Science.gov

Sample records for advanced research wrf

  1. Optimizing zonal advection of the Advanced Research WRF (ARW) dynamics for Intel MIC

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.

    2014-10-01

    The Weather Research and Forecast (WRF) model is the most widely used community weather forecast and research model in the world. There are two distinct varieties of WRF. The Advanced Research WRF (ARW) is an experimental, advanced research version featuring very high resolution. The WRF Nonhydrostatic Mesoscale Model (WRF-NMM) has been designed for forecasting operations. WRF consists of dynamics code and several physics modules. The WRF-ARW core is based on an Eulerian solver for the fully compressible nonhydrostatic equations. In the paper, we will use Intel Intel Many Integrated Core (MIC) architecture to substantially increase the performance of a zonal advection subroutine for optimization. It is of the most time consuming routines in the ARW dynamics core. Advection advances the explicit perturbation horizontal momentum equations by adding in the large-timestep tendency along with the small timestep pressure gradient tendency. We will describe the challenges we met during the development of a high-speed dynamics code subroutine for MIC architecture. Furthermore, lessons learned from the code optimization process will be discussed. The results show that the optimizations improved performance of the original code on Xeon Phi 5110P by a factor of 2.4x.

  2. Optimizing meridional advection of the Advanced Research WRF (ARW) dynamics for Intel Xeon Phi coprocessor

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.-L.

    2015-05-01

    The most widely used community weather forecast and research model in the world is the Weather Research and Forecast (WRF) model. Two distinct varieties of WRF exist. The one we are interested is the Advanced Research WRF (ARW) is an experimental, advanced research version featuring very high resolution. The WRF Nonhydrostatic Mesoscale Model (WRF-NMM) has been designed for forecasting operations. WRF consists of dynamics code and several physics modules. The WRF-ARW core is based on an Eulerian solver for the fully compressible nonhydrostatic equations. In the paper, we optimize a meridional (north-south direction) advection subroutine for Intel Xeon Phi coprocessor. Advection is of the most time consuming routines in the ARW dynamics core. It advances the explicit perturbation horizontal momentum equations by adding in the large-timestep tendency along with the small timestep pressure gradient tendency. We will describe the challenges we met during the development of a high-speed dynamics code subroutine for MIC architecture. Furthermore, lessons learned from the code optimization process will be discussed. The results show that the optimizations improved performance of the original code on Xeon Phi 7120P by a factor of 1.2x.

  3. Technical note: Large-eddy simulation of cloudy boundary layer with the Advanced Research WRF model

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Takanobu; Feingold, Graham

    2012-03-01

    A thorough evaluation of the large-eddy simulation (LES) mode of the Advanced Research WRF model is performed with use of three cloudy boundary layer cases developed as LES intercomparison cases by the GEWEX Cloud System Study. Our evaluation reveals two problems that must be recognized and carefully addressed before proceeding with production runs. These are (i) sensitivity of results to the prescribed number of acoustic time steps per physical time step; and (ii) the assumption of saturation adjustment in the initial cloudy state. A temporary, but effective method of how to cope with these issues is suggested. With the proper treatment, the simulation results are comparable to the ensemble mean of the other LES models, and sometimes closer to the observational estimate than the ensemble mean. In order to ease the burden for configuration and post-processing, two new packages are developed and implemented. A detailed description of each package is presented. These packages are freely available to the public.

  4. Enhancing Cloud Radiative Processes and Radiation Efficiency in the Advanced Research Weather Research and Forecasting (WRF) Model

    SciTech Connect

    Iacono, Michael J.

    2015-03-09

    The objective of this research has been to evaluate and implement enhancements to the computational performance of the RRTMG radiative transfer option in the Advanced Research version of the Weather Research and Forecasting (WRF) model. Efficiency is as essential as accuracy for effective numerical weather prediction, and radiative transfer is a relatively time-consuming component of dynamical models, taking up to 30-50 percent of the total model simulation time. To address this concern, this research has implemented and tested a version of RRTMG that utilizes graphics processing unit (GPU) technology (hereinafter RRTMGPU) to greatly improve its computational performance; thereby permitting either more frequent simulation of radiative effects or other model enhancements. During the early stages of this project the development of RRTMGPU was completed at AER under separate NASA funding to accelerate the code for use in the Goddard Space Flight Center (GSFC) Goddard Earth Observing System GEOS-5 global model. It should be noted that this final report describes results related to the funded portion of the originally proposed work concerning the acceleration of RRTMG with GPUs in WRF. As a k-distribution model, RRTMG is especially well suited to this modification due to its relatively large internal pseudo-spectral (g-point) dimension that, when combined with the horizontal grid vector in the dynamical model, can take great advantage of the GPU capability. Thorough testing under several model configurations has been performed to ensure that RRTMGPU improves WRF model run time while having no significant impact on calculated radiative fluxes and heating rates or on dynamical model fields relative to the RRTMG radiation. The RRTMGPU codes have been provided to NCAR for possible application to the next public release of the WRF forecast model.

  5. Recent Advances in WRF Modeling for Air Quality Applications

    EPA Science Inventory

    The USEPA uses WRF in conjunction with the Community Multiscale Air Quality (CMAQ) for air quality regulation and research. Over the years we have added physics options and geophysical datasets to the WRF system to enhance model capabilities especially for extended retrospective...

  6. WRF4G project: Advances in running climate simulations on the EGI Infrastructure

    NASA Astrophysics Data System (ADS)

    Blanco, Carlos; Cofino, Antonio S.; Fernández Quiruelas, Valvanuz; García, Markel; Fernández, Jesús

    2014-05-01

    The Weather Research and Forecasting For Grid (WRF4G) project is a two-year Spanish National R&D project, which has started in 2011. It is now a well established project, involving scientists and technical staff from several institutions, which contribute results to international initiatives such as CORDEX and European FP7 projects such as SPECS and EUPORIAS. The aim of the WRF4G project is to homogenize access hybrid Distributed Computer Infrastructures (DCIs), such as HPC and Grid infrastructures, for climate researchers. Additionally, it provides a productive interface to accomplish ambitious climate experiments such as regional hind-cast/forecast and sensitivity studies. Although Grid infrastructures are very powerful, they have some drawbacks for executing climate applications such as the WRF model. This makes necessary to encapsulate the applications in a middleware in order to provide the appropriate services for monitoring and management. Therefore, the challenge of the WRF4G project is to develop a generic adaptation framework (WRF4G framework) to disseminate it to the scientific community. The framework aims at simplifying the model access by releasing climate scientists from technical and computational aspects. In this contribution, we present some new advances of the WRF4G framework, including new components for designing experiments, simulation monitoring and data management. Additionally, we will show how WRF4G makes possible to run complex experiments on EGI infrastructures concurrently over several VOs such as esr and earth.vo.ibergrid. http://www.meteo.unican.es/software/wrf4g This work has been partially funded by the European Regional Development Fund (ERDF) and the Spanish National R&D Plan 2008-2011 (CGL2011-28864, WRF4G)

  7. Impact of precipitating ice on the simulation of a heavy rainfall event with advanced research WRF using two bulk microphysical schemes

    NASA Astrophysics Data System (ADS)

    Efstathiou, G. A.; Zoumakis, N. M.; Melas, D.; Kassomenos, P.

    2012-11-01

    In this study, the Weather Research and Forecasting (WRF) model version 3.2 is used to examine the impact of precipitating ice and especially snow-graupel partitioning in the simulation of a heavy rainfall event over Chalkidiki peninsula in Northern Greece. This major precipitation event, associated with a case of cyclogenesis over the Aegean Sea, occurred on the 8th of October 2006 causing severe flooding and damage. Two widely used microphysical parameterizations, the Purdue Lin (PLIN) and WRF Single-Moment 6-class scheme (WSM6) are compared with available raingauge measurements over the complex topography of Chalkidiki. To further investigate the importance of snow and graupel relative mass content and the treatment of precipitating ice sedimentation velocity, two older versions of the WSM6 scheme were compiled and run with the current model. The verification results indicate that all simulations were found to match raingauge data more closely over the eastern mountainous Chalkidiki peninsula where maximum accumulations were observed. In other stations all schemes overestimate 24h accumulated rainfall except a station situated at the western part of the peninsula, where none of the simulations was able to reproduce observed rainfall. Graupel dominance in PLIN generates rapid precipitation fallout at the point of maximum predicted 24h accumulation. Similar behavior is shown in WSM6 from WRF version 2, but with significant less rainfall. Increasing snow amounts aloft, due to the unified treatment of precipitating ice in WSM6 from WRF version 3, modifies rain dynamics which decrease rainfall rates, but increases 24h accumulations. A sensitivity experiment where PLIN is used with snow accretion by graupel turned off, indicated that this process seems to be the most important factor controlling the differences in surface precipitation between PLIN and WSM6 from WRF version 3, determining the spatial and temporal distribution of this heavy precipitation event. The

  8. Research Advances

    ERIC Educational Resources Information Center

    King, Angela G.

    2004-01-01

    Research advances, a new feature in Journal of Chemical Engineering that brings information about innovations in current areas of research to high school and college science faculty with an intent to provide educators with timely descriptions of latest progress in research that can be integrated into existing courses to update course content and…

  9. Intel Xeon Phi accelerated Weather Research and Forecasting (WRF) Goddard microphysics scheme

    NASA Astrophysics Data System (ADS)

    Mielikainen, J.; Huang, B.; Huang, A. H.-L.

    2014-12-01

    The Weather Research and Forecasting (WRF) model is a numerical weather prediction system designed to serve both atmospheric research and operational forecasting needs. The WRF development is a done in collaboration around the globe. Furthermore, the WRF is used by academic atmospheric scientists, weather forecasters at the operational centers and so on. The WRF contains several physics components. The most time consuming one is the microphysics. One microphysics scheme is the Goddard cloud microphysics scheme. It is a sophisticated cloud microphysics scheme in the Weather Research and Forecasting (WRF) model. The Goddard microphysics scheme is very suitable for massively parallel computation as there are no interactions among horizontal grid points. Compared to the earlier microphysics schemes, the Goddard scheme incorporates a large number of improvements. Thus, we have optimized the Goddard scheme code. In this paper, we present our results of optimizing the Goddard microphysics scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The Intel MIC is capable of executing a full operating system and entire programs rather than just kernels as the GPU does. The MIC coprocessor supports all important Intel development tools. Thus, the development environment is one familiar to a vast number of CPU developers. Although, getting a maximum performance out of MICs will require using some novel optimization techniques. Those optimization techniques are discussed in this paper. The results show that the optimizations improved performance of Goddard microphysics scheme on Xeon Phi 7120P by a factor of 4.7×. In addition, the optimizations reduced the Goddard microphysics scheme's share of the total WRF processing time from 20.0 to 7.5%. Furthermore, the same optimizations

  10. Recent Advances in Modeling of the Atmospheric Boundary Layer and Land Surface in the Coupled WRF-CMAQ Model

    EPA Science Inventory

    Advances in the land surface model (LSM) and planetary boundary layer (PBL) components of the WRF-CMAQ coupled meteorology and air quality modeling system are described. The aim of these modifications was primarily to improve the modeling of ground level concentrations of trace c...

  11. Incorporating an advanced aerosol activation parameterization into WRF-CAM5: Model evaluation and parameterization intercomparison

    SciTech Connect

    Zhang, Yang; Zhang, Xin; Wang, Kai; He, Jian; Leung, Lai-Yung R.; Fan, Jiwen; Nenes, Athanasios

    2015-07-22

    Aerosol activation into cloud droplets is an important process that governs aerosol indirect effects. The advanced treatment of aerosol activation by Fountoukis and Nenes (2005) and its recent updates, collectively called the FN series, have been incorporated into a newly developed regional coupled climate-air quality model based on the Weather Research and Forecasting model with the physics package of the Community Atmosphere Model version 5 (WRF-CAM5) to simulate aerosol-cloud interactions in both resolved and convective clouds. The model is applied to East Asia for two full years of 2005 and 2010. A comprehensive model evaluation is performed for model predictions of meteorological, radiative, and cloud variables, chemical concentrations, and column mass abundances against satellite data and surface observations from air quality monitoring sites across East Asia. The model performs overall well for major meteorological variables including near-surface temperature, specific humidity, wind speed, precipitation, cloud fraction, precipitable water, downward shortwave and longwave radiation, and column mass abundances of CO, SO2, NO2, HCHO, and O3 in terms of both magnitudes and spatial distributions. Larger biases exist in the predictions of surface concentrations of CO and NOx at all sites and SO2, O3, PM2.5, and PM10 concentrations at some sites, aerosol optical depth, cloud condensation nuclei over ocean, cloud droplet number concentration (CDNC), cloud liquid and ice water path, and cloud optical thickness. Compared with the default Abdul-Razzack Ghan (2000) parameterization, simulations with the FN series produce ~107–113% higher CDNC, with half of the difference attributable to the higher aerosol activation fraction by the FN series and the remaining half due to feedbacks in subsequent cloud microphysical processes. With the higher CDNC, the FN series are more skillful in simulating cloud water path, cloud optical thickness, downward shortwave radiation

  12. Implementation of a new aerosol module HAM within the community Weather Research and Forecasting (WRF) model

    NASA Astrophysics Data System (ADS)

    Mashayekhi, R.; Irannejad, P.; Feichter, J.

    2009-04-01

    Realistic simulation of direct and indirect effects of aerosols requires models where aerosols, meteorology, radiation and chemistry are coupled in a fully interactive manner. The design of the Community Weather Research and Forecasting/Chemistry model (WRF/Chem) permit such an interactive coupling. Over the last few years, various aerosol modules have been implemented into the chemistry version of the WRF model. In this study, a new aerosol module HAM has been incorporated into the WRF/Chem modeling system. The aerosol HAM model embedded into the global ECHAM5 model was developed by Stier et al. in 2005 at the Max Planck Institute for Meteorology. HAM differs from the previous WRF aerosol modules in terms of the size representation, chemical composition and numerical algorithms used. It is based on a pseudo-modal approach for representation of the particle size distribution by grouping aerosols into four geometrical size classes and two types of particles mixed and insoluble. In the current implementation, aerosol HAM is coupled to the Regional Acid Deposition model version 2 (RADM2 chemical mechanism). We also used a flux-resistance method for dry deposition of particles. A high concentration episode for PM10 particles in Tehran from 23 to 29 January 2007 has been chosen and has been compared to observed near surface measurements to test the performance of the coupled HAM/WRF model. We applied a horizontal spacing of 30-km. Preliminary results show that the model captures reasonably both magnitude and diurnal variation of measured PM10 mass concentration during this episode.

  13. Assessment of Two Planetary Boundary Layer Schemes (ACM2 and YSU) within the Weather Research and Forecasting (WRF) Model

    NASA Astrophysics Data System (ADS)

    Wolff, J.; Harrold, M.; Xu, M.

    2014-12-01

    The Weather Research and Forecasting (WRF) model is a highly configurable numerical weather prediction system used in both research and operational forecasting applications. Rigorously testing select configurations and evaluating the performance for specific applications is necessary due to the flexibility offered by the system. The Developmental Testbed Center (DTC) performed extensive testing and evaluation with the Advanced Research WRF (ARW) dynamic core for two physics suite configurations with a goal of assessing the impact that the planetary boundary layer (PBL) scheme had on the final forecast performance. The baseline configuration was run with the Air Force Weather Agency's physics suite, which includes the Yonsei University PBL scheme, while the second configuration was substituted with the Asymmetric Convective Model (ACM2) PBL scheme. This presentation will focus on assessing the forecast performance of the two configurations; both configurations were run over the same set of cases, allowing for a direct comparison of performance. The evaluation was performed over a 15 km CONUS domain for a testing period from September 2013 through August 2014. Simulations were initialized every 36 hours and run out to 48 hours; a 6-hour "warm start" spin-up, including data assimilation using the Gridpoint Statistical Interpolation system preceded each simulation. The extensive testing period allows for robust results as well as the ability to investigate seasonal and regional differences between the two configurations. Results will focus on the evaluation of traditional verification metrics for surface and upper air variables, along with an assessment of statistical and practical significance.

  14. A methodological study on using weather research and forecasting (WRF) model outputs to drive a one-dimensional cloud model

    NASA Astrophysics Data System (ADS)

    Jin, Ling; Kong, Fanyou; Lei, Hengchi; Hu, Zhaoxia

    2014-01-01

    A new method for driving a One-Dimensional Stratiform Cold (1DSC) cloud model with Weather Research and Forecasting (WRF) model outputs was developed by conducting numerical experiments for a typical large-scale stratiform rainfall event that took place on 4-5 July 2004 in Changchun, China. Sensitivity test results suggested that, with hydrometeor profiles extracted from the WRF outputs as the initial input, and with continuous updating of soundings and vertical velocities (including downdraft) derived from the WRF model, the new WRF-driven 1DSC modeling system (WRF-1DSC) was able to successfully reproduce both the generation and dissipation processes of the precipitation event. The simulated rainfall intensity showed a time-lag behind that observed, which could have been caused by simulation errors of soundings, vertical velocities and hydrometeor profiles in the WRF output. Taking into consideration the simulated and observed movement path of the precipitation system, a nearby grid point was found to possess more accurate environmental fields in terms of their similarity to those observed in Changchun Station. Using profiles from this nearby grid point, WRF-1DSC was able to reproduce a realistic precipitation pattern. This study demonstrates that 1D cloud-seeding models do indeed have the potential to predict realistic precipitation patterns when properly driven by accurate atmospheric profiles derived from a regional shortrange forecasting system. This opens a novel and important approach to developing an ensemble-based rain enhancement prediction and operation system under a probabilistic framework concept.

  15. Software Engineering Practices in the Development of NASA Unified Weather Research and Forecasting (NU-WRF) Model

    NASA Astrophysics Data System (ADS)

    Burns, R.; Zhou, S.; Syed, R.

    2010-12-01

    The NASA Unified Weather Research and Forecasting (NU-WRF) Model is an effort to unify several WRF variants developed at NASA and bring together NASA's existing earth science models and assimilation systems that simulate the interaction among clouds, aerosols, atmospheric gases, precipitation, and land surfaces. By developing NU-WRF, the NASA modeling community expects to: (1) facilitate better use of WRF for scientific research, (2) reduce redundancy in major WRF development, (3) prolong the serviceable life span of WRF, and (4) allow better use of NASA high-resolution satellite data for short term climate and weather research. This project involves multiple teams from different organizations and the research goals are still evolving. As a result, software engineering best practices are needed for software life-cycle management and testing, and to ensure reliability of the data being generated. NASA software engineers and scientists have worked together to develop software requirements, scientific use cases, automated regression tests, software release plans, and a revision control system. Nightly automated regression tests are being used on scaled-down versions of the use cases to test if any code changes have unintentionally changed the science results or made the software unstable. Revision control management is needed to track software changes that are made by the many developers involved in the project. The release planning helps to guide the release of NU-WRF versions to the NASA community and allows for making strategic changes in delivery dates and software features as needed. The team of software engineers and scientists have also worked on optimizing, generalizing, and testing existing model preprocessing codes and run scripts for the various models. Finally, the team developed model coupling tools to link WRF with NASA earth science models. NU-WRF 1.0 was based on WRF3.1.1 and was released to the NASA community in July 2010, providing the researchers

  16. WRF Test on IBM BG/L:Toward High Performance Application to Regional Climate Research

    SciTech Connect

    Chin, H S

    2008-09-25

    The effects of climate change will mostly be felt on local to regional scales (Solomon et al., 2007). To develop better forecast skill in regional climate change, an integrated multi-scale modeling capability (i.e., a pair of global and regional climate models) becomes crucially important in understanding and preparing for the impacts of climate change on the temporal and spatial scales that are critical to California's and nation's future environmental quality and economical prosperity. Accurate knowledge of detailed local impact on the water management system from climate change requires a resolution of 1km or so. To this end, a high performance computing platform at the petascale appears to be an essential tool in providing such local scale information to formulate high quality adaptation strategies for local and regional climate change. As a key component of this modeling system at LLNL, the Weather Research and Forecast (WRF) model is implemented and tested on the IBM BG/L machine. The objective of this study is to examine the scaling feature of WRF on BG/L for the optimal performance, and to assess the numerical accuracy of WRF solution on BG/L.

  17. NASA SPoRT Modeling and Data Assimilation Research and Transition Activities Using WRF, LIS and GSI

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Blankenship, Clay B.; Zavodsky, Bradley T.; Srikishen, Jayanthi; Berndt, Emily B.

    2014-01-01

    weather research and forecasting ===== The NASA Short-term Prediction Research and Transition (SPoRT) program has numerous modeling and data assimilation (DA) activities in which the WRF model is a key component. SPoRT generates realtime, research satellite products from the MODIS and VIIRS instruments, making the data available to NOAA/NWS partners running the WRF/EMS, including: (1) 2-km northwestern-hemispheric SST composite, (2) daily, MODIS green vegetation fraction (GVF) over CONUS, and (3) NASA Land Information System (LIS) runs of the Noah LSM over the southeastern CONUS. Each of these datasets have been utilized by specific SPoRT partners in local EMS model runs, with select offices evaluating the impacts using a set of automated scripts developed by SPoRT that manage data acquisition and run the NCAR Model Evaluation Tools verification package. SPoRT is engaged in DA research with the Gridpoint Statistical Interpolation (GSI) and Ensemble Kalman Filter in LIS for soil moisture DA. Ongoing DA projects using GSI include comparing the impacts of assimilating Atmospheric Infrared Sounder (AIRS) radiances versus retrieved profiles, and an analysis of extra-tropical cyclones with intense non-convective winds. As part of its Early Adopter activities for the NASA Soil Moisture Active Passive (SMAP) mission, SPoRT is conducting bias correction and soil moisture DA within LIS to improve simulations using the NASA Unified-WRF (NU-WRF) for both the European Space Agency's Soil Moisture Ocean Salinity and upcoming SMAP mission data. SPoRT has also incorporated real-time global GVF data into LIS and WRF from the VIIRS product being developed by NOAA/NESDIS. This poster will highlight the research and transition activities SPoRT conducts using WRF, NU-WRF, EMS, LIS, and GSI.

  18. Research Advances

    ERIC Educational Resources Information Center

    King, Angela G.

    2005-01-01

    Researchers in the Department of Bioengineering at Rice University are developing a new approach for fighting cancer, based on nanoshells that can both detect and destroy cancerous cells. The aim is to locate the cells, and be able to make a rational choice about whether they need to be destroyed and if possible they should immediately be sent for…

  19. Research Advances

    ERIC Educational Resources Information Center

    King, Angela G.

    2004-01-01

    Nanotechnology are employed by researchers at Northwestern University to develop a method of labeling disease markers present in blood with unique DNA tags they have dubbed "bio-bar-codes". The preparation of nanoparticle and magnetic microparticle probes and a nanoparticle-based PSR-less DNA amplification scheme are involved by the DNA-BCA assay.

  20. Optimizing Weather and Research Forecast (WRF) Thompson cloud microphysics on Intel Many Integrated Core (MIC)

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen

    2014-05-01

    The Thompson cloud microphysics scheme is a sophisticated cloud microphysics scheme in the Weather Research and Forecasting (WRF) model. The scheme is very suitable for massively parallel computation as there are no interactions among horizontal grid points. Compared to the earlier microphysics schemes, the Thompson scheme incorporates a large number of improvements. Thus, we have optimized the speed of this important part of WRF. Intel Many Integrated Core (MIC) ushers in a new era of supercomputing speed, performance, and compatibility. It allows the developers to run code at trillions of calculations per second using the familiar programming model. In this paper, we present our results of optimizing the Thompson microphysics scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The coprocessor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of MICs will require using some novel optimization techniques. Those optimization techniques are discusses in this paper. The results show that the optimization improved MIC performance by 3.4x. Furthermore, the optimized MIC code is 7.0x faster than the optimized multi-threaded code on the four CPU cores of a single socket Intel Xeon E5-2603 running at 1.8 GHz.

  1. Investigation of riming within mixed-phase stratiform clouds using Weather Research and Forecasting (WRF) model

    NASA Astrophysics Data System (ADS)

    Hou, Tuanjie; Lei, Hengchi; Yang, Jiefan; Hu, Zhaoxia; Feng, Qiujuan

    2016-09-01

    In this study, we investigated stratiform precipitation associated with an upper-level westerly trough and a cold front over northern China between 30 Apr. and 1 May 2009. We employed the Weather Research and Forecasting (WRF) model (version 3.4.1) to perform high-resolution numerical simulations of rainfall. We also conducted simulations with two microphysics schemes and sensitivity experiments without riming of snow and changing cloud droplet number concentrations (CDNCs) to determine the effect of snow riming on cloud structure and precipitation. Then we compared our results with CloudSat, Doppler radar and rain gauge observations. The comparison with the Doppler radar observations suggested that the WRF model was quite successful in capturing the timing and location of the stratiform precipitation region. Further comparisons with the CloudSat retrievals suggested that both microphysics schemes overestimated ice and liquid water contents. The sensitivity experiments without riming of snow suggested that the presence or absence of riming significantly influenced the precipitation distribution, but only slightly affected total accumulated precipitation. Without riming of snow, the changes of updrafts from the two microphysics schemes were different due to a different consideration of ice particle capacitance and latent heat effect of riming on deposition. While sensitivity experiments with three different CDNC values of 100, 250 and 1000 cm- 3 suggested variations in snow riming rates, changing CDNC had little impact on precipitation.

  2. Predicting lightning activity in Greece with the Weather Research and Forecasting (WRF) model

    NASA Astrophysics Data System (ADS)

    Giannaros, Theodore M.; Kotroni, Vassiliki; Lagouvardos, Konstantinos

    2015-04-01

    In recent years, significant progress has been made in the development and implementation of parameterizations for the prediction of lightning. In the present study, the commonly used Price and Rind lightning parameterization is evaluated. This parameterization has been recently introduced in the state-of-the-art Weather Research and Forecasting (WRF) model, allowing for the online simulation of lightning activity. The evaluation of the parameterization is conducted for ten different single-day events that took place in Greece during the period of years from 2010 to 2013. Results show that the WRF model could be used for real-time lightning prediction applications, given that the lightning parameterization is properly adapted. In particular, the analysis revealed that model-resolved variables related to the microphysics and thermodynamics are necessary for controlling the parameterization of lightning, which otherwise results to significant overprediction. The total ice content, the maximum vertical velocity and the convective available potential energy were found to be the storm parameters that, when combined together, improve the ability of the model to correctly predict lightning, significantly restricting false alarms. This was further highlighted by separately examining two example case studies, for which the numerical simulations successfully reproduced the spatial and temporal characteristics of lightning activity.

  3. How reliable is the offline linkage of Weather Research & Forecasting Model (WRF) and Variable Infiltration Capacity (VIC) model?

    EPA Science Inventory

    The aim for this research is to evaluate the ability of the offline linkage of Weather Research & Forecasting Model (WRF) and Variable Infiltration Capacity (VIC) model to produce hydrological, e.g. evaporation (ET), soil moisture (SM), runoff, and baseflow. First, the VIC mo...

  4. Performance tuning Weather Research and Forecasting (WRF) Goddard longwave radiative transfer scheme on Intel Xeon Phi

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.

    2015-10-01

    Next-generation mesoscale numerical weather prediction system, the Weather Research and Forecasting (WRF) model, is a designed for dual use for forecasting and research. WRF offers multiple physics options that can be combined in any way. One of the physics options is radiance computation. The major source for energy for the earth's climate is solar radiation. Thus, it is imperative to accurately model horizontal and vertical distribution of the heating. Goddard solar radiative transfer model includes the absorption duo to water vapor,ozone, ozygen, carbon dioxide, clouds and aerosols. The model computes the interactions among the absorption and scattering by clouds, aerosols, molecules and surface. Finally, fluxes are integrated over the entire longwave spectrum.In this paper, we present our results of optimizing the Goddard longwave radiative transfer scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The coprocessor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of MICs will require using some novel optimization techniques. Those optimization techniques are discusses in this paper. The optimizations improved the performance of the original Goddard longwave radiative transfer scheme on Xeon Phi 7120P by a factor of 2.2x. Furthermore, the same optimizations improved the performance of the Goddard longwave radiative transfer scheme on a dual socket configuration of eight core Intel Xeon E5-2670 CPUs by a factor of 2.1x compared to the original Goddard longwave radiative transfer scheme code.

  5. Implementation of a new aerosol HAM model within the Weather Research and Forecasting (WRF) modeling system

    NASA Astrophysics Data System (ADS)

    Mashayekhi, R.; Irannejad, P.; Feichter, J.; Bidokhti, A. A.

    2009-07-01

    A new coupled system of aerosol HAM model and the Weather, Research and Forecasting (WRF) model is presented in this paper. Unlike the current aerosol schemes used in WRF model, the HAM is using a "pseudomodal" approach for the representation of the particle size distribution. The aerosol components considered are sulfate, black carbon, particulate organic matter, sea salt and mineral dust. The preliminary model results are presented for two different 6-day simulation periods from 22 to 28 February 2006 as a winter period and 6 to 12 May 2006 as a mild period. The mean shortwave radiation and thermal forcing were calculated from the model simulations with and without aerosols feedback for two simulation periods. A negative radiative forcing and cooling of the atmosphere were found mainly over the regions of high emission of mineral dust. The absorption of shortwave radiation by black carbon caused warming effects in some regions with positive radiative forcing. The simulated daily mean sulfate mass concentration showed a rather good agreement with the measurements in the European EMEP network. The diurnal variation of the simulated hourly PM10 mass concentration at Tehran was also qualitatively close to the observations in both simulation periods. The model captured diurnal cycle and the magnitude of the observed PM10 concentration during most of the simulation periods. The differences between the observed and simulated PM10 concentration resulted mostly from limitation of the model in simulating the clouds and precipitation, transport errors and uncertainties in the particulate emission rates. The inclusion of aerosols feedback in shortwave radiation scheme improved the simulated daily mean shortwave radiation fluxes in Tehran for both simulation periods.

  6. Advancing hydrometeorological prediction capabilities through standards-based cyberinfrastructure development: The community WRF-Hydro modeling system

    NASA Astrophysics Data System (ADS)

    gochis, David; Parodi, Antonio; Hooper, Rick; Jha, Shantenu; Zaslavsky, Ilya

    2013-04-01

    The need for improved assessments and predictions of many key environmental variables is driving a multitude of model development efforts in the geosciences. The proliferation of weather and climate impacts research is driving a host of new environmental prediction model development efforts as society seeks to understand how climate does and will impact key societal activities and resources and, in turn, how human activities influence climate and the environment. This surge in model development has highlighted the role of model coupling as a fundamental activity itself and, at times, a significant bottleneck in weather and climate impacts research. This talk explores some of the recent activities and progress that has been made in assessing the attributes of various approaches to the coupling of physics-based process models for hydrometeorology. One example modeling system that is emerging from these efforts is the community 'WRF-Hydro' modeling system which is based on the modeling architecture of the Weather Research and Forecasting (WRF). An overview of the structural components of WRF-Hydro will be presented as will results from several recent applications which include the prediction of flash flooding events in the Rocky Mountain Front Range region of the U.S. and along the Ligurian coastline in the northern Mediterranean. Efficient integration of the coupled modeling system with distributed infrastructure for collecting and sharing hydrometeorological observations is one of core themes of the work. Specifically, we aim to demonstrate how data management infrastructures used in the US and Europe, in particular data sharing technologies developed within the CUAHSI Hydrologic Information System and UNIDATA, can interoperate based on international standards for data discovery and exchange, such as standards developed by the Open Geospatial Consortium and adopted by GEOSS. The data system we envision will help manage WRF-Hydro prediction model data flows, enabling

  7. Initializing Weather Research and Forecasting (WRF) model with land surface conditions from the Terrestrial Observation and PredictionSystem (TOPS)

    NASA Astrophysics Data System (ADS)

    Hashimoto, H.; Wang, W.; Melton, F.; Milesi, C.; Michaellis, A.; Nemani, R.

    2008-12-01

    Weather forecasting models have been shown to exhibit a strong sensitivity to land surface conditions, particularly soil moisture. However, the lack of robust estimates of soil moisture at appropriate time and space scales has been a persistent problem. Terrestrial Observation and Prediction System (TOPS) integrates surface weather observations and satellite data with ecosystem simulation models to produce spatially and temporally consistent nowcasts and forecasts of land surface conditions such as soil moisture, evapotranspiration, vegetation stress and photosynthesis. To extend TOPS capabilities beyond estimating ecosystem rocesses, we integrated TOPS with Weather Research Forecasting (WRF) model to evaluate the utility of TOPS-derived surface conditions such as soil moisture in weather forecasting. TOPS land surface schemes are based on a well-calibrated ecosystem model, Biome-BGC, for simulating water and carbon budgets. One of the advantages of TOPS is its flexibility, which enables it to ingest data from a variety of sensors and surface networks, and thus we can provide the surface conditions to users from historical to near real-time, and for spatial scales ranging from 1km and up. We ran the TOPS-WRF system over California for several days during 2007. The results show TOPS-WRF simulations are consistently better than default WRF simulations, particularly over the dry season when spatial variability in soil moisture becomes a significant factor in influencing local energy balance.

  8. Comparative Evaluation of the Impact of WRF-NMM and WRF-ARW Meteorology on CMAQ Simulations for O3 and Related Species During the 2006 TexAQS/GoMACCS Campaign

    EPA Science Inventory

    In this paper, impact of meteorology derived from the Weather, Research and Forecasting (WRF)– Non–hydrostatic Mesoscale Model (NMM) and WRF–Advanced Research WRF (ARW) meteorological models on the Community Multiscale Air Quality (CMAQ) simulations for ozone and its related prec...

  9. Evaluation of Real-time Hurricane Forecasts Using the Advanced Hurricane WRF Model for the 2007 Atlantic Hurricane Season.

    NASA Astrophysics Data System (ADS)

    Done, J. M.

    2007-12-01

    Real-time forecasts have been conducted with the Advanced Hurricane WRF Model (AHW) for named storms of the 2007 Atlantic hurricane season. Taking advantage of increased computational power over previous years, 5- day forecasts are conducted daily using three domains; two nests of 4km and 1.3km grid-spacing track the vortex within a fixed parent domain of 12km grid-spacing. In this presentation, forecast accuracy in terms of track and intensity will be presented. The quality of the forecast storm intensity can vary dramatically between storms, and sometimes between successive forecasts of a given storm. This variability in model performance is explored by analyzing the statistics of the observed and model storm intensities for the 2007 hurricane season. Conditions under which the model performs poorly are identified and a series of sensitivity simulations highlight aspects of the modeling system to which the forecast intensity is most sensitive.

  10. Performance Assessment of New Land-Surface and Planetary Boundary Layer Physics in the WRF-ARW

    EPA Science Inventory

    The Pleim-Xiu land surface model, Pleim surface layer scheme, and Asymmetric Convective Model (version 2) are now options in version 3.0 of the Weather Research and Forecasting model (WRF) Advanced Research WRF (ARW) core. These physics parameterizations were developed for the f...

  11. Generalized Wind Turbine Actuator Disk Parameterization in the Weather Research and Forecasting (WRF) Model for Real-World Simulations

    NASA Astrophysics Data System (ADS)

    Marjanovic, N.; Mirocha, J. D.; Chow, F. K.

    2013-12-01

    In this work, we examine the performance of a generalized actuator disk (GAD) model embedded within the Weather Research and Forecasting (WRF) atmospheric model to study wake effects on successive rows of turbines at a North American wind farm. These wake effects are of interest as they can drastically reduce down-wind energy extraction and increase turbulence intensity. The GAD, which is designed for turbulence-resolving simulations, is used within downscaled large-eddy simulations (LES) forced with mesoscale simulations and WRF's grid nesting capability. The GAD represents the effects of thrust and torque created by a wind turbine on the atmosphere within a disk representing the rotor swept area. The lift and drag forces acting on the turbine blades are parameterized using blade-element theory and the aerodynamic properties of the blades. Our implementation permits simulation of turbine wake effects and turbine/airflow interactions within a realistic atmospheric boundary layer flow field, including resolved turbulence, time-evolving mesoscale forcing, and real topography. The GAD includes real-time yaw and pitch control to respond realistically to changing flow conditions. Simulation results are compared to SODAR data from operating wind turbines and an already existing WRF mesoscale turbine drag parameterization to validate the GAD parameterization.

  12. An Improved Multi-Scale Modeling Framework for WRF over Complex Terrain

    NASA Astrophysics Data System (ADS)

    Wiersema, D. J.; Lundquist, K. A.; Chow, F. K.

    2014-12-01

    Atmospheric modelers continue to push towards higher resolution simulations of the planetary boundary layer. As resolution is refined, the resolved terrain slopes increase. Atmospheric models using terrain-following coordinates, such as the Weather Research and Forecasting (WRF) model, suffer from numerical errors since steep terrain slopes lead to grid skewness, resulting in model failure. One solution to this problem is the use of an immersed boundary method, which uses a non-conforming grid, for simulations over complex terrain. Our implementation of an immersed boundary method in WRF, known as WRF-IBM, was developed for use at the micro-scale and has been shown to accurately simulate flow around complex topography, such as urban environments or mountainous terrain. The research presented here describes our newly developed framework to enable concurrently run multi-scale simulations using the WRF model at the meso-scale and the WRF-IBM model at the micro-scale. WRF and WRF-IBM use different vertical coordinates therefore it is not possible to use the existing nesting framework to pass lateral boundary conditions from a WRF parent domain to a WRF-IBM nested domain. Nesting between WRF and WRF-IBM requires "vertical grid nesting", meaning the ability to pass information between domains with different vertical levels. Our newly implemented method for vertical grid nesting, available in the public release of WRFv3.6.1, allows nested domains to utilize different vertical levels. Using our vertical grid nesting code, we are currently developing the ability to nest a domain using IBM within a domain using terrain-following coordinates. Here we present results from idealized cases displaying the functionality of the multi-scale nesting framework and the advancement towards multi-scale meteorological simulations over complex terrain.

  13. An Improvement of Fine Scale Wind Field Prediction using WRF/MMIF Models for CALPUFF Application.

    NASA Astrophysics Data System (ADS)

    Kim, A. L.; Koo, Y. S.

    2014-12-01

    Accurate simulation of CALPUFF dispersion modeling is largely dependent on the data sets which are properly resolved in the spatial and temporal evolution of meteorological field on a wide range of scales. The fine scale field wind of 100 m spatial resolution is required for the CALPUFF modeling in the complex terrain near the coastal area. The objective of this paper is to provide information how to calculate the fine scale wind field using recent advances in the meteorological model. The diagnostic model of CALMET has been used to generate fine grid scale wind field by interpolating output of mesoscale prognostic weather models of MM5 (short for Fifth-Generation Penn State/NCAR Mesoscale Model) and WRF (Weather Research and Forecast). The MMIF(The Mesoscale Model Interface Program) interfacial program directly converting WRF meteorological output to formats appropriate for CALPUFF modeling without diagnostic interpolations is recently developed. The modeling comparison between WRF/CALMET and WRF/MMIF was carried out to find out a best way in generating fine wind field in the complex geological conditions. For the WRF/CALMET modeling, WRF model output of 900m grid resolution was provided to CALMET model and CALMET then calculated the fine grid resolution of 100m by diagnostically interpolating the WRF output. For the WRF/MMIF modeling, the WRF model directly calculate the fine grid of 100m and the MMIF program was used to convert WRF data. In order to validate model performance of two methods, simulated variables of meteorological fields were compared with observations at the landfill site near the coast in KOREA. It is found that WRF/MMIF is in better agreement with observations than CALWRF/CALMET in respect to the statics of RMSE and IOA. CALPUFF modeling with landfill emission data of H2S was performed and compared with monitoring data to identify effects on meteorological data on the final outcome of CALPUFF dispersion modeling.

  14. Implementation of a lightning data assimilation technique in the Weather Research and Forecasting (WRF) model for improving precipitation prediction

    NASA Astrophysics Data System (ADS)

    Giannaros, Theodore; Kotroni, Vassiliki; Lagouvardos, Kostas

    2015-04-01

    Lightning data assimilation has been recently attracting increasing attention as a technique implemented in numerical weather prediction (NWP) models for improving precipitation forecasts. In the frame of TALOS project, we implemented a robust lightning data assimilation technique in the Weather Research and Forecasting (WRF) model with the aim to improve the precipitation prediction in Greece. The assimilation scheme employs lightning as a proxy for the presence or absence of deep convection. In essence, flash data are ingested in WRF to control the Kain-Fritsch (KF) convective parameterization scheme (CPS). When lightning is observed, indicating the occurrence of convective activity, the CPS is forced to attempt to produce convection, whereas the CPS may be optionally be prevented from producing convection when no lightning is observed. Eight two-day precipitation events were selected for assessing the performance of the lightning data assimilation technique. The ingestion of lightning in WRF was carried out during the first 6 h of each event and the evaluation focused on the consequent 24 h, constituting a realistic setup that could be used in operational weather forecasting applications. Results show that the implemented assimilation scheme can improve model performance in terms of precipitation prediction. Forecasts employing the assimilation of flash data were found to exhibit more skill than control simulations, particularly for the intense (>20 mm) 24 h rain accumulations. Analysis of results also revealed that the option not to suppress the KF scheme in the absence of observed lightning, leads to a generally better performance compared to the experiments employing the full control of the CPS' triggering. Overall, the implementation of the lightning data assimilation technique is found to improve the model's ability to represent convection, especially in situations when past convection has modified the mesoscale environment in ways that affect the

  15. Climate indices over the last three decades in Tunisia using Weather Research and Forecasting Model:WRF

    NASA Astrophysics Data System (ADS)

    Deli, Meriem; Mkhinini, Nadia; Sadok Guellouz, Mohamed; Benjabrallah, Sadok

    2016-04-01

    Tunisia is a country situated in the south of the mediterannen basin. This region undergoes direct and indirect effects of climate change. Actually, we notice that summer temperatures have risen during the last decades. Nevertheless research on the tunisian climate are not well developed and are mainly based on observations; short and mid term forecast are not available for the tunisian case. In this context we have studied the climate properties of Tunisia over the last 30 years using Weather Research and Forecasting model WRF. Afterwards we compared our results to the observations that we have obteined on behalf of the National Institute of Meteorology. Results were then used to calculate different climate indices related to the air temperature such as extreme values during a specific period exceeding specific limits (Percentile), warm and cold spell duration and growing season length. We admit that we have created a reliable database for the Tunisian climate.

  16. Evaluation of the Weather Research and Forecasting (WRF) Model over Portugal: Case study

    NASA Astrophysics Data System (ADS)

    Rodrigues, Mónica; Rocha, Alfredo; Monteiro, Ana

    2013-04-01

    Established in 1756 the Demarcated Douro Region, became the first viticulturist region to be delimited and regulated under worldwide scale. The region has an area of 250000 hectares, from which 45000 are occupied by continuous vineyards (IVDP, 2010). It stretches along the Douro river valleys and its main streams, from the region of Mesão Frio, about 100 kilometers east from Porto town where this river discharges till attaining the frontier with Spain in the east border. Due to its stretching and extension in the W-E direction accompanying the Douro Valley, it is not strange that the region is not homogeneous having, therefore, three sub-regions: Baixo Corgo, Cima Corgo and Douro Superior. The Baixo Corgo the most western region is the "birthplace" of the viticulturalist region. The main purpose of this work is to evaluate and test the quality of a criterion developed to determine the occurrence of frost. This criterion is to be used latter by numerical weather forecasts (WRF-ARW) and put into practice in 16 meteorological stations in the Demarcated Douro Region. Firstly, the criterion was developed to calculate the occurrence of frost based on the meteorological data observed in those 16 stations. Time series of temperatures and precipitation were used for a period of approximately 20 years. It was verified that the meteorological conditions associated to days with frost (SG) and without frost (CG) are different in each station. Afterwards, the model was validated, especially in what concerns the simulation of the daily minimal temperature. Correcting functions were applied to the data of the model, having considerably diminished the errors of simulation. Then the criterion of frost estimate was applied do the output of the model for a period of 2 frost seasons. The results show that WRF simulates successfully the appearance of frost episodes and so can be used in the frost forecasting.

  17. Improving High-resolution Weather Forecasts using the Weather Research and Forecasting (WRF) Model with Upgraded Kain-Fritsch Cumulus Scheme

    EPA Science Inventory

    High-resolution weather forecasting is affected by many aspects, i.e. model initial conditions, subgrid-scale cumulus convection and cloud microphysics schemes. Recent 12km grid studies using the Weather Research and Forecasting (WRF) model have identified the importance of inco...

  18. Tracking tropical cloud systems for the diagnosis of simulations by the weather research and forecasting (WRF) model

    SciTech Connect

    Vogelmann, A.M.; Lin, W.; Cialella, A.; Luke, E. P.; Jensen, M. P.; Zhang, M. H.; Boer, E.

    2010-06-27

    To aid in improving model parameterizations of clouds and convection, we examine the capability of models, using explicit convection, to simulate the life cycle of tropical cloud systems in the tropical warm pool. The cloud life cycle is determined using a satellite cloud tracking algorithm (Boer and Ramanathan, J. Geophys. Res., 1997), and the statistics are compared to those of simulations using the Weather Research and Forecasting (WRF) Model. Using New York Blue, a Blue Gene/L supercomputer that is co-operated by Brookhaven and Stony Brook, simulations are run at a resolution comparable to the observations. Initial results suggest that the organization of the mesoscale convective systems is particularly sensitive to the cloud microphysics parameterization used.

  19. Tracking tropical cloud systems - Observations for the diagnosis of simulations by the Weather Research and Forecasting (WRF) Model

    SciTech Connect

    Vogelmann, A.M.; Lin, W.; Cialella, A.; Luke, E.; Jensen, M.; Zhang, M.

    2010-03-15

    To aid in improving model parameterizations of clouds and convection, we examine the capability of models, using explicit convection, to simulate the life cycle of tropical cloud systems in the vicinity of the ARM Tropical Western Pacific sites. The cloud life cycle is determined using a satellite cloud tracking algorithm (Boer and Ramanathan, 1997), and the statistics are compared to those of simulations using the Weather Research and Forecasting (WRF) Model. Using New York Blue, a Blue Gene/L supercomputer that is co-operated by Brookhaven and Stony Brook, simulations are run at a resolution comparable to the observations. Initial results suggest a computational paradox where, even though the size of the simulated systems are about half of that observed, their longevities are still similar. The explanation for this seeming incongruity will be explored.

  20. NASA advanced propeller research

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Bober, Lawrence J.

    1988-01-01

    Acoustic and aerodynamic research at NASA Lewis Research Center on advanced propellers is reviewed including analytical and experimental results on both single and counterrotation. Computational tools used to calculate the detailed flow and acoustic fields are described along with wind tunnel tests to obtain data for code verification. Results from two kinds of experiments are reviewed: (1) performance and near field noise at cruise conditions as measured in the NASA Lewis 8- by 6-foot Wind Tunnel; and (2) far field noise and performance for takeoff/approach conditions as measured in the NASA Lewis 9- by 15-foot Anechoic Wind Tunnel. Detailed measurements of steady blade surface pressures are described along with vortex flow phenomena at off-design conditions. Near field noise at cruise is shown to level out or decrease as tip relative Mach number is increased beyond 1.15. Counterrotation interaction noise is shown to be a dominant source at takeoff but a secondary source at cruise. Effects of unequal rotor diameters and rotor-to-rotor spacing on interaction noise are also illustrated. Comparisons of wind tunnel acoustic measurements to flight results are made. Finally, some future directions in advanced propeller research such as swirl recovery vanes, higher sweep, forward sweep, and ducted propellers are discussed.

  1. NASA Advanced Propeller Research

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Bober, Lawrence J.

    1988-01-01

    Acoustic and aerodynamic research at NASA Lewis Research Center on advanced propellers is reviewed including analytical and experimental results on both single and counterrotation. Computational tools used to calculate the detailed flow and acoustic i e l d s a r e described along with wind tunnel tests to obtain data for code verification . Results from two kinds of experiments are reviewed: ( 1 ) performance and near field noise at cruise conditions as measured in the NASA Lewis 8-by 6-Foot Wind Tunnel and ( 2 ) farfield noise and performance for takeoff/approach conditions as measured in the NASA Lewis 9-by 15-Font Anechoic Wind Tunnel. Detailed measurements of steady blade surface pressures are described along with vortex flow phenomena at off design conditions . Near field noise at cruise is shown to level out or decrease as tip relative Mach number is increased beyond 1.15. Counterrotation interaction noise is shown to be a dominant source at take off but a secondary source at cruise. Effects of unequal rotor diameters and rotor-to-rotor spacing on interaction noise a real so illustrated. Comparisons of wind tunnel acoustic measurements to flight results are made. Finally, some future directions in advanced propeller research such as swirl recovery vanes, higher sweep, forward sweep, and ducted propellers are discussed.

  2. Revisiting Intel Xeon Phi optimization of Thompson cloud microphysics scheme in Weather Research and Forecasting (WRF) model

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen

    2015-10-01

    The Thompson cloud microphysics scheme is a sophisticated cloud microphysics scheme in the Weather Research and Forecasting (WRF) model. The scheme is very suitable for massively parallel computation as there are no interactions among horizontal grid points. Compared to the earlier microphysics schemes, the Thompson scheme incorporates a large number of improvements. Thus, we have optimized the speed of this important part of WRF. Intel Many Integrated Core (MIC) ushers in a new era of supercomputing speed, performance, and compatibility. It allows the developers to run code at trillions of calculations per second using the familiar programming model. In this paper, we present our results of optimizing the Thompson microphysics scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The coprocessor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of MICs will require using some novel optimization techniques. New optimizations for an updated Thompson scheme are discusses in this paper. The optimizations improved the performance of the original Thompson code on Xeon Phi 7120P by a factor of 1.8x. Furthermore, the same optimizations improved the performance of the Thompson on a dual socket configuration of eight core Intel Xeon E5-2670 CPUs by a factor of 1.8x compared to the original Thompson code.

  3. Integration of Weather Research Forecast (WRF) Hurricane model with socio-economic data in an interactive web mapping service

    NASA Astrophysics Data System (ADS)

    Boehnert, J.; Wilhelmi, O.; Sampson, K. M.

    2009-12-01

    The integration of weather forecast models and socio-economic data is key to better understanding of the weather forecast and its impact upon society. Whether the forecast is looking at a hurricane approaching land or a snow storm over an urban corridor; the public is most interested in how this weather will affect day-to-day activities, and in extreme events how it will impact human lives, property and livelihoods. The GIS program at NCAR is developing an interactive web mapping portal which will integrate weather forecasts with socio-economic and infrastructure data. This integration of data is essential to better communication of the weather models and their impact on society. As a pilot project, we are conducting a case study on hurricane Ike, which made landfall at Galveston, Texas on 13 September, 2008, with winds greater than 70 mph. There was heavy flooding and loss of electricity due to high winds. This case study is an extreme event, which we are using to demonstrate how the Weather Research Forecasts (WRF) model runs at NCAR can be used to answer questions about how storms impact society. We are integrating WRF model output with the U.S. Census and infrastructure data in a Geographic Information System (GIS) web mapping framework. In this case study, we have identified a series of questions and custom queries which can be viewed through the interactive web portal; such as who will be affected by rain greater than 5 mm/h, or which schools will be affected by winds greater than 90 mph. These types of queries demonstrate the power of GIS and the necessity of integrating weather models with other spatial data in order to improve its effectiveness and understanding for society.

  4. Coupling WRF Double-Moment 6-class (WDM6) microphysics scheme to RRTMG radiation scheme in Weather Research Forecasting (WRF) model

    NASA Astrophysics Data System (ADS)

    Bae, Soo Ya; Hong, Song-You

    2015-04-01

    Radiative fluxes are mainly affected by the amount and radius of hydrometeors. Since a double-moment microphysics scheme predicts the number and volume concentrations, the effective radius of hydrometeors is easily calculated. However, WDM6 does not include the computation process for the effective radius of hydrometeors. To examine the effect of the effective radius in WDM6 on RRTMG radiative flux and meteorological phenomena in the WRF model, we adapt the method of calculating effective radius of cloud, ice, and snow in WDM6, then link between WDM6 and RRTMG schemes. For cloud, we develop the equation based on cloud size distribution used in WDM6. The shape of ice is assumed to be simple bullet and the number concentration and maximum dimension of ice are calculated with ice mixing ratio (Hong et al., 2004). Under these ice characteristics of WDM6, we adopt the equation of Mitchell et al. (1996), which is only as a function of maximum dimension of ice, to effective radius equation of ice. For snow, diameter is the same with the inverse of the slope parameter of snow. The slope parameter takes into account air temperature as well as snow mixing ratio. The effective radius of modified WDM6 is found to be smaller than that of simulation using Thompson's equations except for clouds. The combined package of the WDM6-RRTMG reduces the amount of hydrometeors, which leads to the increase of shortwave reaching ground. A comparison of simulated precipitation with TRMM (Tropical Rainfall Measuring Mission) Multi-satellite Precipitation Analysis (TMPA) observation shows better agreement when the WDM6-RRTMG with the hydrometeor linkage is introduced.

  5. Advanced propeller research

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Bober, Lawrence J.

    1987-01-01

    Resent results of aerodynamic and acoustic research on both single and counter-rotation propellers are reviewed. Data and analytical results are presented for three propellers: SR-7A, the single rotation design used in the NASA Propfan Test Assessment (PTA); and F7-A7, the 8+8 counterrotating design used in the proof-of-concept Unducted Fan (UDF) engine. In addition to propeller efficiencies, cruise and takeoff noise, and blade pressure data, off-design phenomena involving formation of leading edge vortices are described. Aerodynamic and acoustic computational results derived from three-dimensional Euler and acoustic radiation codes are presented. Research on unsteady flows, which are particularly important for understanding counterrotation interaction noise, unsteady loading effects on acoustics, and flutter or forced response is described. The first results of three-dimensional unsteady Euler solutions are illustrated for a single rotation propeller at an angle of attack and for a counterrotation propeller. Basic experimental and theoretical results from studies of the unsteady aerodynamics of oscillating cascades are outlined. Finally, advanced concepts involving swirl recovery vanes and ultra bypass ducted propellers are discussed.

  6. Coupling WRF double-moment 6-class microphysics schemes to RRTMG radiation scheme in weather research forecasting model

    DOE PAGESBeta

    Bae, Soo Ya; Hong, Song -You; Lim, Kyo-Sun Sunny

    2016-01-01

    A method to explicitly calculate the effective radius of hydrometeors in the Weather Research Forecasting (WRF) double-moment 6-class (WDM6) microphysics scheme is designed to tackle the physical inconsistency in cloud properties between the microphysics and radiation processes. At each model time step, the calculated effective radii of hydrometeors from the WDM6 scheme are linked to the Rapid Radiative Transfer Model for GCMs (RRTMG) scheme to consider the cloud effects in radiative flux calculation. This coupling effect of cloud properties between the WDM6 and RRTMG algorithms is examined for a heavy rainfall event in Korea during 25–27 July 2011, and itmore » is compared to the results from the control simulation in which the effective radius is prescribed as a constant value. It is found that the derived radii of hydrometeors in the WDM6 scheme are generally larger than the prescribed values in the RRTMG scheme. Consequently, shortwave fluxes reaching the ground (SWDOWN) are increased over less cloudy regions, showing a better agreement with a satellite image. The overall distribution of the 24-hour accumulated rainfall is not affected but its amount is changed. In conclusion, a spurious rainfall peak over the Yellow Sea is alleviated, whereas the local maximum in the central part of the peninsula is increased.« less

  7. Coupling WRF double-moment 6-class microphysics schemes to RRTMG radiation scheme in weather research forecasting model

    SciTech Connect

    Bae, Soo Ya; Hong, Song -You; Lim, Kyo-Sun Sunny

    2016-01-01

    A method to explicitly calculate the effective radius of hydrometeors in the Weather Research Forecasting (WRF) double-moment 6-class (WDM6) microphysics scheme is designed to tackle the physical inconsistency in cloud properties between the microphysics and radiation processes. At each model time step, the calculated effective radii of hydrometeors from the WDM6 scheme are linked to the Rapid Radiative Transfer Model for GCMs (RRTMG) scheme to consider the cloud effects in radiative flux calculation. This coupling effect of cloud properties between the WDM6 and RRTMG algorithms is examined for a heavy rainfall event in Korea during 25–27 July 2011, and it is compared to the results from the control simulation in which the effective radius is prescribed as a constant value. It is found that the derived radii of hydrometeors in the WDM6 scheme are generally larger than the prescribed values in the RRTMG scheme. Consequently, shortwave fluxes reaching the ground (SWDOWN) are increased over less cloudy regions, showing a better agreement with a satellite image. The overall distribution of the 24-hour accumulated rainfall is not affected but its amount is changed. In conclusion, a spurious rainfall peak over the Yellow Sea is alleviated, whereas the local maximum in the central part of the peninsula is increased.

  8. Optimizing the updated Goddard shortwave radiation Weather Research and Forecasting (WRF) scheme for Intel Many Integrated Core (MIC) architecture

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.-L.

    2015-05-01

    Intel Many Integrated Core (MIC) ushers in a new era of supercomputing speed, performance, and compatibility. It allows the developers to run code at trillions of calculations per second using the familiar programming model. In this paper, we present our results of optimizing the updated Goddard shortwave radiation Weather Research and Forecasting (WRF) scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The co-processor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of Xeon Phi will require using some novel optimization techniques. Those optimization techniques are discusses in this paper. The results show that the optimizations improved performance of the original code on Xeon Phi 7120P by a factor of 1.3x.

  9. Advancing Scientific Research in Education

    ERIC Educational Resources Information Center

    Towne, Lisa, Ed.; Wise, Lauress L., Ed.; Winters, Tina M., Ed.

    2005-01-01

    The title of this report reveals its purpose precisely: to spur actions that will advance scientific research in education. The recommendations for accomplishing this goal, detailed in this report, build on the National Research Council (NRC) report "Scientific Research in Education" (National Research Council, 2002). That report offers an…

  10. [Research advances in dendrochronology].

    PubMed

    Fang, Ke-Yan; Chen, Qiu-Yan; Liu, Chang-Zhi; Cao, Chun-Fu; Chen, Ya-Jun; Zhou, Fei-Fei

    2014-07-01

    Tree-ring studies in China have achieved great advances since the 1990s, particularly for the dendroclimatological studies which have made some influence around the world. However, because of the uneven development, limited attention has been currently paid on the other branches of dendrochronology. We herein briefly compared the advances of dendrochronology in China and of the world and presented suggestions on future dendrochronological studies. Large-scale tree-ring based climate reconstructions in China are highly needed by employing mathematical methods and a high quality tree-ring network of the ring-width, density, stable isotope and wood anatomy. Tree-ring based field climate reconstructions provide potentials on explorations of climate forcings during the reconstructed periods via climate diagnosis and process simulation. PMID:25345035

  11. Advanced desiccant materials research

    NASA Astrophysics Data System (ADS)

    Czanderna, A. W.; Thomas, T. M.

    1986-05-01

    The long-range goal of this task is to understand the role of surface phenomena in desiccant cooling materials. The background information includes a brief introduction to desiccant cooling systems (DCS) and the role of the desiccant as a system component. The purpose, background, rationale, and long-term technical approach for studying advanced desiccant materials are then treated. Experimental methods for measuring water vapor sorption by desiccants are described, and the rationale is then given for choosing a quartz crystal microbalance (QCM) for measuring sorption isotherms, rates, and cyclic stability. Background information is given about the QCM, including the quartz crystal resonator itself, the support structure for the quartz crystal, and the advantages and limitations of a QCM. The apparatus assembled and placed into operation during CY 1985 is described. The functions of the principal components of the equipment, i.e., the QCM, vacuum system, pressure gauges, residual gas analyzer, constant temperature bath, and data acquisition system, are described as they relate to the water vapor sorption measurements now under way. The criteria for narrowing the potential candidates as advanced desiccant materials for the initial studies are given. Also given is a list of 20 principal candidate materials identified based on the criteria and data available in the literature.

  12. Wildland fire simulation by WRF-Fire

    NASA Astrophysics Data System (ADS)

    Mandel, J.; Beezley, J. D.; Kochanski, A.; Kondratenko, V. Y.; Sousedik, B.

    2010-12-01

    This presentation will give an overview of the principles, algorithms, and features of the coupled atmosphere-wildland fire software WRF-Fire. WRF-Fire consists of a fire-spread model, based on a modified Rothermel's formula implemented by the level-set method, coupled with the Weather Research and Forecasting model (WRF). The code has been publicly released with WRF and it is supported by the developers. The WRF infrastructure is used for parallel execution, with additional improvements. In addition to the input of standard atmospheric data, the WRF Preprocessing System (WPS) has been extended for the input of high-resolution topography and fuel data. The fuel models can be easily modified by the user. The components of the wind and of the terrain gradient are interpolated to the fire model mesh by accurate formulas which respect grid staggering. Ignition models include point, drip-torch line, and, in near future, a developed fire perimeter from standard web sources, with an atmosphere spin-up. Companion presentations will describe a validation on the FireFlux experiment, and a simulation of a real wildland fire in a terrain with sharp gradients. This work was supported by NSF grants CNS-0719641 and ATM-0835579. Simulation of the FireFlux grass fire experiment (Clements et al., 2007) in WRF-Fire.

  13. Advances in Electrophysiological Research.

    PubMed

    Kamarajan, Chella; Porjesz, Bernice

    2015-01-01

    Electrophysiological measures of brain function are effective tools to understand neurocognitive phenomena and sensitive indicators of pathophysiological processes associated with various clinical conditions, including alcoholism. Individuals with alcohol use disorder (AUD) and their high-risk offspring have consistently shown dysfunction in several electrophysiological measures in resting state (i.e., electroencephalogram) and during cognitive tasks (i.e., event-related potentials and event-related oscillations). Researchers have recently developed sophisticated signal-processing techniques to characterize different aspects of brain dynamics, which can aid in identifying the neural mechanisms underlying alcoholism and other related complex disorders.These quantitative measures of brain function also have been successfully used as endophenotypes to identify and help understand genes associated with AUD and related disorders. Translational research also is examining how brain electrophysiological measures potentially can be applied to diagnosis, prevention, and treatment. PMID:26259089

  14. Advances in Electrophysiological Research

    PubMed Central

    Kamarajan, Chella; Porjesz, Bernice

    2015-01-01

    Electrophysiological measures of brain function are effective tools to understand neurocognitive phenomena and sensitive indicators of pathophysiological processes associated with various clinical conditions, including alcoholism. Individuals with alcohol use disorder (AUD) and their high-risk offspring have consistently shown dysfunction in several electrophysiological measures in resting state (i.e., electroencephalogram) and during cognitive tasks (i.e., event-related potentials and event-related oscillations). Researchers have recently developed sophisticated signal-processing techniques to characterize different aspects of brain dynamics, which can aid in identifying the neural mechanisms underlying alcoholism and other related complex disorders. These quantitative measures of brain function also have been successfully used as endophenotypes to identify and help understand genes associated with AUD and related disorders. Translational research also is examining how brain electrophysiological measures potentially can be applied to diagnosis, prevention, and treatment. PMID:26259089

  15. Advanced Remote Sensing Research

    USGS Publications Warehouse

    Slonecker, Terrence; Jones, John W.; Price, Susan D.; Hogan, Dianna

    2008-01-01

    'Remote sensing' is a generic term for monitoring techniques that collect information without being in physical contact with the object of study. Overhead imagery from aircraft and satellite sensors provides the most common form of remotely sensed data and records the interaction of electromagnetic energy (usually visible light) with matter, such as the Earth's surface. Remotely sensed data are fundamental to geographic science. The Eastern Geographic Science Center (EGSC) of the U.S. Geological Survey (USGS) is currently conducting and promoting the research and development of three different aspects of remote sensing science: spectral analysis, automated orthorectification of historical imagery, and long wave infrared (LWIR) polarimetric imagery (PI).

  16. Advanced propeller research

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Bober, Lawrence J.

    1990-01-01

    Recent results of aerodynamic and acoustic research on both single rotation and counterrotation propellers are reviewed. Data and analytical results are presented for three propellers: SR-7A, the single rotation design used in the NASA Propfan Test Assessment (PTA) flight program; CRP-X1, the initial 5+5 Hamilton Standard counterrotating design; and F7-A7, the 8+8 counterrotating G.E. design used in the proof of concept Unducted Fan (UDF) engine. In addition to propeller efficiencies, cruise and takeoff noise, and blade pressure data, off-design phenomena involving formation of leading edge vortexes are described. Aerodynamic and acoustic computational results derived from 3-D Euler and acoustic radiation codes are presented. Research on unsteady flows which are particularly important for understanding counterrotation interaction noise, unsteady loading effects on acoustics, and flutter or forced response is described. The first results of 3-D unsteady Euler solutions are illustrated for a single rotation propeller at angle of attack and for a counterrotation propeller. Basic experimental and theoretical results from studies on the unsteady aerodynamics of oscillating cascades are outlined.

  17. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect

    Unknown

    2002-04-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  18. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect

    Unknown

    2002-02-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  19. Advancing Scientific Research in Education

    ERIC Educational Resources Information Center

    Towne, Lisa, Ed.; Wise, Lauress L., Ed.; Winters, Tina M., Ed.

    2004-01-01

    Transforming education into an evidence-based field depends in no small part on a strong base of scientific knowledge to inform educational policy and practice. Advancing Scientific Research in Education makes select recommendations for strengthening scientific education research and targets federal agencies, professional associations, and…

  20. Advanced ion thruster research

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1984-01-01

    A simple model describing the discharge chamber performance of high strength, cusped magnetic field ion thrusters is developed. The model is formulated in terms of the energy cost of producing ions in the discharge chamber and the fraction of ions produced in the discharge chamber that are extracted to form the ion beam. The accuracy of the model is verified experimentally in a series of tests wherein the discharge voltage, propellant, grid transparency to neutral atoms, beam diameter and discharge chamber wall temperature are varied. The model is exercised to demonstrate what variations in performance might be expected by varying discharge chamber parameters. The results of a study of xenon and argon orificed hollow cathodes are reported. These results suggest that a hollow cathode model developed from research conducted on mercury cathodes can also be applied to xenon and argon. Primary electron mean free paths observed in argon and xenon cathodes that are larger than those found in mercury cathodes are identified as a cause of performance differences between mercury and inert gas cathodes. Data required as inputs to the inert gas cathode model are presented so it can be used as an aid in cathode design.

  1. Intel Many Integrated Core (MIC) architecture optimization strategies for a memory-bound Weather Research and Forecasting (WRF) Goddard microphysics scheme

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.

    2014-10-01

    The Goddard cloud microphysics scheme is a sophisticated cloud microphysics scheme in the Weather Research and Forecasting (WRF) model. The WRF is a widely used weather prediction system in the world. It development is a done in collaborative around the globe. The Goddard microphysics scheme is very suitable for massively parallel computation as there are no interactions among horizontal grid points. Compared to the earlier microphysics schemes, the Goddard scheme incorporates a large number of improvements. Thus, we have optimized the code of this important part of WRF. In this paper, we present our results of optimizing the Goddard microphysics scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The Intel MIC is capable of executing a full operating system and entire programs rather than just kernels as the GPU do. The MIC coprocessor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of MICs will require using some novel optimization techniques. Those optimization techniques are discusses in this paper. The results show that the optimizations improved performance of the original code on Xeon Phi 7120P by a factor of 4.7x. Furthermore, the same optimizations improved performance on a dual socket Intel Xeon E5-2670 system by a factor of 2.8x compared to the original code.

  2. An assessment of the Polar Weather Research and Forecasting (WRF) model representation of near-surface meteorological variables over West Antarctica

    NASA Astrophysics Data System (ADS)

    Deb, Pranab; Orr, Andrew; Hosking, J. Scott; Phillips, Tony; Turner, John; Bannister, Daniel; Pope, James O.; Colwell, Steve

    2016-02-01

    Despite the recent significant climatic changes observed over West Antarctica, which include large warming in central West Antarctica and accelerated ice loss, adequate validation of regional simulations of meteorological variables are rare for this region. To address this gap, results from a recent version of the Polar Weather Research and Forecasting model (Polar WRF) covering West Antarctica at a high horizontal resolution of 5 km were validated against near-surface meteorological observations. The model employed physics options that included the Mellor-Yamada-Nakanishi-Niino boundary layer scheme, the WRF Single Moment 5-Class cloud microphysics scheme, the new version of the rapid radiative transfer model for both shortwave and longwave radiation, and the Noah land surface model. Our evaluation finds this model to be a useful tool for realistically capturing the near-surface meteorological conditions. It showed high skill in simulating surface pressure (correlation ≥0.97), good skill for wind speed with better correlation at inland sites (0.7-0.8) compared to coastal sites (0.3-0.6), generally good representation of strong wind events, and good skill for temperature in winter (correlation ≥0.8). The main shortcomings of this configuration of Polar WRF are an occasional failure to properly represent transient cyclones and their influence on coastal winds, an amplified diurnal temperature cycle in summer, and a general tendency to underestimate the wind speed at inland sites in summer. Additional sensitivity studies were performed to quantify the impact of the choice of boundary layer scheme and surface boundary conditions. It is shown that the model is most sensitive to the choice of boundary layer scheme, with the representation of the temperature diurnal cycle in summer significantly improved by selecting the Mellor-Yamada-Janjic boundary layer scheme. By contrast, the model results showed little sensitivity to whether the horizontal resolution was 5 or

  3. Intercomparison of four cloud microphysics schemes in the Weather Research and Forecasting (WRF) model for the simulation of summer monsoon precipitation in the Langtang Valley, Himalayas

    NASA Astrophysics Data System (ADS)

    Orr, Andrew; Couttet, Margaux; Collier, Emily; Immerzeel, Walter

    2016-04-01

    Better understanding of regional-scale precipitation patterns in the Himalayan region, and how these are affecting snow and ice, is critically required to increase our knowledge of the impacts of climate change on glaciers and snowpacks. This study examines how 4 different cloud microphysical schemes (Thompson, Morrison, WRF Single-Moment 5-class (WSM5; which is the WRF default scheme), and WRF Double-Moment 6-class (WDM6)) simulated precipitation in the Langtang Valley, Himalayas during the summer monsoon in the Weather Research and Forecasting (WRF) model. The precipitation is simulated for a ten-day period during July 2012 at high spatial-resolution (1.1 km) so as to simulate the local conditions in great detail. The model results are validated through a comparison with precipitation and radiation measurements made at two observation sites located on the main Langtang Valley floor and the mountain slopes. Analysis of water vapour and hydrometeors from each of the 4 schemes are also investigated to elucidate the main microphysics processes. The results show that the choice of microphysics scheme has a strong influence on precipitation in the Langtang Valley, with the simulated precipitation exhibiting large inter-model differences and significantly different day-to-day variability compared to measurements. The inter-model differences in simulated radiation were less marked, although under cloudy conditions all schemes demonstrated a significant positive bias in incoming radiation. However, overall the Morrison scheme showed the best agreement in terms of both precipitation and radiation over the ten-day period, while the poorest performing scheme is WDM6. Analysis of microphysics outputs suggested that 'cold-rain processes' is a key precipitation formation mechanism. The good performance of the Morrison scheme is consistent with its double-moment prediction of every ice-phase hydrometeor, which is ideally suited to represent this mechanism. By contrast, WDM6 is

  4. ISAAC Advanced Composites Research Testbed

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Stewart, Brian K.; Martin, Robert A.

    2014-01-01

    The NASA Langley Research Center is acquiring a state-of-art composites fabrication capability to support the Center's advanced research and technology mission. The system introduced in this paper is named ISAAC (Integrated Structural Assembly of Advanced Composites). The initial operational capability of ISAAC is automated fiber placement, built around a commercial system from Electroimpact, Inc. that consists of a multi-degree of freedom robot platform, a tool changer mechanism, and a purpose-built fiber placement end effector. Examples are presented of the advanced materials, structures, structural concepts, fabrication processes and technology development that may be enabled using the ISAAC system. The fiber placement end effector may be used directly or with appropriate modifications for these studies, or other end effectors with different capabilities may either be bought or developed with NASA's partners in industry and academia.

  5. Advanced aerodynamics. Selected NASA research

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This Conference Publication contains selected NASA papers that were presented at the Fifth Annual Status Review of the NASA Aircraft Energy Efficiency (ACEE) Energy Efficient Transport (EET) Program held at Dryden Flight Research Center in Edwards, California on September 14 to 15, 1981. These papers describe the status of several NASA in-house research activities in the areas of advanced turboprops, natural laminar flow, oscillating control surfaces, high-Reynolds-number airfoil tests, high-lift technology, and theoretical design techniques.

  6. Advances in Teacher Effectiveness Research

    ERIC Educational Resources Information Center

    Brophy, Jere E.

    2010-01-01

    Classroom research on process-outcome relationships had burgeoned in recent years, revealing notable methodological advances and sensible, replicated findings. The studies of the early 1970s supporting direct instruction as particularly effective for producing achievement in basic skills in the early grades have been replicated and extended to…

  7. Recent advances in sterol research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since 1970, the AOCS has been a regular host to the sterol symposia. The 2008 Sterol Symposium, “Recent Advances in Sterol Research,” was held at the AOCS Annual Meeting in Seattle, Washington. This year the symposium held special significance, for it hosted the presentation of the fourth G.J. Schro...

  8. Coupling the Weather Research and Forecasting (WRF) model and Large Eddy Simulations with Actuator Disk Model: predictions of wind farm power production

    NASA Astrophysics Data System (ADS)

    Garcia Cartagena, Edgardo Javier; Santoni, Christian; Ciri, Umberto; Iungo, Giacomo Valerio; Leonardi, Stefano

    2015-11-01

    A large-scale wind farm operating under realistic atmospheric conditions is studied by coupling a meso-scale and micro-scale models. For this purpose, the Weather Research and Forecasting model (WRF) is coupled with an in-house LES solver for wind farms. The code is based on a finite difference scheme, with a Runge-Kutta, fractional step and the Actuator Disk Model. The WRF model has been configured using seven one-way nested domains where the child domain has a mesh size one third of its parent domain. A horizontal resolution of 70 m is used in the innermost domain. A section from the smallest and finest nested domain, 7.5 diameters upwind of the wind farm is used as inlet boundary condition for the LES code. The wind farm consists in six-turbines aligned with the mean wind direction and streamwise spacing of 10 rotor diameters, (D), and 2.75D in the spanwise direction. Three simulations were performed by varying the velocity fluctuations at the inlet: random perturbations, precursor simulation, and recycling perturbation method. Results are compared with a simulation on the same wind farm with an ideal uniform wind speed to assess the importance of the time varying incoming wind velocity. Numerical simulations were performed at TACC (Grant CTS070066). This work was supported by NSF, (Grant IIA-1243482 WINDINSPIRE).

  9. Charactering biomass burning aerosol in the Weather Research and Forecasting model with Chemistry (WRF-Chem), with evaluation against SAMBBA flight data.

    NASA Astrophysics Data System (ADS)

    Archer-Nicholls, S.; Lowe, D.; Darbyshire, E.; Morgan, W.; Freitas, S. R.; Longo, K.; Coe, H.; McFiggans, G.

    2014-12-01

    The burning of forests in the Amazonia region is a globally significant source of carbonaceous aerosol, containing both absorbing and scattering components. Biomass burning aerosol (BBA) are efficient CCN, modifying cloud properties and influencing atmospheric circulation and precipitation tendencies. The impacts of BBA are highly dependent on their size distribution and composition. Studies in this region can therefore benefit greatly from the use of state-of-the-art sectional aerosol representations. A bottom-up fire emissions inventory, 3BEM, has been developed by Longo et al.1. It uses satellite products to identify fire locations, applying the emissions factors of Andrei and Merlot3 to generate daily emission maps. Flaming emissions are very buoyant, and a method for injecting emissions at altitude is needed to accurately describe the vertical profile of BBA. A parameterisation has been developed to simulate this sub-grid process4, and previously implemented in WRF-Chem using a modal aerosol scheme5. For this work we have modified the WRF-Chem model to simulate 3BEM emissions using the MOSAIC sectional aerosol scheme6. This modified version of WRF-Chem v3.4.1 has been run for September 2012 over South America (25km grid-spacing). We will present model results evaluating the modelled aerosol vertical distribution, size distribution, composition and optical properties against measurements taken by the FAAM BAe-146 research aircraft during the SAMBBA field campaign. The plume-rise parameterisation was found to inject flaming emissions too high over most fires, resulting in high modelled aerosol loadings at high altitude. We probed the behaviour of the parameterisation by developing a new SAMBBA-tuned 3BEM emissions scenario, which uses more realistic estimates of fire size. Results from high-resolution (5 and 1km) nested simulations will also be presented, in order to evaluate the impacts of explicit aerosol-cloud interactions in non-parameterised clouds. 1. K

  10. Research on advanced transportation systems

    NASA Astrophysics Data System (ADS)

    Nagai, Hirokazu; Hashimoto, Ryouhei; Nosaka, Masataka; Koyari, Yukio; Yamada, Yoshio; Noda, Keiichirou; Shinohara, Suetsugu; Itou, Tetsuichi; Etou, Takao; Kaneko, Yutaka

    1992-08-01

    An overview of the researches on advanced space transportation systems is presented. Conceptual study is conducted on fly back boosters with expendable upper stage rocket systems assuming a launch capacity of 30 tons and returning to the launch site by the boosters, and prospect of their feasibility is obtained. Reviews are conducted on subjects as follows: (1) trial production of 10 tons sub scale engines for the purpose of acquiring hardware data and picking up technical problems for full scale 100 tons thrust engines using hydrocarbon fuels; (2) development techniques for advanced liquid propulsion systems from the aspects of development schedule, cost; (3) review of conventional technologies, and common use of component; (4) oxidant switching propulsion systems focusing on feasibility of Liquefied Air Cycle Engine (LACE) and Compressed Air Cycle Engine (CACE); (5) present status of slosh hydrogen manufacturing, storage, and handling; (6) construction of small high speed dynamometer for promoting research on mini pump development; (7) hybrid solid boosters under research all over the world as low-cost and clean propulsion systems; and (8) high performance solid propellant for upper stage and lower stage propulsion systems.

  11. Intermediate/Advanced Research Design and Statistics

    NASA Technical Reports Server (NTRS)

    Ploutz-Snyder, Robert

    2009-01-01

    The purpose of this module is To provide Institutional Researchers (IRs) with an understanding of the principles of advanced research design and the intermediate/advanced statistical procedures consistent with such designs

  12. Advancing Concentrating Solar Power Research (Fact Sheet)

    SciTech Connect

    Not Available

    2014-02-01

    Researchers at the National Renewable Energy Laboratory (NREL) provide scientific, engineering, and analytical expertise to help advance innovation in concentrating solar power (CSP). This fact sheet summarizes how NREL is advancing CSP research.

  13. Assimilation of Atmospheric InfraRed Sounder (AIRS) Profiles using WRF-Var

    NASA Technical Reports Server (NTRS)

    Zavodsky, Brad; Jedlovec, Gary J.; Lapenta, William

    2008-01-01

    The Weather Research and Forecasting (WRF) model contains a three-dimensional variational (3DVAR) assimilation system (WRF-Var), which allows a user to join data from multiple sources into one coherent analysis. WRF-Var combines observations with a background field traditionally generated using a previous model forecast through minimization of a cost function. In data sparse regions, remotely-sensed observations may be able to improve analyses and produce improved forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced space-based atmospheric sounding systems. The combined AIRS/AMSU system provides radiance measurements used as input to a sophisticated retrieval scheme which has been shown to produce temperature profiles with an accuracy of 1 K over 1 km layers and humidity profiles with accuracy of 15% in 2 km layers in both clear and partly cloudy conditions. The retrieval algorithm also provides estimates of the accuracy of the retrieved values at each pressure level, allowing the user to select profiles based on the required error tolerances of the application. The purpose of this paper is to describe a procedure to optimally assimilate high-resolution AIRS profile data into a regional configuration of the Advanced Research WRF (ARW) version 2.2 using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background field type using gen_be and an optimal methodology for ingesting AIRS temperature and moisture profiles as separate overland and overwater retrievals with different error characteristics in the WRF-Var. The AIRS thermodynamic profiles are obtained from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm and contain information about the quality of each temperature layer. The quality indicators are used to select the highest quality temperature and moisture

  14. [Research advances in aerobic denitrifiers].

    PubMed

    Wang, Wei; Cai, Zu-cong; Zhong, Wen-hui; Wang, Guo-xiang

    2007-11-01

    This paper reviewed the varieties and characteristics of aerobic denitrifiers, their action mechanisms, and the factors affecting aerobic denitrification. Aerobic denitrifiers mainly include Pseudomonas, Alcaligenes, Paracoccus and Bacillus, which are either aerobic or facultative aerobic, and heterotrophic. They can denitrify under aerobic conditions, with the main product being N2O. They can also convert NH4+ -N to gas product. The nitrate reductase which catalyzes the denitrification is periplasmic nitrate reductase rather than membrane-bound nitrate reductase. Dissolved oxygen concentration and C/N ratio are the main factors affecting aerobic denitrification. The main methods for screening aerobic denitrifiers, such as intermittent aeration and selected culture, were also introduced. The research advances in the application of aerobic denitrifiers in aquaculture, waste water processing, and bio-degradation of organic pollutants, as well as the contributions of aerobic denitrifiers to soil nitrogen emission were summarized. PMID:18260473

  15. 32 CFR 37.1210 - Advanced research.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 1 2011-07-01 2011-07-01 false Advanced research. 37.1210 Section 37.1210... research. Research that creates new technology or demonstrates the viability of applying existing technology to new products and processes in a general way. Advanced research is most closely analogous...

  16. WRF4SG: A Scientific Gateway for climate experiment workflows

    NASA Astrophysics Data System (ADS)

    Blanco, Carlos; Cofino, Antonio S.; Fernandez-Quiruelas, Valvanuz

    2013-04-01

    The Weather Research and Forecasting model (WRF) is a community-driven and public domain model widely used by the weather and climate communities. As opposite to other application-oriented models, WRF provides a flexible and computationally-efficient framework which allows solving a variety of problems for different time-scales, from weather forecast to climate change projection. Furthermore, WRF is also widely used as a research tool in modeling physics, dynamics, and data assimilation by the research community. Climate experiment workflows based on Weather Research and Forecasting (WRF) are nowadays among the one of the most cutting-edge applications. These workflows are complex due to both large storage and the huge number of simulations executed. In order to manage that, we have developed a scientific gateway (SG) called WRF for Scientific Gateway (WRF4SG) based on WS-PGRADE/gUSE and WRF4G frameworks to ease achieve WRF users needs (see [1] and [2]). WRF4SG provides services for different use cases that describe the different interactions between WRF users and the WRF4SG interface in order to show how to run a climate experiment. As WS-PGRADE/gUSE uses portlets (see [1]) to interact with users, its portlets will support these use cases. A typical experiment to be carried on by a WRF user will consist on a high-resolution regional re-forecast. These re-forecasts are common experiments used as input data form wind power energy and natural hazards (wind and precipitation fields). In the cases below, the user is able to access to different resources such as Grid due to the fact that WRF needs a huge amount of computing resources in order to generate useful simulations: * Resource configuration and user authentication: The first step is to authenticate on users' Grid resources by virtual organizations. After login, the user is able to select which virtual organization is going to be used by the experiment. * Data assimilation: In order to assimilate the data sources

  17. Coupled atmosphere-wildland fire modeling with WRF-Fire version 3.3

    NASA Astrophysics Data System (ADS)

    Mandel, J.; Beezley, J. D.; Kochanski, A. K.

    2011-03-01

    We describe the physical model, numerical algorithms, and software structure of WRF-Fire. WRF-Fire consists of a fire-spread model, implemented by the level-set method, coupled with the Weather Research and Forecasting model. In every time step, the fire model inputs the surface wind, which drives the fire, and outputs the heat flux from the fire into the atmosphere, which in turn influences the atmosphere. The level-set method allows submesh representation of the burning region and flexible implementation of various kinds of ignition. WRF-Fire is distributed as a part of WRF and it uses the WRF parallel infrastructure for parallel computing.

  18. The Impact of Incongruous Lake Temperatures on Regional Climate Extremes Downscaled from the CMIP5 Archive Using the WRF Model

    EPA Science Inventory

    The impact of incongruous lake temperatures is demonstrated using the Weather Research and Forecasting (WRF) Model to downscale global climate fields. Unrealistic lake temperatures prescribed by the default WRF configuration cause obvious biases near the lakes and also affect pre...

  19. 32 CFR 37.1210 - Advanced research.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Advanced research. 37.1210 Section 37.1210 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Definitions of Terms Used in This Part § 37.1210 Advanced research. Research that creates new technology...

  20. 32 CFR 37.1210 - Advanced research.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 1 2013-07-01 2013-07-01 false Advanced research. 37.1210 Section 37.1210 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Definitions of Terms Used in This Part § 37.1210 Advanced research. Research that creates new technology...

  1. Initial results on computational performance of Intel Many Integrated Core (MIC) architecture: implementation of the Weather and Research Forecasting (WRF) Purdue-Lin microphysics scheme

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.

    2014-10-01

    Purdue-Lin scheme is a relatively sophisticated microphysics scheme in the Weather Research and Forecasting (WRF) model. The scheme includes six classes of hydro meteors: water vapor, cloud water, raid, cloud ice, snow and graupel. The scheme is very suitable for massively parallel computation as there are no interactions among horizontal grid points. In this paper, we accelerate the Purdue Lin scheme using Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi is a high performance coprocessor consists of up to 61 cores. The Xeon Phi is connected to a CPU via the PCI Express (PICe) bus. In this paper, we will discuss in detail the code optimization issues encountered while tuning the Purdue-Lin microphysics Fortran code for Xeon Phi. In particularly, getting a good performance required utilizing multiple cores, the wide vector operations and make efficient use of memory. The results show that the optimizations improved performance of the original code on Xeon Phi 5110P by a factor of 4.2x. Furthermore, the same optimizations improved performance on Intel Xeon E5-2603 CPU by a factor of 1.2x compared to the original code.

  2. DEVELOPING MCIP TO PROCESS WRF-EM OUTPUT

    EPA Science Inventory

    This presentation describes modifications that were made to the Community Multiscale Air Quality (CMAQ) Modeling System's Meteorology-Chemistry Interface Processor (MCIP) to ingest a new meteorological model, the Weather Research and Forecasting (WRF) Model. This presentation al...

  3. Advance Organizer Research: One Step Further.

    ERIC Educational Resources Information Center

    Zeitoun, Hassan Hussein

    The purpose of this paper is to: (1) explore some possible explanations for the lack of empirical support of advance organizers; (2) suggest a plan for improving the empirical research on advance organizers; and (3) recommend some further investigations needed in the area of advance organizers. Some explanations for this lack of support are…

  4. WRF4G project: Adaptation of WRF Model to Distributed Computing Infrastructures

    NASA Astrophysics Data System (ADS)

    Cofino, Antonio S.; Fernández Quiruelas, Valvanuz; García Díez, Markel; Blanco Real, Jose C.; Fernández, Jesús

    2013-04-01

    Nowadays Grid Computing is powerful computational tool which is ready to be used for scientific community in different areas (such as biomedicine, astrophysics, climate, etc.). However, the use of this distributed computing infrastructures (DCI) is not yet common practice in climate research, and only a few teams and applications in this area take advantage of this infrastructure. Thus, the first objective of this project is to popularize the use of this technology in the atmospheric sciences area. In order to achieve this objective, one of the most used applications has been taken (WRF; a limited- area model, successor of the MM5 model), that has a user community formed by more than 8000 researchers worldwide. This community develop its research activity on different areas and could benefit from the advantages of Grid resources (case study simulations, regional hind-cast/forecast, sensitivity studies, etc.). The WRF model is been used as input by many energy and natural hazards community, therefore those community will also benefit. However, Grid infrastructures have some drawbacks for the execution of applications that make an intensive use of CPU and memory for a long period of time. This makes necessary to develop a specific framework (middleware). This middleware encapsulates the application and provides appropriate services for the monitoring and management of the jobs and the data. Thus, the second objective of the project consists on the development of a generic adaptation of WRF for Grid (WRF4G), to be distributed as open-source and to be integrated in the official WRF development cycle. The use of this WRF adaptation should be transparent and useful to face any of the previously described studies, and avoid any of the problems of the Grid infrastructure. Moreover it should simplify the access to the Grid infrastructures for the research teams, and also to free them from the technical and computational aspects of the use of the Grid. Finally, in order to

  5. Assimilation of GPM GMI Rainfall Product with WRF GSI

    NASA Technical Reports Server (NTRS)

    Li, Xuanli; Mecikalski, John; Zavodsky, Bradley

    2015-01-01

    The Global Precipitation Measurement (GPM) is an international mission to provide next-generation observations of rain and snow worldwide. The GPM built on Tropical Rainfall Measuring Mission (TRMM) legacy, while the core observatory will extend the observations to higher latitudes. The GPM observations can help advance our understanding of precipitation microphysics and storm structures. Launched on February 27th, 2014, the GPM core observatory is carrying advanced instruments that can be used to quantify when, where, and how much it rains or snows around the world. Therefore, the use of GPM data in numerical modeling work is a new area and will have a broad impact in both research and operational communities. The goal of this research is to examine the methodology of assimilation of the GPM retrieved products. The data assimilation system used in this study is the community Gridpoint Statistical Interpolation (GSI) system for the Weather Research and Forecasting (WRF) model developed by the Development Testbed Center (DTC). The community GSI system runs in independently environment, yet works functionally equivalent to operational centers. With collaboration with the NASA Short-term Prediction Research and Transition (SPoRT) Center, this research explores regional assimilation of the GPM products with case studies. Our presentation will highlight our recent effort on the assimilation of the GPM product 2AGPROFGMI, the retrieved Microwave Imager (GMI) rainfall rate data for initializing a real convective storm. WRF model simulations and storm scale data assimilation experiments will be examined, emphasizing both model initialization and short-term forecast of precipitation fields and processes. In addition, discussion will be provided on the development of enhanced assimilation procedures in the GSI system with respect to other GPM products. Further details of the methodology of data assimilation, preliminary result and test on the impact of GPM data and the

  6. New Advances in Brain Research.

    ERIC Educational Resources Information Center

    Seita, Lori Perkins

    2002-01-01

    Recent findings in brain research suggest the implementation of contemporary instructional practices is in order for base practices. Incorporating best practice research is critical for students to be competitive in a global market. This article provides a brief overview of educational philosophy, recent findings on brain research and language…

  7. Impact of Gas-Phase Mechanisms on Weather Research Forecasting Model with Chemistry (WRF/Chem) Predictions: Mechanism Implementation and Comparative Evaluation

    EPA Science Inventory

    Gas-phase mechanisms provide important oxidant and gaseous precursors for secondary aerosol formation. Different gas-phase mechanisms may lead to different predictions of gases, aerosols, and aerosol direct and indirect effects. In this study, WRF/Chem-MADRID simulations are cond...

  8. Therapists and researchers: advancing collaboration.

    PubMed

    Garland, Ann F; Brookman-Frazee, Lauren

    2015-01-01

    Collaborative partnerships between community-based clinicians and academic researchers have the potential to improve the relevance, utility, and feasibility of research, as well as the effectiveness of practice. Collaborative partnership research from a variety of fields can inform the development and maintenance of effective partnerships. In this paper we present a conceptual model of research-community practice partnership derived from literature across disciplines and then illustrate application of this model to one case example. The case example is a multi-year partnership between an interdisciplinary group of community-based psychotherapists and a team of mental health researchers. This partnership was initiated to support federally funded research on community-based outpatient mental health care for children with disruptive behavior problems, but it has evolved to drive and support new intervention studies with different clinical foci. Lessons learned from this partnership process will be shared and interpreted in the context of the presented research-practice partnership model. PMID:24224554

  9. An Integrated High Resolution Hydrometeorological Modeling Testbed using LIS and WRF

    NASA Technical Reports Server (NTRS)

    Kumar, Sujay V.; Peters-Lidard, Christa D.; Eastman, Joseph L.; Tao, Wei-Kuo

    2007-01-01

    Scientists have made great strides in modeling physical processes that represent various weather and climate phenomena. Many modeling systems that represent the major earth system components (the atmosphere, land surface, and ocean) have been developed over the years. However, developing advanced Earth system applications that integrates these independently developed modeling systems have remained a daunting task due to limitations in computer hardware and software. Recently, efforts such as the Earth System Modeling Ramework (ESMF) and Assistance for Land Modeling Activities (ALMA) have focused on developing standards, guidelines, and computational support for coupling earth system model components. In this article, the development of a coupled land-atmosphere hydrometeorological modeling system that adopts these community interoperability standards, is described. The land component is represented by the Land Information System (LIS), developed by scientists at the NASA Goddard Space Flight Center. The Weather Research and Forecasting (WRF) model, a mesoscale numerical weather prediction system, is used as the atmospheric component. LIS includes several community land surface models that can be executed at spatial scales as fine as 1km. The data management capabilities in LIS enable the direct use of high resolution satellite and observation data for modeling. Similarly, WRF includes several parameterizations and schemes for modeling radiation, microphysics, PBL and other processes. Thus the integrated LIS-WRF system facilitates several multi-model studies of land-atmosphere coupling that can be used to advance earth system studies.

  10. Advancing Research on Undergraduate Science Learning

    ERIC Educational Resources Information Center

    Singer, Susan Rundell

    2013-01-01

    This special issue of "Journal of Research in Science Teaching" reflects conclusions and recommendations in the "Discipline-Based Education Research" (DBER) report and makes a substantial contribution to advancing the field. Research on undergraduate science learning is currently a loose affiliation of related fields. The…

  11. Advances in Education Research. Volume 2, 1997.

    ERIC Educational Resources Information Center

    Advances in Education Research, 1997

    1997-01-01

    "Advances in Education Research" reprints previously published journal articles reporting on research supported in whole or in part by the Office of Educational Research and Improvement (OERI). The articles are selected from peer-reviewed/referred journals; the journals used are described briefy at the end of the volume. The articles in this…

  12. Bringing Advanced Computational Techniques to Energy Research

    SciTech Connect

    Mitchell, Julie C

    2012-11-17

    Please find attached our final technical report for the BACTER Institute award. BACTER was created as a graduate and postdoctoral training program for the advancement of computational biology applied to questions of relevance to bioenergy research.

  13. Advanced solar energy research program

    NASA Astrophysics Data System (ADS)

    Nozik, A. J.

    1981-10-01

    Photobiology, photochemical conversion and storage, photoelectrochemistry, and materials research are reported. Three areas of photobiological research under investigation are discussed: in vitro energy conversion, microbiological hydrogen production, and algal hydrocarbon production. Sensitizers for solar photochemistry, redox catalysis, coupled systems, and inorganic photochemistry are reviewed. Theory and modeling of the energetics of semiconductor/electrolyte junctions and the effects of inversion are reported as well as new semiconductor electrode materials and work on photoelectrodialysis. The mechanisms affecting materials performance in solar energy conversion systems and development of new materials that improve system efficiency, reliability and economics are reported.

  14. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect

    Unknown

    1999-10-01

    The activities of the AGTSR Program during this reporting period are described in this quarterly report. The report text is divided into discussions on Membership, Administration, Technology Transfer (Workshop/Education) and Research. Items worthy of note are highlighted below with additional detail following in the text of the report.

  15. Research Advances: Onions Battle Osteoporosis

    ERIC Educational Resources Information Center

    King, Angela G.

    2005-01-01

    Researchers at the University of Bern in Switzerland have identified a compound in the popular vegetable that appears to decrease bone loss in laboratory studies using rat bone cells. It is suggested that eating onions might help prevent bone loss and osteoporosis, a disease, which predominantly affects older women.

  16. Advancements in Cotton Harvesting Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton harvesting research within USDA ARS is focused on improving harvest productivity, cotton quality, and producer profitability. In recent years, our work has encompassed efforts to improve both spindle picker and brush-roll stripper harvesting systems. Specifically, work with cotton pickers i...

  17. Advancing Educational Policy by Advancing Research on Instruction

    ERIC Educational Resources Information Center

    Raudenbush, Stephen W.

    2008-01-01

    Understanding the impact of "instructional regimes" on student learning is central to advancing educational policy. Research on instructional regimes has parallels with clinical trials in medicine yet poses unique challenges because of the social nature of instruction: A child's potential outcome under a given regime depends on peers and teachers,…

  18. Application of Weather Research and Forecasting Model with Chemistry (WRF/Chem) over northern China: Sensitivity study, comparative evaluation, and policy implications

    NASA Astrophysics Data System (ADS)

    Wang, Litao; Zhang, Yang; Wang, Kai; Zheng, Bo; Zhang, Qiang; Wei, Wei

    2016-01-01

    An extremely severe and persistent haze event occurred over the middle and eastern China in January 2013, with the record-breaking high concentrations of fine particulate matter (PM2.5). In this study, an online-coupled meteorology-air quality model, the Weather Research and Forecasting Model with Chemistry (WRF/Chem), is applied to simulate this pollution episode over East Asia and northern China at 36- and 12-km grid resolutions. A number of simulations are conducted to examine the sensitivities of the model predictions to various physical schemes. The results show that all simulations give similar predictions for temperature, wind speed, wind direction, and humidity, but large variations exist in the prediction for precipitation. The concentrations of PM2.5, particulate matter with aerodynamic diameter of 10 μm or less (PM10), sulfur dioxide (SO2), and nitrogen dioxide (NO2) are overpredicted partially due to the lack of wet scavenging by the chemistry-aerosol option with the 1999 version of the Statewide Air Pollution Research Center (SAPRC-99) mechanism with the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) and the Volatility Basis Set (VBS) for secondary organic aerosol formation. The optimal set of configurations with the best performance is the simulation with the Gorddard shortwave and RRTM longwave radiation schemes, the Purdue Lin microphysics scheme, the Kain-Fritsch cumulus scheme, and a nudging coefficient of 1 × 10-5 for water vapor mixing ratio. The emission sensitivity simulations show that the PM2.5 concentrations are most sensitive to nitrogen oxide (NOx) and SO2 emissions in northern China, but to NOx and ammonia (NH3) emissions in southern China. 30% NOx emission reductions may result in an increase in PM2.5 concentrations in northern China because of the NH3-rich and volatile organic compound (VOC) limited conditions over this area. VOC emission reductions will lead to a decrease in PM2.5 concentrations in eastern China

  19. Advanced accelerator research at Argonne

    SciTech Connect

    Konecny, R.; MacLachlan, J.; Norem, J.; Ruggiero, A.; Schoessow, P.; Simpson, J.

    1986-01-01

    A facility with which to experimentally measure methods of advanced acceleration is at the point of completion at Argonne National Laboratory. The new facility consists a system which produces pulse ''doublets'' of energetic electrons, pulse shaping hardware, a space for experimental apparatus, and a high resolution spectrometer. The leading 21 MeV pulse in a doublet can contain up to 15 nano-coulombs of charge and can be adjusted to be from 6 to over 100 pic-seconds in length. The trailing doublet pulse is at 15 MeV, contains about 10/sup 6/ electrons, and can be precisely positioned behind the first from 0 to more than 2000 pico-seconds. This second pulse serves as a probe of fields produced by the intense leading pulse. The initial experimental program includes studies of wake field effects in structures and in plasma. The high resolution of the spectrometer will also make possible measurements of the wakes of various components such as bellows, beam signal pickups, and vacuum connections. Commissioning of the facility is to begin in September, 1986. Tests using cavities and plasma are expected to begin soon thereafter.

  20. Advancing Manufacturing Research Through Competitions

    SciTech Connect

    Balakirsky, Stephen; Madhavan, Raj

    2009-01-01

    Competitions provide a technique for building interest and collaboration in targeted research areas. This paper will present a new competition that aims to increase collaboration amongst Universities, automation end-users, and automation manufacturers through a virtual competition. The virtual nature of the competition allows for reduced infrastructure requirements while maintaining realism in both the robotic equipment deployed and the scenarios. Details of the virtual environment as well as the competitions objectives, rules, and scoring metrics will be presented.

  1. Application of a Coupled WRF-Hydro Model for Extreme Flood Events in the Mediterranean Basins

    NASA Astrophysics Data System (ADS)

    Fredj, Erick; Givati, Amir

    2015-04-01

    More accurate simulation of precipitation and streamflow is a challenge that can be addressed by using the Weather Research and Forecasting Model (WRF) in conjunction with the hydrological model coupling extension package (WRF-Hydro).This is demonstrated for the country of Israel and surrounding regions. Simulations from the coupled WRF/WRF-Hydro system were verified against measurements from rain gauges and hydrometric stations in the domain for the 2012-2013 and 2013-2014 winters (wet seasons). These periods were characterized by many punctuated hydrometeorological and hydroclimatic events, including both severe drought and extreme floods events. The WRF model simulations were initialized with 0.5 degree NOAA/NCEP GFS model data. The model domain was set up with 3 domains, up to 3km grid spacing resolution. The model configuration used here constitutes a fully distributed, 3-dimensional, variably-saturated surface and subsurface flow model. Application of terrain routing and, subsequently, channel and reservoir routing functions, to the uni-dimensional NOAA land surface model was motivated by the need to account for increased complexity in land surface states and fluxes and to provide a more physically-realistic conceptualization of terrestrial hydrologic processes. The simulation results indicated a good agreement with actual peak discharges for extreme flood events and for full hydrographs. Specifically the coupled WRF/WRF-Hydro model as configured in this study shows improvement in simulated precipitation over one way WRF precipitation simulations. The correlation between the observed and the simulated precipitation using the fully coupled WRF/WRF-Hydro system was higher than the standalone WRF model, especially for convective precipitation events that affect arid regions in the domain. The results suggest that the coupled WRF/WRF-Hydro system has potential for flood forecasting and flood warning purposes at 0-72 hour lead times for large cool season storm

  2. Evaluation of a seven-year air quality simulation using the Weather Research and Forecasting (WRF)/Community Multiscale Air Quality (CMAQ) models in the eastern United States.

    PubMed

    Zhang, Hongliang; Chen, Gang; Hu, Jianlin; Chen, Shu-Hua; Wiedinmyer, Christine; Kleeman, Michael; Ying, Qi

    2014-03-01

    The performance of the Weather Research and Forecasting (WRF)/Community Multi-scale Air Quality (CMAQ) system in the eastern United States is analyzed based on results from a seven-year modeling study with a 4-km spatial resolution. For 2-m temperature, the monthly averaged mean bias (MB) and gross error (GE) values are generally within the recommended performance criteria, although temperature is over-predicted with MB values up to 2K. Water vapor at 2-m is well-predicted but significant biases (>2 g kg(-1)) were observed in wintertime. Predictions for wind speed are satisfactory but biased towards over-prediction with 0

  3. Research priorities for advanced fibrous composites

    NASA Technical Reports Server (NTRS)

    Baumann, K. J.; Swedlow, J. L.

    1981-01-01

    Priorities for research in advanced laminated fibrous composite materials are presented. Supporting evidence is presented in two bodies, including a general literature survey and a survey of aerospace composite hardware and service experience. Both surveys were undertaken during 1977-1979. Specific results and conclusions indicate that a significant portion of contemporary published research diverges from recommended priorites.

  4. The Research Paper for Advanced ESL Students.

    ERIC Educational Resources Information Center

    Campbell, Donald; And Others

    A strategy for including writing of a research paper in a university's advanced intensive English course for students of English as a second language is described. The method consists of eight assignments given over the course of 11 weeks, resulting in a short research paper. The method is designed to minimize error by dealing with specific…

  5. Advances in agricultural research. [Review

    SciTech Connect

    Leepson, M.

    1981-05-22

    Several factors could have disastrous consequences for the world's food supply, namely: shrinking agricultural acreage; increasing population; decreasing productivity gains in most crops; heavy dependence on petroleum-based pesticides and fertilizers; and genetic vulnerability. Many feel that solutions to these potentially grave problems lie in expanding agricultural research, with particular focus on age-old plant-breeding techniques. The newest plant-breeding technology, genetic engineering (also called recombinant DNA technology), could some day allow biologists to design actually new genetic material rather than just manipulate genetic material already present in crops. Most scientists foresee imminent breakthroughs with recombinant DNA technology and plant breeding, but warn the practial applications may be decades away - perhaps 20 to 50 years. Many of the larger chemical companies are working in the following areas of agriculture R and D: nitrogen fixation; plant growth regulants; photosynthesis; recombinant DNA; plant genetics; and soybean hybrids. New progress in hydroponic technology is reported briefly. Germ plasm collection and storage is being pursued in the US, Soviet Union, and Mexico; US activities are summarized. In addition to the chemical-company efforts in R and D, there have been many acquisitions of seed companies by some of the nation's largest corporations in the last decade; a significant difference of opinion exists as to what this growing corporate involvement portends for agriculture. 49 references, 1 figure, 3 tables.

  6. Investigating the Impact on Modeled Ozone Concentrations Using Meteorological Fields From WRF With and Updated Four-Dimensional Data Assimilation Approach”

    EPA Science Inventory

    The four-dimensional data assimilation (FDDA) technique in the Weather Research and Forecasting (WRF) meteorological model has recently undergone an important update from the original version. Previous evaluation results have demonstrated that the updated FDDA approach in WRF pr...

  7. An Operational Configuration of the ARPS Data Analysis System to Initialize WRF in the NM'S Environmental Modeling System

    NASA Technical Reports Server (NTRS)

    Case, Jonathan; Blottman, Pete; Hoeth, Brian; Oram, Timothy

    2006-01-01

    The Weather Research and Forecasting (WRF) model is the next generation community mesoscale model designed to enhance collaboration between the research and operational sectors. The NM'S as a whole has begun a transition toward WRF as the mesoscale model of choice to use as a tool in making local forecasts. Currently, both the National Weather Service in Melbourne, FL (NWS MLB) and the Spaceflight Meteorology Group (SMG) are running the Advanced Regional Prediction System (AIRPS) Data Analysis System (ADAS) every 15 minutes over the Florida peninsula to produce high-resolution diagnostics supporting their daily operations. In addition, the NWS MLB and SMG have used ADAS to provide initial conditions for short-range forecasts from the ARPS numerical weather prediction (NWP) model. Both NM'S MLB and SMG have derived great benefit from the maturity of ADAS, and would like to use ADAS for providing initial conditions to WRF. In order to assist in this WRF transition effort, the Applied Meteorology Unit (AMU) was tasked to configure and implement an operational version of WRF that uses output from ADAS for the model initial conditions. Both agencies asked the AMU to develop a framework that allows the ADAS initial conditions to be incorporated into the WRF Environmental Modeling System (EMS) software. Developed by the NM'S Science Operations Officer (S00) Science and Training Resource Center (STRC), the EMS is a complete, full physics, NWP package that incorporates dynamical cores from both the National Center for Atmospheric Research's Advanced Research WRF (ARW) and the National Centers for Environmental Prediction's Non-Hydrostatic Mesoscale Model (NMM) into a single end-to-end forecasting system. The EMS performs nearly all pre- and postprocessing and can be run automatically to obtain external grid data for WRF boundary conditions, run the model, and convert the data into a format that can be readily viewed within the Advanced Weather Interactive Processing System

  8. Direct and indirect radiative effects of aerosols using the coupled system of aerosol HAM module and the Weather Research and Forecasting (WRF) model

    NASA Astrophysics Data System (ADS)

    Mashayekhi, Rabab; Irannejad, Parviz; Feichter, Johann; Akbari Bidokhti, Abbas Ali Ali

    2010-05-01

    The fully coupled aerosol-cloud and radiation WRF-HAM modeling system is presented. The aerosol HAM model is implemented within the chemistry version of WRF modeling system. HAM is based on a "pseudo-modal" approach for representation of the particle size distribution. Aerosols are grouped into four geometrical size classes and two types of mixed and insoluble particles. The aerosol components considered are sulfate, black carbon, particulate organic matter, sea salt and mineral dust. Microphysical processes including nucleation, condensation and coagulation of aerosol particles are considered using the microphysics M7 scheme. Horizontal transport of the aerosol particles is simulated using the advection scheme in WRF. Convective transport and vertical mixing of aerosol particles are also considered in the coupled system. A flux-resistance method is used for dry deposition of aerosol particles. Aerosol sizes and chemical compositions are used to determine the aerosol optical properties. Direct effects of aerosols on incoming shortwave radiation flux are simulated by transferring the aerosol optical parameters to the Goddard shortwave radiation scheme. Indirect effects of aerosols are simulated by using a prognostic treatment of cloud droplet number and adding modules that activate aerosol particles to form cloud droplets. The first and second indirect effects, i.e. the interactions of clouds and incoming solar radiation are implemented in WRF-Chem by linking the simulated cloud droplet number with the Goddard shortwave radiation scheme and the Lin et al. microphysics scheme. The simulations are carried out for a 6-day period from 22 to 28 February 2006 in a domain with 30-km grid spacing, encompassing the south-western Asia, North Africa and some parts of Europe. The results show a negative radiative forcing over most parts of the domain, mainly due to the presence of mineral dust aerosols. The simulations are evaluated using the measured downward radiation in

  9. Online-coupled modeling of volcanic ash and SO2 dispersion with WRF-Chem

    NASA Astrophysics Data System (ADS)

    Stuefer, Martin; Egan, Sean; Webley, Peter; Grell, Georg; Freitas, Saulo; Pavolonis, Mike; Dehn, Jonathan

    2014-05-01

    We included a volcanic emission and plume model into the Weather Research Forecast Model with inline Chemistry (WRF-Chem). The volcanic emission model with WRF-Chem has been tested and evaluated with historic eruptions, and the volcanic application was included into the official release of WRF-Chem beginning with WRF version 3.3 in 2011. Operational volcanic WRF-Chem runs have been developed using different domains centered on main volcanoes of the Aleutian chain and Popocatépetl Volcano, Mexico. The Global Forecast System (GFS) is used for the meteorological initialization of WRF-Chem, and default eruption source parameters serve as initial source data for the runs. We report on the model setup, and the advantages to treat the volcanic ash and sulphur dioxide emissions inline within the numerical weather prediction model. In addition we outline possibilities to initialize WRF-Chem with a fully automated algorithm to retrieve volcanic ash cloud properties from satellite data. WRF-Chem runs from recent volcanic eruptions resulted in atmospheric ash loadings, which compared well with the satellite data taking into account that satellite retrieval data represent only a limited amount of the actually emitted source due to detection thresholds. In addition particle aggregative effects are not included in the WRF-Chem model to date.

  10. Proposed research on advanced accelerator concepts

    SciTech Connect

    Davidson, R.C.; Wurtele, J.S.

    1991-09-01

    This report summarizes technical progress and accomplishments during the proposed three-year research on advanced accelerator concepts supported by the Department of Energy under Contract No. DE-FG02-88ER40465. A vigorous theoretical program has been pursued in critical problem areas related to advanced accelerator concepts and the basic equilibrium, stability, and radiation properties of intense charged particle beams. Broadly speaking, our research has made significant contributions in the following three major areas: Investigations of physics issues related to particle acceleration including two-beam accelerators and cyclotron resonance laser (CRL) accelerators; Investigations of RF sources including the free- electron lasers, cyclotron resonance masers, and relativistic magnetrons; Studies of coherent structures in electron plasmas and beams ranging from a low-density, nonrelativistic, pure electron plasma column to high-density, relativistic, non-neutral electron flow in a high-voltage diode. The remainder of this report presents theoretical and computational advances in these areas.

  11. Advanced Sciences and Technology Research for Astrodynamics

    NASA Astrophysics Data System (ADS)

    Jah, M.

    The Advanced Sciences and Technology Research Institute for Astrodynamics (ASTRIA) has been created as a research endeavor that focuses all astrodynamics R&D within the Air Force Research Laboratory (AFRL). ASTRIA is mainly a consortium of academic partners brought together to bear on the nation's challenges as related to astrodynamics sciences and technologies. An overview of ASTRIA is presented as well as examples of several research efforts that are relevant to data/track association, UCT/cross-tagging mitigation, and attitude recovery from light curve data.

  12. ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM

    SciTech Connect

    Lawrence P. Golan

    2003-05-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for the reporting period October 1, 2002 to December 31, 2002 are described in this quarterly report. No new membership, workshops, research projects, internships, faculty fellowships or special studies were initiated during this reporting period. Contract completion is set for June 30, 2003. During the report period, six research progress reports were received (3 final reports and 3 semi-annual reports). The University of Central Florida contract SR080 was terminated during this period, as UCF was unable to secure research facilities. AGTSR now projects that it will under spend DOE obligated funds by approximately 340-350K$.

  13. The Transition of High-Resolution NASA MODIS Sea Surface Temperatures into the WRF Environmental Modeling System

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Jedlove, Gary J.; Santos, Pablo; Medlin, Jeffrey M.; Rozumalski, Robert A.

    2009-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed a Moderate Resolution Imaging Spectroradiometer (MODIS) sea surface temperature (SST) composite at 2-km resolution that has been implemented in version 3 of the National Weather Service (NWS) Weather Research and Forecasting (WRF) Environmental Modeling System (EMS). The WRF EMS is a complete, full physics numerical weather prediction package that incorporates dynamical cores from both the Advanced Research WRF (ARW) and the Non-hydrostatic Mesoscale Model (NMM). The installation, configuration, and execution of either the ARW or NMM models is greatly simplified by the WRF EMS to encourage its use by NWS Weather Forecast Offices (WFOs) and the university community. The WRF EMS is easy to run on most Linux workstations and clusters without the need for compilers. Version 3 of the WRF EMS contains the most recent public release of the WRF-NMM and ARW modeling system (version 3 of the ARW is described in Skamarock et al. 2008), the WRF Pre-processing System (WPS) utilities, and the WRF Post-Processing program. The system is developed and maintained by the NWS National Science Operations Officer Science and Training Resource Coordinator. To initialize the WRF EMS with high-resolution MODIS SSTs, SPoRT developed the composite product consisting of MODIS SSTs over oceans and large lakes with the NCEP Real-Time Global (RTG) filling data over land points. Filling the land points is required due to minor inconsistencies between the WRF land-sea mask and that used to generate the MODIS SST composites. This methodology ensures a continuous field that adequately initializes all appropriate arrays in WRF. MODIS composites covering the Gulf of Mexico, western Atlantic Ocean and the Caribbean are generated daily at 0400, 0700, 1600, and 1900 UTC corresponding to overpass times of the NASA Aqua and Terra polar orbiting satellites. The MODIS SST product is output in gridded binary-1 (GRIB-1) data

  14. Coordinating Space Nuclear Research Advancement and Education

    SciTech Connect

    John D. Bess; Jonathon A. Webb; Brian J. Gross; Aaron E. Craft

    2009-11-01

    The advancement of space exploration using nuclear science and technology has been a goal sought by many individuals over the years. The quest to enable space nuclear applications has experienced many challenges such as funding restrictions; lack of political, corporate, or public support; and limitations in educational opportunities. The Center for Space Nuclear Research (CSNR) was established at the Idaho National Laboratory (INL) with the mission to address the numerous challenges and opportunities relevant to the promotion of space nuclear research and education.1 The CSNR is operated by the Universities Space Research Association and its activities are overseen by a Science Council comprised of various representatives from academic and professional entities with space nuclear experience. Program participants in the CSNR include academic researchers and students, government representatives, and representatives from industrial and corporate entities. Space nuclear educational opportunities have traditionally been limited to various sponsored research projects through government agencies or industrial partners, and dedicated research centers. Centralized research opportunities are vital to the growth and development of space nuclear advancement. Coordinated and focused research plays a key role in developing the future leaders in the space nuclear field. The CSNR strives to synchronize research efforts and provide means to train and educate students with skills to help them excel as leaders.

  15. Research Opportunities in Advanced Aerospace Concepts

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S.; Bangert, Linda S.; Garber, Donald P.; Huebner, Lawrence D.; McKinley, Robert E.; Sutton, Kenneth; Swanson, Roy C., Jr.; Weinstein, Leonard

    2000-01-01

    This report is a review of a team effort that focuses on advanced aerospace concepts of the 21st Century. The paper emphasis advanced technologies, rather than cataloging every unusual aircraft that has ever been attempted. To dispel the myth that "aerodynamics is a mature science" an extensive list of "What we cannot do, or do not know" was enumerated. A zeit geist, a feeling for the spirit of the times, was developed, based on existing research goals. Technological drivers and the constraints that might influence these technological developments in a future society were also examined. The present status of aeronautics, space exploration, and non-aerospace applications, both military and commercial, including enabling technologies are discussed. A discussion of non-technological issues affecting advanced concepts research is presented. The benefit of using the study of advanced vehicles as a tool to uncover new directions for technology development is often necessary. An appendix is provided containing examples of advanced vehicle configurations currently of interest.

  16. Advanced heat pump research and development

    NASA Astrophysics Data System (ADS)

    Kuliasha, M. A.

    The Office of Building Energy Research and Development of the U.S. Department of Energy (DOE), has been funding R&D in advanced heat pumps and appliances since 1976. Much of that research has been managed for DOE by the Oak Ridge National Laboratory (ORNL). The objective of the Building Equipment Research (BER) program at ORNL has been to generate new concepts and develop a technology base for improving the energy efficiency and load characteristics of energy conversion equipment used in residential and commercial buildings. The research being pursued to achieve these objectives falls under three general areas: thermally activated heat pumps (TAHP), refrigeration systems, and building equipment systems. The TAHP work is concentrated on three technologies: (1) absorption heat pumps; (2) Stirling engine-driven heat pumps; and (3) internal combustion (IC) engine-driven heat pumps. Major project areas in refrigeration systems research include electric heat pumps, ground-coupled heat pumps, and refigerant mixtures. In the building equipment systems areas, project areas include advanced distribution systems, advanced insulation for appliances, and commercial building equipment.

  17. Aerosol indirect effect on the grid-scale clouds in the two-way coupled WRF-CMAQ: model description, development, evaluation and regional analysis

    NASA Astrophysics Data System (ADS)

    Yu, S.; Mathur, R.; Pleim, J.; Wong, D.; Gilliam, R.; Alapaty, K.; Zhao, C.; Liu, X.

    2014-10-01

    This study implemented first, second and glaciation aerosol indirect effects (AIE) on resolved clouds in the two-way coupled Weather Research and Forecasting Community Multiscale Air Quality (WRF-CMAQ) modeling system by including parameterizations for both cloud drop and ice number concentrations on the basis of CMAQ-predicted aerosol distributions and WRF meteorological conditions. The performance of the newly developed WRF-CMAQ model, with alternate Community Atmospheric Model (CAM) and Rapid Radiative Transfer Model for GCMs (RRTMG) radiation schemes, was evaluated with observations from the Clouds and the See http://ceres.larc.nasa.gov/. Earth's Radiant Energy System (CERES) satellite and surface monitoring networks (AQS, IMPROVE, CASTNET, STN, and PRISM) over the continental US (CONUS) (12 km resolution) and eastern Texas (4 km resolution) during August and September of 2006. The results at the Air Quality System (AQS) surface sites show that in August, the normalized mean bias (NMB) values for PM2.5 over the eastern US (EUS) and the western US (WUS) are 5.3% (-0.1%) and 0.4% (-5.2%) for WRF-CMAQ/CAM (WRF-CMAQ/RRTMG), respectively. The evaluation of PM2.5 chemical composition reveals that in August, WRF-CMAQ/CAM (WRF-CMAQ/RRTMG) consistently underestimated the observed SO42- by -23.0% (-27.7%), -12.5% (-18.9%) and -7.9% (-14.8%) over the EUS at the Clean Air Status Trends Network (CASTNET), Interagency Monitoring of Protected Visual Environments (IMPROVE) and Speciated Trends Network (STN) sites, respectively. Both configurations (WRF-CMAQ/CAM, WRF-CMAQ/RRTMG) overestimated the observed mean organic carbon (OC), elemental carbon (EC) and and total carbon (TC) concentrations over the EUS in August at the IMPROVE sites. Both configurations generally underestimated the cloud field (shortwave cloud forcing, SWCF) over the CONUS in August due to the fact that the AIE on the subgrid convective clouds was not

  18. Advance consent, critical interests and dementia research.

    PubMed

    Buller, Tom

    2015-08-01

    Although advance directives have become a familiar instrument within the context of treatment, there has been minimal support for their expansion into the context of research. In this paper I argue that the principle of precedent autonomy that grants a competent person the right to refuse life-sustaining treatment when later incompetent, also grants a competent person the right to consent to research that is greater than minimal risk. An examination of the principle of precedent autonomy reveals that a future-binding research decision is within the scope of a competent person's critical interests, if the decision is consistent with what the person believes gives her life intrinsic value. PMID:25118248

  19. A high resolution WRF model for wind energy forecasting

    NASA Astrophysics Data System (ADS)

    Vincent, Claire Louise; Liu, Yubao

    2010-05-01

    diffusion constant caused damping of the unrealistic fluctuations, but did not completely solve the problem. Using two-way nesting also mitigated the unrealistic fluctuations significantly. It can be concluded that for real case LES modelling of wind farm circulations, care should be taken to ensure the consistency between the mesoscale weather forcing and LES models to avoid exciting spurious noise along the forcing boundary. The development of algorithms that adequately model the sub-grid-scale mixing that cannot be resolved by LES models is an important area for further research. References Liu, Y. Y._W. Liu, W. Y.Y. Cheng, W. Wu, T. T. Warner and K. Parks, 2009: Simulating intra-farm wind variations with the WRF-RTFDDA-LES modeling system. 10th WRF Users' Workshop, Boulder, C, USA. June 23 - 26, 2009. Skamarock, W., J. Dudhia, D.O. Gill, D.M. Barker, M.G.Duda, X-Y. Huang, W. Wang and J.G. Powers, A Description of the Advanced Research WRF version 3, NCAR Technical Note TN-475+STR, NCAR, Boulder, Colorado, 2008.

  20. Lightning forecasting in southeastern Brazil using the WRF model

    NASA Astrophysics Data System (ADS)

    Zepka, G. S.; Pinto, O.; Saraiva, A. C. V.

    2014-01-01

    This paper introduces a lightning forecasting method called Potential Lightning Region (PLR), which is the probability of the occurrence of lightning over a region of interest. The PLR was calculated using a combination of meteorological variables obtained from high-resolution Weather Research and Forecasting (WRF) model simulations during the summer season in southeastern Brazil. The model parameters used in the PLR definition were: surface-based Convective Available Potential Energy (SBCAPE), Lifted Index (LI), K-Index (KI), average vertical velocity between 850 and 700 hPa (w), and integrated ice-mixing ratio from 700 to 500 hPa (QICE). Short-range runs of twelve non-severe thunderstorm cases were performed with the WRF model, using different convective and microphysical schemes. Through statistical evaluations, the WRF cloud parameterizations that best described the convective thunderstorms with lightning in southeastern Brazil were the combination of Grell-Devenyi and Thompson schemes. Two calculation methods were proposed: the Linear PLR and Normalized PLR. The difference between them is basically how they deal with the influence of lightning flashes over the WRF domain's grid points for the twelve thunderstorms analyzed. Three case studies were used to test both methods. A statistical evaluation lowering the spatial resolution of the WRF grid into larger areas was performed to study the behavior and accuracy of the PLR methods. The Normalized PLR presented the most suitable one, predicting flash occurrence appropriately.

  1. Advanced energy projects FY 1997 research summaries

    SciTech Connect

    1997-09-01

    The mission of the Advanced Energy Projects (AEP) program is to explore the scientific feasibility of novel energy-related concepts that are high risk, in terms of scientific feasibility, yet have a realistic potential for a high technological payoff. The concepts supported by the AEP are typically at an early stage of scientific development. They often arise from advances in basic research and are premature for consideration by applied research or technology development programs. Some are based on discoveries of new scientific phenomena or involve exploratory ideas that span multiple scientific and technical disciplines which do not fit into an existing DOE program area. In all cases, the objective is to support evaluation of the scientific or technical feasibility of the novel concepts involved. Following AEP support, it is expected that each concept will be sufficiently developed to attract further funding from other sources to realize its full potential. Projects that involve evolutionary research or technology development and demonstration are not supported by AEP. Furthermore, research projects more appropriate for another existing DOE research program are not encouraged. There were 65 projects in the AEP research portfolio during Fiscal Year 1997. Eigheen projects were initiated during that fiscal year. This document consists of short summaries of projects active in FY 1997. Further information of a specific project may be obtained by contacting the principal investigator.

  2. ISAAC - A Testbed for Advanced Composites Research

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Stewart, Brian K.; Martin, Robert A.

    2014-01-01

    The NASA Langley Research Center is acquiring a state-of-art composites fabrication environment to support the Center's research and technology development mission. This overall system described in this paper is named ISAAC, or Integrated Structural Assembly of Advanced Composites. ISAAC's initial operational capability is a commercial robotic automated fiber placement system from Electroimpact, Inc. that consists of a multi-degree of freedom commercial robot platform, a tool changer mechanism, and a specialized automated fiber placement end effector. Examples are presented of how development of advanced composite materials, structures, fabrication processes and technology are enabled by utilizing the fiber placement end effector directly or with appropriate modifications. Alternatively, end effectors with different capabilities may either be bought or developed with NASA's partners in industry and academia.

  3. Systems Engineering Building Advances Power Grid Research

    SciTech Connect

    Virden, Jud; Huang, Henry; Skare, Paul; Dagle, Jeff; Imhoff, Carl; Stoustrup, Jakob; Melton, Ron; Stiles, Dennis; Pratt, Rob

    2015-08-19

    Researchers and industry are now better equipped to tackle the nation’s most pressing energy challenges through PNNL’s new Systems Engineering Building – including challenges in grid modernization, buildings efficiency and renewable energy integration. This lab links real-time grid data, software platforms, specialized laboratories and advanced computing resources for the design and demonstration of new tools to modernize the grid and increase buildings energy efficiency.

  4. Medical technology advances from space research

    NASA Technical Reports Server (NTRS)

    Pool, S. L.

    1972-01-01

    Details of medical research and development programs, particularly an integrated medical laboratory, as derived from space technology are given. The program covers digital biotelemetry systems, automatic visual field mapping equipment, sponge electrode caps for clinical electroencephalograms, and advanced respiratory analysis equipment. The possibility of using the medical laboratory in ground based remote areas and regional health care facilities, as well as long duration space missions is discussed.

  5. Research Institute for Advanced Computer Science

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R. (Technical Monitor); Leiner, Barry M.

    2000-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administration's missions. RIACS is located at the NASA Ames Research Center. It currently operates under a multiple year grant/cooperative agreement that began on October 1, 1997 and is up for renewal in the year 2002. Ames has been designated NASA's Center of Excellence in Information Technology. In this capacity, Ames is charged with the responsibility to build an Information Technology Research Program that is preeminent within NASA. RIACS serves as a bridge between NASA Ames and the academic community, and RIACS scientists and visitors work in close collaboration with NASA scientists. RIACS has the additional goal of broadening the base of researchers in these areas of importance to the nation's space and aeronautics enterprises. RIACS research focuses on the three cornerstones of information technology research necessary to meet the future challenges of NASA missions: (1) Automated Reasoning for Autonomous Systems. Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth; (2) Human-Centered Computing. Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities; (3) High Performance Computing and Networking. Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to data analysis of large datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply information technology research to a

  6. JPL basic research review. [research and advanced development

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Current status, projected goals, and results of 49 research and advanced development programs at the Jet Propulsion Laboratory are reported in abstract form. Areas of investigation include: aerodynamics and fluid mechanics, applied mathematics and computer sciences, environment protection, materials science, propulsion, electric and solar power, guidance and navigation, communication and information sciences, general physics, and chemistry.

  7. Triumphs and Tribulations of WRF-Chem Development and Use

    SciTech Connect

    Gustafson, William I.; Fast, Jerome D.; Easter, Richard C.; Ghan, Steven J.

    2005-06-27

    In order to address scientific questions related to aerosol chemistry and meteorological-aerosol-radiation-cloud feedbacks at the urban to regional scale, scientists at the Pacific Northwest National Laboratory (PNNL) have made substantial contributions to the chemistry version of the Weather Research and Forecasting model (WRF-Chem) during the past one and a half years. These contributions include an additional gas-phase chemistry mechanism, a sectional aerosol module, an additional photolysis module, feedbacks between aerosols and radiation, and extending the nesting capability of WRF to include the chemistry scalars. During the development process, a number of limitations in WRF have been identified that complicate adding all the desired chemistry capabilities as originally planned. These issues will be discussed along with changes that have been made to help mitigate some of them. Mechanisms currently in development will also be discussed including a secondary organic aerosol (SOA) mechanism for the sectional aerosol module, aqueous chemistry, and the aerosol indirect effect.

  8. Evaluation of snowmelt simulation in the Weather Research and Forecasting model

    NASA Astrophysics Data System (ADS)

    Jin, Jiming; Wen, Lijuan

    2012-05-01

    The objective of this study is to better understand and improve snowmelt simulations in the advanced Weather Research and Forecasting (WRF) model by coupling it with the Community Land Model (CLM) Version 3.5. Both WRF and CLM are developed by the National Center for Atmospheric Research. The automated Snow Telemetry (SNOTEL) station data over the Columbia River Basin in the northwestern United States are used to evaluate snowmelt simulations generated with the coupled WRF-CLM model. These SNOTEL data include snow water equivalent (SWE), precipitation, and temperature. The simulations cover the period of March through June 2002 and focus mostly on the snowmelt season. Initial results show that when compared to observations, WRF-CLM significantly improves the simulations of SWE, which is underestimated when the release version of WRF is coupled with the Noah and Rapid Update Cycle (RUC) land surface schemes, in which snow physics is oversimplified. Further analysis shows that more realistic snow surface energy allocation in CLM is an important process that results in improved snowmelt simulations when compared to that in Noah and RUC. Additional simulations with WRF-CLM at different horizontal spatial resolutions indicate that accurate description of topography is also vital to SWE simulations. WRF-CLM at 10 km resolution produces the most realistic SWE simulations when compared to those produced with coarser spatial resolutions in which SWE is remarkably underestimated. The coupled WRF-CLM provides an important tool for research and forecasts in weather, climate, and water resources at regional scales.

  9. Improving Regional Forecast by Assimilating Atmospheric InfraRed Sounder (AIRS) Profiles into WRF Model

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Brad; Jedlovec, Gary J.

    2009-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and produce improved forecasts. One such source comes from the Atmospheric InfraRed Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced space-based atmospheric sounding systems. The purpose of this paper is to describe a procedure to optimally assimilate high resolution AIRS profile data into a regional configuration of the Advanced Research WRF (ARW) version 2.2 using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background type, and an optimal methodology for ingesting AIRS temperature and moisture profiles as separate overland and overwater retrievals with different error characteristics. The AIRS thermodynamic profiles are derived from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm and contain information about the quality of each temperature layer. The quality indicators were used to select the highest quality temperature and moisture data for each profile location and pressure level. The analyses were then used to conduct a month-long series of regional forecasts over the continental U.S. The long-term impacts of AIRS profiles on forecast were assessed against verifying NAM analyses and stage IV precipitation data.

  10. Advances in Space Environment Research - Volume I

    NASA Astrophysics Data System (ADS)

    Chian, A. C.-L.

    2003-10-01

    Advances in Space Environment Research - Volume I contains the proceedings of two international workshops, the World Space Environment Forum (WSEF2002) and the High Performance Computing in Space Environment Research (HPC2002), organized by the World Institute for Space Environment Research (WISER) from 22 July to 2 August 2002 in Adelaide, Australia. The articles in this volume review the state-of-the-art of the theoretical, computational and observational studies of the physical processes of Sun-Earth connections and Space Environment. They cover six topical areas: Sun/Heliosphere, Magnetosphere/Bow Shock, Ionosphere/Atmosphere, Space Weather/Space Climate, Space Plasma Physics/Astrophysics, and Complex/Intelligent Systems. The authors are leading space physicists from 20 countries/regions, representing the WISER international network of research and training centers of excellence dedicated to promote cooperation in cutting-edge space environment research and training of first-rate space scientists, and to link nations for the peaceful use of the space environment. This volume is useful for space physicists, astrophysicists and plasma physicists; and can be adopted as a reference book for advanced undergraduate and postgraduate students. Link: http://www.wkap.nl/prod/b/1-4020-1278-0

  11. Beyond competence: advance directives in dementia research.

    PubMed

    Jongsma, Karin Rolanda; van de Vathorst, Suzanne

    2015-01-01

    Dementia is highly prevalent and incurable. The participation of dementia patients in clinical research is indispensable if we want to find an effective treatment for dementia. However, one of the primary challenges in dementia research is the patients' gradual loss of the capacity to consent. Patients with dementia are characterized by the fact that, at an earlier stage of their life, they were able to give their consent to participation in research. Therefore, the phase when patients are still competent to decide offers a valuable opportunity to authorize research, by using an advance research directive (ARD). Yet, the use of ARDs as an authorization for research participation remains controversial. In this paper we discuss the role of autonomous decision-making and the protection of incompetent research subjects. We will show why ARDs are a morally defensible basis for the inclusion of this population in biomedical research and that the use of ARDs is compatible with the protection of incompetent research subjects. PMID:26458366

  12. UZIG USGS research: Advances through interdisciplinary interaction

    USGS Publications Warehouse

    Nimmo, J.R.; Andraski, B.J.; Rafael, M.-C.

    2009-01-01

    Because vadose zone research relates to diverse disciplines, applications, and modes of research, collaboration across traditional operational and topical divisions is especially likely to yield major advances in understanding. The Unsaturated Zone Interest Group (UZIG) is an informal organization sponsored by the USGS to encourage and support interdisciplinary collaboration in vadose or unsaturated zone hydrologic research across organizational boundaries. It includes both USGS and non-USGS scientists. Formed in 1987, the UZIG operates to promote communication, especially through periodic meetings with presentations, discussions, and fi eld trips. The 10th meeting of the UZIG at Los Alamos, NM, in August 2007 was jointly sponsored by the USGS and Los Alamos National Laboratory. Presentations at this meeting served as the initial basis for selecting papers for this special section of Vadose Zone Journal, the purpose of which is to present noteworthy cuting-edge unsaturated zone research promoted by, facilitated by, or presented in connection with the UZIG. ?? Soil Science Society of America.

  13. ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM

    SciTech Connect

    Lawrence P. Golan

    2003-05-01

    The quarterly activities of the Advanced Gas Turbine Systems Research (AGTSR) program are described in this quarterly report. As this program administers research, we have included all program activity herein within the past quarter as dated. More specific research progress reports are provided weekly at the request of the AGTSR COR and are being sent to NETL As for the administration of this program, items worthy of note are presented in extended bullet format following the appropriate heading. No new memberships, workshops, research projects, internships, faculty fellowships or special studies were initiated during this reporting period. Contract completion is set for June 30, 2003. During the report period, nine subcontractor reports were received (5 final reports and 4 semi-annual reports). The report technology distribution is as follows: 3--aero-heat transfer, 2--combustion and 4--materials. AGTSR continues to project that it will under spend DOE obligated funds by approximately $329K.

  14. Impacts of air-sea interactions on regional air quality predictions using WRF/Chem v3.6.1 coupled with ROMS v3.7: southeastern US example

    NASA Astrophysics Data System (ADS)

    He, J.; He, R.; Zhang, Y.

    2015-11-01

    Air-sea interactions have significant impacts on coastal convection and surface fluxes exchange, which are important for the spatial and vertical distributions of air pollutants that affect public health, particularly in densely populated coastal areas. To understand the impacts of air-sea interactions on coastal air quality predictions, sensitivity simulations with different cumulus parameterization schemes and atmosphere-ocean coupling are conducted in this work over southeastern US in July 2010 using the Weather Research and Forecasting Model with Chemistry (WRF/Chem). The results show that different cumulus parameterization schemes can result in an 85 m difference in the domain averaged planetary boundary layer height (PBLH), and 4.8 mm difference in the domain averaged daily precipitation. Comparing to WRF/Chem without air-sea interactions, WRF/Chem with a 1-D ocean mixed layer model (WRF/Chem-OML) and WRF/Chem coupled with a 3-D Regional Ocean Modeling System (WRF/Chem-ROMS) predict the domain averaged changes in the sea surface temperature of 0.1 and 1.0 °C, respectively. The simulated differences in the surface concentrations of ozone (O3) and PM2.5 between WRF/Chem-ROMS and WRF/Chem can be as large as 17.3 ppb and 7.9 μg m-3, respectively. The largest changes simulated from WRF/Chem-ROMS in surface concentrations of O3 and particulate matter with diameter less than and equal to 2.5 μm (PM2.5) occur not only along coast and remote ocean, but also over some inland areas. Extensive validations against observations, show that WRF/Chem-ROMS improves the predictions of most cloud and radiative variables, and surface concentrations of some chemical species such as sulfur dioxide, nitric acid, maximum 1 h and 8 h O3, sulfate, ammonium, nitrate, and particulate matter with diameter less than and equal to 10 μm (PM10). This illustrates the benefits and needs of using coupled atmospheric-ocean model with advanced model representations of air-sea interactions for

  15. Downscaling seasonal to centennial simulations on distributed computing infrastructures using WRF model. The WRF4G project

    NASA Astrophysics Data System (ADS)

    Cofino, A. S.; Fernández Quiruelas, V.; Blanco Real, J. C.; García Díez, M.; Fernández, J.

    2013-12-01

    Nowadays Grid Computing is powerful computational tool which is ready to be used for scientific community in different areas (such as biomedicine, astrophysics, climate, etc.). However, the use of this distributed computing infrastructures (DCI) is not yet common practice in climate research, and only a few teams and applications in this area take advantage of this infrastructure. Thus, the WRF4G project objective is to popularize the use of this technology in the atmospheric sciences area. In order to achieve this objective, one of the most used applications has been taken (WRF; a limited- area model, successor of the MM5 model), that has a user community formed by more than 8000 researchers worldwide. This community develop its research activity on different areas and could benefit from the advantages of Grid resources (case study simulations, regional hind-cast/forecast, sensitivity studies, etc.). The WRF model is used by many groups, in the climate research community, to carry on downscaling simulations. Therefore this community will also benefit. However, Grid infrastructures have some drawbacks for the execution of applications that make an intensive use of CPU and memory for a long period of time. This makes necessary to develop a specific framework (middleware). This middleware encapsulates the application and provides appropriate services for the monitoring and management of the simulations and the data. Thus,another objective of theWRF4G project consists on the development of a generic adaptation of WRF to DCIs. It should simplify the access to the DCIs for the researchers, and also to free them from the technical and computational aspects of the use of theses DCI. Finally, in order to demonstrate the ability of WRF4G solving actual scientific challenges with interest and relevance on the climate science (implying a high computational cost) we will shown results from different kind of downscaling experiments, like ERA-Interim re-analysis, CMIP5 models

  16. Sensitivity of WRF precipitation on microphysical and boundary layer parameterizations during extreme events in Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Pytharoulis, I.; Karagiannidis, A. F.; Brikas, D.; Katsafados, P.; Papadopoulos, A.; Mavromatidis, E.; Kotsopoulos, S.; Karacostas, T. S.

    2010-09-01

    Contemporary atmospheric numerical models contain a large number of physical parameterization schemes in order to represent the various atmospheric processes that take place in sub-grid scales. The choice of the proper combination of such schemes is a challenging task for research and particularly for operational purposes. This choice becomes a very important decision in cases of high impact weather in which the forecast errors and the concomitant societal impacts are expected to be large. Moreover, it is well known that one of the hardest tasks for numerical models is to predict precipitation with a high degree of accuracy. The use of complex and sophisticated schemes usually requires more computational time and resources, but it does not necessarily lead to better forecasts. The aim of this study is to investigate the sensitivity of the model predicted precipitation on the microphysical and boundary layer parameterizations during extreme events. The nonhydrostatic Weather Research and Forecasting model with the Advanced Research dynamic solver (WRF-ARW Version 3.1.1) is utilized. It is a flexible, state-of-the-art numerical weather prediction system designed to operate in both research and operational mode in global and regional scales. Nine microphysical and two boundary layer schemes are combined in the sensitivity experiments. The 9 microphysical schemes are: i) Lin, ii) WRF Single Moment 5-classes, iii) Ferrier new Eta, iv) WRF Single Moment 6-classes, v) Goddard, vi) New Thompson V3.1, vii) WRF Double Moment 5-classes, viii) WRF Double Moment 6-classes, ix) Morrison. The boundary layer is parameterized using the schemes of: i) Mellor-Yamada-Janjic (MYJ) and ii) Mellor-Yamada-Nakanishi-Niino (MYNN) level 2.5. The model is integrated at very high horizontal resolution (2 km x 2 km in the area of interest) utilizing 38 vertical levels. Three cases of high impact weather in Eastern Mediterranean, associated with strong synoptic scale forcing, are employed in the

  17. Advanced Satellite Research Project: SCAR Research Database. Bibliographic analysis

    NASA Technical Reports Server (NTRS)

    Pelton, Joseph N.

    1991-01-01

    The literature search was provided to locate and analyze the most recent literature that was relevant to the research. This was done by cross-relating books, articles, monographs, and journals that relate to the following topics: (1) Experimental Systems - Advanced Communications Technology Satellite (ACTS), and (2) Integrated System Digital Network (ISDN) and Advance Communication Techniques (ISDN and satellites, ISDN standards, broadband ISDN, flame relay and switching, computer networks and satellites, satellite orbits and technology, satellite transmission quality, and network configuration). Bibliographic essay on literature citations and articles reviewed during the literature search task is provided.

  18. Advanced energy projects FY 1994 research summaries

    SciTech Connect

    Not Available

    1994-09-01

    The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are premature for consideration by applied research or technology development programs. The AEP also supports high-risk, exploratory concepts that do not readily fit into a program area but could have several applications that may span scientific disciplines or technical areas. Projects supported by the Division arise from unsolicited ideas and concepts submitted by researchers. The portfolio of projects is dynamic and reflects the broad role of the Department in supporting research and development for improving the Nation`s energy outlook. FY 1994 projects include the following topical areas: novel materials for energy technology; renewable and biodegradable materials; exploring uses of new scientific discoveries; alternate pathways to energy efficiency; alternative energy sources; and innovative approaches to waste treatment and reduction. Summaries are given for 66 projects.

  19. Validating the dynamic downscaling ability of WRF for East Asian summer climate

    NASA Astrophysics Data System (ADS)

    Gao, Jiangbo; Hou, Wenjuan; Xue, Yongkang; Wu, Shaohong

    2015-12-01

    To better understand the regional climate model (RCM) performance for East Asian summer climate and the influencing factors, this study evaluated the dynamic downscaling ability of the Weather Research Forecast (WRF) RCM. According to the comprehensive comparison studies on different physical processes and experimental settings, the optimal combination of WRF model setups can be obtained for East Asian precipitation and temperature simulations. Furthermore, based on the optimal combination, when compared with climate observations, WRF shows high ability to downscale NCEP DOE Reanalysis-2, which provided initial and lateral boundary conditions for the WRF, especially for the precipitation simulation due to the better simulated low-level water vapor flux. However, the strengthened Western North Pacific Subtropical High (WPSH) from WRF simulation results in the positive anomaly for summer rainfall.

  20. Research for Lunar Exploration: ADVANCE Program

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina

    2009-01-01

    This viewgraph presentation reviews the work that the author has been involved with in her undergraduate and graduate education and the ADVANCE Program. One project was the Lunar Entry and Approach Platform For Research On Ground (LEAPFROG). This vehicle was to be a completely autonomous vehicle, and was developed in successive academic years with increases in the perofmamnce and capability of the simulated lander. Another research project for the PhD was on long-term lunar radiation degradation of materials to be used for construction of lunar habitats. This research has concentrated on developing and testing light-weight composite materials with high strength characteristics, and the ability of these composite materials to withstand the lunar radiation environment.

  1. FULLY COUPLED "ONLINE" CHEMISTRY WITHIN THE WRF MODEL

    EPA Science Inventory

    A fully coupled "online" Weather Research and Forecasting/Chemistry (WRF/Chem) model has been developed. The air quality component of the model is fully consistent with the meteorological component; both components use the same transport scheme (mass and scalar preserving), the s...

  2. “ How Reliable is the Couple of WRF & VIC Models”

    EPA Science Inventory

    The ability of the fully coupling of Weather Research & Forecasting Model (WRF) and Variable Infiltration Capacity (VIC) model to produce hydrological and climate variables was evaluated. First, the VIC model was run by using observed meteorological data and calibrated in the Upp...

  3. Using a Coupled Lake Model with WRF for Dynamical Downscaling

    EPA Science Inventory

    The Weather Research and Forecasting (WRF) model is used to downscale a coarse reanalysis (National Centers for Environmental Prediction–Department of Energy Atmospheric Model Intercomparison Project reanalysis, hereafter R2) as a proxy for a global climate model (GCM) to examine...

  4. Impact of an improved WRF-urban canopy model on diurnal air temperature simulation over northern Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Chuan-yao; Su, Chiung-Jui; Kusaka, Hiroyuki; Akimoto, Yuko; Sheng, Yang Fan; Huang, Chuan, Jr.

    2016-04-01

    This study evaluated the impact of urbanization over northern Taiwan using the Weather Research and Forecasting (WRF) model coupled with the Noah land-surface model and a modified Urban Canopy Model (WRF-UCM2D). In the original UCM coupled in WRF (WRF-UCM), when the land use in the model grid is identified as "urban", the urban fraction value is fixed. Similarly, the UCM assumes the distribution of anthropogenic heat (AH) to be constant. Such not only may lead to over- or underestimation of urban fraction and AH in urban and non-urban areas, spatial variation also affects the model-estimated temperature. To overcome the above-mentioned limitations and to improve the performance of the original UCM model, WRF-UCM is modified to consider the 2-D urban fraction and AH (WRF-UCM2D). The two models were found to have comparable temperature simulation performance for urban areas but large differences in simulated results were observed for non-urban, especially at nighttime. WRF-UCM2D yielded a higher correlation coefficient (R2) than WRF-UCM (0.72 vs. 0.48, respectively), while bias and RMSE achieved by WRF-UCM2D were both significantly smaller than those attained by WRF-UCM (0.27 and 1.27 vs. 1.12 and 1.89, respectively). In other words, the improved model not only enhanced correlation but also reduced bias and RMSE for the nighttime data of non-urban areas. WRF-UCM2D performed much better than WRF-UCM at non-urban stations with low urban fraction during nighttime. The improved simulation performance of WRF-UCM2D at non-urban areas is attributed to the energy exchange which enables efficient turbulence mixing at low urban fraction. The achievement of this study has a crucial implication for assessing the impacts of urbanization on air quality and regional climate.

  5. Weather Research and Forecasting Model with the Immersed Boundary Method

    2012-05-01

    The Weather Research and Forecasting (WRF) Model with the immersed boundary method is an extension of the open-source WRF Model available for wwww.wrf-model.org. The new code modifies the gridding procedure and boundary conditions in the WRF model to improve WRF's ability to simutate the atmosphere in environments with steep terrain and additionally at high-resolutions.

  6. Advanced instrumentation for aircraft icing research

    NASA Technical Reports Server (NTRS)

    Bachalo, W.; Smith, J.; Rudoff, R.

    1990-01-01

    A compact and rugged probe based on the phase Doppler method was evaluated as a means for characterizing icing clouds using airborne platforms and for advancing aircraft icing research in large scale wind tunnels. The Phase Doppler Particle Analyzer (PDPA) upon which the new probe was based is now widely recognized as an accurate method for the complete characterization of sprays. The prototype fiber optic-based probe was evaluated in simulated aircraft icing clouds and found to have the qualities essential to providing information that will advance aircraft icing research. Measurement comparisons of the size and velocity distributions made with the standard PDPA and the fiber optic probe were in excellent agreement as were the measurements of number density and liquid water content. Preliminary testing in the NASA Lewis Icing Research Tunnel (IRT) produced reasonable results but revealed some problems with vibration and signal quality at high speeds. The cause of these problems were identified and design changes were proposed to eliminate the shortcomings of the probe.

  7. Improved Modeling of Land-Atmosphere Interactions using a Coupled Version of WRF with the Land Information System

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; LaCasse, Katherine M.; Santanello, Joseph A., Jr.; Lapenta, William M.; Petars-Lidard, Christa D.

    2007-01-01

    The exchange of energy and moisture between the Earth's surface and the atmospheric boundary layer plays a critical role in many hydrometeorological processes. Accurate and high-resolution representations of surface properties such as sea-surface temperature (SST), vegetation, soil temperature and moisture content, and ground fluxes are necessary to better understand the Earth-atmosphere interactions and improve numerical predictions of weather and climate phenomena. The NASA/NWS Short-term Prediction Research and Transition (SPORT) Center is currently investigating the potential benefits of assimilating high-resolution datasets derived from the NASA moderate resolution imaging spectroradiometer (MODIS) instruments using the Weather Research and Forecasting (WRF) model and the Goddard Space Flight Center Land Information System (LIS). The LIS is a software framework that integrates satellite and ground-based observational and modeled data along with multiple land surface models (LSMs) and advanced computing tools to accurately characterize land surface states and fluxes. The LIS can be run uncoupled to provide a high-resolution land surface initial condition, and can also be run in a coupled mode with WRF to integrate surface and soil quantities using any of the LSMs available in LIS. The LIS also includes the ability to optimize the initialization of surface and soil variables by tuning the spin-up time period and atmospheric forcing parameters, which cannot be done in the standard WRF. Among the datasets available from MODIS, a leaf-area index field and composite SST analysis are used to improve the lower boundary and initial conditions to the LIS/WRF coupled model over both land and water. Experiments will be conducted to measure the potential benefits from using the coupled LIS/WRF model over the Florida peninsula during May 2004. This month experienced relatively benign weather conditions, which will allow the experiments to focus on the local and mesoscale

  8. Advances in neural networks research: an introduction.

    PubMed

    Kozma, Robert; Bressler, Steven; Perlovsky, Leonid; Venayagamoorthy, Ganesh Kumar

    2009-01-01

    The present Special Issue "Advances in Neural Networks Research: IJCNN2009" provides a state-of-art overview of the field of neural networks. It includes 39 papers from selected areas of the 2009 International Joint Conference on Neural Networks (IJCNN2009). IJCNN2009 took place on June 14-19, 2009 in Atlanta, Georgia, USA, and it represents an exemplary collaboration between the International Neural Networks Society and the IEEE Computational Intelligence Society. Topics in this issue include neuroscience and cognitive science, computational intelligence and machine learning, hybrid techniques, nonlinear dynamics and chaos, various soft computing technologies, intelligent signal processing and pattern recognition, bioinformatics and biomedicine, and engineering applications. PMID:19632811

  9. Research of advanced electrolytic hydrogen production

    NASA Astrophysics Data System (ADS)

    Isaacs, H. S.; Yang, C. Y.; McBreen, J.

    1982-02-01

    Research on advanced electrolytic hydrogen production consisted of two areas. One was the development of an electrochemical method for investigation of the solid polymer electrolyte (SPE) electrocatalyst interface, the other was the development of stable photoanodes for photodecomposition of water by coating low barrier n type semiconductor with a thin film of n type TiO2. By using various types of contact electrodes on SPE membranes, it was possible to use modern electrochemical techniques to investigate the SPE electrocatalyst interface under conditions simulating electrolyzer operation. Low barrier heterojunctions of thin films of n type TiO2 on n type Fe2O3 were successfully demonstrated.

  10. Research on Advanced Thin Film Batteries

    SciTech Connect

    Goldner, Ronald B.

    2003-11-24

    During the past 7 years, the Tufts group has been carrying out research on advanced thin film batteries composed of a thin film LiCo02 cathode (positive electrode), a thin film LiPON (lithium phosphorous oxynitride) solid electrolyte, and a thin film graphitic carbon anode (negative electrode), under grant DE FG02-95ER14578. Prior to 1997, the research had been using an rfsputter deposition process for LiCoOi and LiPON and an electron beam evaporation or a controlled anode arc evaporation method for depositing the carbon layer. The pre-1997 work led to the deposition of a single layer cell that was successfully cycled for more than 400 times [1,2] and the research also led to the deposition of a monolithic double-cell 7 volt battery that was cycled for more than 15 times [3]. Since 1997, the research has been concerned primarily with developing a research-worthy and, possibly, a production-worthy, thin film deposition process, termed IBAD (ion beam assisted deposition) for depositing each ofthe electrodes and the electrolyte of a completely inorganic solid thin film battery. The main focus has been on depositing three materials - graphitic carbon as the negative electrode (anode), lithium cobalt oxide (nominally LiCoCb) as the positive electrode (cathode), and lithium phosphorus oxynitride (LiPON) as the electrolyte. Since 1998, carbon, LiCoOa, and LiPON films have been deposited using the IBAD process with the following results.

  11. Advanced Scientific Computing Research Network Requirements

    SciTech Connect

    Bacon, Charles; Bell, Greg; Canon, Shane; Dart, Eli; Dattoria, Vince; Goodwin, Dave; Lee, Jason; Hicks, Susan; Holohan, Ed; Klasky, Scott; Lauzon, Carolyn; Rogers, Jim; Shipman, Galen; Skinner, David; Tierney, Brian

    2013-03-08

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In October 2012, ESnet and the Office of Advanced Scientific Computing Research (ASCR) of the DOE SC organized a review to characterize the networking requirements of the programs funded by the ASCR program office. The requirements identified at the review are summarized in the Findings section, and are described in more detail in the body of the report.

  12. Advanced Energy Projects FY 1996 research summaries

    SciTech Connect

    1996-09-01

    The mission of the Advanced Energy Projects Division (AEP) is to explore the scientific feasibility of novel energy-related concepts. These concepts are typically at an early stage of scientific development and, therefore, are premature for consideration by applied research or technology development programs. The portfolio of projects is dynamic, but reflects the broad role of the Department in supporting research and development for improving the Nation`s energy posture. Topical areas presently receiving support include: alternative energy sources; innovative concepts for energy conversion and storage; alternate pathways to energy efficiency; exploring uses of new scientific discoveries; biologically-based energy concepts; renewable and biodegradable materials; novel materials for energy technology; and innovative approaches to waste treatment and reduction. Summaries of the 70 projects currently being supported are presented. Appendices contain budget information and investigator and institutional indices.

  13. Performance Evaluation of Various Parameterization Schemes in Weather Research and Forecasting (WRF) Model : A Case Study Subtropical Urban Agglomeration National Capital Region (NCR), India

    NASA Astrophysics Data System (ADS)

    Sindhwani, R.; Kumar, S.; Goyal, P.

    2015-12-01

    Meteorological parameters play a very significant and crucial role in simulating regional air quality. This study has been carried to evaluate the performance of WRF model to various combinations of physical parameterization schemes for predicting surface and upper air meteorology around the capital city of India, Delhi popularly known as National Capital Region (NCR). Eight sensitivity experiments has been conducted to find the best combination of the parameterization schemes for the study area during summer (4th - 18th April, 2010 ) season. The model predicted surface temperatures at 2m, relative humidity at 2m and wind speeds at 10m are compared with the observations from Central Pollution Control Board (at Dwarka and Shadipur monitoring stations) and Indian Meteorological Department (VIDP and VIDD stations) whereas the upper-air potential temperature profile and wind speed profile are validated using Wyoming Weather Web data archive at VIDD station. The qualitative and quantitative analysis of simulations indicate that for temperature and relative humidity, the combination consisting of Yonsei Unversity (YSU) as the Planetary Boundary Layer (PBL) scheme, the Monin Obhukhov as the surface layer (SL) scheme along with NOAH land surface model (LSM) has been found to be performing better than other combinations. The combination consisting of Mellor Yamada Janjic (Eta) as the PBL scheme, Monin Obhukhov Janjic (Eta) as the SL scheme and Noah LSM performs reasonably well in reproducing the observed wind conditions. This indicates that the selection of parameterization schemes may depend on the intended application of the model for a given region.

  14. Geysers advanced direct contact condenser research

    SciTech Connect

    Henderson, J.; Bahning, T.; Bharathan, D.

    1997-12-31

    The first geothermal application of the Advanced Direct Contact Condenser (ADCC) technology developed by the National Renewable Energy Laboratory (NREL) is now operational and is being tested at The Geysers Power Plant Unit 11. This major research effort is being supported through the combined efforts of NREL, The Department of Energy (DOE), and Pacific Gas and Electric (PG&E). NREL and PG&E have entered into a Cooperative Research And Development Agreement (CRADA) for a project to improve the direct-contact condenser performance at The Geysers Power Plant. This project is the first geothermal adaptation of an advanced condenser design developed for the Ocean Thermal Energy Conversion (OTEC) systems. PG&E expects this technology to improve power plant performance and to help extend the life of the steam field by using steam more efficiently. In accordance with the CRADA, no money is transferred between the contracting parties. In this case the Department of Energy is funding NREL for their efforts in this project and PG&E is contributing funds in kind. Successful application of this technology at The Geysers will provide a basis for NREL to continue to develop this technology for other geothermal and fossil power plant systems.

  15. Coupling LMDZ physics in WRF model: Aqua-planet configuration tests

    NASA Astrophysics Data System (ADS)

    Fita, Lluís; Hourdin, Frédéric; Fairhead, Laurent; Drobinski, Phlippe

    2014-05-01

    Nowadays advances in climatological sciences, pose different challenges for the current global climate models (GCM). One of them is related to the resolution. In some exercises, GCMs are started to be used to that resolutions to which they were not designed for, or in advance of future uses, they have to be tested in order to know their limitations. With the mid term perspective in mind of future uses of the Laboratorie de Météorologie Dynamique Zoom (LMDZ) model, a framework has been designed in order to use the physical parameterizations of the LMDZ model coupled to the dynamical core of Weather Research and Forecasting (WRF) model. This framework will allow the analysis of different aspects such as: resolution thresholds of the LMDZ physics set, skill of LMDZ physics in comparison with cloud resolving simulations, impact of the primitive equations fully compressible dynamics from WRF in global runs among others. The design and implementation of the framework keeps almost all the original capabilities of both models. As a first step, results of an ensemble of 1-year low-resolution global aqua-planet runs performed with the original models using different physical configurations, and the new framework will be presented. These initial results show the correct performance of the new framework, and the sensitivity of the global circulation due to different dynamical atmospheric cores and physical parameterizations.

  16. Prediction of severe thunderstorms over Sriharikota Island by using the WRF-ARW operational model

    NASA Astrophysics Data System (ADS)

    Papa Rao, G.; Rajasekhar, M.; Pushpa Saroja, R.; Sreeshna, T.; Rajeevan, M.; Ramakrishna, S. S. V. S.

    2016-05-01

    Operational short range prediction of Meso-scale thunderstorms for Sriharikota(13.7°N ,80.18°E) has been performed using two nested domains 27 & 9Km configuration of Weather Research & Forecasting-Advanced Research Weather Model (WRF- ARW V3.4).Thunderstorm is a Mesoscale system with spatial scale of few kilometers to a couple of 100 kilometers and time scale of less than an one hour to several hours, which produces heavy rain, lightning, thunder, surface wind squalls and down-bursts. Numerical study of Thunderstorms at Sriharikota and its neighborhood have been discussed with its antecedent thermodynamic stability indices and Parameters that are usually favorable for the development of convective instability based on WRF ARW model predictions. Instability is a prerequisite for the occurrence of severe weather, the greater the instability, the greater will be the potential of thunderstorm. In the present study, K Index, Total totals Index (TTI), Convective Available Potential Energy (CAPE), Convective Inhibition Energy (CINE), Lifted Index (LI), Precipitable Water (PW), etc. are the instability indices used for the short range prediction of thunderstorms. In this study we have made an attempt to estimate the skill of WRF ARW predictability and diagnosed three thunderstorms that occurred during the late evening to late night of 31st July, 20th September and 2nd October of 2015 over Sriharikota Island which are validated with Local Electric Field Mill (EFM), rainfall observations and Chennai Doppler Weather Radar products. The model predicted thermodynamic indices (CAPE, CINE, K Index, LI, TTI and PW) over Sriharikota which act as good indicators for severe thunderstorm activity.

  17. WRF-NMM Mesoscale Weather Forecast Model and CALMET Meteorological Preprocessor Wind Simulations over the Mountaneous Region

    NASA Astrophysics Data System (ADS)

    Radonjic, Zivorad; Telenta, Bosko; Chambers, Doug, ,, Dr.; Janjic, Zavisa, ,, Dr.

    2010-05-01

    An advanced mesoscale WRF- NMM (Weather Research and Forecasting - Nonhydrostatic Mesoscale Model), was used in this application. The model was performed on a fine scale resolution (3 by 3 km) over large modelling domain ~ 300 by 300 km for one year of data (2004). Based on this resolution the areas with elevated wind speeds are determined. Each area identified with high wind speeds is processed with the U.S. EPA's meteorological preprocessor CALMET (part of the CALMET/CALPUFF long range regulatory system) with a fine resolution of 100 by 100 m to capture dynamic effects over the mountain region. Some limited data were available for validation. The application of the CALMET preprocessor demonstrated kinematic effects that result in increaed wind speeds above the mountains. This effect was confirmed by the measeurments with the sonic anemometers mounted on a TV tower in the study area. In addition, it was concluded that in the ridged terrain, the standard power low profile is not applicable. In addition, the WRF-NMM was tested in the same application on the resolution of 100 by 100m. The model simulation was limited for one month, because of the computer time requirement. Although of limited duration, this test suggests that WRF-NMM can be applied directly, without re-processing the data through the CALMET.

  18. Improved meteorology from an updated WRF/CMAQ modeling system with MODIS vegetation and albedo

    EPA Science Inventory

    Realistic vegetation characteristics and phenology from the Moderate Resolution Imaging Spectroradiometer (MODIS) products improve the simulation for the meteorology and air quality modeling system WRF/CMAQ (Weather Research and Forecasting model and Community Multiscale Air Qual...

  19. Spectroscopic Ellipsometry Applications in Advanced Lithography Research

    NASA Astrophysics Data System (ADS)

    Synowicki, R. A.; Pribil, Greg K.; Hilfiker, James N.; Edwards, Kevin

    2005-09-01

    Spectroscopic ellipsometry (SE) is an optical metrology technique widely used in the semiconductor industry. For lithography applications SE is routinely used for measurement of film thickness and refractive index of polymer photoresist and antireflective coatings. While this remains a primary use of SE, applications are now expanding into other areas of advanced lithography research. New applications include immersion lithography, phase-shift photomasks, transparent pellicles, 193 and 157 nm lithography, stepper optical coatings, imprint lithography, and even real-time monitoring of etch development rate in liquid ambients. Of recent interest are studies of immersion fluids where knowledge of the fluid refractive index and absorption are critical to their use in immersion lithography. Phase-shift photomasks are also of interest as the thickness and index of the phase-shift and absorber layers must be critically controlled for accurate intensity and phase transmission. Thin transparent pellicles to protect these masks must be also characterized for thickness and refractive index. Infrared ellipsometry is sensitive to chemical composition, film thickness, and how film chemistry changes with processing. Real-time monitoring of polymer film thickness during etching in a liquid developer allows etch rate and endpoint determination with monolayer sensitivity. This work considers these emerging applications to survey the current status of spectroscopic ellipsometry as a characterization technique in advanced lithography applications.

  20. Advanced research on vasculogenic mimicry in cancer

    PubMed Central

    Qiao, Lili; Liang, Ning; Zhang, Jiandong; Xie, Jian; Liu, Fengjun; Xu, Deguo; Yu, Xinshuang; Tian, Yuan

    2015-01-01

    Vasculogenic mimicry (VM) is a brand-new tumour vascular paradigm independent of angiogenesis that describes the specific capacity of aggressive cancer cells to form vessel-like networks that provide adequate blood supply for tumour growth. A variety of molecule mechanisms and signal pathways participate in VM induction. Additionally, cancer stem cell and epithelial-mesenchymal transitions are also shown to be implicated in VM formation. As a unique perfusion way, VM is associated with tumour invasion, metastasis and poor cancer patient prognosis. Due to VM's important effects on tumour progression, more VM-related strategies are being utilized for anticancer treatment. Here, with regard to the above aspects, we make a review of advanced research on VM in cancer. PMID:25598425

  1. Advanced Materials for Exploration Task Research Results

    NASA Technical Reports Server (NTRS)

    Cook, M. B. (Compiler); Murphy, K. L.; Schneider, T.

    2008-01-01

    The Advanced Materials for Exploration (AME) Activity in Marshall Space Flight Center s (MSFC s) Exploration Science and Technology Directorate coordinated activities from 2001 to 2006 to support in-space propulsion technologies for future missions. Working together, materials scientists and mission planners identified materials shortfalls that are limiting the performance of long-term missions. The goal of the AME project was to deliver improved materials in targeted areas to meet technology development milestones of NASA s exploration-dedicated activities. Materials research tasks were targeted in five areas: (1) Thermal management materials, (2) propulsion materials, (3) materials characterization, (4) vehicle health monitoring materials, and (5) structural materials. Selected tasks were scheduled for completion such that these new materials could be incorporated into customer development plans.

  2. Validation of WRF forecasts for the Chajnantor region

    NASA Astrophysics Data System (ADS)

    Pozo, Diana; Marín, J. C.; Illanes, L.; Curé, M.; Rabanus, D.

    2016-06-01

    This study assesses the performance of the Weather Research and Forecasting (WRF) model to represent the near-surface weather conditions and the precipitable water vapour (PWV) in the Chajnantor plateau, in the north of Chile, from 2007 April to December. The WRF model shows a very good performance forecasting the near-surface temperature and zonal wind component, although it overestimates the 2 m water vapour mixing ratio and underestimates the 10 m meridional wind component. The model represents very well the seasonal, intraseasonal and the diurnal variation of PWV. However, the PWV errors increase after the 12 h of simulation. Errors in the simulations are larger than 1.5 mm only during 10 per cent of the study period, they do not exceed 0.5 mm during 65 per cent of the time and they are below 0.25 mm more than 45 per cent of the time, which emphasizes the good performance of the model to forecast the PWV over the region. The misrepresentation of the near-surface humidity in the region by the WRF model may have a negative impact on the PWV forecasts. Thus, having accurate forecasts of humidity near the surface may result in more accurate PWV forecasts. Overall, results from this, as well as recent studies, supports the use of the WRF model to provide accurate weather forecasts for the region, particularly for the PWV, which can be of great benefit for astronomers in the planning of their scientific operations and observing time.

  3. Evaluating the one-way coupling of WRF-Hydro for flood forecasting

    NASA Astrophysics Data System (ADS)

    Yucel, Ismail; Onen, Alper; Yilmaz, Koray; Gochis, David

    2016-04-01

    A fully-distributed, multi-physics, multi-scale hydrologic and hydraulic modeling system, WRF-Hydro, is used to assess the potential for skillful flood forecasting based on precipitation inputs derived from the Weather Research and Forecasting (WRF) model and the EUMETSAT Multi-sensor Precipitation Estimates (MPEs). Similar to past studies it was found that WRF model precipitation forecast errors related to model initial conditions are reduced when the three dimensional atmospheric data assimilation (3DVAR) scheme in the WRF model simulations is used. A comparative evaluation of the impact of MPE versus WRF precipitation estimates, both with and without data assimilation, in driving WRF-Hydro simulated streamflow is then made. The ten rainfall-runoff events that occurred in the Black Sea Region were used for testing and evaluation. With the availability of streamflow data across rainfall-runoff events, the cal- ibration is only performed on the Bartin sub-basin using two events and the calibrated parameters are then transferred to other neighboring three ungauged sub-basins in the study area. The rest of the events from all sub-basins are then used to evaluate the performance of the WRF-Hydro system with the cali- brated parameters. Following model calibration, the WRF-Hydro system was capable of skillfully repro- ducing observed flood hydrographs in terms of the volume of the runoff produced and the overall shape of the hydrograph. Streamflow simulation skill was significantly improved for those WRF model simula- tions where storm precipitation was accurately depicted with respect to timing, location and amount. Accurate streamflow simulations were more evident in WRF model simulations where the 3DVAR scheme was used compared to when it was not used. Because of substantial dry bias feature of MPE, as compared with surface rain gauges, streamflow derived using this precipitation product is in general very poor. Overall, root mean squared errors for runoff were

  4. Impact of an improved WRF urban canopy model on diurnal air temperature simulation over northern Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Chuan-Yao; Su, Chiung-Jui; Kusaka, Hiroyuki; Akimoto, Yuko; Sheng, Yang-Fan; Huang, -Chuan, Jr.; Hsu, Huang-Hsiung

    2016-02-01

    This study evaluates the impact of urbanization over northern Taiwan using the Weather Research and Forecasting (WRF) Model coupled with the Noah land-surface model and a modified urban canopy model (WRF-UCM2D). In the original UCM coupled to WRF (WRF-UCM), when the land use in the model grid is identified as "urban", the urban fraction value is fixed. Similarly, the UCM assumes the distribution of anthropogenic heat (AH) to be constant. This may not only lead to over- or underestimation of urban fraction and AH in urban and non-urban areas, but spatial variation also affects the model-estimated temperature. To overcome the abovementioned limitations and to improve the performance of the original UCM model, WRF-UCM is modified to consider the 2-D urban fraction and AH (WRF-UCM2D).The two models were found to have comparable temperature simulation performance for urban areas, but large differences in simulated results were observed for non-urban areas, especially at nighttime. WRF-UCM2D yielded a higher correlation coefficient (R2) than WRF-UCM (0.72 vs. 0.48, respectively), while bias and RMSE achieved by WRF-UCM2D were both significantly smaller than those attained by WRF-UCM (0.27 and 1.27 vs. 1.12 and 1.89, respectively). In other words, the improved model not only enhanced correlation but also reduced bias and RMSE for the nighttime data of non-urban areas. WRF-UCM2D performed much better than WRF-UCM at non-urban stations with a low urban fraction during nighttime. The improved simulation performance of WRF-UCM2D in non-urban areas is attributed to the energy exchange which enables efficient turbulence mixing at a low urban fraction. The result of this study has a crucial implication for assessing the impacts of urbanization on air quality and regional climate.

  5. Offline tracer transport modeling with global WRF model data

    NASA Astrophysics Data System (ADS)

    Belikov, Dmitry; Maksytov, Shamil; Zaripov, Radomir; Bart, Andrey; Starchenko, Alexander

    2013-04-01

    This work describes the one-way coupling between a global configuration of the Weather Research and Forecasting (WRF) weather prediction model (http://wrf-model.org/) and the National Institute for Environmental Studies (NIES) three-dimensional offline chemical transport model (version NIES-08.1i). The primary motivation for developing this coupled model has been to reduce transport errors in global-scale simulation of greenhouse gases through a more detailed description of the meteorological conditions. We have implemented a global configuration of WRF model (version 3.4.1, ARW core) with 2.5 degree horizontal resolution and 32 vertical levels. The WRF model was driving with NCEP Final Analysis (FNL) reanalysis using combined techniques: FDDA + Cyclic Incremental Correction (like in intermittent data assimilation). Time-averaged mass-coupled horizontal velocities on sigma levels with approach supposed by Nehrkorn et al. (2010) are calculated to drive NIES TM. The NIES TM is designed to simulate natural and anthropogenic synoptic-scale variations in atmospheric constituents at diurnal, seasonal and interannual timescales. The model uses a mass-conservative flux-form formulation that consists of a third-order van Leer advection scheme and a horizontal dry-air mass flux correction. The horizontal latitude-longitude grid is a reduced rectangular grid (i.e., the grid size is doubled several times approaching the poles), with an initial spatial resolution of 2.5 deg x 2.5 deg and 32 vertical levels from the surface up to the level of 3 hPa. A simulations of the atmospheric tracer are used to evaluate the performance of the coupled WRF-NIES model. Simulated distributions are validated against in situ observations and compared with output from "standard" version of NIES TM driven by the Japanese 25-year Reanalysis/the Japan Meteorological Agency Climate Data Assimilation System (JRA-25/JCDAS) dataset. Fields calculated by WRF and used to drive NIES TM were also evaluated

  6. Towards realistic representation of hydrological processes in integrated WRF-urban modeling system

    NASA Astrophysics Data System (ADS)

    Yang, Jiachuan; Wang, Zhi-hua; Chen, Fei; Miao, Shiguang; Tewari, Mukul; Georgescu, Matei

    2014-05-01

    To meet the demand of the ever-increasing urbanized global population, substantial conversion of natural landscapes to urban terrains is expected in the next few decades. The landscape modification will emerge as the source of many adverse effects that challenge the environmental sustainability of cities under changing climatic patterns. To address these adverse effects and to develop corresponding adaptation/mitigation strategies, physically-based single layer urban canopy model (SLUCM) has been developed and implemented into the Weather Research and Forecasting (WRF) platform. However, due to the lack of realistic representation of urban hydrological processes, simulation of urban climatology by current coupled WRF/SLUCM is inevitably inadequate. Aiming at improving the accuracy of simulations, in this study we implement physically-based parameterization of urban hydrological processes into the model, including (1) anthropogenic latent heat, (2) urban irrigation, (3) evaporation over water-holding engineered pavements, (4) urban oasis effect, and (5) green roof. In addition, we use an advanced Monte Carlo approach to quantify the sensitivity of urban hydrological modeling to parameter uncertainties. Evaluated against field observations at four major metropolitan areas, results show that the enhanced model is significantly improved in accurately predicting turbulent fluxes arising from built surfaces, especially the latent heat flux. Case studies show that green roof is capable of reducing urban surface temperature and sensible heat flux effectively, and modifying local and regional hydroclimate. Meanwhile, it is efficient in decreasing energy loading of buildings, not only cooling demand in summers but also heating demand in winters, through the combined evaporative cooling and insulation effect. Effectiveness of green roof is found to be limited by availability of water resources and highly sensitive to surface roughness heights. The enhanced WRF/SLUCM model

  7. Assimilation and simulation of typhoon Rusa (2002) using the WRF system

    NASA Astrophysics Data System (ADS)

    Gu, Jianfeng; Xiao, Qingnong; Kuo, Ying-Hwa; Barker, Dale M.; Xue, Jishan; Ma, Xiaoxing

    2005-06-01

    Using the recently developed Weather Research and Forecasting (WRF) 3DVAR and the WRF model, numerical experiments are conducted for the initialization and simulation of typhoon Rusa (2002). The observational data used in the WRF 3DVAR are conventional Global Telecommunications System (GTS) data and Korean Automatic Weather Station (AWS) surface observations. The Background Error Statistics (BES) via the National Meteorological Center (NMC) method has two different resolutions, that is, a 210-km horizontal grid space from the NCEP global model and a 10-km horizontal resolution from Korean operational forecasts. To improve the performance of the WRF simulation initialized from the WRF 3DVAR analyses, the scale-lengths used in the horizontal background error covariances via recursive filter are tuned in terms of the WRF 3DVAR control variables, streamfunction, velocity potential, unbalanced pressure and specific humidity. The experiments with respect to different background error statistics and different observational data indicate that the subsequent 24-h the WRF model forecasts of typhoon Rusa’s track and precipitation are significantly impacted upon the initial fields. Assimilation of the AWS data with the tuned background error statistics obtains improved predictions of the typhoon track and its precipitation.

  8. [Research advances in wheat (Triticum aestivum) allelopathy].

    PubMed

    Zhang, Xiaoke; Jiang, Yong; Liang, Wenju; Kong, Chuihua

    2004-10-01

    Wheat (Triticum aestivum) is the main food crop in the world, and plays an important role in agricultural production. In order to enhance wheat yield, herbicides and germicides were intensively applied and made negative effects on the environment. Wheat possesses allelopathic potential for weed suppression and disease control through the release of secondary metabolites from its living plants or residues, which could avoid the environment pollution brought by herbicides and germicides. This paper reviewed the research advances in wheat allelopathy. Hydroxamic acids and phenolic acids are the predominant allelochemicals frequently reported which could produce plant natural defense against weed, pest and disease. The allelopathic activity of allelochemicals is determined not only by the allelochemicals, but also by the factors of inheritance, environment and biology. The retention, transportation and transformation processes of allelochemicals, and the relationship between wheat allelopathy and soil biota and its mechanism were seldom studied and still needed to be researched profoundly. Utilizing wheat allelopathy in plant protection, environment protection and crop breeding would improve the stress-resistance, yield and quality of wheat in agricultural production. PMID:15624846

  9. Tests of WRF Microphysics in GFS

    NASA Astrophysics Data System (ADS)

    Sun, R.; Han, J.

    2014-12-01

    Zhao and Carr microphysics scheme has been implemented into the NCEP Global Forecasting System (GFS) for many years. It predicts total cloud condensate (cloud water or ice). The scheme has significantly improved the forecast skills compared with its previous diagnostic cloud scheme. However, it has become too simple in several aspects as the computing power and resolution increase. Many microphysical processes are simplified or neglected for computing efficiency. Precipitation is diagnosed and falls to the surface instantaneously. Studies have shown that more sophisticated microphysics schemes generally give better results compared with observations. We are testing several sophisticated microphysics schemes from the Weather Research and Forecasting Model (WRF) in the GFS. These schemes have more cloud species and more physically-based parameterized processes. We will adjust or modify the schemes for the GFS. Partial cloud and cloud overlapping will be added to these schemes. The comparison will be focus on the precipitation skills and cloud properties and their effects.

  10. Advances in European drought research efforts and related research networks

    NASA Astrophysics Data System (ADS)

    Tallaksen, Lena; van Lanen, Henny

    2010-05-01

    catchment structure (i.e. presence of stores) in drought development is still limited. Climate change projections for Europe further indicate that drought is likely to become more frequent and more severe due to warmer northern winters and a warmer and dryer Mediterranean region. This presentation reviews current knowledge on the main climate drivers of drought in Europe, important land-surface feedback processes, drought propagation (meteorological to hydrological droughts), major historical events, spatial and temporal characteristics of drought, and methodologies for monitoring and forecasting. Recent and ongoing European drought research projects and networks are presented, focusing on their role in advancing our knowledge on drought within different research areas and hydroclimatological regions. Finally, some recommendations for further research are given, including the need for access to updated data across national boundaries. A joint interdisciplinary effort is suggested to advance our knowledge through a comprehensive assessment of recent major large-scale droughts in Europe.

  11. Eagleworks Laboratories: Advanced Propulsion Physics Research

    NASA Technical Reports Server (NTRS)

    White, Harold; March, Paul; Williams, Nehemiah; ONeill, William

    2011-01-01

    NASA/JSC is implementing an advanced propulsion physics laboratory, informally known as "Eagleworks", to pursue propulsion technologies necessary to enable human exploration of the solar system over the next 50 years, and enabling interstellar spaceflight by the end of the century. This work directly supports the "Breakthrough Propulsion" objectives detailed in the NASA OCT TA02 In-space Propulsion Roadmap, and aligns with the #10 Top Technical Challenge identified in the report. Since the work being pursued by this laboratory is applied scientific research in the areas of the quantum vacuum, gravitation, nature of space-time, and other fundamental physical phenomenon, high fidelity testing facilities are needed. The lab will first implement a low-thrust torsion pendulum (<1 uN), and commission the facility with an existing Quantum Vacuum Plasma Thruster. To date, the QVPT line of research has produced data suggesting very high specific impulse coupled with high specific force. If the physics and engineering models can be explored and understood in the lab to allow scaling to power levels pertinent for human spaceflight, 400kW SEP human missions to Mars may become a possibility, and at power levels of 2MW, 1-year transit to Neptune may also be possible. Additionally, the lab is implementing a warp field interferometer that will be able to measure spacetime disturbances down to 150nm. Recent work published by White [1] [2] [3] suggests that it may be possible to engineer spacetime creating conditions similar to what drives the expansion of the cosmos. Although the expected magnitude of the effect would be tiny, it may be a "Chicago pile" moment for this area of physics.

  12. Land reclamation: Advances in research technology

    SciTech Connect

    Younos, T.; Diplas, P.; Mostaghimi, S.

    1992-01-01

    Land reclamation encompasses remediation of industrial wasteland, improvement of infertile land for agricultural production, preservation of wetlands, and restoration of disturbed areas. Land reclamation is an integral part of sustainable development which aims to reconcile economic productivity with environmental preservation. During the 1980s, significant progress was achieved in the application of advanced technologies to sustainable development projects. The goal of this international symposium was to serve as a forum to review current research and state-of-the-art technology dealing with various aspects of land reclamation, and provide an opportunity for professional interaction and exchange of information in a multi-disciplinary setting. The scope of the symposium was as broad as the topic itself. The keynote address by Professor John Cairns focused on a systems approach in land restoration projects and challenges facing scientists in global biotic impoverishment. Other topics discussed in ten mechanical sessions included development and applications of computer models, geographic information systems, remote sensing technology, salinity problems, surface and ground water monitoring, reclamation of mine areas, soil amendment methods and impacts, wetland restoration techniques, and land use planning for resource protection.

  13. Advances in Mycotoxin Research: Public Health Perspectives.

    PubMed

    Lee, Hyun Jung; Ryu, Dojin

    2015-12-01

    Aflatoxins, ochratoxins, fumonisins, deoxynivalenol, and zearalenone are of significant public health concern as they can cause serious adverse effects in different organs including the liver, kidney, and immune system in humans. These toxic secondary metabolites are produced by filamentous fungi mainly in the genus Aspergillus, Penicillium, and Fusarium. It is challenging to control the formation of mycotoxins due to the worldwide occurrence of these fungi in food and the environment. In addition to raw agricultural commodities, mycotoxins tend to remain in finished food products as they may not be destroyed by conventional processing techniques. Hence, much of our concern is directed to chronic health effects through long-term exposure to one or multiple mycotoxins from contaminated foods. Ideally risk assessment requires a comprehensive data, including toxicological and epidemiological studies as well as surveillance and exposure assessment. Setting of regulatory limits for mycotoxins is considered necessary to protect human health from mycotoxin exposure. Although advances in analytical techniques provide basic yet critical tool in regulation as well as all aspects of scientific research, it has been acknowledged that different forms of mycotoxins such as analogs and conjugated mycotoxins may constitute a significant source of dietary exposure. Further studies should be warranted to correlate mycotoxin exposure and human health possibly via identification and validation of suitable biomarkers. PMID:26565730

  14. Indentation Methods in Advanced Materials Research Introduction

    SciTech Connect

    Pharr, George Mathews; Cheng, Yang-Tse; Hutchings, Ian; Sakai, Mototsugu; Moody, Neville; Sundararajan, G.; Swain, Michael V.

    2009-01-01

    Since its commercialization early in the 20th century, indentation testing has played a key role in the development of new materials and understanding their mechanical behavior. Progr3ess in the field has relied on a close marriage between research in the mechanical behavior of materials and contact mechanics. The seminal work of Hertz laid the foundations for bringing these two together, with his contributions still widely utilized today in examining elastic behavior and the physics of fracture. Later, the pioneering work of Tabor, as published in his classic text 'The Hardness of Metals', exapdned this understanding to address the complexities of plasticity. Enormous progress in the field has been achieved in the last decade, made possible both by advances in instrumentation, for example, load and depth-sensing indentation and scanning electron microscopy (SEM) and transmission electron microscopy (TEM) based in situ testing, as well as improved modeling capabilities that use computationally intensive techniques such as finite element analysis and molecular dynamics simulation. The purpose of this special focus issue is to present recent state of the art developments in the field.

  15. Impact of gas-phase mechanisms on Weather Research Forecasting Model with Chemistry (WRF/Chem) predictions: Mechanism implementation and comparative evaluation

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Chen, Yaosheng; Sarwar, Golam; Schere, Kenneth

    2012-01-01

    Gas-phase mechanisms provide important oxidant and gaseous precursors for secondary aerosol formation. Different gas-phase mechanisms may lead to different predictions of gases, aerosols, and aerosol direct and indirect effects. In this study, WRF/Chem-MADRID simulations are conducted over the continental United States for July 2001, with three different gas-phase mechanisms, a default one (i.e., CBM-Z) and two newly implemented ones (i.e., CB05 and SAPRC-99). Simulation results are evaluated against available surface observations, satellite data, and reanalysis data. The model with these three gas-phase mechanisms gives similar predictions of most meteorological variables in terms of spatial distribution and statistics, but large differences exist in shortwave radiation and temperature and relative humidity at 2 m at individual sites under cloudy conditions, indicating the importance of aerosol semi-direct and indirect effects on these variables. Large biases exist in the simulated wind speed at 10 m, cloud water path, cloud optical thickness, and precipitation, due to uncertainties in current cloud microphysics and surface layer parameterizations. Simulations with all three gas-phase mechanisms well reproduce surface concentrations of O3, CO, NO2, and PM2.5, and column NO2. Larger biases exist in the surface concentrations of nitrate and organic matter (OM) and in the spatial distribution of column CO, tropospheric ozone residual, and aerosol optical depth, due to uncertainties in primary OM emissions, limitations in model representations of chemical transport, and radiative processes. Different gas-phase mechanisms lead to different predictions of mass concentrations of O3 (up to 5 ppb), PM2.5 (up to 0.5 μg m-3), secondary inorganic PM2.5 species (up to 1.1 μg m-3), organic PM (up to 1.8 μg m-3), and number concentration of PM2.5 (up to 2 × 104 cm-3). Differences in aerosol mass and number concentrations further lead to sizeable differences in simulated

  16. VolksWRF - A Weather Modeling Portal for the General Public

    NASA Astrophysics Data System (ADS)

    Morton, D.; Jacobi, M.; Newby, G. B.

    2009-12-01

    A web portal is being developed to facilitate painless interaction with the Weather Research and Forecasting (WRF) model. Named VolksWRF - or, the People's WRF - this system is intended to provide opportunities for research and education in numerical weather prediction. VolksWRF has been prototyped on a single-cpu system, allowing users to enter several parameters to describe the geographic domain and gridding, and underlying scripts then create a domain, perform pre-processing routines with the most recently available input data, and ultimately run a numerical forecast culminating in a set of animated graphics to depict the forecast. This is provided without requiring users to have userids and passwords on the computing platforms or to struggle through the creation of complicated namelists and data transformations. Though still in its infancy, our vision is that VolksWRF will provide access to weather modeling for education activities, facilitating experimentation and user-selected "what if" parameterizations as the interface improves. Additionally, provision of this interface allows the general public an opportunity to understand the basics of the numerical weather prediction process. Beyond the education mission, it is anticipated that VolksWRF can be used by researchers to perform first approximation simulations in preparation for more focused modeling activities.

  17. Advanced research workshop: nuclear materials safety

    SciTech Connect

    Jardine, L J; Moshkov, M M

    1999-01-28

    The Advanced Research Workshop (ARW) on Nuclear Materials Safety held June 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 U.S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuclear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuclear material safety topics on the storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, including vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This ARW completed discussions by experts of the nuclear materials safety topics that were not covered in the previous, companion ARW on Nuclear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuclear material aspects of the storage and disposition operations required for excess HEU and plutonium. As a result, specific experts in nuclear materials safety have been identified, know each other from their participation in t he two ARW interactions, and have developed a partial consensus and dialogue on the most urgent nuclear materials safety topics to be addressed in a formal bilateral program on t he subject. A strong basis now exists for maintaining and developing a continuing dialogue between Russian, European, and U.S. experts in nuclear materials safety that will improve the safety of future nuclear materials operations in all the countries involved because of t he positive synergistic effects of focusing these diverse backgrounds of

  18. 2010 Summary of Advances in Autism Spectrum Disorder Research

    ERIC Educational Resources Information Center

    Interagency Autism Coordinating Committee, 2010

    2010-01-01

    As part of the Combating Autism Act of 2006, the members of the Interagency Autism Coordinating Committee (IACC) are required to develop an annual "Summary of Advances" to describe each year's top advances in autism spectrum disorder (ASD) research. These advances represent significant progress in the early diagnosis of ASD, understanding the…

  19. An Observation-base investigation of nudging in WRF for downscaling surface climate information to 12-km Grid Spacing

    EPA Science Inventory

    Previous research has demonstrated the ability to use the Weather Research and Forecast (WRF) model and contemporary dynamical downscaling methods to refine global climate modeling results to a horizontal resolution of 36 km. Environmental managers and urban planners have expre...

  20. Advanced cogeneration research study: Executive summary

    NASA Technical Reports Server (NTRS)

    Bluhm, S. A.; Moore, N.; Rosenberg, L.; Slonski, M.

    1983-01-01

    This study provides a broad based overview of selected areas relevant to the development of a comprehensive Southern California Edison (SCE) advanced cogeneration project. The areas studied are: (1) Cogeneration potential in the SCE service territory; (2) Advanced cogeneration technologies; and (3) Existing cogeneration computer models. An estimated 3700 MW sub E could potentially be generated from existing industries in the Southern California Edison service territory using cogeneration technology. Of this total, current technology could provide 2600 MW sub E and advanced technology could provide 1100 MW sub E. The manufacturing sector (SIC Codes 20-39) was found to have the highest average potential for current cogeneration technology. The mining sector (SIC Codes 10-14) was found to have the highest potential for advanced technology.

  1. Survey of cogeneration: Advanced cogeneration research study

    NASA Technical Reports Server (NTRS)

    Slonski, M. L.

    1983-01-01

    The consumption of electricity, natural gas, or fuel oil was surveyed. The potential electricity that could be generated in the SCE service territory using cogeneration technology was estimated. It was found that an estimated 3700 MWe could potentially be generated in Southern California using cogenerated technology. It is suggested that current technology could provide 2600 MWe and advanced technology could provide 1100 MWe. Approximately 1600 MWt is considered not feasible to produce electricity with either current or advanced cogeneration technology.

  2. 77 FR 19744 - Advanced BioPhotonics, Inc., Advanced Viral Research Corp., Brantley Capital Corp., Brilliant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION Advanced BioPhotonics, Inc., Advanced Viral Research Corp., Brantley Capital Corp., Brilliant... information concerning the securities of Advanced BioPhotonics, Inc. because it has not filed any...

  3. Advanced Space Propulsion: A Research Perspective

    NASA Technical Reports Server (NTRS)

    Litchford, Ron; Cole, John; Rodgers, Steve; Sackheim, Bob

    2002-01-01

    This viewgraph presentation provides information on spacecraft propulsion research. The organizational and management principals needed for the research are stated. The presentation recommends a space propulsion research program. It also states some of the factors which drive research in the field, as well as the desired goals, objectives, and focus of the research.

  4. Advanced Materials and Solids Analysis Research Core (AMSARC)

    EPA Science Inventory

    The Advanced Materials and Solids Analysis Research Core (AMSARC), centered at the U.S. Environmental Protection Agency's (EPA) Andrew W. Breidenbach Environmental Research Center in Cincinnati, Ohio, is the foundation for the Agency's solids and surfaces analysis capabilities. ...

  5. Ethics, Professional Expectations, and Graduate Education: Advancing Research in Kinesiology

    ERIC Educational Resources Information Center

    DePauw, Karen P.

    2009-01-01

    The university is a social institution and as such has a social responsibility to advance knowledge through research that is ultimately meaningful and beneficial to society. As we seek to advance research and graduate education in kinesiology, we must accept ethical standards and professional expectations not only as an institutional value but as…

  6. Impact of MODIS High-Resolution Sea-Surface Temperatures on WRF Forecasts at NWS Miami, FL

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; LaCasse, Katherine M.; Dembek, Scott R.; Santos, Pablo; Lapenta, William M.

    2007-01-01

    Over the past few years,studies at the Short-term Prediction Research and Transition (SPoRT) Center have suggested that the use of Moderate Resolution Imaging Spectroradiometer (MODIS) composite sea-surface temperature (SST) products in regional weather forecast models can have a significant positive impact on short-term numerical weather prediction in coastal regions. The recent paper by LaCasse et al. (2007, Monthly Weather Review) highlights lower atmospheric differences in regional numerical simulations over the Florida offshore waters using 2-km SST composites derived from the MODIS instrument aboard the polar-orbiting Aqua and Terra Earth Observing System satellites. To help quantify the value of this impact on NWS Weather Forecast Offices (WFOs), the SPoRT Center and the NWS WFO at Miami, FL (MIA) are collaborating on a project to investigate the impact of using the high-resolution MODIS SST fields within the Weather Research and Forecasting (WRF) prediction system. The scientific hypothesis being tested is: More accurate specification of the lower-boundary forcing within WRF will result in improved land/sea fluxes and hence, more accurate evolution of coastal mesoscale circulations and the associated sensible weather elements. The NWS MIA is currently running the WRF system in real-time to support daily forecast operations, using the National Centers for Environmental Prediction Nonhydrostatic Mesoscale Model dynamical core within the NWS Science and Training Resource Center's Environmental Modeling System (EMS) software; The EMS is a standalone modeling system capable of downloading the necessary daily datasets, and initializing, running and displaying WRF forecasts in the NWS Advanced Weather Interactive Processing System (AWIPS) with little intervention required by forecasters. Twenty-seven hour forecasts are run daily with start times of 0300,0900, 1500, and 2100 UTC on a domain with 4-km grid spacing covering the southern half of Florida and the far

  7. Advances in Education Research, Fall 1998.

    ERIC Educational Resources Information Center

    Craig, Judy A., Ed.

    1998-01-01

    This report provides peer-reviewed, scholarly research supported in whole or in part by the Office of Educational Research and Improvement through its educational research and development programs. It includes 13 previously published articles from selected refereed journals identifying the best research on community service learning. Section 1,…

  8. Research on advanced photovoltaic manufacturing technology

    SciTech Connect

    Jester, T.; Eberspacher, C. )

    1991-11-01

    This report outlines opportunities for significantly advancing the scale and economy of high-volume manufacturing of high-efficiency photovoltaic (PV) modules. We propose to pursue a concurrent effort to advance existing crystalline silicon module manufacturing technology and to implement thin film CuInSe{sub 2} (CIS) module manufacturing. This combination of commercial-scale manufacturing of high-efficiency crystalline silicon modules and of pilot-scale manufacturing of low-cost thin film CIS technology will support continued, rapid growth of the US PV industry.

  9. Modelling soil-plant-atmosphere interactions by coupling the regional weather model WRF to mechanistic plant models

    NASA Astrophysics Data System (ADS)

    Klein, C.; Hoffmann, P.; Priesack, E.

    2012-04-01

    of evapotranspiration, heat flow and radiation of thermodynamic values. Bossel, H. 1996. "TREEDYN3 forest simulation model." Ecological modelling 90 (3): 187-227. CLC, 2006. CORINE Land Cover 2006. http://www.eea.europa.eu/themes/landuse/interactive/clc-download. Accessed 16.12.2012. Fei Chen, and Jimy Dudhia. 2010. Coupling an Advanced Land Surface-Hydrology Model with the Penn State-NCAR MM5 Modeling System. Part II: Preliminary Model Validation. Research-article. February 25. Skamarock, W. C. 2008. "Coauthors 2008: A description of the Advanced Research WRF version 3." NCAR Tech. Note NCAR/TN-475+ STR. http://www.wrf-model.org/. Thornley, John. 1998. Grassland dynamics: an ecosystem simulation model. Wallingford,New York: CAB international.

  10. Integrated Advanced Energy Systems Research at IIT

    SciTech Connect

    Hamid Arastoopour

    2010-09-30

    This report consists of Two research projects; Sustainable Buildings and Hydrogen Storage. Sustainable Building Part includes: Wind and the self powered built environment by professor P. Land and his research group and experimental and computational works by professor D. Rempfer and his research group. Hydrogen Storage part includes: Hydrogen Storage Using Mg-Mixed Metal Hydrides by professor H. Arastoopour and his research team and Carbon Nanostructure as Hydrogen Storage Material by professor J. Prakash and his research team.

  11. Advanced imaging research and development at DARPA

    NASA Astrophysics Data System (ADS)

    Dhar, Nibir K.; Dat, Ravi

    2012-06-01

    Advances in imaging technology have huge impact on our daily lives. Innovations in optics, focal plane arrays (FPA), microelectronics and computation have revolutionized camera design. As a result, new approaches to camera design and low cost manufacturing is now possible. These advances are clearly evident in visible wavelength band due to pixel scaling, improvements in silicon material and CMOS technology. CMOS cameras are available in cell phones and many other consumer products. Advances in infrared imaging technology have been slow due to market volume and many technological barriers in detector materials, optics and fundamental limits imposed by the scaling laws of optics. There is of course much room for improvements in both, visible and infrared imaging technology. This paper highlights various technology development projects at DARPA to advance the imaging technology for both, visible and infrared. Challenges and potentials solutions are highlighted in areas related to wide field-of-view camera design, small pitch pixel, broadband and multiband detectors and focal plane arrays.

  12. Integrating Advance Research Directives into the European Legal Framework.

    PubMed

    Andorno, Roberto; Gennet, Eloïse; Jongsma, Karin; Elger, Bernice

    2016-04-01

    The possibility of using advance directives to prospectively consent to research participation in the event of dementia remains largely unexplored in Europe. Moreover, the legal status of advance directives for research is unclear in the European regulations governing biomedical research. The article explores the place that advance research directives have in the current European legal framework, and considers the possibility of integrating them more explicitly into the existing regulations. Special focus is placed on issues regarding informed consent, the role of proxies, and the level of acceptable risks and burdens. PMID:27228684

  13. The Role of Research in Advanced Dental Education.

    ERIC Educational Resources Information Center

    Profitt, William R.; Vig, Peter S.

    1980-01-01

    Even though research is an integral part of quality advanced dental programs, many dental departments with postdoctoral programs lack faculty and other resources for research productivity. Programs to produce clinical faculty with research training are called for through the development of clinical research centers. (JSR)

  14. Advances in Education Research, Fall 1999.

    ERIC Educational Resources Information Center

    Advances in Education Research, 1999

    1999-01-01

    This volume presents selected research articles related to early intervention for college programs. This is part of a two volume set designed to showcase some of the best cutting edge research on early intervention programs. Providing an introduction to the types of these programs, this issue: presents research on why the programs are necessary;…

  15. Advanced Radioisotope Power Systems Segmented Thermoelectric Research

    NASA Technical Reports Server (NTRS)

    Caillat, Thierry

    2004-01-01

    Flight times are long; - Need power systems with >15 years life. Mass is at an absolute premium; - Need power systems with high specific power and scalability. 3 orders of magnitude reduction in solar irradiance from Earth to Pluto. Nuclear power sources preferable. The Overall objective is to develop low mass, high efficiency, low-cost Advanced Radioisotope Power System with double the Specific Power and Efficiency over state-of-the-art Radioisotope Thermoelectric Generators (RTGs).

  16. Medical technology advances from space research.

    NASA Technical Reports Server (NTRS)

    Pool, S. L.

    1971-01-01

    NASA-sponsored medical R & D programs for space applications are reviewed with particular attention to the benefits of these programs to earthbound medical services and to the general public. Notable among the results of these NASA programs is an integrated medical laboratory equipped with numerous advanced systems such as digital biotelemetry and automatic visual field mapping systems, sponge electrode caps for electroencephalograms, and sophisticated respiratory analysis equipment.

  17. Evaluation of Korean wind map based on mesoscale model WRF

    NASA Astrophysics Data System (ADS)

    Byon, Jaeyoung; Choi, Young-Jean; Seo, Beom-Keun

    2010-05-01

    In order to encourage wind energy industry and assessment of wind resource in Korea, we establish wind resource map using numerical model over the Korean Peninsula. The model which is used in this study is Weather Research and Forecasting (WRF) that is developed in NCAR. A high resolution topography with a 100-m resolution and a land-use data which has a 30-m resolution are implemented over the Korean environment for the improvement of lower atmosphere forecast in WRF. WRF has conducted with a 1 km resolution which is forecasted using NCEP FNL data employed as initial and boundary condition. The WRF model has run for one year for the wind map over the South Korea. The running periods that is named as typical meteorological year (TMY) is determined by statistical method. The TMY represents mean atmospheric characteristics from 1998 to 2008. Strong wind occurs in eastern, southern coastal region, and Jeju island of Korea. Wind in the Korean Peninsula blows from northwest during most of the season, but from southeast during summer. High occurrence rate of main wind direction is shown in mountainous region of inland and coastal region. The performance of the TMY results over the South Korea is validated with radiosonde observation at 80m above ground level which is wind turbine hub height. Root-mean-square-error (RMSE) shows about 3-6 m/s for wind speed and mean absolute error is about 30-50 degree for wind direction. Korean wind map will be improved continuously by data assimilation and high resolution simulation less than 1 km.

  18. Winter time orographic cloud seeding effects in WRF simulations

    NASA Astrophysics Data System (ADS)

    Tessendorf, S. A.; Xue, L.; Rasmussen, R.

    2011-12-01

    The goal of this study is to use a numerical model to investigate the feasibility of orographic cloud seeding from existing ground-based generators and aircraft seeding tracks in the Payette, Eastern Idaho, and Western Wyoming regions operated by Idaho Power. The Weather Research and Forecast (WRF) model coupled with an AgI point-source module was run at 2km horizontal resolution for 10 seeding cases including both ground-based and airborne cases from the 2010-2011 winter season. In all of the WRF simulations, a positive increase in precipitation was simulated within the entire model domain. This simulated enhancement was positive within the targeted watershed basins for about two-thirds of the cases. Some enhancements were simulated downwind of the target regions, which could be due to the wind regime and meteorological conditions, or due to model parameter specifications that could affect the location of a simulated seeding effect. The WRF simulations indicated that airborne seeding generally produces a localized seeding effect within a targeted region.

  19. High-Resolution WRF Forecasts of Lightning Threat

    NASA Technical Reports Server (NTRS)

    Goodman, S. J.; McCaul, E. W., Jr.; LaCasse, K.

    2007-01-01

    Tropical Rainfall Measuring Mission (TRMM)lightning and precipitation observations have confirmed the existence of a robust relationship between lightning flash rates and the amount of large precipitating ice hydrometeors in storms. This relationship is exploited, in conjunction with the capabilities of the Weather Research and Forecast (WRF) model, to forecast the threat of lightning from convective storms using the output fields from the model forecasts. The simulated vertical flux of graupel at -15C is used in this study as a proxy for charge separation processes and their associated lightning risk. Initial experiments using 6-h simulations are conducted for a number of case studies for which three-dimensional lightning validation data from the North Alabama Lightning Mapping Array are available. The WRF has been initialized on a 2 km grid using Eta boundary conditions, Doppler radar radial velocity and reflectivity fields, and METAR and ACARS data. An array of subjective and objective statistical metrics is employed to document the utility of the WRF forecasts. The simulation results are also compared to other more traditional means of forecasting convective storms, such as those based on inspection of the convective available potential energy field.

  20. A strategy for representing the effects of convective momentum transport in multiscale models: Evaluation using a new superparameterized version of the Weather Research and Forecast model (SP-WRF)

    NASA Astrophysics Data System (ADS)

    Tulich, S. N.

    2015-06-01

    This paper describes a general method for the treatment of convective momentum transport (CMT) in large-scale dynamical solvers that use a cyclic, two-dimensional (2-D) cloud-resolving model (CRM) as a "superparameterization" of convective-system-scale processes. The approach is similar in concept to traditional parameterizations of CMT, but with the distinction that both the scalar transport and diagnostic pressure gradient force are calculated using information provided by the 2-D CRM. No assumptions are therefore made concerning the role of convection-induced pressure gradient forces in producing up or down-gradient CMT. The proposed method is evaluated using a new superparameterized version of the Weather Research and Forecast model (SP-WRF) that is described herein for the first time. Results show that the net effect of the formulation is to modestly reduce the overall strength of the large-scale circulation, via "cumulus friction." This statement holds true for idealized simulations of two types of mesoscale convective systems, a squall line, and a tropical cyclone, in addition to real-world global simulations of seasonal (1 June to 31 August) climate. In the case of the latter, inclusion of the formulation is found to improve the depiction of key synoptic modes of tropical wave variability, in addition to some aspects of the simulated time-mean climate. The choice of CRM orientation is also found to importantly affect the simulated time-mean climate, apparently due to changes in the explicit representation of wide-spread shallow convective regions.

  1. Advanced Life Support Research and Technology Development

    NASA Technical Reports Server (NTRS)

    Kliss, Mark

    2001-01-01

    A videograph outlining life support research. The Human Exploration and Development of Space (HEDS) Enterprise's goals are to provide life support self-sufficiency for human beings to carry out research and exploration productively in space, to open the door for planetary exploration, and for benefits on Earth. Topics presented include the role of NASA Ames, funding, and technical monitoring. The focused research areas discussed include air regeneration, carbon dioxide removal, Mars Life Support, water recovery, Vapor Phase Catalytic Ammonia Removal (VPCAR), solid waste treatment, and Supercritical Water Oxidation (SCWC). Focus is placed on the utilization of Systems Integration, Modeling and Analysis (SIMA) and Dynamic Systems Modeling in this research.

  2. Addressing Risks to Advance Mental Health Research

    PubMed Central

    Iltis, Ana S.; Misra, Sahana; Dunn, Laura B.; Brown, Gregory K.; Campbell, Amy; Earll, Sarah A.; Glowinski, Anne; Hadley, Whitney B.; Pies, Ronald; DuBois, James M.

    2015-01-01

    Objective Risk communication and management are essential to the ethical conduct of research, yet addressing risks may be time consuming for investigators and institutional review boards (IRBs) may reject study designs that appear too risky. This can discourage needed research, particularly in higher risk protocols or those enrolling potentially vulnerable individuals, such as those with some level of suicidality. Improved mechanisms for addressing research risks may facilitate much needed psychiatric research. This article provides mental health researchers with practical approaches to: 1) identify and define various intrinsic research risks; 2) communicate these risks to others (e.g., potential participants, regulatory bodies, society); 3) manage these risks during the course of a study; and 4) justify the risks. Methods As part of a National Institute of Mental Health (NIMH)-funded scientific meeting series, a public conference and a closed-session expert panel meeting were held on managing and disclosing risks in mental health clinical trials. The expert panel reviewed the literature with a focus on empirical studies and developed recommendations for best practices and further research on managing and disclosing risks in mental health clinical trials. IRB review was not required because there were no human subjects. The NIMH played no role in developing or reviewing the manuscript. Results Challenges, current data, practical strategies, and topics for future research are addressed for each of four key areas pertaining to management and disclosure of risks in clinical trials: identifying and defining risks, communicating risks, managing risks during studies, and justifying research risks. Conclusions Empirical data on risk communication, managing risks, and the benefits of research can support the ethical conduct of mental health research and may help investigators better conceptualize and confront risks and to gain IRB approval. PMID:24173618

  3. Advancing Administrative Supports for Research Development

    ERIC Educational Resources Information Center

    Briar-Lawson, Katharine; Korr, Wynne; White, Barbara; Vroom, Phyllis; Zabora, James; Middleton, Jane; Shank, Barbara; Schatz, Mona

    2008-01-01

    Research administrative supports must parallel and reinforce faculty initiatives in research grant procurement. This article features several types of developments that draw on presentations at the National Association of Deans and Directors of Schools of Social Work meetings. Key changes in social work programs are addressed, including the…

  4. Advanced technology airfoil research, volume 2. [conferences

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A comprehensive review of airfoil research is presented. The major thrust of the research is in three areas: development of computational aerodynamic codes for airfoil analysis and design, development of experimental facilities and test techniques, and all types of airfoil applications.

  5. Special Education Research Advances Knowledge in Education

    ERIC Educational Resources Information Center

    Vaughn, Sharon; Swanson, Elizabeth A.

    2015-01-01

    Research in special education has yielded beneficial outcomes for students with disabilities as well as typical achieving students. The authors provide examples of the valuable knowledge special education research has generated, including the elements of response to intervention (e.g., screening and progress monitoring), instructional practices…

  6. Japanese advances in fuzzy systems research

    NASA Astrophysics Data System (ADS)

    Schwartz, Daniel G.

    1992-07-01

    During this past summer (1991), I spent two months on an appointment as visiting researcher at Kansai University, Osaka, Japan, and five weeks at the Laboratory for International Fuzzy Engineering Research (LIFE), in Yokohama. Part of the expenses for the time in Osaka, and all the expenses for the visit at LIFE, were covered by ONR. While there I met with most of the key researchers in both fuzzy systems and case-based reasoning. This involved trips to numerous universities and research laboratories at Matsushita/Panasonic, Omron, and Hitachi Corporations. In addition, I spent three days at the Fuzzy Logic Systems Institute (FLSI), Iizuka, and I attended the annual meeting of the Japan Society for Fuzzy Theory and Research (SOFT-91) in Nagoya. The following report elaborates what I learned as a result of those activities.

  7. Prostate Cancer Stem Cells: Research Advances

    PubMed Central

    Jaworska, Dagmara; Król, Wojciech; Szliszka, Ewelina

    2015-01-01

    Cancer stem cells have been defined as cells within a tumor that possesses the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. Experimental evidence showed that these highly tumorigenic cells might be responsible for initiation and progression of cancer into invasive and metastatic disease. Eradicating prostate cancer stem cells, the root of the problem, has been considered as a promising target in prostate cancer treatment to improve the prognosis for patients with advanced stages of the disease. PMID:26593898

  8. [Recent advances in strawberry transgenic research].

    PubMed

    Qin, Yong-Hua; Zhang, Shang-Long

    2007-02-01

    Strawberry (Fragaria ananassa Duch.) is one of most important fruit crops cultivated widely in world. Genetic transformation has launched a new era in strawberry breeding and germplasm creativity. It offers a direct method of creating varieties that selectively targets gene or a few heterologous traits for introduction into the strawberry plant. Great advances have been made in strawberry genetic transformation in the past years. This paper reviews the recent progress in genetic transformation of strawberry on promoting resistance to viruses and fungi, insects, herbicides, stress and quality improvement. Problems and the prospects for application of genetic transformation in strawberry were discussed. PMID:17369168

  9. Examining Interior Grid Nudging Techniques Using Two-Way Nesting in the WRF Model for Regional Climate Modeling

    EPA Science Inventory

    This study evaluates interior nudging techniques using the Weather Research and Forecasting (WRF) model for regional climate modeling over the conterminous United States (CONUS) using a two-way nested configuration. NCEP–Department of Energy Atmospheric Model Intercomparison Pro...

  10. Ozone Research with Advanced Cooperative Lidar Experiment (ORACLE) Implementation Study

    NASA Technical Reports Server (NTRS)

    Stadler, John H.; Browell, Edward V.; Ismail, Syed; Dudelzak, Alexander E.; Ball, Donald J.

    1998-01-01

    New technological advances have made possible new active remote sensing capabilities from space. Utilizing these technologies, the Ozone Research with Advanced Cooperative Lidar Experiment (ORACLE) will provide high spatial resolution measurements of ozone, clouds and aerosols in the stratosphere and lower troposphere. Simultaneous measurements of ozone, clouds and aerosols will assist in the understanding of global change, atmospheric chemistry and meteorology.

  11. Intervention Research in Social Work: Recent Advances and Continuing Challenges

    ERIC Educational Resources Information Center

    Fraser, Mark W.

    2004-01-01

    The purpose of this article is to review substantive and methodological advances in interventive research. Three substantive advances are discussed: (a) the growing use of a risk factor perspective, (b) the emergence of practice-relevant micro social theories, and (c) the increased acceptance of structured treatment protocols and manual. In…

  12. Advanced launch vehicle propulsion at the NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    1990-01-01

    Several programs are investigating the benefits of advanced propellant and propulsion systems for future launch vehicles and upper stages. The two major research areas are the Metallized Propellants Program and the Advanced Concepts Program. Both of these programs have theoretical and experimental studies underway to determine the system-level performance effects of these propellants on future NASA vehicles.

  13. Research opportunities to advance solar energy utilization.

    PubMed

    Lewis, Nathan S

    2016-01-22

    Major developments, as well as remaining challenges and the associated research opportunities, are evaluated for three technologically distinct approaches to solar energy utilization: solar electricity, solar thermal, and solar fuels technologies. Much progress has been made, but research opportunities are still present for all approaches. Both evolutionary and revolutionary technology development, involving foundational research, applied research, learning by doing, demonstration projects, and deployment at scale will be needed to continue this technology-innovation ecosystem. Most of the approaches still offer the potential to provide much higher efficiencies, much lower costs, improved scalability, and new functionality, relative to the embodiments of solar energy-conversion systems that have been developed to date. PMID:26798020

  14. Advancement in LIDAR Data Collection: NASA's Experimental Airborne Advanced Research LIDAR

    NASA Technical Reports Server (NTRS)

    Riordan, Kevin; Wright, C. Wayne; Noronha, Conan

    2003-01-01

    The NASA Experimental Airborne Advanced Research LIDAR (EAARL) is a new developmental LIDAR designed to investigate and advance LIDAR techniques using a adaptive time resolved backscatter information for complex coastal research and monitoring applications. Information derived from such an advanced LIDAR system can potentially improve the ability of resource managers and policy makers to make better informed decisions. While there has been a large amount of research using LIDAR in coastal areas, most are limited in the amount of information captured from each laser pulse. The unique design of the EAARL instrument permits simultaneous acquisition of coastal environments which include subaerial bare earth topography, vegetation biomass, and bare earth beneath vegetated areas.

  15. NIAAA: Advancing Alcohol Research for 40 Years

    PubMed Central

    Warren, Kenneth R.; Hewitt, Brenda G.

    2010-01-01

    The National Institute on Alcohol Abuse and Alcoholism (NIAAA) has been the lead Federal agency responsible for scientific research on alcohol and its effects for 40 years. During that time, NIAAA has conducted and funded groundbreaking research, distilled and disseminated those research findings to a broad audience, and ultimately improved public health. Among NIAAA’s many significant contributions are the National Epidemiologic Survey on Alcohol and Related Conditions, the largest survey ever conducted on alcohol and associated psychiatric and medical conditions; investment in research to identify the genes underlying vulnerability to alcoholism; creation of the Collaborative Studies on Genetics of Alcoholism, a study of the genetics of alcoholism in a human population; leadership in exploring the effects of alcohol on fetal development and on a variety of diseases and organ systems; fostering alcoholism treatment, including supporting a medications development program that has funded more than 30 Phase 2 trials and 15 human laboratory studies; international collaborations and work across the National Institutes of Health; influential research on preventing alcohol problems through community programs as well as policy changes; and the translation of research findings to everyday practice, including the production of award-winning clinician training materials. PMID:23579932

  16. Strategy to Promote Active Learning of an Advanced Research Method

    ERIC Educational Resources Information Center

    McDermott, Hilary J.; Dovey, Terence M.

    2013-01-01

    Research methods courses aim to equip students with the knowledge and skills required for research yet seldom include practical aspects of assessment. This reflective practitioner report describes and evaluates an innovative approach to teaching and assessing advanced qualitative research methods to final-year psychology undergraduate students. An…

  17. Advancements in Research Synthesis Methods: From a Methodologically Inclusive Perspective

    ERIC Educational Resources Information Center

    Suri, Harsh; Clarke, David

    2009-01-01

    The dominant literature on research synthesis methods has positivist and neo-positivist origins. In recent years, the landscape of research synthesis methods has changed rapidly to become inclusive. This article highlights methodologically inclusive advancements in research synthesis methods. Attention is drawn to insights from interpretive,…

  18. Symposium on research advances in clinical PET. Final performance report

    SciTech Connect

    J. Michael McGehee

    1992-01-01

    The Institute for Clinical PET and the U.S. Department of Energy (DOE) co-sponsored a symposium entitled 'Research in PET: International and Institutional Perspectives' that highlighted the activities of many leading investigators in the U.S. and throughout the world. Research programs at the DOE were discussed as were potential directions of PET research. International as well as institutional perspectives on PET research were presented. This symposium was successful in reaching those interested in research advances of clinical PET.

  19. Injector Research at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Lewellen, John

    2003-04-01

    During the past several years, various techniques for improving the operational capabilities of high-brightness electron beam sources have been explored at the Advanced Photon Source. Areas of particular emphasis include novel methods of longitudinal phase space control, reduced emittance via blunt-needle cathodes, and alternate cavity geometries for improved source reliability and fabrication. To date most of this work has been computationally based, and a sampling of the results is presented. The APS injector test stand, now undergoing commissioning, will allow the experimental exploration of these and other aspects of high-brightness beam production and preservation. The capabilities of the test stand, along with an initial experimental schedule, will also be presented.

  20. Load research manual. Volume 3. Load research for advanced technologies

    SciTech Connect

    Brandenburg, L.; Clarkson, G.; Grund, Jr., C.; Leo, J.; Asbury, J.; Brandon-Brown, F.; Derderian, H.; Mueller, R.; Swaroop, R.

    1980-11-01

    This three-volume manual presents technical guidelines for electric utility load research. Special attention is given to issues raised by the load data reporting requirements of the Public Utility Regulatory Policies Act of 1978 and to problems faced by smaller utilities that are initiating load research programs. The manual includes guides to load research literature and glossaries of load research and statistical terms. In Volume 3, special load research procedures are presented for solar, wind, and cogeneration technologies.

  1. Conceptualizing and Advancing Research Networking Systems.

    PubMed

    Schleyer, Titus; Butler, Brian S; Song, Mei; Spallek, Heiko

    2012-03-01

    Science in general, and biomedical research in particular, is becoming more collaborative. As a result, collaboration with the right individuals, teams, and institutions is increasingly crucial for scientific progress. We propose Research Networking Systems (RNS) as a new type of system designed to help scientists identify and choose collaborators, and suggest a corresponding research agenda. The research agenda covers four areas: foundations, presentation, architecture, and evaluation. Foundations includes project-, institution- and discipline-specific motivational factors; the role of social networks; and impression formation based on information beyond expertise and interests. Presentation addresses representing expertise in a comprehensive and up-to-date manner; the role of controlled vocabularies and folksonomies; the tension between seekers' need for comprehensive information and potential collaborators' desire to control how they are seen by others; and the need to support serendipitous discovery of collaborative opportunities. Architecture considers aggregation and synthesis of information from multiple sources, social system interoperability, and integration with the user's primary work context. Lastly, evaluation focuses on assessment of collaboration decisions, measurement of user-specific costs and benefits, and how the large-scale impact of RNS could be evaluated with longitudinal and naturalistic methods. We hope that this article stimulates the human-computer interaction, computer-supported cooperative work, and related communities to pursue a broad and comprehensive agenda for developing research networking systems. PMID:24376309

  2. Conceptualizing and Advancing Research Networking Systems

    PubMed Central

    SCHLEYER, TITUS; BUTLER, BRIAN S.; SONG, MEI; SPALLEK, HEIKO

    2013-01-01

    Science in general, and biomedical research in particular, is becoming more collaborative. As a result, collaboration with the right individuals, teams, and institutions is increasingly crucial for scientific progress. We propose Research Networking Systems (RNS) as a new type of system designed to help scientists identify and choose collaborators, and suggest a corresponding research agenda. The research agenda covers four areas: foundations, presentation, architecture, and evaluation. Foundations includes project-, institution- and discipline-specific motivational factors; the role of social networks; and impression formation based on information beyond expertise and interests. Presentation addresses representing expertise in a comprehensive and up-to-date manner; the role of controlled vocabularies and folksonomies; the tension between seekers’ need for comprehensive information and potential collaborators’ desire to control how they are seen by others; and the need to support serendipitous discovery of collaborative opportunities. Architecture considers aggregation and synthesis of information from multiple sources, social system interoperability, and integration with the user’s primary work context. Lastly, evaluation focuses on assessment of collaboration decisions, measurement of user-specific costs and benefits, and how the large-scale impact of RNS could be evaluated with longitudinal and naturalistic methods. We hope that this article stimulates the human-computer interaction, computer-supported cooperative work, and related communities to pursue a broad and comprehensive agenda for developing research networking systems. PMID:24376309

  3. Educating Scientifically - Advances in Physics Education Research

    ScienceCinema

    Finkelstein, Noah [University of Colorado, Colorado, USA

    2009-09-01

    It is now fairly well documented that traditionally taught, large-scale introductory physics courses fail to teach our students the basics. In fact, often these same courses have been found to teach students things we do not want. Building on a tradition of research in physics, the physics education research community has been researching the effects of educational practice and reforms at the undergraduate level for many decades. From these efforts and those within the fields of education, cognitive science, and psychology we have learned a great deal about student learning and environments that support learning for an increasingly diverse population of students in the physics classroom. This talk will introduce some of the ideas from physics education research, discuss a variety of effective classroom practices/ surrounding educational structures, and begin to examine why these do (and do not) work. I will present both a survey of physics education research and some of the exciting theoretical and experimental developments emerging from the University of Colorado.

  4. Educating Scientifically - Advances in Physics Education Research

    SciTech Connect

    Finkelstein, Noah

    2007-05-16

    It is now fairly well documented that traditionally taught, large-scale introductory physics courses fail to teach our students the basics. In fact, often these same courses have been found to teach students things we do not want. Building on a tradition of research in physics, the physics education research community has been researching the effects of educational practice and reforms at the undergraduate level for many decades. From these efforts and those within the fields of education, cognitive science, and psychology we have learned a great deal about student learning and environments that support learning for an increasingly diverse population of students in the physics classroom. This talk will introduce some of the ideas from physics education research, discuss a variety of effective classroom practices/ surrounding educational structures, and begin to examine why these do (and do not) work. I will present both a survey of physics education research and some of the exciting theoretical and experimental developments emerging from the University of Colorado.

  5. Educating Scientifically: Advances in Physics Education Research

    SciTech Connect

    Finkelstein, Noah

    2007-05-16

    It is now fairly well documented that traditionally taught, large-scale introductory physics courses fail to teach our students the basics. In fact, often these same courses have been found to teach students things we do not want. Building on a tradition of research in physics, the physics education research community has been researching the effects of educational practice and reforms at the undergraduate level for many decades. From these efforts and those within the fields of education, cognitive science, and psychology we have learned a great deal about student learning and environments that support learning for an increasingly diverse population of students in the physics classroom. This talk will introduce some of the ideas from physics education research, discuss a variety of effective classroom practices/ surrounding educational structures, and begin to examine why these do (and do not) work. I will present both a survey of physics education research and some of the exciting theoretical and experimental developments emerging from the University of Colorado.

  6. Coupling of WRF and Building-resolved CFD Simulations for Greenhouse Gas Transport and Dispersion

    NASA Astrophysics Data System (ADS)

    Prasad, K.; Hu, H.; McDermott, R.; Lopez-Coto, I.; Davis, K. J.; Whetstone, J. R.; Lauvaux, T.

    2014-12-01

    The Indianapolis Flux Experiment (INFLUX) aims to use a top-down inversion methodology to quantify sources of Greenhouse Gas (GHG) emissions over an urban domain with high spatial and temporal resolution. Atmospheric transport of tracer gases from an emission source to a tower mounted receptor are usually conducted using the Weather Research and Forecasting (WRF) model. WRF is used extensively in the atmospheric community to simulate mesoscale atmospheric transport. For such simulations, WRF employs a parameterized turbulence model and does not resolve the fine scale dynamics that are generated by the flow around buildings and communities that are part of a large city. Since the model domain includes the city of Indianapolis, much of the flow of interest is over an urban topography. The NIST Fire Dynamics Simulator (FDS) is a computational fluid dynamics model to perform large eddy simulations of flow around buildings, but it has not been nested within a larger-scale atmospheric transport model such as WRF. FDS has the potential to evaluate the impact of complex urban topography on near-field dispersion and mixing that cannot be simulated with a mesoscale atmospheric model, and which may be important to determining urban GHG emissions using atmospheric measurements. A methodology has been developed to run FDS as a sub-grid scale model within a WRF simulation. The coupling is based on nudging the FDS flow field towards the one computed by WRF, and is currently limited to one way coupling performed in an off-line mode. Using the coupled WRF / FDS model, NIST will investigate the effects of the urban canopy at horizontal resolutions of 2-10 m. The coupled WRF-FDS simulations will be used to calculate the dispersion of tracer gases in an urban domain and to evaluate the upwind areas that contribute to tower observations, referred to in the inversion community as influence functions. Predicted mixing ratios will be compared with tower measurements and WRF simulations

  7. Advanced energy projects; FY 1995 research summaries

    SciTech Connect

    1995-09-01

    The AEP Division supports projects to explore novel energy-related concepts which are typically at an early stage of scientific development, and high-risk, exploratory concepts. Topical areas presently receiving support are: novel materials for energy technology, renewable and biodegradable materials, exploring uses of new scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, and innovative approaches to waste treatment and reduction. There were 46 research projects during FY 1995; ten were initiated during that fiscal year. The summaries are separated into grant and laboratory programs, and small business innovation research programs.

  8. Recent advances in Tourette syndrome research.

    PubMed

    Albin, Roger L; Mink, Jonathan W

    2006-03-01

    Tourette syndrome (TS) is a developmentally regulated neurobehavioral disorder characterized by involuntary, stereotyped, repetitive movements. Recent anatomical and neuroimaging studies have provided evidence for abnormal basal ganglia and dopaminergic function in TS. Basic research on striatal inhibitory mechanisms and dopaminergic function complements the recent neuroimaging and anatomical data. Parallel studies of basal ganglia participation in the normal performance and learning of stereotyped repetitive behaviors or habits has provided additional insight. These lines of research have provided new pieces to the TS puzzle, and their increasing convergence is showing how those pieces can be put together. PMID:16430974

  9. Advances in Music-Reading Research

    ERIC Educational Resources Information Center

    Gudmundsdottir, Helga Rut

    2010-01-01

    The purpose of this paper is to construct a comprehensive review of the research literature in the reading of western staff notation. Studies in music perception, music cognition, music education and music neurology are cited. The aim is to establish current knowledge in music-reading acquisition and what is needed for further progress in this…

  10. Advances in Child Development: Theory and Research.

    ERIC Educational Resources Information Center

    Nesdale, Andrew R., Ed.; And Others

    This book consists of 31 papers focusing on aspects of child development. Mainly reports of research, papers are grouped topically into four sections dealing respectively with perceptual, language/communication, cognitive, and social development. Most of the nine papers in section 1 focus on the perceptual development of infants. Topics include…

  11. Recent advances in tropical diseases research.

    PubMed

    Lucas, A O

    1983-05-15

    The past few years have witnessed renewed effort to develop new tools for the conquest of parasitic and other infectious tropical diseases. The Special Programme for Research and Training in Tropical Diseases was initiated by the WHO, following a resolution of the World Health Assembly calling for the intensification of research into tropical diseases. The Programme, co-sponsored by UNDP and the World Bank, has developed a network of activities with two inter-related objective: Research and development towards new and improved tools to control six tropical diseases; and Strengthening of national institutions, including training, to increase the research capabilities of the tropical countries effected by the diseases. The six target diseases are: malaria, schistosomiasis, filariasis, trypanosomiasis (both African sleeping sickness and Chagas' disease), leishmaniasis and leprosy. Early scientific results include progress in chemotherapy for malaria, schistosomiasis and filariasis; in the developing and testing of a vaccine against leprosy; in the fundamental knowledge required to develop a vaccine against malaria; and in simple and accurate diagnostic field tests for malaria, leprosy and African trypanosomiasis. In addition, institution strengthening and training support, awarded exclusively to institutions and scientists of developing endemic countries, has increased rapidly. The programme has collaborated with other agencies which are active in this area and with the pharmaceutical industry. Additional scientists and institutions are involved in the planning, implementation and evaluation of the Programme. PMID:6684365

  12. Advances in Education Research, Winter 1999.

    ERIC Educational Resources Information Center

    Advances in Education Research, 1999

    1999-01-01

    This volume presents selected articles related to the impact of early intervention programs. This is part of a two volume set designed to showcase some of the best cutting edge research in these programs. This volume focuses specifically on aspects of the programs that have proven to be most successful in helping students and meeting programmatic…

  13. Advances in Design-Based Research

    ERIC Educational Resources Information Center

    Svihla, Vanessa

    2014-01-01

    Design-based research (DBR) is a core methodology of the Learning Sciences. Historically rooted as a movement away from the methods of experimental psychology, it is a means to develop "humble" theory that takes into account numerous contextual effects for understanding how and why a design supported learning. DBR involves iterative…

  14. Advancing the Profession: Facilitating Critical Research

    ERIC Educational Resources Information Center

    Learning & Leading with Technology, 2007

    2007-01-01

    The field of educational technology is under external pressure to provide evidence of identifiable learning outcomes that can be attributed to technology. Leaders within the educational technology research community agree about the importance of such evidence. Each year, ISTE and the Society for Information Technology and Teacher Education (SITE)…

  15. Advancing Research on the Community College

    ERIC Educational Resources Information Center

    Bers, Trudy H.

    2007-01-01

    Arthur M. Cohen and his colleagues at the Center for the Study of Community Colleges have made significant and broad contributions to the scholarly literature and empirical research about community colleges. Although Cohen's interests are comprehensive and his writings touch on multiple issues associated with community colleges, his empirical work…

  16. Advanced Energy Projects: FY 1993, Research summaries

    SciTech Connect

    Not Available

    1993-09-01

    AEP has been supporting research on novel materials for energy technology, renewable and biodegradable materials, new uses for scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, innovative approaches to waste treatment and reduction, etc. The summaries are grouped according to projects active in FY 1993, Phase I SBIR projects, and Phase II SBIR projects. Investigator and institutional indexes are included.

  17. Implementation of Bessel's method for solar eclipses prediction in the WRF-ARW model

    NASA Astrophysics Data System (ADS)

    Montornes, Alex; Codina, Bernat; Zack, John W.; Sola, Yolanda

    2016-05-01

    Solar eclipses are predictable astronomical events that abruptly reduce the incoming solar radiation into the Earth's atmosphere, which frequently results in non-negligible changes in meteorological fields. The meteorological impacts of these events have been analyzed in many studies since the late 1960s. The recent growth in the solar energy industry has greatly increased the interest in providing more detail in the modeling of solar radiation variations in numerical weather prediction (NWP) models for the use in solar resource assessment and forecasting applications. The significant impact of the recent partial and total solar eclipses that occurred in the USA (23 October 2014) and Europe (20 March 2015) on solar power generation have provided additional motivation and interest for including these astronomical events in the current solar parameterizations.Although some studies added solar eclipse episodes within NWP codes in the 1990s and 2000s, they used eclipse parameterizations designed for a particular case study. In contrast to these earlier implementations, this paper documents a new package for the Weather Research and Forecasting-Advanced Research WRF (WRF-ARW) model that can simulate any partial, total or hybrid solar eclipse for the period 1950 to 2050 and is also extensible to a longer period. The algorithm analytically computes the trajectory of the Moon's shadow and the degree of obscuration of the solar disk at each grid point of the domain based on Bessel's method and the Five Millennium Catalog of Solar Eclipses provided by NASA, with a negligible computational time. Then, the incoming radiation is modified accordingly at each grid point of the domain.This contribution is divided in three parts. First, the implementation of Bessel's method is validated for solar eclipses in the period 1950-2050, by comparing the shadow trajectory with values provided by NASA. Latitude and longitude are determined with a bias lower than 5 x 10-3 degrees (i

  18. Exploring Vertical Turbulence Structure in Neutrally and Stably Stratified Flows Using the Weather Research and Forecasting-Large-Eddy Simulation (WRF-LES) Model

    NASA Astrophysics Data System (ADS)

    Udina, Mireia; Sun, Jielun; Kosović, Branko; Soler, Maria Rosa

    2016-07-01

    Following Sun et al. (J Atmos Sci 69(1):338-351, 2012), vertical variations of turbulent mixing in stably stratified and neutral environments as functions of wind speed are investigated using the large-eddy simulation capability in the Weather Research and Forecasting model. The simulations with a surface cooling rate for the stable boundary layer (SBL) and a range of geostrophic winds for both stable and neutral boundary layers are compared with observations from the Cooperative Atmosphere-Surface Exchange Study 1999 (CASES-99). To avoid the uncertainty of the subgrid scheme, the investigation focuses on the vertical domain when the ratio between the subgrid and the resolved turbulence is small. The results qualitatively capture the observed dependence of turbulence intensity on wind speed under neutral conditions; however, its vertical variation is affected by the damping layer used in absorbing undesirable numerical waves at the top of the domain as a result of relatively large neutral turbulent eddies. The simulated SBL fails to capture the observed temperature variance with wind speed and the observed transition from the SBL to the near-neutral atmosphere with increasing wind speed, although the vertical temperature profile of the simulated SBL resembles the observed profile. The study suggests that molecular thermal conduction responsible for the thermal coupling between the surface and atmosphere cannot be parameterized through the Monin-Obukhov bulk relation for turbulent heat transfer by applying the surface radiation temperature, as is common practice when modelling air-surface interactions.

  19. Air quality simulation of NOX over the tropical coastal city Chennai in southern India with FLEXPART-WRF

    NASA Astrophysics Data System (ADS)

    Madala, Srikanth; Hari Prasad, K. B. R. R.; Srinivas, C. V.; Satyanarayana, A. N. V.

    2016-03-01

    Chennai is a rapidly growing metropolitan coastal city in southern India with several major sources of pollution. The complex coastal meteorology influences the pollutant transport in different seasons. In this study, the air quality pattern in Chennai with respect of NOX over different seasons are simulated with FLEXPART-WRF Lagrangian Particle Dispersion Model (LPDM) considering release inventory of industrial, vehicular and domestic sources of pollution from seven different locations in Chennai. The meteorological fields for dispersion calculation are simulated using Advanced Research WRF (ARW) mesoscale model at a high resolution (3 km). Air quality data in the study region available at six different places are used for comparing model outputs over 12 days in each season (winter, pre-monsoon, monsoon and post-monsoon). The Hanna diffusion scheme in FLEXPART-WRF is modified with new seasonal empirical turbulent intensity relationships derived as a function of atmospheric stability from turbulence data. Simulated concentrations are evaluated by varying the diffusion schemes (Hanna, modified Hanna) in FLEXPART and the planetary boundary layer (PBL) schemes [YSU, ACM2 and MYNN2] in ARW. Simulations revealed distinct seasonal variation of dispersion patterns of NOX due to seasonal flow-field variation in the study region. It is found that, the new turbulence intensity relationships provide better comparisons for concentrations of NOX relative to the default Hanna relationship. Further, simulations using ACM2 PBL significantly reduced the negative bias and errors in concentration due to capturing the flow-field and other meteorological variables well. The study demonstrates the utility of FLEXPART for air quality modeling in the coastal city.

  20. Calibration and Validation of WRF 3.0-CLM3.5 in Snowpack Simulations

    NASA Astrophysics Data System (ADS)

    Jin, J.; Wen, L.; Subin, Z. M.; Miller, N. L.

    2009-12-01

    The Community Land Model version 3.5 (CLM3.5) developed by the National Center for Atmospheric Research (NCAR) was coupled into the Weather Research and Forecasting (WRF) Model version 3.0. The performance of WRF3.0-CLM3.5 in simulating snowpack was extensively evaluated with in-situ observations from a mountainous site called Col de Porte, located in northern Alps region of France, and the Columbia River Basin, located in the northwestern United States. CLM3.5 was configured with a five-layer snow scheme, and includes snow compaction and liquid water transfer processes, and a sophisticated snow albedo scheme. WRF3.0-CLM3.5 was forced with the National Center for Atmospheric Research/National Centers for Environmental Prediction Reanalysis data to simulate for the 1988-1989 snow season for the Col de Porte site and the 2001-2002 season for the Columbia River Basin, with 60km-20km two-way nested domains. The initial simulations show that WRF3.0-CLM3.5 significantly improves snow simulations when compared to those produced with the WRF3.0 coupled to the Noah land surface scheme at the both study sites. However, WRF3.0-CLM3.5 still tends to underestimate the observed snowpack. Calibration with the observed data from the Col de Porte site indicates that the snow water content bias mainly results from stronger, high elevation incoming solar radiation. An adjustment for the radiation scheme in WRF3.0 was made to reduce the incoming radiation to better fit with the observations. This adjustment improves snow simulations at both Col de Porte site and the Columbia River Basin. Additional offline snow simulations with CLM3.5 driven with observed forcing data were performed at the Col de Porte site. These offline simulations are compared to the results produced with the coupled WRF3.0-CLM3.5. Through this comparison, snow-atmosphere interactions are quantitatively indentified. The improved snow simulations in WRF3.0-CLM3.5 will benefit regional hydro-climate research and

  1. INEEL Advanced Radiotherapy Research Program Annual Report 2001

    SciTech Connect

    Venhuizen, James R.

    2002-04-30

    This report summarizes the major activities and accomplishments of the Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Radiotherapy Research Program for calendar year 2001. Applications of supportive research and development, as well as technology deployment in the fields of chemistry, radiation physics and dosimetry, and neutron source design and demonstration are described. Contributions in the fields of physics and biophysics include development of advanced patient treatment planning software, feasibility studies of accelerator neutron source technology for Neutron Capture Therapy (NCT), and completion of major modifications to the research reactor at Washington State University to produce an epithermal-neutron beam for NCT research applications.

  2. INEEL Advanced Radiotherapy Research Program Annual Report 2001

    SciTech Connect

    Venhuizen, James Robert

    2002-04-01

    This report summarizes the major activities and accomplishments of the Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Radiotherapy Research Program for calendar year 2001. Applications of supportive research and development, as well as technology deployment in the fields of chemistry, radiation physics and dosimetry, and neutron source design and demonstration are described. Contributions in the fields of physics and biophysics include development of advanced patient treatment planning software, feasibility studies of accelerator neutron source technology for Neutron Capture Therapy (NCT), and completion of major modifications to the research reactor at Washington State University to produce an epithermal-neutron beam for NCT research applications.

  3. [Research Advances on Pathogenesis of Myelodysplastic Syndrome].

    PubMed

    Xu, Ming; Lu, Jia-Hui

    2015-12-01

    Myelodysplastic syndrome (MDS) is a clonal marrow stem cell disorder, characterized by ineffective haemopoiesis leading to blood cytopenias. As a disease of grey zone, along with the development of research, the exploration on its pathogenesis have been shifted from molecular genetics and the feature of immunophenotype to the epigenetic and micro environment. But at present, the pathogenesis of MDS is still not clear, the research of the molecular genetics and immunophenotype can not meet the needs of experimental and clinical application any longer. The hematopoietic stem cells, cytokines, epigenetic studies, however, have made a lot of achievements. Targeted medicine such as azacitidine and decitabine had promising response in treating MDS patients. In this article the abnormality of stromal cells, cytokines and epigenetic changes in hematopoietic microenvironment of MDS are reviewed in order to optimize the monitoring MDS progress and guide its clinical medication strategy. PMID:26708914

  4. Microfluidic Devices in Advanced Caenorhabditis elegans Research.

    PubMed

    Muthaiyan Shanmugam, Muniesh; Subhra Santra, Tuhin

    2016-01-01

    The study of model organisms is very important in view of their potential for application to human therapeutic uses. One such model organism is the nematode worm, Caenorhabditis elegans. As a nematode, C. elegans have ~65% similarity with human disease genes and, therefore, studies on C. elegans can be translated to human, as well as, C. elegans can be used in the study of different types of parasitic worms that infect other living organisms. In the past decade, many efforts have been undertaken to establish interdisciplinary research collaborations between biologists, physicists and engineers in order to develop microfluidic devices to study the biology of C. elegans. Microfluidic devices with the power to manipulate and detect bio-samples, regents or biomolecules in micro-scale environments can well fulfill the requirement to handle worms under proper laboratory conditions, thereby significantly increasing research productivity and knowledge. The recent development of different kinds of microfluidic devices with ultra-high throughput platforms has enabled researchers to carry out worm population studies. Microfluidic devices primarily comprises of chambers, channels and valves, wherein worms can be cultured, immobilized, imaged, etc. Microfluidic devices have been adapted to study various worm behaviors, including that deepen our understanding of neuromuscular connectivity and functions. This review will provide a clear account of the vital involvement of microfluidic devices in worm biology. PMID:27490525

  5. Frontiers of research in advanced computations

    SciTech Connect

    1996-07-01

    The principal mission of the Institute for Scientific Computing Research is to foster interactions among LLNL researchers, universities, and industry on selected topics in scientific computing. In the area of computational physics, the Institute has developed a new algorithm, GaPH, to help scientists understand the chemistry of turbulent and driven plasmas or gases at far less cost than other methods. New low-frequency electromagnetic models better describe the plasma etching and deposition characteristics of a computer chip in the making. A new method for modeling realistic curved boundaries within an orthogonal mesh is resulting in a better understanding of the physics associated with such boundaries and much quicker solutions. All these capabilities are being developed for massively parallel implementation, which is an ongoing focus of Institute researchers. Other groups within the Institute are developing novel computational methods to address a range of other problems. Examples include feature detection and motion recognition by computer, improved monitoring of blood oxygen levels, and entirely new models of human joint mechanics and prosthetic devices.

  6. Advancing translational research with the Semantic Web

    PubMed Central

    Ruttenberg, Alan; Clark, Tim; Bug, William; Samwald, Matthias; Bodenreider, Olivier; Chen, Helen; Doherty, Donald; Forsberg, Kerstin; Gao, Yong; Kashyap, Vipul; Kinoshita, June; Luciano, Joanne; Marshall, M Scott; Ogbuji, Chimezie; Rees, Jonathan; Stephens, Susie; Wong, Gwendolyn T; Wu, Elizabeth; Zaccagnini, Davide; Hongsermeier, Tonya; Neumann, Eric; Herman, Ivan; Cheung, Kei-Hoi

    2007-01-01

    Background A fundamental goal of the U.S. National Institute of Health (NIH) "Roadmap" is to strengthen Translational Research, defined as the movement of discoveries in basic research to application at the clinical level. A significant barrier to translational research is the lack of uniformly structured data across related biomedical domains. The Semantic Web is an extension of the current Web that enables navigation and meaningful use of digital resources by automatic processes. It is based on common formats that support aggregation and integration of data drawn from diverse sources. A variety of technologies have been built on this foundation that, together, support identifying, representing, and reasoning across a wide range of biomedical data. The Semantic Web Health Care and Life Sciences Interest Group (HCLSIG), set up within the framework of the World Wide Web Consortium, was launched to explore the application of these technologies in a variety of areas. Subgroups focus on making biomedical data available in RDF, working with biomedical ontologies, prototyping clinical decision support systems, working on drug safety and efficacy communication, and supporting disease researchers navigating and annotating the large amount of potentially relevant literature. Results We present a scenario that shows the value of the information environment the Semantic Web can support for aiding neuroscience researchers. We then report on several projects by members of the HCLSIG, in the process illustrating the range of Semantic Web technologies that have applications in areas of biomedicine. Conclusion Semantic Web technologies present both promise and challenges. Current tools and standards are already adequate to implement components of the bench-to-bedside vision. On the other hand, these technologies are young. Gaps in standards and implementations still exist and adoption is limited by typical problems with early technology, such as the need for a critical mass of

  7. Can High-resolution WRF Simulations Be Used for Short-term Forecasting of Lightning?

    NASA Technical Reports Server (NTRS)

    Goodman, S. J.; Lapenta, W.; McCaul, E. W., Jr.; LaCasse, K.; Petersen, W.

    2006-01-01

    A number of research teams have begun to make quasi-operational forecast simulations at high resolution with models such as the Weather Research and Forecast (WRF) model. These model runs have used horizontal meshes of 2-4 km grid spacing, and thus resolved convective storms explicitly. In the light of recent global satellite-based observational studies that reveal robust relationships between total lightning flash rates and integrated amounts of precipitation-size ice hydrometeors in storms, it is natural to inquire about the capabilities of these convection-resolving models in representing the ice hydrometeor fields faithfully. If they do, this might make operational short-term forecasts of lightning activity feasible. We examine high-resolution WRF simulations from several Southeastern cases for which either NLDN or LMA lightning data were available. All the WRF runs use a standard microphysics package that depicts only three ice species, cloud ice, snow and graupel. The realism of the WRF simulations is examined by comparisons with both lightning and radar observations and with additional even higher-resolution cloud-resolving model runs. Preliminary findings are encouraging in that they suggest that WRF often makes convective storms of the proper size in approximately the right location, but they also indicate that higher resolution and better hydrometeor microphysics would be helpful in improving the realism of the updraft strengths, reflectivity and ice hydrometeor fields.

  8. Advancing Nursing Research in Hospitals Through Collaboration, Empowerment, and Mentoring.

    PubMed

    Berger, Jill; Polivka, Barbara

    2015-12-01

    Meeting the Magnet Recognition Program® requirements for integrating research into practice can be daunting, particularly for nonacademic hospitals. The authors describe 1 healthcare system's approach to advancing nursing research in 5 hospitals through collaboration with a local university school of nursing and development of an infrastructure to support, empower, and mentor clinical nurses in the conduct of research. Outcomes include completed research, presentations, publications, practice change, and professional development. PMID:26565639

  9. Advanced waveform research methods for GERESS recordings

    NASA Astrophysics Data System (ADS)

    Harjes, H. P.; Gestermann, N.; Jost, M.; Schweitzer, J.; Wuster, J.

    1992-04-01

    The GERESS array project is a cooperative research program, jointly undertaken by Southern Methodist University and Ruhr-University Bochum in Germany. It is part of a multi-array network which includes NORESS, ARCESS, and FINESA in Scandinavia. This report summarizes research activities carried out at the data center in the Institute of Geophysics in Bochum during 1991. The GERESS array became fully operational in January 1991. Data are continuously transmitted from the array hub in Bavaria to NORSAR and to Bochum via 64 kbit lines. In Bochum, an experimental on-line processing system, based on RONAPP, is operated to monitor data quality and initiate necessary maintenance activities. Since Jul. 1991, the on-site maintenance of the array is also overtaken by Ruhr-University as part of the research grant. The monthly uptime of the array varied between 88.4 percent and 99.7 percent with an average of 94.9 percent. At the data center in Bochum, an automatic event bulletin--interactively reviewed by an analyst--is produced and widely distributed to interested institutions. After one year of operation it is found that GERESS is the most sensitive station in Central Europe for monitoring local, regional, and teleseismic seismicity. During the GSETT-2 experiment, which was conducted by the Geneva experts group during the time period from 22 Apr. - 2 Jun. 1991, GERESS located on average 16 regional events and detected 12 teleseismic events daily. Within the 6 weeks of GSETT-2, GERESS reported 3275 phases to the international data centers. Following a similar study at NORSAR, an evaluation of the P-wave detectability was undertaken for GERESS.

  10. Advances in nanostructured permanent magnets research

    SciTech Connect

    Poudyal, N; Liu, JP

    2012-12-14

    This paper reviews recent developments in research in nanostructured permanent magnets ( hard magnetic materials) with emphasis on bottom-up approaches to fabrication of hard/soft nanocomposite bulk magnets. Theoretical and experimental findings on the effects of soft phase and interface conditions on interphase exchange interactions are given. Synthesis techniques for hard magnetic nanoparticles, including chemical solution methods, surfactant-assisted ball milling and other physical deposition methods are reviewed. Processing and magnetic properties of warm compacted and plastically deformed bulk magnets with nanocrystalline morphology are discussed. Prospects of producing bulk anisotropic hard/soft nanocomposite magnets are presented.

  11. Advanced research in instrumentation and diagnostics technology

    SciTech Connect

    Sheen, S.H.; Lawrence, W.P.; Raptis, A.C.

    1992-09-01

    this research project will develop an ultrasonic flow imaging system based on tomographic technique. Initially, we will demonstrate both the reflection and diffraction tomographic applied to flow imaging. Then, the direct inversion problem will be examined. In this paper, we present the initial assessment of the feasibility and the evaluation of practical wedge designs. Major tasks of the project include (1) a feasibility study, (2) evaluation of sensing geometry and wedge design, (3) development of image reconstruction algorithm, and (4) flow tests of the imaging system. At present, we have completed the feasibility study and are in the process of evaluating wedge design.

  12. Advances in nanostructured permanent magnets research

    NASA Astrophysics Data System (ADS)

    Poudyal, Narayan; Liu, J. Ping

    2013-01-01

    This paper reviews recent developments in research in nanostructured permanent magnets (hard magnetic materials) with emphasis on bottom-up approaches to fabrication of hard/soft nanocomposite bulk magnets. Theoretical and experimental findings on the effects of soft phase and interface conditions on interphase exchange interactions are given. Synthesis techniques for hard magnetic nanoparticles, including chemical solution methods, surfactant-assisted ball milling and other physical deposition methods are reviewed. Processing and magnetic properties of warm compacted and plastically deformed bulk magnets with nanocrystalline morphology are discussed. Prospects of producing bulk anisotropic hard/soft nanocomposite magnets are presented.

  13. Students in Advanced Research for Sky Surveillance

    NASA Astrophysics Data System (ADS)

    Gehrels, Tom

    1997-11-01

    Spacewatch program discovers small bodies (asteroids and comets) in the solar system and analyzes their distributions with orbital parameters and absolute magnitude. Scanning of the night sky is conducted 18-20 nights per month with tbe 0.9-m Spacewatch Telescope on Kitt Peak. About 1200. to 2000 sqare degrees of sky are searched each year to a V magnitude level of 21.3. Spacewatch discoveries support studies of the evolution of the Centaur, Trojan, Main-Belt, and Earth-approaching asteroid populations. Space watch also finds potential targets for space missions, finds objects that might present a hazard of impact on the Earth, provides accurate astrometry of about 30,000 asteroids annually, and recovers comets and asteroids that are too faint for most other observers. This AASERT grant supported several undergraduate students working on upgrades to instrumentation and analyses of date under the supervision of spacewatch engineers and researchers. The opportunity to have young, energetic new members of the group accomplished a great del of work, simulated and exxelerated our research efforts, and enhanced the students' career opportunities.

  14. Geneticization and bioethics: advancing debate and research.

    PubMed

    Arnason, Vilhjálmur; Hjörleifsson, Stefán

    2007-12-01

    In the present paper, we focus on the role that the concept of geneticization has played in the discussion about health care, bioethics and society. The concept is discussed and examples from the evolving discourse about geneticization are critically analyzed. The relationship between geneticization, medicalization and biomedicalization is described, emphasizing how debates about the latter concepts can inspire future research on geneticization. It is shown how recurrent themes from the media coverage of genetics portray typical traits of geneticization and thus contribute to the process. We look at examples of small-scale studies from the literature where geneticization of medical practice has been demonstrated. Methodological disputes about the relevance of empirical evidence for the geneticization thesis and the normative status of the concept are discussed. We consider arguments to the effect that ideas from mainstream bioethics have facilitated geneticization by emphasizing individualistic notions of autonomy and responsibility while ignoring the role of genetics in the wider social context. It is shown how a concept like geneticization, which can be used to draw the attention of philosophers, social scientists and others to challenges that tend to be neglected by mainstream bioethics, also has the potential to move people's attention away from other pertinent issues. This may happen if researchers become preoccupied with the transformative effects of genetics, and we argue that a wider reading of geneticization should inspire critical analysis of the sociocultural preconditions under which genetics is currently evolving. PMID:17705026

  15. Performance Evaluation of Emerging High Performance Computing Technologies using WRF

    NASA Astrophysics Data System (ADS)

    Newby, G. B.; Morton, D.

    2008-12-01

    The Arctic Region Supercomputing Center (ARSC) has evaluated multicore processors and other emerging processor technologies for a variety of high performance computing applications in the earth and space sciences, especially climate and weather applications. A flagship effort has been to assess dual core processor nodes on ARSC's Midnight supercomputer, in which two-socket systems were compared to eight-socket systems. Midnight is utilized for ARSC's twice-daily weather research and forecasting (WRF) model runs, available at weather.arsc.edu. Among other findings on Midnight, it was found that the Hypertransport system for interconnecting Opteron processors, memory, and other subsystems does not scale as well on eight-socket (sixteen processor) systems as well as two-socket (four processor) systems. A fundamental limitation is the cache snooping operation performed whenever a computational thread accesses main memory. This increases memory latency as the number of processor sockets increases. This is particularly noticeable on applications such as WRF that are primarily CPU-bound, versus applications that are bound by input/output or communication. The new Cray XT5 supercomputer at ARSC features quad core processors, and will host a variety of scaling experiments for WRF, CCSM4, and other models. Early results will be presented, including a series of WRF runs for Alaska with grid resolutions under 2km. ARSC will discuss a set of standardized test cases for the Alaska domain, similar to existing test cases for CONUS. These test cases will provide different configuration sizes and resolutions, suitable for single processors up to thousands. Beyond multi-core Opteron-based supercomputers, ARSC has examined WRF and other applications on additional emerging technologies. One such technology is the graphics processing unit, or GPU. The 9800-series nVidia GPU was evaluated with the cuBLAS software library. While in-socket GPUs might be forthcoming in the future, current

  16. Research on geothermal chemistry and advanced instrumentation

    NASA Astrophysics Data System (ADS)

    Robertus, R. J.; Shannon, D. W.; Sullivan, R. G.; Kindle, C. H.; Pool, K. H.

    1985-09-01

    Research at the Pacific Northwest Laboratory (PNL) focuses on long-term geothermal power plant reliability. Past work concentrated on development of continuous high-temperature probes for monitoring process variables. PNL also completed a comprehensive handbook of brine treatment processes as they relate to injection well longevity. A recently completed study analyzed corrosion in the hydrocarbon system of a binary cycle plant. Over the two-year monitoring period, corrosion rates were less than 1 MPY in any part of the hydrocarbon system. The system was kept completely dry so the rates seem reasonable. Present projects include: (1) determination of gas breakout conditions at the Herber Binary Demonstration Plant operated by San Diego Gas and Electric Company; (2) generation of water mixing solubility data; (3) installation of prototype leak detectors at the Herber Plant; and (4) evaluation of state-of-the-art particle counters.

  17. idaho Accelerator Center Advanced Fuel Cycle Research

    SciTech Connect

    Wells, Douglas; Dale, Dan

    2011-10-20

    The technical effort has been in two parts called; Materials Science and Instrumentation Development. The Materials Science technical program has been based on a series of research and development achievements in Positron-Annihilation Spectroscopy (PAS) for defect detection in structural materials. This work is of particular importance in nuclear power and its supporting systems as the work included detection of defects introduced by mechanical and thermal phenomena as well as those caused by irradiation damage. The second part of the program has focused on instrumentation development using active interrogation techniques supporting proliferation resistant recycling methodologies and nuclear material safeguards. This effort has also lead to basic physics studies of various phenomena relating to photo-fission. Highlights of accomplishments and facility improvement legacies in these areas over the program period include

  18. Advances in Biomarker Research in Parkinson's Disease.

    PubMed

    Mehta, Shyamal H; Adler, Charles H

    2016-01-01

    Parkinson's disease (PD) is the second most common neurodegenerative disease, and the numbers are projected to double in the next two decades with the increase in the aging population. An important focus of current research is to develop interventions to slow the progression of the disease. However, prerequisites to it include the development of reliable biomarkers for early diagnosis which would identify at-risk groups and disease progression. In this review, we present updated evidence of already known clinical biomarkers (such as hyposmia and rapid eye movement (REM) sleep behavior disorder (RBD)) and neuroimaging biomarkers, as well as newer possible markers in the blood, CSF, and other tissues. While several promising candidates and methods to assess these biomarkers are on the horizon, it is becoming increasingly clear that no one candidate will clearly fulfill all the roles as a single biomarker. A multimodal and combinatorial approach to develop a battery of biomarkers will likely be necessary in the future. PMID:26711276

  19. Advanced moisture sensor research and development

    SciTech Connect

    De Los Santos, A.

    1992-10-31

    During this period, testing of the system continued at the American Fructose (AF) plant in Dimmitt, Texas. Testing at the first two sites (dryer output and dryer input) was completed. Following the testing at the second site, the sensor was returned to the Southwest Research Institute (SwRI) laboratories for modifications and for fitting of the additional components required to allow sampling of the material to be measured at the third site. These modifications were completed during this reporting period, and the system is scheduled to be installed at the third site (Rotary Vacuum Filter output) early in the next period. Laboratory measurements of corn germ (to be measured at the fourth site) and a variety of fruits and vegetables (one of which will be measured at the fifth site) have also continued during this period.

  20. Sexual Objectification of Women: Advances to Theory and Research

    ERIC Educational Resources Information Center

    Szymanski, Dawn M.; Moffitt, Lauren B.; Carr, Erika R.

    2011-01-01

    Objectification theory provides an important framework for understanding, researching, and intervening to improve women's lives in a sociocultural context that sexually objectifies the female body and equates a woman's worth with her body's appearance and sexual functions. The purpose of this Major Contribution is to advance theory, research,…

  1. Research priorities and history of advanced composite compression testing

    NASA Technical Reports Server (NTRS)

    Baumann, K. J.

    1981-01-01

    Priorities for standard compression testing research in advanced laminated fibrous composite materials are presented along with a state of the art survey (completed in 1979) including history and commentary on industrial test methods. Historically apparent research priorities and consequent (lack of) progress are supporting evidence for newly derived priorities.

  2. Clinical Research Informatics: Recent Advances and Future Directions

    PubMed Central

    2015-01-01

    Summary Objectives To summarize significant developments in Clinical Research Informatics (CRI) over the past two years and discuss future directions. Methods Survey of advances, open problems and opportunities in this field based on exploration of current literature. Results Recent advances are structured according to three use cases of clinical research: Protocol feasibility, patient identification/recruitment and clinical trial execution. Discussion CRI is an evolving, dynamic field of research. Global collaboration, open metadata, content standards with semantics and computable eligibility criteria are key success factors for future developments in CRI. PMID:26293865

  3. An Immersed Boundary Method in WRF for High Resolution Urban Air Quality Modeling

    NASA Astrophysics Data System (ADS)

    Wiersema, D. J.; Lundquist, K. A.; Martien, P. T.; Rivard, T.; Chow, F. K.

    2013-12-01

    Urban air quality modeling at the neighborhood scale has potential to become an important tool for long term exposure studies, regulation, and urban planning. Current generation models for urban flow or air quality are limited by laborious mesh creation, terrain slope restrictions due to coordinate transformations, lack of atmospheric physics, and/or omission of regional meteorological effects. To avoid these limitations we have extended the functionality of an existing model, IBM-WRF, a modified version of the Weather Research and Forecasting model (WRF) which uses an immersed boundary method (IBM) (Lundquist et al. 2010, 2012). The immersed boundary method used in our model allows for the evaluation of flow over complex urban geometries including vertical surfaces, sharp corners, and local topographic variations. Lateral boundaries in IBM-WRF can be prescribed using output from the standard WRF model, allowing for realistic meteorological input. IBM-WRF is being used to investigate transport and trapping of vehicle emissions around a proposed affordable housing development located adjacent to a major freeway which transports 250,000+ vehicles per day. Urban topography is created using high-resolution airborne LIDAR building data combined with ground elevation data. Emission locations and strengths are assigned using data provided by the Bay Area Air Quality Management District. Development is underway to allow for meteorological input to be created using the WRF model configured to use nested domains. This will allow for synoptic scale phenomena to affect the neighborhood scale IBM-WRF domain, which has a horizontal resolution on the order of one meter. Initial results from IBM-WRF are presented here and will ultimately be used to assist planning efforts to reduce local air pollution exposure and minimize related associated adverse health effects. Lundquist, K., F. Chow, and J. Lundquist, 2010: An immersed boundary method for the weather research and forecasting

  4. A Regional Study of Urban Fluxes from a Coupled WRF-ACASA Model

    NASA Astrophysics Data System (ADS)

    Falk, M.; Pyles, R. D.; Marras, S.; Spano, D.; Snyder, R. L.; Paw U, K.

    2010-12-01

    The number of urban metabolism studies has increased in recent years, due to the important impact that energy, water and carbon exchange over urban areas have on climate change. Urban modeling is therefore crucial in the future design and management of cities. This study presents the ACASA model coupled to the Weather Research and Forecasting (WRF-ARW) mesoscale model to simulate urban fluxes at a horizontal resolution of 200 meters for urban areas of roughly 10 by 10 km. As part of the European Project “BRIDGE”, these regional simulations were used in combination with remotely sensed data to provide constraints on the land surface types and the exchange of carbon and energy fluxes from urban centers.Surface-atmosphere exchanges of mass and energy were simulated using the Advanced Canopy Atmosphere Soil Algorithm (ACASA). ACASA is a multi-layer high-order closure model, recently modified to work over natural, agricultural as well as urban environments. In particular, improvements were made to account for the anthropogenic contribution to heat and carbon production. In order to more accurately simulate the mass and energy exchanges across larger urban regions, ACASA was coupled with a mesoscale weather model (WRF). Here we present ACASA-WRF simulations of mass and energy fluxes over over two different urban regions: a high latitude city, Helsinki (Finland) and an historic European city, Florence (Italy). Helsinki is characterized by recent, rapid urbanization that requires a substantial amount of energy for heating, while Florence is representative of cities in lower latitudes, with substantial cultural heritage, a huge tourist flow, and an architectural footprint that remains comparatively constant in time. The in-situ ACASA model was tested over the urban environment at local point scale with very promising results when validated against urban flux measurements. This study shows the application of this methodology at a regional scale with high spatial

  5. Diterpenes: Advances in Neurobiological Drug Research.

    PubMed

    Islam, Md Torequl; da Silva, Claucenira Bandeira; de Alencar, Marcus Vinícius Oliveira Barros; Paz, Márcia Fernanda Correia Jardim; Almeida, Fernanda Regina de Castro; Melo-Cavalcante, Ana Amélia de Carvalho

    2016-06-01

    A significant number of studies have been performed with diterpene effect on the brain. Our study aims to make a systematic revision on them. The initial purpose of this review was to screen diterpenes with neurological activity, in particular those that have already been studied and published in different journals (databases until August 2015). The second purpose was to make an action-wise discussion as results viewed on them by taking into drug discovery and development account. Diterpenes considered in this review were selected on the basis of updated information on them and having sufficient information on their screenings. We identified several examples of diterpenes having an interest in further study. We have included the possible sources of them as observed in evidence, their known molecular neurobiological mechanisms, and the active constituents responsible for such activities with the doses and test systems. Results suggest diterpenes to have neurobiological activities like neuro-protection, anti-epileptic, anxiolytic, anti-Alzheimer's disease, anti-Parkinson's disease, anti-cerebral ischemia, anti-neuropathic pain, anti-neuro-inflammatory, and many more. In conclusion, diterpenes may be the prominent candidates in neurobiological drug research. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27020718

  6. Connectomics in psychiatric research: advances and applications.

    PubMed

    Cao, Miao; Wang, Zhijiang; He, Yong

    2015-01-01

    Psychiatric disorders disturb higher cognitive functions and severely compromise human health. However, the pathophysiological mechanisms underlying psychiatric disorders are very complex, and understanding these mechanisms remains a great challenge. Currently, many psychiatric disorders are hypothesized to reflect "faulty wiring" or aberrant connectivity in the brains. Imaging connectomics is arising as a promising methodological framework for describing the structural and functional connectivity patterns of the human brain. Recently, alterations of brain networks in the connectome have been reported in various psychiatric disorders, and these alterations may provide biomarkers for disease diagnosis and prognosis for the evaluation of treatment efficacy. Here, we summarize the current achievements in both the structural and functional connectomes in several major psychiatric disorders (eg, schizophrenia, attention-deficit/hyperactivity disorder, and autism) based on multi-modal neuroimaging data. We highlight the current progress in the identification of these alterations and the hypotheses concerning the aberrant brain networks in individuals with psychiatric disorders and discuss the research questions that might contribute to a further mechanistic understanding of these disorders from a connectomic perspective. PMID:26604764

  7. Connectomics in psychiatric research: advances and applications

    PubMed Central

    Cao, Miao; Wang, Zhijiang; He, Yong

    2015-01-01

    Psychiatric disorders disturb higher cognitive functions and severely compromise human health. However, the pathophysiological mechanisms underlying psychiatric disorders are very complex, and understanding these mechanisms remains a great challenge. Currently, many psychiatric disorders are hypothesized to reflect “faulty wiring” or aberrant connectivity in the brains. Imaging connectomics is arising as a promising methodological framework for describing the structural and functional connectivity patterns of the human brain. Recently, alterations of brain networks in the connectome have been reported in various psychiatric disorders, and these alterations may provide biomarkers for disease diagnosis and prognosis for the evaluation of treatment efficacy. Here, we summarize the current achievements in both the structural and functional connectomes in several major psychiatric disorders (eg, schizophrenia, attention-deficit/hyperactivity disorder, and autism) based on multi-modal neuroimaging data. We highlight the current progress in the identification of these alterations and the hypotheses concerning the aberrant brain networks in individuals with psychiatric disorders and discuss the research questions that might contribute to a further mechanistic understanding of these disorders from a connectomic perspective. PMID:26604764

  8. Further advances in orchid mycorrhizal research.

    PubMed

    Dearnaley, John D W

    2007-09-01

    Orchid mycorrhizas are mutualistic interactions between fungi and members of the Orchidaceae, the world's largest plant family. The majority of the world's orchids are photosynthetic, a small number of species are myco-heterotrophic throughout their lifetime, and recent research indicates a third mode (mixotrophy) whereby green orchids supplement their photosynthetically fixed carbon with carbon derived from their mycorrhizal fungus. Molecular identification studies of orchid-associated fungi indicate a wide range of fungi might be orchid mycobionts, show common fungal taxa across the globe and support the view that some orchids have specific fungal interactions. Confirmation of mycorrhizal status requires isolation of the fungi and restoration of functional mycorrhizas. New methods may now be used to store orchid-associated fungi and store and germinate seed, leading to more efficient culture of orchid species. However, many orchid mycorrhizas must be synthesised before conservation of these associations can be attempted in the field. Further gene expression studies of orchid mycorrhizas are needed to better understand the establishment and maintenance of the interaction. These data will add to efforts to conserve this diverse and valuable association. PMID:17582535

  9. [Advances in fish antifreeze protein research].

    PubMed

    Zhong, Qi-Wang; Fan, Ting-Jun

    2002-03-01

    Antifreeze proteins (AFPs) can highly effectively protect cells and embryos from damages in freezing process by lowering the freezing points of their cytoplasmic matrix and body fluids in a noncolligative manner. Based on their origins and properties, AFPs have been classified into four types, i.e. type I, II, III and IV. Each of them possesses rather distinct characteristics both in structure and composition, although all of them have ability of lowering freezing points of fluids. AFPs' genes have been characterized as members of a multigene family and the levels of their mRNA synthesis vary significantly with seasons. Adsorption-inhibition operating at the ice surface is nowadays a hypothesis widely used to interpret the molecular mechanisms of noncolligative lowering of the freezing point, but the details of the mechanism on how the different types of AFP are adsorbed onto ice remain uncertain. Progresses in research on structures, amino acid compositions, genes, antifreeze mechanisms of the 4 distinct types of AFPs, and the application of the AFPs in cryopreservation of cells and embryos are reviewed here. PMID:12007008

  10. Recent advances in vertebrate aging research 2009.

    PubMed

    Austad, Steven

    2010-06-01

    Among the notable trends seen in this year's highlights in mammalian aging research is an awakening of interest in the assessment of age-related measures of mouse health in addition to the traditional focus on longevity. One finding of note is that overexpression of telomerase extended life and improved several indices of health in mice that had previously been genetically rendered cancer resistant. In another study, resveratrol supplementation led to amelioration of several degenerative conditions without affecting mouse lifespan. A primate dietary restriction (DR) study found that restriction led to major improvements in glucoregulatory status along with provocative but less striking effects on survival. Visceral fat removal in rats improved their survival, although not as dramatically as DR. An unexpected result showing the power of genetic background effects was that DR shortened the lifespan of long-lived mice bearing Prop1(df), whereas a previous report in a different background had found DR to extend the lifespan of Prop1(df) mice. Treatment with the mammalian target of rapamycin (mTOR) inhibitor, rapamycin, enhanced the survival of even elderly mice and improved their vaccine response. Genetic inhibition of a TOR target made female, but not male, mice live longer. This year saw the mTOR network firmly established as a major modulator of mammalian lifespan. PMID:20331443

  11. Research advancements in palm oil nutrition*

    PubMed Central

    May, Choo Yuen; Nesaretnam, Kalanithi

    2014-01-01

    Palm oil is the major oil produced, with annual world production in excess of 50 million tonnes. About 85% of global palm oil produced is used in food applications. Over the past three decades, research on nutritional benefits of palm oil have demonstrated the nutritional adequacy of palm oil and its products, and have resulted in transitions in the understanding these attributes. Numerous studies have demonstrated that palm oil was similar to unsaturated oils with regards to effects on blood lipids. Palm oil provides a healthy alternative to trans-fatty acid containing hydrogenated fats that have been demonstrated to have serious deleterious effects on health. The similar effects of palm oil on blood lipids, comparable to other vegetable oils could very well be due to the structure of the major triglycerides in palm oil, which has an unsaturated fatty acid in the stereospecific numbers (sn)-2 position of the glycerol backbone. In addition, palm oil is well endowed with a bouquet of phytonutrients beneficial to health, such as tocotrienols, carotenoids, and phytosterols. This review will provide an overview of studies that have established palm oil as a balanced and nutritious oil. PMID:25821404

  12. Magnetized Target Fusion in Advanced Propulsion Research

    NASA Technical Reports Server (NTRS)

    Cylar, Rashad

    2003-01-01

    The Magnetized Target Fusion (MTF) Propulsion lab at NASA Marshall Space Flight Center in Huntsville, Alabama has a program in place that has adopted to attempt to create a faster, lower cost and more reliable deep space transportation system. In this deep space travel the physics and development of high velocity plasma jets must be understood. The MTF Propulsion lab is also in attempt to open up the solar system for human exploration and commercial use. Fusion, as compared to fission, is just the opposite. Fusion involves the light atomic nuclei combination to produce denser nuclei. In the process, the energy is created by destroying the mass according to the distinguished equation: E = mc2 . Fusion energy development is being pursued worldwide as a very sustainable form of energy that is environmentally friendly. For the purposes of space exploration fusion reactions considered include the isotopes of hydrogen-deuterium (D2) and tritium (T3). Nuclei have an electrostatic repulsion between them and in order for the nuclei to fuse this repulsion must be overcome. One technique to bypass repulsion is to heat the nuclei to very high temperatures. The temperatures vary according to the type of reactions. For D-D reactions, one billion degrees Celsius is required, and for D-T reactions, one hundred million degrees is sufficient. There has to be energy input for useful output to be obtained form the fusion To make fusion propulsion practical, the mass, the volume, and the cost of the equipment to produce the reactions (generally called the reactor) need to be reduced by an order of magnitude or two from the state-of-the-art fusion machines. Innovations in fusion schemes are therefore required, especially for obtaining thrust for propulsive applications. Magnetized target fusion (MTF) is one of the innovative fusion concepts that have emerged over the last several years. MSFC is working with Los Alamos National Laboratory and other research groups in studying the

  13. Expert Meeting Report: Advanced Envelope Research for Factory Built Housing

    SciTech Connect

    Levy, E.; Mullens, M.; Tompos, E.; Kessler, B.; Rath, P.

    2012-04-01

    This report provides information about the expert meeting on advanced envelope research for factory built housing, hosted by the ARIES Collaborative on October 11, 2011, in Phoenix, Arizona. The goals of this meeting were to provide a comprehensive solution to the use of three previously selected advanced alternatives for factory-built wall construction, assess each option focusing on major issues relating to viability and commercial potential, and determine additional steps are required to reach this potential.

  14. Expert Meeting Report: Advanced Envelope Research for Factory Built Housing

    SciTech Connect

    Levy, E.; Mullens, M.; Tompos, E.; Kessler, B.; Rath, P.

    2012-04-01

    This report provides information about the Building America expert meeting on advanced envelope research for factory built housing, hosted by the ARIES Collaborative on October 11, 2011, in Phoenix, Arizona. The goals of this meeting were to provide a comprehensive solution to the use of three previously selected advanced alternatives for factory-built wall construction, assess each option focusing on major issues relating to viability and commercial potential, and determine additional steps are required to reach this potential.

  15. Enabling high-resolution simulations of atmospheric flow over complex terrain in the WRF model

    NASA Astrophysics Data System (ADS)

    Lundquist, Katherine; Mirocha, Jeff; Wiersema, David; Bao, Jingyi; Daniels, Megan; Chow, Fotini

    2014-11-01

    As model grid resolution increases, atmospheric models are able to represent fine scale terrain, which can result in steep terrain slopes. The standard terrain-following coordinates used by models such as WRF (Weather and Research Forecasting) are unable to handle very steep terrain because of the grid distortion and related numerical errors. This has prompted the development of an alternative gridding technique in the WRF model, known as the immersed boundary method (IBM), which eliminates terrain-following grids and the associated errors (Lundquist et al. 2010,2012). This implementation, WRF-IBM, has been validated for idealized cases and real urban cases with excellent results; however, to date WRF-IBM has been applied with idealized lateral boundary conditions, and uses a no-slip boundary condition. In this work, we detail a multi-year effort to develop WRF-IBM for real, multi-scale simulations, including full atmospheric physics. Results from three aspects of this project are presented: initializing IBM domains using real meteorological and surface data, developing a nest interface between domains using terrain-following and IBM coordinates, and modifying the IBM boundary condition to include a wall model.

  16. Linguistic Alternatives to Quantitative Research Strategies. Part One: How Linguistic Mechanisms Advance Research Outcomes

    ERIC Educational Resources Information Center

    Yeager, Joseph; Sommer, Linda

    2007-01-01

    Combining psycholinguistic technologies and systems analysis created advances in motivational profiling and numerous new behavioral engineering applications. These advances leapfrog many mainstream statistical research methods, producing superior research results via cause-effect language mechanisms. Entire industries explore motives ranging from…

  17. Transport Simulations of Carbon Monoxide and Aerosols from Boreal Wildfires during ARCTAS using WRF-Chem

    NASA Astrophysics Data System (ADS)

    Sessions, W.; Fuelberg, H. E.; Winker, D. M.; Chu, A. D.; Kahn, R. A.

    2009-12-01

    The Weather Research and Forecasting Model (WRF) was developed by the National Center for Atmospheric Research as the next generation of mesoscale meteorology model. The inclusion of a chemistry module (WRF-Chem) allows transport simulations of chemical and aerosol species such as those observed during NASA’s Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) during 2008. The ARCTAS summer deployment phase during June and July coincided with large boreal wildfires in Saskatchewan and Eastern Russia. We identified fires using the GOES Wildfire Automated Biomass Burning Algorithm (WF_ABBA) and thermal hotspot detections from MODIS sensors onboard the Aqua and Terra satellites. The fires on both continents produced plumes large enough to affect the atmospheric chemical composition of downwind population centers as well as the Arctic. Atmospheric steering currents vary greatly with altitude, making plume injection height one of the most important aspects of accurately modeling the transport of burning emissions. WRF-Chem integrates a one-dimensional plume model at grid cells containing fires to explicitly resolve the upper and lower limits of injection height. The early July fires provide multiple cases to satellite remotely sense the horizontal and vertical evolution of carbon monoxide (AIRS/MISR) and aerosols (CALIPSO) downwind of the fires. Lidar and in situ measurements from the NASA DC-8 and B-200 aircraft permit further validation of results from WRF-Chem. Using these various data sources, this paper will evaluate the ability of WRF-Chem to properly model the biomass injection heights and the downwind transport of fire plumes. Model-derived plume characteristics also will be compared with those observed by the satellites and in situ data. Finally, forecast sensitivities to varying WRF-Chem grid resolutions and plume rise mechanics will be presented.

  18. Impact of four WRF modifications upon eight nor'easter simulations

    NASA Astrophysics Data System (ADS)

    Nicholls, Stephen David

    This dissertation investigated the impact of four modifications to the Weather Research and Forecasting Model (WRF) model during eight nor'easter simulations. Specifically these modification include: 1) Different WRF model versions, 2) Usage of different bulk microphysics schemes created between 1983-2011, 3) Assimilation of radio occultation data, and 4) Fully coupling WRF to a dynamic ocean model. Model simulations were conducted for 180 hours, starting roughly 72 hours prior to the first precipitation impacts in the highly populated Mid-Atlantic US and associated cyclogenesis. Simulation accuracy was assessed by comparing each simulation to Global Forecasting System model analysis. Despite various updates, errors in both storm track and simulated storm intensity were highest in the newest WRF version and were strongly associated with mid-tropospheric heat release. Error analysis of WRF-version simulations revealed the newest WRF model version (WRF 3.3) had worst overall simulation accuracy due to errors in simulated winds, mid-tropospheric latent heat release and similar dynamical fields, whereas WRF 3.2 was best. Comparison of simulations using different microphysics parameterization revealed both storm tracks and maximum cyclone intensity revealed little to no variation between schemes due to their common programming heritage. Error analysis of the local storm environment revealed simulations little impact from the inclusion of graupel, however the newer microphysics parameterization tended to be more accurate. In contrast, for the entire environment (nor'easter and background) the newest BMPS scheme only performed on-par with the oldest BMPS within the inner most model domains. Improvements to both storm track and overall nor'easter simulation accuracy were typically inversely proportional to the data assimilation period length and was strongly sensitive to cyclone-to-sounding distance and stratospheric data assimilation errors. Simulation accuracy however

  19. Scientific advances in headache research: an update on neurostimulation.

    PubMed

    Hoffmann, Jan; Magis, Delphine

    2013-01-01

    The pathophysiological understanding of migraine and other primary headaches has been substantially improved over the last 20 years. A milestone that paved the way for successful research was the development of the International Classification of Headache Disorders published by the International Headache Society in 1988. The classification facilitated a clear clinical diagnosis of headache disorders and allowed research efforts to be focused on clearly defined syndromes. Recent advances in the understanding of headache disorders have been driven by the availability of new research tools, such as advanced imaging techniques, genetic tools, pharmaceutical compounds and devices for electrical or magnetic stimulation. The latest scientific and clinical advances were presented at the recent European Headache and Migraine Trust International Congress (EHMTIC) in London (UK). PMID:23253387

  20. Forecasting Lightning Threat Using WRF Proxy Fields

    NASA Technical Reports Server (NTRS)

    McCaul, E. W., Jr.

    2010-01-01

    Objectives: Given that high-resolution WRF forecasts can capture the character of convective outbreaks, we seek to: 1. Create WRF forecasts of LTG threat (1-24 h), based on 2 proxy fields from explicitly simulated convection: - graupel flux near -15 C (captures LTG time variability) - vertically integrated ice (captures LTG threat area). 2. Calibrate each threat to yield accurate quantitative peak flash rate densities. 3. Also evaluate threats for areal coverage, time variability. 4. Blend threats to optimize results. 5. Examine sensitivity to model mesh, microphysics. Methods: 1. Use high-resolution 2-km WRF simulations to prognose convection for a diverse series of selected case studies. 2. Evaluate graupel fluxes; vertically integrated ice (VII). 3. Calibrate WRF LTG proxies using peak total LTG flash rate densities from NALMA; relationships look linear, with regression line passing through origin. 4. Truncate low threat values to make threat areal coverage match NALMA flash extent density obs. 5. Blend proxies to achieve optimal performance 6. Study CAPS 4-km ensembles to evaluate sensitivities.

  1. Technical challenges and solutions in representing lakes when using WRF in downscaling applications

    NASA Astrophysics Data System (ADS)

    Mallard, M. S.; Nolte, C. G.; Spero, T. L.; Bullock, O. R.; Alapaty, K.; Herwehe, J. A.; Gula, J.; Bowden, J. H.

    2015-04-01

    The Weather Research and Forecasting (WRF) model is commonly used to make high-resolution future projections of regional climate by downscaling global climate model (GCM) outputs. Because the GCM fields are typically at a much coarser spatial resolution than the target regional downscaled fields, lakes are often poorly resolved in the driving global fields, if they are resolved at all. In such an application, using WRF's default interpolation methods can result in unrealistic lake temperatures and ice cover at inland water points. Prior studies have shown that lake temperatures and ice cover impact the simulation of other surface variables, such as air temperatures and precipitation, two fields that are often used in regional climate applications to understand the impacts of climate change on human health and the environment. Here, alternative methods for setting lake surface variables in WRF for downscaling simulations are presented and contrasted.

  2. Convection During SEAC4RS: Comparing Aircraft Observations to WRF Large-Eddy Simulations

    NASA Astrophysics Data System (ADS)

    Heath, N.; Fuelberg, H. E.; Tanelli, S.

    2014-12-01

    Deep convection remains a challenge to accurately parameterize in global and climate models. Increases in computer power recently have allowed large-eddy simulations (LES; grid spacing of O(100 m)) of deep convection, which are beginning to increase our understanding of this unresolved issue. Our research examined the Weather Research and Forecasting model in LES mode (WRF-LES) as a potential tool to further our understanding of deep convective cloud dynamics and microphysics. Idealized and nested WRF-LESs were made for 02 September 2013, a day on which 3 aircraft from the recent NASA SEAC4RS campaign extensively sampled deep convection during all phases of its lifecycle. When modeling deep convection at the LES scale, one of the greatest uncertainties is the choice of cloud microphysical parameterization. Thus, we tested the sensitivity of the WRF-LESs to several microphysical schemes. Simulated flight tracks were used to evaluate the WRF-LESs against the dynamical and microphysical data gathered during the SEAC4RS aircraft cloud penetrations. Results indicated the importance of cloud microphysical parameterizations when making deep convective LESs, especially if they are used to develop cumulus parameterizations. Results from the idealized WRF-LESs then were used to "tune" a real-data run in which the WRF-LES domain was nested within a mesoscale domain. This multi-scale nesting of an LES provides a framework for making detailed simulations of case studies when high-resolution observed data are available for evaluation. This nesting approach also might provide a new method, which uses more realistic atmospheric forcing for the LES, to develop cumulus parameterizations.

  3. The Sensitivity of WRF Daily Summertime Simulations over West Africa to Alternative Parameterizations. Part 1: African Wave Circulation

    NASA Technical Reports Server (NTRS)

    Noble, Erik; Druyan, Leonard M.; Fulakeza, Matthew

    2014-01-01

    The performance of the NCAR Weather Research and Forecasting Model (WRF) as a West African regional-atmospheric model is evaluated. The study tests the sensitivity of WRF-simulated vorticity maxima associated with African easterly waves to 64 combinations of alternative parameterizations in a series of simulations in September. In all, 104 simulations of 12-day duration during 11 consecutive years are examined. The 64 combinations combine WRF parameterizations of cumulus convection, radiation transfer, surface hydrology, and PBL physics. Simulated daily and mean circulation results are validated against NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) and NCEP/Department of Energy Global Reanalysis 2. Precipitation is considered in a second part of this two-part paper. A wide range of 700-hPa vorticity validation scores demonstrates the influence of alternative parameterizations. The best WRF performers achieve correlations against reanalysis of 0.40-0.60 and realistic amplitudes of spatiotemporal variability for the 2006 focus year while a parallel-benchmark simulation by the NASA Regional Model-3 (RM3) achieves higher correlations, but less realistic spatiotemporal variability. The largest favorable impact on WRF-vorticity validation is achieved by selecting the Grell-Devenyi cumulus convection scheme, resulting in higher correlations against reanalysis than simulations using the Kain-Fritch convection. Other parameterizations have less-obvious impact, although WRF configurations incorporating one surface model and PBL scheme consistently performed poorly. A comparison of reanalysis circulation against two NASA radiosonde stations confirms that both reanalyses represent observations well enough to validate the WRF results. Validation statistics for optimized WRF configurations simulating the parallel period during 10 additional years are less favorable than for 2006.

  4. Simulating atmosphere flow for wind energy applications with WRF-LES

    SciTech Connect

    Lundquist, J K; Mirocha, J D; Chow, F K; Kosovic, B; Lundquist, K A

    2008-01-14

    Forecasts of available wind energy resources at high spatial resolution enable users to site wind turbines in optimal locations, to forecast available resources for integration into power grids, to schedule maintenance on wind energy facilities, and to define design criteria for next-generation turbines. This array of research needs implies that an appropriate forecasting tool must be able to account for mesoscale processes like frontal passages, surface-atmosphere interactions inducing local-scale circulations, and the microscale effects of atmospheric stability such as breaking Kelvin-Helmholtz billows. This range of scales and processes demands a mesoscale model with large-eddy simulation (LES) capabilities which can also account for varying atmospheric stability. Numerical weather prediction models, such as the Weather and Research Forecasting model (WRF), excel at predicting synoptic and mesoscale phenomena. With grid spacings of less than 1 km (as is often required for wind energy applications), however, the limits of WRF's subfilter scale (SFS) turbulence parameterizations are exposed, and fundamental problems arise, associated with modeling the scales of motion between those which LES can represent and those for which large-scale PBL parameterizations apply. To address these issues, we have implemented significant modifications to the ARW core of the Weather Research and Forecasting model, including the Nonlinear Backscatter model with Anisotropy (NBA) SFS model following Kosovic (1997) and an explicit filtering and reconstruction technique to compute the Resolvable Subfilter-Scale (RSFS) stresses (following Chow et al, 2005).We are also modifying WRF's terrain-following coordinate system by implementing an immersed boundary method (IBM) approach to account for the effects of complex terrain. Companion papers presenting idealized simulations with NBA-RSFS-WRF (Mirocha et al.) and IBM-WRF (K. A. Lundquist et al.) are also presented. Observations of flow

  5. Construction of databases: advances and significance in clinical research.

    PubMed

    Long, Erping; Huang, Bingjie; Wang, Liming; Lin, Xiaoyu; Lin, Haotian

    2015-12-01

    Widely used in clinical research, the database is a new type of data management automation technology and the most efficient tool for data management. In this article, we first explain some basic concepts, such as the definition, classification, and establishment of databases. Afterward, the workflow for establishing databases, inputting data, verifying data, and managing databases is presented. Meanwhile, by discussing the application of databases in clinical research, we illuminate the important role of databases in clinical research practice. Lastly, we introduce the reanalysis of randomized controlled trials (RCTs) and cloud computing techniques, showing the most recent advancements of databases in clinical research. PMID:27215009

  6. Advanced technology airfoil research, volume 1, part 2

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This compilation contains papers presented at the NASA Conference on Advanced Technology Airfoil Research held at Langley Research Center on March 7-9, 1978, which have unlimited distribution. This conference provided a comprehensive review of all NASA airfoil research, conducted in-house and under grant and contract. A broad spectrum of airfoil research outside of NASA was also reviewed. The major thrust of the technical sessions were in three areas: development of computational aerodynamic codes for airfoil analysis and design, development of experimental facilities and test techniques, and all types of airfoil applications.

  7. Advancing a program of research within a nursing faculty role.

    PubMed

    Nolan, Marie T; Wenzel, Jennifer; Han, Hae-Ra; Allen, Jerilyn K; Paez, Kathryn A; Mock, Victoria

    2008-01-01

    Doctoral students and new faculty members often seek advice from more senior faculty on how to advance their program of research. Students may ask whether they should choose the manuscript option for their dissertation or whether they should seek a postdoctoral fellowship. New faculty members wonder whether they should pursue a career development award and whether they need a mentor as they strive to advance their research while carrying out teaching, service, and practice responsibilities. In this article, we describe literature on the impact of selected aspects of pre- and postdoctoral training and faculty strategies on scholarly productivity in the faculty role. We also combine our experiences at a school of nursing within a research-intensive university to suggest strategies for success. Noting the scarcity of research that evaluates the effect of these strategies, we are actively engaged in collecting data on their relationship to the scholarly productivity of students and faculty members within our own institution. PMID:19022210

  8. Advancing a Program of Research within a Nursing Faculty Role

    PubMed Central

    Nolan, Marie T.; Wenzel, Jennifer; Han, Hae-Ra.; Allen, Jerilyn K.; Paez, Kathryn A.; Mock, Victoria

    2008-01-01

    Doctoral students and new faculty members often seek advice from more senior faculty on how to advance their program of research. Students may ask whether they should choose the manuscript option for their dissertation or whether they should seek a postdoctoral fellowship. New faculty members wonder whether they should pursue a career development (K) award and whether they need a mentor as they strive to advance their research while carrying out teaching, service, and practice responsibilities. In this paper, we describe literature on the impact of selected aspects of pre and postdoctoral training and faculty strategies on scholarly productivity in the faculty role. We also combine our experiences at a school of nursing within a research-intensive university to suggest strategies for success. Noting the scarcity of research that evaluates the effect of these strategies we are actively engaged in collecting data on their relationship to the scholarly productivity of students and faculty members within our own institution. PMID:19022210

  9. Influence of Physics Parameterizations and Ocean Coupling on Simulations of Tropical Cyclones using a Regional Climate Model (WRF) and a Coupled Modeling System (COAWST)

    NASA Astrophysics Data System (ADS)

    Mooney, P.; Mulligan, F. J.; Bruyere, C. L.; Bonnlander, B.

    2014-12-01

    We examine the influence of physics parameterizations and ocean coupling on the ability of the Weather Research and Forecasting (WRF) model to simulate the storm track and intensity of 2011 storms Irene and Ophelia. Of the physics parameterizations investigated - cumulus parameterizations, planetary boundary layer, microphysics, radiation, and land surface models - cumulus parameterizations have the greatest impact on WRF's ability to reproduce the two storms, particularly storm intensity. We also investigated the influence of coupling the Regional Ocean Modelling System (ROMS) to the WRF model. This was achieved using the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) modeling system which couples ROMS to WRF using the Model Coupling Toolkit (MCT). Simulated storm intensity and track are modified as a result of coupling ROMS to WRF, but coupling will not compensate for a poor initial parameterization selection.

  10. Advanced Composite Structures At NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Eldred, Lloyd B.

    2015-01-01

    Dr. Eldred's presentation will discuss several NASA efforts to improve and expand the use of composite structures within aerospace vehicles. Topics will include an overview of NASA's Advanced Composites Project (ACP), Space Launch System (SLS) applications, and Langley's ISAAC robotic composites research tool.

  11. Summary of Advances in Autism Spectrum Disorder Research, 2009

    ERIC Educational Resources Information Center

    Interagency Autism Coordinating Committee, 2009

    2009-01-01

    Each year the members of the Interagency Autism Coordinating Committee identify recent research findings that made the most impact on the field. For the 2009 Summary of Advances, the IACC selected and summarized 20 studies that gave significant insight into the prevalence of autism spectrum disorder (ASD), the biology of the disorder, potential…

  12. Defining Neighborhood Boundaries for Social Measurement: Advancing Social Work Research

    ERIC Educational Resources Information Center

    Foster, Kirk A.; Hipp, J. Aaron

    2011-01-01

    Much of the current neighborhood-based research uses variables aggregated on administrative boundaries such as zip codes, census tracts, and block groups. However, other methods using current technological advances in geographic sciences may broaden our ability to explore the spatial concentration of neighborhood factors affecting individuals and…

  13. INEEL Advanced Radiotherapy Research Program Annual Report for 2002

    SciTech Connect

    J. R. Venhuizen

    2003-05-01

    This report summarizes the activities and major accomplishments for the Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Radiotherapy Research Program for calendar year 2002. Topics covered include computational dosimetry and treatment planning software development, medical neutron source development and characterization, and boron analytical chemistry.

  14. INEEL Advanced Radiotherapy Research Program Annual Report 2002

    SciTech Connect

    Venhuizen, J.R.

    2003-05-23

    This report summarizes the activities and major accomplishments for the Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Radiotherapy Research Program for calendar year 2002. Topics covered include computational dosimetry and treatment planning software development, medical neutron source development and characterization, and boron analytical chemistry.

  15. INL Advanced Radiotherapy Research Program Annual Report 2004

    SciTech Connect

    James Venhuizen

    2005-06-01

    This report summarizes the activities and major accomplishments for the Idaho National Laboratory Advanced Radiotherapy Research Program for calendar year 2004. Topics covered include boron analysis in biological samples, computational dosimetry and treatment planning software development, medical neutron source development and characterization, and collaborative dosimetry studies at the RA-1 facility in Buenos Aires, Argentina.

  16. Human Intelligence: An Introduction to Advances in Theory and Research.

    ERIC Educational Resources Information Center

    Lohman, David F.

    1989-01-01

    Recent advances in three research traditions are summarized: trait theories of intelligence, information-processing theories of intelligence, and general theories of thinking. Work on fluid and crystallized abilities by J. Horn and R. Snow, mental speed, spatial visualization, cognitive psychology, artificial intelligence, and the construct of…

  17. Advanced materials research for long-haul aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Signorelli, R. A.; Blankenship, C. P.

    1978-01-01

    The status of research efforts to apply low to intermediate temperature composite materials and advanced high temperature materials to engine components is reviewed. Emerging materials technologies and their potential benefits to aircraft gas turbines were emphasized. The problems were identified, and the general state of the technology for near term use was assessed.

  18. Technical Challenges and Solutions in Representing Lakes when using WRF in Downscaling Applications

    EPA Science Inventory

    The Weather Research and Forecasting (WRF) model is commonly used to make high resolution future projections of regional climate by downscaling global climate model (GCM) outputs. Because the GCM fields are typically at a much coarser spatial resolution than the target regional ...

  19. WRF Performance Skills in Predicting Rainfall Over the Philippines

    NASA Astrophysics Data System (ADS)

    Perez, G. J. P.; Combinido, J. S.

    2014-12-01

    The Weather Research and Forecasting (WRF) model has been used for predicting rainfall over the Philippines. The period of October 2013 to May 2014 is chosen for the evaluation because of the unprecedented number of new ground instruments (300 to 500 automated rain gauges). It also gives us a good statistical representation of wet and dry seasons in the country. The WRF model configuration makes use of NCEP FNL for the initial boundary condition. Hindcasts are produced at 12-km resolution with 12 hours up to 144 hours lead-time. To assess the predictability of rainfall, we look at the dichotomous case, wherein we evaluate if the model is able to predict correctly the number of rainfall events. The left column in Figure 1 shows the monthly Percent Correct and Critical Success Index (CSI) for different lead-time. Percent Correct represents how well the model performs, 1 being the highest score, with equal bearing on correct positives and correct negatives. On the other hand, CSI is a balanced score that accounts for false alarm and missed events - it has a range of 0 to 1, where 1 means perfect forecast. Results show that during the wet season (October, November and December), PC is approximately 0.7 while in dry season (January, February and March), PC reaches values of around 0.9, which suggests improvement in the performance from wet to dry season. The increase in performance is attributed to the increase in number of correct negatives during the dry season. The CSI score, which excludes the correct negatives, shows that the ability of WRF to predict rainfall events drastically decline in December or during the transition from wet to dry season. This is due to the inability of WRF to pinpoint exact locations of small convective rainfall events. The predictability of actual rainfall values is indicated by the Mean Absolute Errors (MAE) and Root Mean Square Errors (RMSE) in Figure 1. The MAE for 3-hour accumulated rainfall is smallest during the dry season.

  20. Design and Impacts of Land-Biogenic-Atmosphere Coupling in the NASA-Unified WRF (NU-WRF) Modeling System

    NASA Technical Reports Server (NTRS)

    Tan, Qian; Santanello, Joseph A., Jr.; Zhou, Shujia; Tao, Zhining; Peters-Lidard, Christa d.; Chn, Mian

    2011-01-01

    Land-Atmosphere coupling is typically designed and implemented independently for physical (e.g. water and energy) and chemical (e.g. biogenic emissions and surface depositions)-based models and applications. Differences in scale, data requirements, and physics thus limit the ability of Earth System models to be fully coupled in a consistent manner. In order for the physical-chemical-biological coupling to be complete, treatment of the land in terms of surface classification, condition, fluxes, and emissions must be considered simultaneously and coherently across all components. In this study, we investigate a coupling strategy for the NASA-Unified Weather Research and Forecasting (NU-WRF) model that incorporates the traditionally disparate fluxes of water and energy through NASA's LIS (Land Information System) and biogenic emissions through BEIS (Biogenic Emissions Inventory System) and MEGAN (Model of Emissions of Gases and Aerosols from Nature) into the atmosphere. In doing so, inconsistencies across model inputs and parameter data are resolved such that the emissions from a particular plant species are consistent with the heat and moisture fluxes calculated for that land cover type. In turn, the response of the atmospheric turbulence and mixing in the planetary boundary layer (PBL) acts on the identical surface type, fluxes, and emissions for each. In addition, the coupling of dust emission within the NU-WRF system is performed in order to ensure consistency and to maximize the benefit of high-resolution land representation in LIS. The impacts of those self-consistent components on' the simulation of atmospheric aerosols are then evaluated through the WRF-Chem-GOCART (Goddard Chemistry Aerosol Radiation and Transport) model. Overall, this ambitious project highlights the current difficulties and future potential of fully coupled. components. in Earth System models, and underscores the importance of the iLEAPS community in supporting improved knowledge of

  1. The SPoRT-WRF: Evaluating the Impact of NASA Datasets on Convective Forecasts

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Case, Jonathan; Kozlowski, Danielle; Molthan, Andrew

    2012-01-01

    The Short-term Prediction Research and Transition Center (SPoRT) is a collaborative partnership between NASA and operational forecasting entities, including a number of National Weather Service offices. SPoRT transitions real-time NASA products and capabilities to its partners to address specific operational forecast challenges. One challenge that forecasters face is applying convection-allowing numerical models to predict mesoscale convective weather. In order to address this specific forecast challenge, SPoRT produces real-time mesoscale model forecasts using the Weather Research and Forecasting (WRF) model that includes unique NASA products and capabilities. Currently, the SPoRT configuration of the WRF model (SPoRT-WRF) incorporates the 4-km Land Information System (LIS) land surface data, 1-km SPoRT sea surface temperature analysis and 1-km Moderate resolution Imaging Spectroradiometer (MODIS) greenness vegetation fraction (GVF) analysis, and retrieved thermodynamic profiles from the Atmospheric Infrared Sounder (AIRS). The LIS, SST, and GVF data are all integrated into the SPoRT-WRF through adjustments to the initial and boundary conditions, and the AIRS data are assimilated into a 9-hour SPoRT WRF forecast each day at 0900 UTC. This study dissects the overall impact of the NASA datasets and the individual surface and atmospheric component datasets on daily mesoscale forecasts. A case study covering the super tornado outbreak across the Ce ntral and Southeastern United States during 25-27 April 2011 is examined. Three different forecasts are analyzed including the SPoRT-WRF (NASA surface and atmospheric data), the SPoRT WRF without AIRS (NASA surface data only), and the operational National Severe Storms Laboratory (NSSL) WRF (control with no NASA data). The forecasts are compared qualitatively by examining simulated versus observed radar reflectivity. Differences between the simulated reflectivity are further investigated using convective parameters along

  2. Operational, hyper-resolution hydrologic modeling over the contiguous U.S. using themulti-scale, multi-physics WRF-Hydro Modeling and Data Assimilation System.

    NASA Astrophysics Data System (ADS)

    Gochis, D. J.; Cosgrove, B.; Yu, W.; Clark, E. P.; Yates, D. N.; Dugger, A. L.; McCreight, J. L.; Pan, L.; Zhang, Y.; rafeei-Nasab, A.; Karsten, L. R.; Cline, D. W.; Sampson, K. M.; Newman, A. J.; Wood, A.; Win-Gildenmeister, M.

    2015-12-01

    Operational flood, flash flood and water supply forecasting is typically conducted using a host of different observational and modeling tools that range widely in process complexity, spatial resolution andobservational data sources. While such tailored approaches can provide significant skill in specific water forecasting applications, the lack of a more coordinated general approach can result in inconsistency between various forecast products and can inhibit transfer of information, methodologies between forecast systems. With the aim of improving the timeliness, consistency and spatial fidelity hydrologic prediction products, the U.S. National Weather Service has initiated an effort to provide street-level, water prediction services for the nation. This effort seeks to incorporate advances in hydrometeorological observing capabilities, new hydrologic data assimilation methodologies, improvements in hydrographic and geospatial information and advances in the ulitizion of high performance computers for process-based hydrologic modeling. This talk will summarize the proposed Initial Operating Capability (IOC) for national water prediction using the community WRF-Hydro modeling system, scheduled for operational execution during late spring of 2016. Four different configurations of the WRF-Hydro system are planned including an Analysis and Data Assimilation configuration, Short Range (0-2 day) and Medium Range (0-10 day) deterministic configurations and a Long Range (0-30 day) enesmble configuration. Streamflow analyses and forecasts from each model configurations will be produced on 2.7 million river reaches of the NHDPlusv2 hydrographic dataset. This presentation summarizes results from a number of different model development and benchmarking activities conducted as part of the IOC effort. Results from prototype real-time forecasting activities conducted during the 2015 National Flood Interoperability Experiment (NFIE) will be presented as will retrospective

  3. NIH Research: Children Research Volunteers Receive Care and Help Advance Knowledge | NIH MedlinePlus the Magazine

    MedlinePlus

    ... of this page please turn Javascript on. NIH Research: Children Research Volunteers Receive Care and Help Advance Knowledge Past ... NIH Clinical Center. Photo: NIH Clinical Center Children research volunteers receive care and help advance knowledge I ...

  4. Improved cyberinfrastructure for integrated hydrometeorological predictions within the fully-coupled WRF-Hydro modeling system

    NASA Astrophysics Data System (ADS)

    gochis, David; hooper, Rick; parodi, Antonio; Jha, Shantenu; Yu, Wei; Zaslavsky, Ilya; Ganapati, Dinesh

    2014-05-01

    The community WRF-Hydro system is currently being used in a variety of flood prediction and regional hydroclimate impacts assessment applications around the world. Despite its increasingly wide use certain cyberinfrastructure bottlenecks exist in the setup, execution and post-processing of WRF-Hydro model runs. These bottlenecks result in wasted time, labor, data transfer bandwidth and computational resource use. Appropriate development and use of cyberinfrastructure to setup and manage WRF-Hydro modeling applications will streamline the entire workflow of hydrologic model predictions. This talk will present recent advances in the development and use of new open-source cyberinfrastructure tools for the WRF-Hydro architecture. These tools include new web-accessible pre-processing applications, supercomputer job management applications and automated verification and visualization applications. The tools will be described successively and then demonstrated in a set of flash flood use cases for recent destructive flood events in the U.S. and in Europe. Throughout, an emphasis on the implementation and use of community data standards for data exchange is made.

  5. Evaluating Deep Updraft Formulation in NCAR CAM3 with High-Resolution WRF Simulations During ARM TWP-ICE

    SciTech Connect

    Wang, Weiguo; Liu, Xiaohong

    2009-02-19

    The updraft formulation used in NCAR CAM3 deep convection parameterization assumes that the fractional entrainment rate for a single updraft is height-independent and the updraft mass flux increases monotonically with height to updraft top. These assumptions are evaluated against three-dimensional high-resolution simulations from the weather research and forecast (WRF) model during the monsoon period of the DOE ARM Tropical Warm Pool -- International Cloud Experiment (TWP-ICE). Analyses of the WRF-generated updrafts suggest that the fractional entrainment rate for a single updraft decreases with height and the updraft mass flux increases with height below the top of the conditionally unstable layer but decreases above. It is suggested that the assumed updraft mass flux profile in CAM3 might be unrealistic in many cases because the updraft acceleration is affected by other drag processes in addition to entrainment. Total convective cloud mass flux and detrainment rate over the TWP-ICE domain diagnosed from the CAM3 parameterization driven by WRF meteorological fields are smaller than those derived from WRF simulations. The total entrainment rate of CAM3 is smaller than that of WRF in the lower part of cloud and larger in the upper part of cloud. Compared with WRF simulations, the CAM3-parameterized convection is too active and, as a result, excess moisture and heat may be transported to the upper troposphere by the parameterized convection. Future improvement is envisioned.

  6. Activities of the Research Institute for Advanced Computer Science

    NASA Technical Reports Server (NTRS)

    Oliger, Joseph

    1994-01-01

    The Research Institute for Advanced Computer Science (RIACS) was established by the Universities Space Research Association (USRA) at the NASA Ames Research Center (ARC) on June 6, 1983. RIACS is privately operated by USRA, a consortium of universities with research programs in the aerospace sciences, under contract with NASA. The primary mission of RIACS is to provide research and expertise in computer science and scientific computing to support the scientific missions of NASA ARC. The research carried out at RIACS must change its emphasis from year to year in response to NASA ARC's changing needs and technological opportunities. Research at RIACS is currently being done in the following areas: (1) parallel computing; (2) advanced methods for scientific computing; (3) high performance networks; and (4) learning systems. RIACS technical reports are usually preprints of manuscripts that have been submitted to research journals or conference proceedings. A list of these reports for the period January 1, 1994 through December 31, 1994 is in the Reports and Abstracts section of this report.

  7. Recent Advances in Cigarette Ignition Propensity Research and Development

    PubMed Central

    O’Connor, Richard J.; Spalletta, Ron; Connolly, Gregory N.

    2009-01-01

    Major U.S. cigarette companies for decades conducted research and development regarding cigarette ignition propensity which has continued beyond fire safety standards for cigarettes that have recently been legislated. This paper describes recent scientific advances and technological development based on a comprehensive review of the physical, chemical, and engineering sciences, public health, and trade literature, U.S. and international patents, and research in the tobacco industry document libraries. Advancements since the first implementation of standards have made been in: a) understanding the key parameters involved in cigarette smoldering combustion and ignition of substrates; b) developing new cigarette and paper wrapper designs to reduce ignition propensity, including banded and non-banded cigarette paper approaches, c) assessing toxicology, and d) measuring performance. While the implications of manufacturers’ non-safety related aims are of concern, this research indicates possible alternative designs should experience with fire loss and existing technologies on the market suggest need for improvement. PMID:20495669

  8. Advanced Life Support Research and Technology Development Metric

    NASA Technical Reports Server (NTRS)

    Hanford, A. J.

    2004-01-01

    The Metric is one of several measures employed by the NASA to assess the Agency s progress as mandated by the United States Congress and the Office of Management and Budget. Because any measure must have a reference point, whether explicitly defined or implied, the Metric is a comparison between a selected ALS Project life support system and an equivalently detailed life support system using technology from the Environmental Control and Life Support System (ECLSS) for the International Space Station (ISS). This document provides the official calculation of the Advanced Life Support (ALS) Research and Technology Development Metric (the Metric) for Fiscal Year 2004. The values are primarily based on Systems Integration, Modeling, and Analysis (SIMA) Element approved software tools or reviewed and approved reference documents. For Fiscal Year 2004, the Advanced Life Support Research and Technology Development Metric value is 2.03 for an Orbiting Research Facility and 1.62 for an Independent Exploration Mission.

  9. Research and control of advanced schistosomiasis japonica in China.

    PubMed

    Wu, Wei; Feng, Aicheng; Huang, Yixin

    2015-01-01

    Among the three main schistosomes (Schistosoma japonicum, Schistosoma mansoni, and Schistosoma haematobium) known to infect humans, S. japonicum causes the most serious pathological lesions. In China, only schistosomiasis japonica is transmitted. From the 1950s, massive epidemiological investigations and active control measures for schistosomiasis japonica have been carried out. At the early stage of schistosomiasis control program, there were about 12 million schistosomiasis patients, and about 5% of schistosomiasis patients belong to advanced patients, which was 600,000. After more than a half century of active schistosomiasis control work, the schistosomiasis situation has been reduced markedly. The nearest epidemiological investigation showed that, by the end of 2012, there were still 240,000 schistosomiasis patients with the descent rate of 98% and 30,000 advanced patients with the descent rate of 95%. This paper reviews the rich experiences of advanced schistosomiasis research and control in China, including that the epidemiology researches confirm there is a family aggregation of advanced schistosomiasis and advanced schistosomiasis patients have no significance to the schistosomiasis transmission in transmission-interrupted areas but still are an infection source in endemic areas; pathogenic mechanism researches verify that genetic factors and immunoregulation play important roles in the disease developing process; ultrasound image examinations are used not only in the diagnosis and differential diagnosis of advanced schistosomiasis but also in the guidance of treatment and evaluation of therapeutic effects and, furthermore, in the risk predictions of portal hypertension and upper gastrointestinal hemorrhage; clinical practices demonstrate that praziquantel can be used in most of advanced schistosomiasis patients, and the therapy not only can interrupt the schistosomiasis transmission somewhat but also is favorable for liver fibrosis improvement; the

  10. Relevance of advanced nuclear fusion research: Breakthroughs and obstructions

    NASA Astrophysics Data System (ADS)

    Coppi, Bruno

    2016-03-01

    An in depth understanding of the collective modes that can be excited in a wide range of high-energy plasmas is necessary to advance nuclear fusion research in parallel with other fields that include space and astrophysics in particular. Important achievements are shown to have resulted from implementing programs based on this reality, maintaining a tight connection with different areas of investigations. This involves the undertaking of a plurality of experimental approaches aimed at understanding the physics of fusion burning plasmas. At present, the most advanced among these is the Ignitor experiment involving international cooperation, that is designed to investigate burning plasma regimes near ignition for the first time.

  11. First Aviation System Technology Advanced Research (AvSTAR) Workshop

    NASA Technical Reports Server (NTRS)

    Denery, Dallas G. (Editor); Weathers, Del W. (Editor); Rosen, Robert (Technical Monitor); Edwards, Tom (Technical Monitor)

    2001-01-01

    This Conference Proceedings documents the results of a two-day NASA/FAA/Industry workshop that was held at the NASA Ames Research Center, located at Moffett Field, CA, on September 21-22, 2000. The purpose of the workshop was to bring together a representative cross section of leaders in air traffic management, from industry. FAA, and academia, to assist in defining the requirements for a new research effort, referred to as AvSTAR Aviation Systems Technology Advanced Research). The Conference Proceedings includes the individual presentation, and summarizes the workshop discussions and recommendations.

  12. Advanced Propulsion Research Interest in Materials for Propulsion

    NASA Technical Reports Server (NTRS)

    Cole, John

    2003-01-01

    This viewgraph presentation provides an overview of material science and technology in the area of propulsion energetics. The authors note that conventional propulsion systems are near peak performance and further refinements in manufacturing, engineering design and materials will only provide incremental increases in performance. Energetic propulsion technologies could potential solve the problems of energy storage density and energy-to-thrust conversion efficiency. Topics considered include: the limits of thermal propulsion systems, the need for energetic propulsion research, emerging energetic propulsion technologies, materials research needed for advanced propulsion, and potential research opportunities.

  13. Transnationalism: A Framework for Advancing Nursing Research With Contemporary Immigrants.

    PubMed

    Rosemberg, Marie-Anne S; Boutain, Doris M; Mohammed, Selina A

    2016-01-01

    This article advances nursing research by presenting transnationalism as a framework for inquiry with contemporary immigrants. Transnationalism occurs when immigrants maintain relationships that transcend the geographical borders of their origin and host countries. Immigrants use those relationships to experience health differently within concurrent socioeconomic, political, and cultural contexts than national situated populations. Nurse researchers are called upon to consider these trans-border relationships when exploring the health of contemporary immigrants. Such consideration is needed to develop relevant research designs, methods, analysis, and dissemination strategies. PMID:26836998

  14. Development and Implementation of Dynamic Scripts to Execute Cycled GSI/WRF Forecasts

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Srikishen, Jayanthi; Berndt, Emily; Li, Xuanli; Watson, Leela

    2014-01-01

    The Weather Research and Forecasting (WRF) numerical weather prediction (NWP) model and Gridpoint Statistical Interpolation (GSI) data assimilation (DA) are the operational systems that make up the North American Mesoscale (NAM) model and the NAM Data Assimilation System (NDAS) analysis used by National Weather Service forecasters. The Developmental Testbed Center (DTC) manages and distributes the code for the WRF and GSI, but it is up to individual researchers to link the systems together and write scripts to run the systems, which can take considerable time for those not familiar with the code. The objective of this project is to develop and disseminate a set of dynamic scripts that mimic the unique cycling configuration of the operational NAM to enable researchers to develop new modeling and data assimilation techniques that can be easily transferred to operations. The current version of the SPoRT GSI/WRF Scripts (v3.0.1) is compatible with WRF v3.3 and GSI v3.0.

  15. The SPoRT-WRF: Evaluating the Impact of NASA Datasets on Convective Forecasts

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Kozlowski, Danielle; Case, Jonathan; Molthan, Andrew

    2012-01-01

    Short-term Prediction Research and Transition (SPoRT) seeks to improve short-term, regional weather forecasts using unique NASA products and capabilities SPoRT has developed a unique, real-time configuration of the NASA Unified Weather Research and Forecasting (WRF)WRF (ARW) that integrates all SPoRT modeling research data: (1) 2-km SPoRT Sea Surface Temperature (SST) Composite, (2) 3-km LIS with 1-km Greenness Vegetation Fraction (GVFs) (3) 45-km AIRS retrieved profiles. Transitioned this real-time forecast to NOAA's Hazardous Weather Testbed (HWT) as deterministic model at Experimental Forecast Program (EFP). Feedback from forecasters/participants and internal evaluation of SPoRT-WRF shows a cool, dry bias that appears to suppress convection likely related to methodology for assimilation of AIRS profiles Version 2 of the SPoRT-WRF will premier at the 2012 EFP and include NASA physics, cycling data assimilation methodology, better coverage of precipitation forcing, and new GVFs

  16. Developing Research Infrastructure: The Institute for the Advancement of Social Work Research

    ERIC Educational Resources Information Center

    Zlotnik, Joan Levy; Solt, Barbara E.

    2008-01-01

    This article reviews the 15 years of research development efforts of the Institute for the Advancement of Social Work Research (IASWR); delineates IASWR's roles in relation to the social work practice, education, and research communities; presents the transdisciplinary and transorganizational partnerships in which IASWR engages to influence…

  17. Rhetorical Strategies in Engineering Research Articles and Research Theses: Advanced Academic Literacy and Relations of Power

    ERIC Educational Resources Information Center

    Koutsantoni, Dimitra

    2006-01-01

    Research articles and research theses constitute two key genres used by scientific communities for the dissemination and ratification of knowledge. Both genres are produced at advanced stages of individuals' enculturation in disciplinary communities present original research aim to persuade the academic community to accept new knowledge claims,…

  18. [Activities of Research Institute for Advanced Computer Science

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R. (Technical Monitor); Leiner, Barry M.

    2001-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administrations missions. RIACS is located at the NASA Ames Research Center, Moffett Field, California. RIACS research focuses on the three cornerstones of IT research necessary to meet the future challenges of NASA missions: 1. Automated Reasoning for Autonomous Systems Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth. 2. Human-Centered Computing Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities. 3. High Performance Computing and Networking Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to analysis of large scientific datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply IT research to a variety of NASA application domains. RIACS also engages in other activities, such as workshops, seminars, visiting scientist programs and student summer programs, designed to encourage and facilitate collaboration between the university and NASA IT research communities.

  19. Optical Turbulence Characterization by WRF model above Ali, Tibet

    NASA Astrophysics Data System (ADS)

    Wang, Hongshuai; Yao, Yongqiang; Liu, Liyong; Qian, Xuan; Yin, Jia

    2015-04-01

    Atmospheric optical turbulence modeling and forecast for astronomy is a relatively recent discipline, but has played important roles in site survey, optimization of large telescope observing tables, and in the applications of adaptive optics technique. The numerical approach, by using of meteorological parameters and parameterization of optical turbulence, can provide all the optical turbulence parameters related, such as C2n profile, coherent length, wavefront coherent time, seeing, isoplanatic angle, and so on. This is particularly interesting for searching new sites without the long and expensive site testing campaigns with instruments. Earlier site survey results by the site survey team of National Astronomical Observatories of China imply that the south-west Tibet, Ali, is one of the world best IR and sub-mm site. For searching the best site in Ali area, numerical approach by Weather and Research Forecasting (WRF) model had been used to evaluate the climatology of the optical turbulence. The WRF model is configured over a domain 200km×200km with 1km horizontal resolution and 65 vertical levels from ground to the model top(10millibars) in 2010. The initial and boundary conditions for the model are provided by the 1° × 1° Global Final Analysis data from NCEP. The distribution and seasonal variation of optical turbulence parameters over this area are presented.

  20. Regional climate simulations over Vietnam using the WRF model

    NASA Astrophysics Data System (ADS)

    Raghavan, S. V.; Vu, M. T.; Liong, S. Y.

    2015-07-01

    We present an analysis of the present-day (1961-1990) regional climate simulations over Vietnam. The regional climate model Weather Research and Forecasting (WRF) was driven by the global reanalysis ERA40. The performance of the regional climate model in simulating the observed climate is evaluated with a main focus on precipitation and temperature. The regional climate model was able to reproduce the observed spatial patterns of the climate, although with some biases. The model also performed better in reproducing the extreme precipitation and the interannual variability. Overall, the WRF model was able to simulate the main regional signatures of climate variables, seasonal cycles, and frequency distributions. This study is an evaluation of the present-day climate simulations of a regional climate model at a resolution of 25 km. Given that dynamical downscaling has become common for studying climate change and its impacts, the study highlights that much more improvements in modeling might be necessary to yield realistic simulations of climate at high resolutions before they can be used for impact studies at a local scale. The need for a dense network of observations is also realized as observations at high resolutions are needed when it comes to evaluations and validations of models at sub-regional and local scales.

  1. Weather Research and Forecasting Model Sensitivity Comparisons for Warm Season Convective Initiation

    NASA Technical Reports Server (NTRS)

    Watson, Leela R.

    2007-01-01

    This report describes the work done by the Applied Meteorology Unit (AMU) in assessing the success of different model configurations in predicting warm season convection over East-Central Florida. The Weather Research and Forecasting Environmental Modeling System (WRF EMS) software allows users to choose among two dynamical cores - the Advanced Research WRF (ARW) and the Non-hydrostatic Mesoscale Model (NMM). There are also data assimilation analysis packages available for the initialization of the WRF model - the Local Analysis and Prediction System (LAPS) and the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS). Besides model core and initialization options, the WRF model can be run with one- or two-way nesting. Having a series of initialization options and WRF cores, as well as many options within each core, creates challenges for local forecasters, such as determining which configuration options are best to address specific forecast concerns. This project assessed three different model intializations available to determine which configuration best predicts warm season convective initiation in East-Central Florida. The project also examined the use of one- and two-way nesting in predicting warm season convection.

  2. Advanced computational research in materials processing for design and manufacturing

    SciTech Connect

    Zacharia, T.

    1995-04-01

    Advanced mathematical techniques and computer simulation play a major role in providing enhanced understanding of conventional and advanced materials processing operations. Development and application of mathematical models and computer simulation techniques can provide a quantitative understanding of materials processes and will minimize the need for expensive and time consuming trial- and error-based product development. As computer simulations and materials databases grow in complexity, high performance computing and simulation are expected to play a key role in supporting the improvements required in advanced material syntheses and processing by lessening the dependence on expensive prototyping and re-tooling. Many of these numerical models are highly compute-intensive. It is not unusual for an analysis to require several hours of computational time on current supercomputers despite the simplicity of the models being studied. For example, to accurately simulate the heat transfer in a 1-m{sup 3} block using a simple computational method requires 10`2 arithmetic operations per second of simulated time. For a computer to do the simulation in real time would require a sustained computation rate 1000 times faster than that achievable by current supercomputers. Massively parallel computer systems, which combine several thousand processors able to operate concurrently on a problem are expected to provide orders of magnitude increase in performance. This paper briefly describes advanced computational research in materials processing at ORNL. Continued development of computational techniques and algorithms utilizing the massively parallel computers will allow the simulation of conventional and advanced materials processes in sufficient generality.

  3. Advanced dementia research in the nursing home: the CASCADE study.

    PubMed

    Mitchell, Susan L; Kiely, Dan K; Jones, Richard N; Prigerson, Holly; Volicer, Ladislav; Teno, Joan M

    2006-01-01

    Despite the growing number of persons with advanced dementia, and the need to improve their end-of-life care, few studies have addressed this important topic. The objectives of this report are to present the methodology established in the CASCADE (Choices, Attitudes, and Strategies for Care of Advanced Dementia at the End-of-Life) study, and to describe how challenges specific to this research were met. The CASCADE study is an ongoing, federally funded, 5-year prospective cohort study of nursing [nursing home (NH)] residents with advanced dementia and their health care proxies (HCPs) initiated in February 2003. Subjects were recruited from 15 facilities around Boston. The recruitment and data collection protocols are described. The demographic features, ownership, staffing, and quality of care of participant facilities are presented and compared to NHs nationwide. To date, 189 resident/HCP dyads have been enrolled. Baseline data are presented, demonstrating the success of the protocol in recruiting and repeatedly assessing NH residents with advanced dementia and their HCPs. Factors challenging and enabling implementation of the protocol are described. The CASCADE experience establishes the feasibility of conducting rigorous, multisite dementia NH research, and the described methodology serves as a detailed reference for subsequent CASCADE publications as results from the study emerge. PMID:16917187

  4. Compute unified device architecture (CUDA)-based parallelization of WRF Kessler cloud microphysics scheme

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Wang, Jun; Allen Huang, H.-L.; Goldberg, Mitchell D.

    2013-03-01

    In recent years, graphics processing units (GPUs) have emerged as a low-cost, low-power and a very high performance alternative to conventional central processing units (CPUs). The latest GPUs offer a speedup of two-to-three orders of magnitude over CPU for various science and engineering applications. The Weather Research and Forecasting (WRF) model is the latest-generation numerical weather prediction model. It has been designed to serve both operational forecasting and atmospheric research needs. It proves useful for a broad spectrum of applications for domain scales ranging from meters to hundreds of kilometers. WRF computes an approximate solution to the differential equations which govern the air motion of the whole atmosphere. Kessler microphysics module in WRF is a simple warm cloud scheme that includes water vapor, cloud water and rain. Microphysics processes which are modeled are rain production, fall and evaporation. The accretion and auto-conversion of cloud water processes are also included along with the production of cloud water from condensation. In this paper, we develop an efficient WRF Kessler microphysics scheme which runs on Graphics Processing Units (GPUs) using the NVIDIA Compute Unified Device Architecture (CUDA). The GPU-based implementation of Kessler microphysics scheme achieves a significant speedup of 70× over its CPU based single-threaded counterpart. When a 4 GPU system is used, we achieve an overall speedup of 132× as compared to the single thread CPU version.

  5. Magnetohydrodynamics Accelerator Research into Advanced Hypersonics (MARIAH). Part 2

    NASA Technical Reports Server (NTRS)

    Baughman, Jack A.; Micheletti, David A.; Nelson, Gordon L.; Simmons, Gloyd A.

    1997-01-01

    This report documents the activities, results, conclusions and recommendations of the Magnetohydrodynamics Accelerator Research Into Advanced Hypersonics (MARIAH) Project in which the use of magnetohydrodynamics (MHD) technology is investigated for its applicability to augment hypersonic wind tunnels. The long range objective of this investigation is to advance the development of ground test facilities to support the development of hypervelocity flight vehicles. The MHD accelerator adds kinetic energy directly to the wind tunnel working fluid, thereby increasing its Mach number to hypervelocity levels. Several techniques for MHD augmentation, as well as other physical characteristics of the process are studied to enhance the overall performance of hypersonic wind tunnel design. Specific recommendations are presented to improve the effectiveness of ground test facilities. The work contained herein builds on nearly four decades of research and experimentation by the aeronautics ground test and evaluation community, both foreign and domestic.

  6. Recent advances in research on Crimean-Congo hemorrhagic fever

    PubMed Central

    Papa, Anna; Mirazimi, Ali; Köksal, Iftihar; Estrada-Pena, Augustin; Feldmann, Heinz

    2014-01-01

    Crimean-Congo hemorrhagic fever (CCHF) is an expanding tick-borne hemorrhagic disease with increasing human and animal health impact. Immense knowledge was gained over the past 10 years mainly due to advances in molecular biology, but also driven by an increased global interest in CCHFV as an emerging/re-emerging zoonotic pathogen. In the present article we discuss the advances in research with focus on CCHF ecology, epidemiology, pathogenesis, diagnostics, prophylaxis and treatment. Despite tremendous achievements, future activities have to concentrate on the development of vaccines and antivirals/therapeutics to combat CCHF. Vector studies need to continue for better public and animal health preparedness and response. We conclude with a roadmap for future research priorities. PMID:25453328

  7. Magnetohydrodynamics Accelerator Research Into Advanced Hypersonics (MARIAH). Part 1

    NASA Technical Reports Server (NTRS)

    Micheletti, David A.; Baughman, Jack A.; Nelson, Gordon L.; Simmons, Gloyd A.

    1997-01-01

    This report documents the activities, results, conclusions and recommendations of the Magnetohydrodynamics Accelerator Research Into Advanced Hypersonics (MARIAH) Project in which the use of magnetohydrodynamics (MHD) technology is investigated for its applicability to augment hypersonic wind tunnels. The long range objective of this investigation is to advance the development of ground test facilities to support the development of hypervelocity flight vehicles. The MHD accelerator adds kinetic energy directly to the wind tunnel working fluid, thereby increasing its Mach number to hypervelocity levels. Several techniques for MHD augmentation, as well as other physical characteristics of the process are studied to enhance the overall performance of hypersonic wind tunnel design. Specific recommendations are presented to improve the effectiveness of ground test facilities. The work contained herein builds on nearly four decades of research and experimentation by the aeronautics ground test and evaluation community, both foreign and domestic.

  8. Advances and future directions of research on spectral methods

    NASA Technical Reports Server (NTRS)

    Patera, A. T.

    1986-01-01

    Recent advances in spectral methods are briefly reviewed and characterized with respect to their convergence and computational complexity. Classical finite element and spectral approaches are then compared, and spectral element (or p-type finite element) approximations are introduced. The method is applied to the full Navier-Stokes equations, and examples are given of the application of the technique to several transitional flows. Future directions of research in the field are outlined.

  9. Fossil Energy Advanced Research and Technology Development Materials Program

    SciTech Connect

    Cole, N.C.; Judkins, R.R.

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  10. Collaboration in Research and Engineering for Advanced Technology.

    SciTech Connect

    Vrieling, P. Douglas

    2016-01-01

    SNL/CA proposes the Collaboration in Research and Engineering for Advanced Technology and Education (CREATE) facility to support customer-driven national security mission requirements while demonstrating a fiscally responsible approach to cost-control. SNL/CA realizes that due to the current backlog of capital projects in NNSA that following the normal Line Item process to procure capital funding is unlikely and therefore SNL/CA will be looking at all options including Alternative Financing.

  11. Advanced Tokamak Plasmas in the Fusion Ignition Research Experiment

    SciTech Connect

    C.E. Kessel; D. Meade; D.W. Swain; P. Titus; M.A. Ulrickson

    2003-10-13

    The Advanced Tokamak (AT) capability of the Fusion Ignition Research Experiment (FIRE) burning plasma experiment is examined with 0-D systems analysis, equilibrium and ideal-MHD stability, radio-frequency current-drive analysis, and full discharge dynamic simulations. These analyses have identified the required parameters for attractive burning AT plasmas, and indicate that these are feasible within the engineering constraints of the device.

  12. Using the WRF model to simulate the playa breeze over Dugway Proving Ground

    NASA Astrophysics Data System (ADS)

    Spade, Daniela Maria

    The aim of this model and observation based study is to investigate the Advanced Research Weather Research and Forecasting Model's (WRF-ARW, although WRF from hereout) ability to simulate the three-dimensional structure of playa breezes and drainage flows occurring in Dugway Proving Ground, Utah using sub-km nesting in addition to improved land use and terrain datasets (as compared to the default datasets provided with WRF), in addition to studying the diurnal cycle and interactions between the playa breeze and drainage flows. A playa breeze is a thermally forced air circulation system that develops near the edge of playas, which have properties distinct from the surrounding land cover, including a higher thermal conductivity, a higher albedo due to the presence of a thin salt crust at the surface, sparse vegetation cover relative to the surrounding land cover, and a higher latent heat flux. The combination of each of these characteristics produces a thermally direct circulation, with low-level flow away from the playa during the day and toward the playa at night, the result of a cooler playa during the day and a warmer playa at night. Five model runs were performed using the Noah land Surface model, each employing a four telescoping nest strategy. Each model run was given a different set of physical parameterizations, with some using GFS model output and others using NAM model output. The object behind utilizing five model runs was to isolate the impacts made by the differing model parameterization schemes used for each simulation. This was accomplished by comparing the model run output to in situ weather observations, provided courtesy of the Mountain Terrain Atmospheric Modeling and Observation Program (MATERHORN), an ongoing Multidisciplinary University Research Initiative (MURI) sponsored by the Office of Naval Research with the University of Notre Dame acting as Project Lead. It was found that each of the five model simulations tended to produce a longer

  13. Local refinement of RCM simulations based on the theory of Copulas: An application to bias correct WRF precipitation for Germany

    NASA Astrophysics Data System (ADS)

    Mao, Ganquan; Vogl, Stefanie; Laux, Patrick; Wagner, Sven; Kunstmann, Harald

    2014-05-01

    Precipitation information is crucial for regional hydrological and agricultural climate change impact studies. Regional climate models (RCMs) are suitable tools to provide high spatial resolution precipitation products at regional scales, however, they are usually biased not only in absolute values, but also in reproducing observed spatial patterns. Therefore, bias correction techniques are required to obtain suited meteorological information on regional scale. We present a Copula-based method to correct precipitation fields from the Weather Research and Forecasting (WRF) model by merging modelled fields with gridded observation data. Germany is selected as our research domain. High resolution (7km) WRF simulations are used in this study, which is driven by ERA40 reanalysis data for 1971-2000. REGNIE data from Germany Weather Service (DWD) were used as gridded observation data source (1km/daily) and rescaled to 7km for this application. The critical step of this proposed bias correction approach is the establishment of bivariate Copula models, each of them consists of two marginal distributions and one Copula function. The marginal distributions are used to describe the statistical properties of REGNIE and WRF-ERA40 data, while the theoretical Copula function represents the dependence structure between REGNIE and WRF-ERA40 data. Based on this Copula model, the conditional distribution of REGNIE conditioned on WRF-ERA40 can be derived. To generate bias corrected WRF-ERA40 precipitation, a random sample of possible outcomes is drawn from this conditional distribution. This also allows for a quantitative estimation of the inherent uncertainties. The expectation/median/mode value of the stochastic samples can be used as an estimation of the corrected value. For the application, a split-sampling approach is used. Results show that the marginal distributions of REGNIE and WRF-ERA40 are different which implies deficiencies of the WRF-ERA40 simulations to reproduce the

  14. Advanced High-Level Waste Glass Research and Development Plan

    SciTech Connect

    Peeler, David K.; Vienna, John D.; Schweiger, Michael J.; Fox, Kevin M.

    2015-07-01

    The U.S. Department of Energy Office of River Protection (ORP) has implemented an integrated program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product quality requirements. The integrated ORP program is focused on providing a technical, science-based foundation from which key decisions can be made regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities. The fundamental data stemming from this program will support development of advanced glass formulations, key process control models, and tactical processing strategies to ensure safe and successful operations for both the low-activity waste (LAW) and high-level waste (HLW) vitrification facilities with an appreciation toward reducing overall mission life. The purpose of this advanced HLW glass research and development plan is to identify the near-, mid-, and longer-term research and development activities required to develop and validate advanced HLW glasses and their associated models to support facility operations at WTP, including both direct feed and full pretreatment flowsheets. This plan also integrates technical support of facility operations and waste qualification activities to show the interdependence of these activities with the advanced waste glass (AWG) program to support the full WTP mission. Figure ES-1 shows these key ORP programmatic activities and their interfaces with both WTP facility operations and qualification needs. The plan is a living document that will be updated to reflect key advancements and mission strategy changes. The research outlined here is motivated by the potential for substantial economic benefits (e.g., significant increases in waste throughput and reductions in glass volumes) that will be realized when advancements in glass formulation continue and models supporting facility operations are implemented. Developing and applying advanced

  15. [Research advances in association between pediatric obesity and bronchial asthma].

    PubMed

    Zhu, Lian; Xu, Zhi-Liang; Cheng, Yan-Yang

    2016-07-01

    This review article introduces the research advances in the pathophysiological mechanism of obesity in inducing pediatric bronchial asthma, including the role of leptin in obesity and asthma, the association of plasminogen activator inhibitor-1 with obesity and asthma, the association of adiponectin and interleukins with obesity and asthma, and the influence of neurotransmitter on asthma. In particular, this article introduces the latest research on the inhibition of allergic asthma through targeting at the nociceptor of dorsal root ganglion and blocking the signaling pathway of the nociceptor. PMID:27412555

  16. [Research advance in rare and endemic plant Tetraena mongolica Maxim].

    PubMed

    Zhen, Jiang-Hong; Liu, Guo-Hou

    2008-02-01

    In this paper, the research advance in rare and endemic plant Tetraena mongolica Maxim. was summarized from the aspects of morphology, anatomy, palynology, cytology, seed-coat micro-morphology, embryology, physiology, biology, ecology, genetic diversity, chemical constituents, endangered causes, and conservation approaches, and the further research directions were prospected. It was considered that population viability, idioplasm conservation and artificial renewal, molecular biology of ecological adaptability, and assessment of habitat suitability should be the main aspects for the future study of T. mongolica. PMID:18464654

  17. Recent advances in research on climate and human conflict

    NASA Astrophysics Data System (ADS)

    Hsiang, S. M.

    2014-12-01

    A rapidly growing body of empirical, quantitative research examines whether rates of human conflict can be systematically altered by climatic changes. We discuss recent advances in this field, including Bayesian meta-analyses of the effect of temperature and rainfall on current and future large-scale conflicts, the impact of climate variables on gang violence and suicides in Mexico, and probabilistic projections of personal violence and property crime in the United States under RCP scenarios. Criticisms of this research field will also be explained and addressed.

  18. NIDR--40 years of research advances in dental health.

    PubMed Central

    Sheridan, P G

    1988-01-01

    The National Institute of Dental Research (NIDR) was created by President Harry S Truman on June 24, 1948, as the third of the National Institutes of Health. NIDR's legislation contained the mandate to conduct research and research training to improve oral health. An impetus for federally funded dental research was the finding in World War II that the major cause of rejection for military service was missing teeth. Because of the population's widespread tooth decay problems, early NIDR research focused on eliminating dental caries. NIDR scientists confirmed the safety and effectiveness of the use of fluoride in tooth decay prevention, leading to one of the nation's most successful public health efforts, community water fluoridation. During the past 40 years, NIDR scientists have provided research advances and fostered technologies which changed the philosophy and practice of dentistry and brought dental sciences into the mainstream of biomedical research. Dental researchers contribute to studies of such diseases and problems as AIDS, cancer, arthritis, cystic fibrosis, diabetes, herpes, craniofacial anomalies, pain, and bone and joint disorders. NIDR's 40th anniversary in 1988 recognizes its continuing commitment to oral disease prevention and health research, and to achieving the goal of people maintaining their natural dentition for a lifetime. Images p495-a p495-b p496-a p496-b p497-a p497-b p498-a PMID:3140276

  19. Advancing Aeronautics: A Decision Framework for Selecting Research Agendas

    NASA Technical Reports Server (NTRS)

    Anton, Philip S.; Ecola, Liisa; Kallimani, James G.; Light, Thomas; Ohlandt, Chad J. R.; Osburg, Jan; Raman, Raj; Grammich, Clifford A.

    2011-01-01

    Publicly funded research has long played a role in the development of aeronautics, ranging from foundational research on airfoils to development of the air-traffic control system. Yet more than a century after the research and development of successful controlled, sustained, heavier-than-air flight vehicles, there are questions over the future of aeronautics research. The field of aeronautics is relatively mature, technological developments within it have become more evolutionary, and funding decisions are sometimes motivated by the continued pursuit of these evolutionary research tracks rather than by larger factors. These developments raise questions over whether public funding of aeronautics research continues to be appropriate or necessary and at what levels. Tightened federal budgets and increasing calls to address other public demands make these questions sharper still. To help it address the questions of appropriate directions for publicly funded aeronautics research, the National Aeronautics and Space Administration's (NASA's) Aeronautics Research Mission Directorate (ARMD) asked the RAND Corporation to assess the elements required to develop a strategic view of aeronautics research opportunities; identify candidate aeronautic grand challenges, paradigms, and concepts; outline a framework for evaluating them; and exercise the framework as an example of how to use it. Accordingly, this research seeks to address these questions: What aeronautics research should be supported by the U.S. government? What compelling and desirable benefits drive government-supported research? How should the government--especially NASA--make decisions about which research to support? Advancing aeronautics involves broad policy and decisionmaking challenges. Decisions involve tradeoffs among competing perspectives, uncertainties, and informed judgment.

  20. The advanced neutron source research and development plan

    SciTech Connect

    Selby, D.L.

    1995-08-01

    The Advanced Neutron Source (ANS) is being designed as a user-oriented neutron research laboratory centered around the most intense continuous beams of thermal and subthermal neutrons in the world (an order of magnitude more intense than beams available from the most advanced existing reactors). The ANS will be built around a new research reactor of 330-MW fission power, producing an unprecedented peak thermal flux of >7 {center_dot} 10{sup 19} {center_dot} m{sup -2} {center_dot} s{sup -1}. Primarily a research facility, the ANS will accommodate more than 1000 academic, industrial, and government researchers each year. They will conduct basic research in all branches of science as well as applied research leading to better understanding of new materials, including high temperature super conductors, plastics, and thin films. Some 48 neutron beam stations will be set up in the ANS beam rooms and the neutron guide hall for neutron scattering and for fundamental and nuclear physics research. There also will be extensive facilities for materials irradiation, isotope production, and analytical chemistry. The top level work breakdown structure (WBS) for the project. As noted in this figure, one component of the project is a research and development (R&D) program (WBS 1.1). This program interfaces with all of the other project level two WBS activities. Because one of the project guidelines is to meet minimum performance goals without relying on new inventions, this R&D activity is not intended to produce new concepts to allow the project to meet minimum performance goals. Instead, the R&D program will focus on the four objectives described.

  1. A University Consortium for the Advancement of Hydrologic Research

    NASA Astrophysics Data System (ADS)

    Hooper, R. P.; Wilson, J.; Band, L.; Reckhow, K.

    2003-12-01

    Seventy-six research universities across the United States have joined to form the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI), a non-profit corporation. With support from the National Science Foundation, CUAHSI has embarked upon the design and development of programs to enable hydrologic research at larger spatial scales over longer time periods than has been within the grasp of individual investigators. The guiding principle of this design has been an embracing of the entire hydrologic cycle to enable research at the interfaces among traditional hydrologic subdisciplines and between hydrologic science and allied disciplines in the earth and life sciences. To improve our predictive understanding of hydrologic phenomena, the fundamental approach that has been adopted is the development of multidisciplinary, coherent data sets to enable testing of hypotheses in different hydrologic settings across a range of spatial and temporal scales. Four mutually supportive program elements have been conceived: a network of hydrologic observatories (the subject of this special session) designed strategically to collect additional data at large scales (on the order of 10,000 km2) and to leverage existing investments in small-scale intensive studies and in larger scale monitoring activities; hydrologic information systems to develop a comprehensive data model for integrating disparate data types, to develop the cyberinfrastructure necessary for systematic data collection and dissemination and to support community models; hydrologic measurement technology facility to broker instrumentation services from existing sources, to provide cutting edge tools along with the necessary support to use them, and to develop new hydrologic instrumentation needed to advance the science; and hydrologic synthesis center to provide a venue for hydrologic sciences from a range of disciplines to work on topics ranging from inter-observatory comparison to evolving

  2. Advanced Radioisotope Power Conversion Technology Research and Development

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.

    2004-01-01

    NASA's Radioisotope Power Conversion Technology program is developing next generation power conversion technologies that will enable future missions that have requirements that cannot be met by either the ubiquitous photovoltaic systems or by current Radioisotope Power System (RPS) technology. Performance goals of advanced radioisotope power systems include improvement over the state-of-practice General Purpose Heat Source/Radioisotope Thermoelectric Generator by providing significantly higher efficiency to reduce the number of radioisotope fuel modules, and increase specific power (watts/kilogram). Other Advanced RPS goals include safety, long-life, reliability, scalability, multi-mission capability, resistance to radiation, and minimal interference with the scientific payload. NASA has awarded ten contracts in the technology areas of Brayton, Stirling, Thermoelectric, and Thermophotovoltaic power conversion including five development contracts that deal with more mature technologies and five research contracts. The Advanced RPS Systems Assessment Team includes members from NASA GRC, JPL, DOE and Orbital Sciences whose function is to review the technologies being developed under the ten Radioisotope Power Conversion Technology contracts and assess their relevance to NASA's future missions. Presented is an overview of the ten radioisotope power conversion technology contracts and NASA's Advanced RPS Systems Assessment Team.

  3. WRF Model Evaluation for the Urban Heat Island Assessment under Varying Land Use/Land Cover and Reference Site Conditions

    NASA Astrophysics Data System (ADS)

    Bhati, S.

    2015-12-01

    Urban heat island effect has been assessed using Weather Research and Forecasting model (WRF v3.5) coupled with urban canopy model (UCM) focusing on air temperature and surface skin temperature in the sub-tropical urban Indian megacity of Delhi. The estimated heat island intensities for different land use/land cover (LULC) have been compared with those derived from in-situ and satellite observations. There is a significant improvement in model performance with inclusion of UCM both for meteorological parameters (T and RH) and the UHIs. Overall, RMSEs for near surface temperature improved from 1.63°C to 1.13°C for urban areas and from 2.89°C to 2.75°C for non-urban areas with inclusion of urban canopy model in WRF. Similarly, index of agreement and RMSEs for mean urban heat island intensities (UHI) improved from 0.77 to 0.88 and 1.91°C to 1.60°C respectively with WRF-UCM. Hit rate from the model simulated mean heat island intensities using WRF model are 72 % for urban areas and 58 % for non-urban areas such as green areas and riverside areas. The corresponding values improved in WRF-UCM with a hit rate of 75% for urban areas and 72 % for non-urban areas. In general, model is able to capture the magnitude of UHI well though it performs better during night than during the daytime. High UHI zones and top 3 hotspots are captured well by the model. The relevance of selecting a rural reference point for UHI estimation near the urban area is examined in the context of rapidly growing cities where nearby rural areas are transforming fast into built-up areas themselves and reference site may not be appropriate for future years. Both WRF and WRF-UCM simulated UHI shows satisfactory performance against benchmarks for the statistical measures with classical methodology using rural site as a reference point. Using an alternate methodology of considering a green area within the city having minimum temperature as a reference site worked satisfactorily only with WRF- UCM. In

  4. Pluto's Atmosphere and Surface Ices as Simulated by the PlutoWRF GCM

    NASA Astrophysics Data System (ADS)

    Toigo, A. D.; French, R. G.; Gierasch, P. J.; Richardson, M. I.; Guzewich, S.

    2013-12-01

    The PlutoWRF general circulation model (GCM) was built to examine the large-scale structure and dynamics of the atmosphere, the nature and propagation of waves within the atmosphere, and the exchanges of volatiles between the atmosphere and the surface. We seek to provide an comprehensive framework for the study of the increasingly rich observational data sets (including stellar occultations of the atmosphere) and to provide context and analysis of observations from the New Horizons mission. The PlutoWRF GCM is based on the planetary adaptation of the NCAR Weather Research and Forecasting (WRF) model. It is a compressible, nonhydrostatic model where we have added physics to treat radiative transfer following Zhu et al. (2013), a bulk nitrogen cycle including condensation of surface ice, and cycles of additional trace volatile species. Existing subsurface heat diffusion, surface layer exchange and boundary layer mixing schemes have been adapted to Pluto. Boundary conditions for initial ice distribution and surface pressure are taken from energy balance and non-GCM volatile transport models constrained by observations. In this work we focus on the performance of the PlutoWRF GCM compared with our linear tidal model (Toigo et al., 2010), and will examine the generation and propagation of large-scale gravity waves associated with diurnal sublimation and condensation.

  5. Coupled atmosphere-wildland fire modeling with WRF 3.3 and SFIRE 2011

    NASA Astrophysics Data System (ADS)

    Mandel, J.; Beezley, J. D.; Kochanski, A. K.

    2011-07-01

    We describe the physical model, numerical algorithms, and software structure of a model consisting of the Weather Research and Forecasting (WRF) model, coupled with the fire-spread model (SFIRE) module. In every time step, the fire model inputs the surface wind, which drives the fire, and outputs the heat flux from the fire into the atmosphere, which in turn influences the atmosphere. SFIRE is implemented by the level set method, which allows a submesh representation of the burning region and a flexible implementation of various kinds of ignition. The coupled model is capable of running on a cluster faster than real time even with fine resolution in dekameters. It is available as a part of the Open Wildland Fire Modeling (OpenWFM) environment at http://openwfm.org, which contains also utilities for visualization, diagnostics, and data processing, including an extended version of the WRF Preprocessing System (WPS). The SFIRE code with a subset of the features is distributed with WRF 3.3 as WRF-Fire.

  6. Investigation of variation of precipitation by the cloud seeding using WRF-CHEM model

    NASA Astrophysics Data System (ADS)

    Chae, S.; Lee, K.; Lee, C.; Ahn, K.; Choi, Y.

    2012-12-01

    Resent observational and numerical studies demonstrate a significant effect of aerosols on the amount of precipitation and its spatial distribution. Airborne cloud seeding experiments using the AgI particles have been carried out in Korea. The Weather Research Forecast model coupled with chemistry mechanism and aerosol modules (WRF-CHEM) is used to investigate the effects of the airborne cloud seeding on precipitation. The sensitivity tests (EXP 1, 2, and 3) of the WRF-CHEM were performed on the airborne cloud seeding experiments. EXP 1 is a control run from the original WRF model which has no aerosol effect. EXP 2 and EXP 3 are the WRF-CHEM simulations coupled with RADM2/MADE-SORGAM modules and CBMZ/MOSAIC modules, respectively. The AgI seeding was considered as an emission of primary PM2.5 in the simulations. The unspeciated primary PM2.5 are of 10000 μg/(m2s) at 0.5 km about the ground level to simulate the cloud seeding in both cases. The results of sensitivity experiments with the chemistry mechanism and aerosol schemes showed that for the six hours after the seeding, the accumulated amounts of precipitation increased about 14% for EXP 2 and 45% for EXP3, compared to EXP 1. Also, the simulations showed that the seeding brought initial precipitation time forward aerosol by 10 minutes.

  7. Facing up to the Challenges of Advancing Craniofacial Research

    PubMed Central

    Trainor, Paul A.; Richtsmeier, Joan T.

    2015-01-01

    Craniofacial anomalies are among the most common human birth defects and have considerable functional, aesthetic, and social consequences. The early developmental origin as well as the anatomical complexity of the head and face render these tissues prone to genetic and environmental insult. The establishment of craniofacial clinics offering comprehensive care for craniofacial patients at a single site together with international research networks focused on the origins and treatment of craniofacial disorders has led to tremendous advances in our understanding of the etiology and pathogenesis of congenital craniofacial anomalies. However, the genetic, environmental, and developmental sources of many craniofacial disorders remain unknown. To overcome this problem and further advance craniofacial research, we must recognize current challenges in the field and establish priority areas for study. We still need (i) a deeper understanding of variation during normal development and within the context of any disorder, (ii) improved genotyping and phenotyping and understanding of the impact of epigenetics, (iii) continued development of animal models and functional analyses of genes and variants, and (iv) integration of patient derived cells and tissues together with 3D printing and quantitative assessment of surgical outcomes for improved practice. Only with fundamental advances in each of these areas will we be able to meet the challenge of translating potential therapeutic and preventative approaches into clinical solutions and reduce the financial and emotional burden of craniofacial anomalies. PMID:25820983

  8. Simulated Interactive Research Experiments as Educational Tools for Advanced Science

    NASA Astrophysics Data System (ADS)

    Tomandl, Mathias; Mieling, Thomas; Losert-Valiente Kroon, Christiane M.; Hopf, Martin; Arndt, Markus

    2015-09-01

    Experimental research has become complex and thus a challenge to science education. Only very few students can typically be trained on advanced scientific equipment. It is therefore important to find new tools that allow all students to acquire laboratory skills individually and independent of where they are located. In a design-based research process we have investigated the feasibility of using a virtual laboratory as a photo-realistic and scientifically valid representation of advanced scientific infrastructure to teach modern experimental science, here, molecular quantum optics. We found a concept based on three educational principles that allows undergraduate students to become acquainted with procedures and concepts of a modern research field. We find a significant increase in student understanding using our Simulated Interactive Research Experiment (SiReX), by evaluating the learning outcomes with semi-structured interviews in a pre/post design. This suggests that this concept of an educational tool can be generalized to disseminate findings in other fields.

  9. Simulated Interactive Research Experiments as Educational Tools for Advanced Science.

    PubMed

    Tomandl, Mathias; Mieling, Thomas; Losert-Valiente Kroon, Christiane M; Hopf, Martin; Arndt, Markus

    2015-01-01

    Experimental research has become complex and thus a challenge to science education. Only very few students can typically be trained on advanced scientific equipment. It is therefore important to find new tools that allow all students to acquire laboratory skills individually and independent of where they are located. In a design-based research process we have investigated the feasibility of using a virtual laboratory as a photo-realistic and scientifically valid representation of advanced scientific infrastructure to teach modern experimental science, here, molecular quantum optics. We found a concept based on three educational principles that allows undergraduate students to become acquainted with procedures and concepts of a modern research field. We find a significant increase in student understanding using our Simulated Interactive Research Experiment (SiReX), by evaluating the learning outcomes with semi-structured interviews in a pre/post design. This suggests that this concept of an educational tool can be generalized to disseminate findings in other fields. PMID:26370627

  10. Simulated Interactive Research Experiments as Educational Tools for Advanced Science

    PubMed Central

    Tomandl, Mathias; Mieling, Thomas; Losert-Valiente Kroon, Christiane M.; Hopf, Martin; Arndt, Markus

    2015-01-01

    Experimental research has become complex and thus a challenge to science education. Only very few students can typically be trained on advanced scientific equipment. It is therefore important to find new tools that allow all students to acquire laboratory skills individually and independent of where they are located. In a design-based research process we have investigated the feasibility of using a virtual laboratory as a photo-realistic and scientifically valid representation of advanced scientific infrastructure to teach modern experimental science, here, molecular quantum optics. We found a concept based on three educational principles that allows undergraduate students to become acquainted with procedures and concepts of a modern research field. We find a significant increase in student understanding using our Simulated Interactive Research Experiment (SiReX), by evaluating the learning outcomes with semi-structured interviews in a pre/post design. This suggests that this concept of an educational tool can be generalized to disseminate findings in other fields. PMID:26370627

  11. Evaluating regional cloud-permitting simulations of the WRF model for the Tropical Warm Pool International Cloud Experiment (TWP-ICE, Darwin 2006)

    SciTech Connect

    Wang, Yi; Long, Charles N.; Leung, Lai-Yung R.; Dudhia, Jimy; McFarlane, Sally A.; Mather, James H.; Ghan, Steven J.; Liu, Xiaodong

    2009-11-05

    Data from the Tropical Warm Pool I5 nternational Cloud Experiment (TWPICE) were used to evaluate two suites of high-resolution (4-7 km, convection-resolving) simulations of the Advanced Research Weather Research and Forecasting (WRF) model with a focus on the performance of different cloud microphysics (MP) schemes. The major difference between these two suites of simulations is with and without the reinitializing process. Whenreinitialized every three days, the four cloud MP schemes evaluated can capture the general profiles of cloud fraction, temperature, water vapor, winds, and cloud liquid and ice water content (LWC and IWC, respectively). However, compared with surface measurements of radiative and moisture fluxes and satellite retrieval of top-of-the-atmosphere (TOA) fluxes, disagreements do exist. Large discrepancies with observed LWC and IWC and derived radiative heating profiles can be attributed to both the limitations of the cloud property retrievals and model performance. The simulated precipitation also shows a wide range of uncertainty as compared with observations, which could be caused by the cloud MP schemes, complexity of land-sea configuration, and the high temporal and spatial variability. In general, our result indicates the importance of large-scale initial and lateral boundary conditions in re-producing basic features of cloudiness and its vertical structures. Based on our case study, we find overall the six-hydrometer single-moment MP scheme(WSM6) [Hong and Lim, 2006] in the WRF model si25 mulates the best agree- ment with the TWPICE observational analysis.

  12. An Improved WRF for Urban-Scale and Complex-Terrain Applications

    SciTech Connect

    Lundquist, J K; Chow, F K; Mirocha, J D; Lundquist, K A

    2007-09-04

    Simulations of atmospheric flow through urban areas must account for a wide range of physical phenomena including both mesoscale and urban processes. Numerical weather prediction models, such as the Weather and Research Forecasting model (WRF), excel at predicting synoptic and mesoscale phenomena. With grid spacings of less than 1 km (as is required for complex heterogeneous urban areas), however, the limits of WRF's terrain capabilities and subfilter scale (SFS) turbulence parameterizations are exposed. Observations of turbulence in urban areas frequently illustrate a local imbalance of turbulent kinetic energy (TKE), which cannot be captured by current turbulence models. Furthermore, WRF's terrain-following coordinate system is inappropriate for high-resolution simulations that include buildings. To address these issues, we are implementing significant modifications to the ARW core of the Weather Research and Forecasting model. First, we are implementing an improved turbulence model, the Dynamic Reconstruction Model (DRM), following Chow et al. (2005). Second, we are modifying WRF's terrain-following coordinate system by implementing an immersed boundary method (IBM) approach to account for the effects of urban geometries and complex terrain. Companion papers detailing the improvements enabled by the DRM and the IBM approaches are also presented (by Mirocha et al., paper 13.1, and K.A. Lundquist et al., paper 11.1, respectively). This overview of the LLNL-UC Berkeley collaboration presents the motivation for this work and some highlights of our progress to date. After implementing both DRM and an IBM for buildings in WRF, we will be able to seamlessly integrate mesoscale synoptic boundary conditions with building-scale urban simulations using grid nesting and lateral boundary forcing. This multi-scale integration will enable high-resolution simulations of flow and dispersion in complex geometries such as urban areas, as well as new simulation capabilities in

  13. Impact of Model Resolution and Snow Cover Modification on the Performance of Weather Forecasting and Research (WRF) Models of Winter Conditions that Contribute to Ozone Pollution in the Uintah Basin, Eastern Utah, Winter 2013. Trang T. Tran, Marc Mansfield and Seth Lyman Bingham Research Center, Utah State University

    NASA Astrophysics Data System (ADS)

    Tran, T. T.; Mansfield, M. L.; Lyman, S.

    2013-12-01

    The Uintah Basin of Eastern Utah, USA, has experienced winter ozone pollution events with ozone concentrations exceeding the National Ambient Air Quality Standard of 75 ppb. With a total of four winter seasons of ozone sampling, winter 2013 is the worst on record for ozone pollution in the basin. Emissions of volatile organic compounds (VOCs) and nitrogen oxides (NOx) from oil and gas industries and other activities provide the precursors for ozone formation. The chemical mechanism of ozone formation is non-linear and complicated depending on the availability of VOCs and NOx. Moreover, meteorological conditions also play an important role in triggering ozone pollution. In the Uintah Basin, high albedo due to snow cover, a 'bowl-shaped' terrain, and strong inversions that trap precursors within the boundary layer are important factors contributing to ozone pollution. However, these local meteorological phenomena have been misrepresented by recent numerical modeling studies, probably due to misrepresenting the snow cover and complex terrain of the basin. In this study, Weather Research and Forecasting (WRF) simulations are performed on a model domain covering the entire Uintah Basin for winter 2013 (Dec 2012 - Mar 2013) to test the impacts of several grid resolutions (e.g., 4000, 1300 and 800m) and snow cover modification on performance of models of the local weather conditions of the basin. These sensitivity tests help to determine the best model configurations to produce appropriate meteorological input for air-quality simulations.

  14. Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research

    SciTech Connect

    John Jackson; Todd Allen; Frances Marshall; Jim Cole

    2013-03-01

    The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials

  15. EarthCube Activities: Community Engagement Advancing Geoscience Research

    NASA Astrophysics Data System (ADS)

    Kinkade, D.

    2015-12-01

    Our ability to advance scientific research in order to better understand complex Earth systems, address emerging geoscience problems, and meet societal challenges is increasingly dependent upon the concept of Open Science and Data. Although these terms are relatively new to the world of research, Open Science and Data in this context may be described as transparency in the scientific process. This includes the discoverability, public accessibility and reusability of scientific data, as well as accessibility and transparency of scientific communication (www.openscience.org). Scientists and the US government alike are realizing the critical need for easy discovery and access to multidisciplinary data to advance research in the geosciences. The NSF-supported EarthCube project was created to meet this need. EarthCube is developing a community-driven common cyberinfrastructure for the purpose of accessing, integrating, analyzing, sharing and visualizing all forms of data and related resources through advanced technological and computational capabilities. Engaging the geoscience community in EarthCube's development is crucial to its success, and EarthCube is providing several opportunities for geoscience involvement. This presentation will provide an overview of the activities EarthCube is employing to entrain the community in the development process, from governance development and strategic planning, to technical needs gathering. Particular focus will be given to the collection of science-driven use cases as a means of capturing scientific and technical requirements. Such activities inform the development of key technical and computational components that collectively will form a cyberinfrastructure to meet the research needs of the geoscience community.

  16. Advances in Inner Magnetosphere Passive and Active Wave Research

    NASA Technical Reports Server (NTRS)

    Green, James L.; Fung, Shing F.

    2004-01-01

    This review identifies a number of the principal research advancements that have occurred over the last five years in the study of electromagnetic (EM) waves in the Earth's inner magnetosphere. The observations used in this study are from the plasma wave instruments and radio sounders on Cluster, IMAGE, Geotail, Wind, Polar, Interball, and others. The data from passive plasma wave instruments have led to a number of advances such as: determining the origin and importance of whistler mode waves in the plasmasphere, discovery of the source of kilometric continuum radiation, mapping AKR source regions with "pinpoint" accuracy, and correlating the AKR source location with dipole tilt angle. Active magnetospheric wave experiments have shown that long range ducted and direct echoes can be used to obtain the density distribution of electrons in the polar cap and along plasmaspheric field lines, providing key information on plasmaspheric filling rates and polar cap outflows.

  17. Los Alamos NEP research in advanced plasma thrusters

    NASA Technical Reports Server (NTRS)

    Schoenberg, Kurt; Gerwin, Richard

    1991-01-01

    Research was initiated in advanced plasma thrusters that capitalizes on lab capabilities in plasma science and technology. The goal of the program was to examine the scaling issues of magnetoplasmadynamic (MPD) thruster performance in support of NASA's MPD thruster development program. The objective was to address multi-megawatt, large scale, quasi-steady state MPD thruster performance. Results to date include a new quasi-steady state operating regime which was obtained at space exploration initiative relevant power levels, that enables direct coaxial gun-MPD comparisons of thruster physics and performance. The radiative losses are neglible. Operation with an applied axial magnetic field shows the same operational stability and exhaust plume uniformity benefits seen in MPD thrusters. Observed gun impedance is in close agreement with the magnetic Bernoulli model predictions. Spatial and temporal measurements of magnetic field, electric field, plasma density, electron temperature, and ion/neutral energy distribution are underway. Model applications to advanced mission logistics are also underway.

  18. Evaluation of WRF-Urban Canopy Model over Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Byon, J.; Seo, B.; Choi, Y.

    2008-12-01

    Numerical models with a fine grid can be a useful tool for investigation of urban forecast which provide input to air dispersion and pollution model. Simulation for urban forecast may be conducted using CFD model or mesoscale model. A small domain of the CFD model limits for the study of larger scale forcing to the urban environment. Improvement of computational environment and physics in mesoscale model allows urban scale prediction with a larger domain using mososcale model. It is implemented the parameterization of urban effect in the WRF mesoscale model which is developed in NCAR. NCAR coupled an urban canopy model (UCM) with Noah land surface model in the WRF model to realistically represent the urban by high resolution of land-use and building information. This study is focus on evaluation of WRF-UCM over the urban region of Seoul, South Korea during July 1-10 and October 6-12, 2007. WRF-UCM is conducted with 1km resolution and a 10km WRF model result which is forecasted at Korea Meteorological Administration numerical weather prediction center employed as initial and boundary condition. The urban land-use is remapped using data from Korean Ministry of Environment(KME). The KME land-use data is retrieved from Landsat satellite which has a 30-m resolution. The air temperature of WRF model is lower than observation, while wind speed increase in the model forecast. The temperature from the WRF-UCM is higher than that from the standard WRF over Seoul. The coupled WRF-UCM represents increase of urban heat which is caused from urban effects such as anthropogenic heat and building, etc. The performance of the WRF-UCM results over Seoul, South Korea would be presented in the conference. The WRF-UCM results will contribute to the study of urban heat and air flow in the city.

  19. Performance of WRF-ARW model in real-time prediction of Bay of Bengal cyclone `Phailin'

    NASA Astrophysics Data System (ADS)

    Mandal, M.; Singh, K. S.; Balaji, M.; Mohapatra, M.

    2016-05-01

    This study examines the performance of the Advanced Research core of Weather Research and Forecasting (ARW-WRF) model in prediction of the Bay of Bengal cyclone `Phailin'. The two-way interactive double-nested model at 27 and 9-km resolutions customized at Indian Institute of Technology Kharagpur (IITKGP) is used to predict the storm on real-time basis and five predictions are made with five different initial conditions. The initial and boundary conditions for the model are derived from the Global Forecasting System (GFS) analysis and forecast respectively. The track of storm is well predicted in all the five forecasts. In particular, the forecast with less initial positional error led to more accurate track and landfall prediction. It is observed that the predicted peak intensity and translation speed of the storm depends strongly on initial intensity error, vertical wind shear and vertical distribution of maximum potential vorticity. The trend of intensification and dissipation of the storm is well predicted by the model in terms of central sea level pressure (CSLP). The intensity in terms of maximum surface wind (MSW) is under-predicted by the model and it is suggested that the MSW estimated from predicted pressure drop may be used as prediction guideline. The storm intensified rapidly during its passage over the high Tropical Cyclone Heat Potential zone and is reasonably well predicted by the model. Though the magnitude of the precipitation is not well predicted, distribution of precipitation is fairly well predicted by the model. The track and intensity of the storm predicted by the customized WRF-ARW is better than that of other NWP models. The landfall (time and position) is also better predicted by the model compared to other NWP models if initialized at cyclonic storm stage. The results indicate that the customized model have good potential for real-time prediction of Bay of Bengal cyclones and encourage further investigation with larger number of cyclones.

  20. Impact of Urbanization on Spatial Variability of Rainfall-A case study of Mumbai city with WRF Model

    NASA Astrophysics Data System (ADS)

    Mathew, M.; Paul, S.; Devanand, A.; Ghosh, S.

    2015-12-01

    Urban precipitation enhancement has been identified over many cities in India by previous studies conducted. Anthropogenic effects such as change in land cover from hilly forest areas to flat topography with solid concrete infrastructures has certain effect on the local weather, the same way the greenhouse gas has on climate change. Urbanization could alter the large scale forcings to such an extent that it may bring about temporal and spatial changes in the urban weather. The present study investigate the physical processes involved in urban forcings, such as the effect of sudden increase in wind velocity travelling through the channel space in between the dense array of buildings, which give rise to turbulence and air mass instability in urban boundary layer and in return alters the rainfall distribution as well as rainfall initiation. A numerical model study is conducted over Mumbai metropolitan city which lies on the west coast of India, to assess the effect of urban morphology on the increase in number of extreme rainfall events in specific locations. An attempt has been made to simulate twenty extreme rainfall events that occurred over the summer monsoon period of the year 2014 using high resolution WRF-ARW (Weather Research and Forecasting-Advanced Research WRF) model to assess the urban land cover mechanisms that influences precipitation variability over this spatially varying urbanized region. The result is tested against simulations with altered land use. The correlation of precipitation with spatial variability of land use is found using a detailed urban land use classification. The initial and boundary conditions for running the model were obtained from the global model ECMWF(European Centre for Medium Range Weather Forecast) reanalysis data having a horizontal resolution of 0.75 °x 0.75°. The high resolution simulations show significant spatial variability in the accumulated rainfall, within a few kilometers itself. Understanding the spatial

  1. Advanced NDE research in electromagnetic, thermal, and coherent optics

    NASA Technical Reports Server (NTRS)

    Skinner, S. Ballou

    1992-01-01

    A new inspection technology called magneto-optic/eddy current imaging was investigated. The magneto-optic imager makes readily visible irregularities and inconsistencies in airframe components. Other research observed in electromagnetics included (1) disbond detection via resonant modal analysis; (2) AC magnetic field frequency dependence of magnetoacoustic emission; and (3) multi-view magneto-optic imaging. Research observed in the thermal group included (1) thermographic detection and characterization of corrosion in aircraft aluminum; (2) a multipurpose infrared imaging system for thermoelastic stress detection; (3) thermal diffusivity imaging of stress induced damage in composites; and (4) detection and measurement of ice formation on the space shuttle main fuel tank. Research observed in the optics group included advancements in optical nondestructive evaluation (NDE).

  2. Assessment of Research Needs for Advanced Fuel Cells

    SciTech Connect

    Penner, S.S.

    1985-11-01

    The DOE Advanced Fuel Cell Working Group (AFCWG) was formed and asked to perform a scientific evaluation of the current status of fuel cells, with emphasis on identification of long-range research that may have a significant impact on the practical utilization of fuel cells in a variety of applications. The AFCWG held six meetings at locations throughout the country where fuel cell research and development are in progress, for presentations by experts on the status of fuel cell research and development efforts, as well as for inputs on research needs. Subsequent discussions by the AFCWG have resulted in the identification of priority research areas that should be explored over the long term in order to advance the design and performance of fuel cells of all types. Surveys describing the salient features of individual fuel cell types are presented in Chapters 2 to 6 and include elaborations of long-term research needs relating to the expeditious introduction of improved fuel cells. The Introduction and the Summary (Chapter 1) were prepared by AFCWG. They were repeatedly revised in response to comments and criticism. The present version represents the closest approach to a consensus that we were able to reach, which should not be interpreted to mean that each member of AFCWG endorses every statement and every unexpressed deletion. The Introduction and Summary always represent a majority view and, occasionally, a unanimous judgment. Chapters 2 to 6 provide background information and carry the names of identified authors. The identified authors of Chapters 2 to 6, rather than AFCWG as a whole, bear full responsibility for the scientific and technical contents of these chapters.

  3. Comparison of a coupled atmosphere-ocean (WRF-ROMS) model with an atmosphere only model (WRF) of two North Atlantic hurricanes

    NASA Astrophysics Data System (ADS)

    Mooney, P.; Mulligan, F. J.; Bruyere, C. L.; Bonnlander, B.

    2013-12-01

    We investigate the ability of a coupled regional atmosphere-ocean modeling system to simulate two extreme events in the North Atlantic. In this study we use the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST; Warner et al., 2010) modeling system with only the atmosphere and ocean models activated. COAWST couples the atmosphere model (Weather Research and Forecasting model; WRF) to the ocean model (Regional Ocean Modeling System; ROMS) with the Model Coupling Toolkit. Results from the coupled system are compared with atmosphere only simulations of North Atlantic storms to evaluate the performance of the coupled modeling system. Two extreme events (Hurricane Katia and Hurricane Irene) were chosen to assess the level of improvement (or otherwise) arising from coupling WRF with ROMS. These two hurricanes involve different dynamics and present different challenges to the modeling system. Modelled storm tracks, storm intensities and sea surface temperatures are compared with observations to appraise the coupled modeling system's simulation of these two extreme events.

  4. Diagnostic testing and evaluation of the community WRF-Hydro Modeling System for national streamflow prediction application

    NASA Astrophysics Data System (ADS)

    Rafieei Nasab, A.; Gochis, D.; Dugger, A. L.; Pan, L.; McCreight, J. L.; Yu, W.; Zhang, Y.; Yates, D. N.; Somos-Valenzuela, M. A.; Salas, F. R.; Maidment, D. R.

    2015-12-01

    A fully-distributed WRF-Hydro modeling system developed at National Center of Atmospheric Research (NCAR) will serve the initial operational nationwide streamflow forecasting needs of the National Water Center (NWC). This paper presents a multi-faceted evaluation of the WRF-hydro modeling system in preparation for operational national streamflow prediction. The testing period encompasses the 2015 warm season which included the National Flood Interoperability Experiment (NFIE) where WRF-Hydro and the RAPID channel routing model were driven by the Multi-Radar Multi-Sensor (MRMS) estimates as the real-time precipitation estimate product and the High Resolution Rapid Refresh (HRRR) for the short term forecast. Here, we validate the MRMS estimates and HRRR precipitation forecasts at national scale using daily precipitation observations from the Global Historical Climatology Network (GHCN). Because WRF-Hydro has several physics options such as surface overland flow, saturated subsurface flow, channel routing as well as conceptual deep groundwater base flow also conducted additional simulations to evaluate WRF-Hydro performance under different processes configurations. Streamflow verification data for model simulations and predictions was completed for a subset of GAGES-II reference basins. Multi-temporal and spatial scale verification is performed in order to test the robustness and skill improvement in WRF-Hydro streamflow simulations under different configuration over a wide range of basins sizes and from short-term (hourly) to longer-term (monthly) flow simulations. Evaluation will be also carried out based on various geographic regions to relate the skill improvement to dominant controls on flow based on the actual physical and climatic properties of the basins. The goal is to inform WRF-Hydro model configuration for the initial operating capabilities (IOC) project and target processes and parameter estimates for improvement.

  5. Evaluation of WRF microphysics and cumulus parameterization schemes in simulating a heavy rainfall event over Yangtze River delta

    NASA Astrophysics Data System (ADS)

    Kan, Yu; Liu, Chaoshun; Liu, Yanan; Zhou, Cong

    2015-09-01

    The Weather Research and Forecast Model (WRF) version 3.5 has been used in this study to simulate a heavy rainfall event during the Meiyu season that occurred between 1 and 2 July 2014 over the Yangtze River valley (YRV) in China. The WRF model is driven by the National Centers for Environmental Predictions (NCEP) Final (FNL) global tropospheric analysis data, and eight WRF nested experiments using four different microphysics (MP) schemes and two cumulus parameterizations (CP) are conducted to evaluate the effects of these microphysics and cumulus schemes on heavy rainfall predictions over YRV region. The four MPs selected in this study are Lin et al., WRF Single-Moment 3-class scheme (WSM3), WRF Single-Moment 5-class scheme (WSM5) and WRF Single-Moment 6-class scheme (WSM6), and the two CPs are Kain-Fristch (KF) and Betts-Miller-Janjic (BMJ) schemes. Sensitivity studies showed that all MPs coupling with KF and BMJ CP schemes can well capture the major rain belt from the northeast to southwest with three rainfall centers, but largely overestimate the rainfall near the border between Anhui and Hubei provinces along with the Yellow Sea shore, which produce an opposite trend compared to the observations. Large discrepancies are also presented in WRF simulations of heavy rainfall centers regarding their locations and magnitudes. All MPs coupling with KF CP scheme produced the rainfall areas shifting towards east compared to the observations, while all MPs with BMJ CP scheme tend to better predict the rainfall patterns with slightly more fake precipitation centers. Among all the experiments, the BMJ cumulus scheme has superiority in simulating the Meiyu rainfall over the KF scheme, and the WSM5-BMJ combination shows the best predictive skills.

  6. Recent trends and advances in berry health benefits research.

    PubMed

    Seeram, Navindra P

    2010-04-14

    Recent advances have been made in our scientific understanding of how berries promote human health and prevent chronic illnesses such as some cancers, heart disease, and neurodegenerative diseases. Cancer is rapidly overtaking heart disease as the number one killer disease in developed countries, and this phenomenon is coupled with a growing aging population and concomitant age-related diseases. Therefore, it is not surprising that consumers are turning toward foods with medicinal properties as promising dietary interventions for disease prevention and health maintenance. Among fruits, berries of all colors have emerged as champions with substantial research data supporting their abilities to positively affect multiple disease states. Apart from several essential dietary components found in berries, such as vitamins, minerals, and fiber, berries also contain numerous bioactives that provide health benefits that extend beyond basic nutrition. Berry bioactives encompass a wide diversity of phytochemicals (phytonutrients) ranging from fat-soluble/lipophilic to water-soluble/hydrophilic compounds. Recent research from laboratories across the globe has provided useful insights into the biological effects and underlying mechanisms of actions resulting from eating berries. The cluster of papers included here represents a cross section of topics discussed at the 2009 International Berry Health Benefits Symposium. Together, these papers provide valuable insight into recent research trends and advances made into evaluating the various health benefits that may result from the consumption of berries and their derived products. PMID:20020687

  7. Latest advances and research in stroke treatment 2007.

    PubMed

    Montaner, Joan

    2007-04-01

    The 32nd International Stroke Conference, held February 7-9, 2007, in San Francisco, California, U.S.A., was an excellent forum to bring together advances in stroke treatment. Very challenging new steps in the process of developing drugs for stroke from basic science to clinical trials, such as testing the in vitro efficacy in human tissue of a candidate drug, or its in vivo PET distribution in ischemic brain, were proposed. This report focuses on new therapeutic stroke targets addressed in the meeting, together with the trends in neurovascular research presented at the oral and poster sessions. Some of the results obtained by researchers in several stroke fields such as thrombolysis, new drugs or devices and nonpharmacological approaches for stroke treatment tested in humans will also be covered. From the basic research, promising strategies found in new drugs and targets, and endothelial progenitor cells, cellular therapies and angiogenesis will be discussed. Also covered in this review are a selection of advances introduced in secondary prevention and in cerebral hemorrhage. PMID:17520097

  8. Twelfth International Symposium on Recent Advances in Environmental Health Research

    PubMed Central

    Tchounwou, Paul B.

    2016-01-01

    During the past century, environmental hazards have become a major concern, not only to public health professionals, but also to the society at large because of their tremendous health, socio-cultural and economic impacts. Various anthropogenic or natural factors have been implicated in the alteration of ecosystem integrity, as well as in the development of a wide variety of acute and/or chronic diseases in humans. It has also been demonstrated that many environmental agents, acting either independently or in combination with other toxins, may induce a wide range of adverse health outcomes. Understanding the role played by the environment in the etiology of human diseases is critical to designing cost-effective control/prevention measures. This special issue of International Journal of Environmental Research and Public Health includes the proceedings of the Twelfth International Symposium on Recent Advances in Environmental Health Research. The Symposium provided an excellent opportunity to discuss the scientific advances in biomedical, environmental, and public health research that addresses global environmental health issues. PMID:27153079

  9. Twelfth International Symposium on Recent Advances in Environmental Health Research.

    PubMed

    Tchounwou, Paul B

    2016-01-01

    During the past century, environmental hazards have become a major concern, not only to public health professionals, but also to the society at large because of their tremendous health, socio-cultural and economic impacts. Various anthropogenic or natural factors have been implicated in the alteration of ecosystem integrity, as well as in the development of a wide variety of acute and/or chronic diseases in humans. It has also been demonstrated that many environmental agents, acting either independently or in combination with other toxins, may induce a wide range of adverse health outcomes. Understanding the role played by the environment in the etiology of human diseases is critical to designing cost-effective control/prevention measures. This special issue of International Journal of Environmental Research and Public Health includes the proceedings of the Twelfth International Symposium on Recent Advances in Environmental Health Research. The Symposium provided an excellent opportunity to discuss the scientific advances in biomedical, environmental, and public health research that addresses global environmental health issues. PMID:27153079

  10. Advancing the field of health systems research synthesis.

    PubMed

    Langlois, Etienne V; Ranson, Michael K; Bärnighausen, Till; Bosch-Capblanch, Xavier; Daniels, Karen; El-Jardali, Fadi; Ghaffar, Abdul; Grimshaw, Jeremy; Haines, Andy; Lavis, John N; Lewin, Simon; Meng, Qingyue; Oliver, Sandy; Pantoja, Tomás; Straus, Sharon; Shemilt, Ian; Tovey, David; Tugwell, Peter; Waddington, Hugh; Wilson, Mark; Yuan, Beibei; Røttingen, John-Arne

    2015-01-01

    Those planning, managing and working in health systems worldwide routinely need to make decisions regarding strategies to improve health care and promote equity. Systematic reviews of different kinds can be of great help to these decision-makers, providing actionable evidence at every step in the decision-making process. Although there is growing recognition of the importance of systematic reviews to inform both policy decisions and produce guidance for health systems, a number of important methodological and evidence uptake challenges remain and better coordination of existing initiatives is needed. The Alliance for Health Policy and Systems Research, housed within the World Health Organization, convened an Advisory Group on Health Systems Research (HSR) Synthesis to bring together different stakeholders interested in HSR synthesis and its use in decision-making processes. We describe the rationale of the Advisory Group and the six areas of its work and reflects on its role in advancing the field of HSR synthesis. We argue in favour of greater cross-institutional collaborations, as well as capacity strengthening in low- and middle-income countries, to advance the science and practice of health systems research synthesis. We advocate for the integration of quasi-experimental study designs in reviews of effectiveness of health systems intervention and reforms. The Advisory Group also recommends adopting priority-setting approaches for HSR synthesis and increasing the use of findings from systematic reviews in health policy and decision-making. PMID:26159806

  11. Oil shale, tar sand, coal research, advanced exploratory process technology jointly sponsored research

    SciTech Connect

    Not Available

    1992-01-01

    Accomplishments for the quarter are presented for the following areas of research: oil shale, tar sand, coal, advanced exploratory process technology, and jointly sponsored research. Oil shale research includes; oil shale process studies, environmental base studies for oil shale, and miscellaneous basic concept studies. Tar sand research covers process development. Coal research includes; underground coal gasification, coal combustion, integrated coal processing concepts, and solid waste management. Advanced exploratory process technology includes; advanced process concepts, advanced mitigation concepts, and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO[sub 2] HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesa Verde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced recovery techniques; and menu driven access to the WDEQ Hydrologic Data Management Systems.

  12. Evaluation of high-resolution WRF climate simulations for hydrological variables over Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    García-Valdecasas-Ojeda, Matilde; De Franciscis, Sebastiano; Raquel Gámiz-Fortis, Sonia; Castro-Díez, Yolanda; Esteban-Parra, María Jesus

    2016-04-01

    Meteorological inputs play an essential role in predicting the potential effects of climate change on water resources. Consequently, this study is focused on evaluating the skill of Weather Research and Forecasting (WRF) model to simulate present climate characteristics in term of different variables used for hydrological modeling. For the 35-yr period (1980-2014), high-resolution simulations have been performed with a spatial resolution of 0.088° over a domain encompassing the Iberian Peninsula, and nested in the coarser EURO-CORDEX domain (0.44° resolution). WRF model was driven by the global bias-corrected climate model output data from version 1 of NCAR's Community Earth System Model (CESM1). In addition, other simulation forced by the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Reanalysis (ERA-Interim) as "perfect boundary conditions" was also run. For validation purposes, WRF outputs were compared for Spain and Portugal independently, using two observational data sources: the Spain02 version 4 daily precipitation and (maximum and minimum) temperature gridded datasets, and the PT02 daily gridded precipitation data. The study was carried out at different time scales in order to evaluate the model ability to capture long-term mean values (from annual to monthly) and high-order statistics (extreme events) by directly comparing grid-points. Furthermore, the observational gridded data were grouped using a multistep regionalization to facilitate the comparison in term of several parameters such as the monthly annual cycle or the percentiles of daily values. The main result is that WRF provides useful information at regional scale, with significant improvement in complex terrain areas such as Iberian Peninsula. Although considerable errors are still observed, the model is able to capture the main precipitation and temperature patterns. The major benefits of using WRF are related to the better representation of extreme events that are an

  13. Assessment of a wind map over the Korean Peninsula based on WRF-FDDA

    NASA Astrophysics Data System (ADS)

    Byon, J.; Choi, Y.; Seo, B.

    2010-12-01

    Wind map with a high resolution needs to encourage wind energy industry and assessment of wind resource. Wind speed above 50m above ground level (AGL) is important for wind energy, but it is difficult for us to obtain observed wind speed information above 50m AGL. Therefore, it is necessary to use mesoscale or microscale numerical model and we establish wind map using numerical model over the Korean Peninsula. The model which is used in this study is Weather Research and Forecasting (WRF) that is developed in NCAR. A high resolution topography with a 100-m resolution and a land-use data which has a 30-m resolution are implemented over the Korean environment for the improvement of surface layer wind forecast in WRF. WRF-FDDA (Four-Dimensional Data Assimilation) has conducted with a 1 km resolution which is forecasted using NCEP FNL data employed as initial and boundary condition. Surface and upper observations are ingested in WRF-FDDA to improve initial condition by regional observation. The WRF model has run for one year for the wind map over the South Korea. The running periods that is named as typical meteorological year (TMY) is determined by statistical method. The TMY represents mean atmospheric characteristics from 1998 to 2009. Strong wind occurs in eastern, southern coastal region, and Jeju island of Korea. Wind in the Korean Peninsula blows from northwest during most of the season, but from southeast during summer. High occurrence rate of main wind direction is shown in mountainous region of inland and coastal region. The results of wind map study help indentify locations of with highest wind energy potential in the Korean Peninsula. The performance of the TMY results over the South Korea is validated with surface and radiosonde observation at 10m and 80m above ground level. Root-mean-square-error (RMSE) shows about 2-3 m/s and 3-4 m/s for wind speed at 10m and 80m, respectively and mean absolute error is about 30-50 degree for wind direction. Validation

  14. Comparisons of Anvil Cirrus Spatial Characteristics between Airborne Observations in DC3 Campaign and WRF Simulations

    NASA Astrophysics Data System (ADS)

    D'Alessandro, J.; Diao, M.; Chen, M.

    2015-12-01

    John D'Alessandro1, Minghui Diao1, Ming Chen2, George Bryan2, Hugh Morrison21. Department of Meteorology and Climate Science, San Jose State University2. Mesoscale & Microscale Meteorology Division, National Center for Atmospheric Research, Boulder, CO, 80301 Ice crystal formation requires the prerequisite condition of ice supersaturation, i.e., relative humidity with respect to ice (RHi) greater than 100%. The formation and evolution of ice supersaturated regions (ISSRs) has large impact on the subsequent formation of ice clouds. To examine the characteristics of simulated ice supersaturated regions at various model spatial resolutions, case studies between airborne in-situ measurements in the NSF Deep Convective, Clouds and Chemistry (DC3) campaign (May - June 2012) and WRF simulations are conducted in this work. Recent studies using ~200 m in-situ observations showed that ice supersaturated regions are mostly around 1 km in horizontal scale (Diao et al. 2014). Yet it is still unclear if such observed characteristics can be represented by WRF simulations at various spatial resolutions. In this work, we compare the WRF simulated anvil cirrus spatial characteristics with those observed in the DC3 campaign over the southern great plains in US. The WRF model is run at 1 km and 3 km horizontal grid spacing with a recent update of Thompson microphysics scheme. Our comparisons focus on the spatial characteristics of ISSRs and cirrus clouds, including the distributions of their horizontal scales, the maximum relative humidity with respect to ice (RHi) and the relationship between RHi and temperature. Our previous work on the NCAR CM1 cloud-resolving model shows that the higher resolution runs (i.e., 250m and 1km) generally have better agreement with observations than the coarser resolution (4km) runs. We will examine if similar trend exists for WRF simulations in deep convection cases. In addition, we will compare the simulation results between WRF and CM1, particularly

  15. Impact of new instrumentation on advanced turbine research

    NASA Technical Reports Server (NTRS)

    Graham, R. W.

    1980-01-01

    A description is presented of an orderly test program that progresses from the simplest stationary geometry to the more complex, three dimensional, rotating turbine stage. The instrumentation requirements for this evolution of testing are described. The heat transfer instrumentation is emphasized. Recent progress made in devising new measurement techniques has greatly improved the development and confirmation of more accurate analytical methods for the prediction of turbine performance and heat transfer. However, there remain challenging requirements for novel measurement techniques that could advance the future research to be done in rotating blade rows of turbomachines.

  16. Oklahoma State University proposed Advanced Technology Research Center. Environmental Assessment

    SciTech Connect

    1995-06-01

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA) evaluating the construction and equipping of the proposed Advanced Technology Research Center (ATRC) at Oklahoma State University (OSU) in Stillwater, Oklahoma. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement is not required.

  17. Advanced computational research in materials processing for design and manufacturing

    SciTech Connect

    Zacharia, T.

    1994-12-31

    The computational requirements for design and manufacture of automotive components have seen dramatic increases for producing automobiles with three times the mileage. Automotive component design systems are becoming increasingly reliant on structural analysis requiring both overall larger analysis and more complex analyses, more three-dimensional analyses, larger model sizes, and routine consideration of transient and non-linear effects. Such analyses must be performed rapidly to minimize delays in the design and development process, which drives the need for parallel computing. This paper briefly describes advanced computational research in superplastic forming and automotive crash worthiness.

  18. Advanced Stirling Technology Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Wong, Wayne A.

    2007-01-01

    The NASA Glenn Research Center has been developing advanced energy-conversion technologies for use with both radioisotope power systems and fission surface power systems for many decades. Under NASA's Science Mission Directorate, Planetary Science Theme, Technology Program, Glenn is developing the next generation of advanced Stirling convertors (ASCs) for use in the Department of Energy/Lockheed Martin Advanced Stirling Radioisotope Generator (ASRG). The next-generation power-conversion technologies require high efficiency and high specific power (watts electric per kilogram) to meet future mission requirements to use less of the Department of Energy's plutonium-fueled general-purpose heat source modules and reduce system mass. Important goals include long-life (greater than 14-yr) reliability and scalability so that these systems can be considered for a variety of future applications and missions including outer-planet missions and continual operation on the surface of Mars. This paper provides an update of the history and status of the ASC being developed for Glenn by Sunpower Inc. of Athens, Ohio.

  19. Extreme precipitation in WRF during the Newcastle East Coast Low of 2007

    NASA Astrophysics Data System (ADS)

    Gilmore, James B.; Evans, Jason P.; Sherwood, Steven C.; Ekström, Marie; Ji, Fei

    2015-07-01

    In the context of regional downscaling, we study the representation of extreme precipitation in the Weather Research and Forecasting (WRF) model, focusing on a major event that occurred on the 8th of June 2007 along the coast of eastern Australia (abbreviated "Newy"). This was one of the strongest extra-tropical low-pressure systems off eastern Australia in the last 30 years and was one of several storms comprising a test bed for the WRF ensemble that underpins the regional climate change projections for eastern Australia (New South Wales/Australian Capital Territory Regional Climate Modelling Project, NARCliM). Newy provides an informative case study for examining precipitation extremes as simulated by WRF set up for regional downscaling. Here, simulations from the NARCliM physics ensemble of Newy available at ˜10 km grid spacing are used. Extremes and spatio-temporal characteristics are examined using land-based daily and hourly precipitation totals, with a particular focus on hourly accumulations. Of the different physics schemes assessed, the cumulus and the boundary layer schemes cause the largest differences. Although the Betts-Miller-Janjic cumulus scheme produces better rainfall totals over the entire storm, the Kain-Fritsch cumulus scheme promotes higher and more realistic hourly extreme precipitation totals. Analysis indicates the Kain-Fritsch runs are correlated with larger resolved grid-scale vertical moisture fluxes, which are produced through the influence of parameterized convection on the larger-scale circulation and the subsequent convergence and ascent of moisture. Results show that WRF qualitatively reproduces spatial precipitation patterns during the storm, albeit with some errors in timing. This case study indicates that whilst regional climate simulations of an extreme event such as Newy in WRF may be well represented at daily scales irrespective of the physics scheme used, the representation at hourly scales is likely to be physics scheme

  20. Extreme precipitation in WRF during the Newcastle East Coast Low of 2007

    NASA Astrophysics Data System (ADS)

    Gilmore, James B.; Evans, Jason P.; Sherwood, Steven C.; Ekström, Marie; Ji, Fei

    2016-08-01

    In the context of regional downscaling, we study the representation of extreme precipitation in the Weather Research and Forecasting (WRF) model, focusing on a major event that occurred on the 8th of June 2007 along the coast of eastern Australia (abbreviated "Newy"). This was one of the strongest extra-tropical low-pressure systems off eastern Australia in the last 30 years and was one of several storms comprising a test bed for the WRF ensemble that underpins the regional climate change projections for eastern Australia (New South Wales/Australian Capital Territory Regional Climate Modelling Project, NARCliM). Newy provides an informative case study for examining precipitation extremes as simulated by WRF set up for regional downscaling. Here, simulations from the NARCliM physics ensemble of Newy available at ˜10 km grid spacing are used. Extremes and spatio-temporal characteristics are examined using land-based daily and hourly precipitation totals, with a particular focus on hourly accumulations. Of the different physics schemes assessed, the cumulus and the boundary layer schemes cause the largest differences. Although the Betts-Miller-Janjic cumulus scheme produces better rainfall totals over the entire storm, the Kain-Fritsch cumulus scheme promotes higher and more realistic hourly extreme precipitation totals. Analysis indicates the Kain-Fritsch runs are correlated with larger resolved grid-scale vertical moisture fluxes, which are produced through the influence of parameterized convection on the larger-scale circulation and the subsequent convergence and ascent of moisture. Results show that WRF qualitatively reproduces spatial precipitation patterns during the storm, albeit with some errors in timing. This case study indicates that whilst regional climate simulations of an extreme event such as Newy in WRF may be well represented at daily scales irrespective of the physics scheme used, the representation at hourly scales is likely to be physics scheme

  1. WRF model sensitivity to choice of parameterization: a study of the `York Flood 1999'

    NASA Astrophysics Data System (ADS)

    Remesan, Renji; Bellerby, Tim; Holman, Ian; Frostick, Lynne

    2015-10-01

    Numerical weather modelling has gained considerable attention in the field of hydrology especially in un-gauged catchments and in conjunction with distributed models. As a consequence, the accuracy with which these models represent precipitation, sub-grid-scale processes and exceptional events has become of considerable concern to the hydrological community. This paper presents sensitivity analyses for the Weather Research Forecast (WRF) model with respect to the choice of physical parameterization schemes (both cumulus parameterisation (CPSs) and microphysics parameterization schemes (MPSs)) used to represent the `1999 York Flood' event, which occurred over North Yorkshire, UK, 1st-14th March 1999. The study assessed four CPSs (Kain-Fritsch (KF2), Betts-Miller-Janjic (BMJ), Grell-Devenyi ensemble (GD) and the old Kain-Fritsch (KF1)) and four MPSs (Kessler, Lin et al., WRF single-moment 3-class (WSM3) and WRF single-moment 5-class (WSM5)] with respect to their influence on modelled rainfall. The study suggests that the BMJ scheme may be a better cumulus parameterization choice for the study region, giving a consistently better performance than other three CPSs, though there are suggestions of underestimation. The WSM3 was identified as the best MPSs and a combined WSM3/BMJ model setup produced realistic estimates of precipitation quantities for this exceptional flood event. This study analysed spatial variability in WRF performance through categorical indices, including POD, FBI, FAR and CSI during York Flood 1999 under various model settings. Moreover, the WRF model was good at predicting high-intensity rare events over the Yorkshire region, suggesting it has potential for operational use.

  2. Impact of spectral nudging on regional climate simulation over CORDEX East Asia using WRF

    NASA Astrophysics Data System (ADS)

    Tang, Jianping; Wang, Shuyu; Niu, Xiaorui; Hui, Pinhong; Zong, Peishu; Wang, Xueyuan

    2016-06-01

    In this study, the impact of the spectral nudging method on regional climate simulation over the Coordinated Regional Climate Downscaling Experiment East Asia (CORDEX-EA) region is investigated using the Weather Research and Forecasting model (WRF). Driven by the ERA-Interim reanalysis, five continuous simulations covering 1989-2007 are conducted by the WRF model, in which four runs adopt the interior spectral nudging with different wavenumbers, nudging variables and nudging coefficients. Model validation shows that WRF has the ability to simulate spatial distributions and temporal variations of the surface climate (air temperature and precipitation) over CORDEX-EA domain. Comparably the spectral nudging technique is effective in improving the model's skill in the following aspects: (1), the simulated biases and root mean square errors of annual mean temperature and precipitation are obviously reduced. The SN3-UVT (spectral nudging with wavenumber 3 in both zonal and meridional directions applied to U, V and T) and SN6 (spectral nudging with wavenumber 6 in both zonal and meridional directions applied to U and V) experiments give the best simulations for temperature and precipitation respectively. The inter-annual and seasonal variances produced by the SN experiments are also closer to the ERA-Interim observation. (2), the application of spectral nudging in WRF is helpful for simulating the extreme temperature and precipitation, and the SN3-UVT simulation shows a clear advantage over the other simulations in depicting both the spatial distributions and inter-annual variances of temperature and precipitation extremes. With the spectral nudging, WRF is able to preserve the variability in the large scale climate information, and therefore adjust the temperature and precipitation variabilities toward the observation.

  3. Oil shale, tar sand, coal research advanced exploratory process technology, jointly sponsored research

    SciTech Connect

    Speight, J.G.

    1992-01-01

    Accomplishments for the past quarter are presented for the following five tasks: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers oil shale process studies. Tar sand research is on process development of Recycle Oil Pyrolysis and Extraction (ROPE) Process. Coal research covers: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts;advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; NMR analysis of samples from the ocean drilling program; in situ treatment of manufactured gas plant contaminated soils demonstration program; and solid state NMR analysis of naturally and artificially matured kerogens.

  4. [Research advances in methyl bromide in the ocean].

    PubMed

    Du, Hui-na; Xie, Wen-xia; Cui, Yu-qian; Chen, Jian-lei; Ye, Si-yuan

    2014-12-01

    Methyl bromide is an important atmospheric trace gas, which plays significant roles in the global warming and atmospheric chemistry. The ocean plays important and complex roles in the global biogeochemical cycles of methyl bromide, not only the source of atmospheric methyl bromide, but also the sink. Therefore, developing the chemical research of the soluble methyl bromide in the ocean, will not only have a certain guiding significance to the atmospheric ozone layer protection, but also provide a theoretical basis for estimating methyl bromide's contribution to the global environmental change on global scale. This paper reviewed the research advances on methyl bromide in the ocean, from the aspects of the biogeochemical cycle of methyl bromide in the ocean, the analysis and determination method, the concentration distribution, the sea-to-air flux and its sources and sinks in the atmosphere. Some deficiencies in the current studies were put forward, and the directions of the future studies were prospected. PMID:25876424

  5. PREFACE: 7th EEIGM International Conference on Advanced Materials Research

    NASA Astrophysics Data System (ADS)

    Joffe, Roberts

    2013-12-01

    The 7th EEIGM Conference on Advanced Materials Research (AMR 2013) was held at Luleå University of Technology on the 21-22 March 2013 in Luleå, SWEDEN. This conference is intended as a meeting place for researchers involved in the EEIGM programme, in the 'Erasmus Mundus' Advanced Materials Science and Engineering Master programme (AMASE) and the 'Erasmus Mundus' Doctoral Programme in Materials Science and Engineering (DocMASE). This is great opportunity to present their on-going research in the various fields of Materials Science and Engineering, exchange ideas, strengthen co-operation as well as establish new contacts. More than 60 participants representing six countries attended the meeting, in total 26 oral talks and 19 posters were presented during two days. This issue of IOP Conference Series: Materials Science and Engineering presents a selection of articles from EEIGM-7 conference. Following tradition from previous EEIGM conferences, it represents the interdisciplinary nature of Materials Science and Engineering. The papers presented in this issue deal not only with basic research but also with applied problems of materials science. The presented topics include theoretical and experimental investigations on polymer composite materials (synthetic and bio-based), metallic materials and ceramics, as well as nano-materials of different kind. Special thanks should be directed to the senior staff of Division of Materials Science at LTU who agreed to review submitted papers and thus ensured high scientific level of content of this collection of papers. The following colleagues participated in the review process: Professor Lennart Walström, Professor Roberts Joffe, Professor Janis Varna, Associate Professor Marta-Lena Antti, Dr Esa Vuorinen, Professor Aji Mathew, Professor Alexander Soldatov, Dr Andrejs Purpurs, Dr Yvonne Aitomäki, Dr Robert Pederson. Roberts Joffe October 2013, Luleå Conference photograph EEIGM7 conference participants, 22 March 2013 The PDF

  6. [Economic perspectives of the research on advanced therapies].

    PubMed

    Pamo Larrauri, Jose María

    2014-01-01

    Since a new advanced therapy medicinal product is discovered until finally allowed its sale in the domestic market, it has to overcome a series of stages. Biomedical research is the first phase, currently its situation is encouraging to the increase in the number of clinical trials in Spain and in the rest of the world, despite the economic situation and the various difficulties that have faced the pharmaceutical laboratories. The next phase consists in obtaining the authorization of marketing of the European Medicines Agency. After authorization, will attempt to set a fair and moderate price for inclusion in the list of health provision of Social Security. A price for a drug that provides added value to health and society, a price that is generated profits for the pharmaceutical companies that hope to make up for the years of work and investment. Commitment to advanced therapy must be clear and forceful, to fund ongoing research projects and encouraging their creation with economic aid. PMID:25542659

  7. Area Reports. Advanced materials and devices research area. Silicon materials research task, and advanced silicon sheet task

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The objectives of the Silicon Materials Task and the Advanced Silicon Sheet Task are to identify the critical technical barriers to low-cost silicon purification and sheet growth that must be overcome to produce a PV cell substrate material at a price consistent with Flat-plate Solar Array (FSA) Project objectives and to overcome these barriers by performing and supporting appropriate R&D. Progress reports are given on silicon refinement using silane, a chemical vapor transport process for purifying metallurgical grade silicon, silicon particle growth research, and modeling of silane pyrolysis in fluidized-bed reactors.

  8. Future directions of C3 research at DARPA (Defense Advanced Research Projects Agency)

    NASA Astrophysics Data System (ADS)

    Perry, D. G.; Dahmann, J. S.

    Research into C3 related problems is a major effort of the Information Science and Technology Office of the Defense Advanced Research Projects Agency. The major thrusts of projects are in the area of future, high-risk efforts, often resulting in the development of a conceptual model or prototype. Some of these prototypes are then further developed to provide an infrastructure for future research. The programs can be divided into two groups: base technology research programs and testbed programs. The testbeds provide a focus for the technology programs.

  9. Future directions of C3 research at DARPA (Defense Advanced Research Projects Agency)

    SciTech Connect

    Perry, D.G.; Dahmann, J.S.

    1987-01-01

    Research into C3 related problems is a major effort of the Information Science and Technology Office of the Defense Advanced Research Projects Agency. The major thrusts of projects is in the area of future, high-risk efforts, often resulting in the development of a conceptual model or prototype. Some of these prototypes are then further developed to provide an infrastructure for future research. The programs can be divided into two groups: base technology research programs and testbed programs. The testbeds provide a focus for the technology programs.

  10. The Advanced Research Projects Agency: A new paradigm for funding chemical research

    SciTech Connect

    Dubois, L.H.

    1995-12-01

    The Advanced Research Projects Agency (ARPA) is the central research and development organization of the Department of Defense. Its mission is to develop imaginative, innovative and often high risk research ideas offering a significant technological impact that go well beyond normal evolutionary developmental approaches; and to pursue these ideas from the demonstration of technical feasibility through the development of prototype systems. Despite the fact that funding for research is tied tightly to strategic interests, their is still a strong need for fundamental science (approximately 14% of ARPA`s $2.7B budget goes directly to universities). Examples of how the two can coexist (and thrive!) will be presented. These include the development of advanced fuel cells and the creation of new environmental technologies. The impact of this new paradigm on creativity in science, chemical synthesis, theory, the peer review system, and accountability will also be discussed.

  11. The Advanced Neutron Source research and development plan

    SciTech Connect

    Selby, D.L.

    1992-11-30

    The Advanced Neutron Source (ANS) is being designed as a user-oriented neutron research laboratory centered around the most intense continuous beams of thermal and subthermal neutrons in the world. The ANS will be built around a new research reactor of [approximately] 330 MW fission power, producing an unprecedented peak thermal flux of > 7 [times] 10[sup 19] M[sup [minus]2] [center dot] S[sup [minus]1]. Primarily a research facility, the ANS will accommodate more than 1000 academic, industrial, and government researchers each year. They will conduct basic research in all branches of science-as well as applied research-leading to better understanding of new materials, including high temperature super conductors, plastics, and thin films. Some 48 neutron beam stations will be set up in the ANS beam rooms and the neutron guide hall for neutron scattering and for fundamental and nuclear physics research. There also will be extensive facilities for materials irradiation, isotope production, and analytical chemistry. The R D program will focus on the four objectives: Address feasibility issues; provide analysis support; evaluate options for improvement in performance beyond minimum requirements; and provide prototype demonstrations for unique facilities. The remainder of this report presents (1) the process by which the R D activities are controlled and (2) a discussion of the individual tasks that have been identified for the R D program, including their justification, schedule and costs. The activities discussed in this report will be performed by Martin Marietta Energy Systems, Inc. (MMES) through the Oak Ridge National Laboratory (ORNL) and through subcontracts with industry, universities, and other national laboratories. It should be noted that in general a success path has been assumed for all tasks.

  12. The Advanced Neutron Source research and development plan

    SciTech Connect

    Selby, D.L.

    1992-11-30

    The Advanced Neutron Source (ANS) is being designed as a user-oriented neutron research laboratory centered around the most intense continuous beams of thermal and subthermal neutrons in the world. The ANS will be built around a new research reactor of {approximately} 330 MW fission power, producing an unprecedented peak thermal flux of > 7 {times} 10{sup 19} M{sup {minus}2} {center_dot} S{sup {minus}1}. Primarily a research facility, the ANS will accommodate more than 1000 academic, industrial, and government researchers each year. They will conduct basic research in all branches of science-as well as applied research-leading to better understanding of new materials, including high temperature super conductors, plastics, and thin films. Some 48 neutron beam stations will be set up in the ANS beam rooms and the neutron guide hall for neutron scattering and for fundamental and nuclear physics research. There also will be extensive facilities for materials irradiation, isotope production, and analytical chemistry. The R&D program will focus on the four objectives: Address feasibility issues; provide analysis support; evaluate options for improvement in performance beyond minimum requirements; and provide prototype demonstrations for unique facilities. The remainder of this report presents (1) the process by which the R&D activities are controlled and (2) a discussion of the individual tasks that have been identified for the R&D program, including their justification, schedule and costs. The activities discussed in this report will be performed by Martin Marietta Energy Systems, Inc. (MMES) through the Oak Ridge National Laboratory (ORNL) and through subcontracts with industry, universities, and other national laboratories. It should be noted that in general a success path has been assumed for all tasks.

  13. A simple nudging scheme to assimilate ASCAT soil moisture data in the WRF model

    NASA Astrophysics Data System (ADS)

    Capecchi, V.; Gozzini, B.

    2012-04-01

    The present work shows results obtained in a numerical experiment using the WRF (Weather and Research Forecasting, www.wrf-model.org) model. A control run where soil moisture is constrained by GFS global analysis is compared with a test run where soil moisture analysis is obtained via a simple nudging scheme using ASCAT data. The basic idea of the assimilation scheme is to "nudge" the first level (0-10 cm below ground in NOAH model) of volumetric soil moisture of the first-guess (say θ(b,1) derived from global model) towards the ASCAT derived value (say ^θ A). The soil moisture analysis θ(a,1) is given by: { θ + K (^θA - θ ) l = 1 θ(a,1) = θ(b,l) (b,l) l > 1 (b,l) (1) where l is the model soil level. K is a constant scalar value that is user specified and in this study it is equal to 0.2 (same value as in similar studies). Soil moisture is critical for estimating latent and sensible heat fluxes as well as boundary layer structure. This parameter is, however, poorly assimilated in current global and regional numerical models since no extensive soil moisture observation network exists. Remote sensing technologies offer a synoptic view of the dynamics and spatial distribution of soil moisture with a frequent temporal coverage and with a horizontal resolution similar to mesoscale NWP model. Several studies have shown that measurements of normalized backscatter (surface soil wetness) from the Advanced Scatterometer (ASCAT) operating at microwave frequencies and boarded on the meteorological operational (Metop) satellite, offer quality information about surface soil moisture. Recently several studies deal with the implementation of simple assimilation procedures (nudging, Extended Kalman Filter, etc...) to integrate ASCAT data in NWP models. They found improvements in screen temperature predictions, particularly in areas such as North-America and in the Tropics, where it is strong the land-atmosphere coupling. The ECMWF (Newsletter No. 127) is currently

  14. Recent Developments and Applications of the WRF-Hydro Modeling System for Continental Scale Water Cycle Predictions

    NASA Astrophysics Data System (ADS)

    Gochis, D. J.; Yu, W.; Dugger, A. L.; McCreight, J. L.; Yates, D. N.; Clark, M. P.; Wood, A. W.; Sampson, K. M.; Rasmussen, R.

    2014-12-01

    The translation of weather and climate forcing through complex landscapes to drive terrestrial hydrologic processes is a true multi-scale problem. Model architectures that attempt to capture these processes and feedbacks in a physically realistic way must be able to bridge spatial scales from meters to kilometers. To represent these processes across continental domains modeling systems must fully embrace high performance computing. Also, because there are both scientific and computational trade-offs in modeling many terrestrial hydrologic and land-atmosphere exchange processes, it is often highly advantageous to support multiple physics options in order to test competing hypotheses and apply scale-appropriate parameterizations for different prediction problems. In this talk we provide an update of new developments to the WRF-Hydro system in meeting these needs from both a process representation and high performance computing perspective. A key feature of these developments centers on new multi-scale modeling capabilities recently added to WRF-Hydro. We will discuss prediction and computational performance metrics for several recent large river basin and continental scale applications of the WRF-Hydro system over the coterminous U.S. and over Mexico in modes both coupled and uncoupled to the Weather Research and Forecasting (WRF) model. We will also provide updates on new developments to the WRF-Hydro system in the areas of water management applications and hydrologic data assimilation.

  15. Evaluation of and Suggested Improvements to the WSM6 Microphysics in WRF- ARW Using Synthetic and Observed GOES-13 Imagery

    SciTech Connect

    Grasso, Lewis; Lindsey, Daniel T.; Lim, Kyo-Sun; Clark, Adam; Bikos, Dan; Dembek, Scott R.

    2014-10-01

    Synthetic satellite imagery can be employed to evaluate simulated cloud fields. Past studies have revealed that the Weather Research and Forecasting (WRF) WRF Single-Moment 6-class (WSM6) microphysics in WRF-ARW produces less upper level ice clouds within synthetic images compared to observations. Synthetic Geostationary Operational Environmental Satellite (GOES)-13 imagery at 10.7 μm of simulated cloud fields from the 4 km National Severe Storms Laboratory (NSSL) WRF-ARW is compared to observed GOES-13 imagery. Histograms suggest that too few points contain upper level simulated ice clouds. In particular, side-by-side examples are shown of synthetic and observed convective anvils. Such images illustrate the lack of anvil cloud associated with convection produced by the NSSL WRF-ARW. A vertical profile of simulated hydrometeors suggests that too much cloud water mass may be converted into graupel mass, effectively reducing the main source of ice mass in a simulated anvil. Further, excessive accretion of ice by snow removes ice from an anvil by precipitation settling. Idealized sensitivity tests reveal that a 50% reduction of the conversion of cloud water mass to graupel and a 50% reduction of the accretion rate of ice by snow results in a significant increase in anvil ice of a simulated storm. Such results provide guidance as to which conversions could be reformulated, in a more physical manner, to increase simulated ice mass in the upper troposphere.

  16. Forecasting solar irradiation using WRF model and refining statistics for Northeastern Brazil

    NASA Astrophysics Data System (ADS)

    Pereira, E. B.; Lima, F. J. L.; Martins, F. R.

    2015-12-01

    Solar energy is referred to as variable generation sources because their electricity production varies based on the availability of sun irradiance. To accommodate this variability, electricity grid operators use a variety of tools to maintain a reliable electricity supply, one of them is to forecast solar irradiation, and to adjust other electricity sources as needed. This work reports an approach to forecast solar irradiation in the Brazilian Northeastern region (NEB) by using statistically post-processing data from mesoscale model outputs. The method assimilates the diversity of climate characteristics occurring in the region presenting the largest solar energy potentials in Brazil. Untreated solar irradiance forecasts for 24h in advance were obtained using the WRF model runs. Cluster analysis technique was employed to find out areas presenting similar climate characteristics and to reduce uncertainties. Comparison analysis between WRF model outputs and site-specific measured data were performed to evaluate the model skill in forecasting the surface solar irradiation. After that, post-processing of WRF outputs using artificial neural networks (ANNs) and multiple regression methods refined the short-term solar irradiation forecasts. A set of pre-selected variables of the WRF model outputs representing the forecasted atmospheric conditions were used as predictors by the ANNs. Several predictors were tested in the adjustment and simulation of the ANNs. We found the best ANNs architecture and a group of 10 predictors, with which more in-depth analyzes were carried out, including performance evaluation for fall and spring of 2011 (rainy and dry season in NEB). The site-specific measured solar radiation data came from 110 stations distributed throughout the NEB. Data for the rainy season were acquired from March to May, and for the dry season from September to November. We concluded that the untreated numerical forecasts of solar irradiation provided by WRF exhibited a

  17. Advancing cancer control research in an emerging news media environment.

    PubMed

    Smith, Katherine C; Niederdeppe, Jeff; Blake, Kelly D; Cappella, Joseph N

    2013-12-01

    Cancer is both highly feared and highly newsworthy, and there is a robust body of research documenting the content and effects of cancer news coverage on health behaviors and policy. Recent years have witnessed ongoing, transformative shifts in American journalism alongside rapid advances in communication technology and the public information environment. These changes create a pressing need to consider a new set of research questions, sampling strategies, measurement techniques, and theories of media effects to ensure continued relevance and adaptation of communication research to address critical cancer control concerns. This paper begins by briefly reviewing what we know about the role of cancer news in shaping cancer-related beliefs, attitudes, behaviors, and policies. We then outline challenges and opportunities, both theoretical and methodological, posed by the rapidly changing news media environment and the nature of audience engagement. We organize our discussion around three major shifts associated with the emerging news media environment as it relates to health communication: 1) speed and dynamism of news diffusion, 2) increased narrowcasting of media content for specialized audiences, and 3) broadened participation in shaping media content. In so doing, we articulate a set of questions for future theory and research, in an effort to catalyze innovative communication scholarship to improve cancer prevention and control. PMID:24395988

  18. Advanced parallel programming models research and development opportunities.

    SciTech Connect

    Wen, Zhaofang.; Brightwell, Ronald Brian

    2004-07-01

    There is currently a large research and development effort within the high-performance computing community on advanced parallel programming models. This research can potentially have an impact on parallel applications, system software, and computing architectures in the next several years. Given Sandia's expertise and unique perspective in these areas, particularly on very large-scale systems, there are many areas in which Sandia can contribute to this effort. This technical report provides a survey of past and present parallel programming model research projects and provides a detailed description of the Partitioned Global Address Space (PGAS) programming model. The PGAS model may offer several improvements over the traditional distributed memory message passing model, which is the dominant model currently being used at Sandia. This technical report discusses these potential benefits and outlines specific areas where Sandia's expertise could contribute to current research activities. In particular, we describe several projects in the areas of high-performance networking, operating systems and parallel runtime systems, compilers, application development, and performance evaluation.

  19. Modelling regional climate change and urban planning scenarios and their impacts on the urban environment in two cities with WRF-ACASA

    NASA Astrophysics Data System (ADS)

    Falk, M.; Pyles, R. D.; Marras, S.; Spano, D.; Paw U, K. T.

    2011-12-01

    The number of urban metabolism studies has increased in recent years, due to the important impact that energy, water and carbon exchange over urban areas have on climate change. Urban modeling is therefore crucial in the future design and management of cities. This study presents the ACASA model coupled to the Weather Research and Forecasting (WRF-ARW) mesoscale model to simulate urban fluxes at a horizontal resolution of 200 meters for urban areas of roughly 100 km^2. As part of the European Project "BRIDGE", these regional simulations were used in combination with remotely sensed data to provide constraints on the land surface types and the exchange of carbon and energy fluxes from urban centers. Surface-atmosphere exchanges of mass and energy were simulated using the Advanced Canopy Atmosphere Soil Algorithm (ACASA). ACASA is a multi-layer high-order closure model, recently modified to work over natural, agricultural as well as urban environments. In particular, improvements were made to account for the anthropogenic contribution to heat and carbon production. For two cities four climate change and four urban planning scenarios were simulated: The climate change scenarios include a base scenario (Sc0: 2008 Commit in IPCC), a medium emission scenario (Sc1: IPCC A2), a worst case emission scenario (Sce2: IPCC A1F1) and finally a best case emission scenario (Sce3: IPCC B1). The urban planning scenarios include different development scenarios such as smart growth. The two cities are a high latitude city, Helsinki (Finland) and an historic city, Florence (Italy). Helsinki is characterized by recent, rapid urbanization that requires a substantial amount of energy for heating, while Florence is representative of cities in lower latitudes, with substantial cultural heritage and a comparatively constant architectural footprint over time. In general, simulated fluxes matched the point observations well and showed consistent improvement in the energy partitioning over

  20. PREFACE: 6th EEIGM International Conference on Advanced Materials Research

    NASA Astrophysics Data System (ADS)

    Horwat, David; Ayadi, Zoubir; Jamart, Brigitte

    2012-02-01

    The 6th EEIGM Conference on Advanced Materials Research (AMR 2011) was held at the European School of Materials Engineering (EEIGM) on the 7-8 November 2011 in Nancy, France. This biennial conference organized by the EEIGM is a wonderful opportunity for all scientists involved in the EEIGM programme, in the 'Erasmus Mundus' Advanced Materials Science and Engineering Master programme (AMASE) and the 'Erasmus Mundus' Doctoral Programme in Materials Science and Engineering (DocMASE), to present their research in the various fields of Materials Science and Engineering. This conference is also open to other universities who have strong links with the EEIGM and provides a forum for the exchange of ideas, co-operation and future orientations by means of regular presentations, posters and a round-table discussion. This edition of the conference included a round-table discussion on composite materials within the Interreg IVA project '+Composite'. Following the publication of the proceedings of AMR 2009 in Volume 5 of this journal, it is with great pleasure that we present this selection of articles to the readers of IOP Conference Series: Materials Science and Engineering. Once again it represents the interdisciplinary nature of Materials Science and Engineering, covering basic and applicative research on organic and composite materials, metallic materials and ceramics, and characterization methods. The editors are indebted to all the reviewers for reviewing the papers at very short notice. Special thanks are offered to the sponsors of the conference including EEIGM-Université de Lorraine, AMASE, DocMASE, Grand Nancy, Ville de Nancy, Region Lorraine, Fédération Jacques Villermaux, Conseil Général de Meurthe et Moselle, Casden and '+Composite'. Zoubir Ayadi, David Horwat and Brigitte Jamart

  1. High speed research system study. Advanced flight deck configuration effects

    NASA Technical Reports Server (NTRS)

    Swink, Jay R.; Goins, Richard T.

    1992-01-01

    In mid-1991 NASA contracted with industry to study the high-speed civil transport (HSCT) flight deck challenges and assess the benefits, prior to initiating their High Speed Research Program (HSRP) Phase 2 efforts, then scheduled for FY-93. The results of this nine-month effort are presented, and a number of the most significant findings for the specified advanced concepts are highlighted: (1) a no nose-droop configuration; (2) a far forward cockpit location; and (3) advanced crew monitoring and control of complex systems. The results indicate that the no nose-droop configuration is critically dependent upon the design and development of a safe, reliable, and certifiable Synthetic Vision System (SVS). The droop-nose configuration would cause significant weight, performance, and cost penalties. The far forward cockpit location, with the conventional side-by-side seating provides little economic advantage; however, a configuration with a tandem seating arrangement provides a substantial increase in either additional payload (i.e., passengers) or potential downsizing of the vehicle with resulting increases in performance efficiencies and associated reductions in emissions. Without a droop nose, forward external visibility is negated and takeoff/landing guidance and control must rely on the use of the SVS. The technologies enabling such capabilities, which de facto provides for Category 3 all-weather operations on every flight independent of weather, represent a dramatic benefits multiplier in a 2005 global ATM network: both in terms of enhanced economic viability and environmental acceptability.

  2. Advances in targeted proteomics and applications to biomedical research.

    PubMed

    Shi, Tujin; Song, Ehwang; Nie, Song; Rodland, Karin D; Liu, Tao; Qian, Wei-Jun; Smith, Richard D

    2016-08-01

    Targeted proteomics technique has emerged as a powerful protein quantification tool in systems biology, biomedical research, and increasing for clinical applications. The most widely used targeted proteomics approach, selected reaction monitoring (SRM), also known as multiple reaction monitoring (MRM), can be used for quantification of cellular signaling networks and preclinical verification of candidate protein biomarkers. As an extension to our previous review on advances in SRM sensitivity (Shi et al., Proteomics, 12, 1074-1092, 2012) herein we review recent advances in the method and technology for further enhancing SRM sensitivity (from 2012 to present), and highlighting its broad biomedical applications in human bodily fluids, tissue and cell lines. Furthermore, we also review two recently introduced targeted proteomics approaches, parallel reaction monitoring (PRM) and data-independent acquisition (DIA) with targeted data extraction on fast scanning high-resolution accurate-mass (HR/AM) instruments. Such HR/AM targeted quantification with monitoring all target product ions addresses SRM limitations effectively in specificity and multiplexing; whereas when compared to SRM, PRM and DIA are still in the infancy with a limited number of applications. Thus, for HR/AM targeted quantification we focus our discussion on method development, data processing and analysis, and its advantages and limitations in targeted proteomics. Finally, general perspectives on the potential of achieving both high sensitivity and high sample throughput for large-scale quantification of hundreds of target proteins are discussed. PMID:27302376

  3. Advanced Stirling Convertor Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore

    2007-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Space Systems (LMSS), Sunpower Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science and exploration missions. This generator will make use of the free-piston Stirling convertors to achieve higher conversion efficiency than currently available alternatives. The ASRG will utilize two Advanced Stirling Convertors (ASC) to convert thermal energy from a radioisotope heat source to electricity. NASA GRC has initiated several experiments to demonstrate the functionality of the ASC, including: in-air extended operation, thermal vacuum extended operation, and ASRG simulation for mobile applications. The in-air and thermal vacuum test articles are intended to provide convertor performance data over an extended operating time. These test articles mimic some features of the ASRG without the requirement of low system mass. Operation in thermal vacuum adds the element of simulating deep space. This test article is being used to gather convertor performance and thermal data in a relevant environment. The ASRG simulator was designed to incorporate a minimum amount of support equipment, allowing integration onto devices powered directly by the convertors, such as a rover. This paper discusses the design, fabrication, and implementation of these experiments.

  4. Recent Advances in Research on Widow Spider Venoms and Toxins.

    PubMed

    Yan, Shuai; Wang, Xianchun

    2015-12-01

    Widow spiders have received much attention due to the frequently reported human and animal injures caused by them. Elucidation of the molecular composition and action mechanism of the venoms and toxins has vast implications in the treatment of latrodectism and in the neurobiology and pharmaceutical research. In recent years, the studies of the widow spider venoms and the venom toxins, particularly the α-latrotoxin, have achieved many new advances; however, the mechanism of action of the venom toxins has not been completely clear. The widow spider is different from many other venomous animals in that it has toxic components not only in the venom glands but also in other parts of the adult spider body, newborn spiderlings, and even the eggs. More recently, the molecular basis for the toxicity outside the venom glands has been systematically investigated, with four proteinaceous toxic components being purified and preliminarily characterized, which has expanded our understanding of the widow spider toxins. This review presents a glance at the recent advances in the study on the venoms and toxins from the Latrodectus species. PMID:26633495

  5. The biology of infertility: research advances and clinical challenges

    PubMed Central

    Matzuk, Martin M; Lamb, Dolores J

    2013-01-01

    Reproduction is required for the survival of all mammalian species, and thousands of essential ‘sex’ genes are conserved through evolution. Basic research helps to define these genes and the mechanisms responsible for the development, function and regulation of the male and female reproductive systems. However, many infertile couples continue to be labeled with the diagnosis of idiopathic infertility or given descriptive diagnoses that do not provide a cause for their defect. For other individuals with a known etiology, effective cures are lacking, although their infertility is often bypassed with assisted reproductive technologies (ART), some accompanied by safety or ethical concerns. Certainly, progress in the field of reproduction has been realized in the twenty-first century with advances in the understanding of the regulation of fertility, with the production of over 400 mutant mouse models with a reproductive phenotype and with the promise of regenerative gonadal stem cells. Indeed, the past six years have witnessed a virtual explosion in the identification of gene mutations or polymorphisms that cause or are linked to human infertility. Translation of these findings to the clinic remains slow, however, as do new methods to diagnose and treat infertile couples. Additionally, new approaches to contraception remain elusive. Nevertheless, the basic and clinical advances in the understanding of the molecular controls of reproduction are impressive and will ultimately improve patient care. PMID:18989307

  6. Advances in epigenetic biomarker research in colorectal cancer

    PubMed Central

    Wang, Xi; Kuang, Ye-Ye; Hu, Xiao-Tong

    2014-01-01

    Colorectal cancer (CRC) causes approximately 600000 deaths annually and is the third leading cause of cancer mortality worldwide. Despite significant advancements in treatment options, CRC patient survival is still poor owing to a lack of effective tools for early diagnosis and a limited capacity for optimal therapeutic decision making. Since there exists a need to find new biomarkers to improve diagnosis of CRC, the research on epigenetic biomarkers for molecular diagnostics encourages the translation of this field from the bench to clinical practice. Epigenetic alterations are thought to hold great promise as tumor biomarkers. In this review, we will primarily focus on recent advances in the study of epigenetic biomarkers for colorectal cancer and discuss epigenetic biomarkers, including DNA methylation, microRNA expression and histone modification, in cancer tissue, stool, plasma, serum, cell lines and xenografts. These studies have improved the chances that epigenetic biomarkers will find a place in the clinical practices of screening, early diagnosis, prognosis, therapy choice and recurrence surveillance for CRC patients. However, these studies have typically been small in size, and evaluation at a larger scale of well-controlled randomized clinical trials is the next step that is necessary to increase the quality of epigenetic biomarkers and ensure their widespread clinical use. PMID:24764665

  7. Recent Advances in Research on Widow Spider Venoms and Toxins

    PubMed Central

    Yan, Shuai; Wang, Xianchun

    2015-01-01

    Widow spiders have received much attention due to the frequently reported human and animal injures caused by them. Elucidation of the molecular composition and action mechanism of the venoms and toxins has vast implications in the treatment of latrodectism and in the neurobiology and pharmaceutical research. In recent years, the studies of the widow spider venoms and the venom toxins, particularly the α-latrotoxin, have achieved many new advances; however, the mechanism of action of the venom toxins has not been completely clear. The widow spider is different from many other venomous animals in that it has toxic components not only in the venom glands but also in other parts of the adult spider body, newborn spiderlings, and even the eggs. More recently, the molecular basis for the toxicity outside the venom glands has been systematically investigated, with four proteinaceous toxic components being purified and preliminarily characterized, which has expanded our understanding of the widow spider toxins. This review presents a glance at the recent advances in the study on the venoms and toxins from the Latrodectus species. PMID:26633495

  8. Recent Advances in PV Research and Future Directions

    NASA Astrophysics Data System (ADS)

    Deb, Satyen K.

    1998-04-01

    The photovoltaic technology is making a major thrust in the commercial arena with 1997 worldwide production of PV modules reaching over 125 MW and growing at the rate of 20-25semiconductor materials and devices are emerging as strong contenders for PV applications even though silicon is still the 'work-horse' of the industry. Ultra-high efficiency solar cells fabricated from gallium arsenide (GaAs) and its ternary alloys like gallium indium phosphide (GaInP2) are finding applications in space technology. Enormous progress has also been made on various thin-film solar cell technologies, which offer the promise for substantially reducing the cost of PV systems. Some of the leading contenders are amorphous and polycrystalline silicon, compound semiconductor thin films such as copper indium diselenide (CuInSe2) based alloys, and cadmium telluride (CdTe) thin films. Exciting new developments are happening in the use of nano-particle semiconductor materials like titanium dioxide (TiO2) for low-cost PV devices. Intense research on these and other materials and devices is making a strong impact on the technology. In this presentation, a brief overview of recent advances in PV research will b e made and the trends and opportunities for future research directions will be identified.

  9. Lipids from heterotrophic microbes: advances in metabolism research.

    PubMed

    Kosa, Matyas; Ragauskas, Arthur J

    2011-02-01

    Heterotrophic oleaginous microorganisms are capable of producing over 20% of their weight in single cell oils (SCOs) composed of triacylglycerols (TAGs). These TAGs contain fatty acids, such as palmitic, stearic and oleic acids, that are well-suited for biodiesel applications. Although some of these microbes are able to accumulate SCOs while growing on inexpensive agro-industrial biomass, the competition with plant oil resources means that a significant increase in productivity is desired. The present review aims to summarize recent details in lipid metabolism research and engineering (e.g. direct fatty acid ethyl ester production), as well as culture condition optimization and innovations, such as solid-state or semi-solid-state fermentation, that can all contribute to higher productivity and further advancement of the field. PMID:21146236

  10. The neutron texture diffractometer at the China Advanced Research Reactor

    NASA Astrophysics Data System (ADS)

    Mei-Juan, Li; Xiao-Long, Liu; Yun-Tao, Liu; Geng-Fang, Tian; Jian-Bo, Gao; Zhou-Xiang, Yu; Yu-Qing, Li; Li-Qi, Wu; Lin-Feng, Yang; Kai, Sun; Hong-Li, Wang; R. Santisteban, J.; Dong-Feng, Chen

    2016-03-01

    The first neutron texture diffractometer in China has been built at the China Advanced Research Reactor, due to strong demand for texture measurement with neutrons from the domestic user community. This neutron texture diffractometer has high neutron intensity, moderate resolution and is mainly applied to study texture in commonly used industrial materials and engineering components. In this paper, the design and characteristics of this instrument are described. The results for calibration with neutrons and quantitative texture analysis of zirconium alloy plate are presented. The comparison of texture measurements with the results obtained in HIPPO at LANSCE and Kowari at ANSTO illustrates the reliability of the texture diffractometer. Supported by National Nature Science Foundation of China (11105231, 11205248, 51327902) and International Atomic Energy Agency-TC program (CPR0012)

  11. Extreme rainfall in Serbia, May 2014, simulation using WRF NMM and RainFARM: DRIHM project

    NASA Astrophysics Data System (ADS)

    Dekić, Ljiljana; Mihalović, Ana; Dimitrijević, Vladimir; Rebora, Nicola; Parodi, Antonio

    2015-04-01

    Extreme rainfall in Serbia, May 2014, simulation using WRF NMM and RainFARM: DRIHM project Ljiljana Dekić (1), Ana Mihalović (1), Vladimir Dimitrijević (1), Nicola Rebora (2), Antonio Parodi (2) (1)Republic HydroMeteorological Service of Serbia, Belgrade, Serbia, (2)CIMA Research Foundation, Savona, Italy In May 2014 Balkan region was affected with the continuous heavy rainfall, the heaviest in 120 years of recording observation, causing extensive flooding. Serbia suffered human casualties, huge infrastructure and industrial destruction and agricultural damage. Cyclone development and trajectory was very well predicted by RHMSS operational WRF NMM numerical model but extreme precipitation was not possible to predict with sufficient precision. Simulation of extreme rainfall situations using different numerical weather prediction models can indicate weakness of the model and point out importance of specified physical approach and parameterization schemes. The FP7 Distributed Research Infrastructure for Hydro-Meteorology DRIHM project gives a framework for using different models in forecasting extreme weather events. One of the DRIHM component is Rainfall Filtered Autoregressive Model RainFARM for stochastic rainfall downscaling. Objective of the DRIHM project was developing of standards and conversion of the data for seamless use of meteorological and hydrological models in flood prediction. This paper describes numerical tests and results of WRF NMM nonhydrostatic model and RainFARM downscaling applied on WRF NMM outputs. Different physics options in WRF NMM and their influence on precipitation amount were investigated. RainFARM was applied on every physical option with downscaling from 4km to 500m and 100m horizontal resolution and 100 ensemble members. We analyzed locations on the catchments in Serbia where flooding was the strongest and the most destructive. Statistical evaluation of ensemble output gives new insight into the sub scale precipitation

  12. FY09 Advanced Instrumentation and Active Interrogation Research for Safeguards

    SciTech Connect

    D. L. Chichester; S. A. Pozzi; E. H. Seabury; J. L. Dolan; M. Flaska; J. T. Johnson; S. M. Watson; J. Wharton

    2009-08-01

    Multiple small-scale projects have been undertaken to investigate advanced instrumentation solutions for safeguard measurement challenges associated with advanced fuel cycle facilities and next-generation fuel reprocessing installations. These activities are in support of the U.S. Department of Energy's Fuel Cycle Research and Development program and its Materials Protection, Accounting, and Control for Transmutation (MPACT) campaign. 1) Work was performed in a collaboration with the University of Michigan (Prof. Sara Pozzi, co-PI) to investigate the use of liquid-scintillator radiation detectors for assaying mixed-oxide (MOX) fuel, to characterize its composition and to develop advanced digital pulse-shape discrimination algorithms for performing time-correlation measurements in the MOX fuel environment. This work included both simulations and experiments and has shown that these techniques may provide a valuable approach for use within advanced safeguard measurement scenarios. 2) Work was conducted in a collaboration with Oak Ridge National Laboratory (Dr. Paul Hausladen, co-PI) to evaluate the strengths and weaknesses of the fast-neutron coded-aperture imaging technique for locating and characterizing fissile material, and as a tool for performing hold-up measurements in fissile material handling facilities. This work involved experiments at Idaho National Laboratory, using MOX fuel and uranium metal, in both passive and active interrogation configurations. A complete analysis has not yet been completed but preliminary results suggest several potential uses for the fast neutron imaging technique. 3) Work was carried out to identify measurement approaches for determining nitric acid concentration in the range of 1 – 4 M and beyond. This work included laboratory measurements to investigate the suitability of prompt-gamma neutron activation analysis for this measurement and product reviews of other commercial solutions. Ultrasonic density analysis appears to be

  13. Invited Review Article: Advanced light microscopy for biological space research

    NASA Astrophysics Data System (ADS)

    De Vos, Winnok H.; Beghuin, Didier; Schwarz, Christian J.; Jones, David B.; van Loon, Jack J. W. A.; Bereiter-Hahn, Juergen; Stelzer, Ernst H. K.

    2014-10-01

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  14. Invited review article: Advanced light microscopy for biological space research.

    PubMed

    De Vos, Winnok H; Beghuin, Didier; Schwarz, Christian J; Jones, David B; van Loon, Jack J W A; Bereiter-Hahn, Juergen; Stelzer, Ernst H K

    2014-10-01

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy. PMID:25362364

  15. Advanced tokamak research on the DIII-D tokamak

    SciTech Connect

    Chan, V.S.

    1994-01-01

    The objective of the planned research in advanced tokamak development on DIII-D at General Atomics, San Diego, USA. is to establish improved tokamak operation through significant improvements in the stability factor, confinement quality, and bootstrap current fraction using localized radio frequency (rf) current profile control, rf and neutral beam heating for pressure profile control, as well as control of plasma rotation and optimization of the plasma boundary conditions. Recent research results in H-mode confinement, modifications of current profiles to achieve higher confinement and higher {beta}, a new regime of improved confinement (VH-mode), and rf noninductive current drive are encouraging. In this talk, arguments will be presented supporting the need for improved performance in tokamak reactors. Experimentally observed advanced performance regimes on DIII-D will be discussed. Confinement improvement up to H = 4, where H is the ratio of energy confinement time to the ITER89-P scaling H{triple_bond} {Tau}{sub E}/{Tau}{sub E-ITER89-P}, has been achieved. In other discharges {beta}{sub N} = {beta}/(I/aB),[%-m{center_dot}{Tau}/MA] {approx_gt} 6 has been obtained. These values have so far been achieved transiently and independently. Techniques, will be described which can extend the high performance to quasi-steady-state and sustain the high H and {beta}{sub N} values simultaneously. Two high performance regimes, one in first stable regime and the other in second stable regime, have been simulated br self-consistently evolving a magnetohydrodynamic (MHD) equilibrium-transport code. Finally, experimental program plans and outstanding important physics issues will be discussed.

  16. Invited Review Article: Advanced light microscopy for biological space research

    SciTech Connect

    De Vos, Winnok H.; Beghuin, Didier; Schwarz, Christian J.; Jones, David B.; Loon, Jack J. W. A. van

    2014-10-15

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  17. Advanced research and technology program for advanced high pressure oxygen-hydrogen rocket propulsion

    NASA Technical Reports Server (NTRS)

    Marsik, S. J.; Morea, S. F.

    1985-01-01

    A research and technology program for advanced high pressure, oxygen-hydrogen rocket propulsion technology is presently being pursued by the National Aeronautics and Space Administration (NASA) to establish the basic discipline technologies, develop the analytical tools, and establish the data base necessary for an orderly evolution of the staged combustion reusable rocket engine. The need for the program is based on the premise that the USA will depend on the Shuttle and its derivative versions as its principal Earth-to-orbit transportation system for the next 20 to 30 yr. The program is focused in three principal areas of enhancement: (1) life extension, (2) performance, and (3) operations and diagnosis. Within the technological disciplines the efforts include: rotordynamics, structural dynamics, fluid and gas dynamics, materials fatigue/fracture/life, turbomachinery fluid mechanics, ignition/combustion processes, manufacturing/producibility/nondestructive evaluation methods and materials development/evaluation. An overview of the Advanced High Pressure Oxygen-Hydrogen Rocket Propulsion Technology Program Structure and Working Groups objectives are presented with highlights of several significant achievements.

  18. Advanced research and technology programs for advanced high-pressure oxygen-hydrogen rocket propulsion

    NASA Technical Reports Server (NTRS)

    Marsik, S. J.; Morea, S. F.

    1985-01-01

    A research and technology program for advanced high pressure, oxygen-hydrogen rocket propulsion technology is presently being pursued by the National Aeronautics and Space Administration (NASA) to establish the basic discipline technologies, develop the analytical tools, and establish the data base necessary for an orderly evolution of the staged combustion reusable rocket engine. The need for the program is based on the premise that the USA will depend on the Shuttle and its derivative versions as its principal Earth-to-orbit transportation system for the next 20 to 30 yr. The program is focused in three principal areas of enhancement: (1) life extension, (2) performance, and (3) operations and diagnosis. Within the technological disciplines the efforts include: rotordynamics, structural dynamics, fluid and gas dynamics, materials fatigue/fracture/life, turbomachinery fluid mechanics, ignition/combustion processes, manufacturing/producibility/nondestructive evaluation methods and materials development/evaluation. An overview of the Advanced High Pressure Oxygen-Hydrogen Rocket Propulsion Technology Program Structure and Working Groups objectives are presented with highlights of several significant achievements.

  19. GPU-Accelerated Stony-Brook University 5-class Microphysics Scheme in WRF

    NASA Astrophysics Data System (ADS)

    Mielikainen, J.; Huang, B.; Huang, A.

    2011-12-01

    The Weather Research and Forecasting (WRF) model is a next-generation mesoscale numerical weather prediction system. Microphysics plays an important role in weather and climate prediction. Several bulk water microphysics schemes are available within the WRF, with different numbers of simulated hydrometeor classes and methods for estimating their size fall speeds, distributions and densities. Stony-Brook University scheme (SBU-YLIN) is a 5-class scheme with riming intensity predicted to account for mixed-phase processes. In the past few years, co-processing on Graphics Processing Units (GPUs) has been a disruptive technology in High Performance Computing (HPC). GPUs use the ever increasing transistor count for adding more processor cores. Therefore, GPUs are well suited for massively data parallel processing with high floating point arithmetic intensity. Thus, it is imperative to update legacy scientific applications to take advantage of this unprecedented increase in computing power. CUDA is an extension to the C programming language offering programming GPU's directly. It is designed so that its constructs allow for natural expression of data-level parallelism. A CUDA program is organized into two parts: a serial program running on the CPU and a CUDA kernel running on the GPU. The CUDA code consists of three computational phases: transmission of data into the global memory of the GPU, execution of the CUDA kernel, and transmission of results from the GPU into the memory of CPU. CUDA takes a bottom-up point of view of parallelism is which thread is an atomic unit of parallelism. Individual threads are part of groups called warps, within which every thread executes exactly the same sequence of instructions. To test SBU-YLIN, we used a CONtinental United States (CONUS) benchmark data set for 12 km resolution domain for October 24, 2001. A WRF domain is a geographic region of interest discretized into a 2-dimensional grid parallel to the ground. Each grid point has

  20. An investigation of methods for injecting emissions from boreal wildfires using WRF-Chem during ARCTAS

    NASA Astrophysics Data System (ADS)

    Sessions, W. R.; Fuelberg, H. E.; Kahn, R. A.; Winker, D. M.

    2010-11-01

    The Weather Research and Forecasting Model (WRF) is considered a "next generation" mesoscale meteorology model. The inclusion of a chemistry module (WRF-Chem) allows transport simulations of chemical and aerosol species such as those observed during NASA's Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) in 2008. The ARCTAS summer deployment phase during June and July coincided with large boreal wildfires in Saskatchewan and Eastern Russia. One of the most important aspects of simulating wildfire plume transport is the height at which emissions are injected. WRF-Chem contains an integrated one-dimensional plume rise model to determine the appropriate injection layer. The plume rise model accounts for thermal buoyancy associated with fires and the local atmospheric stability. This study compares results from the plume model against those of two more traditional injection methods: Injecting within the planetary boundary layer, and in a layer 3-5 km above ground level. Fire locations are satellite derived from the GOES Wildfire Automated Biomass Burning Algorithm (WF_ABBA) and the MODIS thermal hotspot detection. Two methods for preprocessing these fire data are compared: The prep_chem_sources method included with WRF-Chem, and the Naval Research Laboratory's Fire Locating and Monitoring of Burning Emissions (FLAMBE). Results from the simulations are compared with satellite-derived products from the AIRS, MISR and CALIOP sensors. Results show that the FLAMBE pre-processor produces more realistic injection heights than does prep_chem_sources. The plume rise model using FLAMBE provides the best agreement with satellite-observed injection heights. Conversely, when the planetary boundary layer or the 3-5 km AGL layer were filled with emissions, the resulting injection heights exhibit less agreement with observed plume heights. Results indicate that differences in injection heights produce different transport pathways. These

  1. Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 1 -- Base program. Final report, October 1986--September 1993

    SciTech Connect

    Smith, V.E.

    1994-05-01

    Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

  2. Fossil energy: From laboratory to marketplace. Part 2, The role of advanced research

    SciTech Connect

    Not Available

    1992-03-01

    The purpose of this work is to provide a summary description of the role of advanced research in the overall Fossil Energy R&D program successes. It presents the specific Fossil Energy advanced research products that have been adopted commercially or fed into other R&D programs as part of the crosscutting enabling technology base upon which advanced systems are based.

  3. 76 FR 52954 - Workshop: Advancing Research on Mixtures; New Perspectives and Approaches for Predicting Adverse...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-24

    ... HUMAN SERVICES Workshop: Advancing Research on Mixtures; New Perspectives and Approaches for Predicting... ``Advancing Research on Mixtures: New Perspectives and Approaches for Predicting Adverse Human Health Effects... Research and Training, NIEHS, P.O. Box 12233, MD K3-04, Research Triangle Park, NC 27709, (telephone)...

  4. Fingerprint identification: advances since the 2009 National Research Council report

    PubMed Central

    Champod, Christophe

    2015-01-01

    This paper will discuss the major developments in the area of fingerprint identification that followed the publication of the National Research Council (NRC, of the US National Academies of Sciences) report in 2009 entitled: Strengthening Forensic Science in the United States: A Path Forward. The report portrayed an image of a field of expertise used for decades without the necessary scientific research-based underpinning. The advances since the report and the needs in selected areas of fingerprinting will be detailed. It includes the measurement of the accuracy, reliability, repeatability and reproducibility of the conclusions offered by fingerprint experts. The paper will also pay attention to the development of statistical models allowing assessment of fingerprint comparisons. As a corollary of these developments, the next challenge is to reconcile a traditional practice dominated by deterministic conclusions with the probabilistic logic of any statistical model. There is a call for greater candour and fingerprint experts will need to communicate differently on the strengths and limitations of their findings. Their testimony will have to go beyond the blunt assertion of the uniqueness of fingerprints or the opinion delivered ispe dixit. PMID:26101284

  5. Advances in knowledge management for pharmaceutical research and development.

    PubMed

    Torr-Brown, Sheryl

    2005-05-01

    There are two assumptions that are taken for granted in the pharmaceutical industry today. Firstly, that we can generate an unprecedented amount of drug-related information along the research and development (R&D) pipeline, and secondly, that researchers are more connected to each other than they have ever been, owing to the internet revolution of the past 15 years or so. Both of these aspects of the modern pharmaceutical company have brought many benefits to the business. However, the pharmaceutical industry is currently under fire due to allegations of decreased productivity despite significant investments in R&D, which if left to continue at the present pace, will reach almost US 60 billion dollars by 2006. This article explores the role of knowledge in the industry and reviews recent developments and emerging opportunities in the field of knowledge management (KM) as it applies to pharmaceutical R&D. It is argued that systematic KM will be increasingly necessary to optimize the value of preceding advances in high-throughput approaches to R&D, and to fully realize the anticipated increase in productivity. The application of KM principles and practices to the business can highlight opportunities for balancing the current reliance on blockbuster drugs with a more patient-centric focus on human health, which is now becoming possible. PMID:15892246

  6. Advanced 3D Optical Microscopy in ENS Research.

    PubMed

    Vanden Berghe, Pieter

    2016-01-01

    Microscopic techniques are among the few approaches that have survived the test of time. Being invented half way the seventeenth century by Antonie van Leeuwenhoek and Robert Hooke, this technology is still essential in modern biomedical labs. Many microscopy techniques have been used in ENS research to guide researchers in their dissections and later to enable electrode recordings. Apart from this, microscopy has been instrumental in the identification of subpopulations of cells in the ENS, using a variety of staining methods. A significant step forward in the use of microscopy was the introduction of fluorescence approaches. Due to the fact that intense excitation light is now filtered away from the longer wavelength emission light, the contrast can be improved drastically, which helped to identify subpopulations of enteric neurons in a variety of species. Later functionalized fluorescent probes were used to measure and film activity in muscle and neuronal cells. Another important impetus to the use of microscopy was the discovery and isolation of the green fluorescent protein (GFP), as it gave rise to the development of many different color variants and functionalized constructs. Recent advances in microscopy are the result of a continuous search to enhance contrast between the item of interest and its background but also to improve resolving power to tell two small objects apart. In this chapter three different microscopy approaches will be discussed that can aid to improve our understanding of ENS function within the gut wall. PMID:27379646

  7. Refinement of horizontal resolution in dynamical downscaling of climate information using WRF: Costs, benefits, and lessons learned

    EPA Science Inventory

    Dynamical downscaling techniques have previously been developed by the U.S. Environmental Protection Agency (EPA) using a nested WRF at 108- and 36-km. Subsequent work extended one-way nesting down to 12-km resolution. Recently, the EPA Office of Research and Development used com...

  8. Comparison of Spatial and Temporal Rainfall Characteristics in WRF-Simulated Precipitation to Gauge and Radar Observations

    EPA Science Inventory

    Weather Research and Forecasting (WRF) meteorological data are used for USEPA multimedia air and water quality modeling applications, within the CMAQ modeling system to estimate wet deposition and to evaluate future climate and land-use scenarios. While it is not expected that hi...

  9. WRF-Cordex simulations for Europe: mean and extreme precipitation for present and future climates

    NASA Astrophysics Data System (ADS)

    Cardoso, Rita M.; Soares, Pedro M. M.; Miranda, Pedro M. A.

    2013-04-01

    The Weather Research and Forecast (WRF-ARW) model, version 3.3.1, was used to perform the European domain Cordex simulations, at 50km resolution. A first simulation, forced by ERA-Interim (1989-2009), was carried out to evaluate the models performance to represent the mean and extreme precipitation in present European climate. This evaluation is based in the comparison of WRF results against the ECAD regular gridded dataset of daily precipitation. Results are comparable to recent studies with other models for the European region, at this resolution. For the same domain a control and a future scenario (RCP8.5) simulation was performed to assess the climate change impact on the mean and extreme precipitation. These regional simulations were forced by EC-EARTH model results, and, encompass the periods from 1960-2006 and 2006-2100, respectively.

  10. The Lagrangian particle dispersion model FLEXPART-WRF VERSION 3.1

    SciTech Connect

    Brioude, J.; Arnold, D.; Stohl, A.; Cassiani, M.; Morton, Don; Seibert, P.; Angevine, W. M.; Evan, S.; Dingwell, A.; Fast, Jerome D.; Easter, Richard C.; Pisso, I.; Bukhart, J.; Wotawa, G.

    2013-11-01

    The Lagrangian particle dispersion model FLEXPART was originally designed for cal- culating long-range and mesoscale dispersion of air pollutants from point sources, such as after an accident in a nuclear power plant. In the meantime FLEXPART has evolved into a comprehensive tool for atmospheric transport modeling and analysis at different scales. This multiscale need from the modeler community has encouraged new developments in FLEXPART. In this document, we present a version that works with the Weather Research and Forecasting (WRF) mesoscale meteoro- logical model. Simple procedures on how to run FLEXPART-WRF are presented along with special options and features that differ from its predecessor versions. In addition, test case data, the source code and visualization tools are provided to the reader as supplementary material.

  11. Assimilation of Dual-Polarimetric Radar Observations with WRF GSI

    NASA Technical Reports Server (NTRS)

    Li, Xuanli; Mecikalski, John; Fehnel, Traci; Zavodsky, Bradley; Srikishen, Jayanthi

    2014-01-01

    Dual-polarimetric (dual-pol) radar typically transmits both horizontally and vertically polarized radio wave pulses. From the two different reflected power returns, more accurate estimate of liquid and solid cloud and precipitation can be provided. The upgrade of the traditional NWS WSR-88D radar to include dual-pol capabilities will soon be completed for the entire NEXRAD network. Therefore, the use of dual-pol radar network will have a broad impact in both research and operational communities. The assimilation of dual-pol radar data is especially challenging as few guidelines have been provided by previous research. It is our goal to examine how to best use dual-pol radar data to improve forecast of severe storm and forecast initialization. In recent years, the Development Testbed Center (DTC) has released the community Gridpoint Statistical Interpolation (GSI) DA system for the Weather Research and Forecasting (WRF) model. The community GSI system runs in independently environment, yet works functionally equivalent to operational centers. With collaboration with the NASA Short-term Prediction Research and Transition (SPoRT) Center, this study explores regional assimilation of the dual-pol radar variables from the WSR-88D radars for real case storms. Our presentation will highlight our recent effort on incorporating the horizontal reflectivity (ZH), differential reflectivity (ZDR), specific differential phase (KDP), and radial velocity (VR) data for initializing convective storms, with a significant focus being on an improved representation of hydrometeor fields. In addition, discussion will be provided on the development of enhanced assimilation procedures in the GSI system with respect to dual-pol variables. Beyond the dual-pol variable assimilation procedure developing within a GSI framework, highresolution (=1 km) WRF model simulations and storm scale data assimilation experiments will be examined, emphasizing both model initialization and short-term forecast

  12. ARCHES: Advancing Research & Capacity in Hydrologic Education and Science

    NASA Astrophysics Data System (ADS)

    Milewski, A.; Fryar, A. E.; Durham, M. C.; Schroeder, P.; Agouridis, C.; Hanley, C.; Rotz, R. R.

    2013-12-01

    Educating young scientists and building capacity on a global scale is pivotal towards better understanding and managing our water resources. Based on this premise the ARCHES (Advancing Research & Capacity in Hydrologic Education and Science) program has been established. This abstract provides an overview of the program, links to access information, and describes the activities and outcomes of student participants from the Middle East and North Africa. The ARCHES program (http://arches.wrrs.uga.edu) is an integrated hydrologic education approach using online courses, field programs, and various hands-on workshops. The program aims to enable young scientists to effectively perform the high level research that will ultimately improve quality of life, enhance science-based decision making, and facilitate collaboration. Three broad, interlinked sets of activities are incorporated into the ARCHES program: (A1) the development of technical expertise, (A2) the development of professional contacts and skills, and (A3) outreach and long-term sustainability. The development of technical expertise (A1) is implemented through three progressive instructional sections. Section 1: Students were guided through a series of online lectures and exercises (Moodle: http://wrrs.uga.edu/moodle) covering three main topics (Remote Sensing, GIS, and Hydrologic Modeling). Section 2: Students participated in a hands-on workshop hosted at the University of Georgia's Water Resources and Remote Sensing Laboratory (WRRSL). Using ENVI, ArcGIS, and ArcSWAT, students completed a series of lectures and real-world applications (e.g., Development of Hydrologic Models). Section 3: Students participated in field studies (e.g., measurements of infiltration, recharge, streamflow, and water-quality parameters) conducted by U.S. partners and international collaborators in the participating countries. The development of professional contacts and skills (A2) was achieved through the promotion of networking

  13. [Advanced Gas Turbine Systems Research]. Technical Quarterly Progress Report

    SciTech Connect

    1998-09-30

    Major Accomplishments by Advanced Gas Turbine Systems Research (AGTSR) during this reporting period are highlighted below and amplified in later sections of this report: AGTSR distributed 50 proposals from the 98RFP to the IRB for review, evaluation and rank-ordering during the summer; AGTSR conducted a detailed program review at DOE-FETC on July 24; AGTSR organized the 1998 IRB proposal review meeting at SCIES on September 15-16; AGTSR consolidated all the IRB proposal scores and rank-orderings to facilitate the 98RFP proposal deliberations; AGTSR submitted meeting minutes and proposal short-list recommendation to the IRB and DOE for the 98RFP solicitation; AGTSR reviewed two gas turbine related proposals as part of the CU RFP State Project for renovating the central energy facility; AGTSR reviewed and cleared research papers with the IRB from the University of Pittsburgh, Wisconsin, and Minnesota; AGTSR assisted GTA in obtaining university stakeholder support of the ATS program from California, Pennsylvania, and Colorado; AGTSR assisted GTA in distributing alert notices on potential ATS budget cuts to over 150 AGTSR performing university members; AGTSR submitted proceedings booklet and organizational information pertaining to the OAI hybrid gas turbine workshop to DOE-FETC; For DOE-FETC, AGTSR updated the university consortium poster to include new members and research highlights; For DOE-FETC, the general AGTSR Fact Sheet was updated to include new awards, workshops, educational activity and select accomplishments from the research projects; For DOE-FETC, AGTSR prepared three fact sheets highlighting university research supported in combustion, aero-heat transfer, and materials; For DOE-FETC, AGTSR submitted pictures on materials research for inclusion in the ATS technology brochure; For DOE-FETC, AGTSR submitted a post-2000 roadmap showing potential technology paths AGTSR could pursue in the next decade; AGTSR distributed the ninth newsletter UPDATE to DOE, the

  14. Collaborative Research: Towards Advanced Understanding and Predictive Capability of Climate Change in the Arctic Using a High-Resolution Regional Arctic Climate Model

    SciTech Connect

    Cassano, John

    2013-06-30

    The primary research task completed for this project was the development of the Regional Arctic Climate Model (RACM). This involved coupling existing atmosphere, ocean, sea ice, and land models using the National Center for Atmospheric Research (NCAR) Community Climate System Model (CCSM) coupler (CPL7). RACM is based on the Weather Research and Forecasting (WRF) atmospheric model, the Parallel Ocean Program (POP) ocean model, the CICE sea ice model, and the Variable Infiltration Capacity (VIC) land model. A secondary research task for this project was testing and evaluation of WRF for climate-scale simulations on the large pan-Arctic model domain used in RACM. This involved identification of a preferred set of model physical parameterizations for use in our coupled RACM simulations and documenting any atmospheric biases present in RACM.

  15. Advanced Stirling Convertor Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Poriti, Sal

    2010-01-01

    The NASA Glenn Research Center (GRC) has been testing high-efficiency free-piston Stirling convertors for potential use in radioisotope power systems (RPSs) since 1999. The current effort is in support of the Advanced Stirling Radioisotope Generator (ASRG), which is being developed by the U.S. Department of Energy (DOE), Lockheed Martin Space Systems Company (LMSSC), Sunpower, Inc., and the NASA GRC. This generator would use two high-efficiency Advanced Stirling Convertors (ASCs) to convert thermal energy from a radioisotope heat source into electricity. As reliability is paramount to a RPS capable of providing spacecraft power for potential multi-year missions, GRC provides direct technology support to the ASRG flight project in the areas of reliability, convertor and generator testing, high-temperature materials, structures, modeling and analysis, organics, structural dynamics, electromagnetic interference (EMI), and permanent magnets to reduce risk and enhance reliability of the convertor as this technology transitions toward flight status. Convertor and generator testing is carried out in short- and long-duration tests designed to characterize convertor performance when subjected to environments intended to simulate launch and space conditions. Long duration testing is intended to baseline performance and observe any performance degradation over the life of the test. Testing involves developing support hardware that enables 24/7 unattended operation and data collection. GRC currently has 14 Stirling convertors under unattended extended operation testing, including two operating in the ASRG Engineering Unit (ASRG-EU). Test data and high-temperature support hardware are discussed for ongoing and future ASC tests with emphasis on the ASC-E and ASC-E2.

  16. Major clinical research advances in gynecologic cancer in 2014

    PubMed Central

    Lee, Kyung-Hun; Kim, Kidong; Kang, Sokbom

    2015-01-01

    In 2014, 9 topics were selected as major advances in clinical research for gynecologic oncology: 2 each in cervical and corpus cancer, 4 in ovarian cancer, and 1 in breast cancer. For cervical cancer, several therapeutic agents showed viable antitumor clinical response in recurrent and metastatic disease: bevacizumab, cediranib, and immunotherapies including human papillomavirus (HPV)-tumor infiltrating lymphocytes and Z-100. The HPV test received FDA approval as the primary screening tool of cervical cancer in women aged 25 and older, based on the results of the ATHENA trial, which suggested that the HPV test was a more sensitive and efficient strategy for cervical cancer screening than methods based solely on cytology. For corpus cancers, results of a phase III Gynecologic Oncology Group (GOG) 249 study of early-stage endometrial cancer with high-intermediate risk factors are followed by the controversial topic of uterine power morcellation in minimally invasive gynecologic surgery. Promising results of phase II studies regarding the effectiveness of olaparib in various ovarian cancer settings are summarized. After a brief review of results from a phase III study on pazopanib maintenance therapy in advanced ovarian cancer, 2 outstanding 2014 ASCO presentations cover the topic of using molecular subtypes in predicting response to bevacizumab. A review of the use of opportunistic bilateral salpingectomy as an ovarian cancer preventive strategy in the general population is presented. Two remarkable studies that discussed the effectiveness of adjuvant ovarian suppression in premenopausal early breast cancer have been selected as the last topics covered in this review. PMID:25872896

  17. Recent advances in Echinococcus genomics and stem cell research.

    PubMed

    Koziol, U; Brehm, K

    2015-10-30

    Alveolar and cystic echinococcosis, caused by the metacestode larval stages of the tapeworms Echinococcus multilocularis and Echinococcus granulosus, respectively, are life-threatening diseases and very difficult to treat. The introduction of benzimidazole-based chemotherapy, which targets parasite β-tubulin, has significantly improved the life-span and prognosis of echinococcosis patients. However, benzimidazoles show only parasitostatic activity, are associated with serious adverse side effects and have to be administered for very long time periods, underlining the need for new drugs. Very recently, the nuclear genomes of E. multilocularis and E. granulosus have been characterised, revealing a plethora of data for gaining a deeper understanding of host-parasite interaction, parasite development and parasite evolution. Combined with extensive transcriptome analyses of Echinococcus life cycle stages these investigations also yielded novel clues for targeted drug design. Recent years also witnessed significant advancements in the molecular and cellular characterisation of the Echinococcus 'germinative cell' population, which forms a unique stem cell system that differs from stem cells of other organisms in the expression of several genes associated with the maintenance of pluripotency. As the only parasite cell type capable of undergoing mitosis, the germinative cells are central to all developmental transitions of Echinococcus within the host and to parasite expansion via asexual proliferation. In the present article, we will briefly introduce and discuss recent advances in Echinococcus genomics and stem cell research in the context of drug design and development. Interestingly, it turns out that benzimidazoles seem to have very limited effects on Echinococcus germinative cells, which could explain the high recurrence rates observed after chemotherapeutic treatment of echinococcosis patients. This clearly indicates that future efforts into the development of

  18. High-resolution simulation and forecasting of Jeddah floods using WRF version 3.5

    NASA Astrophysics Data System (ADS)

    Deng, L.; McCabe, M. F.; Stenchikov, G. L.; Evans, J. P.; Kucera, P. A.

    2013-12-01

    Modeling flash flood events in arid environments is a difficult but important task that has impacts on both water resource related issues and also emergency management and response. The challenge is often related to adequately describing the precursor intense rainfall events that cause these flood responses, as they are generally poorly simulated and forecast. Jeddah, the second largest city in the Kingdom of Saudi Arabia, has suffered from a number of flash floods over the last decade, following short-intense rainfall events. The research presented here focuses on examining four historic Jeddah flash floods (Nov. 25-26 2009, Dec. 29-30 2010, Jan. 14-15 2011 and Jan. 25-26 2011) and investigates the feasibility of using numerical weather prediction models to achieve a more realistic simulation of these flood-producing rainfall events. The Weather Research and Forecasting (WRF) model (version 3.5) is used to simulate precipitation and meteorological conditions via a high-resolution inner domain (1-km) around Jeddah. A range of different convective closure and microphysics parameterization, together with high-resolution (4-km) sea surface temperature data are employed. Through examining comparisons between the WRF model output and in-situ, radar and satellite data, the characteristics and mechanism producing the extreme rainfall events are discussed and the capacity of the WRF model to accurately forecast these rainstorms is evaluated.

  19. Predictability of Regional Climate: A Bayesian Approach to Analysing a WRF Model Ensemble

    NASA Astrophysics Data System (ADS)

    Bruyere, C. L.; Mesquita, M. D. S.; Paimazumder, D.

    2013-12-01

    This study investigates aspects of climate predictability with a focus on climatic variables and different characteristics of extremes over nine North American climatic regions and two selected Atlantic sectors. An ensemble of state-of-the-art Weather Research and Forecasting Model (WRF) simulations is used for the analysis. The ensemble is comprised of a combination of various physics schemes, initial conditions, domain sizes, boundary conditions and breeding techniques. The main objectives of this research are: 1) to increase our understanding of the ability of WRF to capture regional climate information - both at the individual and collective ensemble members, 2) to investigate the role of different members and their synergy in reproducing regional climate 3) to estimate the associated uncertainty. In this study, we propose a Bayesian framework to study the predictability of extremes and associated uncertainties in order to provide a wealth of knowledge about WRF reliability and provide further clarity and understanding of the sensitivities and optimal combinations. The choice of the Bayesian model, as opposed to standard methods, is made because: a) this method has a mean square error that is less than standard statistics, which makes it a more robust method; b) it allows for the use of small sample sizes, which are typical in high-resolution modeling; c) it provides a probabilistic view of uncertainty, which is useful when making decisions concerning ensemble members.

  20. Development of efficient GPU parallelization of WRF Yonsei University planetary boundary layer scheme

    NASA Astrophysics Data System (ADS)

    Huang, M.; Mielikainen, J.; Huang, B.; Chen, H.; Huang, H.-L. A.; Goldberg, M. D.

    2015-09-01

    The planetary boundary layer (PBL) is the lowest part of the atmosphere and where its character is directly affected by its contact with the underlying planetary surface. The PBL is responsible for vertical sub-grid-scale fluxes due to eddy transport in the whole atmospheric column. It determines the flux profiles within the well-mixed boundary layer and the more stable layer above. It thus provides an evolutionary model of atmospheric temperature, moisture (including clouds), and horizontal momentum in the entire atmospheric column. For such purposes, several PBL models have been proposed and employed in the weather research and forecasting (WRF) model of which the Yonsei University (YSU) scheme is one. To expedite weather research and prediction, we have put tremendous effort into developing an accelerated implementation of the entire WRF model using graphics processing unit (GPU) massive parallel computing architecture whilst maintaining its accuracy as compared to its central processing unit (CPU)-based implementation. This paper presents our efficient GPU-based design on a WRF YSU PBL scheme. Using one NVIDIA Tesla K40 GPU, the GPU-based YSU PBL scheme achieves a speedup of 193× with respect to its CPU counterpart running on one CPU core, whereas the speedup for one CPU socket (4 cores) with respect to 1 CPU core is only 3.5×. We can even boost the speedup to 360× with respect to 1 CPU core as two K40 GPUs are applied.

  1. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research

    SciTech Connect

    Not Available

    1992-01-01

    Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

  2. Running WRF on various distributed computing infrastructures through a standard-based Science Gateway

    NASA Astrophysics Data System (ADS)

    Barbera, Roberto; Bruno, Riccardo; La Rocca, Giuseppe; Markussen Lunde, Torleif; Pehrson, Bjorn

    2014-05-01

    The Weather Research and Forecasting (WRF) modelling system is a widely used meso-scale numerical weather prediction system designed to serve both atmospheric research and operational forecasting needs. WRF has a large worldwide community counting more than 20,000 users in 130 countries and it has been specifically designed to be the state-of-the-art atmospheric simulation system being portable and running efficiently on available parallel computing platforms. Although WRF can be executed in many different environments ranging form the single core inside a stand-alone machine up to the most sophisticated HPC platforms, there are no solutions yet to match the e-Science paradigm where software, data and users are "linked" together by the network as components of distributed computing infrastructures. The topmost component of the typical e-Science model consists of Science Gateways, defined as community-developed sets of tools, applications, and data collections that normally are integrated via a portal to get access to a distributed infrastructure. One of the many available Science Gateway solutions is the Catania Science Gateway Framework (CSGF - www.catania-science-gateways.it) whose most descriptive keywords are: standard adoption, interoperability and standard adoption. The support of standards such as SAGA and SAML allows any CSGF user to seamlessly access and use both Grid and Cloud-based resources. In this work we present the CSGF and how it has been used in the context of the eI4frica project (www.ei4africa.eu) to implement the Africa Grid Science Gateway (http://sgw.africa-grid.org), which allows to execute WRF simulations on various kinds of distributed computing infrastructures at the same time, including the EGI Federated Cloud.

  3. Comparing UCLALES-SALSA and WRF-Chem LES

    NASA Astrophysics Data System (ADS)

    Tonttila, Juha; Dunne, Eimear; Ahola, Jaakko; Korhonen, Hannele; Kokkola, Harri; Romakkaniemi, Sami

    2016-04-01

    The new UCLALES-SALSA model, which uses a sectional representation of aerosols and cloud droplets, is compared against the LES configuration of the established WRF-Chem model. Two configurations of WRF-Chem are compared: the first using the sectional MOSAIC aerosol representation, and the second using the modal MADE/SORGAM representation. Both sets of WRF-Chem simulations use the two-moment Morrisson bulk cloud scheme. Wherever possible, the three sets of simulations have identical processes and initial conditions. By comparing UCLALES-SALSA against an established model in an ideal scenario, we demonstrate that the new model provides a realistic representation of warm cloud processes. The two configurations of WRF-Chem make it possible (to an extent) to isolate whether differences in model outputs are due to meteorological or microphysical effects.

  4. WRF Simulations of the 20-22 January 2007 Snow Events over Eastern Canada: Comparison with In-Situ and Satellite Observations

    NASA Technical Reports Server (NTRS)

    Shi, J. J.; Tao, W.-K.; Matsui, T.; Cifelli, R.; Huo, A.; Lang, S.; Tokay, A.; Peters-Lidard, C.; Jackson, G.; Rutledge, S.; Petersen, W.

    2009-01-01

    One of the grand challenges of the Global Precipitation Measurement (GPM) mission is to improve cold season precipitation measurements in middle and high latitudes through the use of high-frequency passive microwave radiometry. For this, the Weather Research and Forecasting (WRF) model with the Goddard microphysics scheme is coupled with a satellite data simulation unit (WRF-SDSU) that has been developed to facilitate over-land snowfall retrieval algorithms by providing a virtual cloud library and microwave brightness temperature (Tb) measurements consistent with the GPM Microwave Imager (GMI). This study tested the Goddard cloud microphysics scheme in WRF for two snowstorm events, a lake effect and a synoptic event, that occurred between 20 and 22 January 2007 over the Canadian CloudSAT/CALIPSO Validation Project (C3VP) site in Ontario, Canada. The 24h-accumulated snowfall predicted by the WRF model with the Goddard microphysics was comparable to the observed accumulated snowfall by the ground-based radar for both events. The model correctly predicted the onset and ending of both snow events at the CARE site. WRF simulations capture the basic cloud properties as seen by the ground-based radar and satellite (i.e., CloudSAT, AMSU-B) observations as well as the observed cloud streak organization in the lake event. This latter result reveals that WRF was able to capture the cloud macro-structure reasonably well.

  5. High Resolution WRF Modeling for MATERHORN Field Campaign

    NASA Astrophysics Data System (ADS)

    Silver, Z.; Dimitrova, R.; Fernando, H. J.; Leo, L.; Di Sabatino, S.; Zsedrovits, T.

    2013-12-01

    The Weather Research and Forecasting (WRF) model was used for high resolution simulation of flow around Granite Mountain Atmospheric Sciences Testbed during MATERHORN field campaigns (www.nd.edu/~dynamics/materhorn). The aim was to provide guidance for instrument siting and map possible flow structures emanating from topographic and thermal inhomogeneities. Intriguing flow features were noted: short-lived nature of down-slope and down-valley flows due to mutual interactions between multiple nocturnal flows, drainage of cold pools between basins through sills that separate them, channelized flow expanding into nearby cold pools forming intrusions, critical (stagnation, convergence and divergence) points due to flow interactions, flow separation and wake vortices in the presence of synoptic winds, and interaction between synoptic and thermally driven flow that modifies both. The performance of the model was evaluated by comparing model predictions with observations of the two MATERHORN field campaigns (October 2012 and May 2013). This research was funded by Office of Naval Research Grant # N00014-11-1-0709.

  6. Comparison of Grid Nudging and Spectral Nudging Techniques for Dynamical Climate Downscaling within the WRF Model

    NASA Astrophysics Data System (ADS)

    Fan, X.; Chen, L.; Ma, Z.

    2010-12-01

    Climate downscaling has been an active research and application area in the past several decades focusing on regional climate studies. Dynamical downscaling, in addition to statistical methods, has been widely used in downscaling as the advanced modern numerical weather and regional climate models emerge. The utilization of numerical models enables that a full set of climate variables are generated in the process of downscaling, which are dynamically consistent due to the constraints of physical laws. While we are generating high resolution regional climate, the large scale climate patterns should be retained. To serve this purpose, nudging techniques, including grid analysis nudging and spectral nudging, have been used in different models. There are studies demonstrating the benefit and advantages of each nudging technique; however, the results are sensitive to many factors such as nudging coefficients and the amount of information to nudge to, and thus the conclusions are controversy. While in a companion work of developing approaches for quantitative assessment of the downscaled climate, in this study, the two nudging techniques are under extensive experiments in the Weather Research and Forecasting (WRF) model. Using the same model provides fair comparability. Applying the quantitative assessments provides objectiveness of comparison. Three types of downscaling experiments were performed for one month of choice. The first type is serving as a base whereas the large scale information is communicated through lateral boundary conditions only; the second is using the grid analysis nudging; and the third is using spectral nudging. Emphases are given to the experiments of different nudging coefficients and nudging to different variables in the grid analysis nudging; while in spectral nudging, we focus on testing the nudging coefficients, different wave numbers on different model levels to nudge.

  7. Advanced research equipment for fast ultraweak luminescence analysis

    NASA Astrophysics Data System (ADS)

    Tudisco, S.; Musumeci, F.; Scordino, A.; Privitera, G.

    2003-10-01

    This article describes new advanced research equipment for fast ultraweak luminescence analysis, which can detect at high sensitivity photons after ultraviolet A laser irradiation in biological probes as well as plant, animal, and human cells. The design and construction of this equipment, developed at the Southern National Laboratory of the National Nuclear Physics Institute, is described with the first experimental results and future developments. The setup, employing a photomultiplier tube working in single photon counting mode, allows accurate and reliable photoluminescence measurements with excitation wavelengths in the range 337-700 nm and the emission wavelength in the range 400-800 nm. With respect to the traditional setup, this new equipment is able to perform measurements starting at a few microseconds after the laser irradiation is switched off and with a large detection efficiency (about 10% of the total solid angle). Moreover, the adopted design assures a low background noise level. A further optimization of the system is under study, with special care for the reliability needed for the delayed luminescence for optical screening project aimed to enhance the detection of the low level photoinduced luminescence from human cells to be used as an optical biopsy technique.

  8. Hepatocyte and Sertoli Cell Aquaporins, Recent Advances and Research Trends.

    PubMed

    Bernardino, Raquel L; Marinelli, Raul A; Maggio, Anna; Gena, Patrizia; Cataldo, Ilaria; Alves, Marco G; Svelto, Maria; Oliveira, Pedro F; Calamita, Giuseppe

    2016-01-01

    Aquaporins (AQPs) are proteinaceous channels widespread in nature where they allow facilitated permeation of water and uncharged through cellular membranes. AQPs play a number of important roles in both health and disease. This review focuses on the most recent advances and research trends regarding the expression and modulation, as well as physiological and pathophysiological functions of AQPs in hepatocytes and Sertoli cells (SCs). Besides their involvement in bile formation, hepatocyte AQPs are involved in maintaining energy balance acting in hepatic gluconeogenesis and lipid metabolism, and in critical processes such as ammonia detoxification and mitochondrial output of hydrogen peroxide. Roles are played in clinical disorders including fatty liver disease, diabetes, obesity, cholestasis, hepatic cirrhosis and hepatocarcinoma. In the seminiferous tubules, particularly in SCs, AQPs are also widely expressed and seem to be implicated in the various stages of spermatogenesis. Like in hepatocytes, AQPs may be involved in maintaining energy homeostasis in these cells and have a major role in the metabolic cooperation established in the testicular tissue. Altogether, this information represents the mainstay of current and future investigation in an expanding field. PMID:27409609

  9. Hydrogen production from water: Recent advances in photosynthesis research

    SciTech Connect

    Greenbaum, E.; Lee, J.W.

    1997-12-31

    The great potential of hydrogen production by microalgal water splitting is predicated on quantitative measurement of the algae`s hydrogen-producing capability, which is based on the following: (1) the photosynthetic unit size of hydrogen production; (2) the turnover time of photosynthetic hydrogen production; (3) thermodynamic efficiencies of conversion of light energy into the Gibbs free energy of molecular hydrogen; (4) photosynthetic hydrogen production from sea water using marine algae; (5) the potential for research advances using modern methods of molecular biology and genetic engineering to maximize hydrogen production. ORNL has shown that sustained simultaneous photoevolution of molecular hydrogen and oxygen can be performed with mutants of the green alga Chlamydomonas reinhardtii that lack a detectable level of the Photosystem I light reaction. This result is surprising in view of the standard two-light reaction model of photosynthesis and has interesting scientific and technological implications. This ORNL discovery also has potentially important implications for maximum thermodynamic conversion efficiency of light energy into chemical energy by green plant photosynthesis. Hydrogen production performed by a single light reaction, as opposed to two, implies a doubling of the theoretically maximum thermodynamic conversion efficiency from {approx}10% to {approx}20%.

  10. Hepatocyte and Sertoli Cell Aquaporins, Recent Advances and Research Trends

    PubMed Central

    Bernardino, Raquel L.; Marinelli, Raul A.; Maggio, Anna; Gena, Patrizia; Cataldo, Ilaria; Alves, Marco G.; Svelto, Maria; Oliveira, Pedro F.; Calamita, Giuseppe

    2016-01-01

    Aquaporins (AQPs) are proteinaceous channels widespread in nature where they allow facilitated permeation of water and uncharged through cellular membranes. AQPs play a number of important roles in both health and disease. This review focuses on the most recent advances and research trends regarding the expression and modulation, as well as physiological and pathophysiological functions of AQPs in hepatocytes and Sertoli cells (SCs). Besides their involvement in bile formation, hepatocyte AQPs are involved in maintaining energy balance acting in hepatic gluconeogenesis and lipid metabolism, and in critical processes such as ammonia detoxification and mitochondrial output of hydrogen peroxide. Roles are played in clinical disorders including fatty liver disease, diabetes, obesity, cholestasis, hepatic cirrhosis and hepatocarcinoma. In the seminiferous tubules, particularly in SCs, AQPs are also widely expressed and seem to be implicated in the various stages of spermatogenesis. Like in hepatocytes, AQPs may be involved in maintaining energy homeostasis in these cells and have a major role in the metabolic cooperation established in the testicular tissue. Altogether, this information represents the mainstay of current and future investigation in an expanding field. PMID:27409609

  11. Review: Advances in delta-subsidence research using satellite methods

    NASA Astrophysics Data System (ADS)

    Higgins, Stephanie A.

    2016-05-01

    Most of the world's major river deltas are sinking relative to local sea level. The effects of subsidence can include aquifer salinization, infrastructure damage, increased vulnerability to flooding and storm surges, and permanent inundation of low-lying land. Consequently, determining the relative importance of natural vs. anthropogenic pressures in driving delta subsidence is a topic of ongoing research. This article presents a review of knowledge with respect to delta surface-elevation loss. The field is rapidly advancing due to applications of space-based techniques: InSAR (interferometric synthetic aperture radar), GPS (global positioning system), and satellite ocean altimetry. These techniques have shed new light on a variety of subsidence processes, including tectonics, isostatic adjustment, and the spatial and temporal variability of sediment compaction. They also confirm that subsidence associated with fluid extraction can outpace sea-level rise by up to two orders of magnitude, resulting in effective sea-level rise that is one-hundred times faster than the global average rate. In coming years, space-based and airborne instruments will be critical in providing near-real-time monitoring to facilitate management decisions in sinking deltas. However, ground-based observations continue to be necessary for generating complete measurements of surface-elevation change. Numerical modeling should seek to simulate couplings between subsidence processes for greater predictive power.

  12. Advanced Photon Source research: Volume 1, Number 1, April 1998

    SciTech Connect

    1998-04-01

    The following articles are included in this publication: (1) The Advanced Photon Source: A Brief Overview; (2) MAD Analysis of FHIT at the Structural Biology Center; (3) Advances in High-Energy-Resolution X-ray Scattering at Beamline 3-ID; (4) X-ray Imaging and Microspectroscopy of the Mycorrhyizal Fungus-Plant Symbiosis; (5) Measurement and Control of Particle-beam Trajectories in the Advanced Photon Storage Ring; (6) Beam Acceleration and Storage at the Advanced Photon Source; and (7) Experimental Facilities Operations and Current Status.

  13. Errors Characteristics of Two Grid Refinement Approaches in Aquaplanet Simulations: MPAS-A and WRF

    SciTech Connect

    Hagos, Samson M.; Leung, Lai-Yung R.; Rauscher, Sara; Ringler, Todd

    2013-09-01

    This study compares the error characteristics associated with two grid refinement approaches including global variable resolution and nesting for high resolution regional climate modeling. The global variable resolution model, Model for Prediction Across Scales-Atmosphere (MPAS-A), and the limited area model, Weather Research and Forecasting (WRF) model, are compared in an idealized aqua-planet context. For MPAS-A, simulations have been performed with a quasi-uniform resolution global domain at coarse (1°) and high (0.25°) resolution, and a variable resolution domain with a high resolution region at 0.25° configured inside a coarse resolution global domain at 1° resolution. Similarly, WRF has been configured to run on a coarse (1°) and high (0.25°) tropical channel domain as well as a nested domain with a high resolution region at 0.25° nested two-way inside the coarse resolution (1°) tropical channel. The variable resolution or nested simulations are compared against the high resolution simulations. Both models respond to increased resolution with enhanced precipitation. Limited and significant reduction in the ratio of convective to non-convective precipitation. The limited area grid refinement induces zonal asymmetry in precipitation (heating), accompanied by zonal anomalous Walker like circulations and standing Rossby wave signals. Within the high resolution limited area, the zonal distribution of precipitation is affected by advection in MPAS-A and by the nesting strategy in WRF. In both models, 20 day Kelvin waves propagate through the high-resolution domains fairly unaffected by the change in resolution (and the presence of a boundary in WRF) but increased resolution strengthens eastward propagating inertio-gravity waves.

  14. Streamflow estimation using WRF-Hydro with dynamically downscaled climate variables over southern tropical Indian region

    NASA Astrophysics Data System (ADS)

    Davis, S.; Sudheer, K. P.; Gunthe, S. S.

    2015-12-01

    Indian summer monsoon rainfall (ISMR; June to September), which constitutes around 80% of India's annual rainfall, has shown an increasing trend in intensity and frequency of extreme events (Goswami et al., 2006). It is a widely recognized fact that the increasing temperature in association with anthropogenic activities can affect the hydrological cycle, which leads to extreme events. In addition a shift in extremes of the spatial pattern of ISMR has recently been observed (Ghosh et al., 2011). Such changes in rainfall on temporal and spatial scale can further affect the stream flow over a given region subsequently making water resource management a difficult task (Mondal and Mujumdar, 2015). The hydrological models used for the stream flow estimation are dependent on various climate variables as input data. These climate variables could be obtained through either observational networks or climate model outputs. Due to the scarcity of the observational data over the Indian region and the coarse resolution of global climate model output, which is used as input to hydrologic models, large uncertainties are introduced in stream flow output (Overgaard et al., 2007). In the present study we have used the Weather Research and Forecasting (WRF) model (Skamarock et al. 2008) to downscale the essential climate variables (surface temperature, precipitation, relative humidity, etc.) as an input for its coupled hydrological extension, WRF Hydro (NCAR user's guide). We will present the results obtained from the WRF-hydro simulation to estimate the stream flow over the Thamirabarani river basin in Southern Tropical Indian region. Preliminary simulations using WRF to estimate the precipitation showed the reasonable quantitative agreement with observed values. An attempt will be made to demonstrate how these results can further be used for developing flood-forecasting techniques and for local regional water resource management.

  15. Evaluation of a regional assimilation system coupled with the WRF-chem model

    NASA Astrophysics Data System (ADS)

    Liu, Yan-an; Gao, Wei; Huang, Hung-lung; Strabala, Kathleen; Liu, Chaoshun; Shi, Runhe

    2013-09-01

    Air quality has become a social issue that is causing great concern to humankind across the globe, but particularly in developing countries. Even though the Weather Research and Forecasting with Chemistry (WRF-Chem) model has been applied in many regions, the resolution for inputting meteorology field analysis still impacts the accuracy of forecast. This article describes the application of the CIMSS Regional Assimilation System (CRAS) in East China, and its capability to assimilate the direct broadcast (DB) satellite data for obtaining more detailed meteorological information, including cloud top pressure (CTP) and total precipitation water (TPW) from MODIS. Performance evaluation of CRAS is based on qualitative and quantitative analyses. Compared with data collected from ERA-Interim, Radiosonde, and the Tropical Rainfall Measuring Mission (TRMM) precipitation measurements using bias and Root Mean Square Error (RMSE), CRAS has a systematic error due to the impact of topography and other factors; however, the forecast accuracy of all elements in the model center area is higher at various levels. The bias computed with Radiosonde reveals that the temperature and geopotential height of CRAS are better than ERA-Interim at first guess. Moreover, the location of the 24 h accumulated precipitation forecast are highly consistent with the TRMM retrieval precipitation, which means that the performance of CRAS is excellent. In summation, the newly built Vtable can realize the function of inputting the meteorology field from CRAS output into WRF, which couples the CRAS with WRF-Chem. Therefore, this study not only provides for forecast accuracy of CRAS, but also increases the capability of running the WRF-Chem model at higher resolutions in the future.

  16. Macroscopic cloud properties in the WRF NWP model: An assessment using sky camera and ceilometer data

    NASA Astrophysics Data System (ADS)

    Arbizu-Barrena, Clara; Pozo-Vázquez, David; Ruiz-Arias, José A.; Tovar-Pescador, Joaquín.

    2015-10-01

    The ability of six microphysical parameterizations included in the Weather Research and Forecasting (WRF) numerical weather prediction (NWP) model to represent various macroscopic cloud characteristics at multiple spatial and temporal resolutions is investigated. In particular, the model prediction skills of cloud occurrence, cloud base height, and cloud cover are assessed. When it is possible, the results are provided separately for low-, middle-, and high-level clouds. The microphysical parameterizations assessed are WRF single-moment six-class, Thompson, Milbrandt-Yau, Morrison, Stony Brook University, and National Severe Storms Laboratory double moment. The evaluated macroscopic cloud properties are determined based on the model cloud fractions. Two cloud fraction approaches, namely, a binary cloud fraction and a continuous cloud fraction, are investigated. Model cloud cover is determined by overlapping the vertically distributed cloud fractions following three different strategies. The evaluation is conducted based on observations gathered with a ceilometer and a sky camera located in Jaén (southern Spain). The results prove that the reliability of the WRF model mostly depends on the considered cloud parameter, cloud level, and spatiotemporal resolution. In our test bed, it is found that WRF model tends to (i) overpredict the occurrence of high-level clouds irrespectively of the spatial resolution, (ii) underestimate the cloud base height, and (iii) overestimate the cloud cover. Overall, the best cloud estimates are found for finer spatial resolutions (1.3 and 4 km with slight differences between them) and coarser temporal resolutions. The roles of the parameterization choice of the microphysics scheme and the cloud overlapping strategy are, in general, less relevant.

  17. Impact of improved soil climatology and intialization on WRF-chem dust simulations over West Asia

    NASA Astrophysics Data System (ADS)

    Omid Nabavi, Seyed; Haimberger, Leopold; Samimi, Cyrus

    2016-04-01

    Meteorological forecast models such as WRF-chem are designed to forecast not only standard atmospheric parameters but also aerosol, particularly mineral dust concentrations. It has therefore become an important tool for the prediction of dust storms in West Asia where dust storms have the considerable impact on living conditions. However, verification of forecasts against satellite data indicates only moderate skill in prediction of such events. Earlier studies have already indicated that the erosion factor, land use classification, soil moisture, and temperature initializations play a critical role in the accuracy of WRF-chem dust simulations. In the standard setting the erosion factor and land use classification are based on topographic variations and post-processed images of the advanced very high-resolution radiometer (AVHRR) during the period April 1992-March 1993. Furthermore, WRF-chem is normally initialized by the soil moisture and temperature of Final Analysis (FNL) model on 1.0x1.0 degree grids. In this study, we have changed boundary initial conditions so that they better represent current changing environmental conditions. To do so, land use (only bare soil class) and the erosion factor were both modified using information from MODIS deep blue AOD (Aerosol Optical Depth). In this method, bare soils are where the relative frequency of dust occurrence (deep blue AOD > 0.5) is more than one-third of a given month. Subsequently, the erosion factor, limited within the bare soil class, is determined by the monthly frequency of dust occurrence ranging from 0.3 to 1. It is worth to mention, that 50 percent of calculated erosion factor is afterward assigned to sand class while silt and clay classes each gain 25 percent of it. Soil moisture and temperature from the Global Land Data Assimilation System (GLDAS) were utilized to provide these initializations in higher resolution of 0.25 degree than in the standard setting. Modified and control simulations were

  18. Modifications to WRF's dynamical core to improve the treatment of moisture for large-eddy simulations

    NASA Astrophysics Data System (ADS)

    Xiao, Heng; Endo, Satoshi; Wong, May; Skamarock, William C.; Klemp, Joseph B.; Fast, Jerome D.; Gustafson, William I.; Vogelmann, Andrew M.; Wang, Hailong; Liu, Yangang; Lin, Wuyin

    2015-12-01

    Yamaguchi and Feingold (2012) note that the cloud fields in their large-eddy simulations (LESs) of marine stratocumulus using the Weather Research and Forecasting (WRF) model exhibit a strong sensitivity to time stepping choices. In this study, we reproduce and analyze this sensitivity issue using two stratocumulus cases, one marine and one continental. Results show that (1) the sensitivity is associated with spurious motions near the moisture jump between the boundary layer and the free atmosphere, and (2) these spurious motions appear to arise from neglecting small variations in water vapor mixing ratio (qv) in the pressure gradient calculation in the acoustic substepping portion of the integration procedure. We show that this issue is remedied in the WRF dynamical core by replacing the prognostic equation for the potential temperature θ with one for the moist potential temperature θm=θ(1 + 1.61qv), which allows consistent treatment of moisture in the calculation of pressure during the acoustic substeps. With this modification, the spurious motions and the sensitivity to the time stepping settings (i.e., the dynamic time step length and number of acoustic sub-steps) are eliminated in both of the example stratocumulus cases. This modification improves the applicability of WRF for LES applications, and possibly other models using similar dynamical core formulations, and also permits the use of longer time steps than in the original code.

  19. Implementation of spaceborne lidar-retrieved canopy height in the WRF model

    NASA Astrophysics Data System (ADS)

    Lee, Junhong; Hong, Jinkyu

    2016-06-01

    Canopy height is closely related to biomass and aerodynamic properties, which regulate turbulent transfer of energy and mass at the soil-vegetation-atmosphere continuum. However, this key information has been prescribed as a constant value in a fixed plant functional type in atmospheric models. This paper is the first to report impacts of using realistic forest canopy height, retrieved from spaceborne lidar, on regional climate simulation by using the canopy height data in the Weather Research and Forecasting (WRF) model's land surface model. Numerical simulations were conducted over the Amazon Basin during summer season. Over this region, the lidar-retrieved canopy heights were higher than the default values used in the WRF, which are dependent only on plant functional type. By modifying roughness length and zero-plane displacement height, the change of canopy height resulted in changes in surface energy balance by regulating aerodynamic conductances and vertical temperature gradient, thus modifying the lifting condensation level and equivalent potential temperature in the atmospheric boundary layer. Our analysis also showed that the WRF model better reproduced the observed precipitation when lidar-retrieved canopy height was used over the Amazon Basin.

  20. The Lagrangian particle dispersion model FLEXPART-WRF version 3.1

    NASA Astrophysics Data System (ADS)

    Brioude, J.; Arnold, D.; Stohl, A.; Cassiani, M.; Morton, D.; Seibert, P.; Angevine, W.; Evan, S.; Dingwell, A.; Fast, J. D.; Easter, R. C.; Pisso, I.; Burkhart, J.; Wotawa, G.

    2013-11-01

    The Lagrangian particle dispersion model FLEXPART was originally designed for calculating long-range and mesoscale dispersion of air pollutants from point sources, such that occurring after an accident in a nuclear power plant. In the meantime, FLEXPART has evolved into a comprehensive tool for atmospheric transport modeling and analysis at different scales. A need for further multiscale modeling and analysis has encouraged new developments in FLEXPART. In this paper, we present a FLEXPART version that works with the Weather Research and Forecasting (WRF) mesoscale meteorological model. We explain how to run this new model and present special options and features that differ from those of the preceding versions. For instance, a novel turbulence scheme for the convective boundary layer has been included that considers both the skewness of turbulence in the vertical velocity as well as the vertical gradient in the air density. To our knowledge, FLEXPART is the first model for which such a scheme has been developed. On a more technical level, FLEXPART-WRF now offers effective parallelization, and details on computational performance are presented here. FLEXPART-WRF output can either be in binary or Network Common Data Form (NetCDF) format, both of which have efficient data compression. In addition, test case data and the source code are provided to the reader as a Supplement. This material and future developments will be accessible at http://www.flexpart.eu.

  1. The Lagrangian particle dispersion model FLEXPART-WRF version 3.0

    NASA Astrophysics Data System (ADS)

    Brioude, J.; Arnold, D.; Stohl, A.; Cassiani, M.; Morton, D.; Seibert, P.; Angevine, W.; Evan, S.; Dingwell, A.; Fast, J. D.; Easter, R. C.; Pisso, I.; Burkhart, J.; Wotawa, G.

    2013-07-01

    The Lagrangian particle dispersion model FLEXPART was originally designed for calculating long-range and mesoscale dispersion of air pollutants from point sources, such as after an accident in a nuclear power plant. In the meantime FLEXPART has evolved into a comprehensive tool for atmospheric transport modeling and analysis at different scales. This multiscale need has encouraged new developments in FLEXPART. In this document, we present a FLEXPART version that works with the Weather Research and Forecasting (WRF) mesoscale meteorological model. We explain how to run and present special options and features that differ from its predecessor versions. For instance, a novel turbulence scheme for the convective boundary layer has been included that considers both the skewness of turbulence in the vertical velocity as well as the vertical gradient in the air density. To our knowledge, FLEXPART is the first model for which such a scheme has been developed. On a more technical level, FLEXPART-WRF now offers effective parallelization and details on computational performance are presented here. FLEXPART-WRF output can either be in binary or Network Common Data Form (NetCDF) format with efficient data compression. In addition, test case data and the source code are provided to the reader as Supplement. This material and future developments will be accessible at http://www.flexpart.eu.

  2. Numerical simulations of heavy rainfall over central Korea on 21 September 2010 using the WRF model

    NASA Astrophysics Data System (ADS)

    Byun, Ui-Yong; Hong, Jinkyu; Hong, Song-You; Shin, Hyeyum Hailey

    2015-06-01

    On 21 September 2010, heavy rainfall with a local maximum of 259 mm d-1 occurred near Seoul, South Korea. We examined the ability of the Weather Research and Forecasting (WRF) model in reproducing this disastrous rainfall event and identified the role of two physical processes: planetary boundary layer (PBL) and microphysics (MPS) processes. The WRF model was forced by 6-hourly National Centers for Environmental Prediction (NCEP) Final analysis (FNL) data for 36 hours form 1200 UTC 20 to 0000 UTC 22 September 2010. Twenty-five experiments were performed, consisting of five different PBL schemes—Yonsei University (YSU), Mellor-Yamada-Janjic (MYJ), Quasi Normal Scale Elimination (QNSE), Bougeault and Lacarrere (BouLac), and University of Washington (UW)—and five different MPS schemes—WRF Single-Moment 6-class (WSM6), Goddard, Thompson, Milbrandt 2-moments, and Morrison 2-moments. As expected, there was a specific combination of MPS and PBL schemes that showed good skill in forecasting the precipitation. However, there was no specific PBL or MPS scheme that outperformed the others in all aspects. The experiments with the UW PBL or Thompson MPS scheme showed a relatively small amount of precipitation. Analyses form the sensitivity experiments confirmed that the spatial distribution of the simulated precipitation was dominated by the PBL processes, whereas the MPS processes determined the amount of rainfall. It was also found that the temporal evolution of the precipitation was influenced more by the PBL processes than by the MPS processes.

  3. Weather Research and Forecasting Model Wind Sensitivity Study at Edwards Air Force Base, CA

    NASA Technical Reports Server (NTRS)

    Watson, Leela R.; Bauman, William H., III; Hoeth, Brian

    2009-01-01

    This abstract describes work that will be done by the Applied Meteorology Unit (AMU) in assessing the success of different model configurations in predicting "wind cycling" cases at Edwards Air Force Base, CA (EAFB), in which the wind speeds and directions oscillate among towers near the EAFB runway. The Weather Research and Forecasting (WRF) model allows users to choose among two dynamical cores - the Advanced Research WRF (ARW) and the Non-hydrostatic Mesoscale Model (NMM). There are also data assimilation analysis packages available for the initialization of the WRF model - the Local Analysis and Prediction System (LAPS) and the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS). Having a series of initialization options and WRF cores, as well as many options within each core, creates challenges for local forecasters, such as determining which configuration options are best to address specific forecast concerns. The goal of this project is to assess the different configurations available and determine which configuration will best predict surface wind speed and direction at EAFB.

  4. Modelling of a Zonda wind event in a complex terrain region using WRF

    NASA Astrophysics Data System (ADS)

    Fernandez, R. P.; Cremades, P. G.; Lakkis, G.; Allende, D. G.; Santos, R.; Puliafito, S. E.

    2012-04-01

    The air quality modeling in a regional scale requires the coupling to Numerical Weather Prediction (NWP) models, mainly when a high spatial and temporal resolution is required, such as in those cases related to large pollutants emissions episodes or extreme weather events. The Weather Research and Forecasting (WRF) is a last generation NWP model which computes temperature, pressure, humidity and wind fields in high spatial and temporal resolution. In order to perform simulations in complex terrain regions, WRF must be locally configured to obtain a proper representation of the physical processes, and an independent validation must be performed, both under common and extreme conditions. Once the local configuration is obtained, a full atmospheric chemistry modeling can be performed by means of WRF-Chem. In this work a mesoescale event of Zonda wind (similar to Foehn and Chinook winds) affecting the topographically complex mountainous region of Mendoza (Argentina) on February 15th, 2007 is represented using WRF. The model results are compared to the Argentine National Weather Service (SMN) observations at "El Plumerillo" station (WMO #87418), showing a good performance. A description of the local model configuration and most important physical parameterizations selected for the simulations is given, including the improvement of the default resolution of land use and land cover (LULC) fields. The high resolution modeling domain considered is centered at the city of Mendoza (32° 53' South, 68° 50' West), it extends 200 km N/S × 160 km E/W and includes a 3-nested domain downscaling of 36, 12 and 4 km resolution, respectively. The results for the Zonda wind episode show a very good performance of the model both in spatial and temporal scales. The temporal dew point variation (the physical variable that best describes the Zonda wind) shows a good agreement with the measured values, with a sharp decrease of 20 °C (from 16 °C to -4 °C) in 3 hours. A full 3-D regional

  5. Evolution of Mesoscale Convective System over the South Western Peninsular India: Observations from Microwave Radiometer and Simulations using WRF

    NASA Astrophysics Data System (ADS)

    Uma, K. N.; Krishna Moorthy, K.; Sijikumar, S.; Renju, R.; Tinu, K. A.; Raju, Suresh C.

    2012-07-01

    Meso-scale Convective Systems (MCS) are important in view of their large cumulous build-up, vertical extent, short horizontal extent and associated thundershowers. The Microwave Radiometer Profiler (MRP) over the equatorial coastal station Thiruvanathapuram (Trivandrum, 8.55oN, 76.9oE), has been utilized to understand the genesis of Mesoscale convective system (MCS), that occur frequently during the pre-monsoon season. Examination of the measurement of relative humidity, temperature and cloud liquid water measurements, over the zenith and two scanning elevation angles (15o) viewing both over the land and the sea respectively revealed that the MCS generally originate over the land during early afternoon hours, propagate seawards over the observational site and finally dissipate over the sea, with accompanying rainfall and latent heat release. The simulations obtained using Advanced Research-Weather Research and Forecast (WRF-ARW) model effectively reproduces the thermodynamical and microphysical properties of the MCS. The time duration and quantity of rainfall obtained by the simulations also well compared with the observations. Analysis also suggests that wind shear in the upper troposphere is responsible for the growth and the shape of the convective cloud.

  6. Advanced quantitative measurement methodology in physics education research

    NASA Astrophysics Data System (ADS)

    Wang, Jing

    The ultimate goal of physics education research (PER) is to develop a theoretical framework to understand and improve the learning process. In this journey of discovery, assessment serves as our headlamp and alpenstock. It sometimes detects signals in student mental structures, and sometimes presents the difference between expert understanding and novice understanding. Quantitative assessment is an important area in PER. Developing research-based effective assessment instruments and making meaningful inferences based on these instruments have always been important goals of the PER community. Quantitative studies are often conducted to provide bases for test development and result interpretation. Statistics are frequently used in quantitative studies. The selection of statistical methods and interpretation of the results obtained by these methods shall be connected to the education background. In this connecting process, the issues of educational models are often raised. Many widely used statistical methods do not make assumptions on the mental structure of subjects, nor do they provide explanations tailored to the educational audience. There are also other methods that consider the mental structure and are tailored to provide strong connections between statistics and education. These methods often involve model assumption and parameter estimation, and are complicated mathematically. The dissertation provides a practical view of some advanced quantitative assessment methods. The common feature of these methods is that they all make educational/psychological model assumptions beyond the minimum mathematical model. The purpose of the study is to provide a comparison between these advanced methods and the pure mathematical methods. The comparison is based on the performance of the two types of methods under physics education settings. In particular, the comparison uses both physics content assessments and scientific ability assessments. The dissertation includes three

  7. A programmable sound processor for advanced hearing aid research.

    PubMed

    McDermott, H

    1998-03-01

    A portable sound processor has been developed to facilitate research on advanced hearing aids. Because it is based on a digital signal processing integrated circuit (Motorola DSP56001), it can readily be programmed to execute novel algorithms. Furthermore, the parameters of these algorithms can be adjusted quickly and easily to suit the specific hearing characteristics of users. In the processor, microphone signals are digitized to a precision of 12 bits at a sampling rate of approximately 12 kHz for input to the DSP device. Subsequently, processed samples are delivered to the earphone by a novel, fully-digital class-D driver. This driver provides the advantages of a conventional class-D amplifier (high maximum output, low power consumption, low distortion) without some of the disadvantages (such as the need for precise analog circuitry). In addition, a cochlear implant driver is provided so that the processor is suitable for hearing-impaired people who use an implant and an acoustic hearing aid together. To reduce the computational demands on the DSP device, and therefore the power consumption, a running spectral analysis of incoming signals is provided by a custom-designed switched-capacitor integrated circuit incorporating 20 bandpass filters. The complete processor is pocket-sized and powered by batteries. An example is described of its use in providing frequency-shaped amplification for aid users with severe hearing impairment. Speech perception tests confirmed that the processor performed significantly better than the subjects' own hearing aids, probably because the digital filter provided a frequency response generally closer to the optimum for each user than the simpler analog aids. PMID:9535523

  8. Advanced Low-Noise Research Fan Stage Design

    NASA Technical Reports Server (NTRS)

    Neubert, Robert; Bock, Larry; Malmborg, Eric; Owen-Peer, William

    1997-01-01

    This report describes the design of the Advanced Low-Noise Research Fan stage. The fan is a variable pitch design, which is designed at the cruise pitch condition. Relative to the cruise setting, the blade is closed at takeoff and opened for reverse thrust operation. The fan stage is a split flow design with fan exit guide vanes (FEGVs) and core stators. The fan stage design is combined with a nacelle and engine core duct to form a powered fan/nacelle subscale model. This model is intended for use in combined aerodynamic, acoustic, and structural testing in a wind tunnel. The fan has an outer diameter of 22 in. and a hub-to-tip of 0.426 in., which allows the use of existing NASA fan and cowl force balance and rig drive systems. The design parameters were selected to permit valid acoustic and aerodynamic comparisons with the Pratt & Whitney (P&W) 17- and 22-in. rigs previously tested under NASA contract. The fan stage design is described in detail. The results of the design axisymmetric and Navier-Stokes aerodynamic analysis are presented at the critical design conditions. The structural analysis of the fan rotor and attachment is included. The blade and attachment are predicted to have adequate low-cycle fatigue life and an acceptable operating range without resonant stress or flutter. The stage was acoustically designed with airfoil counts in the FEGV and core stator to minimize noise. A fan/FEGV tone analysis developed separately under NASA contract was used to determine the optimum airfoil counts. The fan stage was matched to the existing nacelle, designed under the previous P&W low-noise contract, to form a fan/nacelle model for wind tunnel testing. It is an axisymmetric nacelle for convenience in testing and analysis. Previous testing confirmed that the nacelle performed as required at various aircraft operating conditions.

  9. SOMs-Based Analysis of WRF Extreme Daily Precipitation in Alaska

    NASA Astrophysics Data System (ADS)

    Glisan, J. M.

    2015-12-01

    We analyze daily extremes of precipitation produced with a polar-optimized version of the Advanced Weather Research and Forecasting (ARW-WRF) model that simulated 19 years on the domain developed for the Regional Arctic System (RASM) model. Analysis focuses on Alaska, because of its proximity to the Pacific and Arctic oceans, both of which provide a large moisture fetch inland. Alaska's topography also has an important impact on orographically-forced precipitation. In order to understand the circulation characteristics conducive for extreme precipitation events, we use Self-Organizing Maps (SOMs) to find general patterns of circulation behavior. The SOM algorithm employs an artificial neural network that uses an unsupervised training process. In our analysis, we use mean sea level pressure (MSLP) anomalies to train the SOM. We examine daily widespread extreme precipitation events, defined as at least 25 grid points experiencing 99th percentile precipitation. Using the SOM procedure, we map days with widespread extremes onto the SOM's array of circulation patterns. This mapping aids in determining which nodes are being accessed at higher frequencies, and hence, which circulations are more conducive to extreme events. We show that there are multiple circulation patterns responsible for extreme precipitation differentiated by where they produce extreme events in our analysis region. Additionally, we plot composites of several meteorological fields for SOM nodes being accessed by both extreme and non-extreme events to determine what specific conditions are necessary for a widespread extreme event. Composites of individual nodes (or of adjacent nodes in SOM space) produce more physically reasonable circulations as opposed to composites of all extreme events, which can include multiple synoptic circulation regimes. We also trace the temporal evolution of extreme events through SOM space. Thus, our analysis lays the groundwork for diagnosing differences in atmospheric

  10. Literary Discussions and Advanced Speaking Functions: Researching the (Dis)Connection

    ERIC Educational Resources Information Center

    Donato, Richard; Brooks, Frank B.

    2004-01-01

    This study investigated the discourse of class discussion in the advanced undergraduate Spanish literature course. Motivating this study was the need for research to determine how discussion in advanced undergraduate literature courses provides discourse opportunities to students to develop advanced language functions, as defined in the ACTFL…

  11. Toward Improved Land Surface Initialization in Support of Regional WRF Forecasts at the Kenya Meteorological Department

    NASA Technical Reports Server (NTRS)

    Case. Jonathan; Mungai, John; Sakwa, Vincent; Kabuchanga, Eric; Zavodsky, Bradley T.; Limaye, Ashutosh S.

    2014-01-01

    Flooding and drought are two key forecasting challenges for the Kenya Meteorological Department (KMD). Atmospheric processes leading to excessive precipitation and/or prolonged drought can be quite sensitive to the state of the land surface, which interacts with the boundary layer of the atmosphere providing a source of heat and moisture. The development and evolution of precipitation systems are affected by heat and moisture fluxes from the land surface within weakly-sheared environments, such as in the tropics and sub-tropics. These heat and moisture fluxes during the day can be strongly influenced by land cover, vegetation, and soil moisture content. Therefore, it is important to represent the land surface state as accurately as possible in numerical weather prediction models. Enhanced regional modeling capabilities have the potential to improve forecast guidance in support of daily operations and high-end events over east Africa. KMD currently runs a configuration of the Weather Research and Forecasting (WRF) model in real time to support its daily forecasting operations, invoking the Nonhydrostatic Mesoscale Model (NMM) dynamical core. They make use of the National Oceanic and Atmospheric Administration / National Weather Service Science and Training Resource Center's Environmental Modeling System (EMS) to manage and produce the WRF-NMM model runs on a 7-km regional grid over eastern Africa. Two organizations at the National Aeronautics and Space Administration Marshall Space Flight Center in Huntsville, AL, SERVIR and the Short-term Prediction Research and Transition (SPoRT) Center, have established a working partnership with KMD for enhancing its regional modeling capabilities. To accomplish this goal, SPoRT and SERVIR will provide experimental land surface initialization datasets and model verification capabilities to KMD. To produce a land-surface initialization more consistent with the resolution of the KMD-WRF runs, the NASA Land Information System (LIS

  12. Research Priorities in the Seminary Professorate: Scholarly Research and Academic Writing as Criterion for Rank Advancement in Graduate Theological Education

    ERIC Educational Resources Information Center

    Bell, Skip

    2005-01-01

    The purpose of this investigation was to surface definitions for scholarly research employed in Association of Theological Schools seminaries, identify the application of scholarly research as a criteria for rank advancement, and form a scholarly research productivity reference point. The research revealed that while definitions of scholarly…

  13. Modeling the Colorado Front Range Flood of 2013 with Coupled WRF and WRF-Hydro System

    NASA Astrophysics Data System (ADS)

    Unal, E.; Ramirez, J. A.

    2015-12-01

    Abstract. Flash floods are one of the most damaging natural disasters producing large socio-economic losses. Projected impacts of climate change include increases in the magnitude and the frequency of flash floods all around the world. Therefore, it is important to understand the physical processes of flash flooding to enhance our capacity for prediction, prevention, risk management, and recovery. However, understanding these processes is ambitious because of small spatial scale and sudden nature of flash floods, interactions with complex topography and land use, difficulty in defining initial soil moisture conditions, non-linearity of catchment response, and high space-time variability of storm characteristics. Thus, detailed regional case studies are needed, especially with respect to the interactions between the land surface and the atmosphere. One such flash flood event occurred recently in the Front Range of the Rocky Mountains of Colorado during September 9-15, 2013 causing 10 fatalities and $3B cost in damages. An unexpected persistent and moist weather pattern located over the mountains and produced seven-day extreme rainfall fed by moisture input from the Gulf of Mexico. We used a coupled WRF-WRF-Hydro modeling system to simulate this event for better understanding of the physical process and of the sensitivity of the hydrologic response to storm characteristics, initial soil moisture conditions, and watershed characteristics.

  14. Advances in Solar Power Forecasting

    NASA Astrophysics Data System (ADS)

    Haupt, S. E.; Kosovic, B.; Drobot, S.

    2014-12-01

    The National Center for Atmospheric Research and partners are building a blended SunCast Solar Power Forecasting system. This system includes several short-range nowcasting models and improves upon longer range numerical weather prediction (NWP) models as part of the "Public-Private-Academic Partnership to Advance Solar Power Forecasting." The nowcasting models being built include statistical learning models that include cloud regime prediction, multiple sky imager-based advection models, satellite image-based advection models, and rapid update NWP models with cloud assimilation. The team has also integrated new modules into the Weather Research and Forecasting Model (WRF) to better predict clouds, aerosols, and irradiance. The modules include a new shallow convection scheme; upgraded physics parameterizations of clouds; new radiative transfer modules that specify GHI, DNI, and DIF prediction; better satellite assimilation methods; and new aerosol estimation methods. These new physical models are incorporated into WRF-Solar, which is then integrated with publically available NWP models via the Dynamic Integrated Forecast (DICast) system as well as the Nowcast Blender to provide seamless forecasts at partner utility and balancing authority commercial solar farms. The improvements will be described and results to date discussed.

  15. Advance end-of-life treatment planning. A research review.

    PubMed

    Miles, S H; Koepp, R; Weber, E P

    1996-05-27

    The year 1996 marks the fifth anniversary of the federal Patient Self-Determination Act. The Patient Self-Determination Act required hospitals, nursing homes, and health plans to ask whether patients have advance directives and to incorporate them into the medical record. A "living will" is an advance directive by which a person tells caregivers the circumstances in which life-sustaining treatment is to be provided or forgone if the patient is unable to communicate. A "durable power of attorney for health care" enables one to designate a person to speak on his or her behalf if the author loses decision-making capacity. "Advance planning" is the process of reflection, discussion, and communication of treatment preferences for end-of-life care that precedes and may lead to an advance directive. PMID:8638992

  16. Skill Test of the West-WRF and GFS Models Verified Using CalWater Dropsonde Observations

    NASA Astrophysics Data System (ADS)

    Demirdjian, R.; Martin, A.; Ralph, F. M.; Iacobellis, S.

    2015-12-01

    Atmospheric rivers (AR) play a crucial role in the horizontal transport of water vapor and moist static energy in the midlatitudes and in delivering water to a variety of continental climate zones. In California, up to 60% of the annual precipitation depends on the arrival of a small number of AR. Despite their importance, state-of-the art atmospheric circulation models are consistently poor in predicting AR location and timing. We will demonstrate that model predictions also contain large errors in the magnitude of AR horizontal vapor transport. In this study we aim to compare the prediction skill in horizontal water vapor transport from a modified version of the Weather Research and Forecast (West-WRF) and the Global Forecast System (GFS) models. We verify model skill using dropsonde observations taken from the CalWater 2014 - 2015 field campaigns and a ground-based network of co-located wind profiling radar and GPS receivers. We compare each model across a large number of lead times ranging from 12 hours to 8 days. Our preliminary results suggest that the Integrated Vapor Transport (IVT) and total vapor flux are more accurately predicted by the higher resolution West-WRF model. Furthermore, we find that GFS typically has a consistent 2-6 hour lag in the timing of peak water vapor flux compared to the West-WRF model. Physical explanations of the more accurate West-WRF horizontal vapor transport and the apparent delay in peak vapor flux timing are also examined.

  17. WRF/Chem-MADRID: Incorporation of an Improved Aerosol Module into WRF/Chem and Its Initial Application to the TexAQS2000 Episode

    SciTech Connect

    Zhang, Yang; Pan, Ying; Wang, K.; Fast, Jerome D.; Grell, G. A.

    2010-09-17

    The Model of Aerosol Dynamics, Reaction, Ionization and Dissolution (MADRID) with three improved gas/particle mass transfer approaches (i.e., bulk equilibrium (EQUI), hybrid (HYBR), and kinetic (KINE)) has been incorporated into the Weather Research and Forecast/Chemistry Model (WRF/Chem) (referred to as WRF/Chem-MADRID) and evaluated with a 5-day episode from the 2000 Texas Air Quality Study (TexAQS2000). WRF/Chem-MADRID demonstrates an overall good skill in simulating surface/aloft meteorological parameters and chemical concentrations, tropospheric O3 residuals, and aerosol optical depths. The discrepancies can be attributed to inaccuracies in meteorological predictions (e.g., overprediction in mid-day boundary layer height), inaccurate total emissions or their hourly variations (e.g., HCHO, olefins, other inorganic aerosols), and uncertainties in initial and boundary conditions for some species (e.g., other inorganic aerosols and O3) at surface and aloft. Major differences in the results among the three gas/particle mass transfer approaches occur over coastal areas, where EQUI predicts higher PM2.5 than HYBR and KINE due to improperly redistributing condensed nitrate from chloride depletion process to fine PM mode. The net direct, semi-direct, and indirect effects of PM2.5 decreased domain wide shortwave radiation by 11.2-14.4 W m-2 (or 4.1-5.6%), decreased near-surface temperature by 0.06-0.14 °C (or 0.2-0.4%), led to 125 to 796 cm-3 cloud condensation nuclei at a supersaturation of 0.1%, produced cloud droplet numbers as high as 2064 cm-3, and reduced domain wide mean precipitation by 0.22-0.59 mm day-1.

  18. Gout: History, Research, and Recent NIH–Supported Advances | NIH MedlinePlus the Magazine

    MedlinePlus

    ... please turn Javascript on. Feature: Detecting and Treating Gout Gout: History, Research, and Recent NIH–Supported Advances Past ... History of Medicine Division, National Library of Medicine Gout—Before Modern Medicine Before medical research discovered the ...

  19. Status and future directions for advanced accelerator research - conventional and non-conventional collider concepts

    SciTech Connect

    Siemann, R.H.

    1997-01-01

    The relationship between advanced accelerator research and future directions for particle physics is discussed. Comments are made about accelerator research trends in hadron colliders, muon colliders, and e{sup +}3{sup {minus}} linear colliders.

  20. Improving the WRF model's simulation over sea ice surface through coupling with a complex thermodynamic sea ice model

    NASA Astrophysics Data System (ADS)

    Yao, Y.; Huang, J.; Luo, Y.; Zhao, Z.

    2015-12-01

    Sea ice plays an important role in the air-ice-ocean interaction, but it is often represented simply in many regional atmospheric models. The Noah sea ice model, which has been widely used in the Weather Research and Forecasting (WRF) model, exhibits cold bias in simulating the Arctic sea ice temperature when validated against the Surface Heat Budget of the Arctic Ocean (SHEBA) in situ observations. According to sensitivity tests, this bias is attributed not only to the simulation of snow depth and turbulent fluxes but also to the heat conduction within snow and ice. Compared with the Noah sea ice model, the high-resolution thermodynamic snow and ice model (HIGHTSI) has smaller bias in simulating the sea ice temperature. HIGHTSI is further coupled with the WRF model to evaluate the possible added value from better resolving the heat transport and solar penetration in sea ice from a complex thermodynamic sea ice model. The cold bias in simulating the surface temperature over sea ice in winter by the original Polar WRF is reduced when HIGHTSI rather than Noah is coupled with the WRF model, and this also leads to a better representation of surface upward longwave radiation and 2 m air temperature. A discussion on the impact of specifying sea ice thickness in the WRF model is presented. Consistent with previous research, prescribing the sea ice thickness with observational information would result in the best simulation among the available methods. If no observational information is available, using an empirical method based on the relationship between sea ice concentration and sea ice thickness could mimic the large-scale spatial feature of sea ice thickness. The potential application of a thermodynamic sea ice model in predicting the change in sea ice thickness in a RCM is limited by the lack of sea ice dynamic processes in the model and the coarse assumption on the initial value of sea ice thickness.

  1. Investigating daily summertime circulation and precipitation over West Africa with the WRF model: a regional climate model adaptation study

    NASA Astrophysics Data System (ADS)

    Noble, Erik Ulysses

    This dissertation a) evaluates the performance of the NCAR Weather and Research Forecasting (WRF) model as a West African Sahel regional-atmospheric model and b) investigates the utility of regional modeling to meeting user-needs. This work represents the beginning of an effort to adapt the model as a regional climate model (RCM) for the Sahel. Two independent studies test WRF sensitivity to 64 configurations of alternative parameterizations in a series of September simulations. In all, 104 12-day simulations during 11 consecutive years are examined. Simulated daily and mean circulation results are validated against NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) and NCEP Reanalysis-2. Modeled daily and total precipitation results are validated against NASA's Global Precipitation Climatology Project (GPCP) and Tropical Rainfall Measuring Mission (TRMM) data. Particular attention is given to westward-propagating precipitation maxima associated with transient African Easterly Waves (AEWs). A wide range of 700-hPa vorticity and daily precipitation validation scores demonstrates the influence of alternative parameterizations. The best WRF performers achieve circulation correlations against reanalysis of 0.40-0.60 and realistic amplitudes of spatiotemporal variability for the 2006 focus year, but they get time-longitude precipitation correlations (against GPCP) of between 0.35-0.42. A parallel-benchmark-simulation by the NASA Regional Model-3 (RM3) achieves higher correlations but less realistic spatiotemporal variability. The largest favorable impact on WRF vorticity and precipitation validation is achieved by selecting the Grell-Devenyi cumulus convection scheme, resulting in higher correlations against reanalysis and GPCP than simulations using the Kain-Fritch convection. Other parameterizations have less-obvious impact. A comparison of reanalysis circulation against two NASA-radiosonde stations confirms that both reanalyses represent

  2. Meeting Reports for 2013: Recent Advances in Breath Biomarker Research

    EPA Science Inventory

    This article reports the efforts of the breath research community affiliated with the International Association of Breath Research (IABR) in disseminating research results in high profile technical meetings in the United States (US). Specifically, we describe presentations at a ...

  3. Impacts of AMSU-A, MHS and IASI data assimilation on temperature and humidity forecasts with GSI-WRF over the western United States

    NASA Astrophysics Data System (ADS)

    Bao, Y.; Xu, J.; Powell, A. M., Jr.; Shao, M.; Min, J.; Pan, Y.

    2015-10-01

    Using NOAA's Gridpoint Statistical Interpolation (GSI) data assimilation system and NCAR's Advanced Research WRF (Weather Research and Forecasting) (ARW-WRF) regional model, six experiments are designed by (1) a control experiment (CTRL) and five data assimilation (DA) experiments with different data sets, including (2) conventional data only (CON); (3) microwave data (AMSU-A + MHS) only (MW); (4) infrared data (IASI) only (IR); (5) a combination of microwave and infrared data (MWIR); and (6) a combination of conventional, microwave and infrared observation data (ALL). One-month experiments in July 2012 and the impacts of the DA on temperature and moisture forecasts at the surface and four vertical layers over the western United States have been investigated. The four layers include lower troposphere (LT) from 800 to 1000 hPa, middle troposphere (MT) from 400 to 800 hPa, upper troposphere (UT) from 200 to 400 hPa, and lower stratosphere (LS) from 50 to 200 hPa. The results show that the regional GSI-WRF system is underestimating the observed temperature in the LT and overestimating in the UT and LS. The MW DA reduced the forecast bias from the MT to the LS within 30 h forecasts, and the CON DA kept a smaller forecast bias in the LT for 2-day forecasts. The largest root mean square error (RMSE) is observed in the LT and at the surface (SFC). Compared to the CTRL, the MW DA produced the most positive contribution in the UT and LS, and the CON DA mainly improved the temperature forecasts at the SFC. However, the IR DA gave a negative contribution in the LT. Most of the observed humidity in the different vertical layers is overestimated in the humidity forecasts except in the UT. The smallest bias in the humidity forecast occurred at the SFC and in the UT. The DA experiments apparently reduced the bias from the LT to UT, especially for the IR DA experiment, but the RMSEs are not reduced in the humidity forecasts. Compared to the CTRL, the IR DA experiment has a larger

  4. Advancing Intervention Science through Effectiveness Research: A Global Perspective

    ERIC Educational Resources Information Center

    Ferrer-Wreder, Laura; Adamson, Lena; Kumpfer, Karol L.; Eichas, Kyle

    2012-01-01

    Background: Effectiveness research is maturing as a field within intervention and prevention science. Effectiveness research involves the implementation and evaluation of the effectiveness of the dissemination of evidence-based interventions in everyday circumstances (i.e., type 2 translational research). Effectiveness research is characterized by…

  5. Research and development on the application of advanced control technologies to advanced nuclear reactor systems: A US national perspective

    SciTech Connect

    White, J.D.; Monson, L.R.; Carrol, D.G.; Dayal, Y.; Argonne National Lab., IL; General Electric Co., San Jose, CA )

    1989-01-01

    Control system designs for nuclear power plants are becoming more advanced through the use of digital technology and automation. This evolution is taking place because of: (1) the limitations in analog based control system performance and maintenance and availability and (2) the promise of significant improvement in plant operation and availability due to advances in digital and other control technologies. Digital retrofits of control systems in US nuclear plants are occurring now. Designs of control and protection systems for advanced LWRs are based on digital technology. The use of small inexpensive, fast, large-capacity computers in these designs is the first step of an evolutionary process described in this paper. Under the sponsorship of the US Department of Energy (DOE), Oak Ridge National Laboratory, Argonne National Laboratory, GE Nuclear Energy and several universities are performing research and development in the application of advances in control theory, software engineering, advanced computer architectures, artificial intelligence, and man-machine interface analysis to control system design. The target plant concept for the work described in this paper is the Power Reactor Inherently Safe Module reactor (PRISM), an advanced modular liquid metal reactor concept. This and other reactor designs which provide strong passive responses to operational upsets or accidents afford good opportunities to apply these advances in control technology. 18 refs., 5 figs.

  6. Advanced cogeneration research study. Survey of cogeneration potential

    NASA Technical Reports Server (NTRS)

    Slonski, M. L.

    1983-01-01

    Fifty-five facilities that consumed substantial amounts of electricity, natural gas, or fuel oil were surveyed by telephone in 1983. The primary objective of the survey was to estimate the potential electricity that could be generated in the SCE service territory using cogeneration technology. An estimated 3667 MW sub e could potentially be generated using cogenerated technology. Of this total, current technology could provide 2569 MW sub p and advanced technology could provide 1098 MW sub e. Approximately 1611 MW sub t was considered not feasible to produce electricity with either current or advanced cogeneration technology.

  7. NASA advanced turboprop research and concept validation program

    NASA Technical Reports Server (NTRS)

    Whitlow, John B., Jr.; Sievers, G. Keith

    1988-01-01

    NASA has determined by experimental and analytical effort that use of advanced turboprop propulsion instead of the conventional turbofans in the older narrow-body airline fleet could reduce fuel consumption for this type of aircraft by up to 50 percent. In cooperation with industry, NASA has defined and implemented an Advanced Turboprop (ATP) program to develop and validate the technology required for these new high-speed, multibladed, thin, swept propeller concepts. This paper presents an overview of the analysis, model-scale test, and large-scale flight test elements of the program together with preliminary test results, as available.

  8. Simulation of the electrification of a tropical cyclone using the WRF-ARW model: An idealized case

    NASA Astrophysics Data System (ADS)

    Xu, Liangtao; Zhang, Yijun; Wang, Fei; Zheng, Dong

    2014-06-01

    Evolution of the electrification of an idealized tropical cyclone (TC) is simulated by using the Advanced Weather Research and Forecasting (WRF-ARW) model. The model was modified by addition of explicit electrification and a new bulk discharge scheme. The characteristics of TC lightning is further examined by analyses of the electrification and the charge structure of the TC. The findings thus obtained are able to unify most of the previous inconsisitent observational and simulation studies. The results indicate that the TC eyewall generally exhibits an inverted dipole charge structure with negative charge above the positive. In the intensification stage, however, the extremely tall towers of the eyewall may exhibit a normal tripole structure with a main negative region between two regions of positive charge. The outer spiral rainband cells display a simple normal dipole structure during all the stages. It is further found that the differences in the charge structure are associated with different updrafts and particle distributions. Weak updrafts, together with a coexistence region of different particles at lower levels in the eyewall, result in charging processes that occur mainly in the positive graupel charging zone (PGCZ). In the intensification stage, the occurrence of charging processes in both positive and negative graupel charging zones is associated with strong updraft in the extremely tall towers. In addition, the coexistence region of graupel and ice crystals is mainly situated at upper levels in the outer rainband, so the charging processes mainly occur in the negative graupel charging zone (NGCZ).

  9. Sensitivity of the WRF model to the lower boundary in an extreme precipitation event - Madeira island case study

    NASA Astrophysics Data System (ADS)

    Teixeira, J. C.; Carvalho, A. C.; Carvalho, M. J.; Luna, T.; Rocha, A.

    2014-08-01

    The advances in satellite technology in recent years have made feasible the acquisition of high-resolution information on the Earth's surface. Examples of such information include elevation and land use, which have become more detailed. Including this information in numerical atmospheric models can improve their results in simulating lower boundary forced events, by providing detailed information on their characteristics. Consequently, this work aims to study the sensitivity of the weather research and forecast (WRF) model to different topography as well as land-use simulations in an extreme precipitation event. The test case focused on a topographically driven precipitation event over the island of Madeira, which triggered flash floods and mudslides in the southern parts of the island. Difference fields between simulations were computed, showing that the change in the data sets produced statistically significant changes to the flow, the planetary boundary layer structure and precipitation patterns. Moreover, model results show an improvement in model skill in the windward region for precipitation and in the leeward region for wind, in spite of the non-significant enhancement in the overall results with higher-resolution data sets of topography and land use.

  10. WRF model evaluation for the urban heat island assessment under varying land use/land cover and reference site conditions

    NASA Astrophysics Data System (ADS)

    Bhati, Shweta; Mohan, Manju

    2015-08-01

    Urban heat island effect in Delhi has been assessed using Weather Research and Forecasting (WRF v3.5) coupled with urban canopy model (UCM) focusing on air temperature and surface skin temperature. The estimated heat island intensities for different land use/land cover (LULC) have been compared with those derived from in situ and satellite observations. The model performs reasonably well for urban heat island intensity (UHI) estimation and is able to reproduce trend of UHI for urban areas. There is a significant improvement in model performance with inclusion of UCM which results in reduction in root mean-squared errors (RMSE) for temperatures from 1.63 °C (2.89 °C) to 1.13 °C (2.75 °C) for urban (non-urban) areas. Modification of LULC also improves performance for non-urban areas. High UHI zones and top 3 hotspots are captured well by the model. The relevance of selecting a reference point at the periphery of the city away from populated and built-up areas for UHI estimation is examined in the context of rapidly growing cities where rural areas are transforming fast into built-up areas, and reference site may not be appropriate for future years. UHI estimated by WRF model (with and without UCM) with respect to reference rural site compares well with the UHI based on observed in situ data. An alternative methodology is explored using a green area with minimum temperature within the city as a reference site. This alternative methodology works well with observed UHIs and WRF-UCM-simulated UHIs but has poor performance for WRF-simulated UHIs. It is concluded that WRF model can be applied for UHI estimation with classical methodology based on rural reference site. In general, many times WRF model performs satisfactorily, though WRF-UCM always shows a better performance. Hence, inclusion of appropriate representation of urban canopies and land use-land cover is important for improving predictive capabilities of the mesoscale models.

  11. Advances take stage - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    Regulatory advances in proteomics will be taking center stage at a Symposia scheduled to occur at the 2011 American Association for Clinical Chemistry (AACC) Annual Meeting. The symposium entitled "Enabling Translational Proteomics with NCI's Clinical Proteomic Technologies for Cancer" is scheduled for July 25, 2011 at AACC's annual Meeting.

  12. 2013 Summary of Advances in Autism Spectrum Disorder Research

    ERIC Educational Resources Information Center

    Interagency Autism Coordinating Committee, 2014

    2014-01-01

    Each year, the Interagency Autism Coordinating Committee (IACC) releases its annual list of scientific advances that represent significant progress in the field. The 20 studies selected have given new insight into the complex causes of autism and potential risk factors, studied clues that could lead to earlier diagnosis, and evaluated promising…

  13. ADVANCED COMPOSITES TECHNOLOGY CASE STUDY AT NASA LANGLEY RESEARCH CENTER

    EPA Science Inventory

    Under the Chesapeake Bay Agreement, NASA-LaRC is a member of the Tidewater Interagency Pollution Prevention Program (TIPPP). t NASA-LaRC, a technique for producing advanced composite materials without the use of solvents has been developed. his assessment was focused on the produ...

  14. Advanced Measurement Technology at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Antcliff, Richard R.

    1998-01-01

    Instrumentation systems have always been essential components of world class wind tunnels and laboratories. Langley continues to be on the forefront of the development of advanced systems for aerospace applications. This paper will describe recent advances in selected measurement systems which have had significant impact on aerospace testing. To fully understand the aerodynamics and aerothermodynamics influencing aerospace vehicles, highly accurate and repeatable measurements need to be made of critical phenomena. However, to maintain leadership in a highly competitive world market, productivity enhancement and the development of new capabilities must also be addressed aggressively. The accomplishment of these sometimes conflicting requirements has been the challenge of advanced measurement developers. However, several new technologies have recently matured to the point where they have enabled the achievement of these goals. One of the critical areas where advanced measurement systems are required is flow field velocity measurements. These measurements are required to correctly characterize the flowfield under study, to quantify the aerodynamic performance of test articles and to assess the effect of aerodynamic vehicles on their environment. Advanced measurement systems are also making great strides in obtaining planar measurements of other important thermodynamic quantities, including species concentration, temperature, pressure and the speed of sound. Langley has been on the forefront of applying these technologies to practical wind tunnel environments. New capabilities in Projection Moire Interferometry and Acoustics Array Measurement systems have extended our capabilities into the model deformation, vibration and noise measurement arenas. An overview of the status of these techniques and recent applications in practical environments will be presented in this paper.

  15. Regional Climate Model sesitivity to different parameterizations schemes with WRF over Spain

    NASA Astrophysics Data System (ADS)

    García-Valdecasas Ojeda, Matilde; Raquel Gámiz-Fortis, Sonia; Hidalgo-Muñoz, Jose Manuel; Argüeso, Daniel; Castro-Díez, Yolanda; Jesús Esteban-Parra, María

    2015-04-01

    The ability of the Weather Research and Forecasting (WRF) model to simulate the regional climate depends on the selection of an adequate combination of parameterization schemes. This study assesses WRF sensitivity to different parameterizations using six different runs that combined three cumulus, two microphysics and three surface/planetary boundary layer schemes in a topographically complex region such as Spain, for the period 1995-1996. Each of the simulations spanned a period of two years, and were carried out at a spatial resolution of 0.088° over a domain encompassing the Iberian Peninsula and nested in the coarser EURO-CORDEX domain (0.44° resolution). The experiments were driven by Interim ECMWF Re-Analysis (ERA-Interim) data. In addition, two different spectral nudging configurations were also analysed. The simulated precipitation and maximum and minimum temperatures from WRF were compared with Spain02 version 4 observational gridded datasets. The comparison was performed at different time scales with the purpose of evaluating the model capability to capture mean values and high-order statistics. ERA-Interim data was also compared with observations to determine the improvement obtained using dynamical downscaling with respect to the driving data. For this purpose, several parameters were analysed by directly comparing grid-points. On the other hand, the observational gridded data were grouped using a multistep regionalization to facilitate the comparison in term of monthly annual cycle and the percentiles of daily values analysed. The results confirm that no configuration performs best, but some combinations that produce better results could be chosen. Concerning temperatures, WRF provides an improvement over ERA-Interim. Overall, model outputs reduce the biases and the RMSE for monthly-mean maximum and minimum temperatures and are higher correlated with observations than ERA-Interim. The analysis shows that the Yonsei University planetary boundary layer

  16. Characterising Brazilian biomass burning emissions using WRF-Chem with MOSAIC sectional aerosol

    NASA Astrophysics Data System (ADS)

    Archer-Nicholls, S.; Lowe, D.; Darbyshire, E.; Morgan, W. T.; Bela, M. M.; Pereira, G.; Trembath, J.; Kaiser, J. W.; Longo, K. M.; Freitas, S. R.; Coe, H.; McFiggans, G.

    2015-03-01

    The South American Biomass Burning Analysis (SAMBBA) field campaign took detailed in situ flight measurements of aerosol during the 2012 dry season to characterise biomass burning aerosol and improve understanding of its impacts on weather and climate. Developments have been made to the Weather Research and Forecast model with chemistry (WRF-Chem) model to improve the representation of biomass burning aerosol in the region, by coupling a sectional aerosol scheme to the plume-rise parameterisation. Brazilian Biomass Burning Emissions Model (3BEM) fire emissions are used, prepared using PREP-CHEM-SRC, and mapped to CBM-Z and MOSAIC species. Model results have been evaluated against remote sensing products, AERONET sites, and four case studies of flight measurements from the SAMBBA campaign. WRF-Chem predicted layers of elevated aerosol loadings (5-20 μg sm-3) of particulate organic matter at high altitude (6-8 km) over tropical forest regions, while flight measurements showed a sharp decrease above 2-4 km altitude. This difference was attributed to the plume-rise parameterisation overestimating injection height. The 3BEM emissions product was modified using estimates of active fire size and burned area for the 2012 fire season, which reduced the fire size. The enhancement factor for fire emissions was increased from 1.3 to 5 to retain reasonable aerosol optical depths (AODs). The smaller fire size lowered the injection height of the emissions, but WRF-Chem still showed elevated aerosol loadings between 4-5 km altitude. Over eastern cerrado (savannah-like) regions, both modelled and measured aerosol loadings decreased above approximately 4 km altitude. Compared with MODIS satellite data and AERONET sites, WRF-Chem represented AOD magnitude well (between 0.3-1.5) over western tropical forest fire regions in the first half of the campaign, but tended to over-predict them in the second half, when precipitation was more significant. Over eastern cerrado regions, WRF

  17. Using a Coupled Lake Model with WRF to Improve High-Resolution Regional Climate Simulations

    NASA Astrophysics Data System (ADS)

    Mallard, M.; Bullock, R.; Nolte, C. G.; Alapaty, K.; Otte, T.; Gula, J.

    2012-12-01

    Lakes can play a significant role in regional climate by modifying air masses through fluxes of heat and moisture and by modulating inland extremes in temperature. Representing these effects becomes more important as regional climate modeling efforts employ finer grid spacing in order to simulate smaller scales. The Weather Research and Forecasting (WRF) model does not simulate lakes explicitly. Instead, lake points are treated as ocean points, with sea surface temperatures (SSTs) interpolated from the nearest neighboring ocean point in the driving coarse-scale fields. This can result in substantial errors for inland lakes such as the Great Lakes. Although prescribed lake surface temperatures (LSTs) can be used for retrospective modeling applications, this may not be desirable for applications involving downscaling future climate scenarios from a global climate model (GCM). In such downscaling simulations, lakes that impact the regional climate in the area of interest may not be resolved by the coarser global input fields. Explicitly simulating the LST would allow WRF to better represent interannual variability in regions significantly affected by lakes, and the influence of such variability on temperature and precipitation patterns. Therefore, coupling a lake model to WRF may lead to more reliable assessments of the impacts of extreme events on human health and the environment. We employ a version of WRF coupled to the Freshwater Lake model, FLake (Gula and Peltier 2012). FLake is a 1D bulk lake model which provides updated LSTs and ice coverage throughout the integration. This two-layer model uses a temperature-depth profile which includes a homogeneous mixed layer at the surface and a thermocline below. The shape of the thermocline is assumed, based on past theoretical and observational studies. Therefore, additional variables required for FLake to run are minimal, and it does not require tuning for individual lakes. These characteristics are advantageous for a

  18. Experimental Advanced Airborne Research Lidar (EAARL) Data Processing Manual

    USGS Publications Warehouse

    Bonisteel, Jamie M.; Nayegandhi, Amar; Wright, C. Wayne; Brock, John C.; Nagle, David

    2009-01-01

    The Experimental Advanced Airborne Research Lidar (EAARL) is an example of a Light Detection and Ranging (Lidar) system that utilizes a blue-green wavelength (532 nanometers) to determine the distance to an object. The distance is determined by recording the travel time of a transmitted pulse at the speed of light (fig. 1). This system uses raster laser scanning with full-waveform (multi-peak) resolving capabilities to measure submerged topography and adjacent coastal land elevations simultaneously (Nayegandhi and others, 2009). This document reviews procedures for the post-processing of EAARL data using the custom-built Airborne Lidar Processing System (ALPS). ALPS software was developed in an open-source programming environment operated on a Linux platform. It has the ability to combine the laser return backscatter digitized at 1-nanosecond intervals with aircraft positioning information. This solution enables the exploration and processing of the EAARL data in an interactive or batch mode. ALPS also includes modules for the creation of bare earth, canopy-top, and submerged topography Digital Elevation Models (DEMs). The EAARL system uses an Earth-centered coordinate and reference system that removes the necessity to reference submerged topography data relative to water level or tide gages (Nayegandhi and others, 2006). The EAARL system can be mounted in an array of small twin-engine aircraft that operate at 300 meters above ground level (AGL) at a speed of 60 meters per second (117 knots). While other systems strive to maximize operational depth limits, EAARL has a narrow transmit beam and receiver field of view (1.5 to 2 milliradians), which improves the depth-measurement accuracy in shallow, clear water but limits the maximum depth to about 1.5 Secchi disk depth (~20 meters) in clear water. The laser transmitter [Continuum EPO-5000 yttrium aluminum garnet (YAG)] produces up to 5,000 short-duration (1.2 nanosecond), low-power (70 microjoules) pulses each second

  19. Advancing the Therapeutic Massage Research Agenda(s)

    PubMed Central

    Porcino, Antony J.

    2013-01-01

    Therapeutic massage and bodywork (TMB) is now an established field of research with dedicated funding, researchers, and many venues and channels for dissemination of TMB research. Research agendas are a way for a profession to focus the development and funding of research on facets of TMB practice and education that are most needed at a given point of time to best move forward the practice and professionalization of TMB. Of the two TMB research agendas, one is currently being updated, the other is newly developed. Because of the impact on the development of the profession, gaps in research agendas also need to be carefully considered. Three areas that could use further consideration or support within the current agendas include education, methods and methodologies, and underlying assumptions. TMB researchers need to engage with and support the current agendas, and participate in their evolution. PMID:24000302

  20. ADVANCES IN DIETARY EXPOSURE RESEARCH AT THE UNITED STATES

    EPA Science Inventory

    The United States Environmental Protection Agency-National Exposure Research Laboratory's (USEPA-NERL)dietary exposure research program investigates the role of diet, including drinking water, as a potential pathway of human exposure to environmental contaminants. A primary progr...