: Students were guided through a series of online lectures and exercises (Moodle: http://wrrs.uga.edu/moodle) covering three main topics (Remote Sensing, GIS, and Hydrologic Modeling). Section 2: Students participated in a hands-on workshop hosted at the University of Georgia's Water Resources and Remote Sensing Laboratory (WRRSL). Using ENVI, ArcGIS, and ArcSWAT, students completed a series of lectures and real-world applications (e.g., Development of Hydrologic Models). Section 3: Students participated in field studies (e.g., measurements of infiltration, recharge, streamflow, and water-quality parameters) conducted by U.S. partners and international collaborators in the participating countries. The development of professional contacts and skills (A2) was achieved through the promotion of networking

  12. [Advanced Gas Turbine Systems Research]. Technical Quarterly Progress Report

    SciTech Connect

    1998-09-30

    Major Accomplishments by Advanced Gas Turbine Systems Research (AGTSR) during this reporting period are highlighted below and amplified in later sections of this report: AGTSR distributed 50 proposals from the 98RFP to the IRB for review, evaluation and rank-ordering during the summer; AGTSR conducted a detailed program review at DOE-FETC on July 24; AGTSR organized the 1998 IRB proposal review meeting at SCIES on September 15-16; AGTSR consolidated all the IRB proposal scores and rank-orderings to facilitate the 98RFP proposal deliberations; AGTSR submitted meeting minutes and proposal short-list recommendation to the IRB and DOE for the 98RFP solicitation; AGTSR reviewed two gas turbine related proposals as part of the CU RFP State Project for renovating the central energy facility; AGTSR reviewed and cleared research papers with the IRB from the University of Pittsburgh, Wisconsin, and Minnesota; AGTSR assisted GTA in obtaining university stakeholder support of the ATS program from California, Pennsylvania, and Colorado; AGTSR assisted GTA in distributing alert notices on potential ATS budget cuts to over 150 AGTSR performing university members; AGTSR submitted proceedings booklet and organizational information pertaining to the OAI hybrid gas turbine workshop to DOE-FETC; For DOE-FETC, AGTSR updated the university consortium poster to include new members and research highlights; For DOE-FETC, the general AGTSR Fact Sheet was updated to include new awards, workshops, educational activity and select accomplishments from the research projects; For DOE-FETC, AGTSR prepared three fact sheets highlighting university research supported in combustion, aero-heat transfer, and materials; For DOE-FETC, AGTSR submitted pictures on materials research for inclusion in the ATS technology brochure; For DOE-FETC, AGTSR submitted a post-2000 roadmap showing potential technology paths AGTSR could pursue in the next decade; AGTSR distributed the ninth newsletter UPDATE to DOE, the

  13. DIII-D tokamak long range plan. Revision 3

    SciTech Connect

    1992-08-01

    The DIII-D Tokamak Long Range Plan for controlled thermonuclear magnetic fusion research will be carried out with broad national and international participation. The plan covers: (1) operation of the DIII-D tokamak to conduct research experiments to address needs of the US Magnetic Fusion Program; (2) facility modifications to allow these new experiments to be conducted; and (3) collaborations with other laboratories to integrate DIII-D research into the national and international fusion programs. The period covered by this plan is 1 November 19983 through 31 October 1998.

  14. Advanced Stirling Convertor Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Poriti, Sal

    2010-01-01

    The NASA Glenn Research Center (GRC) has been testing high-efficiency free-piston Stirling convertors for potential use in radioisotope power systems (RPSs) since 1999. The current effort is in support of the Advanced Stirling Radioisotope Generator (ASRG), which is being developed by the U.S. Department of Energy (DOE), Lockheed Martin Space Systems Company (LMSSC), Sunpower, Inc., and the NASA GRC. This generator would use two high-efficiency Advanced Stirling Convertors (ASCs) to convert thermal energy from a radioisotope heat source into electricity. As reliability is paramount to a RPS capable of providing spacecraft power for potential multi-year missions, GRC provides direct technology support to the ASRG flight project in the areas of reliability, convertor and generator testing, high-temperature materials, structures, modeling and analysis, organics, structural dynamics, electromagnetic interference (EMI), and permanent magnets to reduce risk and enhance reliability of the convertor as this technology transitions toward flight status. Convertor and generator testing is carried out in short- and long-duration tests designed to characterize convertor performance when subjected to environments intended to simulate launch and space conditions. Long duration testing is intended to baseline performance and observe any performance degradation over the life of the test. Testing involves developing support hardware that enables 24/7 unattended operation and data collection. GRC currently has 14 Stirling convertors under unattended extended operation testing, including two operating in the ASRG Engineering Unit (ASRG-EU). Test data and high-temperature support hardware are discussed for ongoing and future ASC tests with emphasis on the ASC-E and ASC-E2.

  15. Major clinical research advances in gynecologic cancer in 2014.

    PubMed

    Suh, Dong Hoon; Lee, Kyung Hun; Kim, Kidong; Kang, Sokbom; Kim, Jae Weon

    2015-04-01

    In 2014, 9 topics were selected as major advances in clinical research for gynecologic oncology: 2 each in cervical and corpus cancer, 4 in ovarian cancer, and 1 in breast cancer. For cervical cancer, several therapeutic agents showed viable antitumor clinical response in recurrent and metastatic disease: bevacizumab, cediranib, and immunotherapies including human papillomavirus (HPV)-tumor infiltrating lymphocytes and Z-100. The HPV test received FDA approval as the primary screening tool of cervical cancer in women aged 25 and older, based on the results of the ATHENA trial, which suggested that the HPV test was a more sensitive and efficient strategy for cervical cancer screening than methods based solely on cytology. For corpus cancers, results of a phase III Gynecologic Oncology Group (GOG) 249 study of early-stage endometrial cancer with high-intermediate risk factors are followed by the controversial topic of uterine power morcellation in minimally invasive gynecologic surgery. Promising results of phase II studies regarding the effectiveness of olaparib in various ovarian cancer settings are summarized. After a brief review of results from a phase III study on pazopanib maintenance therapy in advanced ovarian cancer, 2 outstanding 2014 ASCO presentations cover the topic of using molecular subtypes in predicting response to bevacizumab. A review of the use of opportunistic bilateral salpingectomy as an ovarian cancer preventive strategy in the general population is presented. Two remarkable studies that discussed the effectiveness of adjuvant ovarian suppression in premenopausal early breast cancer have been selected as the last topics covered in this review. PMID:25872896

  16. Recent advances in Echinococcus genomics and stem cell research.

    PubMed

    Koziol, U; Brehm, K

    2015-10-30

    Alveolar and cystic echinococcosis, caused by the metacestode larval stages of the tapeworms Echinococcus multilocularis and Echinococcus granulosus, respectively, are life-threatening diseases and very difficult to treat. The introduction of benzimidazole-based chemotherapy, which targets parasite β-tubulin, has significantly improved the life-span and prognosis of echinococcosis patients. However, benzimidazoles show only parasitostatic activity, are associated with serious adverse side effects and have to be administered for very long time periods, underlining the need for new drugs. Very recently, the nuclear genomes of E. multilocularis and E. granulosus have been characterised, revealing a plethora of data for gaining a deeper understanding of host-parasite interaction, parasite development and parasite evolution. Combined with extensive transcriptome analyses of Echinococcus life cycle stages these investigations also yielded novel clues for targeted drug design. Recent years also witnessed significant advancements in the molecular and cellular characterisation of the Echinococcus 'germinative cell' population, which forms a unique stem cell system that differs from stem cells of other organisms in the expression of several genes associated with the maintenance of pluripotency. As the only parasite cell type capable of undergoing mitosis, the germinative cells are central to all developmental transitions of Echinococcus within the host and to parasite expansion via asexual proliferation. In the present article, we will briefly introduce and discuss recent advances in Echinococcus genomics and stem cell research in the context of drug design and development. Interestingly, it turns out that benzimidazoles seem to have very limited effects on Echinococcus germinative cells, which could explain the high recurrence rates observed after chemotherapeutic treatment of echinococcosis patients. This clearly indicates that future efforts into the development of

  17. Recent advances in Echinococcus genomics and stem cell research.

    PubMed

    Koziol, U; Brehm, K

    2015-10-30

    Alveolar and cystic echinococcosis, caused by the metacestode larval stages of the tapeworms Echinococcus multilocularis and Echinococcus granulosus, respectively, are life-threatening diseases and very difficult to treat. The introduction of benzimidazole-based chemotherapy, which targets parasite β-tubulin, has significantly improved the life-span and prognosis of echinococcosis patients. However, benzimidazoles show only parasitostatic activity, are associated with serious adverse side effects and have to be administered for very long time periods, underlining the need for new drugs. Very recently, the nuclear genomes of E. multilocularis and E. granulosus have been characterised, revealing a plethora of data for gaining a deeper understanding of host-parasite interaction, parasite development and parasite evolution. Combined with extensive transcriptome analyses of Echinococcus life cycle stages these investigations also yielded novel clues for targeted drug design. Recent years also witnessed significant advancements in the molecular and cellular characterisation of the Echinococcus 'germinative cell' population, which forms a unique stem cell system that differs from stem cells of other organisms in the expression of several genes associated with the maintenance of pluripotency. As the only parasite cell type capable of undergoing mitosis, the germinative cells are central to all developmental transitions of Echinococcus within the host and to parasite expansion via asexual proliferation. In the present article, we will briefly introduce and discuss recent advances in Echinococcus genomics and stem cell research in the context of drug design and development. Interestingly, it turns out that benzimidazoles seem to have very limited effects on Echinococcus germinative cells, which could explain the high recurrence rates observed after chemotherapeutic treatment of echinococcosis patients. This clearly indicates that future efforts into the development of

  18. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research

    SciTech Connect

    Not Available

    1992-01-01

    Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

  19. Dust Measurements in Tokamaks

    SciTech Connect

    Rudakov, D; Yu, J; Boedo, J; Hollmann, E; Krasheninnikov, S; Moyer, R; Muller, S; Yu, A; Rosenberg, M; Smirnov, R; West, W; Boivin, R; Bray, B; Brooks, N; Hyatt, A; Wong, C; Fenstermacher, M; Groth, M; Lasnier, C; McLean, A; Stangeby, P; Ratynskaia, S; Roquemore, A; Skinner, C; Solomon, W M

    2008-04-23

    Dust production and accumulation impose safety and operational concerns for ITER. Diagnostics to monitor dust levels in the plasma as well as in-vessel dust inventory are currently being tested in a few tokamaks. Dust accumulation in ITER is likely to occur in hidden areas, e.g. between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering resolves size of particles between 0.16-1.6 {micro}m in diameter; the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast-framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in 2D with a single camera or 3D using multiple cameras, but determination of particle size is problematic. In order to calibrate diagnostics and benchmark dust dynamics modeling, pre-characterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase of carbon atomic, C2 dimer, and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics.

  20. Sawtooth oscillation in tokamaks

    SciTech Connect

    Park, W.; Monticello, D.A.

    1989-03-01

    A three-dimensional nonlinear toroidal full MHD code, MH3D, has been used to study sawtooth oscillations in tokamaks. The profile evolution during the sawtooth crash phase compares well with experiment, but only if neoclassical resistivity is used in the rise phase. (Classical resistivity has been used in most of the previous theoretical sawtooth studies.) With neoclassical resistivity, the q value at the axis drops from 1 to about 0.8 before the crash phase, and then resets to 1 through a Kadomtsev-type complete reconnection process. This ..delta..q/sub 0/ approx. = 0.2 is much larger than ..delta..q/sub o/ approx. = 0.01, which is obtained if classical resistivity is used. The current profile is strongly peaked at the axis with a flat region around the singular surface, and is similar to the Textor profile. To understand this behavior, approximate formulas for the time behavior of current and q values are derived. A functional dependence of sawtooth period scaling is also derived. A semi-empirical scaling is found which fits the experimental data from various tokamaks. Some evidence is presented which indicates that the fast crash time is due to enhanced effective resistivity inside the singular current sheet, generated by, e.g., microinstability and electron parallel viscosity with stochastic fields at the x-point. 16 refs., 5 figs.