Science.gov

Sample records for advanced reservoir simulation

  1. ADVANCED TECHNIQUES FOR RESERVOIR SIMULATION AND MODELING OF NONCONVENTIONAL WELLS

    SciTech Connect

    Louis J. Durlofsky; Khalid Aziz

    2004-08-20

    Nonconventional wells, which include horizontal, deviated, multilateral and ''smart'' wells, offer great potential for the efficient management of oil and gas reservoirs. These wells are able to contact larger regions of the reservoir than conventional wells and can also be used to target isolated hydrocarbon accumulations. The use of nonconventional wells instrumented with downhole inflow control devices allows for even greater flexibility in production. Because nonconventional wells can be very expensive to drill, complete and instrument, it is important to be able to optimize their deployment, which requires the accurate prediction of their performance. However, predictions of nonconventional well performance are often inaccurate. This is likely due to inadequacies in some of the reservoir engineering and reservoir simulation tools used to model and optimize nonconventional well performance. A number of new issues arise in the modeling and optimization of nonconventional wells. For example, the optimal use of downhole inflow control devices has not been addressed for practical problems. In addition, the impact of geological and engineering uncertainty (e.g., valve reliability) has not been previously considered. In order to model and optimize nonconventional wells in different settings, it is essential that the tools be implemented into a general reservoir simulator. This simulator must be sufficiently general and robust and must in addition be linked to a sophisticated well model. Our research under this five year project addressed all of the key areas indicated above. The overall project was divided into three main categories: (1) advanced reservoir simulation techniques for modeling nonconventional wells; (2) improved techniques for computing well productivity (for use in reservoir engineering calculations) and for coupling the well to the simulator (which includes the accurate calculation of well index and the modeling of multiphase flow in the wellbore

  2. Advanced Techniques for Reservoir Simulation and Modeling of Non-Conventional Wells

    SciTech Connect

    Durlofsky, Louis J.

    2000-08-28

    This project targets the development of (1) advanced reservoir simulation techniques for modeling non-conventional wells; (2) improved techniques for computing well productivity (for use in reservoir engineering calculations) and well index (for use in simulation models), including the effects of wellbore flow; and (3) accurate approaches to account for heterogeneity in the near-well region.

  3. Advanced Techniques for Reservoir Simulation and Modeling of Non-Conventional Wells

    SciTech Connect

    Durlofsky, Louis J.; Aziz, Khalid

    2001-08-23

    Research results for the second year of this project on the development of improved modeling techniques for non-conventional (e.g., horizontal, deviated or multilateral) wells were presented. The overall program entails the development of enhanced well modeling and general simulation capabilities. A general formulation for black-oil and compositional reservoir simulation was presented.

  4. Noble gas and hydrocarbon tracers in multiphase unconventional hydrocarbon systems: Toward integrated advanced reservoir simulators

    NASA Astrophysics Data System (ADS)

    Darrah, T.; Moortgat, J.; Poreda, R. J.; Muehlenbachs, K.; Whyte, C. J.

    2015-12-01

    Although hydrocarbon production from unconventional energy resources has increased dramatically in the last decade, total unconventional oil and gas recovery from black shales is still less than 25% and 9% of the totals in place, respectively. Further, the majority of increased hydrocarbon production results from increasing the lengths of laterals, the number of hydraulic fracturing stages, and the volume of consumptive water usage. These strategies all reduce the economic efficiency of hydrocarbon extraction. The poor recovery statistics result from an insufficient understanding of some of the key physical processes in complex, organic-rich, low porosity formations (e.g., phase behavior, fluid-rock interactions, and flow mechanisms at nano-scale confinement and the role of natural fractures and faults as conduits for flow). Noble gases and other hydrocarbon tracers are capably of recording subsurface fluid-rock interactions on a variety of geological scales (micro-, meso-, to macro-scale) and provide analogs for the movement of hydrocarbons in the subsurface. As such geochemical data enrich the input for the numerical modeling of multi-phase (e.g., oil, gas, and brine) fluid flow in highly heterogeneous, low permeability formations Herein we will present a combination of noble gas (He, Ne, Ar, Kr, and Xe abundances and isotope ratios) and molecular and isotopic hydrocarbon data from a geographically and geologically diverse set of unconventional hydrocarbon reservoirs in North America. Specifically, we will include data from the Marcellus, Utica, Barnett, Eagle Ford, formations and the Illinois basin. Our presentation will include geochemical and geological interpretation and our perspective on the first steps toward building an advanced reservoir simulator for tracer transport in multicomponent multiphase compositional flow (presented separately, in Moortgat et al., 2015).

  5. Geothermal reservoir simulation

    NASA Technical Reports Server (NTRS)

    Mercer, J. W., Jr.; Faust, C.; Pinder, G. F.

    1974-01-01

    The prediction of long-term geothermal reservoir performance and the environmental impact of exploiting this resource are two important problems associated with the utilization of geothermal energy for power production. Our research effort addresses these problems through numerical simulation. Computer codes based on the solution of partial-differential equations using finite-element techniques are being prepared to simulate multiphase energy transport, energy transport in fractured porous reservoirs, well bore phenomena, and subsidence.

  6. Interactive reservoir simulation

    SciTech Connect

    Regtien, J.M.M. Por, G.J.A.; Stiphout, M.T. van; Vlugt, F.F. van der

    1995-12-31

    Shell`s new Modular Reservoir Simulator (MoReS) has been equipped with a comprehensive and versatile user interface called FrontEnd. Apart from providing a user-friendly environment for interactive reservoir simulation, FrontEnd serves a software platform for other dynamic simulation and reservoir-engineering applications. It offers to all supported applications a common user interface, enables the re-use of code and reduces overall maintenance and support costs associated with the embedded applications. Because of its features, FrontEnd facilitates the transfer of research results in the form of operational software to end users. When coupled with MoReS, FrontEnd can be used for pre- and post-processing and interactive simulation. The pre-processing options allow data to be inputted by means of various OSF/Motif widgets containing a spreadsheet, text editors, dialogues and graphical input. The display of the input data as well as the post-processing of all simulation results is made possible by a variety of user-defined plot of tabular (e.g. timestep summary) and array (simulation grid) data. During a simulation user-defined plots can be displayed and edited, allowing a close inspection of the results as they are being calculated. FrontEnd has been equipped with a powerful input command language, which gives the batch user as much flexibility and control over the input as the interactive user.

  7. Application of advanced reservoir characterization, simulation and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Annual report

    SciTech Connect

    Dutton, S.P.; Asquith, G.B.; Barton, M.D.; Cole, A.G.; Gogas, J.; Malik, M.A.; Clift, S.J.; Guzman, J.I.

    1997-11-01

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. This project involves reservoir characterization of two Late Permian slope and basin clastic reservoirs in the Delaware Basin, West Texas, followed by a field demonstration in one of the fields. The fields being investigated are Geraldine Ford and Ford West fields in Reeves and Culberson Counties, Texas. Project objectives are divided into two major phases, reservoir characterization and implementation. The objectives of the reservoir characterization phase of the project were to provide a detailed understanding of the architecture and heterogeneity of the two fields, the Ford Geraldine unit and Ford West field. Reservoir characterization utilized 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once reservoir characterized was completed, a pilot area of approximately 1 mi{sup 2} at the northern end of the Ford Geraldine unit was chosen for reservoir simulation. This report summarizes the results of the second year of reservoir characterization.

  8. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Technical progress report

    SciTech Connect

    Dutton, S.P.

    1996-04-30

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. One the reservoir-characterization study of both field is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to: (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area; (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments; and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced recovery program (CO{sub 2} flood, waterflood, or polymer flood) and well-completion program will be developed, and one to three infill well will be drilled and cored. Technical progress is summarized for: geophysical characterization; reservoir characterization; outcrop characterization; and producibility problem characterization.

  9. Integration of reservoir simulation and geomechanics

    NASA Astrophysics Data System (ADS)

    Zhao, Nan

    Fluid production from tight and shale gas formations has increased significantly, and this unconventional portfolio of low-permeability reservoirs accounts for more than half of the gas produced in the United States. Stimulation and hydraulic fracturing are critical in making these systems productive, and hence it is important to understand the mechanics of the reservoir. When modeling fractured reservoirs using discrete-fracture network representation, the geomechanical effects are expected to have a significant impact on important reservoir characteristics. It has become more accepted that fracture growth, particularly in naturally fractured reservoirs with extremely low permeability, cannot be reliably represented by conventional planar representations. Characterizing the evolution of multiple, nonplanar, interconnected and possibly nonvertical hydraulic fractures requires hydraulic and mechanical characterization of the matrix, as well as existing latent or healed fracture networks. To solve these challenging problems, a reservoir simulator (Advanced Reactive Transport Simulator (ARTS)) capable of performing unconventional reservoir simulation is developed in this research work. A geomechanical model has been incorporated into the simulation framework with various coupling schemes and this model is used to understand the geomechanical effects in unconventional oil and gas recovery. This development allows ARTS to accept geomechanical information from external geomechanical simulators (soft coupling) or the solution of the geomechanical coupled problem (hard coupling). An iterative solution method of the flow and geomechanical equations has been used in implementing the hard coupling scheme. The hard coupling schemes were verified using one-dimensional and two-dimensional analytical solutions. The new reservoir simulator is applied to learn the influence of geomechanical impact on unconventional oil and gas production in a number of practical recovery scenarios

  10. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin), Class III

    SciTech Connect

    Dutton, Shirley P.; Flanders, William A.

    2001-11-04

    The objective of this Class III project was demonstrate that reservoir characterization and enhanced oil recovery (EOR) by CO2 flood can increase production from slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico. Phase 1 of the project, reservoir characterization, focused on Geraldine Ford and East Ford fields, which are Delaware Mountain Group fields that produce from the upper Bell Canyon Formation (Ramsey sandstone). The demonstration phase of the project was a CO2 flood conducted in East Ford field, which is operated by Orla Petco, Inc., as the East Ford unit.

  11. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin)

    SciTech Connect

    Dutton, S.P.; Flanders, W.A.; Guzman, J.I.; Zirczy, H.

    1999-06-08

    The objective of this Class III project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover a higher percentage of the original oil in place through geologically based field development. This year the project focused on reservoir characterization of the East Ford unit, a representative Delaware Mountain Group field that produces from the upper Bell Canyon Formation (Ramsey Sandstone). The field, discovered in 1960, is operated by Orla Petco, Inc., as the East Ford unit; it contained an estimated 19.8 million barrels (MMbbl) of original oil in place. Petrophysical characterization of the East Ford unit was accomplished by integrating core and log data and quantifying petrophysical properties from wireline logs. Most methods of petrophysical analysis that had been developed during an earlier study of the Ford Geraldine unit were successfully transferred to the East Ford unit. The approach that was used to interpret water saturation from resistivity logs, however, had to be modified because in some East Ford wells the log-calculated water saturation was too high and inconsistent with observations made during the actual production. Log-porosity to core-porosity transforms and core-porosity to core-permeability transforms were derived from the East Ford reservoir. The petrophysical data were used to map porosity, permeability, net pay, water saturation, mobil-oil saturation, and other reservoir properties.

  12. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin), Class III

    SciTech Connect

    Dutton, Shirley P.; Flanders, William A.; Zirczy, Helena H.

    2000-05-24

    The objective of this Class 3 project was to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Phase 1 of the project, reservoir characterization, was completed this year, and Phase 2 began. The project is focused on East Ford field, a representative Delaware Mountain Group field that produces from the upper Bell Canyon Formation (Ramsey sandstone). The field, discovered in 1960, is operated by Oral Petco, Inc., as the East Ford unit. A CO{sub 2} flood is being conducted in the unit, and this flood is the Phase 2 demonstration for the project.

  13. Evolution of analyzing reservoir simulation data

    SciTech Connect

    Phelps, R.E.; Huang, A.Y.

    1994-12-31

    Numerical Reservoir Simulation is routinely used by the petroleum producing companies world-wide as an engineering tool to efficiently manage their hydrocarbon reservoirs. The task of building models with a large number of grid-blocks is not easy, and to analyze the voluminous results produced by such models is even more difficult. This paper discusses the historical evolution of techniques used to analyze reservoir simulation data over the past decade. It outlines how the advancement of workstation technology and the introduction of X-Window System opened up an entirely new way of utilizing mainframe computing power and workstation graphical display capabilities, simultaneously. The paper also discusses Saudi Aramco`s experience in the development of sophisticated reservoir simulation post-processing packages. The need for direct communication between the programmer and end-users to facilitate a user-friendly package is emphasized. A practical example illustrating the benefit of these post-processing packages in the construction and history matching of a large model with approximately 52,000 cells is presented. Savings in manpower and computer resources using current technology are estimated.

  14. Evolution of analyzing reservoir simulation data

    SciTech Connect

    Phelps, R.E.; Huang, A.Y.

    1995-12-01

    Petroleum-producing companies world-wide routinely use numerical reservoir simulation as an engineering tool to manage their hydrocarbon reservoirs efficiently. The task of building models with a large number of gridblocks is not easy, and analyzing the voluminous results produced by such models is even more difficult. This paper discusses the historical evolution of techniques used to analyze reservoir simulation data over the past decade. It outlines how the advancement of workstation technology and the introduction of an X-Window system opened up an entirely new way of using mainframe computing power and workstation graphical display capabilities simultaneously. The paper also discusses Saudi Aramco`s experience in the development of sophisticated reservoir simulation postprocessing packages. The authors emphasize the need for direct communication between the programmer and end users to facilitate a user-friendly package. They present a practical example illustrating the benefit of these postprocessing packages in the construction and history matching of a large model with approximately 52,000 cells. They estimate savings in manpower and computer resources using current technology.

  15. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin), Class III

    SciTech Connect

    Dutton, Shirley P.; Flanders, William A.; Mendez, Daniel L.

    2001-05-08

    The objective of this Class 3 project was demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstone's of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover oil more economically through geologically based field development. This project was focused on East Ford field, a Delaware Mountain Group field that produced from the upper Bell Canyon Formation (Ramsey sandstone). The field, discovered in 9160, is operated by Oral Petco, Inc., as the East Ford unit. A CO2 flood was being conducted in the unit, and this flood is the Phase 2 demonstration for the project.

  16. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin)

    SciTech Connect

    Andrew G. Cole; George B. Asquith; Jose I. Guzman; Mark D. Barton; Mohammad A. Malik; Shirley P. Dutton; Sigrid J. Clift

    1998-04-01

    The objective of this Class III project is to demonstrate that detailed reservoir characterization of clastic reservoirs in basinal sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover more of the original oil in place by strategic infill-well placement and geologically based enhanced oil recovery. The study focused on the Ford Geraldine unit, which produces from the upper Bell Canyon Formation (Ramsey sandstone). Reservoirs in this and other Delaware Mountain Group fields have low producibility (average recovery <14 percent of the original oil in place) because of a high degree of vertical and lateral heterogeneity caused by depositional processes and post-depositional diagenetic modification. Outcrop analogs were studied to better interpret the depositional processes that formed the reservoirs at the Ford Geraldine unit and to determine the dimensions of reservoir sandstone bodies. Facies relationships and bedding architecture within a single genetic unit exposed in outcrop in Culberson County, Texas, suggest that the sandstones were deposited in a system of channels and levees with attached lobes that initially prograded basinward, aggraded, and then turned around and stepped back toward the shelf. Channel sandstones are 10 to 60 ft thick and 300 to 3,000 ft wide. The flanking levees have a wedge-shaped geometry and are composed of interbedded sandstone and siltstone; thickness varies from 3 to 20 ft and length from several hundred to several thousands of feet. The lobe sandstones are broad lens-shaped bodies; thicknesses range up to 30 ft with aspect ratios (width/thickness) of 100 to 10,000. Lobe sandstones may be interstratified with laminated siltstones.

  17. Petroleum reservoir data for testing simulation models

    SciTech Connect

    Lloyd, J.M.; Harrison, W.

    1980-09-01

    This report consists of reservoir pressure and production data for 25 petroleum reservoirs. Included are 5 data sets for single-phase (liquid) reservoirs, 1 data set for a single-phase (liquid) reservoir with pressure maintenance, 13 data sets for two-phase (liquid/gas) reservoirs and 6 for two-phase reservoirs with pressure maintenance. Also given are ancillary data for each reservoir that could be of value in the development and validation of simulation models. A bibliography is included that lists the publications from which the data were obtained.

  18. Next generation oil reservoir simulations

    SciTech Connect

    Joubert, W.

    1996-04-01

    This paper describes a collaborative effort between Amoco Production Company, Los Alamos National Laboratory and Cray Research Inc. to develop a next-generation massively parallel oil reservoir simulation code. The simulator, code-named Falcon, enables highly detailed simulations to be performed on a range of platforms such as the Cray T3D and T3E. The code is currently being used by Amoco to perform a sophisticated field study using multiple geostatistical realizations on a scale of 2-5 million grid blocks and 1000-2000 wells. In this paper we discuss the nature of this collaborative effort, the software design and engineering aspects of the code, parallelization experiences, and performance studies. The code will be marketed to the oil industry by a third-party independent software vendor in mid-1996.

  19. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Quarterly report, October 1 - December 31, 1996

    SciTech Connect

    Dutton, S.P.

    1997-01-01

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once the reservoir-characterization study of both fields is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area, (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments, and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced-recovery program (CO{sub 2} flood, waterflood, or polymer flood) and well-completion program will be developed, and one to three infill wells will be drilled and cored. Technical progress is summarized for: geophysical characterization; reservoir characterization; outcrop characterization; and recovery technology identification and analysis.

  20. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Quarterly report, April 1,1996 - June 30, 1996

    SciTech Connect

    Dutton, S.P.

    1996-07-01

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once the reservoir- characterization study of both fields is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area, (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments, and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced-recovery program (CO{sub 2} flood, waterflood, or polymer flood) and well-completion program will be developed, and one to three infill wells will be drilled and cored. Progress to date is summarized for reservoir characterization.

  1. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SANANDRES RESERVOIR

    SciTech Connect

    Unknown

    2003-01-15

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; (7) Mobility control agents.

  2. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Quarterly report, July 1 - September 30, 1996

    SciTech Connect

    Dutton, S.P.

    1996-10-01

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once the reservoir- characterization study of both fields is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area, (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments, and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced-recovery program (CO{sup 2} flood, waterflood, or polymer flood) and well-completion program will be developed, and one to three infill wells will be drilled and cored. Accomplishments for this past quarter are discussed.

  3. Feasibility study of sedimentary enhanced geothermal systems using reservoir simulation

    NASA Astrophysics Data System (ADS)

    Cho, Jae Kyoung

    investigated. Especially, water density, viscosity and rock heat capacity play a significant role in reservoir performance. The Permian Lyons formation in the Denver Basin is selected for this preliminary study. Well log data around the area of interest are collected and borehole temperature data are analyzed to estimate the geothermal potential of the target area and it follows that the target formation has a geothermal gradient as high as 72 °C/km. Based on the well log data, hypothetical reservoir simulation models are build and tested to access the hydraulic and thermal performance. It turns out that the target formation is marginally or sub-marginally commercial in terms of its formation conductivity. Therefore, the target formation may require reservoir stimulation for commercially viable power generation. Lastly, reservoir simulation models with average petrophysical properties obtained from the well log analysis of the target formation are built. In order to account for overburden and underburden heat transfer for confined reservoirs, low permeability layers representing shale cap/bed rocks are attached to the top and bottom of the reservoir layers. The dual permeability concept is applied to the reservoir layers to model induced fracture networks by reservoir stimulation. The simulation models are tested by changing fracture conductivity and shape factor. The results show that a balance between hydraulic and thermal performance should be achieved to meet the target flow rate and sustainability of 30 years' uninterrupted operation of geothermal electricity power generation. Ineffective reservoir stimulation could result in failing to create a producing reservoir with appropriate productivity index or causing premature thermal breakthrough or short-circuiting which advances the end of geothermal systems. Therefore, Enhanced Geothermal Systems (EGS) should be engineered to secure producing performance and operational sustainability simultaneously.

  4. SMALL, GEOLOGICALLY COMPLEX RESERVOIRS CAN BENEFIT FROM RESERVOIR SIMULATION

    SciTech Connect

    Richard E. Bennett

    2002-06-24

    on, and an expansion of the scope of the reservoir simulation and modeling effort was initiated, using DOE's BOAST98 (a visual, dynamic, interactive update of BOAST3), 3D, black oil reservoir simulation package as the basis for developing the reservoir model. Reservoir characterization, modeling, and reservoir simulation resulted in a significant change in the depletion strategy. Information from the reservoir characterization and modeling effort indicate that in-fill drilling and relying on natural water influx from the aquifer could increase remaining reserves by 125,000 barrels of oil per well, and that up to 10 infill wells could be drilled in the field. Through this scenario, field production could be increased two to three times over the current 65 bopd. Based on the results of the study, permits have been applied for to drill a directional infill well to encounter the productive zone at a high angle in order to maximize the amount of pay and reservoirs encountered.

  5. 13. Symposium on reservoir simulation: Proceedings

    SciTech Connect

    1995-12-31

    This is a conference proceedings which deals with the latest developments and trends in reservoir simulation techniques and modeling. It includes papers dealing with multiphase flow in oil and gas wells; flow calculation methods in deviated and horizontal wells; fluid flow in fractured reservoirs; and simulation techniques for enhanced recovery and well stimulation processes. Most papers provide case studies using the various computer models or computer systems, including numerous studies on parallel processing equipment.

  6. An integrated data model for reservoir simulation

    SciTech Connect

    Aydelotte, S.R.

    1994-02-01

    This paper describes the capability of the Epicenter data model to manage reservoir-simulation information, including the spatial model used to describe the properties of the earth and the product-flow network mode used to describe production performance. In addition to data values, the data model describes data creation and quality and provides a reliable means of understanding the source. To use the data model, reservoir-simulation applications need to be rewritten to conform to the data-model nomenclature and conventions. While this is a significant task, the benefit to reservoir simulation practitioners and vendors includes integration of technical applications (such as mapping, well logging, and geophysical interpretation systems), data portability (allowing Vendor A's simulator to use data prepared by Vendor B's preprocessor), and interpretability such as using a third-party optimization package to conduct a series of simulations.

  7. A CUDA based parallel multi-phase oil reservoir simulator

    NASA Astrophysics Data System (ADS)

    Zaza, Ayham; Awotunde, Abeeb A.; Fairag, Faisal A.; Al-Mouhamed, Mayez A.

    2016-09-01

    Forward Reservoir Simulation (FRS) is a challenging process that models fluid flow and mass transfer in porous media to draw conclusions about the behavior of certain flow variables and well responses. Besides the operational cost associated with matrix assembly, FRS repeatedly solves huge and computationally expensive sparse, ill-conditioned and unsymmetrical linear system. Moreover, as the computation for practical reservoir dimensions lasts for long times, speeding up the process by taking advantage of parallel platforms is indispensable. By considering the state of art advances in massively parallel computing and the accompanying parallel architecture, this work aims primarily at developing a CUDA-based parallel simulator for oil reservoir. In addition to the initial reported 33 times speed gain compared to the serial version, running experiments showed that BiCGSTAB is a stable and fast solver which could be incorporated in such simulations instead of the more expensive, storage demanding and usually utilized GMRES.

  8. Models for naturally fractured, carbonate reservoir simulations

    SciTech Connect

    Tuncay, K.; Park, A.; Ozkan, G.; Zhan, X.; Ortoleva, P.; Hoak, T.; Sundberg, K.

    1998-12-31

    This report outlines the need for new tools for the simulation of fractured carbonate reservoirs. Several problems are identified that call for the development of new reservoir simulation physical models and numerical techniques. These include: karst and vuggy media wherein Darcy`s and traditional multi-phase flow laws do not apply; the need for predicting the preproduction state of fracturing and stress so that the later response of effective stress-dependent reservoirs can be predicted; and methods for predicting the fracturing and collapse of vuggy and karst reservoirs in response to draw-down pressure created during production. Specific research directions for addressing each problem are outlined and preliminary results are noted.

  9. An Advanced Reservoir Simulator for Tracer Transport in Multicomponent Multiphase Compositional Flow and Applications to the Cranfield CO2 Sequestration Site

    NASA Astrophysics Data System (ADS)

    Moortgat, J.

    2015-12-01

    Reservoir simulators are widely used to constrain uncertainty in the petrophysical properties of subsurface formations by matching the history of injection and production data. However, such measurements may be insufficient to uniquely characterize a reservoir's properties. Monitoring of natural (isotopic) and introduced tracers is a developing technology to further interrogate the subsurface for applications such as enhanced oil recovery from conventional and unconventional resources, and CO2 sequestration. Oak Ridge National Laboratory has been piloting this tracer technology during and following CO2 injection at the Cranfield, Mississippi, CO2 sequestration test site. Two campaigns of multiple perfluorocarbon tracers were injected together with CO2 and monitored at two wells at 68 m and 112 m from the injection site. The tracer data suggest that multiple CO2 flow paths developed towards the monitoring wells, indicative of either channeling through high permeability pathways or of fingering. The results demonstrate that tracers provide an important complement to transient pressure data. Numerical modeling is essential to further explain and interpret the observations. To aid the development of tracer technology, we enhanced a compositional multiphase reservoir simulator to account for tracer transport. Our research simulator uses higher-order finite element (FE) methods that can capture the small-scale onset of fingering on the coarse grids required for field-scale modeling, and allows for unstructured grids and anisotropic heterogeneous permeability fields. Mass transfer between fluid phases and phase behavior are modeled with rigorous equation-of-state based phase-split calculations. We present our tracer simulator and preliminary results related to the Cranfield experiments. Applications to noble gas tracers in unconventional resources are presented by Darrah et al.

  10. Different pressure grids for reservoir simulation in heterogeneous reservoirs

    SciTech Connect

    Guerillot, D.R.; Verdiere, S.

    1995-12-31

    Petroleum reservoirs are made of highly heterogeneous rocks. These reservoirs could be described by geostatistical models composed of millions of cells. Currently, fluid flow simulations performed within these media need upscaling (or averaging) techniques. Hence, their results are given by averaging on cells which are much larger than the geological model cells. To overcome this problem, the Dual Mesh Method is proposed here, whose purpose is to solve the pressure equation on a low resolution grid, and then to interpolate pressure over the fine mesh by taking into account small scale heterogeneities of the mediums. The aim of this paper is the interpolation step; its implementation is presented and illustrated in a five-spot pattern for three different rock characteristics.

  11. Massachusetts reservoir simulation tool—User’s manual

    USGS Publications Warehouse

    Levin, Sara B.

    2016-10-06

    IntroductionThe U.S. Geological Survey developed the Massachusetts Reservoir Simulation Tool to examine the effects of reservoirs on natural streamflows in Massachusetts by simulating the daily water balance of reservoirs. The simulation tool was developed to assist environmental managers to better manage water withdrawals in reservoirs and to preserve downstream aquatic habitats.

  12. Wavelet based Simulation of Reservoir Flow

    NASA Astrophysics Data System (ADS)

    Siddiqi, A. H.; Verma, A. K.; Noor-E-Zahra, Noor-E.-Zahra; Chandiok, Ashish; Hasan, A.

    2009-07-01

    Petroleum reservoirs consist of hydrocarbons and other chemicals trapped in the pores of a rock. The exploration and production of hydrocarbon reservoirs is still the most important technology to develop natural energy resources. Therefore, fluid flow simulators play a key role in order to help oil companies. In fact, simulation is the most important tool to model changes in a reservoir over the time. The main problem in petroleum reservoir simulation is to model the displacement of one fluid by another within a porous medium. A typical problem is characterized by the injection of a wetting fluid, for example water into the reservoir at a particular location displacing to the non wetting fluid, for example oil, which is extracted or produced at another location. Buckley-Leverett equation [1] models this process and its numerical simulation and visualization is of paramount importance. There are several numerical methods applied for numerical solution of partial differential equations modeling real world problems. We review in this paper the numerical solution of Buckley-Leverett equation for flat and non flat structures with special focus on wavelet method. We also indicate a few new avenues for further research.

  13. Petroleum reservoir simulation in a virtual environment

    SciTech Connect

    Jacobsen, J.S.; Bethel, E.W.; Datta-Gupta, A.; Holland, P.J.

    1995-12-31

    In this paper, the authors describe an approach to combining a reservoir simulation with 3-D visualization and virtual reality technology. Their prototype VR/visualization system minimizes human-machine interface barriers and provides enhanced control over the simulation, thereby maximizing scientific judgment and use of intuition. They illustrate the practical advantage of using the VR/visualization prototype system in reservoir engineering by visualizing the results of a waterflood in an oil field with a three-dimensional, spatially correlated heterogeneous permeability field.

  14. A chemical EOR benchmark study of different reservoir simulators

    NASA Astrophysics Data System (ADS)

    Goudarzi, Ali; Delshad, Mojdeh; Sepehrnoori, Kamy

    2016-09-01

    Interest in chemical EOR processes has intensified in recent years due to the advancements in chemical formulations and injection techniques. Injecting Polymer (P), surfactant/polymer (SP), and alkaline/surfactant/polymer (ASP) are techniques for improving sweep and displacement efficiencies with the aim of improving oil production in both secondary and tertiary floods. There has been great interest in chemical flooding recently for different challenging situations. These include high temperature reservoirs, formations with extreme salinity and hardness, naturally fractured carbonates, and sandstone reservoirs with heavy and viscous crude oils. More oil reservoirs are reaching maturity where secondary polymer floods and tertiary surfactant methods have become increasingly important. This significance has added to the industry's interest in using reservoir simulators as tools for reservoir evaluation and management to minimize costs and increase the process efficiency. Reservoir simulators with special features are needed to represent coupled chemical and physical processes present in chemical EOR processes. The simulators need to be first validated against well controlled lab and pilot scale experiments to reliably predict the full field implementations. The available data from laboratory scale include 1) phase behavior and rheological data; and 2) results of secondary and tertiary coreflood experiments for P, SP, and ASP floods under reservoir conditions, i.e. chemical retentions, pressure drop, and oil recovery. Data collected from corefloods are used as benchmark tests comparing numerical reservoir simulators with chemical EOR modeling capabilities such as STARS of CMG, ECLIPSE-100 of Schlumberger, REVEAL of Petroleum Experts. The research UTCHEM simulator from The University of Texas at Austin is also included since it has been the benchmark for chemical flooding simulation for over 25 years. The results of this benchmark comparison will be utilized to improve

  15. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    SciTech Connect

    Raj Kumar; Keith Brown; T. Scott Hickman; James J. Justice

    2000-04-27

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

  16. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    SciTech Connect

    T. Scott Hickman; James J. Justice

    2001-12-11

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

  17. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    SciTech Connect

    T. Scott Hickman

    2003-01-17

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

  18. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    SciTech Connect

    T. Scott Hickman; James J. Justice

    2001-08-10

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

  19. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    SciTech Connect

    T. Scott Hickman; James J. Justice

    2001-06-16

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

  20. Rabi multi-sector reservoir simulation model

    SciTech Connect

    Bruijnzeels, C.; O`Halloran, C.

    1995-12-31

    To ensure optimum ultimate recovery of the 46 meter thick oil rim of the Rabi Field in Gabon, a full field simulation model was required. Due to it`s size and complexity, with local cusping, coning and geological circumstances dominating individual well behavior, a single full field model would be too large for existing hardware. A method was developed to simulate the full field with 5 separate sector models, whilst allowing the development in one sector model to have an effect on the boundary conditions of another sector. In this manner, the 13 x 4.5 km field could be simulated with a horizontal well spacing down to 175 meter. This paper focuses on the method used to attach single 3-phase tank cells to a sector simulation grid in order to represent non-simulated parts of the field. It also describes the history matching methodology and how to run a multisector model in forecasting mode. This method can be used for any reservoir, where size and complexity require large reservoir simulation models that normally could not be modeled within the constraints of available computer facilities. Detailed studies can be conducted on specific parts of a field, whilst allowing for dynamic flow and pressure effects caused by the rest of the field.

  1. Compositional reservoir simulation in parallel supercomputing environments

    SciTech Connect

    Briens, F.J.L. ); Wu, C.H. ); Gazdag, J.; Wang, H.H. )

    1991-09-01

    A large-scale compositional reservoir simulation ({gt}1,000 cells) is not often run on a conventional mainframe computer owing to excessive turnaround times. This paper presents programming and computational techniques that fully exploit the capabilities of parallel supercomputers for a large-scale compositional simulation. A novel algorithm called sequential staging of tasks (SST) that can take full advantage of parallel-vector processing to speed up the solution of a large linear system is introduced. The effectiveness of SST is illustrated with results from computer experiments conducted on an IBM 3090-600E.

  2. Multigrid methods with applications to reservoir simulation

    SciTech Connect

    Xiao, Shengyou

    1994-05-01

    Multigrid methods are studied for solving elliptic partial differential equations. Focus is on parallel multigrid methods and their use for reservoir simulation. Multicolor Fourier analysis is used to analyze the behavior of standard multigrid methods for problems in one and two dimensions. Relation between multicolor and standard Fourier analysis is established. Multiple coarse grid methods for solving model problems in 1 and 2 dimensions are considered; at each coarse grid level we use more than one coarse grid to improve convergence. For a given Dirichlet problem, a related extended problem is first constructed; a purification procedure can be used to obtain Moore-Penrose solutions of the singular systems encountered. For solving anisotropic equations, semicoarsening and line smoothing techniques are used with multiple coarse grid methods to improve convergence. Two-level convergence factors are estimated using multicolor. In the case where each operator has the same stencil on each grid point on one level, exact multilevel convergence factors can be obtained. For solving partial differential equations with discontinuous coefficients, interpolation and restriction operators should include information about the equation coefficients. Matrix-dependent interpolation and restriction operators based on the Schur complement can be used in nonsymmetric cases. A semicoarsening multigrid solver with these operators is used in UTCOMP, a 3-D, multiphase, multicomponent, compositional reservoir simulator. The numerical experiments are carried out on different computing systems. Results indicate that the multigrid methods are promising.

  3. Application of Reservoir Characterization and Advanced Technology to Improve Recovery and Economics in a Lower Quality Shallow Shelf Carbonate Reservoir

    SciTech Connect

    Rebecca Egg

    2002-09-30

    The OXY-operated Class 2 Project at West Welch is designed to demonstrate how the use of advanced technology can improve the economics of miscible CO{sub 2} injection projects in lower quality Shallow Shelf Carbonate reservoirs. The research and design phase (Budget Period 1) primarily involved advanced reservoir characterization. The current demonstration phase (Budget Period 2) is the implementation of the reservoir management plan for an optimum miscible CO{sub 2} flood design based on the reservoir characterization. Although Budget Period 1 for the Project officially ended 12/31/96, reservoir characterization and simulation work continued during the Budget Period 2. During the fifth and sixth annual reporting periods (8/3/98-8/2/00) covered by this report, work continued on interpretation of the cross well seismic data to create porosity and permeability profiles which were distributed into the reservoir geostatistically. The initial interwell seismic CO{sub 2} monitor survey was conducted, the acquired data processed and interpretation started. Only limited well work and facility construction was conducted in the project area. The CO{sub 2} injection initiated in October 1997 was continued, although the operator had to modify the operating plan in response to low injection rates, well performance and changes in CO{sub 2} supply. CO{sub 2} injection was focused in a smaller area to increase the reservoir processing rate. By the end of the reporting period three producers had shown sustained oil rate increases and ten wells had experienced gas (CO{sub 2}) breakthrough.

  4. Representation of wells in numerical reservoir simulation

    SciTech Connect

    Ding, Y.; Renard, G.; Weill, L.

    1995-12-31

    In reservoir simulation, linear approximations are generally used for well modeling. However, this type of approximations can be inaccurate for fluid flow calculation in the vicinity of wells leading to incorrect well performance predictions. To overcome such problems, a new well representation has been proposed that uses a ``logarithmic`` type of approximation for vertical wells. In this paper, it is shown how the new well model can be easily implemented in existing simulator through the conventional PI. The relationship between wellbore pressure, wellblock pressure and flow rate is discussed in more detail, especially for the definition of wellblock pressure. Extension of the new approach to off-center wells and to flexible grids are both presented. Through this extension, the equivalence of various gridding techniques for the well model is emphasized. The key element is the accurate calculation of flow components in the vicinity of wells.

  5. Activity of sulfate-reducing bacteria under simulated reservoir conditions

    SciTech Connect

    Rosnes, J.T.; Graue, A.; Lien, T. )

    1991-05-01

    This paper reports on sulfate-reducing bacteria (SRB) that have been isolated from hot oilfield waters from subsea oil reservoirs in the North Sea. Experiments with these bacteria in a reservoir simulator indicate that SRB may maintain their activity in the conditions found in most North Sea reservoirs and, if precautions are not taken, may contribute to souring of the oil and gas.

  6. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, west Texas (Delaware Basin). Annual progress report, March 31, 1995--March 31, 1996

    SciTech Connect

    Dutton, S.P.; Hovorka, S.D.; Cole, A.G.

    1996-08-01

    The objective of this Class III project is to demonstrate that detailed reservoir characterization of clastic reservoirs in basinal sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover more of the original oil in place by strategic infill-well placement and geologically based field development. Reservoirs in the Delaware Mountain Group have low producibility (average recovery <14 percent of the original oil in place) because of a high degree of vertical and lateral heterogeneity caused by depositional processes and post-depositional diagenetic modification. Detailed correlations of the Ramsey sandstone reservoirs in Geraldine Ford field suggest that lateral sandstone continuity is less than interpreted by previous studies. The degree of lateral heterogeneity in the reservoir sandstones suggests that they were deposited by eolian-derived turbidites. According to the eolian-derived turbidite model, sand dunes migrated across the exposed shelf to the shelf break during sea-level lowstands and provided well sorted sand for turbidity currents or grain flows into the deep basin.

  7. Multi-Purpose, Multi-Reservoir Simulation on a PC

    DTIC Science & Technology

    1988-08-01

    The methodology and difficulties in converting a large, general purpose, mainframe, batch oriented computer program (for reservoir simulation ) to...work effectively in the PC environment are described in this paper. A brief overview of the present capabilities of the general purpose reservoir ... simulation program (HEC-5), that works on mainframe and MS DOS compatible computers, is also presented. Keywords: Simulation, Personal computer, Reservior

  8. Advances in carbonate exploration and reservoir analysis

    USGS Publications Warehouse

    Garland, J.; Neilson, J.; Laubach, S.E.; Whidden, Katherine J.

    2012-01-01

    The development of innovative techniques and concepts, and the emergence of new plays in carbonate rocks are creating a resurgence of oil and gas discoveries worldwide. The maturity of a basin and the application of exploration concepts have a fundamental influence on exploration strategies. Exploration success often occurs in underexplored basins by applying existing established geological concepts. This approach is commonly undertaken when new basins ‘open up’ owing to previous political upheavals. The strategy of using new techniques in a proven mature area is particularly appropriate when dealing with unconventional resources (heavy oil, bitumen, stranded gas), while the application of new play concepts (such as lacustrine carbonates) to new areas (i.e. ultra-deep South Atlantic basins) epitomizes frontier exploration. Many low-matrix-porosity hydrocarbon reservoirs are productive because permeability is controlled by fractures and faults. Understanding basic fracture properties is critical in reducing geological risk and therefore reducing well costs and increasing well recovery. The advent of resource plays in carbonate rocks, and the long-standing recognition of naturally fractured carbonate reservoirs means that new fracture and fault analysis and prediction techniques and concepts are essential.

  9. Application of Reservoir Characterization and Advanced Technology to Improve Recovery and Economics in a Lower Quality Shallow Shelf San Andres Reservoir.

    SciTech Connect

    Taylor, A.R.; Hickman, T.S.; Justice, J.J.

    1997-07-30

    The Oxy West Welch Project is designed to demonstrate how the use of advanced technology can improve the economics of miscible CO{sub 2} injection projects in lower quality shallow shelf carbonate reservoirs. The research and development phase (Budget Period 1) primarily involved advance and reservoir characterization. The current demonstration phase (Budget Period 2) will implement the reservoir management plan for an optimum miscible CO{sub 2} flood design based on the reservoir characterization. Although Budget Period I officially ended 12/31/96, reservoir characterization and optimum flood design has continued into the first part of Budget Period 2. Specifically, the geologic model was enhanced by integration of the 3-D seismic interpretations. This resulted in improved history match by the simulator and more accurate predictions of flood performance on which to base the project design. The majority of the project design work has been completed, material specifications provided and bids solicited. Preparation of the demonstration area is well underway.

  10. Long-term Reservoir Routing Simulations Using Data-Driven Approaches

    NASA Astrophysics Data System (ADS)

    Ashouri, H.; Chowdhary, H.; Chinnayakanahalli, K.; Dodov, B.

    2015-12-01

    Flood is a highly complex natural hazard that accounts for major losses to human societies worldwide. Dams built with the aim of mitigating the flood risk significantly modify river flow regimes but unavailability and/or inaccessibility of proper information about reservoir operational rules impose a big hurdle to global flood modeling. This is specifically critical for flood-prone regions where lack of proper representation of reservoir operation can lead to significant under- or overestimation of the flood magnitude, risk, and losses. With the availability of longer in-situ observational data records, as well as advancements in satellite altimetry techniques for measuring reservoir levels, operational rules can be indirectly deduced. In this study, the observed reservoir levels as well as the historical and forecast time series of inflows are incorporated into a stochastic autoregressive moving average statistical modeling scheme to simulate the releases from the dam at each time step. The resulting operational rule curve is used in a reservoir simulation model to simulate the outflows from the reservoirs. The efficiency of the model is examined for three case studies in the United States, including John Martin Reservoir (CO), Coralville Lake (IA, and specifically for the devastating 2008 flood in the state), and Boca Reservoir (CA). Statistical measures are derived and tested to evaluate the accuracy of the simulated hydrographs against USGS streamflow gauge observations. The results prove the capability of the developed model in simulating reasonably accurate outflows from dams and will be presented at the meeting.

  11. Suitable Conditions of Reservoir Simulation for Searching Rule Curves

    NASA Astrophysics Data System (ADS)

    Kangrang, Anongrit; Chaleeraktrakoon, Chavalit

    The objective of this study is to carry out a suitable length of inflow record using in the simulation model. The second objective is to find an effect of initial reservoir capacity of reservoir simulation for searching the optimal rule curves. The reservoir simulation model was connected with genetic algorithms to search the optimal rule curves quickly. The model has been applied to determine the optimal rule curves of the Bhumibol and Sirikit Reservoirs (the Chao Phraya River Basin, Thailand). The optimal rule curves of each condition were used to assess by a Monte Carlo simulation. The results show that the shortest period of dry inflow record using in the simulation model in order to search the optimal rule curves is 10 year. Furthermore, the minimum initial capacity of reservoir for searching optimal rule curves is 10% of full capacity.

  12. Compositional and black oil reservoir simulation

    SciTech Connect

    Coats, K.H.; Thomas, L.K.; Pierson, R.G.

    1995-12-31

    This paper describes a three-dimensional, three-phase reservoir simulation model for black oil and compositional applications. Both IMPES and fully implicit formulations are included. The model`s use of a relaxed volume balance concept effectively conserves both mass and volume and reduces Newton iterations. A new implicit well rate calculation method improves IMPES stability. It approximates wellbore crossflow effects with high efficiency and relative simplicity in both IMPES and fully implicit formulations. Multiphase flow in the tubing and near-well turbulent gas flow effects are treated implicitly. Initial saturations are calculated as a function of water-oil and gas-oil capillary pressures which are optimally dependent upon the Leverett J function or initial saturations may be entered as data arrays. A normalization of the relative permeability and capillary pressure curves is used to calculate these terms as a function of rock type and grid block residual saturations. Example problems are presented, including several of the SPE Comparative Solution problems and field simulations. 48 refs.

  13. 3D scientific visualization of reservoir simulation post-processing

    SciTech Connect

    Sousa, M.C.; Miranda-Filho, D.N.

    1994-12-31

    This paper describes a 3D visualization software designed at PETROBRAS and TecGraf/PUC-RJ in Brazil for the analysis of reservoir engineering post-processing data. It offers an advanced functional environment on graphical workstations with intuitive and ergonomic interface. Applications to real reservoir models show the enriching features of the software.

  14. Advancing reservoir operation description in physically based hydrological models

    NASA Astrophysics Data System (ADS)

    Anghileri, Daniela; Giudici, Federico; Castelletti, Andrea; Burlando, Paolo

    2016-04-01

    Last decades have seen significant advances in our capacity of characterizing and reproducing hydrological processes within physically based models. Yet, when the human component is considered (e.g. reservoirs, water distribution systems), the associated decisions are generally modeled with very simplistic rules, which might underperform in reproducing the actual operators' behaviour on a daily or sub-daily basis. For example, reservoir operations are usually described by a target-level rule curve, which represents the level that the reservoir should track during normal operating conditions. The associated release decision is determined by the current state of the reservoir relative to the rule curve. This modeling approach can reasonably reproduce the seasonal water volume shift due to reservoir operation. Still, it cannot capture more complex decision making processes in response, e.g., to the fluctuations of energy prices and demands, the temporal unavailability of power plants or varying amount of snow accumulated in the basin. In this work, we link a physically explicit hydrological model with detailed hydropower behavioural models describing the decision making process by the dam operator. In particular, we consider two categories of behavioural models: explicit or rule-based behavioural models, where reservoir operating rules are empirically inferred from observational data, and implicit or optimization based behavioural models, where, following a normative economic approach, the decision maker is represented as a rational agent maximising a utility function. We compare these two alternate modelling approaches on the real-world water system of Lake Como catchment in the Italian Alps. The water system is characterized by the presence of 18 artificial hydropower reservoirs generating almost 13% of the Italian hydropower production. Results show to which extent the hydrological regime in the catchment is affected by different behavioural models and reservoir

  15. Application of a delumping procedure to compositional reservoir simulations

    SciTech Connect

    Stenby, E.H.; Christensen, J.R.; Knudsen, K.; Leibovici, C.

    1996-12-31

    Characterization and lumping are always performed when dealing with reservoir fluids. The number of pseudocomponents in a compositional reservoir simulation is normally between three and eight. In order to optimize the reservoir performance, it is necessary to know a detailed composition of the product stream from the reservoir. This paper deals with the problems of how to come from the lumped system (for which the reservoir simulation was performed) to a description of the full system (which is important in order to optimize the down-stream facilities). The equations of the delumping procedure are shown and the application of the method is illustrated through examples, including a constant volume depletion experiment and the fifth SPE Comparative example with a fluid description from a North Sea reservoir (with the calculated composition after a lumping, an experiment and a delumping).

  16. A general formulation for compositional reservoir simulation

    SciTech Connect

    Rodriguez, F.; Guzman, J.; Galindo-Nava, A. |

    1994-12-31

    In this paper the authors present a general formulation to solve the non-linear difference equations that arise in compositional reservoir simulation. The general approach here presented is based on newton`s method and provides a systematic approach to generate several formulations to solve the compositional problem, each possessing a different degree of implicitness and stability characteristics. The Fully-Implicit method is at the higher end of the implicitness spectrum while the IMPECS method, implicit in pressure-explicit in composition and saturation, is at the lower end. They show that all methods may be obtained as particular cases of the fully-implicit method. Regarding the matrix problem, all methods have a similar matrix structure; the composition of the Jacobian matrix is however unique in each case, being in some instances amenable to reductions for optimal solution of the matrix problem. Based on this, a different approach to derive IMPECS type methods is proposed; in this case, the whole set of 2nc + 6 equations, that apply in each gridblock, is reduced to a single pressure equation through matrix reduction operations; this provides a more stable numerical scheme, compared to other published IMPCS methods, in which the subset of thermodynamic equilibrium equations is arbitrarily decoupled form the set of gridblock equations to perform such reduction. The authors discuss how the general formulation here presented can be used to formulate and construct an adaptive-implicit compositional simulators. They also present results on the numerical performance of FI, IMPSEC and IMPECS methods on some test problems.

  17. Cooperative Learning in Reservoir Simulation Classes: Overcoming Disparate Entry Skills

    ERIC Educational Resources Information Center

    Awang, Mariyamni

    2006-01-01

    Reservoir simulation is one of the core courses in the petroleum engineering curriculum and it requires knowledge and skills in three major disciplines, namely programming, numerical methods and reservoir engineering. However, there were often gaps in the students' readiness to undertake the course, even after completing the necessary…

  18. Identification and quantification of fracture behavior through reservoir simulation

    SciTech Connect

    Cline, S. |

    1995-08-01

    This study demonstrated the use of reservoir simulation as a tool for quantifying and describing the relative significance of fracture and matrix flow units to overall reservoir storage capacity and transmissibility in a field development example. A high matrix porosity Pennsylvanian age sandstone oil reservoir, that is currently undergoing the early stages of secondary recovery by waterflood, was studied. Unexpected early water breakthrough indicated the presence of a high directional permeability fracture system superimposed on the high porosity matrix system. To further understand the reservoir behavior, improve field performance and to quantify the relative contributions of fracture and matrix units to permeability and storage capacity, a reservoir simulation and characterization project was initiated. Well test, well log, tracer and geologic data were integrated into the simulation project. The integrated study indicated that the fractures exhibited high directional permeability but low storage capacity relative to the matrix portion of the reservoir. Although fractures heavily influenced overall fluid flow behavior, they did not contain large storage capacity. The system had a low calculated fracture intensity index. Reservoir simulation enabled the quantification of the relative importance of the two flow systems which in turn had a large impact on total reserves estimates and production forecasting. Simulation results indicated a need to realign injector and producer patterns which improved production rates and ultimate recovery.

  19. Fractal distributions of reservoir properties and their use in reservoir simulation

    SciTech Connect

    Berta, D.; Hardy, H.H.; Beier, R.A.

    1994-12-31

    Geostatistics has become a popular way to distribute reservoir properties between wells. One of the geostatistical methods being used is fractal geostatistics. Most porosity well logs have been found to have a fractal character. An analysis of vertical and horizontal logs, core photos, and outcrop photos has led to a rather simple model to describe porosity and permeability distributions. This representation has been tested in reservoir simulation of a mature waterflood and found to match production history with very little history matching. Fractal distributions were found to require much less history matching than classical layer cake models. Conoco is now actively applying this new technology to a number of its reservoirs.

  20. Large eddy simulation of a pumped- storage reservoir

    NASA Astrophysics Data System (ADS)

    Launay, Marina; Leite Ribeiro, Marcelo; Roman, Federico; Armenio, Vincenzo

    2016-04-01

    The last decades have seen an increasing number of pumped-storage hydropower projects all over the world. Pumped-storage schemes move water between two reservoirs located at different elevations to store energy and to generate electricity following the electricity demand. Thus the reservoirs can be subject to important water level variations occurring at the daily scale. These new cycles leads to changes in the hydraulic behaviour of the reservoirs. Sediment dynamics and sediment budgets are modified, sometimes inducing problems of erosion and deposition within the reservoirs. With the development of computer performances, the use of numerical techniques has become popular for the study of environmental processes. Among numerical techniques, Large Eddy Simulation (LES) has arisen as an alternative tool for problems characterized by complex physics and geometries. This work uses the LES-COAST Code, a LES model under development in the framework of the Seditrans Project, for the simulation of an Upper Alpine Reservoir of a pumped-storage scheme. Simulations consider the filling (pump mode) and emptying (turbine mode) of the reservoir. The hydraulic results give a better understanding of the processes occurring within the reservoir. They are considered for an assessment of the sediment transport processes and of their consequences.

  1. Advanced electromagnetic gun simulation

    NASA Astrophysics Data System (ADS)

    Brown, J. L.; George, E. B.; Lippert, J. R.; Balius, A. R.

    1986-11-01

    The architecture, software and application of a simulation system for evaluating electromagnetic gun (EMG) operability, maintainability, test data and performance tradeoffs are described. The system features a generic preprocessor designed for handling the large data rates necessary for EMG simulations. The preprocessor and postprocessor operate independent of the EMG simulation, which is viewed through windows by the user, who can then select the areas of the simulation desired. The simulation considers a homopolar generator, busbars, pulse shaping coils, the barrel, switches, and prime movers. In particular, account is taken of barrel loading by the magnetic field, Lorentz force and plasma pressure.

  2. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies

    SciTech Connect

    Scott Hara

    1997-08-08

    The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and

  3. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies

    SciTech Connect

    Scott Hara

    1998-03-03

    The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and

  4. Hydrodynamic modeling of petroleum reservoirs using simulator MUFITS

    NASA Astrophysics Data System (ADS)

    Afanasyev, Andrey

    2015-04-01

    MUFITS is new noncommercial software for numerical modeling of subsurface processes in various applications (www.mufits.imec.msu.ru). To this point, the simulator was used for modeling nonisothermal flows in geothermal reservoirs and for modeling underground carbon dioxide storage. In this work, we present recent extension of the code to petroleum reservoirs. The simulator can be applied in conventional black oil modeling, but it also utilizes a more complicated models for volatile oil and gas condensate reservoirs as well as for oil rim fields. We give a brief overview of the code by providing the description of internal representation of reservoir models, which are constructed of grid blocks, interfaces, stock tanks as well as of pipe segments and pipe junctions for modeling wells and surface networks. For conventional black oil approach, we present the simulation results for SPE comparative tests. We propose an accelerated compositional modeling method for sub- and supercritical flows subjected to various phase equilibria, particularly to three-phase equilibria of vapour-liquid-liquid type. The method is based on the calculation of the thermodynamic potential of reservoir fluid as a function of pressure, total enthalpy and total composition and storing its values as a spline table, which is used in hydrodynamic simulation for accelerated PVT properties prediction. We provide the description of both the spline calculation procedure and the flashing algorithm. We evaluate the thermodynamic potential for a mixture of two pseudo-components modeling the heavy and light hydrocarbon fractions. We develop a technique for converting black oil PVT tables to the potential, which can be used for in-situ hydrocarbons multiphase equilibria prediction under sub- and supercritical conditions, particularly, in gas condensate and volatile oil reservoirs. We simulate recovery from a reservoir subject to near-critical initial conditions for hydrocarbon mixture. We acknowledge

  5. Hybrid-CVFE method for flexible-grid reservoir simulation

    SciTech Connect

    Fung, L.S.K.; Buchanan, L.; Sharma, R. )

    1994-08-01

    Well flows and pressures are the most important boundary conditions in reservoir simulation. In a typical simulation, rapid changes and large pressure, temperature, saturation, and composition gradients occur in near-well regions. Treatment of these near-well phenomena significantly affects the accuracy of reservoir simulation results; therefore, extensive efforts have been devoted to the numerical treatment of wells and near-well flows. The flexible control-volume finite-element (CVFE) method is used to construct hybrid grids. The method involves use of a local cylindrical or elliptical grid to represent near-well flow accurately while honoring complex reservoir boundaries. The grid transition is smooth without any special discretization approximation, which eliminates the grid transition problem experienced with Cartesian local grid refinement and hybrid Cartesian gridding techniques.

  6. Reservoir simulation of a high viscous crude and strong water drive reservoir in Sarawak, Malaysia

    SciTech Connect

    Ramli, A.

    1995-10-01

    The Bokor field is located offshore Sarawak, Malaysia and is one of the largest fields in the Baram Delta Province. The A3/6 group of reservoirs is the largest among the Bokor reservoir groups. The reservoir comprises a series of multiple, stacked, well-developed, fluviomarine sandstones connected to a large aquifer. Production from this reservoir started in 1983 and since then some 15 MMstb of oil have been produced. To better understand the production performance, displacement mechanism and further development opportunities in this high viscous crude (10 cP) and strong water drive reservoir, a 3D sector reservoir simulation has been carried out. The model comprises 8640 active grid blocks, with 14 strings completed on four reservoir units with separate fluid contacts. The layering system and grid dimensions were found to be critical in the history matching process, which was supported by a X-sectional study carried out prior to embarking on the 3D model. Based on the history match, remaining oil was identified on the eastern flank, at the top of each sand unit (due to water under-running) and in the downdip area due to the existing crestal oriented development. The history matched model was subsequently used to aid further development planning and to formulate a cost-effective reservoir management strategy. Various development scenarios were tested in this 3D model, which include infill drilling, horizontal wells and pressure maintenance by water injection. This paper describes the various steps taken to obtain a good history match over the 10 years of production history and discusses the findings of the prediction runs.

  7. Multimodal reservoir porosity simulation: An application to a tight oil reservoir

    NASA Astrophysics Data System (ADS)

    Sauvageau, Mathieu; Gloaguen, Erwan; Claprood, Maxime; Lefebvre, René; Bêche, Martin

    2014-08-01

    At appraisal stage of a reservoir characterization, a key step is the inference of the reservoir static properties, such as porosity. In this study, we present a new nested workflow that optimally integrates 3D acoustic impedance and geophysical log data for the estimation of the spatial distribution of reservoir porosity, which is applied to a tight sandstone oil reservoir located in Quebec, Canada. In this workflow, 3D seismic is the main source of spatial information. First, the statistical petrophysical relationship between acoustic impedance and reservoir porosity is established using collocated geophysical log data. Second, a conventional least-squares post-stack inversion of the impedance is computed on the seismic grid. The fit between well log data and numerically computed traces was found to be inaccurate. This leads to the third step, involving a post-stack stochastic impedance inversion using the same seismic traces not only to improve well and trace fit but also to estimate the uncertainty on the inverted impedances. Finally, a Bayesian simulation algorithm adapted to the estimation of a multi-modal porosity distribution is used to simulate realizations of porosity over the entire seismic grid. Results show that the over-smoothing effect of least-squares inversion has a major impact on resource evaluation, especially by not reproducing the high-valued tail of the porosity distribution. The adapted Bayesian algorithm combined with stochastic impedance inversion thus allows a better reproduction of the porosity distribution and improves estimation of the geophysical and geological uncertainty.

  8. Geomechanically Coupled Simulation of Flow in Fractured Reservoirs

    NASA Astrophysics Data System (ADS)

    Barton, C.; Moos, D.; Hartley, L.; Baxter, S.; Foulquier, L.; Holl, H.; Hogarth, R.

    2012-12-01

    Capturing the necessary and sufficient detail of reservoir hydraulics to accurately evaluate reservoir behavior remains a significant challenge to the exploitation and management of fracture-dominated geothermal reservoirs. In these low matrix permeability reservoirs, stimulation response is controlled largely by the properties of natural and induced fracture networks, which are in turn controlled by the in situ stresses, the fracture distribution and connectivity and the hydraulic behavior of the fractures. This complex interaction of fracture flow systems with the present-day stress field compounds the problem of developing an effective and efficient simulation to characterize, model and predict fractured reservoir performance. We discuss here a case study of the integration of geological, geophysical, geomechanical, and reservoir engineering data to characterize the in situ stresses, the natural fracture network and the controls on fracture permeability in geothermal reservoirs. A 3D geomechanical reservoir model includes constraints on stress magnitudes and orientations, and constraints on mechanical rock properties and the fractures themselves. Such a model is essential to understanding reservoir response to stimulation and production in low matrix permeability, fracture-dominated reservoirs. The geomechanical model for this study was developed using petrophysical, drilling, and wellbore image data along with direct well test measurements and was mapped to a 3D structural grid to facilitate coupled simulation of the fractured reservoir. Wellbore image and stimulation test data were used along with microseismic data acquired during the test to determine the reservoir fracture architecture and to provide control points for a realistic inter-connected discrete fracture network. As most fractures are stress-sensitive, their hydraulic conductivities will change with changes in bottomhole flowing and reservoir pressures, causing variations in production profiles

  9. Marine radiocarbon reservoir age simulations for the past 50000 years

    NASA Astrophysics Data System (ADS)

    Butzin, Martin; Köhler, Peter; Lohmann, Gerrit

    2016-04-01

    We present simulations of marine radiocarbon reservoir ages using the ocean general circulation model LSG-HAMOCC2s, and evaluate the results with Marine13 raw data records. Our model considers various climatic background states. Radiocarbon cycle boundary conditions are atmospheric Δ14C values according to IntCal13, a recent atmospheric CO2 reconstruction, and spatially variable concentrations of dissolved inorganic carbon derived from marine carbon cycle simulations. Our model reasonably agrees with glacial marine Δ14C records but indicates reservoir ages varying with time, different to the invariant reservoir age corrections applied to the observations and to Marine13. Modelled global-mean reservoir ages are in the range 400-800 years compared to the invariant Marine13 value of 405 years. Self-consistent simulations involving the Cariaco Basin record (which is the most continuous marine record contributing to IntCal13 for periods prior to about 30 kyears) amplify the temporal reservoir age variability with global-mean values of about 350-850 years, and improve the agreement with Δ14C observations in some areas.

  10. On-line Optimization-Based Simulators for Fractured and Non-fractured Reservoirs

    SciTech Connect

    Milind D. Deo

    2005-08-31

    Oil field development is a multi-million dollar business. Reservoir simulation is often used to guide the field management and development process. Reservoir characterization and geologic modeling tools have become increasingly sophisticated. As a result the geologic models produced are complex. Most reservoirs are fractured to a certain extent. The new geologic characterization methods are making it possible to map features such as faults and fractures, field-wide. Significant progress has been made in being able to predict properties of the faults and of the fractured zones. Traditionally, finite difference methods have been employed in discretizing the domains created by geologic means. For complex geometries, finite-element methods of discretization may be more suitable. Since reservoir simulation is a mature science, some of the advances in numerical methods (linear, nonlinear solvers and parallel computing) have not been fully realized in the implementation of most of the simulators. The purpose of this project was to address some of these issues. {sm_bullet} One of the goals of this project was to develop a series of finite-element simulators to handle problems of complex geometry, including systems containing faults and fractures. {sm_bullet} The idea was to incorporate the most modern computing tools; use of modular object-oriented computer languages, the most sophisticated linear and nonlinear solvers, parallel computing methods and good visualization tools. {sm_bullet} One of the tasks of the project was also to demonstrate the construction of fractures and faults in a reservoir using the available data and to assign properties to these features. {sm_bullet} Once the reservoir model is in place, it is desirable to find the operating conditions, which would provide the best reservoir performance. This can be accomplished by utilization optimization tools and coupling them with reservoir simulation. Optimization-based reservoir simulation was one of the

  11. An adaptive nonlinear solution scheme for reservoir simulation

    SciTech Connect

    Lett, G.S.

    1996-12-31

    Numerical reservoir simulation involves solving large, nonlinear systems of PDE with strongly discontinuous coefficients. Because of the large demands on computer memory and CPU, most users must perform simulations on very coarse grids. The average properties of the fluids and rocks must be estimated on these grids. These coarse grid {open_quotes}effective{close_quotes} properties are costly to determine, and risky to use, since their optimal values depend on the fluid flow being simulated. Thus, they must be found by trial-and-error techniques, and the more coarse the grid, the poorer the results. This paper describes a numerical reservoir simulator which accepts fine scale properties and automatically generates multiple levels of coarse grid rock and fluid properties. The fine grid properties and the coarse grid simulation results are used to estimate discretization errors with multilevel error expansions. These expansions are local, and identify areas requiring local grid refinement. These refinements are added adoptively by the simulator, and the resulting composite grid equations are solved by a nonlinear Fast Adaptive Composite (FAC) Grid method, with a damped Newton algorithm being used on each local grid. The nonsymmetric linear system of equations resulting from Newton`s method are in turn solved by a preconditioned Conjugate Gradients-like algorithm. The scheme is demonstrated by performing fine and coarse grid simulations of several multiphase reservoirs from around the world.

  12. Experiences with linear solvers for oil reservoir simulation problems

    SciTech Connect

    Joubert, W.; Janardhan, R.; Biswas, D.; Carey, G.

    1996-12-31

    This talk will focus on practical experiences with iterative linear solver algorithms used in conjunction with Amoco Production Company`s Falcon oil reservoir simulation code. The goal of this study is to determine the best linear solver algorithms for these types of problems. The results of numerical experiments will be presented.

  13. Characterization of fluvial sedimentology for reservoir simulation modeling

    SciTech Connect

    Henriquez, A.; Tyler, K.J.; Hurst, A. )

    1990-09-01

    This paper presents a critical study of 3D stochastic simulation of a fluvial reservoir and of the transfer of the geological model to a reservoir simulation grid. The stochastic model is conditioned by sand-body thickness and position in wellbores. Geological input parameters-sand-body orientation and width/thickness ratios-are often difficult to determine, and are invariably subject to interpretation. Net/gross ratio (NGR) and sand-body thickness are more easily estimated. Sand-body connectedness varies, depending on the modeling procedure; however, a sedimentary process-related model gives intermediate values for connectedness between the values for a regular packing model and the stochastic model. The geological model is transferred to a reservoir simulation grid by use of transmissibility multipliers and an NGR value for each block. The transfer of data smooths out much of the detailed geological information, and the calculated recovery factors are insensitive to the continuity measured in the geological model. Hence, the authors propose improvements to the interface between geological and reservoir simulation models.

  14. Reservoir simulation in a North Sea reservoir experiencing significant compaction drive

    SciTech Connect

    Cook, C.C.; Jewell, S.

    1995-12-31

    The Valhall field in the Norwegian North Sea is a high porosity chalk reservoir undergoing primary pressure depletion. Over the last ten years there have been a number of computer modeling studies of the field which have all assumed an original oil-in-place of approximately 2,000 MMSTB (318.0{times}10{sup 6}m{sup 3}) to the present due to the addition of wells and the optimization of completion techniques. However, the single most important and unique feature influencing Valhall long term production performance is reservoir rock compaction. This paper describes the mathematical model used to simulate reservoir performance in a compacting reservoir with specific discussion regarding the proportion of oil produced by each physical recovery process. An understanding of the recovery mechanisms and their relative importance is critical for the successful management of the field. This paper also presents an alternative method for evaluating the various recovery processes using a simple solution to the material balance equation. This is used to substantiate the magnitude of the various recovery mechanisms identified in the simulation model.

  15. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    SciTech Connect

    T. Scott Hickman; James J. Justice

    2002-01-09

    The OXY-operated Class 2 Project at West Welch is designed to demonstrate how the use of advanced technology can improve the economics of miscible CO{sub 2} injection projects in lower quality Shallow Shelf Carbonate reservoirs. The research and design phase (Budget Period 1) primarily involved advanced reservoir characterization. The current demonstration phase (Budget Period 2) is the implementation of the reservoir management plan for an optimum miscible CO{sub 2} flood design based on the reservoir characterization. Although Budget Period 1 for the Project officially ended 12/31/96, reservoir characterization and simulation work continued during the Budget Period 2. During the fifth and sixth annual reporting periods (8/3/98-8/2/00) covered by this report, work continued on interpretation of the cross well seismic data to create porosity and permeability profiles which were distributed into the reservoir geostatistically. The initial interwell seismic CO{sub 2} monitor survey was conducted, the acquired data processed and interpretation started. Only limited well work and facility construction was conducted in the project area. The CO{sub 2} injection initiated in October 1997 was continued, although the operator had to modify the operating plan in response to low injection rates, well performance and changes in CO{sub 2} supply. CO{sub 2} injection was focused in a smaller area to increase the reservoir processing rate. By the end of the reporting period three producers had shown sustained oil rate increases and ten wells had experienced gas (CO{sub 2}) breakthrough.

  16. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    SciTech Connect

    Tom Beebe

    2003-05-05

    The OXY-operated Class 2 Project at West Welch is designed to demonstrate how the use of advanced technology can improve the economics of miscible CO{sub 2} injection projects in lower quality Shallow Shelf Carbonate reservoirs. The research and design phase (Budget Period 1) primarily involved advanced reservoir characterization. The current demonstration phase (Budget Period 2) is the implementation of the reservoir management plan for an optimum miscible CO{sub 2} flood design based on the reservoir characterization. Although Budget Period 1 for the Project officially ended 12/31/96, reservoir characterization and simulation work continued during the Budget Period 2. During the seventh annual reporting period (8/3/00-8/2/01) covered by this report, work continued on interpretation of the interwell seismic data to create porosity and permeability profiles which were distributed into the reservoir geostatistically. The initial interwell seismic CO{sub 2} monitor survey was conducted and the acquired data processed and interpretation started. Only limited well work and facility construction were conducted in the project area. The CO{sub 2} injection initiated in October 1997 was continued, although the operator had to modify the operating plan in response to low injection rates, well performance and changes in CO{sub 2} supply. CO{sub 2} injection was focused in a smaller area to increase the reservoir processing rate. By the end of the reporting period three producers had shown sustained oil rate increases and six wells had experienced gas (CO{sub 2}) breakthrough.

  17. Numerical Simulation for Natural State of Two-Phase Liquid Dominated Geothermal Reservoir with Steam Cap Underlying Brine Reservoir

    NASA Astrophysics Data System (ADS)

    Pratama, Heru Berian; Miryani Saptadji, Nenny

    2016-09-01

    Hydrothermal reservoir which liquid-dominated hydrothermal reservoir is a type of geothermal reservoir that most widely used for power plant. The exploitation of mass and heat from the geothermal fluid will decrease the pressure in the reservoir over time. Therefore the pressure drop in the reservoir will have an impact on the formation of boiling zones or boiling will increase. The impacts are an increase in the fraction of steam, dryness, in the reservoir and with good vertical permeability will form a steam cap underlying the brine reservoir. The two- phase liquid dominated reservoir is sensitive to the porosity and difficult to assign average properties of the entire reservoir when there is boiling zone in some area of the reservoir. These paper showed successful development of two-phase liquid dominated geothermal reservoir and discussed the formation of steam cap above brine reservoir through numerical simulation for state natural conditions. The natural state modeling in steam cap shows a match with the conceptual model of the vapor-dominated developed. These paper also proofed the presence of transition zone, boiling zone, between steam cap and brine reservoir.

  18. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Unknown

    2001-08-08

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a

  19. Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report, January 1--March 31, 1998

    SciTech Connect

    1998-04-30

    The overall objective of this project is to demonstrate that a development program--based on advanced reservoir management methods--can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the US oil and gas industry. Results obtained to date are summarized for the following: geostatistics and reservoir mapping; reservoir engineering; reservoir characterization/reservoir simulation; miscible recovery simulations; and technology transfer.

  20. Evaluation of Gas Production Potential of Hydrate Deposits in Alaska North Slope using Reservoir Simulations

    NASA Astrophysics Data System (ADS)

    Nandanwar, M.; Anderson, B. J.

    2015-12-01

    Over the past few decades, the recognition of the importance of gas hydrates as a potential energy resource has led to more and more exploration of gas hydrate as unconventional source of energy. In 2002, U.S. Geological Survey (USGS) started an assessment to conduct a geology-based analysis of the occurrences of gas hydrates within northern Alaska. As a result of this assessment, many potential gas hydrate prospects were identified in the eastern National Petroleum Reserve Alaska (NPRA) region of Alaska North Slope (ANS) with total gas in-place of about 2 trillion cubic feet. In absence of any field test, reservoir simulation is a powerful tool to predict the behavior of the hydrate reservoir and the amount of gas that can be technically recovered using best suitable gas recovery technique. This work focuses on the advanced evaluation of the gas production potential of hydrate accumulation in Sunlight Peak - one of the promising hydrate fields in eastern NPRA region using reservoir simulations approach, as a part of the USGS gas hydrate development Life Cycle Assessment program. The main objective of this work is to develop a field scale reservoir model that fully describes the production design and the response of hydrate field. Due to the insufficient data available for this field, the distribution of the reservoir properties (such as porosity, permeability and hydrate saturation) are approximated by correlating the data from Mount Elbert hydrate field to obtain a fully heterogeneous 3D reservoir model. CMG STARS is used as a simulation tool to model multiphase, multicomponent fluid flow and heat transfer in which an equilibrium model of hydrate dissociation was used. Production of the gas from the reservoir is carried out for a period of 30 years using depressurization gas recovery technique. The results in terms of gas and water rate profiles are obtained and the response of the reservoir to pressure and temperature changes due to depressurization and hydrate

  1. Parallelization of a Compositional Reservoir Simulator

    NASA Astrophysics Data System (ADS)

    Reme, Hilde; Åge Øye, Geir; Espedal, Magne S.; Fladmark, Gunnar E.

    A finite volume dicretization has been used to solve compositional flow in porous media. Secondary migration in fractured rocks has been the main motivation for the work. Multipoint flux approximation has been implemented and adaptive local grid refinement, based on domain decomposition, is used at fractures and faults. The parallelization method, which is described in this paper, strongly promotes code reuse and gives a very high level of parallelization despite low implementation costs. The programming framework is also portable to other platforms or other applications. We have presented computer experiments to examine the parallel efficiency of the implemented parallel simulator with respect to scalability and speedup. Keywords: porous media, multipoint flux approximation, domain decomposition, parallelization

  2. Simulation of Reservoir Systems with HEC-5 on a Personal Computer

    DTIC Science & Technology

    1990-03-01

    purpose, Multi- reservoir Simulation on a PC Technical Paper No. 123, Developing and Managing a Comprehensive Reservoir Analysis Model 2 INFIVE ORCOED...Program HEC-5..." and " Reservoir Simulation has begun:" (Figure 10). ’ l i ’ :I’ I , Figure 10. Interactive HEC-5: Main Screen 24 During simulation, an...April 1988. 14. U.S. Army Corps of Engineers, Hydrologic Engineering Center, "Multi-Purpose, Multi- Reservoir Simulation on a PC ", Technical Paper No

  3. Advances in Reservoir Monitoring Using High Resolution Radar Imagery

    NASA Astrophysics Data System (ADS)

    Vasco, D. W.; Ferretti, A.; Novali, F.; Tamburini, A.; Fumagalli, A.; Rucci, A.; Falorni, G.

    2009-12-01

    Surface deformation monitoring provides unique data for observing and measuring the performance of producing hydrocarbon reservoirs, for Enhanced Oil Recovery (EOR) and for Carbon Dioxide Capture and Storage (CCS). To this aim, radar interferometry (InSAR) and, in particular, multi-interferogram Permanent Scatterer (PS) techniques are innovative, valuable and cost-effective tools. Depending on reservoir characteristics and depth, oil or gas production can induce surface subsidence or, in the cases of EOR and CCS, ground heave, potentially triggering fault reactivation and in some cases threatening well integrity. Mapping the surface effects of fault reactivation, due to either fluid extraction or injection, usually requires the availability of hundreds of measurement points per square km with millimeter-level precision, which is time consuming and expensive to obtain using traditional monitoring techniques, but can be readily obtained with InSAR data. Moreover, more advanced InSAR techniques developed in the last decade are capable of providing millimeter precision, comparable to optical leveling, and a high spatial density of displacement measurements, over long periods of time without need of installing equipment or otherwise accessing the study area. Until recently, a limitation to the application of InSAR was the relatively long revisiting time (24 or 35 days) of the previous generation of C-band satellites (ERS1-2, Envisat, Radarsat). However, a new generation of X-band radar satellites (TerraSAR-X and the COSMO-SkyMed constellation), which have been operational since 2008, are providing significant improvements. TerraSAR-X has a repeat cycle of 11 days while the two sensors of the COSMO-SkyMed constellation have an effective repeat cycle of just 8 days (the third sensor has already been successfully launched and is presently in the calibration phase). With the launch of the fourth satellite of the constellation, COSMO-SkyMed will have a revisiting time of

  4. Performance prediction using geostatistics and window reservoir simulation

    SciTech Connect

    Fontanilla, J.P.; Al-Khalawi, A.A.; Johnson, S.G.

    1995-11-01

    This paper is the first window model study in the northern area of a large carbonate reservoir in Saudi Arabia. It describes window reservoir simulation with geostatistics to model uneven water encroachment in the southwest producing area of the northern portion of the reservoir. In addition, this paper describes performance predictions that investigate the sweep efficiency of the current peripheral waterflood. A 50 x 50 x 549 (240 m. x 260 m. x 0.15 m. average grid block size) geological model was constructed with geostatistics software. Conditional simulation was used to obtain spatial distributions of porosity and volume of dolomite. Core data transforms were used to obtain horizontal and vertical permeability distributions. Simple averaging techniques were used to convert the 549-layer geological model to a 50 x 50 x 10 (240 m. x 260 m. x 8 m. average grid block size) window reservoir simulation model. Flux injectors and flux producers were assigned to the outermost grid blocks. Historical boundary flux rates were obtained from a coarsely-ridded full-field model. Pressure distribution, water cuts, GORs, and recent flowmeter data were history matched. Permeability correction factors and numerous parameter adjustments were required to obtain the final history match. The permeability correction factors were based on pressure transient permeability-thickness analyses. The prediction phase of the study evaluated the effects of infill drilling, the use of artificial lifts, workovers, horizontal wells, producing rate constraints, and tight zone development to formulate depletion strategies for the development of this area. The window model will also be used to investigate day-to-day reservoir management problems in this area.

  5. Application of Reservoir Characterization and Advanced Technology to Improve Recovery and Economics in a Lower Quality Shallow Shelf Carbonate Reservoir, Class II

    SciTech Connect

    Hickman, T. Scott; Justice, James J.; Egg, Rebecca

    2001-08-07

    The Oxy operated Class 2 Project at West Welch Project is designed to demonstrate how the use of advanced technology can improve the economics of miscible CO2 injection projects in lower quality Shallow Shelf Carbonate reservoirs. The research and design phase (Budget Period 1) primarily involved advanced reservoir demonstration characterization. The current demonstration phase (Budget Period 2) is the implementation of the reservoir management plan for an optimum miscible CO2 flood design based on the reservoir characterization.

  6. Application of reservoir characterization and advanced technology to improve recovery and economics in a lower quality shallow shelf San Andres Reservoir. Annual report, August 4, 1996--August 3, 1997

    SciTech Connect

    Taylor, A.R.; Hickman, T.S.; Justice, J.J.

    1997-07-30

    The Oxy West Welch Project is designed to demonstrate how the use of advanced technology can improve the economics of miscible CO{sub 2} injection projects in lower quality shallow shelf carbonate reservoirs. The research and development phase (Budget Period 1) primarily involved advanced reservoir characterization. The current demonstration phase (Budget Period 2) will implement the reservoir management plan for an optimum miscible CO{sub 2} flood design based on the reservoir characterization. Although Budget Period 1 officially ended 12/31/96, reservoir characterization and optimum flood design has continued into the first part of Budget Period 2. Specifically, the geologic model was enhanced by integration of the 3-D seismic interpretations. This resulted in improved history match by the simulator and more accurate predictions of flood performance on which to base the project design. The majority of the project design work has been completed, material specifications provided and bids solicited. Preparation of the demonstration area is well underway.

  7. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2003-06-04

    The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the

  8. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2003-09-04

    The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the

  9. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2004-03-05

    The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the

  10. Comparison of flash calculations in compositional reservoir simulation

    SciTech Connect

    Wang, P.; Barker, J.W.

    1995-12-31

    This paper compares several recent flash algorithms in the context of compositional reservoir simulation. We evaluate three reduced equation methods: (1) the 3-equation flash of Michelsen, which applies only when all binary interaction coefficients (k{sub ij}) are zero; (2) Hendricks and van Bergen; and (3) Kaul and Thrasher. We also evaluate; (4) the non-iterative flash; and (5) the method of Young. We find that these last two methods, which are similar in concept, work well for reservoir simulation where the flash must be closely coupled with the solution of the pressure equation, and where a good initial guess is generally available. The reduced equation flashes offer no significant improvement over these other methods; this is true even for the 3-equation flash which solves a simpler problem (with k{sub ij} = 0).

  11. Advanced concepts flight simulation facility.

    PubMed

    Chappell, S L; Sexton, G A

    1986-12-01

    The cockpit environment is changing rapidly. New technology allows airborne computerised information, flight automation and data transfer with the ground. By 1995, not only will the pilot's task have changed, but also the tools for doing that task. To provide knowledge and direction for these changes, the National Aeronautics and Space Administration (NASA) and the Lockheed-Georgia Company have completed three identical Advanced Concepts Flight Simulation Facilities. Many advanced features have been incorporated into the simulators - e g, cathode ray tube (CRT) displays of flight and systems information operated via touch-screen or voice, print-outs of clearances, cockpit traffic displays, current databases containing navigational charts, weather and flight plan information, and fuel-efficient autopilot control from take-off to touchdown. More importantly, this cockpit is a versatile test bed for studying displays, controls, procedures and crew management in a full-mission context. The facility also has an air traffic control simulation, with radio and data communications, and an outside visual scene with variable weather conditions. These provide a veridical flight environment to evaluate accurately advanced concepts in flight stations.

  12. Water-Balance Simulations of Runoff and Reservoir Storage for the Upper Helmand Watershed and Kajakai Reservoir, Central Afghanistan

    USGS Publications Warehouse

    Vining, Kevin C.; Vecchia, Aldo V.

    2007-01-01

    A study was performed to provide information on monthly historical and hypothetical future runoff for the Upper Helmand watershed and reservoir storage in Kajakai Reservoir that could be used by Afghanistan authorities to make economic and demographic decisions concerning reservoir design and operation, reservoir sedimentation, and development along the Helmand River. Estimated reservoir volume at the current spillway elevation of 1,033.5 meters decreased by about 365 million cubic meters from 1968 to 2006 because of sedimentation. Water-balance simulations indicated a good fit between modeled and recorded monthly runoff at the two gaging stations in the watershed for water years 1956-79 and indicated an excellent fit between modeled and recorded monthly changes in Kajakai Reservoir storage for water years 1956-79. Future simulations, which included low starting reservoir water levels and a spillway raised to an elevation of 1,045 meters, indicated that the reservoir is likely to fill within 2 years. Although Kajakai Reservoir is likely to fill quickly, multiyear deficits may still occur. If future downstream irrigation demand doubles but future precipitation, temperature, and reservoir sedimentation remain similar to historical conditions, the reservoir would have more than a 50-percent chance of being full during April or May of a typical year. Future simulations with a 10-percent reduction in precipitation indicated that supply deficits would occur more than 1 in 4 years, on average, during August, September, or October. The reservoir would be full during April or May fewer than 1 in 2 years, on average, and multiyear supply deficits could occur. Increased sedimentation had little effect on reservoir levels during April through July, but the frequency of deficits increased substantially during September and October.

  13. NFFLOW: A reservoir simulator incorporating explicit fractures (SPE 153890)

    SciTech Connect

    Boyle, E.J.; Sams, W.N.

    2012-01-01

    NFFLOW is a research code that quickly and inexpensively simulates flow in moderately fractured reservoirs. It explicitly recognizes fractures separately from rock matrix. In NFFLOW fracture flow is proportional to the pressure gradient along the fracture, and flow in the rock matrix is determined by Darcy’s Law. The two flow mechanisms are coupled through the pressure gradient between a fracture and its adjacent rock matrix. Presented is a promising change to NFFLOW that allows for flow across a rock matrix block.

  14. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2001-05-07

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through September 2000, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on improving core analysis techniques, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post steamflood projects. Work was discontinued on the stochastic geologic model and developing a 3-D stochastic thermal reservoir simulation model of the Tar II-A Zone so the project team could use the 3-D deterministic reservoir simulation model to provide alternatives for the Tar II-A post steamflood operations and shale compaction studies. The project team spent the fourth quarter 2000 performing well work and reservoir surveillance on the Tar II-A post-steamflood project and the Tar V horizontal well steamflood pilot. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current steamflood operations in the Tar V pilot are economical, but recent performance is below projections because of wellbore mechanical limitations that are being evaluated.

  15. Reservoir simulation studies: Wairakei Geothermal Field, New Zealand. Final report

    SciTech Connect

    Pritchett, J.W.; Rice, L.F.; Garg, S.K.

    1980-01-01

    Numerical reservoir simulation techniques were used to perform a history-match of the Wairakei geothermal system in New Zealand. First, a one-dimensional (vertical) model was chosen; realistic stratigraphy was incorporated and the known production history was imposed. The effects of surface and deep recharge were included. Good matches were obtained, both for the reservoir pressure decline history and changes in average discharge enthalpy with time. Next, multidimensional effects were incorporated by treating with a two-dimensional vertical section. Again, good history matches were obtained, although computed late-time discharge enthalpies were slightly high. It is believed that this disparity arises from inherently three-dimensional effects. Predictive calculations using the two-dimensional model suggest that continued future production will cause little additional reservoir pressure drop, but that thermal degradation will occur. Finally, ground subsidence data at Wairakei was examined. It was concluded that traditional elastic pore-collapse models based on classical soil-mechanics concepts are inadequate to explain the observed surface deformation. It is speculated that the measured subsidence may be due to structural effects such as aseismic slippage of a buried reservoir boundary fault.

  16. Iterative Schemes for Time Parallelization with Application to Reservoir Simulation

    SciTech Connect

    Garrido, I; Fladmark, G E; Espedal, M S; Lee, B

    2005-04-18

    Parallel methods are usually not applied to the time domain because of the inherit sequentialness of time evolution. But for many evolutionary problems, computer simulation can benefit substantially from time parallelization methods. In this paper, they present several such algorithms that actually exploit the sequential nature of time evolution through a predictor-corrector procedure. This sequentialness ensures convergence of a parallel predictor-corrector scheme within a fixed number of iterations. The performance of these novel algorithms, which are derived from the classical alternating Schwarz method, are illustrated through several numerical examples using the reservoir simulator Athena.

  17. Galerkin finite-element simulation of a geothermal reservoir

    USGS Publications Warehouse

    Mercer, J.W.; Pinder, G.F.

    1973-01-01

    The equations describing fluid flow and energy transport in a porous medium can be used to formulate a mathematical model capable of simulating the transient response of a hot-water geothermal reservoir. The resulting equations can be solved accurately and efficiently using a numerical scheme which combines the finite element approach with the Galerkin method of approximation. Application of this numerical model to the Wairakei geothermal field demonstrates that hot-water geothermal fields can be simulated using numerical techniques currently available and under development. ?? 1973.

  18. Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of C02 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales

    SciTech Connect

    Michael F. Morea

    1997-10-24

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO2 enhanced oil recovery project in the Antelope Shale in Buena Vista Hills Field. The Buena Vista Hills pilot CO2 project will demonstrate the economic viability and widespread applicability of CO2 flooding in fractured siliceous shale reservoirs of the San Joaquin Valley. The research consists of four primary work processes: Reservoir Matrix and Fluid Characterization; Fracture Characterization; Reservoir Modeling and Simulation; and CO2 Pilot Flood and Evaluation. Work done in these areas is subdivided into two phases or budget periods. The first phase of the project will focus on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced enhanced oil recovery (EOR) pilot in the United Anticline (West Dome) of the Buena Vista Hills Field.

  19. Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of C02 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales

    SciTech Connect

    Michael F. Morea

    1997-04-25

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO2 enhanced oil recovery project in the Antelope Shale in Buena Vista Hills Field. The Buena Vista Hills pilot CO2 project will demonstrate the economic viability and widespread applicability of CO2 flooding in fractured siliceous shale reservoirs of the San Joaquin Valley. The research consists of four primary work processes: Reservoir Matrix and Fluid Characterization; Fracture Characterization; Reservoir Modeling and Simulation; and CO2 Pilot Flood and Evaluation. Work done in these areas is subdivided into two phases or budget periods. The first phase of the project will focus on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced enhanced oil recovery (EOR) pilot in the West Dome of the Buena Vista Hills Field.

  20. Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of CO2 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales

    SciTech Connect

    Morea, Michael F.

    1999-11-01

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO2 enhanced oil recovery project in the Antelope Shale in Buena Vista Hills Field. The Buena Vista Hills pilot CO2 project will demonstrate the economic viability and widespread applicability of CO2 flooding in fractured siliceous shale reservoirs of the San Joaquin Valley. The research consists of four primary work processes: (1) Reservoir Matrix and Fluid Characterization; (2) Fracture characterization; (3) reservoir Modeling and Simulation; and (4) CO2 Pilot Flood and Evaluation. Work done in these areas is subdivided into two phases or budget periods. The first phase of the project will focus on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced enhanced oil recovery (EOR) pilot in the United Anticline (West Dome) of the Buena Vista Hills Field.

  1. Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of CO2 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales

    SciTech Connect

    Morea, Michael F.

    1999-11-08

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO2 enhanced oil recovery project in the Antelope Shale in Buena Vista Hills Field. The Buena Vista Hills pilot CO2 project will demonstrate the economic viability and widespread applicability of CO2 flooding in fractured siliceous shale reservoirs of the San Joaquin Valley. The research consists of four primary work processes: (1) Reservoir Matrix and Fluid Characterization; (2) Fracture characterization; (3) reservoir Modeling and Simulation; and (4) CO2 Pilot Flood and Evaluation. Work done in these areas is subdivided into two phases or budget periods. The first phase of the project will focus on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced enhanced oil recovery (EOR) pilot in the United Anticline (West Dome) of the Buena Vista Hills Field.

  2. Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of C02 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales

    SciTech Connect

    Michael F. Morea

    1998-04-23

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO2 enhanced oil recovery project in the Antelope Shale in Buena Vista Hills Field. The Buena Vista Hills pilot CO2 project will demonstrate the economic viability and widespread applicability of CO2 flooding in fractured siliceous shale reservoirs of the San Joaquin Valley. The research consists of four primary work processes: Reservoir Matrix and Fluid Characterization; Fracture Characterization; Reservoir Modeling and Simulation; and CO2 Pilot Flood and Evaluation. Work done in these areas is subdivided into two phases or budget periods. The first phase of the project will focus on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced enhanced oil recovery (EOR) pilot in the United Anticline (West Dome) of the Buena Vista Hills Field.

  3. Numerical simulation of reservoir parameters' synergetic time-variability on development rules.

    PubMed

    Hou, Jian; Zhang, Yanhui; Wang, Daigang; Zhou, Kang

    2016-01-01

    Time variability of reservoir parameters in water flooding has an effect on oilfield development rules. Meanwhile, time variability of different reservoir macro-parameters has certain synergetic relationship with each other. Based on microscopic network simulation and reservoir numerical simulation, a new simulation method is presented, which can describe the influence of reservoir parameters' synergetic time-variability on oilfield development rules both in macroscopic and microscopic scales. Microscopic network simulation can effectively simulate the impact of micro-parameters' variation on macro-parameters, thus a comprehensive model is built to reflect the variability of reservoir parameters. On the basis of considering time variability of porosity, permeability, and relative permeability in water flooding, an improved reservoir numerical simulator is established, which can effectively simulate the effect of reservoir parameters' synergetic variation on oilfield development rules.

  4. Reservoir simulation studies on the Cerro Prieto geothermal field

    SciTech Connect

    Castaneda, M.; Abril, A.; Arellano, V.; Marquez, R.

    1982-01-01

    A reservoir engineering and simulation study is being carried out on the Cerro Prieto geothermal field. A preliminary material balance has been applied to the old part of this field. A single block with constant properties in the horizontal direction was used for this preliminary material balance. The vertical block column was subdivided in several levels in order to take into account the known lithologic column. From existing pressure and enthalpy field histories, a single phase (liquid) reservoir assumption was selected. Under this assumption, a lateral radial recharge was considered in obtaining the pressure and enthalpy history match. These preliminary results indicate that another type of recharge is probably taking place in this part of the field, rather than lateral radial.

  5. Scale Model Simulation of Enhanced Geothermal Reservoir Creation

    NASA Astrophysics Data System (ADS)

    Gutierrez, M.; Frash, L.; Hampton, J.

    2012-12-01

    Geothermal energy technology has successfully provided a means of generating stable base load electricity for many years. However, implementation has been spatially limited to limited availability of high quality traditional hydro-thermal resources possessing the combination of a shallow high heat flow anomaly and an aquifer with sufficient permeability and continuous fluid recharge. Enhanced Geothermal Systems (EGS) has been proposed as a potential solution to enable additional energy production from the non-conventional hydro-thermal resources. Hydraulic fracturing is considered the primary means of creating functional EGS reservoirs at sites where the permeability of the rock is too limited to allow cost effective heat recovery. EGS reservoir creation requires improved fracturing methodology, rheologically controllable fracturing fluids, and temperature hardened proppants. Although large fracture volumes (several cubic km) have been created in the field, circulating fluid through these full volumes and maintaining fracture volumes have proven difficult. Stimulation technology and methodology as used in the oil and gas industry for sedimentary formations are well developed; however, they have not sufficiently been demonstrated for EGS reservoir creation. Insufficient data and measurements under geothermal conditions make it difficult to directly translate experience from the oil and gas industries to EGS applications. To demonstrate the feasibility of EGS reservoir creation and subsequent geothermal energy production, and to improve the understanding of hydraulic and propping in EGS reservoirs, a heated true-triaxial load cell with a high pressure fluid injection system was developed to simulate an EGS system from stimulation to production. This apparatus is capable of loading a 30x30x30 cubic cm rock sample with independent principal stresses up to 13 MPa while simultaneously providing heating up to 180 degree C. Multiple orientated boreholes of 5 to 10 mm

  6. Advanced simulation of digital filters

    NASA Astrophysics Data System (ADS)

    Doyle, G. S.

    1980-09-01

    An Advanced Simulation of Digital Filters has been implemented on the IBM 360/67 computer utilizing Tektronix hardware and software. The program package is appropriate for use by persons beginning their study of digital signal processing or for filter analysis. The ASDF programs provide the user with an interactive method by which filter pole and zero locations can be manipulated. Graphical output on both the Tektronix graphics screen and the Versatec plotter are provided to observe the effects of pole-zero movement.

  7. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2000-02-18

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through March 1999, project work has been completed related to data preparation, basic reservoir engineering, developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model, and a rock-log model, well drilling and completions, and surface facilities. Work is continuing on the stochastic geologic model, developing a 3-D stochastic thermal reservoir simulation model of the Fault Block IIA Tar (Tar II-A) Zone, and operational work and research studies to prevent thermal-related formation compaction. Thermal-related formation compaction is a concern of the project team due to observed surface subsidence in the local area above the steamflood project. Last quarter on January 12, the steamflood project lost its inexpensive steam source from the Harbor Cogeneration Plant as a result of the recent deregulation of electrical power rates in California. An operational plan was developed and implemented to mitigate the effects of the two situations. Seven water injection wells were placed in service in November and December 1998 on the flanks of the Phase 1 steamflood area to pressure up the reservoir to fill up the existing steam chest. Intensive reservoir engineering and geomechanics studies are continuing to determine the best ways to shut down the steamflood operations in Fault Block II while minimizing any future surface subsidence. The new 3-D deterministic thermal reservoir simulator model is being used to provide sensitivity cases to optimize production, steam injection, future flank cold water injection and reservoir temperature and pressure. According to the model, reservoir fill up of the steam chest at the current injection rate of 28,000 BPD and gross

  8. Advanced Reservoir Characterization and Evaluation of CO(2) Gravity Drainage in the Naturally Fractured Spraberry Reservoir

    SciTech Connect

    Schechter, David

    1996-12-01

    Progress has been made in the area of laboratory analysis of Spraberry oil/brine/rock interactions during this quarter. Water imbibition experiments were conducted under ambient conditions, using cleaned Spraberry cores, synthetic Spraberry reservoir brine, and Spraberry oil. It has been concluded that the Spraberry reservoir cores are weakly water-wet. The average Amott wettability index to water is about 0.55. The average oil recovery due to spontaneous water imbibition is about 50% of original oil in place.

  9. Improved storage efficiency through geologic modeling and reservoir simulation

    SciTech Connect

    Ammer, J.R.; Mroz, T.H.; Covatch, G.L.

    1997-11-01

    The US Department of Energy (DOE), through partnerships with industry, is demonstrating the importance of geologic modeling and reservoir simulation for optimizing the development and operation of gas storage fields. The geologic modeling and reservoir simulation study for the Natural Fuel Gas Supply Corporation CRADA was completed in September 1995. The results of this study were presented at the 1995 Society of Petroleum Engineers` (SPE) Eastern Regional Meeting. Although there has been no field verification of the modeling results, the study has shown the potential advantages and cost savings opportunities of using horizontal wells for storage enhancement. The geologic modeling for the Equitrans` CRADA was completed in September 1995 and was also presented at the 1995 SPE Eastern Regional Meeting. The reservoir modeling of past field performance was completed in November 1996 and prediction runs are currently being made to investigate the potential of offering either a 10 day or 30 day peaking service in addition to the existing 110 day base load service. Initial results have shown that peaking services can be provided through remediation of well damage and by drilling either several new vertical wells or one new horizontal well. The geologic modeling for the Northern Indiana Public Service Company CRADA was completed in November 1996 with a horizontal well being completed in January 1997. Based on well test results, the well will significantly enhance gas deliverability from the field and will allow the utilization of gas from an area of the storage field that was not accessible from their existing vertical wells. Results are presented from these three case studies.

  10. The parallel subdomain-levelset deflation method in reservoir simulation

    NASA Astrophysics Data System (ADS)

    van der Linden, J. H.; Jönsthövel, T. B.; Lukyanov, A. A.; Vuik, C.

    2016-01-01

    Extreme and isolated eigenvalues are known to be harmful to the convergence of an iterative solver. These eigenvalues can be produced by strong heterogeneity in the underlying physics. We can improve the quality of the spectrum by 'deflating' the harmful eigenvalues. In this work, deflation is applied to linear systems in reservoir simulation. In particular, large, sudden differences in the permeability produce extreme eigenvalues. The number and magnitude of these eigenvalues is linked to the number and magnitude of the permeability jumps. Two deflation methods are discussed. Firstly, we state that harmonic Ritz eigenvector deflation, which computes the deflation vectors from the information produced by the linear solver, is unfeasible in modern reservoir simulation due to high costs and lack of parallelism. Secondly, we test a physics-based subdomain-levelset deflation algorithm that constructs the deflation vectors a priori. Numerical experiments show that both methods can improve the performance of the linear solver. We highlight the fact that subdomain-levelset deflation is particularly suitable for a parallel implementation. For cases with well-defined permeability jumps of a factor 104 or higher, parallel physics-based deflation has potential in commercial applications. In particular, the good scalability of parallel subdomain-levelset deflation combined with the robust parallel preconditioner for deflated system suggests the use of this method as an alternative for AMG.

  11. Increasing heavy oil reservers in the Wilmington oil Field through advanced reservoir characterization and thermal production technologies, technical progress report, October 1, 1996--December 31, 1996

    SciTech Connect

    Hara, S. , Casteel, J.

    1997-05-11

    The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) 11-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and

  12. The benefits of enhanced integration capabilities in 3-D reservoir modelling and simulation

    SciTech Connect

    O`Rourke, S.T.; Ikwumonu, A.

    1996-12-31

    The use of proprietary, closely linked 3-D geological and reservoir simulation software has greatly enhanced the reservoir modelling process by enabling complete integration of geological and engineering data in a 3-D manner. The software were used to model and simulate a deltaic sandstone reservoir in the Nigerian Forcados Yokri field in order to describe the reservoir sweep pattern. A simple simulation of the reservoir was first carried out to identify the main controls on the reservoir performance, which in this case were the intra-reservoir shales. As they are the only baffles or barriers to flow, proper modelling of them was critical to achieving a history match. Well logs, 3-D seismic, limited core data and sequence stratigraphic concepts were used to define a three dimensional depositional model which was then used to guide the 3-D reservoir architecture modelling. The reservoir model was evaluated in the 3-D simulator and, when the initial model did not yield a proper match with the historical production data, alternative models were easily generated and simulated until an acceptable match was achieved. The result was a 10% increase in predicted ultimate recovery, a better understanding of the reservoir and an optimized reservoir depletion plan.

  13. Application of reservoir characterization and advanced technology to improve recovery and economics in a lower quality shallow shelf San Andres reservoir. Quarterly progress report, April 1--June 30, 1997

    SciTech Connect

    Taylor, A.R.; Hickman, T.S.; Justice, J.J.

    1997-07-30

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: advanced petrophysics; three-dimensional seismic; cross-well bore tomography; advanced reservoir simulation; CO{sub 2} stimulation treatments; hydraulic fracturing design and monitoring; and mobility control agents. During the quarter, cross well seismic work continued, using the revised processing software. The validity of the seismic-guided mapping was confirmed by the drilling of a well. Revised CO{sub 2} performance projects were run using the enhanced geologic model in which the seismic data had been incorporated. Facilities for supplying and distributing CO{sub 2} to the area were designed and bids solicited for the materials and construction.

  14. Advanced reservoir characterization in the Antelope Shale to establish the viability of CO{sub 2} enhanced oil recovery in California`s Monterey Formation siliceous shales. Quarterly report, October 1, 1996--December 31, 1996

    SciTech Connect

    Toronyi, R.M.

    1996-12-31

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO{sub 2} enhanced oil recovery project in the Antelope Shale in Buena Vista Hills field. The Buena Vista Hills pilot CO{sub 2} project will demonstrate the economic viability and widespread applicability of CO{sub 2} flooding in fractured siliceous shales reservoirs of the San Joaquin Valley. The research consists of four primary work processes: reservoir matrix and fluid characterization: fracture characterization; reservoir modeling and simulation; and, CO{sub 2} pilot flood and evaluation. Work done in these areas is subdivided into two phases or budget periods. The first phase of the project will focus on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced enhanced oil recovery pilot in the West Dome of the Buena Vista Hills field. In this report, accomplishments for this period are presented for: reservoir matrix and fluid characterization; fracture characterization; reservoir modeling and simulation; and technology transfer.

  15. CO/sub 2/ Huff-Puff simulation using a compositional reservoir simulator

    SciTech Connect

    Hsu, H.H.; Brugman, R.J.

    1986-01-01

    Increased field application of the CO/sub 2/ Huff-Puff process has resulted in increased laboratory and numerical simulation activity. This paper focuses on numerical simulation of the CO/sub 2/ Huff-Puff process in a light oil reservoir, using a fully-compositional reservoir simulator. A simulation model is first validated by successfully history-matching production data from two huff-puff cycles. A performance prediction is then conducted for a third cycle. A number of parametric runs are performed to determine oil recovery as affected by: 1. The number of cycles; 2. The timing of injection, soak and back-production operations; and 3. The quantity and composition of the injected solvent.

  16. A generalized well management scheme for reservoir simulation

    SciTech Connect

    Fang, W.Y.; Lo, K.K.

    1995-12-31

    A new generalized well management scheme has been formulated to maximize oil production under multiple facility constraints. The scheme integrates reserve performance, wellbore hydraulics, surface facility constraints and lift-gas allocation o maximize oil production. It predicts well performance based on up-to-date hydraulics and reservoir conditions. The scheme has been implemented in a black oil simulator by using Separable programming and Simplex algorithm. This production optimization scheme has been applied to two full-field models. The oil production of these two full-field models is limited by water, gas and liquid haling limits at both field- and flow station-levels. The gas production is limited by injectivity as well as gas handling limits. For a 12-year production forecast on Field A, the new scheme increased oil production by 3 to 9%. For a 12-year production forecast on field B, the new scheme increased oil production by 7 to 9%.

  17. Foam flooding reservoir simulation algorithm improvement and application

    NASA Astrophysics Data System (ADS)

    Wang, Yining; Wu, Xiaodong; Wang, Ruihe; Lai, Fengpeng; Zhang, Hanhan

    2014-05-01

    As one of the important enhanced oil recovery (EOR) technologies, Foam flooding is being used more and more widely in the oil field development. In order to describe and predict foam flooding, experts at domestic and abroad have established a number of mathematical models of foam flooding (mechanism, empirical and semi-empirical models). Empirical models require less data and apply conveniently, but the accuracy is not enough. The aggregate equilibrium model can describe foam generation, burst and coalescence by mechanism studying, but it is very difficult to accurately describe. The research considers the effects of critical water saturation, critical concentration of foaming agent and critical oil saturation on the sealing ability of foam and considers the effect of oil saturation on the resistance factor for obtaining the gas phase relative permeability and the results were amended by laboratory test, so the accuracy rate is higher. Through the reservoir development concepts simulation and field practical application, the calculation is more accurate and higher.

  18. DEVELOPMENT OF AN ADVANCED APPROACH FOR NEXT-GENERATION INTEGRATED RESERVOIR CHARACTERIZATION

    SciTech Connect

    Scott R. Reeves

    2005-04-01

    Accurate, high-resolution, three-dimensional (3D) reservoir characterization can provide substantial benefits for effective oilfield management. By doing so, the predictive reliability of reservoir flow models, which are routinely used as the basis for investment decisions involving hundreds of millions of dollars and designed to recover millions of barrels of oil, can be significantly improved. Even a small improvement in incremental recovery for high-value assets can result in important contributions to bottom-line profitability. Today's standard practice for developing a 3D reservoir description is to use seismic inversion techniques. These techniques make use of geostatistics and other stochastic methods to solve the inverse problem, i.e., to iteratively construct a likely geologic model and then upscale and compare its acoustic response to that actually observed in the field. This method has several inherent flaws, such as: (1) The resulting models are highly non-unique; multiple equiprobable realizations are produced, meaning (2) The results define a distribution of possible outcomes; the best they can do is quantify the uncertainty inherent in the modeling process, and (3) Each realization must be run through a flow simulator and history matched to assess it's appropriateness, and therefore (4) The method is labor intensive and requires significant time to complete a field study; thus it is applied to only a small percentage of oil and gas producing assets. A new approach to achieve this objective was first examined in a Department of Energy (DOE) study performed by Advanced Resources International (ARI) in 2000/2001. The goal of that study was to evaluate whether robust relationships between data at vastly different scales of measurement could be established using virtual intelligence (VI) methods. The proposed workflow required that three specific relationships be established through use of artificial neural networks (ANN's): core-to-log, log

  19. Modeling of geothermal reservoirs: Fundamental processes, computer simulation, and field applications

    SciTech Connect

    Pruess, K.

    1988-09-01

    This article attempts to critically evaluate the present state of the art of geothermal reservoir simulation. Methodological aspects of geothermal reservoir modeling are briefly reviewed, with special emphasis on flow in fractured media. Then we examine applications of numerical simulation to studies of reservoir dynamics, well test design and analysis, and modeling of specific fields. Tangible impacts of reservoir simulation technology on geothermal energy development are pointed out. We conclude with considerations on possible future developments in the mathematical modeling of geothermal fields. 45 refs., 4 figs., 2 tabs.

  20. Multi-purpose, multi-reservoir simulation on a PC. Technical paper

    SciTech Connect

    Eichert, B.S.; Franke, C.

    1988-08-01

    The methodology and difficulties in converting a large, general-purpose, mainframe, batch-oriented computer program (for reservoir simulation) to work effectively in the PC environment are described in this paper. A brief overview of the present capabilities of the general purpose reservoir simulation program (HEC-5), which works on mainframe and MS DOS compatible computers, is also presented.

  1. Increasing heavy oil reserves in the Wilmington Oil field through advanced reservoir characterization and thermal production technologies. Quarterly report, April 1, 1996--June 30, 1996

    SciTech Connect

    Hara, S.

    1996-08-05

    The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., California using advanced reservoir characterization and thermal production technologies. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The technologies include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

  2. Multigrid Methods for Fully Implicit Oil Reservoir Simulation

    NASA Technical Reports Server (NTRS)

    Molenaar, J.

    1996-01-01

    In this paper we consider the simultaneous flow of oil and water in reservoir rock. This displacement process is modeled by two basic equations: the material balance or continuity equations and the equation of motion (Darcy's law). For the numerical solution of this system of nonlinear partial differential equations there are two approaches: the fully implicit or simultaneous solution method and the sequential solution method. In the sequential solution method the system of partial differential equations is manipulated to give an elliptic pressure equation and a hyperbolic (or parabolic) saturation equation. In the IMPES approach the pressure equation is first solved, using values for the saturation from the previous time level. Next the saturations are updated by some explicit time stepping method; this implies that the method is only conditionally stable. For the numerical solution of the linear, elliptic pressure equation multigrid methods have become an accepted technique. On the other hand, the fully implicit method is unconditionally stable, but it has the disadvantage that in every time step a large system of nonlinear algebraic equations has to be solved. The most time-consuming part of any fully implicit reservoir simulator is the solution of this large system of equations. Usually this is done by Newton's method. The resulting systems of linear equations are then either solved by a direct method or by some conjugate gradient type method. In this paper we consider the possibility of applying multigrid methods for the iterative solution of the systems of nonlinear equations. There are two ways of using multigrid for this job: either we use a nonlinear multigrid method or we use a linear multigrid method to deal with the linear systems that arise in Newton's method. So far only a few authors have reported on the use of multigrid methods for fully implicit simulations. Two-level FAS algorithm is presented for the black-oil equations, and linear multigrid for

  3. Numerical simulation of water injection into vapor-dominated reservoirs

    SciTech Connect

    Pruess, K.

    1995-01-01

    Water injection into vapor-dominated reservoirs is a means of condensate disposal, as well as a reservoir management tool for enhancing energy recovery and reservoir life. We review different approaches to modeling the complex fluid and heat flow processes during injection into vapor-dominated systems. Vapor pressure lowering, grid orientation effects, and physical dispersion of injection plumes from reservoir heterogeneity are important considerations for a realistic modeling of injection effects. An example of detailed three-dimensional modeling of injection experiments at The Geysers is given.

  4. Developing the aquatic-coupled reservoir model to simulate carbon dioxide emission from a young boreal hydroelectric reservoir

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Roulet, N. T.; Strachan, I. B.; Tremblay, A.

    2013-12-01

    We developed a process-based biogeochemical reservoir model, called AF-DNDC (Aquatic-coupled Forest-DNDC), to project carbon (C) flux from water surface of a recently created hydro-electric reservoir that flooded a boreal landscape. The basis of the reservoir model is Forest-DNDC, a biogeochemical model for C and nitrogen cycling in forests and wetlands. AF-DNDC was developed by coupling a lake C model to a flooded version of Forest-DNDC. AF-DNDC includes the C cycling through the aquatic carbon pools, such as DIC (dissolved inorganic C), DOC (dissolved organic C), and planktonic community as well as C exchange between air, water, and sediment. AF-DNDC was used to examine the net change in carbon dioxide (CO2) exchange between the surface and the atmosphere over the first seven years post flooding of the Eastmain-1 reservoir in northern Quebec. With present day climate and environmental conditions, simulated daily CO2 emissions from the flooded forest averaged 1.69 g C m-2 d-1 (range 0 to 20.49), and from the flooded peatland averaged 0.87 g C m-2 d-1 (range 0 to 6.86). Simulated CO2 emissions decreased with the age of reservoir. They were larger than eddy-covariance measured CO2 fluxes from the water surface over flooded forests, but compared well to the eddy-covariance fluxes during the open-water period. The simulated emissions were significantly correlated with the measured fluxes from the flooded forest (r2 = 0.33; p < 0.01) and flooded peatland (r2 = 0.41; p < 0.01). The patterns over the year were similar. AF-DNDC is suitable for use to assess the major changes in CO2 exchange due to the creation of reservoirs in boreal regions.

  5. Compositional Space Parameterization Approach for Reservoir Flow Simulation

    NASA Astrophysics Data System (ADS)

    Voskov, D.

    2011-12-01

    an adaptive tabulation procedure for the parameterization of the compositional space. Since a single tie-simplex 'supports' (i.e., identifies the phase-state of) a large number of compositions in its vicinity, the efficiency gains of adaptive construction are considerable. I will present the comparison of our adaptive tie-simplex parameterization method with conventional EoS (Equation-of-State) procedures for two- and three-phase displacements in homogeneous and heterogeneous reservoirs. The results indicate clearly that the new method is at least an order-of-magnitude more efficient than conventional EoS methods for two-phase flow. For multi-phase systems the approach helps to increase robustness of phase change identification that improves a stability of multi-phase flow simulation.

  6. Advanced Hydraulic Fracturing Technology for Unconventional Tight Gas Reservoirs

    SciTech Connect

    Stephen Holditch; A. Daniel Hill; D. Zhu

    2007-06-19

    The objectives of this project are to develop and test new techniques for creating extensive, conductive hydraulic fractures in unconventional tight gas reservoirs by statistically assessing the productivity achieved in hundreds of field treatments with a variety of current fracturing practices ranging from 'water fracs' to conventional gel fracture treatments; by laboratory measurements of the conductivity created with high rate proppant fracturing using an entirely new conductivity test - the 'dynamic fracture conductivity test'; and by developing design models to implement the optimal fracture treatments determined from the field assessment and the laboratory measurements. One of the tasks of this project is to create an 'advisor' or expert system for completion, production and stimulation of tight gas reservoirs. A central part of this study is an extensive survey of the productivity of hundreds of tight gas wells that have been hydraulically fractured. We have been doing an extensive literature search of the SPE eLibrary, DOE, Gas Technology Institute (GTI), Bureau of Economic Geology and IHS Energy, for publicly available technical reports about procedures of drilling, completion and production of the tight gas wells. We have downloaded numerous papers and read and summarized the information to build a database that will contain field treatment data, organized by geographic location, and hydraulic fracture treatment design data, organized by the treatment type. We have conducted experimental study on 'dynamic fracture conductivity' created when proppant slurries are pumped into hydraulic fractures in tight gas sands. Unlike conventional fracture conductivity tests in which proppant is loaded into the fracture artificially; we pump proppant/frac fluid slurries into a fracture cell, dynamically placing the proppant just as it occurs in the field. From such tests, we expect to gain new insights into some of the critical issues in tight gas fracturing, in

  7. Advanced Space Shuttle simulation model

    NASA Technical Reports Server (NTRS)

    Tatom, F. B.; Smith, S. R.

    1982-01-01

    A non-recursive model (based on von Karman spectra) for atmospheric turbulence along the flight path of the shuttle orbiter was developed. It provides for simulation of instantaneous vertical and horizontal gusts at the vehicle center-of-gravity, and also for simulation of instantaneous gusts gradients. Based on this model the time series for both gusts and gust gradients were generated and stored on a series of magnetic tapes, entitled Shuttle Simulation Turbulence Tapes (SSTT). The time series are designed to represent atmospheric turbulence from ground level to an altitude of 120,000 meters. A description of the turbulence generation procedure is provided. The results of validating the simulated turbulence are described. Conclusions and recommendations are presented. One-dimensional von Karman spectra are tabulated, while a discussion of the minimum frequency simulated is provided. The results of spectral and statistical analyses of the SSTT are presented.

  8. Simulating annual glacier flow with a linear reservoir model

    NASA Astrophysics Data System (ADS)

    Span, Norbert; Kuhn, Michael

    2003-05-01

    In this paper we present a numerical simulation of the observation that most alpine glaciers have reached peak velocities in the early 1980s followed by nearly exponential decay of velocity in the subsequent decade. We propose that similarity exists between precipitation and associated runoff hydrograph in a river basin on one side and annual mean specific mass balance of the accumulation area of alpine glaciers and ensuing changes in ice flow on the other side. The similarity is expressed in terms of a linear reservoir with fluctuating input where the year to year change of ice velocity is governed by two terms, a fraction of the velocity of the previous year as a recession term and the mean specific balance of the accumulation area of the current year as a driving term. The coefficients of these terms directly relate to the timescale, the mass balance/altitude profile, and the geometric scale of the glacier. The model is well supported by observations in the upper part of the glacier where surface elevation stays constant to within ±5 m over a 30 year period. There is no temporal trend in the agreement between observed and modeled horizontal velocities and no difference between phases of acceleration and phases of deceleration, which means that the model is generally valid for a given altitude on a given glacier.

  9. Increasing heavy oil reserves in the Wilmington oil field through advanced reservoir characterization and thermal production technologies. Quarterly report, July 1 - September 30, 1996

    SciTech Connect

    Hara, S.

    1996-12-01

    The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. This is the sixth quarterly technical progress report for the project. Through September 1996, the project continues to make good progress but is slightly behind schedule. Estimated costs are on budget for the work performed to date. Technical achievements accomplished during the quarter include placing the first two horizontal wells on production following cyclic steam stimulation, completing several draft technical reports and preparing presentations on the deterministic geologic model, steam channel crossing and horizontal well drilling for technical transfer. Cyclic steam injection into the first two horizontal wells was completed in June 1996 and initial oil production from the project began the same month. Work has commenced on the stochastic geologic and reservoir simulation models. High temperature core work and reservoir tracer work will commence in the First Quarter 1997.

  10. ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM

    SciTech Connect

    Mark B. Murphy

    2002-12-31

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  11. ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM

    SciTech Connect

    Mark B. Murphy

    2004-01-31

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  12. ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM

    SciTech Connect

    Mark B. Murphy

    2003-10-31

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  13. ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM

    SciTech Connect

    Mark B. Murphy

    2003-07-30

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  14. Advanced Characterization of Fractured Reservoirs in Carbonate Rocks: The Michigan Basin

    SciTech Connect

    Wood, J.R.; Harrison, W.B.

    2001-01-22

    The main objective of this project is for a university-industry consortium to develop a comprehensive model for fracture carbonate reservoirs based on the ''data cube'' concept using the Michigan Basin as a prototype. This project combined traditional historical data with 2D and 3D seismic data as well as data from modern logging tools in a novel way to produce a new methodology for characterizing fractured reservoirs in carbonate rocks. Advanced visualization software was used to fuse the data and to image it on a variety of scales, ranging from basin-scale to well-scales.

  15. Advanced Characterization of Fractured Reservoirs in Carbonate Rocks: The Michigan Basin

    SciTech Connect

    Wood, James R.; Harrison, William B.

    2000-10-24

    The main objective of this project is for a university-industry consortium to develop a comprehensive model for fracture carbonate reservoirs based on the ''data cube'' concept using the Michigan Basin as a prototype. This project combined traditional historical data with 2D and 3D seismic data as well as data from modern logging tools in a novel way to produce a new methodology for characterizing fractured reservoirs in carbonate rocks. Advanced visualization software was used to fuse the data and to image it on a variety of scales, ranging from basin-scale to well-scales.

  16. Class III Mid-Term Project, "Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies"

    SciTech Connect

    Scott Hara

    2007-03-31

    The overall objective of this project was to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involved improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective has been to transfer technology that can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The first budget period addressed several producibility problems in the Tar II-A and Tar V thermal recovery operations that are common in SBC reservoirs. A few of the advanced technologies developed include a three-dimensional (3-D) deterministic geologic model, a 3-D deterministic thermal reservoir simulation model to aid in reservoir management and subsequent post-steamflood development work, and a detailed study on the geochemical interactions between the steam and the formation rocks and fluids. State of the art operational work included drilling and performing a pilot steam injection and production project via four new horizontal wells (2 producers and 2 injectors), implementing a hot water alternating steam (WAS) drive pilot in the existing steamflood area to improve thermal efficiency, installing a 2400-foot insulated, subsurface harbor channel crossing to supply steam to an island location, testing a novel alkaline steam completion technique to control well sanding problems, and starting on an advanced reservoir management system through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. The second budget period phase (BP2) continued to implement state-of-the-art operational work to optimize thermal recovery processes, improve well drilling and completion practices, and evaluate the

  17. Improved recovery from Gulf of Mexico reservoirs. Volume III (of 4): Characterization and simulation of representative resources. Final report, February 14, 1995--October 13, 1996

    SciTech Connect

    Kimbrell, W.C.; Bassiouni, Z.A.; Bourgoyne, A.T.

    1997-01-13

    Significant innovations have been made in seismic processing and reservoir simulation. In addition, significant advances have been made in deviated and horizontal drilling technologies. Effective application of these technologies along with improved integrated resource management methods offer opportunities to significantly increase Gulf of Mexico production, delay platform abandonments, and preserve access to a substantial remaining oil target for both exploratory drilling and advanced recovery processes. In an effort to illustrate the impact that these new technologies and sources of information can have upon the estimates of recoverable oil in the Gulf of Mexico, additional and detailed data was collected for two previously studied reservoirs: a South March Island reservoir operated by Taylor Energy and Gulf of Mexico reservoir operated by Mobil, whose exact location has been blind-coded at their request, and an additional third representative reservoir in the Gulf of Mexico, the KEKF-1 reservoir in West Delta Block 84 Field. The new data includes reprocessed 2-D seismic data, newly acquired 3-D data, fluid data, fluid samples, pressure data, well test data, well logs, and core data/samples. The new data was used to refine reservoir and geologic characterization of these reservoirs. Further laboratory investigation also provided additional simulation input data in the form of PVT properties, relative permeabilities, capillary pressures, and water compatibility. Geologic investigations were also conducted to refine the models of mud-rich submarine fan architectures used by seismic analysts and reservoir engineers. These results were also used, in part, to assist in the recharacterization of these reservoirs.

  18. Using microstructure observations to quantify fracture properties and improve reservoir simulations. Final report, September 1998

    SciTech Connect

    Laubach, S.E.; Marrett, R.; Rossen, W.; Olson, J.; Lake, L.; Ortega, O.; Gu, Y.; Reed, R.

    1999-01-01

    The research for this project provides new technology to understand and successfully characterize, predict, and simulate reservoir-scale fractures. Such fractures have worldwide importance because of their influence on successful extraction of resources. The scope of this project includes creation and testing of new methods to measure, interpret, and simulate reservoir fractures that overcome the challenge of inadequate sampling. The key to these methods is the use of microstructures as guides to the attributes of the large fractures that control reservoir behavior. One accomplishment of the project research is a demonstration that these microstructures can be reliably and inexpensively sampled. Specific goals of this project were to: create and test new methods of measuring attributes of reservoir-scale fractures, particularly as fluid conduits, and test the methods on samples from reservoirs; extrapolate structural attributes to the reservoir scale through rigorous mathematical techniques and help build accurate and useful 3-D models of the interwell region; and design new ways to incorporate geological and geophysical information into reservoir simulation and verify the accuracy by comparison with production data. New analytical methods developed in the project are leading to a more realistic characterization of fractured reservoir rocks. Testing diagnostic and predictive approaches was an integral part of the research, and several tests were successfully completed.

  19. Simulations of Flow Circulations and Atrazine Concentrations in a Midwest U.S. Reservoir

    NASA Astrophysics Data System (ADS)

    Zhao, Xianggui; Gu, Roy R.; Guo, Chuling; Wang, Kui; Li, Shijie

    Atrazine is the most commonly used herbicide in the spring for pre-emergent weed control in the corn cropping area in the Midwestern United States. A frequent high level of herbicide concentrations in reservoirs is a great concern for public health and aquatic ecosystems. In this study, a two-dimensional hydrodynamics and toxic contaminant transport model was applied to Saylorville Reservoir, Iowa, USA. The model simulates physical, chemical, and biological processes and predicts unsteady vertical and longitudinal distributions of a toxic chemical. Model results were validated by measured temperatures and atrazine concentrations. Simulated flow velocities, water temperatures, and chemical concentrations demonstrated that the spatial variation of atrazine concentrations was largely affected by seasonal flow circulation patterns in the reservoir. In particular, the simulated fate and transport of atrazine showed the effect of flow circulation on spatial distribution of atrazine during summer months as the river flow formed an underflow within the reservoir and resulted in greater concentrations near the surface of the reservoir. Atrazine concentrations in the reservoir peaked around the end of May and early June. A thorough understanding of the fate and transport of atrazine in the reservoir can assist in developing operation and pollution prevention strategies with respect to timing, amount, and depth of withdrawal. The responses of atrazine transport to various boundary conditions provide useful information in assessing environmental impact of alternative upstream watershed management practices on the quality of reservoir water.

  20. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2001-05-08

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through March 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Second Quarter 2001 performing well work and reservoir surveillance on the Tar II-A post-steamflood project. The Tar II-A steamflood reservoirs have been operated over fifteen months at relatively stable pressures, due in large part to the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase in January 1999. Starting in the Fourth Quarter 2000, the project team has ramped up activity to increase production and injection. This work will continue through 2001 as described in the Operational Management section. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current steamflood operations in the Tar V pilot are economical, but recent performance is below projections because of wellbore mechanical

  1. Application of reservoir characterization and advanced technology to improve recovery and economics in a lower quality shallow shelf San Andres reservoir. Quarterly progress report, October 1--December 31, 1997

    SciTech Connect

    Taylor, A.R.; Hickman, T.S.; Justice, J.J.

    1998-01-31

    West Welch Unit is one of four large waterflood units in the Welch Field in the northwestern portion of Dawson County, Texas. The Welch Field produces oil under a solution gas drive mechanism from the San Andres formation at approximately 4,800 ft. The field has been under waterflood for 30 years and a significant portion has been infill-drilled on 20-ac density. A 1982--86 pilot CO{sub 2} injection project in the offsetting South Welch Unit yielded positive results. Recent installation of a CO{sub 2} pipeline near the field allowed the phased development of a miscible CO{sub 2} injection project at the South Welch Unit. The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: advanced petrophysics; three-dimensional seismic; cross-well bore tomography; advanced reservoir simulation; CO{sub 2} stimulation treatments; hydraulic fracturing design and monitoring; and mobility control agents. During the quarter, development of the project`s south expansion area was undertaken, work was continued on interpreting the crosswell seismic data and CO{sub 2} injection into 11 wells was initiated.

  2. Modeling dolomitized carbonate-ramp reservoirs: A case study of the Seminole San Andres unit. Part 2 -- Seismic modeling, reservoir geostatistics, and reservoir simulation

    SciTech Connect

    Wang, F.P.; Dai, J.; Kerans, C.

    1998-11-01

    In part 1 of this paper, the authors discussed the rock-fabric/petrophysical classes for dolomitized carbonate-ramp rocks, the effects of rock fabric and pore type on petrophysical properties, petrophysical models for analyzing wireline logs, the critical scales for defining geologic framework, and 3-D geologic modeling. Part 2 focuses on geophysical and engineering characterizations, including seismic modeling, reservoir geostatistics, stochastic modeling, and reservoir simulation. Synthetic seismograms of 30 to 200 Hz were generated to study the level of seismic resolution required to capture the high-frequency geologic features in dolomitized carbonate-ramp reservoirs. Outcrop data were collected to investigate effects of sampling interval and scale-up of block size on geostatistical parameters. Semivariogram analysis of outcrop data showed that the sill of log permeability decreases and the correlation length increases with an increase of horizontal block size. Permeability models were generated using conventional linear interpolation, stochastic realizations without stratigraphic constraints, and stochastic realizations with stratigraphic constraints. Simulations of a fine-scale Lawyer Canyon outcrop model were used to study the factors affecting waterflooding performance. Simulation results show that waterflooding performance depends strongly on the geometry and stacking pattern of the rock-fabric units and on the location of production and injection wells.

  3. Analysis of formation pressure test results in the Mount Elbert methane hydrate reservoir through numerical simulation

    USGS Publications Warehouse

    Kurihara, M.; Sato, A.; Funatsu, K.; Ouchi, H.; Masuda, Y.; Narita, H.; Collett, T.S.

    2011-01-01

    Targeting the methane hydrate (MH) bearing units C and D at the Mount Elbert prospect on the Alaska North Slope, four MDT (Modular Dynamic Formation Tester) tests were conducted in February 2007. The C2 MDT test was selected for history matching simulation in the MH Simulator Code Comparison Study. Through history matching simulation, the physical and chemical properties of the unit C were adjusted, which suggested the most likely reservoir properties of this unit. Based on these properties thus tuned, the numerical models replicating "Mount Elbert C2 zone like reservoir" "PBU L-Pad like reservoir" and "PBU L-Pad down dip like reservoir" were constructed. The long term production performances of wells in these reservoirs were then forecasted assuming the MH dissociation and production by the methods of depressurization, combination of depressurization and wellbore heating, and hot water huff and puff. The predicted cumulative gas production ranges from 2.16??106m3/well to 8.22??108m3/well depending mainly on the initial temperature of the reservoir and on the production method.This paper describes the details of modeling and history matching simulation. This paper also presents the results of the examinations on the effects of reservoir properties on MH dissociation and production performances under the application of the depressurization and thermal methods. ?? 2010 Elsevier Ltd.

  4. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM

    SciTech Connect

    Mark B. Murphy

    2005-09-30

    The Nash Draw Brushy Canyon Pool in Eddy County New Mexico was a cost-shared field demonstration project in the U.S. Department of Energy Class III Program. A major goal of the Class III Program was to stimulate the use of advanced technologies to increase ultimate recovery from slope-basin clastic reservoirs. Advanced characterization techniques were used at the Nash Draw Pool (NDP) project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The objective of the project was to demonstrate that a development program, which was based on advanced reservoir management methods, could significantly improve oil recovery at the NDP. Initial goals were (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to other oil and gas producers. Analysis, interpretation, and integration of recently acquired geological, geophysical, and engineering data revealed that the initial reservoir characterization was too simplistic to capture the critical features of this complex formation. Contrary to the initial characterization, a new reservoir description evolved that provided sufficient detail regarding the complexity of the Brushy Canyon interval at Nash Draw. This new reservoir description was used as a risk reduction tool to identify 'sweet spots' for a development drilling program as well as to evaluate pressure maintenance strategies. The reservoir characterization, geological modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir. An Advanced

  5. Advanced Vadose Zone Simulations Using TOUGH

    SciTech Connect

    Finsterle, S.; Doughty, C.; Kowalsky, M.B.; Moridis, G.J.; Pan,L.; Xu, T.; Zhang, Y.; Pruess, K.

    2007-02-01

    The vadose zone can be characterized as a complex subsurfacesystem in which intricate physical and biogeochemical processes occur inresponse to a variety of natural forcings and human activities. Thismakes it difficult to describe, understand, and predict the behavior ofthis specific subsurface system. The TOUGH nonisothermal multiphase flowsimulators are well-suited to perform advanced vadose zone studies. Theconceptual models underlying the TOUGH simulators are capable ofrepresenting features specific to the vadose zone, and of addressing avariety of coupled phenomena. Moreover, the simulators are integratedinto software tools that enable advanced data analysis, optimization, andsystem-level modeling. We discuss fundamental and computationalchallenges in simulating vadose zone processes, review recent advances inmodeling such systems, and demonstrate some capabilities of the TOUGHsuite of codes using illustrative examples.

  6. Advanced reservoir characterization in the Antelope Shale to establish the viability of CO{sub 2} enhanced oil recovery in California`s Monterey formation siliceous shales. Quarterly report, April 1, 1997--June 30, 1997

    SciTech Connect

    Morea, M.F.

    1997-07-25

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO{sub 2} enhanced oil recovery project in the Antelope Shale in Buena Vista Hills Field. The Buena Vista Hills pilot CO{sub 2} project will demonstrate the economic viability and widespread applicability of CO{sub 2} flooding in fractured siliceous shale reservoirs of the San Joaquin Valley. The research consists of four primary work processes: Reservoir Matrix and Fluid Characterization; Fracture Characterization; Reservoir Modeling and Simulation; and CO{sub 2} Pilot Flood and Evaluation. Work done in these areas is subdivided into two phases or budget periods. The first phase of the project will focus on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced enhanced oil recovery (EOR) pilot in the United Anticline (West Dome) of the Buena Vista Hills Field.

  7. Advanced reservoir characterization in the Antelope Shale to establish the viability of CO{sub 2} enhanced oil recovery in California`s Monterey Formation siliceous shales. Quarterly progress report, January 1--March 31, 1998

    SciTech Connect

    Morea, M.F.

    1998-04-23

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO{sub 2} enhanced oil recovery project in the Antelope Shale in Buena Vista Hills Field. The Buena Vista Hills pilot CO{sub 2} project will demonstrate the economic viability and widespread applicability of CO{sub 2} flooding in fractured siliceous shale reservoirs of the San Joaquin Valley. The research consists of four primary work processes: Reservoir Matrix and Fluid Characterization; Fracture Characterization; Reservoir Modeling and Simulation; and CO{sub 2} Pilot Flood and Evaluation. Work done in these areas is subdivided into two phases or budget periods. The first phase of the project focused on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced enhanced oil recovery (EOR) pilot in the United Anticline (West Dome) of the Buena Vista Hills Field. Progress to date is described.

  8. Advanced reservoir characterization in the antelope shale to establish the viability of CO{sub 2} enhanced oil recovery in California`s Monterey formation siliceous shales. Technical progress report

    SciTech Connect

    Smith, S.C.

    1996-03-31

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO{sub 2} enhanced oil recovery project in the Buena Vista Hills field. The Buena Vista Hills pilot CO{sub 2} project will demonstrate the economic viability and widespread applicability of CO{sub 2} flooding in fractured siliceous shales reservoirs of the San Joaquin Valley. The research consists of four primary work processes: reservoir matrix and fluid characterization; fracture characterization; reservoir modeling and simulation; and, CO{sub 2} pilot flood and evaluation. Work done in these areas can be subdivided into two phases or budget periods. The first phase of the project will focus on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced EOR pilot in the West Dome of the Buena Vista Hills field. The project has just gotten underway and this report summarizes the technical work done during pre-award activities. Pre-award technical efforts included: cross- well seismic field trial; downhole video logging of producing wells; and acquisition and installation of state of the art workstation and modeling software.

  9. Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of CO(2) Enhanced Oil Recovery in California`s Monterey formation Siliceous Shales. Progress report, April 1-June 30, 1997

    SciTech Connect

    Morea, M.F.

    1997-07-25

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a C0{sub 2} enhanced oil recovery project in the Antelope Shale in Buena Vista Hills Field. The Buena Vista Hills Pilot C0{sub 2} project will demonstrate the economic viability and widespread applicability of C0{sub 2} flooding in fractured siliceous shale reservoirs of the San Joaquin Valley. The research consists of four primary work processes: Reservoir Matrix and Fluid Characterization; Fracture Characterization; Reservoir Modeling and Simulation; and C0{sub 2} Pilot Flood and Evaluation. Work done in these areas is subdivided into two phases or budget periods. The first phase of the project will focus on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced enhanced oil recovery (EOR) pilot in the United Anticline (West Dome) of the Buena Vista Hills Field.

  10. Advanced reservoir characterization in the Antelope Shale to establish the viability of CO{sub 2} enhanced oil recovery in California`s Monterey formation siliceous shales. Quarterly report, April 1, 1996 - June 30, 1996

    SciTech Connect

    Smith, S.C.

    1996-06-01

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO{sub 2} enhanced oil recovery project in the Buena Vista Hills field. The Buena Vista Hills pilot CO{sub 2} project will demonstrate the economic viability and widespread applicability Of CO{sub 2} flooding in fractured siliceous shales reservoirs of the San Joaquin Valley. The research consists of four primary work processes: Reservoir Matrix and Fluid Characterization; Fracture Characterization; Reservoir Modeling and Simulation; and, CO{sub 2} Pilot Flood and Evaluation. Work done in these areas can be subdivided into two phases or budget periods. The first phase of the project will focus on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced EOR pilot in the West Dome of the Buena Vista Hills field. The Buena Vista Hills project realized it`s first major milestone in the second quarter of 1996 with the pending drilling of proposed project injection well. Regional fracture characterization work was also initiated in the second quarter. This report summarizes the status of those efforts.

  11. Vortex formation in coalescence of droplets with a reservoir using molecular dynamics simulations.

    PubMed

    Taherian, Fereshte; Marcon, Valentina; Bonaccurso, Elmar; van der Vegt, Nico F A

    2016-10-01

    The flow patterns generated by the coalescence of aqueous ethanol droplets with a water reservoir are investigated using molecular dynamics simulations. The influence of surface tension gradient, which leads to the spreading of the droplet along the liquid-vapor interface of the reservoir, is studied by changing the ethanol concentration of the droplet. The internal circulation (vortex strength) of the droplet and the reservoir are analyzed separately. Simulation results reveal the formation of swirling flows within the droplet at early times when the radius of the coalescence neck due to the capillary forces increases rapidly with time. The vortex strength is found to be higher at lower concentrations of ethanol (higher liquid-vapor surface tension of the droplet), where the driving force for the contact line movement (capillary force) is stronger. The circulation diminishes by moving the center of mass of the droplet toward the reservoir. The lower surface tension of the droplet compared to the reservoir leads to surface tension gradient driven flow, which transports the droplet molecules along the liquid-vapor interface of the reservoir. Such a flow motion results in the generation of convective flows in the underlying water, which forms swirling flows within the reservoir. Therefore, the vortex strength of the reservoir is higher at higher ethanol concentrations of the droplet. The reservoir circulation decays to zero as soon as the ethanol concentration becomes homogeneous along the interface of the pool. The time evolution of circulation within the droplet and the reservoir are correlated with the center of mass motion of the droplet toward the surface, the time variation of the precursor film radius and the dynamic surface tension of the reservoir.

  12. Advances in atomic oxygen simulation

    NASA Technical Reports Server (NTRS)

    Froechtenigt, Joseph F.; Bareiss, Lyle E.

    1990-01-01

    Atomic oxygen (AO) present in the atmosphere at orbital altitudes of 200 to 700 km has been shown to degrade various exposed materials on Shuttle flights. The relative velocity of the AO with the spacecraft, together with the AO density, combine to yield an environment consisting of a 5 eV beam energy with a flux of 10(exp 14) to 10(exp 15) oxygen atoms/sq cm/s. An AO ion beam apparatus that produces flux levels and energy similar to that encountered by spacecraft in low Earth orbit (LEO) has been in existence since 1987. Test data was obtained from the interaction of the AO ion beam with materials used in space applications (carbon, silver, kapton) and with several special coatings of interest deposited on various surfaces. The ultimate design goal of the AO beam simulation device is to produce neutral AO at sufficient flux levels to replicate on-orbit conditions. A newly acquired mass spectrometer with energy discrimination has allowed 5 eV neutral oxygen atoms to be separated and detected from the background of thermal oxygen atoms of approx 0.2 eV. Neutralization of the AO ion beam at 5 eV was shown at the Martin Marietta AO facility.

  13. Center for Advanced Modeling and Simulation Intern

    SciTech Connect

    Gertman, Vanessa

    2010-01-01

    Some interns just copy papers and seal envelopes. Not at INL! Check out how Vanessa Gertman, an INL intern working at the Center for Advanced Modeling and Simulation, spent her summer working with some intense visualization software. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.

  14. Center for Advanced Modeling and Simulation Intern

    ScienceCinema

    Gertman, Vanessa

    2016-07-12

    Some interns just copy papers and seal envelopes. Not at INL! Check out how Vanessa Gertman, an INL intern working at the Center for Advanced Modeling and Simulation, spent her summer working with some intense visualization software. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.

  15. Comparisons of Simulated Hydrodynamics and Water Quality for Projected Demands in 2046, Pueblo Reservoir, Southeastern Colorado

    USGS Publications Warehouse

    Ortiz, Roderick F.; Galloway, Joel M.; Miller, Lisa D.; Mau, David P.

    2008-01-01

    Pueblo Reservoir is one of southeastern Colorado's most valuable water resources. The reservoir provides irrigation, municipal, and industrial water to various entities throughout the region. The reservoir also provides flood control, recreational activities, sport fishing, and wildlife enhancement to the region. The Bureau of Reclamation is working to meet its goal to issue a Final Environmental Impact Statement (EIS) on the Southern Delivery System project (SDS). SDS is a regional water-delivery project that has been proposed to provide a safe, reliable, and sustainable water supply through the foreseeable future (2046) for Colorado Springs, Fountain, Security, and Pueblo West. Discussions with the Bureau of Reclamation and the U.S. Geological Survey led to a cooperative agreement to simulate the hydrodynamics and water quality of Pueblo Reservoir. This work has been completed and described in a previously published report, U.S. Geological Survey Scientific Investigations Report 2008-5056. Additionally, there was a need to make comparisons of simulated hydrodynamics and water quality for projected demands associated with the various EIS alternatives and plans by Pueblo West to discharge treated water into the reservoir. Plans by Pueblo West are fully independent of the SDS project. This report compares simulated hydrodynamics and water quality for projected demands in Pueblo Reservoir resulting from changes in inflow and water quality entering the reservoir, and from changes to withdrawals from the reservoir as projected for the year 2046. Four of the seven EIS alternatives were selected for scenario simulations. The four U.S. Geological Survey simulation scenarios were the No Action scenario (EIS Alternative 1), the Downstream Diversion scenario (EIS Alternative 2), the Upstream Return-Flow scenario (EIS Alternative 4), and the Upstream Diversion scenario (EIS Alternative 7). Additionally, the results of an Existing Conditions scenario (water years 2000 through

  16. Ultrasonic and numerical modeling of reflections from simulated fractured reservoirs

    SciTech Connect

    Stephen, T.; Zhu, Xiang,

    1997-10-01

    In order to develop modeling techniques for the characterization of fracture properties in tight gas sands from surface seismic reflection data we examine seismic waves scattered from anisotropic heterogeneity with laboratory data and numerical modeling. Laboratory models representing features of a fractured reservoir were constructed using Phenolite embedded in a Lucite background, and seismic surveys were gathered over these models. In parallel with laboratory measurement, finite-difference modeling of reflections from a fractured medium were carried out. Fracture zone properties were calculated using an effective medium theory, the variation of fracture density produced a heterogeneous medium. The heterogeneity was modeled with a stochastic process, characterized by a probability density function and an auto-correlation function. Results from both modeling efforts show that prestacked AVO data can contain important information describing reservoir heterogeneity.

  17. Numerical simulation of fluid implementing heat transfer in naturally fractured geothermal reservoir with DFN method

    NASA Astrophysics Data System (ADS)

    Lee, T.; Kim, K.; Lee, K.; Lee, H.; Lee, W.

    2015-12-01

    Natural fractures have an effect on the fluid flow and heat transfer in the naturally fractured geothermal reservoir. However, most of the previous works in this area assumed that reservoir systems are continuum model whether it is single continuum or dual continuum. Moreover, some people have studied without continuum model but, it was just pipeline model. In this paper, we developed a generalized discrete fracture network (DFN) geothermal reservoir simulator. In the model, 2D flow is possible within a rectangular fracture, which is important in thick naturally fractured reservoirs. The DFN model developed in this study was validated for two synthetic fracture systems using a commercial thermal model, TETRAD. Comparison results showed an excellent matching between both models. However, this model is only fracture model and it can't calculate simulation of fluid flow and heat transfer in matrix. Therefore, matrix flow model will be added to this model.

  18. Some mismatches occurred when simulating fractured reservoirs as homogeneous porous media

    SciTech Connect

    Mario Cesar Suarez Arriaga; Fernando Samaniego V.; Fernando Rodriguez

    1996-01-24

    The understanding of transport processes that occur in naturally fractured geothermal systems is far from being complete. Often, evaluation and numerical simulations of fractured geothermal reservoirs, are carried out by assuming equivalent porous media and homogeneous petrophysical properties within big matrix blocks. The purpose of this paper, is to present a comparison between results obtained from numerical studies of a naturally fractured reservoir treated as a simple porous medium and the simulation of some real aspects of the fractured reservoir. A general conclusion outlines the great practical importance of considering even approximately, the true nature of such systems. Our results show that the homogeneous simplified evaluation of the energy resource in a fractured system, could result in unrealistic estimates of the reservoir capacity to generate electricity.

  19. Numerical simulation of heterogeneous fractured gas reservoir systems with turbulence and closure stress effects

    SciTech Connect

    Allam, A.M.; Crichlow, H.B.; Soliman, M.Y.

    1981-01-01

    A numerical technique for analyzing the behavior of a fractured gas reservoir system is presented. The reservoir is simulated by a fully implicit three-dimensional model that incorporates the effects of turbulent flow and closure stress in a finite conductivity fracture. The model utilizes the real gas pseudo-pressure, two-point upstream transmissibilities and a stable iterative process based on a sparse matrix approach to solving the equation systems. This paper presents a description of the model and applications to various reservoirs to illustrate the effects of fracture heights, turbulence and closure pressure on well performance. 16 refs.

  20. Waterflooding simulation of reservoir containing horizontal well stimulated by multistage hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Mazo, A. B.; Khamidullin, M. R.; Potashev, K. A.

    2016-11-01

    The article presents a three-dimensional mathematical model for two-phase fluid flow near a multistage hydraulically fractured horizontal well (MSHFHW). The flow in the reservoir and in the fractures is simulated separately, and the flow rate is governed by Darcy's law. Finite volume method is used for spatial approximation. The obtained systems of linear equations for pressure in the reservoir and in the fractures are solved simultaneously, which allows us to avoid using iterative process for solution adjustment both in the fractures and the reservoir. Saturation is calculated by the implicit adaptive scheme AIM.

  1. iTOUGH2-EOS1SC. Multiphase Reservoir Simulator for Water under Sub- and Supercritical Conditions. User's Guide

    SciTech Connect

    Magnusdottir, Lilja; Finsterle, Stefan

    2015-03-01

    Supercritical fluids exist near magmatic heat sources in geothermal reservoirs, and the high enthalpy fluid is becoming more desirable for energy production with advancing technology. In geothermal modeling, the roots of the geothermal systems are normally avoided but in order to accurately predict the thermal behavior when wells are drilled close to magmatic intrusions, it is necessary to incorporate the heat sources into the modeling scheme. Modeling supercritical conditions poses a variety of challenges due to the large gradients in fluid properties near the critical zone. This work focused on using the iTOUGH2 simulator to model the extreme temperature and pressure conditions in magmatic geothermal systems.

  2. Application of reservoir characterization and advanced technology to improve recovery and economics in a lower quality shallow shelf carbonate reservoir. End of budget period report, August 3, 1994--December 31, 1996

    SciTech Connect

    Taylor, A.R.; Hinterlong, G.; Watts, G.; Justice, J.; Brown, K.; Hickman, T.S.

    1997-12-01

    The Oxy West Welch project is designed to demonstrate how the use of advanced technology can improve the economics of miscible CO{sub 2} injection projects in a lower quality shallow shelf carbonate reservoir. The research and design phase primarily involves advanced reservoir characterization and accelerating the production response. The demonstration phase will implement the reservoir management plan based on an optimum miscible CO{sub 2} flood as designed in the initial phase. During Budget Period 1, work was completed on the CO{sub 2} stimulation treatments and the hydraulic fracture design. Analysis of the CO{sub 2} stimulation treatment provided a methodology for predicting results. The hydraulic fracture treatment proved up both the fracture design approach a and the use of passive seismic for mapping the fracture wing orientation. Although the 3-D seismic interpretation is still being integrated into the geologic model and interpretation of borehole seismic is still underway, the simulator has been enhanced to the point of giving good waterflood history matches. The simulator-forecasted results for an optimal designed miscible CO{sub 2} flood in the demonstration area gave sufficient economics to justify continuation of the project into Budget Period 2.

  3. Coupling geostatistics to detailed reservoir description allows better visualization and more accurate characterization/simulation of turbidite reservoirs: Elk Hills oil field, California

    SciTech Connect

    Allan, M.E.; Wilson, M.L.; Wightman, J. )

    1996-01-01

    The Elk Hills giant oilfield, located in the southern San Joaquin Valley of California, has produced 1.1 billion barrels of oil from Miocene and shallow Pliocene reservoirs. 65% of the current 64,000 BOPD production is from the pressure-supported, deeper Miocene turbidite sands. In the turbidite sands of the 31 S structure, large porosity permeability variations in the Main Body B and Western 31 S sands cause problems with the efficiency of the waterflooding. These variations have now been quantified and visualized using geostatistics. The end result is a more detailed reservoir characterization for simulation. Traditional reservoir descriptions based on marker correlations, cross-sections and mapping do not provide enough detail to capture the short-scale stratigraphic heterogeneity needed for adequate reservoir simulation. These deterministic descriptions are inadequate to tie with production data as the thinly bedded sand/shale sequences blur into a falsely homogenous picture. By studying the variability of the geologic petrophysical data vertically within each wellbore and spatially from well to well, a geostatistical reservoir description has been developed. It captures the natural variability of the sands and shales that was lacking from earlier work. These geostatistical studies allow the geologic and petrophysical characteristics to be considered in a probabilistic model. The end-product is a reservoir description that captures the variability of the reservoir sequences and can be used as a more realistic starting point for history matching and reservoir simulation.

  4. Coupling geostatistics to detailed reservoir description allows better visualization and more accurate characterization/simulation of turbidite reservoirs: Elk Hills oil field, California

    SciTech Connect

    Allan, M.E.; Wilson, M.L.; Wightman, J.

    1996-12-31

    The Elk Hills giant oilfield, located in the southern San Joaquin Valley of California, has produced 1.1 billion barrels of oil from Miocene and shallow Pliocene reservoirs. 65% of the current 64,000 BOPD production is from the pressure-supported, deeper Miocene turbidite sands. In the turbidite sands of the 31 S structure, large porosity & permeability variations in the Main Body B and Western 31 S sands cause problems with the efficiency of the waterflooding. These variations have now been quantified and visualized using geostatistics. The end result is a more detailed reservoir characterization for simulation. Traditional reservoir descriptions based on marker correlations, cross-sections and mapping do not provide enough detail to capture the short-scale stratigraphic heterogeneity needed for adequate reservoir simulation. These deterministic descriptions are inadequate to tie with production data as the thinly bedded sand/shale sequences blur into a falsely homogenous picture. By studying the variability of the geologic & petrophysical data vertically within each wellbore and spatially from well to well, a geostatistical reservoir description has been developed. It captures the natural variability of the sands and shales that was lacking from earlier work. These geostatistical studies allow the geologic and petrophysical characteristics to be considered in a probabilistic model. The end-product is a reservoir description that captures the variability of the reservoir sequences and can be used as a more realistic starting point for history matching and reservoir simulation.

  5. One-dimensional simulation of stratification and dissolved oxygen in McCook Reservoir, Illinois

    USGS Publications Warehouse

    Robertson, Dale M.

    2000-01-01

    As part of the Chicagoland Underflow Plan/Tunnel and Reservoir Plan, the U.S. Army Corps of Engineers, Chicago District, plans to build McCook Reservoir.a flood-control reservoir to store combined stormwater and raw sewage (combined sewage). To prevent the combined sewage in the reservoir from becoming anoxic and producing hydrogen sulfide gas, a coarse-bubble aeration system will be designed and installed on the basis of results from CUP 0-D, a zero-dimensional model, and MAC3D, a three-dimensional model. Two inherent assumptions in the application of MAC3D are that density stratification in the simulated water body is minimal or not present and that surface heat transfers are unimportant and, therefore, may be neglected. To test these assumptions, the previously tested, one-dimensional Dynamic Lake Model (DLM) was used to simulate changes in temperature and dissolved oxygen in the reservoir after a 1-in-100-year event. Results from model simulations indicate that the assumptions made in MAC3D application are valid as long as the aeration system, with an air-flow rate of 1.2 cubic meters per second or more, is operated while the combined sewage is stored in the reservoir. Results also indicate that the high biochemical oxygen demand of the combined sewage will quickly consume the dissolved oxygen stored in the reservoir and the dissolved oxygen transferred through the surface of the reservoir; therefore, oxygen must be supplied by either the rising bubbles of the aeration system (a process not incorporated in DLM) or some other technique to prevent anoxia.

  6. Simulation of irreversible rock compaction effects on geopressured reservoir response: Topical report

    SciTech Connect

    Riney, T.D.

    1986-12-01

    A series of calculations are presented which quantitatively demonstrate the effects of nonlinear stress-deformation properties on the behavior of geopressured reservoirs. The range of stress-deformation parameters considered is based on information available from laboratory rock mechanics tests performed at the University of Texas at Austin and at Terra Tek, Inc. on cores recovered from geopressured wells. The effects of irreversible formation rock compaction, associated permeability reduction, and repetitive load/unload cycling are considered. The formation rock and geopressured brine properties are incorporated into an existing reservoir simulator using a bilinear model for the irreversible compaction process. Pressure drawdown and buildup testing of a well producing from the geopressured formation is simulated for a suite of calculations covering the range of formation parameters. The results are presented and discussed in terms of the inference (e.g., permeability and reservoir volume) that would be drawn from the simulated test data by an analyst using conventional methods.

  7. Visualization of reservoir simulation data with an immersive virtual reality system

    SciTech Connect

    Williams, B.K.

    1996-10-01

    This paper discusses an investigation into the use of an immersive virtual reality (VR) system to visualize reservoir simulation output data. The hardware and software configurations of the test-immersive VR system are described and compared to a nonimmersive VR system and to an existing workstation screen-based visualization system. The structure of 3D reservoir simulation data and the actions to be performed on the data within the VR system are discussed. The subjective results of the investigation are then presented, followed by a discussion of possible future work.

  8. Simulation of Hydrodynamics at Stratified Reservoirs Using a Staged Modeling Approach

    SciTech Connect

    Khangaonkar, Tarang P.; Yang, Zhaoqing; Paik, Joongcheol; Sotiropoulos, Fotis

    2008-10-01

    Hydropower reservoirs impounded by high-head dams exhibit complex circulation that confuses the downstream migrating salmon and limits successful collection and passage of fish. Fish passage engineers attempt to modify the hydrothermal behavior at reservoirs through structural and operational modifications and often use hydrodynamic simulations to guide their actions. Simulation of key hydrothermal processes such as (a) development of a stable two-layer stratified system, (b) density-driven currents over a reservoir length scale, and (c) discharge hydraulics near the power generation and fish collection intakes requires highly specialized models applied at differing temporal and spatial scales. A staged modeling approach is presented that uses external coupling of models at varying temporal scales and spatial resolution to simulate the entire hydraulic regime from the mouth of the reservoir at the upstream end to the discharge at the dam. The staged modeling approach is illustrated using a case study where structural modifications were evaluated to improve reservoir stratification and density-driven currents. The model results provided input and valuable insight in the development of a new structure design and configuration for effective fish collection near the forebay of a high-head dam.

  9. Simulation of water temperature in two reservoirs with Delft3d

    NASA Astrophysics Data System (ADS)

    Yang, J. Y.; Zhou, L. Y.

    2016-08-01

    The proposeled Guanjingkou and Fengdou reservoir will be constructed at Chongqing city and Muling city in China respectively. The water temperature in the reservoir, in the downstream, and the aquatic ecosystem would be altered by the construction of the reservoirs. This paper simulates the water temperature in the two reservoirs by using the Delft3d z-layer model, which uses the fixed elevation for layers. According to the simulation results, the temperature profile in the reservoirs can be divided into three layers: the upmost epilimnion layer, the beneathed thermocline layer, and the constant tepmerature layer at bottom. The temperature effects can be reduced by measurements of stoplogs gates and mutiple gates, respectively. Based on the simulation results in the wet, nomal, and dry year, the temperature of water released from the stoplogs gates at Guanjingkou reservior can be respectively increased by 5.7°C, 6.8°C, 9.6°C, and 5.5°C in the irrigation season from May to August. The temperature of water released from the mutiple gates at Fengdou reservior can be respectively increased by 7.7 °C, 1.9 °C, 9.5 °C, and 10.1 °C from May to August. The negative impacts from the water with lower temperature on the related ecosystem can be significently alleviated.

  10. ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM

    SciTech Connect

    Mark B. Murphy

    2002-09-30

    The overall objective of this project is to demonstrate that a development program-based on advanced reservoir management methods-can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry. This is the twenty-eighth quarterly progress report on the project. Results obtained to date are summarized.

  11. Advanced reservoir characterization for improved oil recovery in a New Mexico Delaware basin project

    SciTech Connect

    Martin, F.D.; Kendall, R.P.; Whitney, E.M.

    1997-08-01

    The Nash Draw Brushy Canyon Pool in Eddy County, New Mexico is a field demonstration site in the Department of Energy Class III program. The basic problem at the Nash Draw Pool is the low recovery typically observed in similar Delaware fields. By comparing a control area using standard infill drilling techniques to a pilot area developed using advanced reservoir characterization methods, the goal of the project is to demonstrate that advanced technology can significantly improve oil recovery. During the first year of the project, four new producing wells were drilled, serving as data acquisition wells. Vertical seismic profiles and a 3-D seismic survey were acquired to assist in interwell correlations and facies prediction. Limited surface access at the Nash Draw Pool, caused by proximity of underground potash mining and surface playa lakes, limits development with conventional drilling. Combinations of vertical and horizontal wells combined with selective completions are being evaluated to optimize production performance. Based on the production response of similar Delaware fields, pressure maintenance is a likely requirement at the Nash Draw Pool. A detailed reservoir model of pilot area was developed, and enhanced recovery options, including waterflooding, lean gas, and carbon dioxide injection, are being evaluated.

  12. Tight gas reservoir simulation: Modeling discrete irregular strata-bound fracture network flow, including dynamic recharge from the matrix

    SciTech Connect

    McKoy, M.L., Sams, W.N.

    1997-10-01

    The US Department of Energy, Federal Energy Technology Center, has sponsored a project to simulate the behavior of tight, fractured, strata-bound gas reservoirs that arise from irregular discontinuous, or clustered networks of fractures. New FORTRAN codes have been developed to generate fracture networks, or simulate reservoir drainage/recharge, and to plot the fracture networks and reservoirs pressures. Ancillary codes assist with raw data analysis.

  13. Advanced Civil Transport Simulator Cockpit View

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Advanced Civil Transport Simulator (ACTS) is a futuristic aircraft cockpit simulator designed to provide full-mission capabilities for researching issues that will affect future transport aircraft flight stations and crews. The objective is to heighten the pilots situation awareness through improved information availability and ease of interpretation in order to reduce the possibility of misinterpreted data. The simulators five 13-inch Cathode Ray Tubes are designed to display flight information in a logical easy-to-see format. Two color flat panel Control Display Units with touch sensitive screens provide monitoring and modification of aircraft parameters, flight plans, flight computers, and aircraft position. Three collimated visual display units have been installed to provide out-the-window scenes via the Computer Generated Image system. The major research objectives are to examine needs for transfer of information to and from the flight crew; study the use of advanced controls and displays for all-weather flying; explore ideas for using computers to help the crew in decision making; study visual scanning and reach behavior under different conditions with various levels of automation and flight deck-arrangements.

  14. Simulation studies to evaluate the effect of fracture closure on the performance of fractured reservoirs; Final report

    SciTech Connect

    Howrie, I.; Dauben, D.

    1994-03-01

    A three-year research program to evaluate the effect of fracture closure on the recovery of oil and gas from naturally fractured reservoirs has been completed. The overall objectives of the study were to: (1) evaluate the reservoir conditions for which fracture closure is significant, and (2) evaluate innovative fluid injection techniques capable of maintaining pressure within the reservoir. The evaluations of reservoir performance were made by a modern dual porosity simulator, TETRAD. This simulator treats both porosity and permeability as functions of pore pressure. The Austin Chalk in the Pearsall Field in of South Texas was selected as the prototype fractured reservoir for this work. During the first year, simulations of vertical and horizontal well performance were made assuming that fracture permeability was insensitive to pressure change. Sensitivity runs indicated that the simulator was predicting the effects of critical reservoir parameters in a logical and consistent manner. The results confirmed that horizontal wells could increase both rate of oil recovery and total oil recovery from naturally fractured reservoirs. In the second year, the performance of the same vertical and horizontal wells was reevaluated with fracture permeability treated as a function of reservoir pressure. To investigate sensitivity to in situ stress, differing loading conditions were assumed. Simulated natural depletions confirm that pressure sensitive fractures degrade well performance. The severity of degradation worsens when the initial reservoir pressure approaches the average stress condition of the reservoir, such as occurs in over pressured reservoirs. Simulations with water injection indicate that degradation of permeability can be counteracted when reservoir pressure is maintained and oil recovery can be increased when reservoir properties are favorable.

  15. Onyx-Advanced Aeropropulsion Simulation Framework Created

    NASA Technical Reports Server (NTRS)

    Reed, John A.

    2001-01-01

    The Numerical Propulsion System Simulation (NPSS) project at the NASA Glenn Research Center is developing a new software environment for analyzing and designing aircraft engines and, eventually, space transportation systems. Its purpose is to dramatically reduce the time, effort, and expense necessary to design and test jet engines by creating sophisticated computer simulations of an aerospace object or system (refs. 1 and 2). Through a university grant as part of that effort, researchers at the University of Toledo have developed Onyx, an extensible Java-based (Sun Micro-systems, Inc.), objectoriented simulation framework, to investigate how advanced software design techniques can be successfully applied to aeropropulsion system simulation (refs. 3 and 4). The design of Onyx's architecture enables users to customize and extend the framework to add new functionality or adapt simulation behavior as required. It exploits object-oriented technologies, such as design patterns, domain frameworks, and software components, to develop a modular system in which users can dynamically replace components with others having different functionality.

  16. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    SciTech Connect

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. It was hoped that the successful application of these technologies would result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs.

  17. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    SciTech Connect

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies would result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs.

  18. Evaluation of linear solvers for oil reservoir simulation problems. Part 2: The fully implicit case

    SciTech Connect

    Joubert, W.; Janardhan, R.

    1997-12-01

    A previous paper [Joubert/Biswas 1997] contained investigations of linear solver performance for matrices arising from Amoco`s Falcon parallel oil reservoir simulation code using the IMPES formulation (implicit pressure, explicit saturation). In this companion paper, similar issues are explored for linear solvers applied to matrices arising from more difficult fully implicit problems. The results of numerical experiments are given.

  19. Estimation of discontinuous coefficients in parabolic systems: Applications to reservoir simulation

    NASA Technical Reports Server (NTRS)

    Lamm, P. D.

    1984-01-01

    Spline based techniques for estimating spatially varying parameters that appear in parabolic distributed systems (typical of those found in reservoir simulation problems) are presented. The problem of determining discontinuous coefficients, estimating both the functional shape and points of discontinuity for such parameters is discussed. Convergence results and a summary of numerical performance of the resulting algorithms are given.

  20. Advanced reservoir characterizstion in the Antelope Shale to establish the viability of CO{sub 2} enhanced oil recovery in California`s Monterey formation siliceous shales. Quarterly report, July 1 - September 30, 1996

    SciTech Connect

    Smith, S.C.

    1996-09-01

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO{sub 2} enhanced oil recovery project in the Antelope Shale in Buena Vista Hills field. The Buena Vista Hills Pilot CO{sub 2} project will demonstrate the economic viability and widespread applicability of CO{sub 2} flooding in fractured siliceous shales reservoirs of the San Joaquin Valley. The research consists of four primary work processes: Reservoir Matrix and Fluid Characterization; Fracture Characterization; Reservoir Modeling and Simulation; and, CO{sub 2} Pilot Flood and Evaluation. Work done in these areas is subdivided into two phases or budget periods. The first phase of the project will focus on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced enhanced oil recovery (EOR) pilot in the West Dome of the Buena Vista Hills field. The project took a major step in the third quarter of 1996 with the drilling of the pilot injector well. The well spudded on July 1 and was completed on July 29 at a total measured depth of 4907 ft. The well was cored continuously through the entire Brown Shale and the productive portion of the Antelope Shale to just below the P2 e-log marker. The reservoir matrix and fluid characterization are discussed in this report.

  1. Numerical simulation of the electrical properties of shale gas reservoir rock based on digital core

    NASA Astrophysics Data System (ADS)

    Nie, Xin; Zou, Changchun; Li, Zhenhua; Meng, Xiaohong; Qi, Xinghua

    2016-08-01

    In this paper we study the electrical properties of shale gas reservoir rock by applying the finite element method to digital cores which are built based on an advanced Markov Chain Monte Carlo method and a combination workflow. Study shows that the shale gas reservoir rock has strong anisotropic electrical conductivity because the conductivity is significantly different in both horizontal and vertical directions. The Archie formula is not suitable for application in shale reservoirs. The formation resistivity decreases in two cases; namely (a) with the increase of clay mineral content and the cation exchange capacity of clay, and (b) with the increase of pyrite content. The formation resistivity is not sensitive to the solid organic matter but to the clay and gas in the pores.

  2. A combination of streamtube and geostatical simulation methodologies for the study of large oil reservoirs

    SciTech Connect

    Chakravarty, A.; Emanuel, A.S.; Bernath, J.A.

    1997-08-01

    The application of streamtube models for reservoir simulation has an extensive history in the oil industry. Although these models are strictly applicable only to fields under voidage balance, they have proved to be useful in a large number of fields provided that there is no solution gas evolution and production. These models combine the benefit of very fast computational time with the practical ability to model a large reservoir over the course of its history. These models do not, however, directly incorporate the detailed geological information that recent experience has taught is important. This paper presents a technique for mapping the saturation information contained in a history matched streamtube model onto a detailed geostatistically derived finite difference grid. With this technique, the saturation information in a streamtube model, data that is actually statistical in nature, can be identified with actual physical locations in a field and a picture of the remaining oil saturation can be determined. Alternatively, the streamtube model can be used to simulate the early development history of a field and the saturation data then used to initialize detailed late time finite difference models. The proposed method is presented through an example application to the Ninian reservoir. This reservoir, located in the North Sea (UK), is a heterogeneous sandstone characterized by a line drive waterflood, with about 160 wells, and a 16 year history. The reservoir was satisfactorily history matched and mapped for remaining oil saturation. A comparison to 3-D seismic survey and recently drilled wells have provided preliminary verification.

  3. Assessment of uncertainty and degasification efficiency in coal seam gas drainage through stochastic reservoir simulation

    NASA Astrophysics Data System (ADS)

    Özgen Karacan, C.

    2016-04-01

    Coal seam degasification improves coal mine safety by reducing the gas content of coal seams and also by generating added value as an energy source. Coal bed reservoir simulation, as a reservoir management and forecasting tool, is one of the most effective ways to help with these two main objectives. However, as in all modeling and simulation studies, reservoir description and whether observed productions can be predicted are important considerations. Using geostatistical realizations as spatial maps of different coal reservoir properties is a more realistic approach than assuming uniform properties across the field. In fact, this approach can help with simultaneous history matching of multiple wellbores to enhance the confidence in spatial models of different coal properties that are pertinent to degasification. The problem that still remains, however, is the uncertainty in geostatistical, and thus reservoir, simulations originating from partial sampling of the seam that does not properly reflect the stochastic nature of coal property realizations. This study demonstrates the use of geostatistical realizations generated through sequential Gaussian simulation and co-simulation techniques and assesses the uncertainty in coal seam reservoir simulations with history matching errors. 100 individual realizations of 10 coal properties were generated using geostatistical techniques. These realizations were used to create 100 realization bundles (property datasets). Each of these bundles was then used in coal seam reservoir simulations for simultaneous history matching of degasification wells. History matching errors for each bundle were evaluated and the single set of realizations that would minimize the error for all wells was defined. Errors were compared with those of E-type and the average realization of the best matches. The study helped to determine the realization bundle that consisted of the spatial maps of coal properties, which resulted in minimum error. In

  4. Simulation methods for advanced scientific computing

    SciTech Connect

    Booth, T.E.; Carlson, J.A.; Forster, R.A.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of the project was to create effective new algorithms for solving N-body problems by computer simulation. The authors concentrated on developing advanced classical and quantum Monte Carlo techniques. For simulations of phase transitions in classical systems, they produced a framework generalizing the famous Swendsen-Wang cluster algorithms for Ising and Potts models. For spin-glass-like problems, they demonstrated the effectiveness of an extension of the multicanonical method for the two-dimensional, random bond Ising model. For quantum mechanical systems, they generated a new method to compute the ground-state energy of systems of interacting electrons. They also improved methods to compute excited states when the diffusion quantum Monte Carlo method is used and to compute longer time dynamics when the stationary phase quantum Monte Carlo method is used.

  5. Quantum simulation of dissipative processes without reservoir engineering

    SciTech Connect

    Di Candia, R.; Pedernales, J. S.; del Campo, A.; Solano, E.; Casanova, J.

    2015-05-29

    We present a quantum algorithm to simulate general finite dimensional Lindblad master equations without the requirement of engineering the system-environment interactions. The proposed method is able to simulate both Markovian and non-Markovian quantum dynamics. It consists in the quantum computation of the dissipative corrections to the unitary evolution of the system of interest, via the reconstruction of the response functions associated with the Lindblad operators. Our approach is equally applicable to dynamics generated by effectively non-Hermitian Hamiltonians. We confirm the quality of our method providing specific error bounds that quantify its accuracy.

  6. Quantum Simulation of Dissipative Processes without Reservoir Engineering

    PubMed Central

    Di Candia, R.; Pedernales, J. S.; del Campo, A.; Solano, E.; Casanova, J.

    2015-01-01

    We present a quantum algorithm to simulate general finite dimensional Lindblad master equations without the requirement of engineering the system-environment interactions. The proposed method is able to simulate both Markovian and non-Markovian quantum dynamics. It consists in the quantum computation of the dissipative corrections to the unitary evolution of the system of interest, via the reconstruction of the response functions associated with the Lindblad operators. Our approach is equally applicable to dynamics generated by effectively non-Hermitian Hamiltonians. We confirm the quality of our method providing specific error bounds that quantify its accuracy. PMID:26024437

  7. 14 CFR Appendix H to Part 121 - Advanced Simulation

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... simulator instructors and check airmen must include training policies and procedures, instruction methods... Simulation This appendix provides guidelines and a means for achieving flightcrew training in advanced... simulator, as appropriate. Advanced Simulation Training Program For an operator to conduct Level C or...

  8. 14 CFR Appendix H to Part 121 - Advanced Simulation

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... simulator instructors and check airmen must include training policies and procedures, instruction methods... Simulation This appendix provides guidelines and a means for achieving flightcrew training in advanced... simulator, as appropriate. Advanced Simulation Training Program For an operator to conduct Level C or...

  9. 14 CFR Appendix H to Part 121 - Advanced Simulation

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... simulator instructors and check airmen must include training policies and procedures, instruction methods... Simulation This appendix provides guidelines and a means for achieving flightcrew training in advanced... simulator, as appropriate. Advanced Simulation Training Program For an operator to conduct Level C or...

  10. 14 CFR Appendix H to Part 121 - Advanced Simulation

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... simulator instructors and check airmen must include training policies and procedures, instruction methods... Simulation This appendix provides guidelines and a means for achieving flightcrew training in advanced... simulator, as appropriate. Advanced Simulation Training Program For an operator to conduct Level C or...

  11. Application of reservoir management and reservoir simulation to monitor and improve the performance of the M4/7/N1 reservoirs in the Samarang field, offshore Sabah, East Malaysia

    SciTech Connect

    Baxendale, D.

    1995-10-01

    The Samarang field was discovered in 1972, offshore southwest Sabah, East Malaysia. The field was declared commercial in 1974, and first production commenced in 1975. The M4/7/N1 cluster of reservoirs is one of the main groups of reservoirs in the Samarang field, containing some 23% of the field`s expected ultimate recovery. The observed basal/edge natural water drive and the gascap expansion drive are expected to recover about 50% of the M4/7/N1`s original oil in-place. However, the combined drive was not anticipated to fully sweep the reservoir. Hence, the need for a field wide review of the reservoir. To actively manage the remaining hydrocarbon resource a detailed 3D full field simulation project was initiated. A comprehensive geological study of the M4/7/N1 reservoirs was first conducted to formulate the geological input to the simulation model. The model was validated by history matching the reservoir`s seventeen years of production data. This model was then used to actively manage the hydrocarbon resource base by: predicting future oil recovery under various development options, locating potential infill well locations, and by optimizing the reservoir management strategy. Reservoir management of this mature field through the utilization of reservoir simulation tools, has helped to maximize hydrocarbon recovery by determining the optimum depletion strategy with respect to the remaining hydrocarbon resource. Future infill drilling locations have been identified and the results from the model have been used to support the operator`s development strategy for the pool.

  12. Deposition and simulation of sediment transport in the Lower Susquehanna River reservoir system

    USGS Publications Warehouse

    Hainly, R.A.; Reed, L.A.; Flippo, H.N.; Barton, G.J.

    1995-01-01

    The Susquehanna River drains 27,510 square miles in New York, Pennsylvania, and Maryland and is the largest tributary to the Chesapeake Bay. Three large hydroelectric dams are located on the river, Safe Harbor (Lake Clarke) and Holtwood (Lake Aldred) in southern Pennsylvania, and Conowingo (Conowingo Reservoir) in northern Maryland. About 259 million tons of sediment have been deposited in the three reservoirs. Lake Clarke contains about 90.7 million tons of sediment, Lake Aldred contains about 13.6 million tons, and Conowingo Reservoir contains about 155 million tons. An estimated 64.8 million tons of sand, 19.7 million tons of coal, 112 million tons of silt, and 63.3 million tons of clay are deposited in the three reservoirs. Deposition in the reservoirs is variable and ranges from 0 to 30 feet. Chemical analyses of sediment core samples indicate that the three reservoirs combined contain about 814,000 tons of organic nitrogen, 98,900 tons of ammonia as nitrogen, 226,000 tons of phosphorus, 5,610,000 1tons of iron, 2,250,000 tons of aluminum, and about 409,000 tons of manganese. Historical data indicate that Lake Clarke and Lake Aldred have reached equilibrium, and that they no longer store sediment. A comparison of cross-sectional data from Lake Clarke and Lake Aldred with data from Conowingo Reservoir indicates that Conowingo Reservoir will reach equilibrium within the next 20 to 30 years. As the Conowingo Reservoir fills with sediment and approaches equilibrium, the amount of sediment transported to the Chesapeake Bay will increase. The most notable increases will take place when very high flows scour the deposited sediment. Sediment transport through the reservoir system was simulated with the U.S. Army Corps of Engineers' HEC-6 computer model. The model was calibrated with monthly sediment loads for calendar year 1987. Calibration runs with options set for maximum trap efficiency and a "natural" particle-size distribution resulted in an overall computed trap

  13. Advanced Reservoir Characterization and Evaluation of CO2 Gravity Drainage in the Naturally Fractured Spraberry Trend Area

    SciTech Connect

    McDonald, Paul; Schechter, David S.

    1999-11-01

    The overall goal of this project was to assess the economic feasibility of CO2 flooding the naturally fractured Spraberry Trend Area in West Texas. This objective was accomplished by conducting research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interaction in the reservoirs, (3) analytical and numerical simulation of Spraberry reservoirs, and, (4) experimental investigations on CO2 gravity drainage in Spraberry whole cores. Additionally, a ten (10) acre field demonstration pilot project is part of this project. This report discusses the activity, during the third calendar quarter (July through September) of 1998 (fourth quarter of the projects fiscal year).

  14. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2001-06-27

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies will result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs.

  15. Software Framework for Advanced Power Plant Simulations

    SciTech Connect

    John Widmann; Sorin Munteanu; Aseem Jain; Pankaj Gupta; Mark Moales; Erik Ferguson; Lewis Collins; David Sloan; Woodrow Fiveland; Yi-dong Lang; Larry Biegler; Michael Locke; Simon Lingard; Jay Yun

    2010-08-01

    This report summarizes the work accomplished during the Phase II development effort of the Advanced Process Engineering Co-Simulator (APECS). The objective of the project is to develop the tools to efficiently combine high-fidelity computational fluid dynamics (CFD) models with process modeling software. During the course of the project, a robust integration controller was developed that can be used in any CAPE-OPEN compliant process modeling environment. The controller mediates the exchange of information between the process modeling software and the CFD software. Several approaches to reducing the time disparity between CFD simulations and process modeling have been investigated and implemented. These include enabling the CFD models to be run on a remote cluster and enabling multiple CFD models to be run simultaneously. Furthermore, computationally fast reduced-order models (ROMs) have been developed that can be 'trained' using the results from CFD simulations and then used directly within flowsheets. Unit operation models (both CFD and ROMs) can be uploaded to a model database and shared between multiple users.

  16. Simulation of Hydrodynamics and Water Quality in Pueblo Reservoir, Southeastern Colorado, for 1985 through 1987 and 1999 through 2002

    USGS Publications Warehouse

    Galloway, Joel M.; Ortiz, Roderick F.; Bales, Jerad D.; Mau, David P.

    2008-01-01

    Pueblo Reservoir is west of Pueblo, Colorado, and is an important water resource for southeastern Colorado. The reservoir provides irrigation, municipal, and industrial water to various entities throughout the region. In anticipation of increased population growth, the cities of Colorado Springs, Fountain, Security, and Pueblo West have proposed building a pipeline that would be capable of conveying 78 million gallons of raw water per day (240 acre-feet) from Pueblo Reservoir. The U.S. Geological Survey, in cooperation with Colorado Springs Utilities and the Bureau of Reclamation, developed, calibrated, and verified a hydrodynamic and water-quality model of Pueblo Reservoir to describe the hydrologic, chemical, and biological processes in Pueblo Reservoir that can be used to assess environmental effects in the reservoir. Hydrodynamics and water-quality characteristics in Pueblo Reservoir were simulated using a laterally averaged, two-dimensional model that was calibrated using data collected from October 1985 through September 1987. The Pueblo Reservoir model was calibrated based on vertical profiles of water temperature and dissolved-oxygen concentration, and water-quality constituent concentrations collected in the epilimnion and hypolimnion at four sites in the reservoir. The calibrated model was verified with data from October 1999 through September 2002, which included a relatively wet year (water year 2000), an average year (water year 2001), and a dry year (water year 2002). Simulated water temperatures compared well to measured water temperatures in Pueblo Reservoir from October 1985 through September 1987. Spatially, simulated water temperatures compared better to measured water temperatures in the downstream part of the reservoir than in the upstream part of the reservoir. Differences between simulated and measured water temperatures also varied through time. Simulated water temperatures were slightly less than measured water temperatures from March to

  17. Recent advances in superconducting-mixer simulations

    NASA Technical Reports Server (NTRS)

    Withington, S.; Kennedy, P. R.

    1992-01-01

    Over the last few years, considerable progress have been made in the development of techniques for fabricating high-quality superconducting circuits, and this success, together with major advances in the theoretical understanding of quantum detection and mixing at millimeter and submillimeter wavelengths, has made the development of CAD techniques for superconducting nonlinear circuits an important new enterprise. For example, arrays of quasioptical mixers are now being manufactured, where the antennas, matching networks, filters and superconducting tunnel junctions are all fabricated by depositing niobium and a variety of oxides on a single quartz substrate. There are no adjustable tuning elements on these integrated circuits, and therefore, one must be able to predict their electrical behavior precisely. This requirement, together with a general interest in the generic behavior of devices such as direct detectors and harmonic mixers, has lead us to develop a range of CAD tools for simulating the large-signal, small-signal, and noise behavior of superconducting tunnel junction circuits.

  18. Reservoir Simulation on the Cerro Prieto Geothermal Field: A Continuing Study

    SciTech Connect

    Castaneda, M.; Marquez, R.; Arellano, V.; Esquer, C.A.

    1983-12-15

    The Cerro Prieto geothermal field is a liquid-dominated geothermal reservoir of complex geological and hydrological structure. It is located at the southern end of the Salton-Mexicali trough which includes other geothermal anomalies as Heber and East Mesa. Although in 1973, the initial power plant installed capacity was 75 MW of electrical power, this amount increased to 180 MW in 1981 as field development continued. It is expected to have a generating capacity of 620 MW by the end of 1985, when two new plants will be completely in operation. Questions about field deliverability, reservoir life and ultimate recovery related to planned installations are being presently asked. Numerical modeling studies can give very valuable answers to these questions, even at the early stages in the development of a field. An effort to simulate the Cerro Prieto geothermal reservoir has been undergoing for almost two years. A joint project among Comision Federal de Electricidad (CFE), Instituto de Investigaciones Electricas (IIE) and Intercomp of Houstin, Texas, was created to perform reservoir engineering and simulation studies on this field. The final project objective is tosimulate the behavior of the old field region when production from additional wells located in the undeveloped field zones will be used for feeding the new power plants.

  19. Large-scale three-dimensional geothermal reservoir simulation on PCs

    SciTech Connect

    Antunez, Emilio; Moridis, George; Pruess, Karsten

    1994-01-20

    TOUGH2, Lawrence Berkeley Laboratory's general purpose simulator for mass and heat flow and transport was enhanced with the addition of a set of preconditioned conjugate gradient solvers and ported to a PC. The code was applied to a number of large 3-D geothermal reservoir problems with up to 10,000 grid blocks. Four test problems were investigated. The first two involved a single-phase liquid system, and a two-phase system with regular Cartesian grids. The last two involved a two-phase field problem with irregular gridding with production from and injection into a single porosity reservoir, and a fractured reservoir. The code modifications to TOUGH2 and its setup in the PC environment are described. Algorithms suitable for solving large matrices that are generally non-symmetric and non-positive definite are reviewed. Computational work per time step and CPU time requirements are reported as function of problem size. The excessive execution time and storage requirements of the direct solver in TOUGH2 limits the size of manageable 3-D reservoir problems to a few hundred grid blocks. The conjugate gradient solvers significantly reduced the execution time and storage requirements making possible the execution of considerably larger problems (10,000+ grid blocks). It is concluded that the current PCs provide an economical platform for running large-scale geothermal field simulations that just a few years ago could only be executed on mainframe computers.

  20. Large-scale three-dimensional geothermal reservoir simulation on PCs

    SciTech Connect

    Antunez, E.; Moridis, G.; Pruess, K.

    1994-01-01

    TOUGH2, Lawrence Berkeley Laboratory`s general purpose simulator for mass and heat flow and transport was enhanced with the addition of a set of preconditioned conjugate gradient solvers and ported to a PC. The code was applied to a number of large 3-D geothermal reservoir problems with up to 10,000 grid blocks. Four test problems were investigated. The first two involved a single-phase liquid system, and a two-phase system with regular Cartesian grids. The last two involved a two-phase field problem with irregular gridding with production from and injection into a single porosity reservoir, and a fractured reservoir. The code modifications to TOUGH2 and its setup in the PC environment are described. Algorithms suitable for solving large matrices that are generally non-symmetric and non-positive definite are reviewed. Computational work per time step and CPU time requirements are reported as function of problem size. The excessive execution time and storage requirements of the direct solver in TOUGH2 limits the size of manageable 3-D reservoir problems to a few hundred grid blocks. The conjugate gradient solvers significantly reduced the execution time and storage requirements making possible the execution of considerably larger problems (10,000 + grid blocks). It is concluded that the current PCs provide an economical platform for running large-scale geothermal field simulations that just a few years ago could only be executed on mainframe computers.

  1. Simulating California reservoir operation using the classification and regression-tree algorithm combined with a shuffled cross-validation scheme

    NASA Astrophysics Data System (ADS)

    Yang, Tiantian; Gao, Xiaogang; Sorooshian, Soroosh; Li, Xin

    2016-03-01

    The controlled outflows from a reservoir or dam are highly dependent on the decisions made by the reservoir operators, instead of a natural hydrological process. Difference exists between the natural upstream inflows to reservoirs and the controlled outflows from reservoirs that supply the downstream users. With the decision maker's awareness of changing climate, reservoir management requires adaptable means to incorporate more information into decision making, such as water delivery requirement, environmental constraints, dry/wet conditions, etc. In this paper, a robust reservoir outflow simulation model is presented, which incorporates one of the well-developed data-mining models (Classification and Regression Tree) to predict the complicated human-controlled reservoir outflows and extract the reservoir operation patterns. A shuffled cross-validation approach is further implemented to improve CART's predictive performance. An application study of nine major reservoirs in California is carried out. Results produced by the enhanced CART, original CART, and random forest are compared with observation. The statistical measurements show that the enhanced CART and random forest overperform the CART control run in general, and the enhanced CART algorithm gives a better predictive performance over random forest in simulating the peak flows. The results also show that the proposed model is able to consistently and reasonably predict the expert release decisions. Experiments indicate that the release operation in the Oroville Lake is significantly dominated by SWP allocation amount and reservoirs with low elevation are more sensitive to inflow amount than others.

  2. Validation of the MUFITS reservoir simulator against standard industrial simulation tools for CO2 storage at the Ketzin pilot site

    NASA Astrophysics Data System (ADS)

    Afanasyev, Andrey; Kempka, Thomas; Kühn, Michael; Melnik, Oleg

    2016-04-01

    We give an overview of the reservoir simulator MUFITS capabilities for modelling underground carbon dioxide storage using the EOS-modules GASSTORE and BLACKOIL. The GASSTORE module covers three-phase solid-liquid-gas flows of water, carbon dioxide and salt components. The extended black-oil model is utilized in the BLACKOIL module, which can be applied in the CO2 storage scenarios to two-phase flows of CO2 and brine components. The modules allow comprehensive options including salt precipitation/dissolution, thermal processes, multiple properties regions, and complicated initial vertical equilibration. The PVT tables for the BLACKOIL module can be generated automatically from the GASSTORE module for a given reservoir temperature and brine salinity. We test the simulator against published benchmarking studies. We then consider an application case of CO2 storage at the Ketzin pilot site in Germany. For that purpose, we use a calibrated 3D geological reservoir model comprising a highly heterogeneous distribution of porosity and permeability in a fluvial geological setting. The simulation is conducted using the EOS-module BLACKOIL and the modelling results are in excellent agreement with the results of the industrial simulators applied in previous benchmarks. In particular, the bottom-hole pressure in the injection well, the total mass of dissolved CO2 and spatial CO2 distribution are identical with previously published results.

  3. ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM

    SciTech Connect

    Mark B. Murphy

    2001-10-31

    The Nash Draw Brushy Canyon Pool (NDP) in southeast New Mexico is one of the nine projects selected in 1995 by the U.S. Department of Energy (DOE) for participation in the Class III Reservoir Field Demonstration Program. The goals of the DOE cost-shared Class Program are to: (1) extend economic production, (2) increase ultimate recovery, and (3) broaden information exchange and technology application. Reservoirs in the Class III Program are focused on slope basin and deep-basin clastic depositional types. Production at the NDP is from the Brushy Canyon formation, a low-permeability turbidite reservoir in the Delaware Mountain Group of Permian, Guadalupian age. A major challenge in this marginal-quality reservoir is to distinguish oil-productive pay intervals from water-saturated non-pay intervals. Because initial reservoir pressure is only slightly above bubble-point pressure, rapid oil decline rates and high gas/oil ratios are typically observed in the first year of primary production. Limited surface access, caused by the proximity of underground potash mining and surface playa lakes, prohibits development with conventional drilling. Reservoir characterization results obtained to date at the NDP show that a proposed pilot injection area appears to be compartmentalized. Because reservoir discontinuities will reduce effectiveness of a pressure maintenance project, the pilot area will be reconsidered in a more continuous part of the reservoir if such areas have sufficient reservoir pressure. Most importantly, the advanced characterization results are being used to design extended reach/horizontal wells to tap into predicted ''sweet spots'' that are inaccessible with conventional vertical wells. The activity at the NDP during the past year has included the completion of the NDP Well No.36 deviated/horizontal well and the completion of additional zones in three wells, the design of the NDP No.33 directional/horizontal well, The planning and regulatory approval for the

  4. A methodology for incorporating geomechanically-based fault damage zones models into reservoir simulation

    NASA Astrophysics Data System (ADS)

    Paul, Pijush Kanti

    In the fault damage zone modeling study for a field in the Timor Sea, I present a methodology to incorporate geomechanically-based fault damage zones into reservoir simulation. In the studied field, production history suggests that the mismatch between actual production and model prediction is due to preferential fluid flow through the damage zones associated with the reservoir scale faults, which is not included in the baseline petrophysical model. I analyzed well data to estimate stress heterogeneity and fracture distributions in the reservoir. Image logs show that stress orientations are homogenous at the field scale with a strike-slip/normal faulting stress regime and maximum horizontal stress oriented in NE-SW direction. Observed fracture zones in wells are mostly associated with well scale fault and bed boundaries. These zones do not show any anomalies in production logs or well test data, because most of the fractures are not optimally oriented to the present day stress state, and matrix permeability is high enough to mask any small anomalies from the fracture zones. However, I found that fracture density increases towards the reservoir scale faults, indicating high fracture density zones or damage zones close to these faults, which is consistent with the preferred flow direction indicated by interference and tracer test done between the wells. It is well known from geologic studies that there is a concentration of secondary fractures and faults in a damage zone adjacent to larger faults. Because there is usually inadequate data to incorporate damage zone fractures and faults into reservoir simulation models, in this study I utilized the principles of dynamic rupture propagation from earthquake seismology to predict the nature of fractured/damage zones associated with reservoir scale faults. The implemented workflow can be used to more routinely incorporate damage zones into reservoir simulation models. Applying this methodology to a real reservoir utilizing

  5. Numerical Simulation of Injectivity Effects of Mineral Scaling and Clay Swelling in a Fractured Geothermal Reservoir

    SciTech Connect

    Xu, Tianfu; Pruess, Karsten

    2004-05-10

    A major concern in the development of hot dry rock (HDR) and hot fractured rock (HFR) reservoirs is achieving and maintaining adequate injectivity, while avoiding the development of preferential short-circuiting flow paths such as those caused by thermally-induced stress cracking. Past analyses of HDR and HFR reservoirs have tended to focus primarily on the coupling between hydrology (flow), heat transfer, and rock mechanics. Recent studies suggest that rock-fluid interactions and associated mineral dissolution and precipitation effects could have a major impact on the long-term performance of HFR reservoirs. The present paper uses recent European studies as a starting point to explore chemically-induced effects of fluid circulation in HFR systems. We examine ways in which the chemical composition of reinjected waters can be modified to improve reservoir performance by maintaining or even enhancing injectivity. Chemical manipulations considered here include pH modification and dilution with fresh water. We performed coupled thermo-hydrologic-chemical simulations in which the fractured medium was represented by a one-dimensional MINC model (multiple interacting continua), using the non-isothermal multi-phase reactive geochemical transport code TOUGHREACT. Results indicate that modifying the injection water chemistry can enhance mineral dissolution and reduce clay swelling. Chemical interactions between rocks and fluids will change a HFR reservoir over time, with some changes favorable and others not. A detailed, quantitative understanding of processes and mechanisms can suggest chemical methods for reservoir management, which may be employed to improve the performance of the geothermal system.

  6. Analysis of numerical simulations and influencing factors of seasonal manganese pollution in reservoirs.

    PubMed

    Peng, Hui; Zheng, Xilai; Chen, Lei; Wei, Yang

    2016-07-01

    Seasonal manganese pollution has become an increasingly pressing water quality issue for water supply reservoirs in recent years. Manganese is a redox-sensitive element and is released from sediment under anoxic conditions near the sediment-water interface during summer and autumn, when water temperature stratification occurs. The reservoir water temperature and water dynamic conditions directly influence the formation of manganese pollution. Numerical models are useful tools to quantitatively evaluate manganese pollution and its influencing factors. This paper presents a reservoir manganese pollution model by adding a manganese biogeochemical module to a water quality model-CE-QUAL-W2. The model is applied to the Wangjuan reservoir (Qingdao, China), which experiences manganese pollution during summer and autumn. Field data are used to verify the model, and the results show that the model can reproduce the main features of the thermal stratification and manganese distribution. The model is used to evaluate the manganese pollution process and its four influencing factors, including air temperature, water level, wind speed, and wind directions, through different simulation scenarios. The results show that all four factors can influence manganese pollution. High air temperature, high water level, and low wind speed aggravate manganese pollution, while low air temperature, low water level, and high wind speed reduce manganese pollution. Wind that travels in the opposite direction of the flow aggravates manganese pollution, while wind in the same direction as the flow reduces manganese pollution. This study provides useful information to improve our understanding of seasonal manganese pollution in reservoirs, which is important for reservoir manganese pollution warnings and control.

  7. Simulating California Reservoir Operation Using the Classification and Regression Tree Algorithm Combined with a Shuffled Cross-Validation Scheme

    NASA Astrophysics Data System (ADS)

    Yang, T.; Gao, X.; Sorooshian, S.; Li, X.

    2015-12-01

    The controlled outflows from a reservoir or dam are highly dependent on the decisions made by the reservoir operators, instead of a natural hydrological process. Difference exists between the natural upstream inflows to reservoirs, and the controlled outflows from reservoirs that supply the downstream users. With the decision maker's awareness of changing climate, reservoir management requires adaptable means to incorporate more information into decision making, such as the consideration of policy and regulation, environmental constraints, dry/wet conditions, etc. In this paper, a reservoir outflow simulation model is presented, which incorporates one of the well-developed data-mining models (Classification and Regression Tree) to predict the complicated human-controlled reservoir outflows and extract the reservoir operation patterns. A shuffled cross-validation approach is further implemented to improve model's predictive performance. An application study of 9 major reservoirs in California is carried out and the simulated results from different decision tree approaches are compared with observation, including original CART and Random Forest. The statistical measurements show that CART combined with the shuffled cross-validation scheme gives a better predictive performance over the other two methods, especially in simulating the peak flows. The results for simulated controlled outflow, storage changes and storage trajectories also show that the proposed model is able to consistently and reasonably predict the human's reservoir operation decisions. In addition, we found that the operation in the Trinity Lake, Oroville Lake and Shasta Lake are greatly influenced by policy and regulation, while low elevation reservoirs are more sensitive to inflow amount than others.

  8. Compositional reservoir simulation on CM-5 and KSR-1 parallel machines

    SciTech Connect

    Ghori, S.G.; Wang, C.H.; Lim, M.T.; Pope, G.A.; Sepehrnoori, K.; Wheeler, M.F.

    1995-12-31

    Recently, use of parallel machines in reservoir simulation has received considerable attention from the petroleum industry. This paper presents parallelization of a 3D compositional, equation-of-state reservoir simulator on the CM-5 and KSR-1. To the best of the authors` knowledge, this is the first time that the parallelization of a compositional reservoir simulator has been performed on both the CM-5 and KSR-1. For new users of the CM-5 machines, the software and hardware of CM-5 architecture is presented, as well as details of the parallelization techniques. For example, domain decomposition, I/O`s, phase equilibrium computations, and well model are described. The parallelism techniques on the KSR-1 are presented with the emphasis on the porting of the phase equilibrium calculation. The performance of each machine is evaluated by showing the speedup on different sets of processing nodes. Two test problems were used to explore the capability of the parallelized version of the code; one is a waterflood problem and the other is a CO{sub 2} multiple contact miscible flood, both in a West Texas oil field. These field problems were run on 1, 2, 4, 8, 16, and 32 processors to get insight into the locations of communication bottlenecks, generally occurring in the programming with distributed memory machines. The problems of latency and bandwidth which are associated with communication efficiency of the CM-5 are also addressed.

  9. Advanced Modeling, Simulation and Analysis (AMSA) Capability Roadmap Progress Review

    NASA Technical Reports Server (NTRS)

    Antonsson, Erik; Gombosi, Tamas

    2005-01-01

    Contents include the following: NASA capability roadmap activity. Advanced modeling, simulation, and analysis overview. Scientific modeling and simulation. Operations modeling. Multi-special sensing (UV-gamma). System integration. M and S Environments and Infrastructure.

  10. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico, Class III

    SciTech Connect

    Murphy, Mark B.

    2002-01-16

    The overall objective of this project was to demonstrate that a development program-based on advanced reservoir management methods-can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals were (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  11. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico, Class III

    SciTech Connect

    Murphy, Michael B.

    2002-02-21

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  12. Computer simulation of reservoir depletion and oil flow from the Macondo well following the Deepwater Horizon blowout

    USGS Publications Warehouse

    Hsieh, Paul

    2010-01-01

    This report describes the application of a computer model to simulate reservoir depletion and oil flow from the Macondo well following the Deepwater Horizon blowout. Reservoir and fluid data used for model development are based on (1) information released in BP's investigation report of the incident, (2) information provided by BP personnel during meetings in Houston, Texas, and (3) calibration by history matching to shut-in pressures measured in the capping stack during the Well Integrity Test. The model is able to closely match the measured shut-in pressures. In the simulation of the 86-day period from the blowout to shut in, the simulated reservoir pressure at the well face declines from the initial reservoir pressure of 11,850 pounds per square inch (psi) to 9,400 psi. After shut in, the simulated reservoir pressure recovers to a final value of 10,300 psi. The pressure does not recover back to the initial pressure owing to reservoir depletion caused by 86 days of oil discharge. The simulated oil flow rate declines from 63,600 stock tank barrels per day just after the Deepwater Horizon blowout to 52,600 stock tank barrels per day just prior to shut in. The simulated total volume of oil discharged is 4.92 million stock tank barrels. The overall uncertainty in the simulated flow rates and total volume of oil discharged is estimated to be + or - 10 percent.

  13. Simulation studies to evaluate the effect of fracture closure on the performance of naturally fractured reservoirs. Annual report

    SciTech Connect

    Not Available

    1991-10-01

    The first of a three-year research program to evaluate the effect of fracture closure on the recovery of oil and gas from naturally fractured reservoirs has been completed. The objectives of the study are to (1) evaluate the reservoir conditions where fracture closure is significant, and (2) evaluate innovative fluid injection techniques capable of maintaining pressure within the reservoir. Simulation studies were conducted with a dual porosity simulator capable of simulating the performance of vertical and horizontal wells. Each simulator was initialized using properties typical of the Austin Chalk reservoir in Pearsall Field, Texas. Simulations of both vertical and horizontal well performance were made assuming that fracture permeability was insensitive to pressure change. Sensitivity runs indicate that the simulator is predicting the effects of critical reservoir parameters in a logical and consistent manner. The results to-date confirm that horizontal wells can increase both oil recovery rate and total oil recovery from naturally fractured reservoirs. The year one simulation results will provide the baseline for the ongoing study which will evaluate the performance degradation caused by the sensitivity of fracture permeability to pressure change, and investigate fluid injection pressure maintenance as a means to improve oil recovery performance. The study is likely to conclude that fracture closure decreases oil recovery and that pressure support achieved through fluid injection could be beneficial in improving recovery.

  14. Simulation of extreme reservoir level distribution with the SCHADEX method (EXTRAFLO project)

    NASA Astrophysics Data System (ADS)

    Paquet, Emmanuel; Penot, David; Garavaglia, Federico

    2013-04-01

    The standard practice for the design of dam spillways structures and gates is to consider the maximum reservoir level reached for a given hydrologic scenario. This scenario has several components: peak discharge, flood volumes on different durations, discharge gradients etc. Within a probabilistic analysis framework, several scenarios can be associated with different return times, although a reference return level (e.g. 1000 years) is often prescribed by the local regulation rules or usual practice. Using continuous simulation method for extreme flood estimation is a convenient solution to provide a great variety of hydrological scenarios to feed a hydraulic model of dam operation: flood hydrographs are explicitly simulated by a rainfall-runoff model fed by a stochastic rainfall generator. The maximum reservoir level reached will be conditioned by the scale and the dynamics of the generated hydrograph, by the filling of the reservoir prior to the flood, and by the dam gates and spillway operation during the event. The simulation of a great number of floods will allow building a probabilistic distribution of maximum reservoir levels. A design value can be chosen at a definite return level. An alternative approach is proposed here, based on the SCHADEX method for extreme flood estimation, proposed by Paquet et al. (2006, 2013). SCHADEX is a so-called "semi-continuous" stochastic simulation method in that flood events are simulated on an event basis and are superimposed on a continuous simulation of the catchment saturation hazard using rainfall-runoff modelling. The SCHADEX process works at the study time-step (e.g. daily), and the peak flow distribution is deduced from the simulated daily flow distribution by a peak-to-volume ratio. A reference hydrograph relevant for extreme floods is proposed. In the standard version of the method, both the peak-to-volume and the reference hydrograph are constant. An enhancement of this method is presented, with variable peak

  15. Geological and Petrophysical Characterization of the Ferron Sandstone for 3-D Simulation of a Fluvial-Deltaic Reservoir

    SciTech Connect

    Chidsey Jr., Thomas C.

    2001-10-31

    The objective of the Ferron Sandstone project was to develop a comprehensive, interdisciplinary, quantitative characterization f fluvial-deltaic reservoir to allow realistic interwell and reservoir-scale models to be developed for improved oil-field development in similar reservoirs world-wide. Quantitative geological and petrophysical information on the Cretaceous Ferron Sandstone in east-central Utah was collected. Both new and existing data was integrated into a three-dimensional model of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Simulation results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations.

  16. Reservoir simulation and the in-house vector processor: experience for the first year. [CRAY-1S

    SciTech Connect

    Killough, J.E.; Levesque, J.M.

    1982-01-01

    This paper details the changes which have been made in ARCO Oil and Gas Company's reservoir simulation models to operate more efficiently with an in-house CRAY-1S vector processor. A unique method for vectorization of a compositional reservoir simulation model is presented. A method is described for utilizing the capabilities of the CRAY-1S I/O (Input/Output) processor for problems that are not contained in memory. 6 refs.

  17. SAG injection in a North Sea stratified reservoir: Flow experiment and simulation

    SciTech Connect

    Hanssen, J.E.; Surguchev, L.M.; Svorstoel, I.

    1994-12-31

    This paper is a study of a novel recovery process for stratified reservoirs with large permeability contrasts. A slug of foaming surfactant is injected alternately with gas, thus by analogy with WAG making this a SAG injection process. A combined experimental and numerical evaluation demonstrating effective diversion by foam and significant recovery potential over WAG of the method is reported. An experiment with the new process was performed in a visual 2-D porous medium flow model approximately scaled to the conditions of a North Sea reservoir that is characterized by high permeability contrast and limited interlayer communication. The experiment showed poor performance of conventional WAG, which swept mainly the high-permeable layer. Placement of a surfactant slug and later foam generation in the swept layer was successfully demonstrated and gave efficient injectant diversion into the other layers, resulting in complete sweep of the reservoir model by continued WAG. In summary the results of this paper show experimentally and by simulation on the same system that SAG injection as implemented here is superior to WAG injection and that the rich observations made in the experimental ca be matched with reasonable accuracy using a commercial simulator with only empirical parameters.

  18. Simplifying the task of grouping fluid components in compositional reservoir simulation

    SciTech Connect

    Lomeland, F.; Harstad, O.

    1995-04-01

    The main results from a compositional reservoir simulation are the production rates. Normally, these are stable oil and dry gas streams, but other streams may also be reported. The detailed description of the fluid compositions can therefore be reduced to some extent if the overall description of the fluid properties is acceptable. This is achieved by lumping the components into component groups called pseudocomponents. This reduces the computation time and the needed memory. The traditional way to prepare a fluid model with pseudocomponents is to group them based on personal experience and parameter regression. This requires a lot of experience and continues practice, and probably represents one of the greatest obstacles for a reservoir engineer confronted with compositional reservoir simulation for the first time. This paper presents an automatic method of selecting pseudocomponents. The authors will compare the new method with other existing methods that automatically group components into pseudocomponents. The existing methods used in the comparison follow: (1) the method of mole-weighted average with components grouped to have approximately equal mole fraction; (2) the method of mass-weighted average with components grouped to have approximately equal mass fraction; (3) the method of Newly et al.

  19. Simulated effects of proposed reservoir-development alternatives on streamflow quantity in the White River, Colorado and Utah

    USGS Publications Warehouse

    Kuhn, Gerhard; Ellis, S.R.

    1984-01-01

    Numerous reservoirs have been proposed for the White River basin in Colorado and Utah, primarily to provide water for oil-shale development. A multireservoir-flow model was used to simulate the effects of streamflow withdrawal at four of the proposed reservoirs using historical streamflow data from the 1932-81 water years. The proposed reservoirs considered in the study were Avery, Powell Park, Taylor Draw, and White River Reservoirs; construction of Taylor Draw Dam was completed during the study. Annual streamflow depletions from the White River ranging from about 93,000 to 226,000 acre-feet were simulated for the 50 year period. Simulated streamflow throughout the year generally became smaller and more constant as streamflow throughout the year generally became smaller and more constant as streamflow depletion increased. Minimum streamflow requirements would not have been met for a maximum of 13 years and water-use requirements associated with the proposed reservoirs would not have been met for a maximum of 3 years. The current water-use pattern, which depletes about 40,000 acre-feet per year and is dominated by irrigation of hay meadows and pastureland, was maintained in the simulation. Relations between reservoir active capacity and yield applicable to the White River also were developed. These relations show that reservoir storage of about 400,000 acre-feet is the maximum practicable for the White River. (USGS)

  20. Characterization and simulation of an exhumed fractured petroleum reservoir. Final report, March 18, 1996--September 30, 1998

    SciTech Connect

    Forster, C.B.; Nielson, D.L.; Deo, M.

    1998-12-01

    An exhumed fractured reservoir located near Alligator Ridge in central Nevada provides the basis for developing and testing different approaches for simulating fractured petroleum reservoirs. The fractured analog reservoir comprises a 90 m thickness of silty limestone and shaly interbeds within the Devonian Pilot Shale. A period of regional compression followed by ongoing basin and range extension has created faults and fractures that, in tern, have controlled the migration of both oil and gold ore-forming fluids. Open pit gold mines provide access for observing oil seepage, collecting the detailed fracture data needed to map variations in fracture intensity near faults, build discrete fracture network models and create equivalent permeability structures. Fault trace patterns mapped at the ground surface provide a foundation for creating synthetic fault trace maps using a stochastic procedure conditioned by the outcrop data. Conventional simulations of petroleum production from a 900 by 900 m sub-domain within the reservoir analog illustrate the possible influence of faults and fractures on production. The consequences of incorporating the impact of different stress states (e.g., extension, compression or lithostatic) are also explored. Simulating multiphase fluid flow using a discrete fracture, finite element simulator illustrates how faults acting as conduits might be poorly represented by the upscaling procedures used to assign equivalent permeability values within reservoir models. The parallelized reservoir simulators developed during this project provide a vehicle to evaluate when it might be necessary to incorporate very fine scale grid networks in conventional reservoir simulators or to use finely gridded discrete fracture reservoir simulators.

  1. Feasibility of steam injection process in a thin, low-permeability heavy oil reservoir of Arkansas -- a numerical simulation study

    SciTech Connect

    Sarkar, A.K.; Sarathi, P.S.

    1993-12-01

    This report details the findings of an in-depth study undertaken to assess the viability of the steam injection process in the heavy oil bearing Nacatoch sands of Arkansas. Published screening criteria and DOE`s steamflood predictive models were utilized to screen and select reservoirs for further scrutiny. Although, several prospects satisfied the steam injection screening criteria, only a single candidate was selected for detailed simulation studies. The selection was based on the availability of needed data for simulation and the uniqueness of the reservoir. The reservoir investigated is a shallow, thin, low-permeability reservoir with low initial oil saturation and has an underlying water sand. The study showed that the reservoir will respond favorably to steamdrive, but not to cyclic steaming. Steam stimulation, however, is necessary to improve steam injectivity during subsequent steamdrive. Further, in such marginal heavy oil reservoirs (i.e., reservoir characterized by thin pay zone and low initial oil saturation) conventional steamdrive (i.e., steam injection using vertical wells) is unlikely to be economical, and nonconventional methods must be utilized. It was found that the use of horizontal injectors and horizontal producers significantly improved the recovery and oil-steam ratio and improved the economics. It is recommended that the applicability of horizontal steam injection technology in this reservoir be further investigated.

  2. Analysis of induced seismicity and heat transfer in geothermal reservoirs by coupled simulation

    NASA Astrophysics Data System (ADS)

    Gan, Quan

    . Conversely, at high relative non-dimensional flow rates the propagating pressure pulse is larger and migrates more quickly through the reservoir but the thermal drawdown is uniform across the reservoir and without the presence of a distinct thermal front, and less capable of triggering late-stage seismicity. In Chapter 2 we develop a dimensionless model to predict the thermal drawdown response, and quantify the relationship between the timing and magnitude of late stage seismic event and the induced thermal stress from thermal drawdown. We evaluate the uniformity of thermal drawdown as a function of a dimensionless flow rate QD that scales with fracture spacing s( m), injection rate q (kg/s), and the distance between the injector and the target point L* ( Qd ∝ qs2 / L*). By assuming the dominant heat transfer by heat conduction within the fractured medium, this model is either capable to predict the timing of induced seismicity by the thermal stress by the analytical formula. Due to the significant influence of fracture network geometry in heat transfer and induced seismicity, a discrete fracture network model is developed (Chapter 3) to couple stress and fluid flow in a discontinuous fractured mass represented as a continuum by coupling the continuum simulator TF_FLAC 3D with cell-by-cell discontinuum laws for deformation and flow. Both equivalent medium crack and permeability tensor approaches are employed to characterize preexisting discrete fractures. The evolution of fracture permeability accommodates stress-dependent aperture under different stress states, including normal closure, shear dilation, and for fracture walls out of contact under tensile loading. This discrete fracture network model is applied (Chapter 4) in a generic reservoir with an initial permeability in the range of 10-17 to 10-16 m2, fracture density of ~0.09m -1 and fractures oriented such that either none, one, or both sets of fractures are critically stressed. For a given reservoir with a pre

  3. Precision Casting via Advanced Simulation and Manufacturing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A two-year program was conducted to develop and commercially implement selected casting manufacturing technologies to enable significant reductions in the costs of castings, increase the complexity and dimensional accuracy of castings, and reduce the development times for delivery of high quality castings. The industry-led R&D project was cost shared with NASA's Aerospace Industry Technology Program (AITP). The Rocketdyne Division of Boeing North American, Inc. served as the team lead with participation from Lockheed Martin, Ford Motor Company, Howmet Corporation, PCC Airfoils, General Electric, UES, Inc., University of Alabama, Auburn University, Robinson, Inc., Aracor, and NASA-LeRC. The technical effort was organized into four distinct tasks. The accomplishments reported herein. Task 1.0 developed advanced simulation technology for core molding. Ford headed up this task. On this program, a specialized core machine was designed and built. Task 2.0 focused on intelligent process control for precision core molding. Howmet led this effort. The primary focus of these experimental efforts was to characterize the process parameters that have a strong impact on dimensional control issues of injection molded cores during their fabrication. Task 3.0 developed and applied rapid prototyping to produce near net shape castings. Rocketdyne was responsible for this task. CAD files were generated using reverse engineering, rapid prototype patterns were fabricated using SLS and SLA, and castings produced and evaluated. Task 4.0 was aimed at developing technology transfer. Rocketdyne coordinated this task. Casting related technology, explored and evaluated in the first three tasks of this program, was implemented into manufacturing processes.

  4. Increasing Heavy Oil Reserves in the Wilmington Oil Field through Advanced Reservoir Characterization and Thermal Production Technologies

    SciTech Connect

    City of Long Beach; David K.Davies and Associates; Tidelands Oil Production Company; University of Southern California

    1999-06-25

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California. This is realized through the testing and application of advanced reservoir characterization and thermal production technologies. It is hoped that the successful application of these technologies will result in their implementation throughout the Wilmington Field and through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively insufficient because of several producability problems which are common in SBC reservoir; inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves.

  5. Numerical simulations of CO2 -assisted gas production from hydrate reservoirs

    NASA Astrophysics Data System (ADS)

    Sridhara, P.; Anderson, B. J.; Myshakin, E. M.

    2015-12-01

    A series of experimental studies over the last decade have reviewed the feasibility of using CO2 or CO2+N2 gas mixtures to recover CH4 gas from hydrates deposits. That technique would serve the dual purpose of CO2 sequestration and production of CH4 while maintaining the geo-mechanical stability of the reservoir. In order to analyze CH4 production process by means of CO2 or CO2+N2 injection into gas hydrate reservoirs, a new simulation tool, Mix3HydrateResSim (Mix3HRS)[1], was previously developed to account for the complex thermodynamics of multi-component hydrate phase and to predict the process of CH4 substitution by CO2 (and N2) in the hydrate lattice. In this work, Mix3HRS is used to simulate the CO2 injection into a Class 2 hydrate accumulation characterized by a mobile aqueous phase underneath a hydrate bearing sediment. That type of hydrate reservoir is broadly confirmed in permafrost and along seashore. The production technique implies a two-stage approach using a two-well design, one for an injector and one for a producer. First, the CO2 is injected into the mobile aqueous phase to convert it into immobile CO2 hydrate and to initiate CH4 release from gas hydrate across the hydrate-water boundary (generally designating the onset of a hydrate stability zone). Second, CH4 hydrate decomposition is induced by the depressurization method at a producer to estimate gas production potential over 30 years. The conversion of the free water phase into the CO2 hydrate significantly reduces competitive water production in the second stage, thereby improving the methane gas production. A base case using only the depressurization stage is conducted to compare with enhanced gas production predicted by the CO2-assisted technique. The approach also offers a possibility to permanently store carbon dioxide in the underground formation to greater extent comparing to a direct injection of CO2 into gas hydrate sediment. Numerical models are based on the hydrate formations at the

  6. Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of CO2 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales, Class III

    SciTech Connect

    Perri, Pasquale R.; Cooney, John; Fong, Bill; Julander, Dale; Marasigan, Aleks; Morea, Mike; Piceno, Deborah; Stone, Bill; Emanuele, Mark; Sheffield, Jon; Wells, Jeff; Westbrook, Bill; Karnes, Karl; Pearson, Matt; Heisler, Stuart

    2000-04-24

    The primary objective of this project was to conduct advanced reservoir characterization and modeling studies in the Antelope Shale of the Bureau Vista Hills Field. Work was subdivided into two phases or budget periods. The first phase of the project focused on a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work would then be used to evaluate how the reservoir would respond to enhanced oil recovery (EOR) processes such as of CO2 flooding. The second phase of the project would be to implement and evaluate a CO2 in the Buena Vista Hills Field. A successful project would demonstrate the economic viability and widespread applicability of CO2 flooding in siliceous shale reservoirs of the San Joaquin Valley.

  7. The big fat LARS - a LArge Reservoir Simulator for hydrate formation and gas production

    NASA Astrophysics Data System (ADS)

    Beeskow-Strauch, Bettina; Spangenberg, Erik; Schicks, Judith M.; Giese, Ronny; Luzi-Helbing, Manja; Priegnitz, Mike; Klump, Jens; Thaler, Jan; Abendroth, Sven

    2013-04-01

    Simulating natural scenarios on lab scale is a common technique to gain insight into geological processes with moderate effort and expenses. Due to the remote occurrence of gas hydrates, their behavior in sedimentary deposits is largely investigated on experimental set ups in the laboratory. In the framework of the submarine gas hydrate research project (SUGAR) a large reservoir simulator (LARS) with an internal volume of 425 liter has been designed, built and tested. To our knowledge this is presently a word-wide unique set up. Because of its large volume it is suitable for pilot plant scale tests on hydrate behavior in sediments. That includes not only the option of systematic tests on gas hydrate formation in various sedimentary settings but also the possibility to mimic scenarios for the hydrate decomposition and subsequent natural gas extraction. Based on these experimental results various numerical simulations can be realized. Here, we present the design and the experimental set up of LARS. The prerequisites for the simulation of a natural gas hydrate reservoir are porous sediments, methane, water, low temperature and high pressure. The reservoir is supplied by methane-saturated and pre-cooled water. For its preparation an external gas-water mixing stage is available. The methane-loaded water is continuously flushed into LARS as finely dispersed fluid via bottom-and-top-located sparger. The LARS is equipped with a mantle cooling system and can be kept at a chosen set temperature. The temperature distribution is monitored at 14 reasonable locations throughout the reservoir by Pt100 sensors. Pressure needs are realized using syringe pump stands. A tomographic system, consisting of a 375-electrode-configuration is attached to the mantle for the monitoring of hydrate distribution throughout the entire reservoir volume. Two sets of tubular polydimethylsiloxan-membranes are applied to determine gas-water ratio within the reservoir using the effect of permeability

  8. Static and dynamic load-balancing strategies for parallel reservoir simulation

    SciTech Connect

    Anguille, L.; Killough, J.E.; Li, T.M.C.; Toepfer, J.L.

    1995-12-31

    Accurate simulation of the complex phenomena that occur in flow in porous media can tax even the most powerful serial computers. Emergence of new parallel computer architectures as a future efficient tool in reservoir simulation may overcome this difficulty. Unfortunately, major problems remain to be solved before using parallel computers commercially: production serial programs must be rewritten to be efficient in parallel environments and load balancing methods must be explored to evenly distribute the workload on each processor during the simulation. This study implements both a static load-balancing algorithm and a receiver-initiated dynamic load-sharing algorithm to achieve high parallel efficiencies on both the IBM SP2 and Intel IPSC/860 parallel computers. Significant speedup improvement was recorded for both methods. Further optimization of these algorithms yielded a technique with efficiencies as high as 90% and 70% on 8 and 32 nodes, respectively. The increased performance was the result of the minimization of message-passing overhead.

  9. Geothermal reservoir simulation to enhance confidence in predictions for nuclear waste disposal

    SciTech Connect

    Kneafsey, Timothy J.; Pruess, Karsten; O'Sullivan, Michael J.; Bodvarsson, Gudmundur S.

    2002-06-15

    Numerical simulation of geothermal reservoirs is useful and necessary in understanding and evaluating reservoir structure and behavior, designing field development, and predicting performance. Models vary in complexity depending on processes considered, heterogeneity, data availability, and study objectives. They are evaluated using computer codes written and tested to study single and multiphase flow and transport under nonisothermal conditions. Many flow and heat transfer processes modeled in geothermal reservoirs are expected to occur in anthropogenic thermal (AT) systems created by geologic disposal of heat-generating nuclear waste. We examine and compare geothermal systems and the AT system expected at Yucca Mountain, Nevada, and their modeling. Time frames and spatial scales are similar in both systems, but increased precision is necessary for modeling the AT system, because flow through specific repository locations will affect long-term ability radionuclide retention. Geothermal modeling experience has generated a methodology, used in the AT modeling for Yucca Mountain, yielding good predictive results if sufficient reliable data are available and an experienced modeler is involved. Codes used in geothermal and AT modeling have been tested extensively and successfully on a variety of analytical and laboratory problems.

  10. Revised Comparisons of Simulated Hydrodynamics and Water Quality for Projected Demands in 2046, Pueblo Reservoir, Southeastern Colorado

    USGS Publications Warehouse

    Ortiz, Roderick F.; Miller, Lisa D.

    2009-01-01

    Pueblo Reservoir is one of southeastern Colorado's most valuable water resources. The reservoir provides irrigation, municipal, and industrial water to various entities throughout the region. The reservoir also provides flood control, recreational activities, sport fishing, and wildlife enhancement to the region. The Southern Delivery System (SDS) project is a regional water-delivery project that has been proposed to provide a safe, reliable, and sustainable water supply through the foreseeable future (2046) for Colorado Springs, Fountain, Security, and Pueblo West. Discussions with the Bureau of Reclamation and the U.S. Geological Survey led to a cooperative agreement to simulate the hydrodynamics and water quality of Pueblo Reservoir. This work has been completed and described in a previously published report, U.S. Geological Survey Scientific Investigations Report 2008-5056. Additionally, there was a need to make comparisons of simulated hydrodynamics and water quality for projected demands associated with the various Environmental Impact Statements (EIS) alternatives and plans by Pueblo West to discharge treated wastewater into the reservoir. Wastewater plans by Pueblo West are fully independent of the SDS project. This report compares simulated hydrodynamics and water quality for projected demands in Pueblo Reservoir resulting from changes in inflow and water quality entering the reservoir, and from changes to withdrawals from the reservoir as projected for the year 2046. Four of the seven EIS alternatives were selected for scenario simulations. The four U.S. Geological Survey simulation scenarios were the No Action scenario (EIS Alternative 1), the Downstream Diversion scenario (EIS Alternative 2), the Upstream Return-Flow scenario (EIS Alternative 4), and the Upstream Diversion scenario (EIS Alternative 7). Additionally, the results of an Existing Conditions scenario (year 2006 demand conditions) were compared to the No Action scenario (projected demands in

  11. Emulation of an Advanced G-Seat on the Advanced Simulator for Pilot Training.

    DTIC Science & Technology

    1978-04-01

    ASPT ) which culminated in the emulation of an advanced approach to G-seat simulation. The development of the software, the design of the advanced seat...components, the implementation of the advanced design on the ASPT , and the results of the study are presented. (Author)

  12. Prediction of effects of hydraulic fracturing using reservoir and well flow simulation

    SciTech Connect

    Mineyuki Hanano; Tayuki Kondo

    1992-01-01

    This paper presents a method to predict and evaluate effects of hydraulic fracturing jobs by using reservoir and well flow numerical simulation. The concept of the method i5 that steam production rate at the operating well head pressure is predicted with different fracture conditions which would be attained by the hydraulic fracturing jobs. Then, the effects of the hydraulic fracturing is evaluated by comparing the predicted steam production rate and that before the hydraulic fracturing. This course of analysis will suggest how large fracture should be created by the fracturing job to attain large enough increase in steam production at the operating condition and the best scheme of the hydraulic fracturing job.

  13. Block-preconditioned conjugate-gradient-like methods for numerical reservoir simulation

    SciTech Connect

    Eisenstat, S.C.; Elman, H.C.; Schultz, M.H.

    1985-02-01

    The authors describe a collection of block-preconditioners for use in solving large sparse linear systems of equations by iterative methods, and they compare their performance with several point-preconditioners in solving some systems arising in numerical reservoir simulation. They consider block-preconditioners that handle either lines or planes in an implicit manner, and pointwise incomplete LU factorizations combined with partial elimination preprocessors. Their conclusions are that the best of the pointwise methods are both more robust and faster, but that the best of the block methods are competitive for certain orderings of unknowns and require less storage.

  14. Estimation of discontinuous coefficients in parabolic systems - Applications to reservoir simulation

    NASA Technical Reports Server (NTRS)

    Lamm, Patricia K.

    1987-01-01

    Spline-based techniques for estimating spatially varying parameters that appear in parabolic distributed systems (typical of those found in reservoir simulation problems) are presented. In particular, the problem of determining discontinuous coefficients is discussed, estimating both the functional shape and points of discontinuity for such parameters. In addition, the ideas may also be applied to problems with unknown initial conditions and unknown parameters appearing in terms representing external forces. Convergence results and a summary of numerical performance of the resulting algorithms are given.

  15. Parallel, Multigrid Finite Element Simulator for Fractured/Faulted and Other Complex Reservoirs based on Common Component Architecture (CCA)

    SciTech Connect

    Milind Deo; Chung-Kan Huang; Huabing Wang

    2008-08-31

    Black-oil, compositional and thermal simulators have been developed to address different physical processes in reservoir simulation. A number of different types of discretization methods have also been proposed to address issues related to representing the complex reservoir geometry. These methods are more significant for fractured reservoirs where the geometry can be particularly challenging. In this project, a general modular framework for reservoir simulation was developed, wherein the physical models were efficiently decoupled from the discretization methods. This made it possible to couple any discretization method with different physical models. Oil characterization methods are becoming increasingly sophisticated, and it is possible to construct geologically constrained models of faulted/fractured reservoirs. Discrete Fracture Network (DFN) simulation provides the option of performing multiphase calculations on spatially explicit, geologically feasible fracture sets. Multiphase DFN simulations of and sensitivity studies on a wide variety of fracture networks created using fracture creation/simulation programs was undertaken in the first part of this project. This involved creating interfaces to seamlessly convert the fracture characterization information into simulator input, grid the complex geometry, perform the simulations, and analyze and visualize results. Benchmarking and comparison with conventional simulators was also a component of this work. After demonstration of the fact that multiphase simulations can be carried out on complex fracture networks, quantitative effects of the heterogeneity of fracture properties were evaluated. Reservoirs are populated with fractures of several different scales and properties. A multiscale fracture modeling study was undertaken and the effects of heterogeneity and storage on water displacement dynamics in fractured basements were investigated. In gravity-dominated systems, more oil could be recovered at a given pore

  16. Multi-objective combined simulation-optimization of Lake Tana multi reservoir system, Ethiopia, using two different generalized reservoir system operation models

    NASA Astrophysics Data System (ADS)

    Müller, R.; Saliha, A. H.; Schütze, N.

    2012-04-01

    Finding optimal management strategies can be a challenging task when water resources systems serve multiple contrary goals. Reasonable trade offs among these goals has to be found. Multi-objective optimization (MOO) is able to obtain a so called Pareto front containing multiple trade off solutions (Pareto optimal solutions). An attractive and powerful MOO method is multi-objective combined simulation-optimization (MOCSO). Generally MOCSO model consists of mainly two components, a simulation model and a multi-objective optimization algorithm. Generalized reservoir system operation models (GRSOM) are commonly used as simulation models in water resources planning and management of multi-reservoir systems. The purpose of the GRSOM in MOCSO is to simulate a specific management in order to evaluate the objective functions for the multi-objective optimization algorithm. As the distribution of water in reservoir system is affected by the particular operation of the GRSOM model, the choice of the simulation model is a crucial step in MOCSO setup which may significantly affect the obtained results. In a case study of Lake Tana sub basin (Ethiopia) two MOCSO models are compared. The general reservoir operation simulation models HEC-5 and OASIS (Operational Analysis and Simulation of Integrated Systems) are combined with the Multi-Objective Covariance Matrix-Adaptation Evolution Strategy (MO-CMA-ES). HEC-5 is a pure simulation model which computes the distribution of water in the system sequentially and serially from upstream to downstream following an given algorithm. OASIS, a simulation-optimization model, incorporates a linear or nonlinear solver which distributes the water sequentially in the system according to objective function defined by the decision maker. Lake Tana is the largest fresh water lake in Ethiopia. Its water resources are controllable due to the Chara Chara weir. For hydropower production water is directly diverted from Lake Tana to Belles sub

  17. Three-dimensional geomechanical simulation of reservoir compaction and implications for well failures in the Belridge diatomite

    SciTech Connect

    Fredrich, J.T.; Argueello, J.G.; Thorne, B.J.; Wawersik, W.R. |

    1996-11-01

    This paper describes an integrated geomechanics analysis of well casing damage induced by compaction of the diatomite reservoir at the Belridge Field, California. Historical data from the five field operators were compiled and analyzed to determine correlations between production, injection, subsidence, and well failures. The results of this analysis were used to develop a three-dimensional geomechanical model of South Belridge, Section 33 to examine the diatomite reservoir and overburden response to production and injection at the interwell scale and to evaluate potential well failure mechanisms. The time-dependent reservoir pressure field was derived from a three-dimensional finite difference reservoir simulation and used as input to three-dimensional non-linear finite element geomechanical simulations. The reservoir simulation included -200 wells and covered 18 years of production and injection. The geomechanical simulation contained 437,100 nodes and 374,130 elements with the overburden and reservoir discretized into 13 layers with independent material properties. The results reveal the evolution of the subsurface stress and displacement fields with production and injection and suggest strategies for reducing the occurrence of well casing damage.

  18. Numerical Simulation of Subsurface Transport and Groundwater Impacts from Hydraulic Fracturing of Tight/Shale Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Reagan, M. T.; Moridis, G. J.; Keen, N. D.

    2014-12-01

    The use of reservoir stimulation techniques, such as hydraulic fracturing, has grown tremendously over the last decade, and concerns have arisen that reservoir stimulation creates environmental threats through the creation of permeable pathways that could connect the stimulated reservoir to shallower groundwater aquifers. This study investigates, by numerical simulation, gas and water transport between a deeper tight-gas reservoir and a shallower overlying groundwater aquifer following hydraulic fracturing operations, assuming that the formation of a connecting pathway has already occurred. We focus on two general transport scenarios: 1) communication between the reservoir and aquifer via a connecting fracture or fault and 2) communication via a deteriorated, preexisting nearby well. The simulations explore a range of permeabilities and geometries over time scales, and evaluate the mechanisms and factors that could lead to the escape of gas or reservoir fluid and the contamination of groundwater resources. We also examine the effects of overpressured reservoirs, and explore long-term transport processes as part of a continuing study. We conclude that the key factors driving short-term transport of gas include high permeability for the connecting pathway and the overall volume of the connecting feature. Gas production from the reservoir via a horizontal well is likely to mitigate release through the reduction of available free gas and the lowering of reservoir pressure. We also find that fractured tight-gas reservoirs are unlikely to act as a continuing source of large volumes of migrating gas, and incidents of gas escape are likely to be limited in duration and scope. Reliable field and laboratory data must be acquired to constrain the factors and determine the likelihood of these outcomes.

  19. Simulation studies to evaluate the effect of fracture closure on the performance of naturally fractured reservoirs. Annual report

    SciTech Connect

    Not Available

    1992-11-01

    The second year of this three-year research program to evaluate the effect of fracture closure on the recovery of oil and gas from naturally fractured reservoirs has been completed. The overall objectives of the study are to: (1) evaluate the reservoir conditions where fracture closure is significant, and (2) evaluate innovative fluid injection techniques capable of maintaining pressure within the reservoir. Simulation studies have been conducted with a dual porosity simulator capable of simulating the performance of vertical and horizontal wells. Each simulation model has been initialized with properties typical of the Austin Chalk reservoir in Pearsall Field, Texas. During year one, simulations of both vertical and horizontal well performance were made assuming that fracture permeability was insensitive to pressure charge. The results confirmed that horizontal wells could increase both rate of oil recovery and total oil recovery from naturally fractured reservoirs. During the second year the performances of the same vertical and horizontal wells were evaluated with the assumption that fracture permeability was a function of reservoir pressure. This required repetition of most of the natural depletion cases simulated in year one while invoking the pressure-sensitive fracture permeability option. To investigate sensitivity to in situ stress, two stress conditions were simulated for each primary variable. The water injection cases, begun in year one, were extended to include most of the reservoir parameters investigated for natural depletion, including fracture permeability as a function of net stress and the use of horizontal wells. The results thus far confirm that pressure-sensitive fractures degrade well performance and that the degradation is reduced by water injection pressure maintenance. Furthermore, oil recovery can be significantly increased by water injection pressure maintenance.

  20. Coupling of geochemical and multiphase flow processes for validation of the MUFITS reservoir simulator against TOUGHREACT

    NASA Astrophysics Data System (ADS)

    De Lucia, Marco; Kempka, Thomas; Afanasyev, Andrey; Melnik, Oleg; Kühn, Michael

    2016-04-01

    Coupled reactive transport simulations, especially in heterogeneous settings considering multiphase flow, are extremely time consuming and suffer from significant numerical issues compared to purely hydrodynamic simulations. This represents a major hurdle in the assessment of geological subsurface utilization, since it constrains the practical application of reactive transport modelling to coarse spatial discretization or oversimplified geological settings. In order to overcome such limitations, De Lucia et al. [1] developed and validated a one-way coupling approach between geochemistry and hydrodynamics, which is particularly well suited for CO2 storage simulations, while being of general validity. In the present study, the models used for the validation of the one-way coupling approach introduced by De Lucia et al. (2015), and originally performed with the TOUGHREACT simulator, are transferred to and benchmarked against the multiphase reservoir simulator MUFITS [2]. The geological model is loosely inspired by an existing CO2 storage site. Its grid comprises 2,950 elements enclosed in a single layer, but reflecting a realistic three-dimensional anticline geometry. For the purpose of this comparison, homogeneous and heterogeneous scenarios in terms of porosity and permeability were investigated. In both cases, the results of the MUFITS simulator are in excellent agreement with those produced with the fully-coupled TOUGHREACT simulator, while profiting from significantly higher computational performance. This study demonstrates how a computationally efficient simulator such as MUFITS can be successfully included in a coupled process simulation framework, and also suggests ameliorations and specific strategies for the coupling of chemical processes with hydrodynamics and heat transport, aiming at tackling geoscientific problems beyond the storage of CO2. References [1] De Lucia, M., Kempka, T., and Kühn, M. A coupling alternative to reactive transport simulations

  1. Numerical simulation of groundwater movement and managed aquifer recharge from Sand Hollow Reservoir, Hurricane Bench area, Washington County, Utah

    USGS Publications Warehouse

    Marston, Thomas M.; Heilweil, Victor M.

    2012-01-01

    The Hurricane Bench area of Washington County, Utah, is a 70 square-mile area extending south from the Virgin River and encompassing Sand Hollow basin. Sand Hollow Reservoir, located on Hurricane Bench, was completed in March 2002 and is operated primarily as a managed aquifer recharge project by the Washington County Water Conservancy District. The reservoir is situated on a thick sequence of the Navajo Sandstone and Kayenta Formation. Total recharge to the underlying Navajo aquifer from the reservoir was about 86,000 acre-feet from 2002 to 2009. Natural recharge as infiltration of precipitation was approximately 2,100 acre-feet per year for the same period. Discharge occurs as seepage to the Virgin River, municipal and irrigation well withdrawals, and seepage to drains at the base of reservoir dams. Within the Hurricane Bench area, unconfined groundwater-flow conditions generally exist throughout the Navajo Sandstone. Navajo Sandstone hydraulic-conductivity values from regional aquifer testing range from 0.8 to 32 feet per day. The large variability in hydraulic conductivity is attributed to bedrock fractures that trend north-northeast across the study area.A numerical groundwater-flow model was developed to simulate groundwater movement in the Hurricane Bench area and to simulate the movement of managed aquifer recharge from Sand Hollow Reservoir through the groundwater system. The model was calibrated to combined steady- and transient-state conditions. The steady-state portion of the simulation was developed and calibrated by using hydrologic data that represented average conditions for 1975. The transient-state portion of the simulation was developed and calibrated by using hydrologic data collected from 1976 to 2009. Areally, the model grid was 98 rows by 76 columns with a variable cell size ranging from about 1.5 to 25 acres. Smaller cells were used to represent the reservoir to accurately simulate the reservoir bathymetry and nearby monitoring wells; larger

  2. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2000-12-06

    Through December 1999, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar (Tar II-A) Zone. Work is continuing on improving core analysis techniques, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post steamflood project. Work was discontinued on the stochastic geologic model and developing a 3-D stochastic thermal reservoir simulation model of the Tar II-A Zone in order to focus the remaining time on using the 3-D deterministic reservoir simulation model to provide alternatives for the Tar II-A post steamflood operations and shale compaction studies. Thermal-related formation compaction is a concern of the project team due to observed surface subsidence in the local area above the Tar II-A steamflood project. On January 12, 1999, the steamflood project lost its inexpensive steam source from the Harbor Cogeneration Plant as a result of the recent deregulation of electrical power rates in California. An operational plan was developed and implemented to mitigate the effects of the two situations by injecting cold water into the flanks of the steamflood. The purpose of flank injection has been to increase and subsequently maintain reservoir pressures at a level that would fill-up the steam chests in the ''T'' and ''D'' sands before they can collapse and cause formation compaction and to prevent the steam chests from reoccurring. A new 3-D deterministic thermal reservoir simulation model was used to provide operations with the necessary water injection rates and allowable production rates by well to minimize future surface subsidence and

  3. Three-dimensional numerical reservoir simulation of the EGS Demonstration Project at The Geysers geothermal field

    NASA Astrophysics Data System (ADS)

    Borgia, Andrea; Rutqvist, Jonny; Oldenburg, Curt M.; Hutchings, Lawrence; Garcia, Julio; Walters, Mark; Hartline, Craig; Jeanne, Pierre; Dobson, Patrick; Boyle, Katie

    2013-04-01

    -isothermal porous media numerical flow simulator in order to model the evolution and injection-related operational dynamics of The Geysers geothermal field. At the bottom of the domain in the felsite, we impose a constant temperature, constant saturation, low-permeability boundary. Laterally we set no-flow boundaries (no mass or heat flow), while at the top we use a fully aqueous-phase-saturated constant atmospheric pressure boundary condition. We compute initial conditions for two different conceptual models. The first conceptual model has two phases (gas and aqueous) with decreasing proportions of gas from the steam zone downward; the second model has dry steam all the way from the steam zone to the bottom. The first may be more similar to a pre-exploitation condition, before production reduced pressure and dried out the system, while the second is calibrated to the pressure and temperature actually measured in the reservoir today. Our preliminary results are in reasonable agreement with the pressure monitoring at Prati State 31. These results will be used in hydrogeomechanical modeling to plan, design, and validate the effects of injection in the system.

  4. Numerical simulation of ultrasonic wave transmission experiments in rocks of shale gas reservoirs

    NASA Astrophysics Data System (ADS)

    Chen, Qiao; Yao, Guanghua; Zhu, Honglin; Tan, Yanhu; Xu, Fenglin

    2017-01-01

    Shale gas reservoirs have risen in importance in China's new power source exploration and development program. The investigation of the propagation of ultrasonic waves in shale forms the basis for the full waveform application of acoustic logging data to the exploration of shale gas. Using acoustic wave theory, initial conditions, vibration source conditions, and stability conditions are developed in combination with experimental background of ultrasonic wave transmission. With improved boundary conditions, we performed numerical simulations of the ultrasound transmission experiments in shale using the high-order staggered-grid finite difference method (second-order in the time domain and fourth-order in the space domain). With programs developed within MatLab, the results obtained from numerical simulations agree well with experimental results based on physical models. In addition, using snapshots of the wave field that give a microscopic perspective, the propagation laws for ultrasonic waves can be analyzed. Using this method, human error is avoided, transmission experiments costs can be reduced and efficiency improved. This method extends the scope of experimental investigations regarding the transmission of ultrasonic waves in a shale gas reservoir with increasing stratification, and thus has great theoretical value and practical significance.

  5. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2000-12-06

    Through March 2000, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar (Tar II-A) Zone. Work is continuing on improving core analysis techniques, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post steamflood project. Work was discontinued on the stochastic geologic model and developing a 3-D stochastic thermal reservoir simulation model of the Tar II-A Zone so the project team could use the 3-D deterministic reservoir simulation model to provide alternatives for the Tar II-A post steamflood operations and shale compaction studies. The project team spent the second quarter 2000 writing the 1997-2000 Annual Report, completing research for the project on the subjects mentioned above, and operating the Tar II-A post-steamflood project and the Tar V horizontal well steamflood pilot. Thermal-related formation compaction is a concern of the project team due to observed surface subsidence in the local area above the Tar II-A steamflood project. On January 12, 1999, the steamflood project lost its inexpensive steam source from the Harbor Cogeneration Plant as a result of the recent deregulation of electrical power rates in California. An operational plan was developed and implemented to mitigate the effects of the two situations by injecting cold water into the flanks of the steamflood. The purpose of flank injection has been to increase and subsequently maintain reservoir pressures at a level that would fill-up the steam chests in the ''T'' and ''D'' sands before they can collapse and cause formation compaction and to prevent the steam

  6. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2000-12-14

    Through June 2000, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar (Tar II-A) Zone. Work is continuing on improving core analysis techniques, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post steamflood project. Work was discontinued on the stochastic geologic model and developing a 3-D stochastic thermal reservoir simulation model of the Tar II-A Zone so the project team could use the 3-D deterministic reservoir simulation model to provide alternatives for the Tar II-A post steamflood operations and shale compaction studies. The project team spent the third quarter 2000 revising the draft 1997-2000 Annual Report submitted last quarter, writing final reports on the research projects mentioned above, and operating the Tar II-A post-steamflood project and the Tar V horizontal well steamflood pilot. Thermal-related formation compaction is a concern of the project team due to observed surface subsidence in the local area above the Tar II-A steamflood project. On January 12, 1999, the steamflood project lost its inexpensive steam source from the Harbor Cogeneration Plant as a result of the recent deregulation of electrical power rates in California. An operational plan was developed and implemented to mitigate the effects of the two situations by injecting cold water into the flanks of the steamflood. The purpose of flank injection has been to increase and subsequently maintain reservoir pressures at a level that would fill-up the steam chests in the ''T'' and ''D'' sands before they can collapse and cause formation compaction and to

  7. Predicting the natural state of fractured carbonate reservoirs: An Andector Field, West Texas test of a 3-D RTM simulator

    SciTech Connect

    Tuncay, K.; Romer, S.; Ortoleva, P.; Hoak, T.; Sundberg, K.

    1998-12-31

    The power of the reaction, transport, mechanical (RTM) modeling approach is that it directly uses the laws of geochemistry and geophysics to extrapolate fracture and other characteristics from the borehole or surface to the reservoir interior. The objectives of this facet of the project were to refine and test the viability of the basin/reservoir forward modeling approach to address fractured reservoir in E and P problems. The study attempts to resolve the following issues: role of fracturing and timing on present day location and characteristics; clarifying the roles and interplay of flexure dynamics, changing rock rheological properties, fluid pressuring and tectonic/thermal histories on present day reservoir location and characteristics; and test the integrated RTM modeling/geological data approach on a carbonate reservoir. Sedimentary, thermal and tectonic data from Andector Field, West Texas, were used as input to the RTM basin/reservoir simulator to predict its preproduction state. The results were compared with data from producing reservoirs to test the RTM modeling approach. The effects of production on the state of the field are discussed in a companion report. The authors draw the following conclusions: RTM modeling is an important new tool in fractured reservoir E and P analysis; the strong coupling of RTM processes and the geometric and tensorial complexity of fluid flow and stresses require the type of fully coupled, 3-D RTM model for fracture analysis as pioneered in this project; flexure analysis cannot predict key aspects of fractured reservoir location and characteristics; fracture history over the lifetime of a basin is required to understand the timing of petroleum expulsion and migration and the retention properties of putative reservoirs.

  8. Hydrothermal simulation of a fractured carbonate reservoir in southern Italy and automated detections of optimal positions for geothermal doublet installations

    NASA Astrophysics Data System (ADS)

    Niederau, Jan; Gomez, Sergio; Ebigbo, Anozie; Inversi, Barbara; Marquart, Gabriele; Scrocca, Davide

    2015-04-01

    In this work, we present the results of hydrothermal simulations for assessing the geothermal potential of a fractured carbonate reservoir in Campania (Guardia Lombardi). Local surface heat flows of up to 90 mW/m² suggest that this area is a potential medium-enthalpy geothermal reservoir. The targeted reservoir rocks are fractured shallow-water carbonates (Jurassic to Cretaceous) of the Apulia Platform. During the Apennine orogeny, those carbonates were affected by at least two tectonic phases: Thrust-related folding of the carbonate platform due to compression followed by extension which caused major normal faulting. Based on seismic interpretation, a discretized structural model is set up, comprising the reservoir unit and the overlying sedimentary cover. The model comprises an area of 42 km × 28 km and extends to a depth of about six kilometers. Results of calibrated hydrothermal reservoir simulations suggest that free convection occurs in some parts of the reservoir. For assessing optimal locations for potential hydrothermal doublet systems, a tool was developed which uses the results of the reservoir simulationsin combination with predefined constraints. Those constraints or minimum requirements consider: a) minimum temperature for operating the doublet system, b) minimum matrix permeability allowing for a pumping rate of 40 L/s, and c) social constraints (location of cities or conservation areas, where the construction of a potential geothermal energy plant would be problematic). The optimization tool ranks possible doublet system locations by evaluating an objective function for the minimum requirements. Those locations are further used to extract smaller models from the big reservoir model and simulate the operation of a hypothetical geothermal doublet system. By assessing the optimized results, an optimal location of a geothermal energy plant would produce water with a temperature of 163 °C from a depth of almost 4 km.

  9. Simulator design for advanced ISDN satellite design and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerald R.

    1992-01-01

    This simulation design task completion report documents the simulation techniques associated with the network models of both the Interim Service ISDN (integrated services digital network) Satellite (ISIS) and the Full Service ISDN Satellite (FSIS) architectures. The ISIS network model design represents satellite systems like the Advanced Communication Technology Satellite (ACTS) orbiting switch. The FSIS architecture, the ultimate aim of this element of the Satellite Communications Applications Research (SCAR) program, moves all control and switching functions on-board the next generation ISDN communication satellite. The technical and operational parameters for the advanced ISDN communications satellite design will be obtained from the simulation of ISIS and FSIS engineering software models for their major subsystems. Discrete events simulation experiments will be performed with these models using various traffic scenarios, design parameters and operational procedures. The data from these simulations will be used to determine the engineering parameters for the advanced ISDN communications satellite.

  10. Enhanced Capabilities of Advanced Airborne Radar Simulation.

    DTIC Science & Technology

    1996-01-01

    RCF UNIX-Based Machine 65 BAUHAUS A-l Illustrations to Understand How GTD Files are Read 78 C-l Input File for Sidelobe Jammer Nulling...on the UNIX-based machine BAUHAUS are provided to illustrate the enhancements in run time, as compared to the original version of the simulation [1...Figure 27 presents some CPU run times for executing the enhanced simulation on the RCF UNIX-based machine BAUHAUS . The run times are shown only for

  11. Mineral trapping of CO2 in operated geothermal reservoirs - Numerical simulations on various scales

    NASA Astrophysics Data System (ADS)

    Kühn, Michael; Stanjek, Helge; Peiffer, Stefan; Clauser, Christoph

    2013-04-01

    A novel approach to store CO2 not only by hydrodynamic trapping within a reservoir, but to convert dissolved CO2 into the geochemically more stable form of calcite in a reaction with calcium obtained from dissolution of sulphates and alkalinity from feldspars or fly ashes is described here. The presentation gives answers to the key questions: • Where are potential geothermal reservoirs with anhydrite abundant? • Does the transfer of anhydrite into calcite work at all and what are the reaction rates? • What are probable alkalinity sources and how fast are they available? Numerical simulation is a means to quantify the entire process of CO2 storage and to deepen the understanding of the detailed chemical processes. We performed numerical simulations on multiple scales. The relevant scales reach from the micro or thin section scale (ca. 1 cm) to the reservoir scale (ca. 10 km). The idea is to provide constraints for smaller scale models from the larger scale and derive functionality from smaller scale models of processes which cannot be resolved in larger scale models, due to restrictions of discretization of the applied numerical mesh. With regard to the 3 questions above we can conclude that the combination of CO2 storage and geothermal energy production is generally feasible because candidate sites are available, anhydrite is transformable into calcite and alkalinity can be provided by fly ashes (Back et al. 2010) or even in-situ (Kühn and Clauser 2006). Based on our laboratory investigations and numerical studies we are able to estimate the storage potential for mineral trapping of CO2 in geothermal reservoirs (Kühn et al. 2009). On the one hand the maximum is unfortunately less than a million tons over the life time of a geothermal heating plant. On the other hand significant storage capacities are available in geological formations with regard to hydrodynamic trapping for millions of tonnes of carbon dioxide. This is why under the current circumstances

  12. Predicting Performance in Technical Preclinical Dental Courses Using Advanced Simulation.

    PubMed

    Gottlieb, Riki; Baechle, Mary A; Janus, Charles; Lanning, Sharon K

    2017-01-01

    The aim of this study was to investigate whether advanced simulation parameters, such as simulation exam scores, number of student self-evaluations, time to complete the simulation, and time to complete self-evaluations, served as predictors of dental students' preclinical performance. Students from three consecutive classes (n=282) at one U.S. dental school completed advanced simulation training and exams within the first four months of their dental curriculum. The students then completed conventional preclinical instruction and exams in operative dentistry (OD) and fixed prosthodontics (FP) courses, taken during the first and second years of dental school, respectively. Two advanced simulation exam scores (ASES1 and ASES2) were tested as predictors of performance in the two preclinical courses based on final course grades. ASES1 and ASES2 were found to be predictors of OD and FP preclinical course grades. Other advanced simulation parameters were not significantly related to grades in the preclinical courses. These results highlight the value of an early psychomotor skills assessment in dentistry. Advanced simulation scores may allow early intervention in students' learning process and assist in efficient allocation of resources such as faculty coverage and tutor assignment.

  13. 14 CFR Appendix H to Part 121 - Advanced Simulation

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... check airmen must include training policies and procedures, instruction methods and techniques... and a means for achieving flightcrew training in advanced airplane simulators. The requirements in... Simulation Training Program For an operator to conduct Level C or D training under this appendix all...

  14. Molecular dynamics simulations: advances and applications

    PubMed Central

    Hospital, Adam; Goñi, Josep Ramon; Orozco, Modesto; Gelpí, Josep L

    2015-01-01

    Molecular dynamics simulations have evolved into a mature technique that can be used effectively to understand macromolecular structure-to-function relationships. Present simulation times are close to biologically relevant ones. Information gathered about the dynamic properties of macromolecules is rich enough to shift the usual paradigm of structural bioinformatics from studying single structures to analyze conformational ensembles. Here, we describe the foundations of molecular dynamics and the improvements made in the direction of getting such ensemble. Specific application of the technique to three main issues (allosteric regulation, docking, and structure refinement) is discussed. PMID:26604800

  15. Multiscale Snow/Icemelt Discharge Simulations into Alpine Reservoirs: adding Glacier Dynamics to a Hydrological Model

    NASA Astrophysics Data System (ADS)

    Schueller, Felix; Förster, Kristian; Hanzer, Florian; Huttenlau, Matthias; Marzeion, Ben; Strasser, Ulrich; Achleitner, Stefan; Kirnbauer, Robert

    2015-04-01

    Glacier and snow runoff in high alpine regions is an essential process in hydrological research for its high relevance on lower altitude areas and hydro-power generation. MUSICALS II (Multiscale Snow/Icemelt Discharge Simulations into Alpine Reservoirs) seeks to identify and quantify water availability and runoff in alpine headwater catchments. The focus is on future changes due to glacier retreat, altering the multi-day and seasonal runoff available for hydropower operations. Our aim is to investigate and improve runoff forecasts by coupling the semi-distributed hydrological model HQSim with a simple glacier evolution model. The glacier model MMBM (Marzeion Mass Balance Model) with its statistical nature allows for fast modelling of the dynamical properties of glaciers. We present the design of the coupled hydrological application for different hydro power headwater catchments in Tyrol. The capabilities of the glacier model to simulate the selected glaciers is shown. Simulated discharge with the original and the coupled model are compared to downstream gauge measurements. Using the multi-objective optimization algorithm AMALGAM (A Multi-ALgorithm, Genetically Adaptive Multiobjective model), we optimize the glacier module parameters fully automatically. The results show the improvements in runoff modelling for past periods, when altering of glaciated catchment parts is considered. This indicates consideration of this process is mandatory for simulating future developments.

  16. Non-equilibrium simulation of CH4 production through the depressurization method from gas hydrate reservoirs

    NASA Astrophysics Data System (ADS)

    Qorbani, Khadijeh; Kvamme, Bjørn

    2016-04-01

    Natural gas hydrates (NGHs) in nature are formed from various hydrate formers (i.e. aqueous, gas, and adsorbed phases). As a result, due to Gibbs phase rule and the combined first and second laws of thermodynamics CH4-hydrate cannot reach thermodynamic equilibrium in real reservoir conditions. CH4 is the dominant component in NGH reservoirs. It is formed as a result of biogenic degradation of biological material in the upper few hundred meters of subsurface. It has been estimated that the amount of fuel-gas reserve in NGHs exceed the total amount of fossil fuel explored until today. Thus, these reservoirs have the potential to satisfy the energy requirements of the future. However, released CH4 from dissociated NGHs could find its way to the atmosphere and it is a far more aggressive greenhouse gas than CO2, even though its life-time is shorter. Lack of reliable field data makes it difficult to predict the production potential, as well as safety of CH4 production from NGHs. Computer simulations can be used as a tool to investigate CH4 production through different scenarios. Most hydrate simulators within academia and industry treat hydrate phase transitions as an equilibrium process and those which employ the kinetic approach utilize simple laboratory data in their models. Furthermore, it is typical to utilize a limited thermodynamic description where only temperature and pressure projections are considered. Another widely used simplification is to assume only a single route for the hydrate phase transitions. The non-equilibrium nature of hydrate indicates a need for proper kinetic models to describe hydrate dissociation and reformation in the reservoir with respect to thermodynamics variables, CH4 mole-fraction, pressure and temperature. The RetrasoCodeBright (RCB) hydrate simulator has previously been extended to model CH4-hydrate dissociation towards CH4 gas and water. CH4-hydrate is added to the RCB data-base as a pseudo mineral. Phase transitions are treated

  17. Advanced Simulation and Computing Business Plan

    SciTech Connect

    Rummel, E.

    2015-07-09

    To maintain a credible nuclear weapons program, the National Nuclear Security Administration’s (NNSA’s) Office of Defense Programs (DP) needs to make certain that the capabilities, tools, and expert staff are in place and are able to deliver validated assessments. This requires a complete and robust simulation environment backed by an experimental program to test ASC Program models. This ASC Business Plan document encapsulates a complex set of elements, each of which is essential to the success of the simulation component of the Nuclear Security Enterprise. The ASC Business Plan addresses the hiring, mentoring, and retaining of programmatic technical staff responsible for building the simulation tools of the nuclear security complex. The ASC Business Plan describes how the ASC Program engages with industry partners—partners upon whom the ASC Program relies on for today’s and tomorrow’s high performance architectures. Each piece in this chain is essential to assure policymakers, who must make decisions based on the results of simulations, that they are receiving all the actionable information they need.

  18. Interactive visualization to advance earthquake simulation

    USGS Publications Warehouse

    Kellogg, L.H.; Bawden, G.W.; Bernardin, T.; Billen, M.; Cowgill, E.; Hamann, B.; Jadamec, M.; Kreylos, O.; Staadt, O.; Sumner, D.

    2008-01-01

    The geological sciences are challenged to manage and interpret increasing volumes of data as observations and simulations increase in size and complexity. For example, simulations of earthquake-related processes typically generate complex, time-varying data sets in two or more dimensions. To facilitate interpretation and analysis of these data sets, evaluate the underlying models, and to drive future calculations, we have developed methods of interactive visualization with a special focus on using immersive virtual reality (VR) environments to interact with models of Earth's surface and interior. Virtual mapping tools allow virtual "field studies" in inaccessible regions. Interactive tools allow us to manipulate shapes in order to construct models of geological features for geodynamic models, while feature extraction tools support quantitative measurement of structures that emerge from numerical simulation or field observations, thereby enabling us to improve our interpretation of the dynamical processes that drive earthquakes. VR has traditionally been used primarily as a presentation tool, albeit with active navigation through data. Reaping the full intellectual benefits of immersive VR as a tool for scientific analysis requires building on the method's strengths, that is, using both 3D perception and interaction with observed or simulated data. This approach also takes advantage of the specialized skills of geological scientists who are trained to interpret, the often limited, geological and geophysical data available from field observations. ?? Birkhaueser 2008.

  19. Simulation Credibility: Advances in Verification, Validation, and Uncertainty Quantification

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel B. (Editor); Eklund, Dean R.; Romero, Vicente J.; Pearce, Jeffrey A.; Keim, Nicholas S.

    2016-01-01

    Decision makers and other users of simulations need to know quantified simulation credibility to make simulation-based critical decisions and effectively use simulations, respectively. The credibility of a simulation is quantified by its accuracy in terms of uncertainty, and the responsibility of establishing credibility lies with the creator of the simulation. In this volume, we present some state-of-the-art philosophies, principles, and frameworks. The contributing authors involved in this publication have been dedicated to advancing simulation credibility. They detail and provide examples of key advances over the last 10 years in the processes used to quantify simulation credibility: verification, validation, and uncertainty quantification. The philosophies and assessment methods presented here are anticipated to be useful to other technical communities conducting continuum physics-based simulations; for example, issues related to the establishment of simulation credibility in the discipline of propulsion are discussed. We envision that simulation creators will find this volume very useful to guide and assist them in quantitatively conveying the credibility of their simulations.

  20. Simulation Toolkit for Renewable Energy Advanced Materials Modeling

    SciTech Connect

    Sides, Scott; Kemper, Travis; Larsen, Ross; Graf, Peter

    2013-11-13

    STREAMM is a collection of python classes and scripts that enables and eases the setup of input files and configuration files for simulations of advanced energy materials. The core STREAMM python classes provide a general framework for storing, manipulating and analyzing atomic/molecular coordinates to be used in quantum chemistry and classical molecular dynamics simulations of soft materials systems. The design focuses on enabling the interoperability of materials simulation codes such as GROMACS, LAMMPS and Gaussian.

  1. Advancing New 3D Seismic Interpretation Methods for Exploration and Development of Fractured Tight Gas Reservoirs

    SciTech Connect

    James Reeves

    2005-01-31

    In a study funded by the U.S. Department of Energy and GeoSpectrum, Inc., new P-wave 3D seismic interpretation methods to characterize fractured gas reservoirs are developed. A data driven exploratory approach is used to determine empirical relationships for reservoir properties. Fractures are predicted using seismic lineament mapping through a series of horizon and time slices in the reservoir zone. A seismic lineament is a linear feature seen in a slice through the seismic volume that has negligible vertical offset. We interpret that in regions of high seismic lineament density there is a greater likelihood of fractured reservoir. Seismic AVO attributes are developed to map brittle reservoir rock (low clay) and gas content. Brittle rocks are interpreted to be more fractured when seismic lineaments are present. The most important attribute developed in this study is the gas sensitive phase gradient (a new AVO attribute), as reservoir fractures may provide a plumbing system for both water and gas. Success is obtained when economic gas and oil discoveries are found. In a gas field previously plagued with poor drilling results, four new wells were spotted using the new methodology and recently drilled. The wells have estimated best of 12-months production indicators of 2106, 1652, 941, and 227 MCFGPD. The latter well was drilled in a region of swarming seismic lineaments but has poor gas sensitive phase gradient (AVO) and clay volume attributes. GeoSpectrum advised the unit operators that this location did not appear to have significant Lower Dakota gas before the well was drilled. The other three wells are considered good wells in this part of the basin and among the best wells in the area. These new drilling results have nearly doubled the gas production and the value of the field. The interpretation method is ready for commercialization and gas exploration and development. The new technology is adaptable to conventional lower cost 3D seismic surveys.

  2. [Research advances in evaluation and measurement techniques of latent human immunodeficiency virus reservoirs].

    PubMed

    Qihui, Zhou; Biao, Zhu

    2016-05-25

    Latent reservoir (LR) of HIV is the cells (such as CD4(+)T cell) where HIV is able to hide. These cellular reservoirs are located throughout the body, including the spleen, lymph nodes, gastrointestinal lymphoid tissues, and become the major obstacle to cure HIV infection. To truly cure patients, a new strategy "shock and kill" was put forward by scientists, which is to shock HIV-infected cells out of hidden reservoirs in the body and then kill them. Quantitatively evaluating the size of long-lived LR is essential to this strategy. This paper reviews assays that measure the magnitude of the latent HIV reservoir, including Alu-gag PCR, quantitative viral outgrowth assay (Q-VOA) and tat/rev induced limiting dilution assay(TILDA). Alu-gag PCR can differentiate the integrated and un-integrated HIV DNA, however, it cannot distinguish defective virus from competent virus, leading to overestimate the real size of LR. Q-VOA is based on cell culture, and is the golden standard for measuring the LR since it provides a definitive minimal estimate of reservoir size. Its disadvantages are being more costly, large amount of blood sample required, and underestimating the true size, which was resulted from particles being not released after one round of stimulation. TILDA measures cells with inducible msRNA as these transcripts are absent in latently infected cells but induced upon viral reactivation. It requires small blood sample size, does not need extraction of viral nucleic acids, can be completed in 2 d and covers a wide dynamic range of reservoir sizes, but has the disadvantage of overestimating the true size of LR.

  3. Advancing Reactive Tracer Methods for Measurement of Thermal Evolution in Geothermal Reservoirs: Final Report

    SciTech Connect

    Mitchell A. Plummer; Carl D. Palmer; Earl D. Mattson; Laurence C. Hull; George D. Redden

    2011-07-01

    The injection of cold fluids into engineered geothermal system (EGS) and conventional geothermal reservoirs may be done to help extract heat from the subsurface or to maintain pressures within the reservoir (e.g., Rose et al., 2001). As these injected fluids move along fractures, they acquire heat from the rock matrix and remove it from the reservoir as they are extracted to the surface. A consequence of such injection is the migration of a cold-fluid front through the reservoir (Figure 1) that could eventually reach the production well and result in the lowering of the temperature of the produced fluids (thermal breakthrough). Efficient operation of an EGS as well as conventional geothermal systems involving cold-fluid injection requires accurate and timely information about thermal depletion of the reservoir in response to operation. In particular, accurate predictions of the time to thermal breakthrough and subsequent rate of thermal drawdown are necessary for reservoir management, design of fracture stimulation and well drilling programs, and forecasting of economic return. A potential method for estimating migration of a cold front between an injection well and a production well is through application of reactive tracer tests, using chemical whose rate of degradation is dependent on the reservoir temperature between the two wells (e.g., Robinson 1985). With repeated tests, the rate of migration of the thermal front can be determined, and the time to thermal breakthrough calculated. While the basic theory behind the concept of thermal tracers has been understood for some time, effective application of the method has yet to be demonstrated. This report describes results of a study that used several methods to investigate application of reactive tracers to monitoring the thermal evolution of a geothermal reservoir. These methods included (1) mathematical investigation of the sensitivity of known and hypothetical reactive tracers, (2) laboratory testing of novel

  4. Advances in NLTE Modeling for Integrated Simulations

    SciTech Connect

    Scott, H A; Hansen, S B

    2009-07-08

    The last few years have seen significant progress in constructing the atomic models required for non-local thermodynamic equilibrium (NLTE) simulations. Along with this has come an increased understanding of the requirements for accurately modeling the ionization balance, energy content and radiative properties of different elements for a wide range of densities and temperatures. Much of this progress is the result of a series of workshops dedicated to comparing the results from different codes and computational approaches applied to a series of test problems. The results of these workshops emphasized the importance of atomic model completeness, especially in doubly excited states and autoionization transitions, to calculating ionization balance, and the importance of accurate, detailed atomic data to producing reliable spectra. We describe a simple screened-hydrogenic model that calculates NLTE ionization balance with surprising accuracy, at a low enough computational cost for routine use in radiation-hydrodynamics codes. The model incorporates term splitting, {Delta}n = 0 transitions, and approximate UTA widths for spectral calculations, with results comparable to those of much more detailed codes. Simulations done with this model have been increasingly successful at matching experimental data for laser-driven systems and hohlraums. Accurate and efficient atomic models are just one requirement for integrated NLTE simulations. Coupling the atomic kinetics to hydrodynamics and radiation transport constrains both discretizations and algorithms to retain energy conservation, accuracy and stability. In particular, the strong coupling between radiation and populations can require either very short timesteps or significantly modified radiation transport algorithms to account for NLTE material response. Considerations such as these continue to provide challenges for NLTE simulations.

  5. Process simulation for advanced composites production

    SciTech Connect

    Allendorf, M.D.; Ferko, S.M.; Griffiths, S.

    1997-04-01

    The objective of this project is to improve the efficiency and lower the cost of chemical vapor deposition (CVD) processes used to manufacture advanced ceramics by providing the physical and chemical understanding necessary to optimize and control these processes. Project deliverables include: numerical process models; databases of thermodynamic and kinetic information related to the deposition process; and process sensors and software algorithms that can be used for process control. Target manufacturing techniques include CVD fiber coating technologies (used to deposit interfacial coatings on continuous fiber ceramic preforms), chemical vapor infiltration, thin-film deposition processes used in the glass industry, and coating techniques used to deposit wear-, abrasion-, and corrosion-resistant coatings for use in the pulp and paper, metals processing, and aluminum industries.

  6. Integration of advanced geoscience and engineering techniques to quantify interwell heterogeneity in reservoir models. Final report, September 29, 1993--September 30, 1996

    SciTech Connect

    Weiss, W.W.; Buckley, J.S.; Ouenes, A.

    1997-05-01

    The goal of this three-year project was to provide a quantitative definition of reservoir heterogeneity. This objective was accomplished through the integration of geologic, geophysical, and engineering databases into a multi-disciplinary understanding of reservoir architecture and associated fluid-rock and fluid-fluid interactions. This interdisciplinary effort integrated geological and geophysical data with engineering and petrophysical results through reservoir simulation to quantify reservoir architecture and the dynamics of fluid-rock and fluid-fluid interactions. An improved reservoir description allows greater accuracy and confidence during simulation and modeling as steps toward gaining greater recovery efficiency from existing reservoirs. A field laboratory, the Sulimar Queen Unit, was available for the field research. Several members of the PRRC staff participated in the development of improved reservoir description by integration of the field and laboratory data as well as in the development of quantitative reservoir models to aid performance predictions. Subcontractors from Stanford University and the University of Texas at Austin (UT) collaborated in the research and participated in the design and interpretation of field tests. The three-year project was initiated in September 1993 and led to the development and application of various reservoir description methodologies. A new approach for visualizing production data graphically was developed and implemented on the Internet. Using production data and old gamma rays logs, a black oil reservoir model that honors both primary and secondary performance was developed. The old gamma ray logs were used after applying a resealing technique, which was crucial for the success of the project. In addition to the gamma ray logs, the development of the reservoir model benefitted from an inverse Drill Stem Test (DST) technique which provided initial estimates of the reservoir permeability at different wells.

  7. ADVANCING REACTIVE TRACER METHODS FOR MONITORING THERMAL DRAWDOWN IN GEOTHERMAL ENHANCED GEOTHERMAL RESERVOIRS

    SciTech Connect

    Mitchell A. Plummer; Carl D. Palmer; Earl D. Mattson; George D. Redden; Laurence C. Hull

    2010-10-01

    Reactive tracers have long been considered a possible means of measuring thermal drawdown in a geothermal system, before significant cooling occurs at the extraction well. Here, we examine the sensitivity of the proposed method to evaluate reservoir cooling and demonstrate that while the sensitivity of the method as generally proposed is low, it may be practical under certain conditions.

  8. Assessment of a Hybrid Continuous/Discontinuous Galerkin Finite Element Code for Geothermal Reservoir Simulations

    NASA Astrophysics Data System (ADS)

    Xia, Yidong; Podgorney, Robert; Huang, Hai

    2017-03-01

    FALCON (Fracturing And Liquid CONvection) is a hybrid continuous/discontinuous Galerkin finite element geothermal reservoir simulation code based on the MOOSE (Multiphysics Object-Oriented Simulation Environment) framework being developed and used for multiphysics applications. In the present work, a suite of verification and validation (V&V) test problems for FALCON was defined to meet the design requirements, and solved to the interests of enhanced geothermal system modeling and simulation. The intent for this test problem suite is to provide baseline comparison data that demonstrates the performance of FALCON solution methods. The test problems vary in complexity from a single mechanical or thermal process, to coupled thermo-hydro-mechanical processes in geological porous medium. Numerical results obtained by FALCON agreed well with either the available analytical solutions or experimental data, indicating the verified and validated implementation of these capabilities in FALCON. Whenever possible, some form of solution verification has been attempted to identify sensitivities in the solution methods, and suggest best practices when using the FALCON code.

  9. Reservoir Modeling by Data Integration via Intermediate Spaces and Artificial Intelligence Tools in MPS Simulation Frameworks

    SciTech Connect

    Ahmadi, Rouhollah; Khamehchi, Ehsan

    2013-12-15

    Conditioning stochastic simulations are very important in many geostatistical applications that call for the introduction of nonlinear and multiple-point data in reservoir modeling. Here, a new methodology is proposed for the incorporation of different data types into multiple-point statistics (MPS) simulation frameworks. Unlike the previous techniques that call for an approximate forward model (filter) for integration of secondary data into geologically constructed models, the proposed approach develops an intermediate space where all the primary and secondary data are easily mapped onto. Definition of the intermediate space, as may be achieved via application of artificial intelligence tools like neural networks and fuzzy inference systems, eliminates the need for using filters as in previous techniques. The applicability of the proposed approach in conditioning MPS simulations to static and geologic data is verified by modeling a real example of discrete fracture networks using conventional well-log data. The training patterns are well reproduced in the realizations, while the model is also consistent with the map of secondary data.

  10. The Coal-Seq III Consortium. Advancing the Science of CO2 Sequestration in Coal Seam and Gas Shale Reservoirs

    SciTech Connect

    Koperna, George

    2014-03-14

    The Coal-Seq consortium is a government-industry collaborative that was initially launched in 2000 as a U.S. Department of Energy sponsored investigation into CO2 sequestration in deep, unmineable coal seams. The consortium’s objective aimed to advancing industry’s understanding of complex coalbed methane and gas shale reservoir behavior in the presence of multi-component gases via laboratory experiments, theoretical model development and field validation studies. Research from this collaborative effort was utilized to produce modules to enhance reservoir simulation and modeling capabilities to assess the technical and economic potential for CO2 storage and enhanced coalbed methane recovery in coal basins. Coal-Seq Phase 3 expands upon the learnings garnered from Phase 1 & 2, which has led to further investigation into refined model development related to multicomponent equations-of-state, sorption and diffusion behavior, geomechanical and permeability studies, technical and economic feasibility studies for major international coal basins the extension of the work to gas shale reservoirs, and continued global technology exchange. The first research objective assesses changes in coal and shale properties with exposure to CO2 under field replicated conditions. Results indicate that no significant weakening occurs when coal and shale were exposed to CO2, therefore, there was no need to account for mechanical weakening of coal due to the injection of CO2 for modeling. The second major research objective evaluates cleat, Cp, and matrix, Cm, swelling/shrinkage compressibility under field replicated conditions. The experimental studies found that both Cp and Cm vary due to changes in reservoir pressure during injection and depletion under field replicated conditions. Using laboratory data from this study, a compressibility model was developed to predict the pore-volume compressibility, Cp, and the matrix compressibility, Cm, of coal and shale, which was applied to

  11. Interoperable Technologies for Advanced Petascale Simulations

    SciTech Connect

    Li, Xiaolin

    2013-01-14

    Our final report on the accomplishments of ITAPS at Stony Brook during period covered by the research award includes component service, interface service and applications. On the component service, we have designed and implemented a robust functionality for the Lagrangian tracking of dynamic interface. We have migrated the hyperbolic, parabolic and elliptic solver from stage-wise second order toward global second order schemes. We have implemented high order coupling between interface propagation and interior PDE solvers. On the interface service, we have constructed the FronTier application programer's interface (API) and its manual page using doxygen. We installed the FronTier functional interface to conform with the ITAPS specifications, especially the iMesh and iMeshP interfaces. On applications, we have implemented deposition and dissolution models with flow and implemented the two-reactant model for a more realistic precipitation at the pore level and its coupling with Darcy level model. We have continued our support to the study of fluid mixing problem for problems in inertial comfinement fusion. We have continued our support to the MHD model and its application to plasma liner implosion in fusion confinement. We have simulated a step in the reprocessing and separation of spent fuels from nuclear power plant fuel rods. We have implemented the fluid-structure interaction for 3D windmill and parachute simulations. We have continued our collaboration with PNNL, BNL, LANL, ORNL, and other SciDAC institutions.

  12. Simulating reservoir releases to mitigate climate impacts on fish sustainability below Shasta Lake using stochastic and mechanistic modeling approaches

    NASA Astrophysics Data System (ADS)

    Sapin, J. R.; Saito, L.; Rajagopalan, B.; Caldwell, R. J.

    2013-12-01

    Preservation of the Chinook salmon fishery on the Sacramento River in California has been a major concern since the winter-run Chinook was listed as threatened in 1989. The construction of Shasta Dam and Reservoir in 1945 prevented the salmon from reaching their native cold-water spawning habitat, resulting in severe population declines. The temperature control device (TCD) installed at Shasta Dam in 1997 provides increased capabilities of supplying cold-water habitat downstream of the dam to stimulate salmon spawning. However, increased air temperatures due to climate change could make it more difficult to meet downstream temperature targets with the TCD. By coupling stochastic hydroclimatology generation with two-dimensional hydrodynamic modeling of the reservoir we can simulate TCD operations under extreme climate conditions. This is accomplished by stochastically generating climate and inflow scenarios (created with historical data from NOAA, USGS and USBR) as input into a CE-QUAL-W2 model of the reservoir that can simulate TCD operations. Simulations will investigate if selective withdrawal from multiple gates of the TCD are capable of meeting temperature targets downstream of the dam under extreme hydroclimatic conditions. Moreover, our non-parametric methods for stochastically generating climate and inflow scenarios are capable of producing statistically representative years of extreme wet or extreme dry conditions beyond what is seen in the historical record. This allows us to simulate TCD operations for unprecedented hydroclimatic conditions with implications for climate changes in the watershed. Preliminary results of temperature outputs from simulations of TCD operations under extreme climate conditions with CE-QUAL-W2 will be presented. The conditions chosen for simulation are grounded to real-world managerial concerns by utilizing collaborative workshops with reservoir managers to establish which hydroclimatic scenarios would be of most concern for

  13. Simulating the gas hydrate production test at Mallik using the pilot scale pressure reservoir LARS

    NASA Astrophysics Data System (ADS)

    Heeschen, Katja; Spangenberg, Erik; Schicks, Judith M.; Priegnitz, Mike; Giese, Ronny; Luzi-Helbing, Manja

    2014-05-01

    LARS, the LArge Reservoir Simulator, allows for one of the few pilot scale simulations of gas hydrate formation and dissociation under controlled conditions with a high resolution sensor network to enable the detection of spatial variations. It was designed and built within the German project SUGAR (submarine gas hydrate reservoirs) for sediment samples with a diameter of 0.45 m and a length of 1.3 m. During the project, LARS already served for a number of experiments simulating the production of gas from hydrate-bearing sediments using thermal stimulation and/or depressurization. The latest test simulated the methane production test from gas hydrate-bearing sediments at the Mallik test site, Canada, in 2008 (Uddin et al., 2011). Thus, the starting conditions of 11.5 MPa and 11°C and environmental parameters were set to fit the Mallik test site. The experimental gas hydrate saturation of 90% of the total pore volume (70 l) was slightly higher than volumes found in gas hydrate-bearing formations in the field (70 - 80%). However, the resulting permeability of a few millidarcy was comparable. The depressurization driven gas production at Mallik was conducted in three steps at 7.0 MPa - 5.0 MPa - 4.2 MPa all of which were used in the laboratory experiments. In the lab the pressure was controlled using a back pressure regulator while the confining pressure was stable. All but one of the 12 temperature sensors showed a rapid decrease in temperature throughout the sediment sample, which accompanied the pressure changes as a result of gas hydrate dissociation. During step 1 and 2 they continued up to the point where gas hydrate stability was regained. The pressure decreases and gas hydrate dissociation led to highly variable two phase fluid flow throughout the duration of the simulated production test. The flow rates were measured continuously (gas) and discontinuously (liquid), respectively. Next to being discussed here, both rates were used to verify a model of gas

  14. Conformity assessment for seismic monitoring and reservoir simulation at the Ketzin pilot site - how much conformity can be reached?

    NASA Astrophysics Data System (ADS)

    Lüth, Stefan; Ivanova, Alexandra; Kempka, Thomas

    2016-04-01

    The EU CCS Directive defines three high-level criteria which have to be fulfilled by a site operator in the post closure phase of a storage site before liability can be transferred to the public after site closure. One of these high-level requirements is "Demonstrating conformity between observed and simulated plume behaviour". The observed plume behaviour is derived from geophysical and/or geochemical monitoring. Repeated 3D seismic observations have proven to provide the most comprehensive image of a CO2 plume in various projects such as Sleipner, Weyburn, or Ketzin. The simulated plume behaviour is derived from reservoir simulation using a model calibrated with monitoring results. Plume observations using any monitoring method are always affected by limited resolution and detection ability, and reservoir simulations will only be able to provide an approximated representation of the occurring reservoir processes. Therefore, full conformity between observed and simulated plume behaviour is difficult to achieve, if it is at all. It is therefore of crucial importance for each storage site to understand to what degree conformity can be achieved under realistic conditions, comprising noise affected monitoring data and reservoir models based on geological uncertainties. We applied performance criteria (plume footprint area, lateral migration distance, plume volume, and similarity index) for a comparison between monitoring results (4D seismic measurements) and reservoir simulations, considering a range of seismic amplitude values as noise threshold and a range of minimum thickness of the simulated CO2 plume. Relating the performance criteria to the noise and thickness threshold values allows assessing the quality of conformance between simulated and observed behaviour of a CO2 plume. The Ketzin site is provided with a comprehensive monitoring data set and a history-matched reservoir model. Considering the relatively high noise level, which is inherent for land

  15. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs, short-term gas, and water transport

    NASA Astrophysics Data System (ADS)

    Reagan, Matthew T.; Moridis, George J.; Keen, Noel D.; Johnson, Jeffrey N.

    2015-04-01

    Hydrocarbon production from unconventional resources and the use of reservoir stimulation techniques, such as hydraulic fracturing, has grown explosively over the last decade. However, concerns have arisen that reservoir stimulation creates significant environmental threats through the creation of permeable pathways connecting the stimulated reservoir with shallower freshwater aquifers, thus resulting in the contamination of potable groundwater by escaping hydrocarbons or other reservoir fluids. This study investigates, by numerical simulation, gas and water transport between a shallow tight-gas reservoir and a shallower overlying freshwater aquifer following hydraulic fracturing operations, if such a connecting pathway has been created. We focus on two general failure scenarios: (1) communication between the reservoir and aquifer via a connecting fracture or fault and (2) communication via a deteriorated, preexisting nearby well. We conclude that the key factors driving short-term transport of gas include high permeability for the connecting pathway and the overall volume of the connecting feature. Production from the reservoir is likely to mitigate release through reduction of available free gas and lowering of reservoir pressure, and not producing may increase the potential for release. We also find that hydrostatic tight-gas reservoirs are unlikely to act as a continuing source of migrating gas, as gas contained within the newly formed hydraulic fracture is the primary source for potential contamination. Such incidents of gas escape are likely to be limited in duration and scope for hydrostatic reservoirs. Reliable field and laboratory data must be acquired to constrain the factors and determine the likelihood of these outcomes.

  16. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs, short-term gas, and water transport.

    PubMed

    Reagan, Matthew T; Moridis, George J; Keen, Noel D; Johnson, Jeffrey N

    2015-04-01

    Hydrocarbon production from unconventional resources and the use of reservoir stimulation techniques, such as hydraulic fracturing, has grown explosively over the last decade. However, concerns have arisen that reservoir stimulation creates significant environmental threats through the creation of permeable pathways connecting the stimulated reservoir with shallower freshwater aquifers, thus resulting in the contamination of potable groundwater by escaping hydrocarbons or other reservoir fluids. This study investigates, by numerical simulation, gas and water transport between a shallow tight-gas reservoir and a shallower overlying freshwater aquifer following hydraulic fracturing operations, if such a connecting pathway has been created. We focus on two general failure scenarios: (1) communication between the reservoir and aquifer via a connecting fracture or fault and (2) communication via a deteriorated, preexisting nearby well. We conclude that the key factors driving short-term transport of gas include high permeability for the connecting pathway and the overall volume of the connecting feature. Production from the reservoir is likely to mitigate release through reduction of available free gas and lowering of reservoir pressure, and not producing may increase the potential for release. We also find that hydrostatic tight-gas reservoirs are unlikely to act as a continuing source of migrating gas, as gas contained within the newly formed hydraulic fracture is the primary source for potential contamination. Such incidents of gas escape are likely to be limited in duration and scope for hydrostatic reservoirs. Reliable field and laboratory data must be acquired to constrain the factors and determine the likelihood of these outcomes.

  17. Design and implementation of a CO{sub 2} flood utilizing advanced reservoir characterization and horizontal injection wells in a shallow shelf carbonate approaching waterflood depletion. Annual report, June 3, 1994--October 31, 1995

    SciTech Connect

    Hallenbeck, L.D.; Harpole, K.J.; Gerard, M.G.

    1996-05-01

    The work reported here covers Budget Phase I of the project. The principal tasks in Budget Phase I are the Reservoir Analysis and Characterization Task and the Advanced Technology Definition Task. Completion of these tasks have enabled an optimum carbon dioxide (CO{sub 2}) flood project to be designed and evaluated from an economic and risk analysis standpoint. Field implementation of the project has been recommended to the working interest owner of the South Cowden Unit (SCU) and approval has been obtained. The current project has focused on reducing initial investment cost by utilizing horizontal injection wells and concentrating the project in the best productivity area of the field. An innovative CO{sub 2} purchase agreement (no take or pay requirements, CO{sub 2} purchase price tied to West Texas Intermediate crude oil price) and gas recycle agreements (expensing cost as opposed to large capital investments for compression) were negotiated to further improve project economics. A detailed reservoir characterization study was completed by an integrated team of geoscientists and engineers. The study consisted of detailed core description, integration of log response to core descriptions, mapping of the major flow units, evaluation of porosity and permeability relationships, geostatistical analysis of permeability trends, and direct integration of reservoir performance with the geological interpretation. The study methodology fostered iterative bidirectional feedback between the reservoir characterization team and the reservoir engineering/simulation team to allow simultaneous refinement and convergence of the geological interpretation with the reservoir model. The fundamental conclusion from the study is that South Cowden exhibits favorable enhanced oil recovery characteristics, particularly reservoir quality and continuity.

  18. Brush seal numerical simulation: Concepts and advances

    NASA Technical Reports Server (NTRS)

    Braun, M. J.; Kudriavtsev, V. V.

    1994-01-01

    The development of the brush seal is considered to be most promising among the advanced type seals that are presently in use in the high speed turbomachinery. The brush is usually mounted on the stationary portions of the engine and has direct contact with the rotating element, in the process of limiting the 'unwanted' leakage flows between stages, or various engine cavities. This type of sealing technology is providing high (in comparison with conventional seals) pressure drops due mainly to the high packing density (around 100 bristles/sq mm), and brush compliance with the rotor motions. In the design of modern aerospace turbomachinery leakage flows between the stages must be minimal, thus contributing to the higher efficiency of the engine. Use of the brush seal instead of the labyrinth seal reduces the leakage flow by one order of magnitude. Brush seals also have been found to enhance dynamic performance, cost less, and are lighter than labyrinth seals. Even though industrial brush seals have been successfully developed through extensive experimentation, there is no comprehensive numerical methodology for the design or prediction of their performance. The existing analytical/numerical approaches are based on bulk flow models and do not allow the investigation of the effects of brush morphology (bristle arrangement), or brushes arrangement (number of brushes, spacing between them), on the pressure drops and flow leakage. An increase in the brush seal efficiency is clearly a complex problem that is closely related to the brush geometry and arrangement, and can be solved most likely only by means of a numerically distributed model.

  19. Time parallelization of advanced operation scenario simulations of ITER plasma

    SciTech Connect

    Samaddar, D.; Casper, T. A.; Kim, S. H.; Berry, Lee A; Elwasif, Wael R; Batchelor, Donald B; Houlberg, Wayne A

    2013-01-01

    This work demonstrates that simulations of advanced burning plasma operation scenarios can be successfully parallelized in time using the parareal algorithm. CORSICA - an advanced operation scenario code for tokamak plasmas is used as a test case. This is a unique application since the parareal algorithm has so far been applied to relatively much simpler systems except for the case of turbulence. In the present application, a computational gain of an order of magnitude has been achieved which is extremely promising. A successful implementation of the Parareal algorithm to codes like CORSICA ushers in the possibility of time efficient simulations of ITER plasmas.

  20. Innovative techniques for the description of reservoir heterogeneity using tracers

    SciTech Connect

    Pope, G.; Sepehrnoori, K.

    1991-09-01

    The objective of this research is to develop an advanced, innovative technique for the description of reservoir heterogeneity. This proposed method consists of using tracers in single-well backflow tests. The general idea is to make use of fluid drift in the reservoir either due to naturally occurring pressure gradients in the reservoir, or by deliberately imposed pressure gradients using adjacent injection and production wells in the same reservoir. The analytical tool that will be used to design and interpret these tests is a compositional reservoir simulator with special features added and tested specifically for this purpose. 2 refs., 5 figs.

  1. Modeling naturally fractured reservoirs: From experimental rock mechanics to flow simulation

    NASA Astrophysics Data System (ADS)

    Rijken, Margaretha Catharina Maria

    Fractures have a big impact on reservoir production but are inherently difficult to quantify. This study gives a robust and practical workflow to obtain a mechanically consistent naturally fractured reservoir model without direct sampling of the fracture network. The three tiers of the workflow are: (1) subcritical testing, (2) geomechanical modeling, and (3) flow modeling. Subcritical fracture index, a rock property, has been shown to influence fracture attributes such as length, spacing and connectivity. Subcritical tests show that the average subcritical index for sandstones in ambient air is around 62, whereas the average value for microstructurally comparable carbonates samples is 120. Thin-section analysis shows that an increase in cement content increases the subcritical index. Furthermore, sandstone samples containing more than 15% carbonate cement, sandstone samples containing more than 40% clay, and pure carbonate samples exhibit a large drop in subcritical index when the environment is changed from ambient air or oil to fresh water or brine. Geomechanical modeling has shown that the mechanical bed thickness has a large influence on fracture pattern characteristics and has the potential to overshadow fracture pattern changes due to strain level, strain anisotropy and subcritical index. Furthermore, an increase in strain anisotropy reduces the number of dominant through-going fracture sets and decreases the fracture spacing between the through-going fractures. This spacing variation not only influences the preferential drainage direction, it can also enhance the drainage efficiency, because more rock is exposed to the through-going fractures which are more likely to be intersected by a borehole. The level of detail provided by the geomechanical model greatly exceeds the level of detail normally used in reservoir simulation. Therefore, upscaling of the geomechanically generated fracture patterns is necessary for practical flow modeling. This study shows

  2. Simulation of commercial scale CO2 injection into a fracture reservoir

    NASA Astrophysics Data System (ADS)

    Li, Y.; Li, S.; Zhang, Y.

    2011-12-01

    Geologic Carbon Sequestration is a proposed means to reduce atmospheric concentration of carbon dioxide (CO2). At Teapot Dome, Wyoming, CO2 will be injected into the Tensleep Formation, a depleted oil reservoir characterized with significant heterogeneity including facies, faults, and fractures. We've collected geological and engineering characterization data of the entire Teapot Dome field, including core data, well logs, seismic data, and production records. All data were screened for accuracy, before subsets of the data are used to build a geologic reservoir model. A formation structural model is created first by interpreting faults and stratigraphy from 3D seismic data. Formation MicroImager logs are analyzed for fracture characteristics to generate in-situ fracture intensity at wells, which is subsequently interpolated throughout the model with kriging. Based on the intensity and a set of geometric fracture parameters (constrained by outcrop and core measurements), a 3D stochastic Discrete Fracture Network (DFN) is created. One realization of the DFN is upscaled to a dual-porosity simulation model using a variant of the Oda's method. This method upscales the fracture network to an effective grid-block fracture permeability. To account for fluid transfer from matrix to fracture, a sigma factor is computed using average fracture spacings within the grid block. Matrix porosity is populated in the model by kriging interpolation of well-log-derived values. With the dual-porosity model, CO2 is injected near the crest of the dome (the proposed location) at a rate of 2.6 Mt/year for 50 years, with an injection bottomhole pressure set at 160% hydrostatic pressure. Boundary of the model is open except along one bounding fault assumed sealed. Results of the simulation suggest that provided that fluid pressure buildup is not an issue (simulated pressure buildup near the fault is minor), the Tensleep Formation at Teapot Dome can sustain commercial-scale injection over time

  3. Design and implementation of a CO{sub 2} flood utilizing advanced reservoir characterization and horizontal injection wells in a shallow shelf carbonate approaching waterflood depletion

    SciTech Connect

    1996-08-09

    The first objective is to utilize reservoir characterization and advanced technologies to optimize the design of a carbon dioxide (CO{sub 2}) project for the South Cowden Unit (SCU) located in Ector County, Texas. The SCU is a mature, relatively small, shallow shelf carbonate unit nearing, waterflood depletion. The second objective is to demonstrate the performance and economic viability of the project in the field. This report includes work on the reservoir characterization and project design objective and the demonstration project objective.

  4. Design and Implementation of a CO2 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells In a Shallow Shelf Carbonate Approaching Waterflood Depletion, Class II

    SciTech Connect

    Wier, Don R. Chimanhusky, John S.; Czirr, Kirk L.; Hallenbeck, Larry; Gerard, Matthew G.; Dollens, Kim B.; Owen, Rex; Gaddis, Maurice; Moshell, M.K.

    2002-11-18

    The purpose of this project was to economically design an optimum carbon dioxide (CO2) flood for a mature waterflood nearing its economic abandonment. The original project utilized advanced reservoir characterization and CO2 horizontal injection wells as the primary methods to redevelop the South Cowden Unit (SCU). The development plans; project implementation and reservoir management techniques were to be transferred to the public domain to assist in preventing premature abandonment of similar fields.

  5. Proceedings of the technical review on advances in geothermal reservoir technology---Research in progress

    SciTech Connect

    Lippmann, M.J.

    1988-09-01

    This proceedings contains 20 technical papers and abstracts describing most of the research activities funded by the Department of Energy (DOE's) Geothermal Reservoir Technology Program, which is under the management of Marshall Reed. The meeting was organized in response to several requests made by geothermal industry representatives who wanted to learn more about technical details of the projects supported by the DOE program. Also, this gives them an opportunity to personally discuss research topics with colleagues in the national laboratories and universities.

  6. Numerical simulations of the Macondo well blowout reveal strong control of oil flow by reservoir permeability and exsolution of gas.

    PubMed

    Oldenburg, Curtis M; Freifeld, Barry M; Pruess, Karsten; Pan, Lehua; Finsterle, Stefan; Moridis, George J

    2012-12-11

    In response to the urgent need for estimates of the oil and gas flow rate from the Macondo well MC252-1 blowout, we assembled a small team and carried out oil and gas flow simulations using the TOUGH2 codes over two weeks in mid-2010. The conceptual model included the oil reservoir and the well with a top boundary condition located at the bottom of the blowout preventer. We developed a fluid properties module (Eoil) applicable to a simple two-phase and two-component oil-gas system. The flow of oil and gas was simulated using T2Well, a coupled reservoir-wellbore flow model, along with iTOUGH2 for sensitivity analysis and uncertainty quantification. The most likely oil flow rate estimated from simulations based on the data available in early June 2010 was about 100,000 bbl/d (barrels per day) with a corresponding gas flow rate of 300 MMscf/d (million standard cubic feet per day) assuming the well was open to the reservoir over 30 m of thickness. A Monte Carlo analysis of reservoir and fluid properties provided an uncertainty distribution with a long tail extending down to 60,000 bbl/d of oil (170 MMscf/d of gas). The flow rate was most strongly sensitive to reservoir permeability. Conceptual model uncertainty was also significant, particularly with regard to the length of the well that was open to the reservoir. For fluid-entry interval length of 1.5 m, the oil flow rate was about 56,000 bbl/d. Sensitivity analyses showed that flow rate was not very sensitive to pressure-drop across the blowout preventer due to the interplay between gas exsolution and oil flow rate.

  7. Numerical simulations of the Macondo well blowout reveal strong control of oil flow by reservoir permeability and exsolution of gas

    PubMed Central

    Oldenburg, Curtis M.; Freifeld, Barry M.; Pruess, Karsten; Pan, Lehua; Finsterle, Stefan; Moridis, George J.

    2012-01-01

    In response to the urgent need for estimates of the oil and gas flow rate from the Macondo well MC252-1 blowout, we assembled a small team and carried out oil and gas flow simulations using the TOUGH2 codes over two weeks in mid-2010. The conceptual model included the oil reservoir and the well with a top boundary condition located at the bottom of the blowout preventer. We developed a fluid properties module (Eoil) applicable to a simple two-phase and two-component oil-gas system. The flow of oil and gas was simulated using T2Well, a coupled reservoir-wellbore flow model, along with iTOUGH2 for sensitivity analysis and uncertainty quantification. The most likely oil flow rate estimated from simulations based on the data available in early June 2010 was about 100,000 bbl/d (barrels per day) with a corresponding gas flow rate of 300 MMscf/d (million standard cubic feet per day) assuming the well was open to the reservoir over 30 m of thickness. A Monte Carlo analysis of reservoir and fluid properties provided an uncertainty distribution with a long tail extending down to 60,000 bbl/d of oil (170 MMscf/d of gas). The flow rate was most strongly sensitive to reservoir permeability. Conceptual model uncertainty was also significant, particularly with regard to the length of the well that was open to the reservoir. For fluid-entry interval length of 1.5 m, the oil flow rate was about 56,000 bbl/d. Sensitivity analyses showed that flow rate was not very sensitive to pressure-drop across the blowout preventer due to the interplay between gas exsolution and oil flow rate. PMID:21730177

  8. Numerical Simulations and Tracer Studies as a Tool to Support Water Circulation Modeling in Breeding Reservoirs

    NASA Astrophysics Data System (ADS)

    Zima, Piotr

    2014-12-01

    The article presents a proposal of a method for computer-aided design and analysis of breeding reservoirs in zoos and aquariums. The method applied involves the use of computer simulations of water circulation in breeding pools. A mathematical model of a pool was developed, and a tracer study was carried out. A simplified model of two-dimensional flow in the form of a biharmonic equation for the stream function (converted into components of the velocity vector) was adopted to describe the flow field. This equation, supplemented by appropriate boundary conditions, was solved numerically by the finite difference method. Next, a tracer migration equation was solved, which was a two-dimensional advection-dispersion equation describing the unsteady transport of a non-active, permanent solute. In order to obtain a proper solution, a tracer study (with rhodamine WT as a tracer) was conducted in situ. The results of these measurements were compared with numerical solutions obtained. The results of numerical simulations made it possible to reconstruct water circulation in the breading pool and to identify still water zones, where water circulation was impeded.

  9. Development of a compositional model fully coupled with geomechanics and its application to tight oil reservoir simulation

    NASA Astrophysics Data System (ADS)

    Xiong, Yi

    Tight oil reservoirs have received great attention in recent years as unconventional and promising petroleum resources; they are reshaping the U.S. crude oil market due to their substantial production. However, fluid flow behaviors in tight oil reservoirs are not well studied or understood due to the complexities in the physics involved. Specific characteristics of tight oil reservoirs, such as nano-pore scale and strong stress-dependency result in complex porous medium fluid flow behaviors. Recent field observations and laboratory experiments indicate that large effects of pore confinement and rock compaction have non-negligible impacts on the production performance of tight oil reservoirs. On the other hand, there are approximations or limitations for modeling tight oil reservoirs under the effects of pore confinement and rock compaction with current reservoir simulation techniques. Thus this dissertation aims to develop a compositional model coupled with geomechanics with capabilities to model and understand the complex fluid flow behaviors of multiphase, multi-component fluids in tight oil reservoirs. MSFLOW_COM (Multiphase Subsurface FLOW COMpositional model) has been developed with the capability to model the effects of pore confinement and rock compaction for multiphase fluid flow in tight oil reservoirs. The pore confinement effect is represented by the effect of capillary pressure on vapor-liquid equilibrium (VLE), and modeled with the VLE calculation method in MSFLOW_COM. The fully coupled geomechanical model is developed from the linear elastic theory for a poro-elastic system and formulated in terms of the mean stress. Rock compaction is then described using stress-dependent rock properties, especially stress-dependent permeability. Thus MSFLOW_COM has the capabilities to model the complex fluid flow behaviors of tight oil reservoirs, fully coupled with geomechanics. In addition, MSFLOW_COM is validated against laboratory experimental data, analytical

  10. Simulation of reservoir storage and firm yields of three surface-water supplies, Ipswich River Basin, Massachusetts

    USGS Publications Warehouse

    Zarriello, Phillip J.

    2002-01-01

    A Hydrologic Simulation Program FORTRAN (HSPF) model previously developed for the Ipswich River Basin was modified to simulate the hydrologic response and firm yields of the water-supply systems of Lynn, Peabody, and Salem-Beverly. The updated model, expanded to include a portion of the Saugus River Basin that supplies water to Lynn, simulated reservoir system storage over a 35-year period (1961-95) under permitted withdrawals and hypothetical restrictions designed to maintain seasonally varied streamflow for aquatic habitat. A firm yield was calculated for each system and each withdrawal restriction by altering demands until the system failed. This is considered the maximum withdrawal rate that satisfies demands, but depletes reservoir storage. Simulations indicate that, under the permitted withdrawals, Lynn and Salem-Beverly were able to meet demands and generally have their reservoir system recover to full capacity during most years; reservoir storage averaged 83 and 82 percent of capacity, respectively. The firm yields for the Lynn and Salem-Beverly systems were 11.4 and 12.2 million gallons per day (Mgal/d), respectively, or 8 and 21 percent more than average 1998-2000 demands, respectively. Under permitted withdrawals and average 1998-2000 demands, the Peabody system failed in all years; thus Peabody purchased water to meet demands. The firm yield for the Peabody system is 3.70 Mgal/d, or 37 percent less than the average 1998-2000 demand. Simulations that limit withdrawals to levels recommended by the Ipswich River Fisheries Restoration Task Group (IRFRTG) indicate that under average 1998-2000 demands, reservoir storage was depleted in each of the three systems. Reservoir storage under average 1998-2000 demands and IRFRTG-recommended streamflow requirements averaged 15, 22, and 71 percent of capacity for the Lynn, Peabody, Salem-Beverly systems, respectively. The firm-yield estimates under the IRFRTG-recommended streamflow requirements were 6.02, 1.94, and 7

  11. Geological and Petrophysical Characterization of the Ferron Sandstone for 3-D Simulation of a Fluvial-Deltaic Reservoir

    SciTech Connect

    M. Lee Allison

    1997-03-01

    The objective of this project is to develop a comprehensive, interdisciplinary, and quantitative characterization of a fluvial-deltaic reser v oir which will allow realistic inter-well and reservoir-scale modeling to be constructed for improved oil-field development in similiar reservoirs world-wide. The geological and petrophysical properties of the Cretaceous Ferron Sandstone in east-central Utah will be quantitatively determined . Both new and existing data will be integrated into a three-dimensional representation of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations . Transfer of the project results to the petroleum industry is an integral component of the project. Four activities continued this quarter as part of the geological and petrophysical characterization of the fluvial-deltaic Ferron Sandstone in the Ivie Creek case-study area: (1) geostatistics, (2) field description of clinoform bounding surfaces, (3) reservoir modeling, and (4) technology transfer.

  12. Implications of advanced collision operators for gyrokinetic simulation

    NASA Astrophysics Data System (ADS)

    Belli, E. A.; Candy, J.

    2017-04-01

    In this work, we explore both the potential improvements and pitfalls that arise when using advanced collision models in gyrokinetic simulations of plasma microinstabilities. Comparisons are made between the simple-but-standard electron Lorentz operator and specific variations of the advanced Sugama operator. The Sugama operator describes multi-species collisions including energy diffusion, momentum and energy conservation terms, and is valid for arbitrary wavelength. We report scans over collision frequency for both low and high {k}θ {ρ }s modes, with relevance for multiscale simulations that couple ion and electron scale physics. The influence of the ion–ion collision terms—not retained in the electron Lorentz model—on the damping of zonal flows is also explored. Collision frequency scans for linear and nonlinear simulations of ion-temperature-gradient instabilities including impurity ions are presented. Finally, implications for modeling turbulence in the highly collisional edge are discussed.

  13. Gasification CFD Modeling for Advanced Power Plant Simulations

    SciTech Connect

    Zitney, S.E.; Guenther, C.P.

    2005-09-01

    In this paper we have described recent progress on developing CFD models for two commercial-scale gasifiers, including a two-stage, coal slurry-fed, oxygen-blown, pressurized, entrained-flow gasifier and a scaled-up design of the PSDF transport gasifier. Also highlighted was NETL’s Advanced Process Engineering Co-Simulator for coupling high-fidelity equipment models with process simulation for the design, analysis, and optimization of advanced power plants. Using APECS, we have coupled the entrained-flow gasifier CFD model into a coal-fired, gasification-based FutureGen power and hydrogen production plant. The results for the FutureGen co-simulation illustrate how the APECS technology can help engineers better understand and optimize gasifier fluid dynamics and related phenomena that impact overall power plant performance.

  14. Simulation of Sediment Transport Caused by Landslide at Nanhua Reservoir Watershed in Southern Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Hsi; Huang, Cong-Gi; Lin, Huan-Hsuan

    2016-04-01

    As a result of heavy rainfall, steep topography, young and weak geological formations, earthquakes, loose soils, slope land cultivation and other human disturbance, much area in Taiwan are prone to the occurrence of disastrous mass movements such as landslides and sediment disasters. During recent years, the extreme rainfall events brought huge amounts of rainfall and triggered severe changes in watershed environments. Typhoon Morakot in August 2009 caused severe landslides, debris flow, flooding and sediment disasters induced by record-break rainfall. The maximum rainfall of mountain area in Chiayi, Tainan, Kaohsiung and Pingtung County were over 2,900 mm. The study area is located at Nanhua reservoir watershed in southern Taiwan. The numerical model (HEC-RAS 4.1 and FLO-2D) will be used to simulate the sediment transport caused by landslide and the study will find out the separating location of erosion and deposition in the river, the danger area of riverbank, and the safety of the river terrace village under the return period of 50-year, 100-year and 200-year (such as Typhoon Morakot). The results of this study can provide for the disaster risk management of administrative decisions to lessen the impacts of natural hazards and may also be useful for time-space variation of sediment disasters caused by Climate Change.

  15. Advanced reservoir characterization and evaluation of CO{sub 2} gravity drainage in the naturally fractured Spraberry Trend Area. Annual report, September 1, 1995--August 31, 1996

    SciTech Connect

    Schechter, D.S.

    1997-12-01

    The overall goal of this project is to assess the economic feasibility of CO{sub 2} flooding in the naturally fractured Spraberry Trend Area in West Texas. This objective is being accomplished by conducting research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interaction in the reservoirs, (3) analytical and numerical simulation of Spraberry reservoirs, and, (4) experimental investigations on CO{sub 2} gravity drainage in Spraberry whole cores. This report provides results of the first year of the five-year project for each of the four areas.

  16. Increasing heavy oil reserves in the Wilmington Oil Field through advanced reservoir characterization and thermal production technologies. Annual report, March 30, 1995--March 31, 1996

    SciTech Connect

    1997-09-01

    The objective of this project is to increase heavy oil reserves in a portion of the Wilmington Oil Field, near Long Beach, California, by implementing advanced reservoir characterization and thermal production technologies. Based on the knowledge and experience gained with this project, these technologies are intended to be extended to other sections of the Wilmington Oil Field, and, through technology transfer, will be available to increase heavy oil reserves in other slope and basin clastic (SBC) reservoirs. The project involves implementing thermal recovery in the southern half of the Fault Block II-A Tar zone. The existing steamflood in Fault Block II-A has been relatively inefficient due to several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery efficiency and reduce operating costs.

  17. Lessons Learned From Dynamic Simulations of Advanced Fuel Cycles

    SciTech Connect

    Steven J. Piet; Brent W. Dixon; Jacob J. Jacobson; Gretchen E. Matthern; David E. Shropshire

    2009-04-01

    Years of performing dynamic simulations of advanced nuclear fuel cycle options provide insights into how they could work and how one might transition from the current once-through fuel cycle. This paper summarizes those insights from the context of the 2005 objectives and goals of the Advanced Fuel Cycle Initiative (AFCI). Our intent is not to compare options, assess options versus those objectives and goals, nor recommend changes to those objectives and goals. Rather, we organize what we have learned from dynamic simulations in the context of the AFCI objectives for waste management, proliferation resistance, uranium utilization, and economics. Thus, we do not merely describe “lessons learned” from dynamic simulations but attempt to answer the “so what” question by using this context. The analyses have been performed using the Verifiable Fuel Cycle Simulation of Nuclear Fuel Cycle Dynamics (VISION). We observe that the 2005 objectives and goals do not address many of the inherently dynamic discriminators among advanced fuel cycle options and transitions thereof.

  18. Advanced reservoir characterization and evaluation of CO{sub 2} gravity drainage in the naturally fractured Spraberry reservoir. Quarterly technical report, April 1, 1996--June 30, 1996

    SciTech Connect

    Schechter, D.

    1996-11-01

    Progress has been made in the area of laboratory analysis of Spraberry oil/brine/rock interactions during this quarter. Water imbibition experiments were conducted under ambient conditions, using cleaned Spraberry cores, synthetic Spraberry reservoir brine, and Spraberry oil. It has been concluded that the Spraberry reservoir cores are weakly water-wet. The average Amott wettability index to water is about 0.55. The average oil recovery due to spontaneous water imbibition is about 50% of original oil in place.

  19. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs, short-term gas, and water transport

    PubMed Central

    Reagan, Matthew T; Moridis, George J; Keen, Noel D; Johnson, Jeffrey N

    2015-01-01

    Hydrocarbon production from unconventional resources and the use of reservoir stimulation techniques, such as hydraulic fracturing, has grown explosively over the last decade. However, concerns have arisen that reservoir stimulation creates significant environmental threats through the creation of permeable pathways connecting the stimulated reservoir with shallower freshwater aquifers, thus resulting in the contamination of potable groundwater by escaping hydrocarbons or other reservoir fluids. This study investigates, by numerical simulation, gas and water transport between a shallow tight-gas reservoir and a shallower overlying freshwater aquifer following hydraulic fracturing operations, if such a connecting pathway has been created. We focus on two general failure scenarios: (1) communication between the reservoir and aquifer via a connecting fracture or fault and (2) communication via a deteriorated, preexisting nearby well. We conclude that the key factors driving short-term transport of gas include high permeability for the connecting pathway and the overall volume of the connecting feature. Production from the reservoir is likely to mitigate release through reduction of available free gas and lowering of reservoir pressure, and not producing may increase the potential for release. We also find that hydrostatic tight-gas reservoirs are unlikely to act as a continuing source of migrating gas, as gas contained within the newly formed hydraulic fracture is the primary source for potential contamination. Such incidents of gas escape are likely to be limited in duration and scope for hydrostatic reservoirs. Reliable field and laboratory data must be acquired to constrain the factors and determine the likelihood of these outcomes. Key Points: Short-term leakage fractured reservoirs requires high-permeability pathways Production strategy affects the likelihood and magnitude of gas release Gas release is likely short-term, without additional driving forces PMID

  20. Integration of Advanced Simulation and Visualization for Manufacturing Process Optimization

    NASA Astrophysics Data System (ADS)

    Zhou, Chenn; Wang, Jichao; Tang, Guangwu; Moreland, John; Fu, Dong; Wu, Bin

    2016-05-01

    The integration of simulation and visualization can provide a cost-effective tool for process optimization, design, scale-up and troubleshooting. The Center for Innovation through Visualization and Simulation (CIVS) at Purdue University Northwest has developed methodologies for such integration with applications in various manufacturing processes. The methodologies have proven to be useful for virtual design and virtual training to provide solutions addressing issues on energy, environment, productivity, safety, and quality in steel and other industries. In collaboration with its industrial partnerships, CIVS has provided solutions to companies, saving over US38 million. CIVS is currently working with the steel industry to establish an industry-led Steel Manufacturing Simulation and Visualization Consortium through the support of National Institute of Standards and Technology AMTech Planning Grant. The consortium focuses on supporting development and implementation of simulation and visualization technologies to advance steel manufacturing across the value chain.

  1. Advanced Simulation and Computing FY17 Implementation Plan, Version 0

    SciTech Connect

    McCoy, Michel; Archer, Bill; Hendrickson, Bruce; Wade, Doug; Hoang, Thuc

    2016-08-29

    The Stockpile Stewardship Program (SSP) is an integrated technical program for maintaining the safety, surety, and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational capabilities to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resource, including technical staff, hardware, simulation software, and computer science solutions. ASC is now focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), and quantifying critical margins and uncertainties. Resolving each issue requires increasingly difficult analyses because the aging process has progressively moved the stockpile further away from the original test base. Where possible, the program also enables the use of high performance computing (HPC) and simulation tools to address broader national security needs, such as foreign nuclear weapon assessments and counter nuclear terrorism.

  2. Simulated monthly hydrologic data and estimated flood characteristics for Cherry Creek at a proposed reservoir site near Terry, Montana

    USGS Publications Warehouse

    Parrett, Charles; Johnson, D.R.

    1995-01-01

    A monthly hydrologic budget for water years 1937- 92 was developed for the proposed Cherry Creek Reservoir (maximum volume about 14,100 acre-feet). Monthly suspended-sediment loads and dissolved- solids concentrations in the reservoir and flood hydrographs and volumes having recurrence intervals of 25-, 50-, and 100-years were estimated. Monthly streamflow and precipitation were estimated using a mixed-station, record-extension procedure. Monthly suspended-sediment and dissolved-solids concentrations in the reservoir were estimated from regression relations between logarithms of concen- tration and streamflow. The simulation showed that flows that Cherry Creek generally were adequate to maintain the reservoir elevation above the minimum operating level for a seepage loss of 0 cubic ft per square. With a seepage loss rate of 3 cubic ft per square, diversions from the Yellowstone River were required for about on third of the months. Cumulative sediment deposition during the 56-year simulation period was about 138 acre-ft from Cherry Creek alone and was about 149 acre-ft when additional water was imported from the Yellowstone River. The concentration of dissolved solids in the reservoir reached a maximum value of about 2,540 mg/L for a seepage loss of 0 cubic ft per square. For a seepage loss of 3 cubic ft per square, water was imported from the Yellowstone River and the maximum concentration of dissolved solids was about 1,200 mg/L. Volumes for flood discharges were estimated from synthetic 24-hour duration storms that were used in a rainfall-runoff model (HEC-1).

  3. Application of reservoir characterization and advanced technology to improve recovery and economics in a lower quality shallow shelf carbonate reservoir. Quarterly progress report, March 1, 1995--June 30, 1995

    SciTech Connect

    Taylor, A.R.

    1995-09-01

    West Welch Unit is one of four large waterflood units in the Welch Field located in the Northwestern portion of Dawson County, Texas. The Welch Field was discovered in the early 1940`s and produces oil under a solution gas drive mechanism from the San Andres formation at approximately 4800 ft. The field has been under waterflood for 30 years and a significant portion has been infilled drilled on 20-ac density. A 1982--86 pilot CO{sub 2} injection project in the offsetting South Welch Unit yielded positive results.The recent installation of a Co{sub 2} pipeline near the field allowed the phased development of a miscible CO{sub 2} injection project at the South Welch Unit. The reservoir quality is poorer at the West Welch Unit because of its relative location of sea level during deposition. Table I compares reservoir parameters between the two units and shows their ranking in relation to all SSC reservoirs listed in the TORIS database. Because of the proximity of a CO{sub 2} source and the CO{sub 2} operating experience that would be available from the South Welch Unit, West Welch Unit was an ideal location for demonstrating methods for enhancing economics of IOR projects in lower quality SSC reservoirs. This Class 2 project concentrates on the efficient design of a miscible CO{sub 2} project based on detailed reservoir characterization from advanced petrophysics, 3-D seismic interpretations and cross wellbore tomography interpretations.

  4. Requirements for advanced simulation of nuclear reactor and chemicalseparation plants.

    SciTech Connect

    Palmiotti, G.; Cahalan, J.; Pfeiffer, P.; Sofu, T.; Taiwo, T.; Wei,T.; Yacout, A.; Yang, W.; Siegel, A.; Insepov, Z.; Anitescu, M.; Hovland,P.; Pereira, C.; Regalbuto, M.; Copple, J.; Willamson, M.

    2006-12-11

    This report presents requirements for advanced simulation of nuclear reactor and chemical processing plants that are of interest to the Global Nuclear Energy Partnership (GNEP) initiative. Justification for advanced simulation and some examples of grand challenges that will benefit from it are provided. An integrated software tool that has its main components, whenever possible based on first principles, is proposed as possible future approach for dealing with the complex problems linked to the simulation of nuclear reactor and chemical processing plants. The main benefits that are associated with a better integrated simulation have been identified as: a reduction of design margins, a decrease of the number of experiments in support of the design process, a shortening of the developmental design cycle, and a better understanding of the physical phenomena and the related underlying fundamental processes. For each component of the proposed integrated software tool, background information, functional requirements, current tools and approach, and proposed future approaches have been provided. Whenever possible, current uncertainties have been quoted and existing limitations have been presented. Desired target accuracies with associated benefits to the different aspects of the nuclear reactor and chemical processing plants were also given. In many cases the possible gains associated with a better simulation have been identified, quantified, and translated into economical benefits.

  5. Hybrid and electric advanced vehicle systems (heavy) simulation

    NASA Technical Reports Server (NTRS)

    Hammond, R. A.; Mcgehee, R. K.

    1981-01-01

    A computer program to simulate hybrid and electric advanced vehicle systems (HEAVY) is described. It is intended for use early in the design process: concept evaluation, alternative comparison, preliminary design, control and management strategy development, component sizing, and sensitivity studies. It allows the designer to quickly, conveniently, and economically predict the performance of a proposed drive train. The user defines the system to be simulated using a library of predefined component models that may be connected to represent a wide variety of propulsion systems. The development of three models are discussed as examples.

  6. Preface to advances in numerical simulation of plasmas

    NASA Astrophysics Data System (ADS)

    Parker, Scott E.; Chacon, Luis

    2016-10-01

    This Journal of Computational Physics Special Issue, titled "Advances in Numerical Simulation of Plasmas," presents a snapshot of the international state of the art in the field of computational plasma physics. The articles herein are a subset of the topics presented as invited talks at the 24th International Conference on the Numerical Simulation of Plasmas (ICNSP), August 12-14, 2015 in Golden, Colorado. The choice of papers was highly selective. The ICNSP is held every other year and is the premier scientific meeting in the field of computational plasma physics.

  7. Advances in Simulation of Wave Interaction with Extended MHD Phenomena

    SciTech Connect

    Batchelor, Donald B; Abla, Gheni; D'Azevedo, Ed F; Bateman, Glenn; Bernholdt, David E; Berry, Lee A; Bonoli, P.; Bramley, R; Breslau, Joshua; Chance, M.; Chen, J.; Choi, M.; Elwasif, Wael R; Foley, S.; Fu, GuoYong; Harvey, R. W.; Jaeger, Erwin Frederick; Jardin, S. C.; Jenkins, T; Keyes, David E; Klasky, Scott A; Kruger, Scott; Ku, Long-Poe; Lynch, Vickie E; McCune, Douglas; Ramos, J.; Schissel, D.; Schnack,; Wright, J.

    2009-01-01

    The Integrated Plasma Simulator (IPS) provides a framework within which some of the most advanced, massively-parallel fusion modeling codes can be interoperated to provide a detailed picture of the multi-physics processes involved in fusion experiments. The presentation will cover four topics: 1) recent improvements to the IPS, 2) application of the IPS for very high resolution simulations of ITER scenarios, 3) studies of resistive and ideal MHD stability in tokamk discharges using IPS facilities, and 4) the application of RF power in the electron cyclotron range of frequencies to control slowly growing MHD modes in tokamaks and initial evaluations of optimized location for RF power deposition.

  8. Advances in Simulation of Wave Interactions with Extended MHD Phenomena

    SciTech Connect

    Batchelor, Donald B; D'Azevedo, Eduardo; Bateman, Glenn; Bernholdt, David E; Bonoli, P.; Bramley, Randall B; Breslau, Joshua; Elwasif, Wael R; Foley, S.; Jaeger, Erwin Frederick; Jardin, S. C.; Klasky, Scott A; Kruger, Scott E; Ku, Long-Poe; McCune, Douglas; Ramos, J.; Schissel, David P; Schnack, Dalton D

    2009-01-01

    The Integrated Plasma Simulator (IPS) provides a framework within which some of the most advanced, massively-parallel fusion modeling codes can be interoperated to provide a detailed picture of the multi-physics processes involved in fusion experiments. The presentation will cover four topics: (1) recent improvements to the IPS, (2) application of the IPS for very high resolution simulations of ITER scenarios, (3) studies of resistive and ideal MHD stability in tokamak discharges using IPS facilities, and (4) the application of RF power in the electron cyclotron range of frequencies to control slowly growing MHD modes in tokamaks and initial evaluations of optimized location for RF power deposition.

  9. Advanced oil recovery technologies for improved recovery from Slope Basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report (sixth quarter), January 1, 1997--March 31, 1997

    SciTech Connect

    1997-04-30

    The overall objective of this project is to demonstrate that an advanced development drilling and pressure maintenance program based on advanced reservoir management methods can significantly improve oil recovery. The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced methods. A key goal is to transfer advanced methodologies to oil and gas producers in the Permian Basin and elsewhere, and throughout the U.S. oil and gas industry.

  10. ADVANCED CHARACTERIZATION OF FRACTURED RESERVOIRS IN CARBONATE ROCKS: THE MICHIGAN BASIN

    SciTech Connect

    James R. Wood; William B. Harrison

    2002-12-01

    The purpose of the study was to collect and analyze existing data on the Michigan Basin for fracture patterns on scales ranging form thin section to basin. The data acquisition phase has been successfully concluded with the compilation of several large digital databases containing nearly all the existing information on formation tops, lithology and hydrocarbon production over the entire Michigan Basin. These databases represent the cumulative result of over 80 years of drilling and exploration. Plotting and examination of these data show that contrary to most depictions, the Michigan Basin is in fact extensively faulted and fractured, particularly in the central portion of the basin. This is in contrast to most of the existing work on the Michigan Basin, which tends to show relatively simple structure with few or minor faults. It also appears that these fractures and faults control the Paleozoic sediment deposition, the subsequent hydrocarbon traps and very likely the regional dolomitization patterns. Recent work has revealed that a detailed fracture pattern exists in the interior of the Central Michigan Basin, which is related to the mid-continent gravity high. The inference is that early Precambrian, ({approx}1 Ga) rifting events presumed by many to account for the gravity anomaly subsequently controlled Paleozoic sedimentation and later hydrocarbon accumulation. There is a systematic relationship between the faults and a number of gas and oil reservoirs: major hydrocarbon accumulations consistently occur in small anticlines on the upthrown side of the faults. The main tools used in this study to map the fault/fracture patterns are detailed, close-interval (CI = 10 feet) contouring of the formation top picks accompanied by a new way of visualizing the data using a special color spectrum to bring out the third dimension. In addition, recent improvements in visualization and contouring software were instrumental in the study. Dolomitization is common in the

  11. A reduced-order based CE-QUAL-W2 model for simulation of nitrate concentration in dam reservoirs

    NASA Astrophysics Data System (ADS)

    Noori, Roohollah; Yeh, Hund-Der; Ashrafi, Khosro; Rezazadeh, Najmeh; Bateni, Sayed M.; Karbassi, Abdulreza; Kachoosangi, Fatemeh Torabi; Moazami, Saber

    2015-11-01

    When the number of computational grids increases, water quality simulation complexities arise. Therefore, using a reduced order framework to express the variations of the objective parameter may facilitate the simulation task and also the interpretation of computational results. In this regard, a new reduced-order approach was proposed to link a water quality simulator model (CE-QUAL-W2, W2) with a data reduction technique (proper orthogonal decomposition, POD). The W2 model simulated spatio-temporal variations of nitrate in the Karkheh Reservoir, Iran. Thereafter, the POD model reduced the dimensions of simulated nitrate in the computational grids. The performance of the developed reduced-order model (ROM) results was evaluated through the comparison of the regenerated nitrate data by the model, and the simulated ones by W2. Findings indicated that the first four modes among 1825 computed ones by ROM conserved approximately over 91% of the nitrate variations. It means that the ROM was capable of showing the spatio-temporal variations of nitrate in the reservoir using the first few modes. Finally, confirmation of ROM indicated that the error of order of magnitude was less than 0.001, for nitrate ROM to regenerate nitrate data using 100 basis functions.

  12. Physical properties of rocks and aqueous fluids at conditions simulating near- and supercritical reservoirs

    NASA Astrophysics Data System (ADS)

    Kummerow, Juliane; Raab, Siegfried

    2016-04-01

    The growing interest in exploiting supercritical geothermal reservoirs calls for a thorough identification and understanding of physico-chemical processes occuring in geological settings with a high heat flow. In reservoir engineering, electrical sounding methods are common geophysical exploration and monitoring tools. However, a realistic interpretation of field measurements is based on the knowledge of both, the physical properties of the rock and those of the interacting fluid at defined temperature and pressure conditions. Thus, laboratory studies at simulated in-situ conditions provide a link between the field data and the material properties in the depth. The physico-chemical properties of fluids change dramatically above the critical point, which is for pure water 374.21 °C and 221.2 bar. In supercritical fluids mass transfer and diffusion-controlled chemical reactions are enhanced and cause mineral alterations. Also, ion mobility and ion concentration are affected by the change of physical state. All this cause changes in the electrical resistivity of supercritical fluids and may have considerable effects on the porosity and hydraulic properties of the rocks they are in contact with. While there are some datasets available for physical and chemical properties of water and single component salt solutions above their critical points, there exist nearly no data for electrical properties of mixed brines, representing the composition of natural geothermal fluids. Also, the impact of fluid-rock interactions on the electrical properties of multicomponent fluids in a supercritical region is scarcely investigated. For a better understanding of fluid-driven processes in a near- and supercritical geological environment, in the framework of the EU-funded FP7 program IMAGE we have measured (1) the electrical resistivity of geothermal fluids and (2) physical properties of fluid saturated rock samples at simulated in-situ conditions. The permeability and electrical

  13. Advanced reservoir characterization and evaluation of CO2 gravity drainage in the naturally fractured Spraberry Trend Area. Annual report, September 1, 1996--August 31, 1997

    SciTech Connect

    McDonald, P.

    1998-06-01

    The objective of the Spraberry CO{sub 2} pilot project is to determine the technical and economic feasibility of continuous CO{sub 2} injection in the naturally fractured reservoirs of the Spraberry Trend. In order to describe, understand, and model CO{sub 2} flooding in the naturally fractured Spraberry reservoirs, characterization of the fracture system is a must. Additional reservoir characterization was based on horizontal coring in the second year of the project. In addition to characterization of natural fractures, horizontal coring has confirmed a previously developed rock model for describing the Spraberry Trend shaly sands. A better method for identifying Spraberry pay zones has been verified. The authors have completed the reservoir characterization, which includes matrix description and detection (from core-log integration) and fracture characterization. This information is found in Section 1. The authors have completed extensive imbibition experiments that strongly indicate that the weakly water-wet behavior of the reservoir rock may be responsible for poor waterflood response observed in many Spraberry fields. The authors have also made significant progress in analytical and numerical simulation of performance in Spraberry reservoirs as seen in Section 3. They have completed several suites of CO{sub 2} gravity drainage in Spraberry and Berea whole cores at reservoir conditions and reported in Section 4. The results of these experiments have been useful in developing a model for free-fall gravity drainage and have validated the premise that CO{sub 2} will recover oil from tight, unconfined Spraberry matrix.

  14. An improved multilevel Monte Carlo method for estimating probability distribution functions in stochastic oil reservoir simulations

    DOE PAGES

    Lu, Dan; Zhang, Guannan; Webster, Clayton G.; ...

    2016-12-30

    In this paper, we develop an improved multilevel Monte Carlo (MLMC) method for estimating cumulative distribution functions (CDFs) of a quantity of interest, coming from numerical approximation of large-scale stochastic subsurface simulations. Compared with Monte Carlo (MC) methods, that require a significantly large number of high-fidelity model executions to achieve a prescribed accuracy when computing statistical expectations, MLMC methods were originally proposed to significantly reduce the computational cost with the use of multifidelity approximations. The improved performance of the MLMC methods depends strongly on the decay of the variance of the integrand as the level increases. However, the main challengemore » in estimating CDFs is that the integrand is a discontinuous indicator function whose variance decays slowly. To address this difficult task, we approximate the integrand using a smoothing function that accelerates the decay of the variance. In addition, we design a novel a posteriori optimization strategy to calibrate the smoothing function, so as to balance the computational gain and the approximation error. The combined proposed techniques are integrated into a very general and practical algorithm that can be applied to a wide range of subsurface problems for high-dimensional uncertainty quantification, such as a fine-grid oil reservoir model considered in this effort. The numerical results reveal that with the use of the calibrated smoothing function, the improved MLMC technique significantly reduces the computational complexity compared to the standard MC approach. Finally, we discuss several factors that affect the performance of the MLMC method and provide guidance for effective and efficient usage in practice.« less

  15. An improved multilevel Monte Carlo method for estimating probability distribution functions in stochastic oil reservoir simulations

    SciTech Connect

    Lu, Dan; Zhang, Guannan; Webster, Clayton G.; Barbier, Charlotte N.

    2016-12-30

    In this paper, we develop an improved multilevel Monte Carlo (MLMC) method for estimating cumulative distribution functions (CDFs) of a quantity of interest, coming from numerical approximation of large-scale stochastic subsurface simulations. Compared with Monte Carlo (MC) methods, that require a significantly large number of high-fidelity model executions to achieve a prescribed accuracy when computing statistical expectations, MLMC methods were originally proposed to significantly reduce the computational cost with the use of multifidelity approximations. The improved performance of the MLMC methods depends strongly on the decay of the variance of the integrand as the level increases. However, the main challenge in estimating CDFs is that the integrand is a discontinuous indicator function whose variance decays slowly. To address this difficult task, we approximate the integrand using a smoothing function that accelerates the decay of the variance. In addition, we design a novel a posteriori optimization strategy to calibrate the smoothing function, so as to balance the computational gain and the approximation error. The combined proposed techniques are integrated into a very general and practical algorithm that can be applied to a wide range of subsurface problems for high-dimensional uncertainty quantification, such as a fine-grid oil reservoir model considered in this effort. The numerical results reveal that with the use of the calibrated smoothing function, the improved MLMC technique significantly reduces the computational complexity compared to the standard MC approach. Finally, we discuss several factors that affect the performance of the MLMC method and provide guidance for effective and efficient usage in practice.

  16. The Consortium for Advanced Simulation of Light Water Reactors

    SciTech Connect

    Ronaldo Szilard; Hongbin Zhang; Doug Kothe; Paul Turinsky

    2011-10-01

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) is a DOE Energy Innovation Hub for modeling and simulation of nuclear reactors. It brings together an exceptionally capable team from national labs, industry and academia that will apply existing modeling and simulation capabilities and develop advanced capabilities to create a usable environment for predictive simulation of light water reactors (LWRs). This environment, designated as the Virtual Environment for Reactor Applications (VERA), will incorporate science-based models, state-of-the-art numerical methods, modern computational science and engineering practices, and uncertainty quantification (UQ) and validation against data from operating pressurized water reactors (PWRs). It will couple state-of-the-art fuel performance, neutronics, thermal-hydraulics (T-H), and structural models with existing tools for systems and safety analysis and will be designed for implementation on both today's leadership-class computers and the advanced architecture platforms now under development by the DOE. CASL focuses on a set of challenge problems such as CRUD induced power shift and localized corrosion, grid-to-rod fretting fuel failures, pellet clad interaction, fuel assembly distortion, etc. that encompass the key phenomena limiting the performance of PWRs. It is expected that much of the capability developed will be applicable to other types of reactors. CASL's mission is to develop and apply modeling and simulation capabilities to address three critical areas of performance for nuclear power plants: (1) reduce capital and operating costs per unit energy by enabling power uprates and plant lifetime extension, (2) reduce nuclear waste volume generated by enabling higher fuel burnup, and (3) enhance nuclear safety by enabling high-fidelity predictive capability for component performance.

  17. Unconventional Reservoirs: Ideas to Commercialization

    NASA Astrophysics Data System (ADS)

    Tinker, S. W.

    2015-12-01

    There is no shortage of coal, oil, and natural gas in the world. What are sometimes in short supply are fresh ideas. Scientific innovation combined with continued advances in drilling and completion technology revitalized the natural gas industry in North America by making production from shale economic. Similar advances are now happening in shale oil. The convergence of ideas and technology has created a commercial environment in which unconventional reservoirs could supply natural gas to the North American consumer for 50 years or more. And, although not as far along in terms of resource development, oil from the Eagle Ford and Bakken Shales and the oil sands in Alberta could have a similar impact. Without advanced horizontal drilling, geosteering, staged hydraulic-fracture stimulation, synthetic and natural proppants, evolution of hydraulic fluid chemistry, and high-end monitoring and simulation, many of these plays would not exist. Yet drilling and completion technology cannot stand alone. Also required for success are creative thinking, favorable economics, and a tolerance for risk by operators. Current understanding and completion practices will leave upwards of 80% of oil and natural gas in the shale reservoirs. The opportunity to enhance recovery through advanced reservoir understanding and imaging, as well as through recompletions and infill drilling, is considerable. The path from ideas to commercialization will continue to provide economic results in unconventional reservoirs.

  18. Integration of advanced geoscience and engineering techniques to quantify interwell heterogeneity in reservoir models. Annual report, September 29, 1994--September 30, 1995

    SciTech Connect

    Martin, F.D.; Buckley, J.S.; Weiss, W.W.; Ouenes, A.

    1996-04-01

    The purpose of this project is to conduct a variety of laboratory and field tests and utilize all the geological, geophysical, and engineering information to develop a mathematical model of the reservoir by the use of global optimization methods. This interdisciplinary effort will integrate advanced geoscience and reservoir engineering concepts to quantify interwell reservoir heterogeneity and the dynamics of fluid-rock and fluid-fluid interactions. The reservoir characterization includes geological methods (outcrop and reservoir rock studies), geophysical methods (interwell acoustic techniques), and other reservoir/hydrologic methodologies including analyses of pressure transient data, core studies, and tracer tests. The field testing is being conducted at the Sulimar Queen Unit with related laboratory testing at the PRRC on samples from the Sulimar site and Queen sandstone outcrops. The aim is to (1) characterize and quantify lithologic heterogeneity, (2) mathematically quantify changes in the heterogeneity at various scales, (3) integrate the wide variety of data into a model that is jointly constrained by the interdisciplinary interpretive effort, and (4) help optimize petroleum recovery efficiencies.

  19. Advanced simulation study on bunch gap transient effect

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tetsuya; Akai, Kazunori

    2016-06-01

    Bunch phase shift along the train due to a bunch gap transient is a concern in high-current colliders. In KEKB operation, the measured phase shift along the train agreed well with a simulation and a simple analytical form in most part of the train. However, a rapid phase change was observed at the leading part of the train, which was not predicted by the simulation or by the analytical form. In order to understand the cause of this observation, we have developed an advanced simulation, which treats the transient loading in each of the cavities of the three-cavity system of the accelerator resonantly coupled with energy storage (ARES) instead of the equivalent single cavities used in the previous simulation, operating in the accelerating mode. In this paper, we show that the new simulation reproduces the observation, and clarify that the rapid phase change at the leading part of the train is caused by a transient loading in the three-cavity system of ARES. KEKB is being upgraded to SuperKEKB, which is aiming at 40 times higher luminosity than KEKB. The gap transient in SuperKEKB is investigated using the new simulation, and the result shows that the rapid phase change at the leading part of the train is much larger due to higher beam currents. We will also present measures to mitigate possible luminosity reduction or beam performance deterioration due to the rapid phase change caused by the gap transient.

  20. Simulation Study of CO2-EOR in Tight Oil Reservoirs with Complex Fracture Geometries

    NASA Astrophysics Data System (ADS)

    Zuloaga-Molero, Pavel; Yu, Wei; Xu, Yifei; Sepehrnoori, Kamy; Li, Baozhen

    2016-09-01

    The recent development of tight oil reservoirs has led to an increase in oil production in the past several years due to the progress in horizontal drilling and hydraulic fracturing. However, the expected oil recovery factor from these reservoirs is still very low. CO2-based enhanced oil recovery is a suitable solution to improve the recovery. One challenge of the estimation of the recovery is to properly model complex hydraulic fracture geometries which are often assumed to be planar due to the limitation of local grid refinement approach. More flexible methods like the use of unstructured grids can significantly increase the computational demand. In this study, we introduce an efficient methodology of the embedded discrete fracture model to explicitly model complex fracture geometries. We build a compositional reservoir model to investigate the effects of complex fracture geometries on performance of CO2 Huff-n-Puff and CO2 continuous injection. The results confirm that the appropriate modelling of the fracture geometry plays a critical role in the estimation of the incremental oil recovery. This study also provides new insights into the understanding of the impacts of CO2 molecular diffusion, reservoir permeability, and natural fractures on the performance of CO2-EOR processes in tight oil reservoirs.

  1. Simulation Study of CO2-EOR in Tight Oil Reservoirs with Complex Fracture Geometries

    PubMed Central

    Zuloaga-Molero, Pavel; Yu, Wei; Xu, Yifei; Sepehrnoori, Kamy; Li, Baozhen

    2016-01-01

    The recent development of tight oil reservoirs has led to an increase in oil production in the past several years due to the progress in horizontal drilling and hydraulic fracturing. However, the expected oil recovery factor from these reservoirs is still very low. CO2-based enhanced oil recovery is a suitable solution to improve the recovery. One challenge of the estimation of the recovery is to properly model complex hydraulic fracture geometries which are often assumed to be planar due to the limitation of local grid refinement approach. More flexible methods like the use of unstructured grids can significantly increase the computational demand. In this study, we introduce an efficient methodology of the embedded discrete fracture model to explicitly model complex fracture geometries. We build a compositional reservoir model to investigate the effects of complex fracture geometries on performance of CO2 Huff-n-Puff and CO2 continuous injection. The results confirm that the appropriate modelling of the fracture geometry plays a critical role in the estimation of the incremental oil recovery. This study also provides new insights into the understanding of the impacts of CO2 molecular diffusion, reservoir permeability, and natural fractures on the performance of CO2-EOR processes in tight oil reservoirs. PMID:27628131

  2. Simulation Study of CO2-EOR in Tight Oil Reservoirs with Complex Fracture Geometries.

    PubMed

    Zuloaga-Molero, Pavel; Yu, Wei; Xu, Yifei; Sepehrnoori, Kamy; Li, Baozhen

    2016-09-15

    The recent development of tight oil reservoirs has led to an increase in oil production in the past several years due to the progress in horizontal drilling and hydraulic fracturing. However, the expected oil recovery factor from these reservoirs is still very low. CO2-based enhanced oil recovery is a suitable solution to improve the recovery. One challenge of the estimation of the recovery is to properly model complex hydraulic fracture geometries which are often assumed to be planar due to the limitation of local grid refinement approach. More flexible methods like the use of unstructured grids can significantly increase the computational demand. In this study, we introduce an efficient methodology of the embedded discrete fracture model to explicitly model complex fracture geometries. We build a compositional reservoir model to investigate the effects of complex fracture geometries on performance of CO2 Huff-n-Puff and CO2 continuous injection. The results confirm that the appropriate modelling of the fracture geometry plays a critical role in the estimation of the incremental oil recovery. This study also provides new insights into the understanding of the impacts of CO2 molecular diffusion, reservoir permeability, and natural fractures on the performance of CO2-EOR processes in tight oil reservoirs.

  3. Corticostriatal response selection in sentence production: Insights from neural network simulation with reservoir computing.

    PubMed

    Hinaut, Xavier; Lance, Florian; Droin, Colas; Petit, Maxime; Pointeau, Gregoire; Dominey, Peter Ford

    2015-11-01

    Language production requires selection of the appropriate sentence structure to accommodate the communication goal of the speaker - the transmission of a particular meaning. Here we consider event meanings, in terms of predicates and thematic roles, and we address the problem that a given event can be described from multiple perspectives, which poses a problem of response selection. We present a model of response selection in sentence production that is inspired by the primate corticostriatal system. The model is implemented in the context of reservoir computing where the reservoir - a recurrent neural network with fixed connections - corresponds to cortex, and the readout corresponds to the striatum. We demonstrate robust learning, and generalization properties of the model, and demonstrate its cross linguistic capabilities in English and Japanese. The results contribute to the argument that the corticostriatal system plays a role in response selection in language production, and to the stance that reservoir computing is a valid potential model of corticostriatal processing.

  4. Advanced Virtual Reality Simulations in Aerospace Education and Research

    NASA Astrophysics Data System (ADS)

    Plotnikova, L.; Trivailo, P.

    2002-01-01

    Recent research developments at Aerospace Engineering, RMIT University have demonstrated great potential for using Virtual Reality simulations as a very effective tool in advanced structures and dynamics applications. They have also been extremely successful in teaching of various undergraduate and postgraduate courses for presenting complex concepts in structural and dynamics designs. Characteristic examples are related to the classical orbital mechanics, spacecraft attitude and structural dynamics. Advanced simulations, reflecting current research by the authors, are mainly related to the implementation of various non-linear dynamic techniques, including using Kane's equations to study dynamics of space tethered satellite systems and the Co-rotational Finite Element method to study reconfigurable robotic systems undergoing large rotations and large translations. The current article will describe the numerical implementation of the modern methods of dynamics, and will concentrate on the post-processing stage of the dynamic simulations. Numerous examples of building Virtual Reality stand-alone animations, designed by the authors, will be discussed in detail. These virtual reality examples will include: The striking feature of the developed technology is the use of the standard mathematical packages, like MATLAB, as a post-processing tool to generate Virtual Reality Modelling Language files with brilliant interactive, graphics and audio effects. These stand-alone demonstration files can be run under Netscape or Microsoft Explorer and do not require MATLAB. Use of this technology enables scientists to easily share their results with colleagues using the Internet, contributing to the flexible learning development at schools and Universities.

  5. Simulation studies to evaluate the effect of fracture closure on the performance of naturally fractured reservoirs

    SciTech Connect

    Dauben, D.L.

    1991-07-15

    The study has two principal objectives: (1) To evaluate the effects of fracture closure on the recovery of oil and gas reserves from naturally fractured petroleum or natural gas reservoirs. (2) To evaluate procedures for improving the recovery of these reserves using innovative fluid injection techniques to maintain reservoir pressure and mitigate the impact of fracture closure. The total scope of the study has been subdivided into three main tasks: (1) Baseline studies (non-pressure sensitive fractures); (2)studies with pressure sensitive fractures; and (3) innovative approaches for improving oil recovery.

  6. Reservoir Characterization and Flow Simulation for CO 2-EOR in the Tensleep Formation Using Discrete Fracture Networks, Teapot Dome, Wyoming

    NASA Astrophysics Data System (ADS)

    Kavousi Ghahfarokhi, Payam

    The Tensleep oil reservoir at Teapot Dome, Wyoming, USA, is a naturally fractured tight sandstone reservoir that has been considered for carbon-dioxide enhanced oil recovery (CO2-EOR) and sequestration. CO2-EOR analysis requires a thorough understanding of the Tensleep fracture network. Wireline image logs from the field suggest that the reservoir fracture network is dominated by early formed structural hinge oblique fractures with interconnectivity enhanced by hinge parallel and hinge perpendicular fracture sets. Available post stack 3D seismic data are used to generate a seismic fracture intensity attribute for the reservoir fracture network. The resulting seismic fracture intensity is qualitatively correlated to the field production history. Wells located on hinge-oblique discontinuities are more productive than other wells in the field. We use Oda's method to upscale the fracture permeabilities in the discrete fracture network for use in a dual porosity fluid flow simulator. We analytically show that Oda's method is sensitive to the grid orientation relative to fracture set strike. Results show that the calculated permeability tensors have maximum geometric mean for the non-zero permeability components (kxx,kyy,kzz,kxy) when the dominant fracture set cuts diagonally through the grid cell at 45° relative to the grid cell principal directions (i,j). The geometric mean of the permeability tensor components falls to a minimum when the dominant fracture set is parallel to either grid wall (i or j principal directions). The latter case has off-diagonal permeability terms close to zero. We oriented the Tensleep reservoir grid to N72°W to minimize the off-diagonal permeability terms. The seismic fracture intensity attribute is then used to generate a realization of the reservoir fracture network. Subsequently, fracture properties are upscaled to the reservoir grid scale for a fully compositional flow simulation. We implemented a PVT analysis using CO2 swelling test

  7. Simulated herbivory advances autumn phenology in Acer rubrum.

    PubMed

    Forkner, Rebecca E

    2014-05-01

    To determine the degree to which herbivory contributes to phenotypic variation in autumn phenology for deciduous trees, red maple (Acer rubrum) branches were subjected to low and high levels of simulated herbivory and surveyed at the end of the season to assess abscission and degree of autumn coloration. Overall, branches with simulated herbivory abscised ∼7 % more leaves at each autumn survey date than did control branches within trees. While branches subjected to high levels of damage showed advanced phenology, abscission rates did not differ from those of undamaged branches within trees because heavy damage induced earlier leaf loss on adjacent branch nodes in this treatment. Damaged branches had greater proportions of leaf area colored than undamaged branches within trees, having twice the amount of leaf area colored at the onset of autumn and having ~16 % greater leaf area colored in late October when nearly all leaves were colored. When senescence was scored as the percent of all leaves abscised and/or colored, branches in both treatments reached peak senescence earlier than did control branches within trees: dates of 50 % senescence occurred 2.5 days earlier for low herbivory branches and 9.7 days earlier for branches with high levels of simulated damage. These advanced rates are of the same time length as reported delays in autumn senescence and advances in spring onset due to climate warming. Thus, results suggest that should insect damage increase as a consequence of climate change, it may offset a lengthening of leaf life spans in some tree species.

  8. ADVANCED CHARACTERIZATION OF FRACTURED RESERVOIRS IN CARBONATE ROCKS: THE MICHIGAN BASIN

    SciTech Connect

    James R. Wood; William B. Harrison

    2001-04-01

    Among the accomplishments of this past reporting period are obtaining a complete landgrid for the State of Michigan and the digital processing of the high and medium resolution DEM files. We can now extract lineations from the DEMs automatically using machine algorithms. One tentative result that may be very significant is that we may be seeing manifestations of buried structures in the DEM data. We are looking at a set of extracted lineations in the northern lower peninsula that appear to follow the trend of the pinnacle reefs (Silurian) which had relief approaching 300 feet but are now buried to greater than 3000 feet. We have also extracted the dolomite alteration data from all fields and can show that this is mainly confined to the basin center. It may be related to the paleo-rift suggested by the paleomagnetic and gravity data. As reported last time, the acquisition of a 3D seismic dataset over Stoney Point Field from Marathon Oil Company, is complete and attention is being devoted to incorporating the data into the project database and utilizing it. The surface lineation study is focusing on Stoney Point Field using the high-resolution DEM data and plotting of subsurface formation top data for the main reservoir, the Trenton (Ordovician) Formation. The fault pattern at Stoney Point is well documented by Marathon and we are looking for any manifestations on the surface. The main project database is now about as complete as it will be for this project. The main goals have been met, although the scanning of the paper records will have to continue beyond the scheduled end of the project due to the sheer number of records and the increased donations of data from companies as word spread of the project. One of the unanticipated benefits of the project has been the cooperation of gas and oil companies that are or were active in the Michigan Basin in donating material to the project. Both Michigan Tech and Western Michigan continue to receive donations at an

  9. The Advanced Gamma-ray Imaging System (AGIS): Simulation studies

    SciTech Connect

    Maier, G.; Buckley, J.; Bugaev, V.; Fegan, S.; Funk, S.; Konopelko, A.; Vassiliev, V.V.; /UCLA

    2011-06-14

    The Advanced Gamma-ray Imaging System (AGIS) is a next-generation ground-based gamma-ray observatory being planned in the U.S. The anticipated sensitivity of AGIS is about one order of magnitude better than the sensitivity of current observatories, allowing it to measure gamma-ray emission from a large number of Galactic and extra-galactic sources. We present here results of simulation studies of various possible designs for AGIS. The primary characteristics of the array performance - collecting area, angular resolution, background rejection, and sensitivity - are discussed.

  10. The Advanced Gamma-ray Imaging System (AGIS) - Simulation Studies

    SciTech Connect

    Maier, G.; Buckley, J.; Bugaev, V.; Fegan, S.; Vassiliev, V. V.; Funk, S.; Konopelko, A.

    2008-12-24

    The Advanced Gamma-ray Imaging System (AGIS) is a US-led concept for a next-generation instrument in ground-based very-high-energy gamma-ray astronomy. The most important design requirement for AGIS is a sensitivity of about 10 times greater than current observatories like Veritas, H.E.S.S or MAGIC. We present results of simulation studies of various possible designs for AGIS. The primary characteristics of the array performance, collecting area, angular resolution, background rejection, and sensitivity are discussed.

  11. EGR Distribution in Engine Cylinders Using Advanced Virtual Simulation

    SciTech Connect

    Fan, Xuetong

    2000-08-20

    Exhaust Gas Recirculation (EGR) is a well-known technology for reduction of NOx in diesel engines. With the demand for extremely low engine out NOx emissions, it is important to have a consistently balanced EGR flow to individual engine cylinders. Otherwise, the variation in the cylinders' NOx contribution to the overall engine emissions will produce unacceptable variability. This presentation will demonstrate the effective use of advanced virtual simulation in the development of a balanced EGR distribution in engine cylinders. An initial design is analyzed reflecting the variance in the EGR distribution, quantitatively and visually. Iterative virtual lab tests result in an optimized system.

  12. Coupling Hydraulic Fracturing Propagation and Gas Well Performance for Simulation of Production in Unconventional Shale Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Wang, C.; Winterfeld, P. H.; Wu, Y. S.; Wang, Y.; Chen, D.; Yin, C.; Pan, Z.

    2014-12-01

    Hydraulic fracturing combined with horizontal drilling has made it possible to economically produce natural gas from unconventional shale gas reservoirs. An efficient methodology for evaluating hydraulic fracturing operation parameters, such as fluid and proppant properties, injection rates, and wellhead pressure, is essential for the evaluation and efficient design of these processes. Traditional numerical evaluation and optimization approaches are usually based on simulated fracture properties such as the fracture area. In our opinion, a methodology based on simulated production data is better, because production is the goal of hydraulic fracturing and we can calibrate this approach with production data that is already known. This numerical methodology requires a fully-coupled hydraulic fracture propagation and multi-phase flow model. In this paper, we present a general fully-coupled numerical framework to simulate hydraulic fracturing and post-fracture gas well performance. This three-dimensional, multi-phase simulator focuses on: (1) fracture width increase and fracture propagation that occurs as slurry is injected into the fracture, (2) erosion caused by fracture fluids and leakoff, (3) proppant subsidence and flowback, and (4) multi-phase fluid flow through various-scaled anisotropic natural and man-made fractures. Mathematical and numerical details on how to fully couple the fracture propagation and fluid flow parts are discussed. Hydraulic fracturing and production operation parameters, and properties of the reservoir, fluids, and proppants, are taken into account. The well may be horizontal, vertical, or deviated, as well as open-hole or cemented. The simulator is verified based on benchmarks from the literature and we show its application by simulating fracture network (hydraulic and natural fractures) propagation and production data history matching of a field in China. We also conduct a series of real-data modeling studies with different combinations of

  13. New Developments in the Simulation of Advanced Accelerator Concepts

    SciTech Connect

    Bruhwiler, David L.; Cary, John R.; Cowan, Benjamin M.; Paul, Kevin; Mullowney, Paul J.; Messmer, Peter; Geddes, Cameron G. R.; Esarey, Eric; Cormier-Michel, Estelle; Leemans, Wim; Vay, Jean-Luc

    2009-01-22

    Improved computational methods are essential to the diverse and rapidly developing field of advanced accelerator concepts. We present an overview of some computational algorithms for laser-plasma concepts and high-brightness photocathode electron sources. In particular, we discuss algorithms for reduced laser-plasma models that can be orders of magnitude faster than their higher-fidelity counterparts, as well as important on-going efforts to include relevant additional physics that has been previously neglected. As an example of the former, we present 2D laser wakefield accelerator simulations in an optimal Lorentz frame, demonstrating >10 GeV energy gain of externally injected electrons over a 2 m interaction length, showing good agreement with predictions from scaled simulations and theory, with a speedup factor of {approx}2,000 as compared to standard particle-in-cell.

  14. Benchmarking of Advanced Control Strategies for a Simulated Hydroelectric System

    NASA Astrophysics Data System (ADS)

    Finotti, S.; Simani, S.; Alvisi, S.; Venturini, M.

    2017-01-01

    This paper analyses and develops the design of advanced control strategies for a typical hydroelectric plant during unsteady conditions, performed in the Matlab and Simulink environments. The hydraulic system consists of a high water head and a long penstock with upstream and downstream surge tanks, and is equipped with a Francis turbine. The nonlinear characteristics of hydraulic turbine and the inelastic water hammer effects were considered to calculate and simulate the hydraulic transients. With reference to the control solutions addressed in this work, the proposed methodologies rely on data-driven and model-based approaches applied to the system under monitoring. Extensive simulations and comparisons serve to determine the best solution for the development of the most effective, robust and reliable control tool when applied to the considered hydraulic system.

  15. New Developments in the Simulation of Advanced Accelerator Concepts

    SciTech Connect

    Paul, K.; Cary, J.R.; Cowan, B.; Bruhwiler, D.L.; Geddes, C.G.R.; Mullowney, P.J.; Messmer, P.; Esarey, E.; Cormier-Michel, E.; Leemans, W.P.; Vay, J.-L.

    2008-09-10

    Improved computational methods are essential to the diverse and rapidly developing field of advanced accelerator concepts. We present an overview of some computational algorithms for laser-plasma concepts and high-brightness photocathode electron sources. In particular, we discuss algorithms for reduced laser-plasma models that can be orders of magnitude faster than their higher-fidelity counterparts, as well as important on-going efforts to include relevant additional physics that has been previously neglected. As an example of the former, we present 2D laser wakefield accelerator simulations in an optimal Lorentz frame, demonstrating>10 GeV energy gain of externally injected electrons over a 2 m interaction length, showing good agreement with predictions from scaled simulations and theory, with a speedup factor of ~;;2,000 as compared to standard particle-in-cell.

  16. Recent advances of strong-strong beam-beam simulation

    SciTech Connect

    Qiang, Ji; Furman, Miguel A.; Ryne, Robert D.; Fischer, Wolfram; Ohmi,Kazuhito

    2004-09-15

    In this paper, we report on recent advances in strong-strong beam-beam simulation. Numerical methods used in the calculation of the beam-beam forces are reviewed. A new computational method to solve the Poisson equation on nonuniform grid is presented. This method reduces the computational cost by a half compared with the standard FFT based method on uniform grid. It is also more accurate than the standard method for a colliding beam with low transverse aspect ratio. In applications, we present the study of coherent modes with multi-bunch, multi-collision beam-beam interactions at RHIC. We also present the strong-strong simulation of the luminosity evolution at KEKB with and without finite crossing angle.

  17. Terahertz-dependent identification of simulated hole shapes in oil-gas reservoirs

    NASA Astrophysics Data System (ADS)

    Bao, Ri-Ma; Zhan, Hong-Lei; Miao, Xin-Yang; Zhao, Kun; Feng, Cheng-Jing; Dong, Chen; Li, Yi-Zhang; Xiao, Li-Zhi

    2016-10-01

    Detecting holes in oil-gas reservoirs is vital to the evaluation of reservoir potential. The main objective of this study is to demonstrate the feasibility of identifying general micro-hole shapes, including triangular, circular, and square shapes, in oil-gas reservoirs by adopting terahertz time-domain spectroscopy (THz-TDS). We evaluate the THz absorption responses of punched silicon (Si) wafers having micro-holes with sizes of 20 μm-500 μm. Principal component analysis (PCA) is used to establish a model between THz absorbance and hole shapes. The positions of samples in three-dimensional spaces for three principal components are used to determine the differences among diverse hole shapes and the homogeneity of similar shapes. In addition, a new Si wafer with the unknown hole shapes, including triangular, circular, and square, can be qualitatively identified by combining THz-TDS and PCA. Therefore, the combination of THz-TDS with mathematical statistical methods can serve as an effective approach to the rapid identification of micro-hole shapes in oil-gas reservoirs. Project supported by the National Natural Science Foundation of China (Grant No. 61405259), the National Basic Research Program of China (Grant No. 2014CB744302), and the Specially Founded Program on National Key Scientific Instruments and Equipment Development, China (Grant No. 2012YQ140005).

  18. Preliminary Three-Dimensional Simulation of Sediment and Cesium Transport in the Ogi Dam Reservoir using FLESCOT – Task 6, Subtask 2

    SciTech Connect

    Onishi, Yasuo; Kurikami, Hiroshi; Yokuda, Satoru T.

    2014-03-28

    After the accident at the Fukushima Daiichi Nuclear Power Plant in March 2011, the Japan Atomic Energy Agency and the Pacific Northwest National Laboratory initiated a collaborative project on environmental restoration. In October 2013, the collaborative team started a task of three-dimensional modeling of sediment and cesium transport in the Fukushima environment using the FLESCOT (Flow, Energy, Salinity, Sediment Contaminant Transport) code. As the first trial, we applied it to the Ogi Dam Reservoir that is one of the reservoirs in the Japan Atomic Energy Agency’s (JAEA’s) investigation project. Three simulation cases under the following different temperature conditions were studied: • incoming rivers and the Ogi Dam Reservoir have the same water temperature • incoming rivers have lower water temperature than that of the reservoir • incoming rivers have higher water temperature than that of the reservoir. The preliminary simulations suggest that seasonal temperature changes influence the sediment and cesium transport. The preliminary results showed the following: • Suspended sand, and cesium adsorbed by sand, coming into the reservoirs from upstream rivers is deposited near the reservoir entrance. • Suspended silt, and cesium adsorbed by silt, is deposited farther in the reservoir. • Suspended clay, and cesium adsorbed by clay, travels the farthest into the reservoir. With sufficient time, the dissolved cesium reaches the downstream end of the reservoir. This preliminary modeling also suggests the possibility of a suitable dam operation to control the cesium migration farther downstream from the dam. JAEA has been sampling in the Ogi Dam Reservoir, but these data were not yet available for the current model calibration and validation for this reservoir. Nonetheless these preliminary FLESCOT modeling results were qualitatively valid and confirmed the applicability of the FLESCOT code to the Ogi Dam Reservoir, and in general to other reservoirs in

  19. A simulation research on evaluation of development in shale oil reservoirs by near-miscible CO2 flooding

    NASA Astrophysics Data System (ADS)

    Lai, Fengpeng; Li, Zhiping; Fu, Yingkun; Yang, Zhihao; Li, Hong

    2015-08-01

    Shale oil is a key resource that could mitigate the impending energy shortage in the future. Despite its abundance in China, studies on shale oil are still at the preliminary stage. Shale oil development through CO2 flooding has been successfully implemented in the United States. Therefore, the mechanics of CO2 flooding in shale oil reservoirs should be investigated. This study applies a simulation method to evaluate the development efficiency of CO2 flooding in shale oil reservoirs. Near-miscible CO2 flooding can effectively develop shale oil. After 20 years, recovery could improve by up to 9.56% as a result of depletion development under near-miscible CO2 flooding with 0.5% pore volume gas injection. Horizontal well injection is better than vertical well injection in terms of sweep efficiency and recovery. Cyclic gas injection is superior to continuous gas injection because the former reduces gas channelling. Thus, the use of horizontal wells with near-miscible cyclic gas injections has the potential to effectively develop shale oil reservoirs.

  20. Assessing Reservoir Depositional Environments to Develop and Quantify Improvements in CO2 Storage Efficiency. A Reservoir Simulation Approach

    SciTech Connect

    Okwen, Roland; Frailey, Scott; Leetaru, Hannes; Moulton, Sandy

    2014-09-30

    The storage potential and fluid movement within formations are dependent on the unique hydraulic characteristics of their respective depositional environments. Storage efficiency (E) quantifies the potential for storage in a geologic depositional environment and is used to assess basinal or regional CO2 storage resources. Current estimates of storage resources are calculated using common E ranges by lithology and not by depositional environment. The objectives of this project are to quantify E ranges and identify E enhancement strategies for different depositional environments via reservoir simulation studies. The depositional environments considered include deltaic, shelf clastic, shelf carbonate, fluvial deltaic, strandplain, reef, fluvial and alluvial, and turbidite. Strategies considered for enhancing E include CO2 injection via vertical, horizontal, and deviated wells, selective completions, water production, and multi-well injection. Conceptual geologic and geocellular models of the depositional environments were developed based on data from Illinois Basin oil fields and gas storage sites. The geologic and geocellular models were generalized for use in other US sedimentary basins. An important aspect of this work is the development of conceptual geologic and geocellular models that reflect the uniqueness of each depositional environment. Different injection well completions methods were simulated to investigate methods of enhancing E in the presence of geologic heterogeneity specific to a depositional environment. Modeling scenarios included horizontal wells (length, orientation, and inclination), selective and dynamic completions, water production, and multiwell injection. A Geologic Storage Efficiency Calculator (GSECalc) was developed to calculate E from reservoir simulation output. Estimated E values were normalized to diminish their dependency on fluid relative permeability. Classifying depositional environments according to

  1. Advanced radiometric and interferometric milimeter-wave scene simulations

    NASA Technical Reports Server (NTRS)

    Hauss, B. I.; Moffa, P. J.; Steele, W. G.; Agravante, H.; Davidheiser, R.; Samec, T.; Young, S. K.

    1993-01-01

    Smart munitions and weapons utilize various imaging sensors (including passive IR, active and passive millimeter-wave, and visible wavebands) to detect/identify targets at short standoff ranges and in varied terrain backgrounds. In order to design and evaluate these sensors under a variety of conditions, a high-fidelity scene simulation capability is necessary. Such a capability for passive millimeter-wave scene simulation exists at TRW. TRW's Advanced Radiometric Millimeter-Wave Scene Simulation (ARMSS) code is a rigorous, benchmarked, end-to-end passive millimeter-wave scene simulation code for interpreting millimeter-wave data, establishing scene signatures and evaluating sensor performance. In passive millimeter-wave imaging, resolution is limited due to wavelength and aperture size. Where high resolution is required, the utility of passive millimeter-wave imaging is confined to short ranges. Recent developments in interferometry have made possible high resolution applications on military platforms. Interferometry or synthetic aperture radiometry allows the creation of a high resolution image with a sparsely filled aperture. Borrowing from research work in radio astronomy, we have developed and tested at TRW scene reconstruction algorithms that allow the recovery of the scene from a relatively small number of spatial frequency components. In this paper, the TRW modeling capability is described and numerical results are presented.

  2. Advanced radiometric and interferometric milimeter-wave scene simulations

    NASA Astrophysics Data System (ADS)

    Hauss, B. I.; Moffa, P. J.; Steele, W. G.; Agravante, H.; Davidheiser, R.; Samec, T.; Young, S. K.

    1993-12-01

    Smart munitions and weapons utilize various imaging sensors (including passive IR, active and passive millimeter-wave, and visible wavebands) to detect/identify targets at short standoff ranges and in varied terrain backgrounds. In order to design and evaluate these sensors under a variety of conditions, a high-fidelity scene simulation capability is necessary. Such a capability for passive millimeter-wave scene simulation exists at TRW. TRW's Advanced Radiometric Millimeter-Wave Scene Simulation (ARMSS) code is a rigorous, benchmarked, end-to-end passive millimeter-wave scene simulation code for interpreting millimeter-wave data, establishing scene signatures and evaluating sensor performance. In passive millimeter-wave imaging, resolution is limited due to wavelength and aperture size. Where high resolution is required, the utility of passive millimeter-wave imaging is confined to short ranges. Recent developments in interferometry have made possible high resolution applications on military platforms. Interferometry or synthetic aperture radiometry allows the creation of a high resolution image with a sparsely filled aperture. Borrowing from research work in radio astronomy, we have developed and tested at TRW scene reconstruction algorithms that allow the recovery of the scene from a relatively small number of spatial frequency components. In this paper, the TRW modeling capability is described and numerical results are presented.

  3. Mathematical simulation of temperatures in deep impoundments: verification tests of the Water Resources Engineers, Inc. model - Horsetooth and Flaming Gorge Reservoirs

    USGS Publications Warehouse

    King, D.L.; Sartoris, Jim J.

    1973-01-01

    Successful use of predictive mathematical models requires verification of the accuracy of the models by applying them to existing situations where the prediction can be compared with reality. A Corps of Engineers' modification of a deep reservoir thermal stratification model developed by Water Resources Engineers, Inc., was applied to two existing Bureau of Reclamation reservoirs for verification. Diffusion coefficients used for the Corps' Detroit Reservoir were found to apply to Horsetooth Reservoir in Colorado, for which very food computer input data were available. The Detroit diffusion coefficients gave a reasonable simulation of Flaming Gorge Reservoir in Wyoming and Utah, which has very complex and variable physical characteristics and for which only average-quality computer input data were available.

  4. Geological and petrophysical characterization of the Ferron Sandstone for 3-D simulation of a fluvial-deltaic reservoir. Technical progress report, July 1, 1996--September 30, 1996

    SciTech Connect

    Allison, M.L.

    1996-10-01

    The objective of this project is to develop a comprehensive, interdisciplinary, and quantitative characterization of a fluvial-deltaic reservoir which will allow realistic inter-well and reservoir-scale modeling to be constructed for improved oil-field development in similar reservoirs world-wide. The geological and petrophysical properties of the Cretaceous Ferron Sandstone in east-central Utah will be quantitatively determined. Both new and existing data will be integrated into a three-dimensional representation of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. Transfer of the project results to the petroleum industry is an integral component of the project.

  5. Graphics simulation and training aids for advanced teleoperation

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Schenker, Paul S.; Bejczy, Antal K.

    1993-01-01

    Graphics displays can be of significant aid in accomplishing a teleoperation task throughout all three phases of off-line task analysis and planning, operator training, and online operation. In the first phase, graphics displays provide substantial aid to investigate work cell layout, motion planning with collision detection and with possible redundancy resolution, and planning for camera views. In the second phase, graphics displays can serve as very useful tools for introductory training of operators before training them on actual hardware. In the third phase, graphics displays can be used for previewing planned motions and monitoring actual motions in any desired viewing angle, or, when communication time delay prevails, for providing predictive graphics overlay on the actual camera view of the remote site to show the non-time-delayed consequences of commanded motions in real time. This paper addresses potential space applications of graphics displays in all three operational phases of advanced teleoperation. Possible applications are illustrated with techniques developed and demonstrated in the Advanced Teleoperation Laboratory at JPL. The examples described include task analysis and planning of a simulated Solar Maximum Satellite Repair task, a novel force-reflecting teleoperation simulator for operator training, and preview and predictive displays for on-line operations.

  6. A Virtual Engineering Framework for Simulating Advanced Power System

    SciTech Connect

    Mike Bockelie; Dave Swensen; Martin Denison; Stanislav Borodai

    2008-06-18

    In this report is described the work effort performed to provide NETL with VE-Suite based Virtual Engineering software and enhanced equipment models to support NETL's Advanced Process Engineering Co-simulation (APECS) framework for advanced power generation systems. Enhancements to the software framework facilitated an important link between APECS and the virtual engineering capabilities provided by VE-Suite (e.g., equipment and process visualization, information assimilation). Model enhancements focused on improving predictions for the performance of entrained flow coal gasifiers and important auxiliary equipment (e.g., Air Separation Units) used in coal gasification systems. In addition, a Reduced Order Model generation tool and software to provide a coupling between APECS/AspenPlus and the GE GateCycle simulation system were developed. CAPE-Open model interfaces were employed where needed. The improved simulation capability is demonstrated on selected test problems. As part of the project an Advisory Panel was formed to provide guidance on the issues on which to focus the work effort. The Advisory Panel included experts from industry and academics in gasification, CO2 capture issues, process simulation and representatives from technology developers and the electric utility industry. To optimize the benefit to NETL, REI coordinated its efforts with NETL and NETL funded projects at Iowa State University, Carnegie Mellon University and ANSYS/Fluent, Inc. The improved simulation capabilities incorporated into APECS will enable researchers and engineers to better understand the interactions of different equipment components, identify weaknesses and processes needing improvement and thereby allow more efficient, less expensive plants to be developed and brought on-line faster and in a more cost-effective manner. These enhancements to APECS represent an important step toward having a fully integrated environment for performing plant simulation and engineering

  7. Geology and petrophysical characterization of the Ferron Sandstone for 3-D simulation of a fluvial-deltaic reservoir. Annual report, October 1, 1996--September 30, 1997

    SciTech Connect

    Chidsey, T.C. Jr.; Anderson, P.B.; Morris, T.H.; Dewey, J.A. Jr.; Mattson, A.; Foster, C.B.; Snelgrove, S.H.; Ryer, T.A.

    1998-05-01

    The objective of the Ferron Sandstone (Utah) project is to develop a comprehensive, interdisciplinary, quantitative characterization of a fluvial-deltaic reservoir to allow realistic interwell and reservoir-scale models to be developed for improved oil-field development in similar reservoirs world-wide. Both new and existing data is being integrated into a 3-D model of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Simulation results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. The project is divided into four tasks: (1) regional stratigraphic analysis, (2) case studies, (3) reservoirs models, and (4) field-scale evaluation of exploration strategies. The primary objective of the regional stratigraphic analysis is to provide a more detailed interpretation of the stratigraphy and gross reservoir characteristics of the Ferron Sandstone as exposed in outcrop. The primary objective of the case-studies work is to develop a detailed geological and petrophysical characterization, at well-sweep scale or smaller, of the primary reservoir lithofacies typically found in a fluvial-dominated deltaic reservoir. Work on tasks 3 and 4 consisted of developing two- and three-dimensional reservoir models at various scales. The bulk of the work on these tasks is being completed primarily during the last year of the project, and is incorporating the data and results of the regional stratigraphic analysis and case-studies tasks.

  8. Forward-Inverse Adaptive Techniques for Reservoir Characterization and Simulation: Theory and Applications

    SciTech Connect

    Doss, S D; Ezzedine, S; Gelinas, R; Chawathe, A

    2001-06-11

    A novel approach called Forward-Inverse Adaptive Techniques (FIAT) for reservoir characterization is developed and applied to three representative exploration cases. Inverse modeling refers to the determination of the entire reservoir permeability under steady state single-phase flow regime, given only field permeability, pressure and production well measurements. FIAT solves the forward and inverse partial differential equations (PDEs) simultaneously by adding a regularization term and filtering pressure gradients. An implicit adaptive-grid, Galerkin, numerical scheme is used to numerically solve the set of PDEs subject to pressure and permeability boundary conditions. Three examples are presented. Results from all three cases demonstrate attainable and reasonably accurate solutions and, more importantly, provide insights into the consequences of data undersampling.

  9. Geological and petrophysical characterization of the Ferron Sandstone for 3-D simulation of a fluvial-deltaic reservoir. Technical progress report, April 1--June 30, 1995

    SciTech Connect

    Allison, M.L.

    1995-07-28

    The objective of this project is to develop a comprehensive, interdisciplinary, and quantitative characterization of a fluvial-deltaic reservoir which will allow realistic inter-well and reservoir-scale modeling to be constructed for improved oil-field development in similar reservoirs world-wide. The geological and petrophysical properties of the Cretaceous Ferron Sandstone in east-central Utah will be quantitatively determined. Both new and existing data will be integrated into a three-dimensional representation of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. Technical progress this quarter is divided into regional stratigraphy, case studies, stochastic modeling and fluid-flow simulation, and technology transfer activities. The regional stratigraphy of the Ferron Sandstone outcrop belt from Last Chance Creek to Ferron Creek is being described and interpreted. Photomosaics and a database of existing surface and subsurface data are being used to determine the extent and depositional environment of each parasequence, and the nature of the contacts with adjacent rocks or flow units. For the second field season, detailed geological and petrophysical characterization of the primary reservoir lithofacies typically found in a fluvial-dominated deltaic reservoir, is continuing at selected case-study areas.

  10. Control of Microbial Sulfide Production with Biocides and Nitrate in Oil Reservoir Simulating Bioreactors.

    PubMed

    Xue, Yuan; Voordouw, Gerrit

    2015-01-01

    Oil reservoir souring by the microbial reduction of sulfate to sulfide is unwanted, because it enhances corrosion of metal infrastructure used for oil production and processing. Reservoir souring can be prevented or remediated by the injection of nitrate or biocides, although injection of biocides into reservoirs is not commonly done. Whether combined application of these agents may give synergistic reservoir souring control is unknown. In order to address this we have used up-flow sand-packed bioreactors injected with 2 mM sulfate and volatile fatty acids (VFA, 3 mM each of acetate, propionate and butyrate) at a flow rate of 3 or 6 pore volumes (PV) per day. Pulsed injection of the biocides glutaraldehyde (Glut), benzalkonium chloride (BAC) and cocodiamine was used to control souring. Souring control was determined as the recovery time (RT) needed to re-establish an aqueous sulfide concentration of 0.8-1 mM (of the 1.7-2 mM before the pulse). Pulses were either for a long time (120 h) at low concentration (long-low) or for a short time (1 h) at high concentration (short-high). The short-high strategy gave better souring control with Glut, whereas the long-low strategy was better with cocodiamine. Continuous injection of 2 mM nitrate alone was not effective, because 3 mM VFA can fully reduce both 2 mM nitrate to nitrite and N2 and, subsequently, 2 mM sulfate to sulfide. No synergy was observed for short-high pulsed biocides and continuously injected nitrate. However, use of continuous nitrate and long-low pulsed biocide gave synergistic souring control with BAC and Glut, as indicated by increased RTs in the presence, as compared to the absence of nitrate. Increased production of nitrite, which increases the effectiveness of souring control by biocides, is the most likely cause for this synergy.

  11. Control of Microbial Sulfide Production with Biocides and Nitrate in Oil Reservoir Simulating Bioreactors

    PubMed Central

    Xue, Yuan; Voordouw, Gerrit

    2015-01-01

    Oil reservoir souring by the microbial reduction of sulfate to sulfide is unwanted, because it enhances corrosion of metal infrastructure used for oil production and processing. Reservoir souring can be prevented or remediated by the injection of nitrate or biocides, although injection of biocides into reservoirs is not commonly done. Whether combined application of these agents may give synergistic reservoir souring control is unknown. In order to address this we have used up-flow sand-packed bioreactors injected with 2 mM sulfate and volatile fatty acids (VFA, 3 mM each of acetate, propionate and butyrate) at a flow rate of 3 or 6 pore volumes (PV) per day. Pulsed injection of the biocides glutaraldehyde (Glut), benzalkonium chloride (BAC) and cocodiamine was used to control souring. Souring control was determined as the recovery time (RT) needed to re-establish an aqueous sulfide concentration of 0.8–1 mM (of the 1.7–2 mM before the pulse). Pulses were either for a long time (120 h) at low concentration (long-low) or for a short time (1 h) at high concentration (short-high). The short-high strategy gave better souring control with Glut, whereas the long-low strategy was better with cocodiamine. Continuous injection of 2 mM nitrate alone was not effective, because 3 mM VFA can fully reduce both 2 mM nitrate to nitrite and N2 and, subsequently, 2 mM sulfate to sulfide. No synergy was observed for short-high pulsed biocides and continuously injected nitrate. However, use of continuous nitrate and long-low pulsed biocide gave synergistic souring control with BAC and Glut, as indicated by increased RTs in the presence, as compared to the absence of nitrate. Increased production of nitrite, which increases the effectiveness of souring control by biocides, is the most likely cause for this synergy. PMID:26696994

  12. A new method for representing multiple wells with arbitrary rates in numerical reservoir simulation

    SciTech Connect

    Peaceman, D.W.

    1995-12-31

    A new equation is presented for calculating the equivalent wellblock radii for all N{sub w} wells in a reservoir. Arbitrary well rates and the interaction between wells are fully accounted for. The data required for the new equation may be obtained in a preprocessor by calculating N{sub w} single-phase pressure distributions. Then an accurate equivalent wellblock radius can be calculated for each well each time step, even under conditions where well rates vary with time.

  13. Advanced reservoir characterization and evaluation of CO{sub 2} gravity drainage in the naturally fractured Spraberry Trend Area, Class III

    SciTech Connect

    Heckman, Tracy; Schechter, David S.

    2000-04-11

    The overall goal of this project was to assess the economic feasibility of CO{sub 2} flooding the naturally fractured Spraberry Trend Area in West Texas. This objective was accomplished by conducting research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interaction in the reservoirs, (3) analytical and numerical simulation of Spraberry reservoirs, and, (4) experimental investigations on CO{sub 2} gravity drainage in Spraberry whole cores. This report provides results of the fourth year of the five-year project for each of the four areas including a status report of field activities leading up to injection of CO{sub 2}.

  14. Advanced Reservoir Characterization and Evaluation of CO{sub 2} Gravity Drainage in the Naturally Fractured Spraberry Trend Area, Class III

    SciTech Connect

    Knight, Bill; Schechter, David S.

    2001-11-19

    The goal of this project was to assess the economic feasibility of CO{sub 2} flooding the naturally fractured Spraberry Trend Area in west Texas. This objective was accomplished through research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interactions in the reservoirs, (3) reservoir performance analysis, and (4) experimental investigations on CO{sub 2} gravity drainage in Spraberry whole cores. The four areas have been completed and reported in the previous annual reports. This report provides the results of the final year of the project including two SPE papers (SPE 71605 and SPE 71635) presented in the 2001 SPE Annual Meeting in New Orleans, two simulation works, analysis of logging observation wells (LOW) and progress of CO{sub 2} injection.

  15. Application of integrated reservoir management and reservoir characterization to optimize infill drilling

    SciTech Connect

    1997-04-01

    This project has used a multi-disciplinary approach employing geology, geophysics, and engineering to conduct advanced reservoir characterization and management activities to design and implement an optimized infill drilling program at the North Robertson (Clearfork) Unit in Gaines County, Texas. The activities during the first Budget Period consisted of developing an integrated reservoir description from geological, engineering, and geostatistical studies, and using this description for reservoir flow simulation. Specific reservoir management activities were identified and tested. The geologically targeted infill drilling program currently being implemented is a result of this work. A significant contribution of this project is to demonstrate the use of cost-effective reservoir characterization and management tools that will be helpful to both independent and major operators for the optimal development of heterogeneous, low permeability shallow-shelf carbonate (SSC) reservoirs. The techniques that are outlined for the formulation of an integrated reservoir description apply to all oil and gas reservoirs, but are specifically tailored for use in the heterogeneous, low permeability carbonate reservoirs of West Texas.

  16. Design and Implementation of a CO2 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells In a Shallow Shelf Carbonate Approaching Waterflood Depletion

    SciTech Connect

    Czirr, Kirk

    1999-10-28

    The first project objective is to utilize reservoir characterization and advanced technologies to optimize the design of a carbon dioxide (CO2) project for the South Cowden Unit (SCU) located in Ector County, Texas. The SCU is a mature, relatively small, shallow shelf carbonate unit nearing waterflood depletion. The second project objective is to demonstrate the performance and economic viability of the project in the field. All work during the second quarter falls within the demonstration project.

  17. Investigations and advanced concepts on gyrotron interaction modeling and simulations

    SciTech Connect

    Avramidis, K. A.

    2015-12-15

    In gyrotron theory, the interaction between the electron beam and the high frequency electromagnetic field is commonly modeled using the slow variables approach. The slow variables are quantities that vary slowly in time in comparison to the electron cyclotron frequency. They represent the electron momentum and the high frequency field of the resonant TE modes in the gyrotron cavity. For their definition, some reference frequencies need to be introduced. These include the so-called averaging frequency, used to define the slow variable corresponding to the electron momentum, and the carrier frequencies, used to define the slow variables corresponding to the field envelopes of the modes. From the mathematical point of view, the choice of the reference frequencies is, to some extent, arbitrary. However, from the numerical point of view, there are arguments that point toward specific choices, in the sense that these choices are advantageous in terms of simulation speed and accuracy. In this paper, the typical monochromatic gyrotron operation is considered, and the numerical integration of the interaction equations is performed by the trajectory approach, since it is the fastest, and therefore it is the one that is most commonly used. The influence of the choice of the reference frequencies on the interaction simulations is studied using theoretical arguments, as well as numerical simulations. From these investigations, appropriate choices for the values of the reference frequencies are identified. In addition, novel, advanced concepts for the definitions of these frequencies are addressed, and their benefits are demonstrated numerically.

  18. OGS#PETSc approach for robust and efficient simulations of strongly coupled hydrothermal processes in EGS reservoirs

    NASA Astrophysics Data System (ADS)

    Watanabe, Norihiro; Blucher, Guido; Cacace, Mauro; Kolditz, Olaf

    2016-04-01

    A robust and computationally efficient solution is important for 3D modelling of EGS reservoirs. This is particularly the case when the reservoir model includes hydraulic conduits such as induced or natural fractures, fault zones, and wellbore open-hole sections. The existence of such hydraulic conduits results in heterogeneous flow fields and in a strengthened coupling between fluid flow and heat transport processes via temperature dependent fluid properties (e.g. density and viscosity). A commonly employed partitioned solution (or operator-splitting solution) may not robustly work for such strongly coupled problems its applicability being limited by small time step sizes (e.g. 5-10 days) whereas the processes have to be simulated for 10-100 years. To overcome this limitation, an alternative approach is desired which can guarantee a robust solution of the coupled problem with minor constraints on time step sizes. In this work, we present a Newton-Raphson based monolithic coupling approach implemented in the OpenGeoSys simulator (OGS) combined with the Portable, Extensible Toolkit for Scientific Computation (PETSc) library. The PETSc library is used for both linear and nonlinear solvers as well as MPI-based parallel computations. The suggested method has been tested by application to the 3D reservoir site of Groß Schönebeck, in northern Germany. Results show that the exact Newton-Raphson approach can also be limited to small time step sizes (e.g. one day) due to slight oscillations in the temperature field. The usage of a line search technique and modification of the Jacobian matrix were necessary to achieve robust convergence of the nonlinear solution. For the studied example, the proposed monolithic approach worked even with a very large time step size of 3.5 years.

  19. Advanced modeling and simulation to design and manufacture high performance and reliable advanced microelectronics and microsystems.

    SciTech Connect

    Nettleship, Ian (University of Pittsburgh, Pittsburgh, PA); Hinklin, Thomas; Holcomb, David Joseph; Tandon, Rajan; Arguello, Jose Guadalupe, Jr.; Dempsey, James Franklin; Ewsuk, Kevin Gregory; Neilsen, Michael K.; Lanagan, Michael (Pennsylvania State University, University Park, PA)

    2007-07-01

    An interdisciplinary team of scientists and engineers having broad expertise in materials processing and properties, materials characterization, and computational mechanics was assembled to develop science-based modeling/simulation technology to design and reproducibly manufacture high performance and reliable, complex microelectronics and microsystems. The team's efforts focused on defining and developing a science-based infrastructure to enable predictive compaction, sintering, stress, and thermomechanical modeling in ''real systems'', including: (1) developing techniques to and determining materials properties and constitutive behavior required for modeling; (2) developing new, improved/updated models and modeling capabilities, (3) ensuring that models are representative of the physical phenomena being simulated; and (4) assessing existing modeling capabilities to identify advances necessary to facilitate the practical application of Sandia's predictive modeling technology.

  20. Advanced reservoir characterization and evaluation of CO{sub 2} gravity drainage in the naturally fractured Spraberry Reservoir. Quarterly technical report, January 1--March 31, 1996

    SciTech Connect

    Schechter, D.

    1996-07-01

    The objective of this research and the pilot project planned is to test the feasibility of CO{sub 2} for recovering oil from the naturally fractured Spraberry Trend Area in the Midland Basin. This notoriously marginal reservoir has confounded operators for 40 years with rapid depletion, low recovery during primary, disappointing waterflood results and low ultimate recovery. Yet, the tremendous areal coverage and large amount of remaining oil (up to 10 Bbbl) warrants further investigation to expend all possible process options before large numbers of Spraberry wellbores need to be plugged and abandoned. CO{sub 2} injection on a continuous, pattern-wide basis has not been attempted in the Spraberry Trend. This is due to the obvious existence of a network of naturally-occurring fractures. However, it has become clear in recent years that neglecting CO{sub 2} injection as an option in fractured reservoirs may overlook potential projects which may be viable. The 15-well pilot field demonstration and supporting research will provide the necessary information to quantify the conditions whereby CO{sub 2} flooding would be economic in the Spraberry Trend.

  1. Advanced reservoir characterization and evaluation of CO{sub 2} gravity drainage in the naturally fractured Spraberry reservoir. [Quarterly report], September 1, 1995--December 31, 1995

    SciTech Connect

    Schechter, D.

    1995-12-31

    The objective of this research and the pilot project planned is to test the feasibility of CO{sub 2} for recovering oil from the naturally fractured Spraberry Trend Area in the Midland Basin. This notoriously marginal reservoir has confounded operators for 40 years with rapid depletion, low recovery during primary, disappointing waterflood results and low ultimate recovery. Yet, the tremendous areal coverage and large amount of remaining oil (up to 10 Bbbl) warrants further investigation to expend all possible process options before large numbers of Spraberry wellbores need to be plugged and abandoned. CO{sub 2} injection on a continuous, pattern wide basis has not been attempted in the Spraberry Trend. This is due to the obvious existence of a network of naturally occurring fractures. However, it has become clear in recent years that neglecting CO{sub 2} injection as an option in fractured reservoirs may overlook potential projects which may be viable. The 15 well pilot filed demonstration and supporting research will provide the necessary information to quantify the conditions where by CO{sub 2} flooding would be economic in the Spraberry Trend. Technical progress for this quarter is described for field and laboratory experiments.

  2. Advanced Simulation Capability for Environmental Management (ASCEM): Early Site Demonstration

    SciTech Connect

    Meza, Juan; Hubbard, Susan; Freshley, Mark D.; Gorton, Ian; Moulton, David; Denham, Miles E.

    2011-03-07

    The U.S. Department of Energy Office of Environmental Management, Technology Innovation and Development (EM-32), is supporting development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The modular and open source high performance computing tool will facilitate integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. As part of the initial development process, a series of demonstrations were defined to test ASCEM components and provide feedback to developers, engage end users in applications, and lead to an outcome that would benefit the sites. The demonstration was implemented for a sub-region of the Savannah River Site General Separations Area that includes the F-Area Seepage Basins. The physical domain included the unsaturated and saturated zones in the vicinity of the seepage basins and Fourmile Branch, using an unstructured mesh fit to the hydrostratigraphy and topography of the site. The calculations modeled variably saturated flow and the resulting flow field was used in simulations of the advection of non-reactive species and the reactive-transport of uranium. As part of the demonstrations, a new set of data management, visualization, and uncertainty quantification tools were developed to analyze simulation results and existing site data. These new tools can be used to provide summary statistics, including information on which simulation parameters were most important in the prediction of uncertainty and to visualize the relationships between model input and output.

  3. Direct simulation of groundwater transit-time distributions using the reservoir theory

    NASA Astrophysics Data System (ADS)

    Etcheverry, David; Perrochet, Pierre

    Groundwater transit times are of interest for the management of water resources, assessment of pollution from non-point sources, and quantitative dating of groundwaters by the use of environmental isotopes. The age of water is the time water has spent in an aquifer since it has entered the system, whereas the transit time is the age of water as it exits the system. Water at the outlet of an aquifer is a mixture of water elements with different transit times, as a consequence of the different flow-line lengths. In this paper, transit-time distributions are calculated by coupling two existing methods, the reservoir theory and a recent age-simulation method. Based on the derivation of the cumulative age distribution over the whole domain, the approach accounts for the whole hydrogeological framework. The method is tested using an analytical example and its applicability illustrated for a regional layered aquifer. Results show the asymmetry and multimodality of the transit-time distribution even in advection-only conditions, due to the aquifer geometry and to the velocity-field heterogeneity. Résumé Les temps de transit des eaux souterraines sont intéressants à connaître pour gérer l'évaluation des ressources en eau dans le cas de pollution à partir de sources non ponctuelles, et aussi pour dater quantitativement les eaux souterraines au moyen des isotopes du milieu. L'âge de l'eau est le temps qu'elle a passé dans un aquifère depuis qu'elle est entrée dans le système, alors que le temps de transit est l'âge de l'eau au moment où elle quitte le système. L'eau à la sortie d'un aquifère est un mélange d'eaux possédant différents temps de transit, du fait des longueurs différentes des lignes de courant suivies. Dans ce papier, les distributions des temps de transit sont calculées en couplant deux méthodes, la théorie du réservoir et une méthode récente de simulation des âges. Basée sur la dérivation de la distribution cumulées des âges sur

  4. TID Simulation of Advanced CMOS Devices for Space Applications

    NASA Astrophysics Data System (ADS)

    Sajid, Muhammad

    2016-07-01

    This paper focuses on Total Ionizing Dose (TID) effects caused by accumulation of charges at silicon dioxide, substrate/silicon dioxide interface, Shallow Trench Isolation (STI) for scaled CMOS bulk devices as well as at Buried Oxide (BOX) layer in devices based on Silicon-On-Insulator (SOI) technology to be operated in space radiation environment. The radiation induced leakage current and corresponding density/concentration electrons in leakage current path was presented/depicted for 180nm, 130nm and 65nm NMOS, PMOS transistors based on CMOS bulk as well as SOI process technologies on-board LEO and GEO satellites. On the basis of simulation results, the TID robustness analysis for advanced deep sub-micron technologies was accomplished up to 500 Krad. The correlation between the impact of technology scaling and magnitude of leakage current with corresponding total dose was established utilizing Visual TCAD Genius program.

  5. Geological and petrophysical characterization of the Ferron Sandstone for 3-D simulation of a fluvial-deltaic reservoir. Annual report, October 1, 1995--September 30, 1996

    SciTech Connect

    Chidsey, T.C. Jr.

    1997-05-01

    The objective of the Ferron Sandstone project is to develop a comprehensive, interdisciplinary, quantitative characterization of a fluvial-deltaic reservoir to allow realistic inter-well and reservoir-scale models to be developed for improved oil-field development in similar reservoirs world-wide. Quantitative geological and petrophysical information on the Cretaceous Ferron Sandstone in east-central Utah was collected. Both new and existing data is being integrated into a three-dimensional model of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Simulation results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. Transfer of the project results to the petroleum industry is an integral component of the project. This report covers research activities for fiscal year 1995-96, the third year of the project. Most work consisted of interpreting the large quantity of data collected over two field seasons. The project is divided into four tasks: (1) regional stratigraphic analysis, (2) case studies, (3) reservoirs models, and (4) field-scale evaluation of exploration strategies. The primary objective of the regional stratigraphic analysis is to provide a more detailed interpretation of the stratigraphy and gross reservoir characteristics of the Ferron Sandstone as exposed in outcrop. The primary objective of the case-studies work is to develop a detailed geological and petrophysical characterization, at well-sweep scale or smaller, of the primary reservoir lithofacies typically found in a fluvial-dominated deltaic reservoir.

  6. Simulated Interactive Research Experiments as Educational Tools for Advanced Science.

    PubMed

    Tomandl, Mathias; Mieling, Thomas; Losert-Valiente Kroon, Christiane M; Hopf, Martin; Arndt, Markus

    2015-09-15

    Experimental research has become complex and thus a challenge to science education. Only very few students can typically be trained on advanced scientific equipment. It is therefore important to find new tools that allow all students to acquire laboratory skills individually and independent of where they are located. In a design-based research process we have investigated the feasibility of using a virtual laboratory as a photo-realistic and scientifically valid representation of advanced scientific infrastructure to teach modern experimental science, here, molecular quantum optics. We found a concept based on three educational principles that allows undergraduate students to become acquainted with procedures and concepts of a modern research field. We find a significant increase in student understanding using our Simulated Interactive Research Experiment (SiReX), by evaluating the learning outcomes with semi-structured interviews in a pre/post design. This suggests that this concept of an educational tool can be generalized to disseminate findings in other fields.

  7. Simulated Interactive Research Experiments as Educational Tools for Advanced Science

    PubMed Central

    Tomandl, Mathias; Mieling, Thomas; Losert-Valiente Kroon, Christiane M.; Hopf, Martin; Arndt, Markus

    2015-01-01

    Experimental research has become complex and thus a challenge to science education. Only very few students can typically be trained on advanced scientific equipment. It is therefore important to find new tools that allow all students to acquire laboratory skills individually and independent of where they are located. In a design-based research process we have investigated the feasibility of using a virtual laboratory as a photo-realistic and scientifically valid representation of advanced scientific infrastructure to teach modern experimental science, here, molecular quantum optics. We found a concept based on three educational principles that allows undergraduate students to become acquainted with procedures and concepts of a modern research field. We find a significant increase in student understanding using our Simulated Interactive Research Experiment (SiReX), by evaluating the learning outcomes with semi-structured interviews in a pre/post design. This suggests that this concept of an educational tool can be generalized to disseminate findings in other fields. PMID:26370627

  8. Advanced Reservoir Characterization and Evaluation of CO2 Gravity Drainage in the Naturally Fractured Spraberry Trend Area, Class III

    SciTech Connect

    Knight, Bill; Schechter, David S.

    2002-07-26

    The goal of this project was to assess the economic feasibility of CO2 flooding the naturally fractured Spraberry Trend Area in west Texas. This objective was accomplished through research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interactions in the reservoirs, (3) reservoir performance analysis, and (4) experimental investigations on CO2 gravity drainage in Spraberry whole cores. This provides results of the final year of the six-year project for each of the four areas.

  9. Advanced Reservoir Characterization and Evaluation of CO{sub 2} Gravity Drainage in the Naturally Fractured Spraberry Trend Area

    SciTech Connect

    Schechter, D.S.

    1999-02-03

    The overall goal of this project is to assess the economic feasibility of CO{sub 2} flooding the naturally fractured Spraberry Trend Area in West Texas. This objective is being accomplished by conducting research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interactions in the reservoirs, (3) reservoir performance analysis, and, (4) experimental investigations on CO2 gravity drainage in Spraberry whole cores. This report provides results of the third year of the five-year project for each of the four areas including a status report of field activities leading up to injection of CO2.

  10. T-R Cycle Characterization and Imaging: Advanced Diagnostic Methodology for Petroleum Reservoir and Trap Detection and Delineation

    SciTech Connect

    Ernest A. Mancini; William C. Parcell; Bruce S. Hart

    2006-03-06

    The principal research effort for Year 3 of the project is to classify the known petroleum reservoirs in the Mississippi Interior Salt Basin by using a sequence stratigraphic framework based on T-R sequence terminology, to formulate exploration strategies for identifying specific facies with reservoir potential and for identifying possible stratigraphic traps using a sequence stratigraphic model in combination with the discovered reservoir classification, and to use these exploration strategies to assess the potential for underdeveloped and undiscovered petroleum resources in the Mississippi Interior Salt Basin.

  11. Geological and petrophysical characterization of the Ferron Sandstone for 3-D simulation of a fluvial-deltaic reservoir. Quarterly progress report, July 1--September 30, 1995

    SciTech Connect

    Allison, M.L.

    1995-10-30

    The objective of this project is to develop a comprehensive, interdisciplinary, and quantitative characterization of a fluvial-deltaic reservoir which will allow realistic inter-well and reservoir-scale modeling to be constructed for improved oil-field development in similar reservoirs world-wide. The geological and petrophysical properties of the Cretaceous Ferron Sandstone in east-central Utah will be quantitatively determined. Both new and existing data will be integrated into a three-dimensional representation of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. Transfer of the project results to the petroleum industry is an integral component of the project. Technical progress this quarter is divided into regional stratigraphy, case studies, stochastic modeling and fluid-flow simulation, and technology transfer activities. The regional stratigraphy of the Ferron Sandstone outcrop belt is being described and interpreted. Detailed geological and petrophysical characterization of the primary reservoir lithofacies typically found in a fluvial-dominated deltaic reservoir, is continuing at selected case-study areas. Interpretations of lithofacies, bounding surfaces, and other geologic information are being combined with permeability measurements from closely spaced traverses and from drill-hole cores (existing and two drilled during the quarter). Petrophysical and statistical analyses are being incorporated with the geological characterization to develop a three-dimensional model of the reservoirs through fluid-flow simulation.

  12. Advancements in Afterbody Radiative Heating Simulations for Earth Entry

    NASA Technical Reports Server (NTRS)

    Johnston, Christopher O.; Panesi, Marco; Brandis, Aaron M.

    2016-01-01

    Four advancements to the simulation of backshell radiative heating for Earth entry are presented. The first of these is the development of a flow field model that treats electronic levels of the dominant backshell radiator, N, as individual species. This is shown to allow improvements in the modeling of electron-ion recombination and two-temperature modeling, which are shown to increase backshell radiative heating by 10 to 40%. By computing the electronic state populations of N within the flow field solver, instead of through the quasi-steady state approximation in the radiation code, the coupling of radiative transition rates to the species continuity equations for the levels of N, including the impact of non-local absorption, becomes feasible. Implementation of this additional level of coupling between the flow field and radiation codes represents the second advancement presented in this work, which is shown to increase the backshell radiation by another 10 to 50%. The impact of radiative transition rates due to non-local absorption indicates the importance of accurate radiation transport in the relatively complex flow geometry of the backshell. This motivates the third advancement, which is the development of a ray-tracing radiation transport approach to compute the radiative transition rates and divergence of the radiative flux at every point for coupling to the flow field, therefore allowing the accuracy of the commonly applied tangent-slab approximation to be assessed for radiative source terms. For the sphere considered at lunar-return conditions, the tangent-slab approximation is shown to provide a sufficient level of accuracy for the radiative source terms, even for backshell cases. This is in contrast to the agreement between the two approaches for computing the radiative flux to the surface, which differ by up to 40%. The final advancement presented is the development of a nonequilibrium model for NO radiation, which provides significant backshell

  13. Petroleum and aqueous inclusions from deeply buried reservoirs: Experimental simulations and consequences for overpressure estimates

    NASA Astrophysics Data System (ADS)

    Pironon, Jacques; Bourdet, Julien

    2008-10-01

    Synthetic hydrocarbon and aqueous inclusions have been created in the laboratory batch reactors in order to mimic inclusion formation or re-equilibration in deeply buried reservoirs. Inclusions were synthesized in quartz and calcite using pure water and Mexican dead oil, or n-tetradecane (C 14H 30), at a temperature and pressure of 150 °C and 1 kbar. One-phase hydrocarbon inclusions are frequently observed at standard laboratory conditions leading to homogenization temperatures between 0 and 60 °C. UV epifluorescence of Mexican oil inclusions is not uniform; blue and green-yellow colored inclusions coexist; however, no clear evidence of variations in fluid chemistry were observed. Homogenization temperatures were recorded and the maxima of Th plotted on histograms are in good agreement with expected Th in a range of 6 °C. Broad histograms were reconstructed showing non-symmetrical Th distributions over a 20 °C temperature range centered on the expected Th. This histogram broadening is due to the fragility of the fluid inclusions that were created by re-filling of pre-existing microcavities. Such Th histograms are similar to Th histograms recorded on natural samples from deeply buried carbonate reservoirs. Th values lower than those expected were measured for hydrocarbon inclusions in quartz and calcite, and for aqueous inclusions in calcite. However, the results confirm the ability of fluid inclusions containing two immiscible fluids to lead to PT reconstructions, even in overpressured environments.

  14. Stress field respond to massive injection of cold water into a geothermal reservoir study by geomechanical simulation

    NASA Astrophysics Data System (ADS)

    Jeanne, P.; Rutqvist, J.

    2015-12-01

    In this paper, we study the evolution and distribution of the stress tensor within the northwest part of The Geysers geothermal field during 9 years of injection (from 2003 to 2012). Based on a refined 3D structural model, developed by Calpine Corporation, where the horizon surfaces are mapped, we use the GMS™ GUI to construct a realistic three-dimensional geologic model of the Northwest Geysers geothermal field. This model includes a low permeability graywacke layer that forms the caprock for the reservoir, an isothermal steam zone (the Normal Temperature Reservoir) within metagraywacke, a hornfels zone (the High Temperature Reservoir), and a felsite layer that is assumed to extend downward to the magmatic heat source. This model is mapped into a rectangular grid for use with the TOUGH-FLAC numerical simulator. Then, we reproduce the injection history of seven active wells between 2003 and 2012. Finally, our results are compared with previous works where the stress tensor was studied from the inversion of focal plane mechanism in the same area and during the same period. As in these publications we find that: (1) changes in the orientation of principal horizontal stress are very small after one decade of injection, and (2) at injection depth significant rotations of the initially vertically oriented maximum compressive principal stress occur in response to changes in the fluid injection rates. As observed in the field, we found that σ1 tilted towards the σ2 direction by approximately 15° when injection rates were at their peak level. Such a rotation consequently results in a local change in the state stress from a normal stress regime (Sv > SHmax> > Shmin) to a strike slip regime (SHmax> Sv > > Shmin) above and below the injection zone. Our results show that thermal processes are the principal cause for the stress tensor rotation.

  15. The use of detailed reservoir description and simulation studies in investigating completion strategies, cormorant, UK North Sea

    SciTech Connect

    Stiles, J.H.; Valenti, N.P.

    1987-01-01

    A portion of the Cormorant field in the U.K. North Sea is being developed using a subsea production system. All layers in the stratified reservoir section are being waterflooded concurrently by perforating the entire interval in both producers and injectors. The permeability contrast among the layers is such that there is potential for severe imbalance in the movement of the waterflood fronts, resulting in large volumes of early water production from high permeability layers and incomplete displacement of oil from less permeable layers. With the high cost of expanding platform facilities or performing workovers on subsea wells to re-distribute production and/or injection, there is considerable incentive to optimise the completions in new wells. This paper describes studies undertaken by Esso Exploration and Production U.K. to evaluate various completion strategies for newe subsea wells. These studies were done to complement work done by the operator, Shell U.K. Explorations and Production. The studies included detailed reservoir description work to define the oil-in-pace and permeability distribution, followed by simulation of the waterflood for a representative reservoir cross-section. Wellbore, flowline and pipeline hydraulics for the complex productions and injection system were included to more accurately model well rates. The results provide general insight into the nature of the displacement when waterflooding a stratified section with a limited nuber of wells. They also provide specific guidance on: (1) dual vs. single completions, (2) perforating, testing and stimulation sequence and (3) the benefits of partially perforating high permeability sands.

  16. The advanced computational testing and simulation toolkit (ACTS)

    SciTech Connect

    Drummond, L.A.; Marques, O.

    2002-05-21

    During the past decades there has been a continuous growth in the number of physical and societal problems that have been successfully studied and solved by means of computational modeling and simulation. Distinctively, a number of these are important scientific problems ranging in scale from the atomic to the cosmic. For example, ionization is a phenomenon as ubiquitous in modern society as the glow of fluorescent lights and the etching on silicon computer chips; but it was not until 1999 that researchers finally achieved a complete numerical solution to the simplest example of ionization, the collision of a hydrogen atom with an electron. On the opposite scale, cosmologists have long wondered whether the expansion of the Universe, which began with the Big Bang, would ever reverse itself, ending the Universe in a Big Crunch. In 2000, analysis of new measurements of the cosmic microwave background radiation showed that the geometry of the Universe is flat, and thus the Universe will continue expanding forever. Both of these discoveries depended on high performance computer simulations that utilized computational tools included in the Advanced Computational Testing and Simulation (ACTS) Toolkit. The ACTS Toolkit is an umbrella project that brought together a number of general purpose computational tool development projects funded and supported by the U.S. Department of Energy (DOE). These tools, which have been developed independently, mainly at DOE laboratories, make it easier for scientific code developers to write high performance applications for parallel computers. They tackle a number of computational issues that are common to a large number of scientific applications, mainly implementation of numerical algorithms, and support for code development, execution and optimization. The ACTS Toolkit Project enables the use of these tools by a much wider community of computational scientists, and promotes code portability, reusability, reduction of duplicate efforts

  17. Enabling Advanced Modeling and Simulations for Fuel-Flexible Combustors

    SciTech Connect

    Pitsch, Heinz

    2010-05-31

    The overall goal of the present project is to enable advanced modeling and simulations for the design and optimization of fuel-flexible turbine combustors. For this purpose we use a high fidelity, extensively-tested large-eddy simulation (LES) code and state-of-the-art models for premixed/partially-premixed turbulent combustion developed in the PI's group. In the frame of the present project, these techniques are applied, assessed, and improved for hydrogen enriched premixed and partially premixed gas-turbine combustion. Our innovative approaches include a completely consistent description of flame propagation; a coupled progress variable/level set method to resolve the detailed flame structure, and incorporation of thermal-diffusion (non-unity Lewis number) effects. In addition, we have developed a general flamelet-type transformation holding in the limits of both non-premixed and premixed burning. As a result, a model for partially premixed combustion has been derived. The coupled progress variable/level method and the general flamelet transformation were validated by LES of a lean-premixed low-swirl burner that has been studied experimentally at Lawrence Berkeley National Laboratory. The model is extended to include the non-unity Lewis number effects, which play a critical role in fuel-flexible combustor with high hydrogen content fuel. More specifically, a two-scalar model for lean hydrogen and hydrogen-enriched combustion is developed and validated against experimental and direct numerical simulation (DNS) data. Results are presented to emphasize the importance of non-unity Lewis number effects in the lean-premixed low-swirl burner of interest in this project. The proposed model gives improved results, which shows that the inclusion of the non-unity Lewis number effects is essential for accurate prediction of the lean-premixed low-swirl flame.

  18. Enabling Advanced Modeling and Simulations for Fuel-Flexible Combustors

    SciTech Connect

    Heinz Pitsch

    2010-05-31

    The overall goal of the present project is to enable advanced modeling and simulations for the design and optimization of fuel-flexible turbine combustors. For this purpose we use a high-fidelity, extensively-tested large-eddy simulation (LES) code and state-of-the-art models for premixed/partially-premixed turbulent combustion developed in the PI's group. In the frame of the present project, these techniques are applied, assessed, and improved for hydrogen enriched premixed and partially premixed gas-turbine combustion. Our innovative approaches include a completely consistent description of flame propagation, a coupled progress variable/level set method to resolve the detailed flame structure, and incorporation of thermal-diffusion (non-unity Lewis number) effects. In addition, we have developed a general flamelet-type transformation holding in the limits of both non-premixed and premixed burning. As a result, a model for partially premixed combustion has been derived. The coupled progress variable/level method and the general flamelet tranformation were validated by LES of a lean-premixed low-swirl burner that has been studied experimentally at Lawrence Berkeley National Laboratory. The model is extended to include the non-unity Lewis number effects, which play a critical role in fuel-flexible combustor with high hydrogen content fuel. More specifically, a two-scalar model for lean hydrogen and hydrogen-enriched combustion is developed and validated against experimental and direct numerical simulation (DNS) data. Results are presented to emphasize the importance of non-unity Lewis number effects in the lean-premixed low-swirl burner of interest in this project. The proposed model gives improved results, which shows that the inclusion of the non-unity Lewis number effects is essential for accurate prediction of the lean-premixed low-swirl flame.

  19. Sensitivity Studies of 3D Geothermal Reservoir Simulation: A Case Study in I-Lan Plain, Taiwan

    NASA Astrophysics Data System (ADS)

    Kuo, C. W.; Song, S. R.

    2015-12-01

    A large scale geothermal project conducted by Ministry of Science and Technology is initiated recently in I-Lan south area, northeastern Taiwan. The ultimate goal of this national project is to increase the percentage of renewable energy (ex. geothermal energy) to generate electricity. An integrated team which consists of various specialties are held together to investigate I-Lan area comprehensively. For example, I-Lan geological data, petrophysical analysis, seismicity, temperature gradient and distribution, hydrology, geochemistry, and heat source study etc. The geothermal gradient measured at one drilling well (1200m deep) is up to 50˚C/km and the prediction of temperature based on fluid inclusion analysis could be up to 300˚C. The geothermal reservoir is expected to occur at a fractured geological formation, Siling sandstone layer. A 3D subsurface geological model is built mainly based on the seismic exploration of the subsurface structure and well log data. According to the current conceptual model, the target area is bounded by two main faults, Jiaosi and Choshui faults. The preliminary results from all the investigations are integrated and used as input parameters to create a realistic numerical reservoir model. Numerical simulator TOUGH2 is used to study the geothermal energy potential. The initial state of temperature distribution is simulated and compared to the high resolution of magnetotelluric (MT) data. Simulation results show that they have similar pattern and therefore the prediction of geothermal potential in this area would be more reliable. Based on the realistic initial state, sensitivity studies are performed to investigate effects of relevant parameters on temperature distribution.

  20. Geological and petrophysical characterization of the ferron sandstone for 3-D simulation of a fluvial-deltaic reservoir. Annual report, October 1, 1994--September 30, 1995

    SciTech Connect

    Chidsey, T.C. Jr.; Allison, M.L.

    1996-05-01

    The objective of the Ferron Sandstone project is to develop a comprehensive, interdisciplinary, quantitative characterization of a fluvial-deltaic reservoir to allow realistic interwell and reservoir-scale models to be developed for improved oil-field development in similar reservoirs world-wide. Quantitative geological and petrophysical information on the Cretaceous Ferron Sandstone in east-central Utah was collected. Both new and existing data is being integrated into a three-dimensional model of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Simulation results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. Transfer of the project results to the petroleum industry is an integral component of the project. This report covers research activities for fiscal year 1994-95, the second year of the project. Most work consisted of developing field methods and collecting large quantities of existing and new data. We also continued to develop preliminary regional and case-study area interpretations. The project is divided into four tasks: (1) regional stratigraphic analysis, (2) case studies, (3) reservoirs models, and (4) field-scale evaluation of exploration strategies.

  1. Numerical simulation of CO2 leakage from a geologic disposal reservoir including transitions from super- to sub-critical conditions, and boiling of liquid of CO2

    SciTech Connect

    Pruess, Karsten

    2003-03-31

    The critical point of CO{sub 2} is at temperature and pressure conditions of T{sub crit} = 31.04 C, P{sub crit} = 73.82 bar. At lower (subcritical) temperatures and/or pressures, CO{sub 2} can exist in two different phase states, a liquid and a gaseous state, as well as in two-phase mixtures of these states. Disposal of CO{sub 2} into brine formations would be made at supercritical pressures. However, CO{sub 2} escaping from the storage reservoir may migrate upwards towards regions with lower temperatures and pressures, where CO{sub 2} would be in subcritical conditions. An assessment of the fate of leaking CO{sub 2} requires a capability to model not only supercritical but also subcritical CO{sub 2}, as well as phase changes between liquid and gaseous CO{sub 2} in sub-critical conditions. We have developed a methodology for numerically simulating the behavior of water-CO{sub 2} mixtures in permeable media under conditions that may include liquid, gaseous, and supercritical CO{sub 2}. This has been applied to simulations of leakage from a deep storage reservoir in which a rising CO{sub 2} plume undergoes transitions from supercritical to subcritical conditions. We find strong cooling effects when liquid CO{sub 2} rises to elevations where it begins to boil and evolve a gaseous CO{sub 2} phase. A three-phase zone forms (aqueous - liquid - gas), which over time becomes several hundred meters thick as decreasing temperatures permit liquid CO{sub 2} to advance to shallower elevations. Fluid mobilities are reduced in the three-phase region from phase interference effects. This impedes CO{sub 2} upflow, causes the plume to spread out laterally, and gives rise to dispersed CO{sub 2} discharge at the land surface. Our simulation suggests that temperatures along a CO{sub 2} leakage path may decline to levels low enough so that solid water ice and CO{sub 2} hydrate phases may be formed.

  2. T-R Cycle Characterization and Imaging: Advanced Diagnostic Methodology for Petroleum Reservoir and Trap Detection and Delineation

    SciTech Connect

    Ernest A. Mancini

    2006-08-30

    Characterization of stratigraphic sequences (T-R cycles or sequences) included outcrop studies, well log analysis and seismic reflection interpretation. These studies were performed by researchers at the University of Alabama, Wichita State University and McGill University. The outcrop, well log and seismic characterization studies were used to develop a depositional sequence model, a T-R cycle (sequence) model, and a sequence stratigraphy predictive model. The sequence stratigraphy predictive model developed in this study is based primarily on the modified T-R cycle (sequence) model. The T-R cycle (sequence) model using transgressive and regressive systems tracts and aggrading, backstepping, and infilling intervals or sections was found to be the most appropriate sequence stratigraphy model for the strata in the onshore interior salt basins of the Gulf of Mexico to improve petroleum stratigraphic trap and specific reservoir facies imaging, detection and delineation. The known petroleum reservoirs of the Mississippi Interior and North Louisiana Salt Basins were classified using T-R cycle (sequence) terminology. The transgressive backstepping reservoirs have been the most productive of oil, and the transgressive backstepping and regressive infilling reservoirs have been the most productive of gas. Exploration strategies were formulated using the sequence stratigraphy predictive model and the classification of the known petroleum reservoirs utilizing T-R cycle (sequence) terminology. The well log signatures and seismic reflector patterns were determined to be distinctive for the aggrading, backstepping and infilling sections of the T-R cycle (sequence) and as such, well log and seismic data are useful for recognizing and defining potential reservoir facies. The use of the sequence stratigraphy predictive model, in combination with the knowledge of how the distinctive characteristics of the T-R system tracts and their subdivisions are expressed in well log patterns

  3. Limitations in the use of pseudofunctions for up-scaling reservoir simulation models

    SciTech Connect

    Taggart, I.J.; Soedarmo, E.; Paterson, L.

    1995-12-31

    This work presents an alternative methodology of generating two-phase pseudo relative permeability and capillary pressure functions, using numerical simulation, when non-constant characteristic saturation curves exert a strong impact on the displacement process. The proposed length-dependence pseudofunction technique generates pseudofunctions from 2-dimensional cross-sectional black-oil simulations and later used in a 1-simulation predictions are compared to those of the conventional Kyte and Berry method. In addition to this, a case example is given to validate the application of length-dependent pseudos in a 3-dimensional simulation. In this example, sets of length-dependence pseudofunctions were generated and used in a 2-dimensional areal study. Simulation results showed that: (a) Curved saturation characteristic velocities occurred in most up-scaled representations and (b) The introduction of length-dependence pseudofunctions could result in improved predictions using coarse simulation models.

  4. Improved Miscible Nitrogen Flood Performance Utilizing Advanced Reservoir Characterization and Horizontal Laterals in a Class I Reservoir - East Binger (Marchand) Unit

    SciTech Connect

    Joe Sinner

    2004-06-30

    The DOE-sponsored project at the East Binger Unit is an investigation into the benefits of reservoir characterization and horizontal wells in this particular setting of geologic and recovery method. The geologic setting is a tight (average porosity of 7% and average permeability of less than 1 millidarcy) Pennsylvanian-age sandstone at about 10,000 feet, and the recovery method is a miscible nitrogen flood. The projected oil recovery of the East Binger Unit, prior to the initiation of this project, was about 25%. Gravity segregation of nitrogen and crude oil was believed to be the principal cause of the poor sweep efficiency, and it was envisioned that with horizontal producing wells in the lower portion of the reservoir and horizontal injection wells near the top, the process could be converted from a lateral displacement process to a vertical displacement/gravity assisted process. Through the characterization and field development work completed in Budget Periods 1 and 2, Binger Operations, LLC (BOL) has developed a different interpretation of the sweep problem as well as a different approach to improving recovery. The sweep problem is now believed to be one of an areal nature, due to a combination of natural and hydraulic fracturing. Vertical wells have provided a much better economic return than have the horizontal wells. The natural and hydraulic fracturing manifests itself as a direction of higher permeability, and the flood is being converted to a line drive flood aligned with this orientation. Consistent with this concept, horizontal wells have been drilled along the line of the fracture orientation, such that hydraulic fracturing leads to 'longitudinal' fractures, in line with the wellbore. As such, the hydraulically fractured horizontal wells are not significantly different than hydraulically fractured vertical wells - save for the potential for a much longer fracture face. This Topical Report contains data from new wells, plus new and updated production

  5. Drainage-system development in consecutive melt seasons at a polythermal, Arctic glacier, evaluated by flow-recession analysis and linear-reservoir simulation.

    PubMed

    Hodgkins, Richard; Cooper, Richard; Tranter, Martyn; Wadham, Jemma

    2013-07-26

    [1] The drainage systems of polythermal glaciers play an important role in high-latitude hydrology, and are determinants of ice flow rate. Flow-recession analysis and linear-reservoir simulation of runoff time series are here used to evaluate seasonal and inter-annual variability in the drainage system of the polythermal Finsterwalderbreen, Svalbard, in 1999 and 2000. Linear-flow recessions are pervasive, with mean coefficients of a fast reservoir varying from 16 (1999) to 41 h (2000), and mean coefficients of an intermittent, slow reservoir varying from 54 (1999) to 114 h (2000). Drainage-system efficiency is greater overall in the first of the two seasons, the simplest explanation of which is more rapid depletion of the snow cover. Reservoir coefficients generally decline during each season (at 0.22 h d(-1) in 1999 and 0.52 h d(-1) in 2000), denoting an increase in drainage efficiency. However, coefficients do not exhibit a consistent relationship with discharge. Finsterwalderbreen therefore appears to behave as an intermediate case between temperate glaciers and other polythermal glaciers with smaller proportions of temperate ice. Linear-reservoir runoff simulations exhibit limited sensitivity to a relatively wide range of reservoir coefficients, although the use of fixed coefficients in a spatially lumped model can generate significant subseasonal error. At Finsterwalderbreen, an ice-marginal channel with the characteristics of a fast reservoir, and a subglacial upwelling with the characteristics of a slow reservoir, both route meltwater to the terminus. This suggests that drainage-system components of significantly contrasting efficiencies can coexist spatially and temporally at polythermal glaciers.

  6. Drainage-system development in consecutive melt seasons at a polythermal, Arctic glacier, evaluated by flow-recession analysis and linear-reservoir simulation

    PubMed Central

    Hodgkins, Richard; Cooper, Richard; Tranter, Martyn; Wadham, Jemma

    2013-01-01

    [1] The drainage systems of polythermal glaciers play an important role in high-latitude hydrology, and are determinants of ice flow rate. Flow-recession analysis and linear-reservoir simulation of runoff time series are here used to evaluate seasonal and inter-annual variability in the drainage system of the polythermal Finsterwalderbreen, Svalbard, in 1999 and 2000. Linear-flow recessions are pervasive, with mean coefficients of a fast reservoir varying from 16 (1999) to 41 h (2000), and mean coefficients of an intermittent, slow reservoir varying from 54 (1999) to 114 h (2000). Drainage-system efficiency is greater overall in the first of the two seasons, the simplest explanation of which is more rapid depletion of the snow cover. Reservoir coefficients generally decline during each season (at 0.22 h d−1 in 1999 and 0.52 h d−1 in 2000), denoting an increase in drainage efficiency. However, coefficients do not exhibit a consistent relationship with discharge. Finsterwalderbreen therefore appears to behave as an intermediate case between temperate glaciers and other polythermal glaciers with smaller proportions of temperate ice. Linear-reservoir runoff simulations exhibit limited sensitivity to a relatively wide range of reservoir coefficients, although the use of fixed coefficients in a spatially lumped model can generate significant subseasonal error. At Finsterwalderbreen, an ice-marginal channel with the characteristics of a fast reservoir, and a subglacial upwelling with the characteristics of a slow reservoir, both route meltwater to the terminus. This suggests that drainage-system components of significantly contrasting efficiencies can coexist spatially and temporally at polythermal glaciers. PMID:25598557

  7. Geological and petrophysical characterization of the ferron sandstone for 3-D simulation of a fluvial-deltaic reservoir. Quarterly report, January 1 - March 31, 1996

    SciTech Connect

    Allison, M.L.

    1996-04-01

    The objective of this project is to develop a comprehensive, interdisciplinary, and quantitative characterization of a fluvial- deltaic reservoir which will allow realistic inter-well and reservoir-scale modeling to be constructed for improved oil-field development in similar reservoirs world-wide. The geological and petrophysical properties of the Cretaceous Ferron Sandstone in east-central Utah will be quantitatively determined. Both new and existing data will be integrated into a three-dimensional representation of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. Technical progress this quarter is divided into case-study evaluation, geostatistics, and technology transfer activities. The work focused on one parasequence set, referred to as the Kf-1, in the Willow Springs Wash and Ivie Creek case-study areas. In the Ivie Creek case-study area the Kf-1 represents a river-dominated delta deposit which changes from proximal to distal from east to west. In the Willow Springs Wash case-study area the Kf-1 contains parasequences which represent river-dominated and wave-modified environments of deposition. Interpretations of lithofacies, bounding surfaces, and other geologic information are being used to determine reservoir architecture. Graphical interpretations of important flow boundaries in the case-study areas, identified on photomosaics, are being used to construct cross sections, paleogeographic, maps, and reservoir models. Geostatistical analyses are being incorporated with the geological characterization to develop a three-dimensional model of the reservoirs for fluid-flow simulation.

  8. Reservoir characterization of Pennsylvanian sandstone reservoirs. Final report

    SciTech Connect

    Kelkar, M.

    1995-02-01

    This final report summarizes the progress during the three years of a project on Reservoir Characterization of Pennsylvanian Sandstone Reservoirs. The report is divided into three sections: (i) reservoir description; (ii) scale-up procedures; (iii) outcrop investigation. The first section describes the methods by which a reservoir can be described in three dimensions. The next step in reservoir description is to scale up reservoir properties for flow simulation. The second section addresses the issue of scale-up of reservoir properties once the spatial descriptions of properties are created. The last section describes the investigation of an outcrop.

  9. Authors' reply to discussion of reservoir simulation: state of the art

    SciTech Connect

    Coats, K.H.

    1983-06-01

    This article argues that although many of the mechanisms operative in chemical flooding are not well understood, a final judgment of curently available simulators cannot be made until adequate laboratory data are available to exploit the mechansims that are known. Refers to the Bell Creek micellar/polymer pilot simulation and chemical flood simulation of the El Dorado pilot as compared to the field results.

  10. Coal chemistry for mechanical engineers: from macromolecular thermodynamics to reservoir simulation

    SciTech Connect

    Vyacheslav Romanov

    2007-06-15

    In pilot trials and commercial scale field demonstrations of CO{sub 2} storage in coal seams, quite often unexpected problems with coal swelling around injector and reducing injection efficiency (e.g., Allison unit in the San Juan Basin, RECOPOL in Poland, Hokkaido project in Japan, etc.) can stall or even terminate the site development. To avoid the costly mistakes with the prospective site evaluation, the state of the art in reservoir modeling needs to be improved by taking into account coal properties at the macromolecular level. The current models are based on the rock mechanics, which ignores decades of experimental and theoretical studies of interaction between coal and injected fluids. A pseudopolymer approach is introduced to the modelers as a viable alternative, especially, at medium to high fluid pressures. Further, it is discussed how the thermodynamics of CO{sub 2} dissolution in the macromolecular network of the coal matrix can be incorporated into geomechanical models. 96 refs., 4 figs.

  11. Coal Chemistry for Mechanical Engineers: From Macromolecular Thermodynamics to Reservoir Simulation

    SciTech Connect

    Romanov, V.

    2007-05-01

    In pilot trials and commercial scale field demonstrations of CO2 storage in coal seams, quite often unexpected problems with coal swelling around injector and reducing injection efficiency (e.g., Allison unit in the San Juan Basin, RECOPOL in Poland, Hokkaido project in Japan, etc.) can stall or even terminate the site development. To avoid the costly mistakes with the prospective site evaluation, the state of the art in reservoir modeling needs to be improved by taking into account coal properties at the macromolecular level. The current models are based on the rock mechanics, which ignores decades of experimental and theoretical studies of interaction between coal and injected fluids. A pseudopolymer approach is introduced to the modelers as a viable alternative, especially, at medium to high fluid pressures. Further, it is discussed how the thermodynamics of CO2 dissolution in the macromolecular network of the coal matrix can be incorporated into geomechanical models.

  12. Application of integrated reservoir management and reservoir characterization to optimize infill drilling. Annual technical progress report, June 13, 1996--June 12, 1997

    SciTech Connect

    Nevans, J.W.; Pregger, B.; Blasingame, T.; Doublet, L.; Freeman, G.; Callard, J.; Moore, D.; Davies, D.; Vessell, R.

    1997-08-01

    Infill drilling of wells on a uniform spacing, without regard to reservoir performance and characterization, does not optimize reservoir development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. New and emerging technologies, such as geostatistical modeling, rigorous decline curve analysis, reservoir rock typing, and special core analysis can be used to develop a 3-D simulation model for prediction of infill locations. The purpose of this project is to demonstrate the application of advanced secondary recovery technologies to remedy producibility problems in typical shallow shelf carbonate reservoirs of the Permian Basin, Texas. Typical problems include poor sweep efficiency, poor balancing of injection and production rates, and completion techniques that are inadequate for optimal production and injection.

  13. Simulation study to determine the feasibility of injecting hydrogen sulfide, carbon dioxide and nitrogen gas injection to improve gas and oil recovery oil-rim reservoir

    NASA Astrophysics Data System (ADS)

    Eid, Mohamed El Gohary

    This study is combining two important and complicated processes; Enhanced Oil Recovery, EOR, from the oil rim and Enhanced Gas Recovery, EGR from the gas cap using nonhydrocarbon injection gases. EOR is proven technology that is continuously evolving to meet increased demand and oil production and desire to augment oil reserves. On the other hand, the rapid growth of the industrial and urban development has generated an unprecedented power demand, particularly during summer months. The required gas supplies to meet this demand are being stretched. To free up gas supply, alternative injectants to hydrocarbon gas are being reviewed to support reservoir pressure and maximize oil and gas recovery in oil rim reservoirs. In this study, a multi layered heterogeneous gas reservoir with an oil rim was selected to identify the most optimized development plan for maximum oil and gas recovery. The integrated reservoir characterization model and the pertinent transformed reservoir simulation history matched model were quality assured and quality checked. The development scheme is identified, in which the pattern and completion of the wells are optimized to best adapt to the heterogeneity of the reservoir. Lateral and maximum block contact holes will be investigated. The non-hydrocarbon gases considered for this study are hydrogen sulphide, carbon dioxide and nitrogen, utilized to investigate miscible and immiscible EOR processes. In November 2010, re-vaporization study, was completed successfully, the first in the UAE, with an ultimate objective is to examine the gas and condensate production in gas reservoir using non hydrocarbon gases. Field development options and proces schemes as well as reservoir management and long term business plans including phases of implementation will be identified and assured. The development option that maximizes the ultimate recovery factor will be evaluated and selected. The study achieved satisfactory results in integrating gas and oil

  14. An efficient time advancing strategy for energy-preserving simulations

    NASA Astrophysics Data System (ADS)

    Capuano, F.; Coppola, G.; de Luca, L.

    2015-08-01

    Energy-conserving numerical methods are widely employed within the broad area of convection-dominated systems. Semi-discrete conservation of energy is usually obtained by adopting the so-called skew-symmetric splitting of the non-linear convective term, defined as a suitable average of the divergence and advective forms. Although generally allowing global conservation of kinetic energy, it has the drawback of being roughly twice as expensive as standard divergence or advective forms alone. In this paper, a general theoretical framework has been developed to derive an efficient time-advancement strategy in the context of explicit Runge-Kutta schemes. The novel technique retains the conservation properties of skew-symmetric-based discretizations at a reduced computational cost. It is found that optimal energy conservation can be achieved by properly constructed Runge-Kutta methods in which only divergence and advective forms for the convective term are used. As a consequence, a considerable improvement in computational efficiency over existing practices is achieved. The overall procedure has proved to be able to produce new schemes with a specified order of accuracy on both solution and energy. The effectiveness of the method as well as the asymptotic behavior of the schemes is demonstrated by numerical simulation of Burgers' equation.

  15. An Advanced Leakage Scheme for Neutrino Treatment in Astrophysical Simulations

    NASA Astrophysics Data System (ADS)

    Perego, A.; Cabezón, R. M.; Käppeli, R.

    2016-04-01

    We present an Advanced Spectral Leakage (ASL) scheme to model neutrinos in the context of core-collapse supernovae (CCSNe) and compact binary mergers. Based on previous gray leakage schemes, the ASL scheme computes the neutrino cooling rates by interpolating local production and diffusion rates (relevant in optically thin and thick regimes, respectively) separately for discretized values of the neutrino energy. Neutrino trapped components are also modeled, based on equilibrium and timescale arguments. The better accuracy achieved by the spectral treatment allows a more reliable computation of neutrino heating rates in optically thin conditions. The scheme has been calibrated and tested against Boltzmann transport in the context of Newtonian spherically symmetric models of CCSNe. ASL shows a very good qualitative and a partial quantitative agreement for key quantities from collapse to a few hundreds of milliseconds after core bounce. We have proved the adaptability and flexibility of our ASL scheme, coupling it to an axisymmetric Eulerian and to a three-dimensional smoothed particle hydrodynamics code to simulate core collapse. Therefore, the neutrino treatment presented here is ideal for large parameter-space explorations, parametric studies, high-resolution tests, code developments, and long-term modeling of asymmetric configurations, where more detailed neutrino treatments are not available or are currently computationally too expensive.

  16. AN ADVANCED LEAKAGE SCHEME FOR NEUTRINO TREATMENT IN ASTROPHYSICAL SIMULATIONS

    SciTech Connect

    Perego, A.; Cabezón, R. M.; Käppeli, R.

    2016-04-15

    We present an Advanced Spectral Leakage (ASL) scheme to model neutrinos in the context of core-collapse supernovae (CCSNe) and compact binary mergers. Based on previous gray leakage schemes, the ASL scheme computes the neutrino cooling rates by interpolating local production and diffusion rates (relevant in optically thin and thick regimes, respectively) separately for discretized values of the neutrino energy. Neutrino trapped components are also modeled, based on equilibrium and timescale arguments. The better accuracy achieved by the spectral treatment allows a more reliable computation of neutrino heating rates in optically thin conditions. The scheme has been calibrated and tested against Boltzmann transport in the context of Newtonian spherically symmetric models of CCSNe. ASL shows a very good qualitative and a partial quantitative agreement for key quantities from collapse to a few hundreds of milliseconds after core bounce. We have proved the adaptability and flexibility of our ASL scheme, coupling it to an axisymmetric Eulerian and to a three-dimensional smoothed particle hydrodynamics code to simulate core collapse. Therefore, the neutrino treatment presented here is ideal for large parameter-space explorations, parametric studies, high-resolution tests, code developments, and long-term modeling of asymmetric configurations, where more detailed neutrino treatments are not available or are currently computationally too expensive.

  17. Modeling and simulation challenges pursued by the Consortium for Advanced Simulation of Light Water Reactors (CASL)

    NASA Astrophysics Data System (ADS)

    Turinsky, Paul J.; Kothe, Douglas B.

    2016-05-01

    The Consortium for the Advanced Simulation of Light Water Reactors (CASL), the first Energy Innovation Hub of the Department of Energy, was established in 2010 with the goal of providing modeling and simulation (M&S) capabilities that support and accelerate the improvement of nuclear energy's economic competitiveness and the reduction of spent nuclear fuel volume per unit energy, and all while assuring nuclear safety. To accomplish this requires advances in M&S capabilities in radiation transport, thermal-hydraulics, fuel performance and corrosion chemistry. To focus CASL's R&D, industry challenge problems have been defined, which equate with long standing issues of the nuclear power industry that M&S can assist in addressing. To date CASL has developed a multi-physics ;core simulator; based upon pin-resolved radiation transport and subchannel (within fuel assembly) thermal-hydraulics, capitalizing on the capabilities of high performance computing. CASL's fuel performance M&S capability can also be optionally integrated into the core simulator, yielding a coupled multi-physics capability with untapped predictive potential. Material models have been developed to enhance predictive capabilities of fuel clad creep and growth, along with deeper understanding of zirconium alloy clad oxidation and hydrogen pickup. Understanding of corrosion chemistry (e.g., CRUD formation) has evolved at all scales: micro, meso and macro. CFD R&D has focused on improvement in closure models for subcooled boiling and bubbly flow, and the formulation of robust numerical solution algorithms. For multiphysics integration, several iterative acceleration methods have been assessed, illuminating areas where further research is needed. Finally, uncertainty quantification and data assimilation techniques, based upon sampling approaches, have been made more feasible for practicing nuclear engineers via R&D on dimensional reduction and biased sampling. Industry adoption of CASL's evolving M

  18. Numerical Simulation of Magma Reservoirs to Interpret Chrono-Chemical Signal

    NASA Astrophysics Data System (ADS)

    Lovera, O. M.; Harrison, M.; Schmitt, A. K.; Wielicki, M. M.; Tierney, C. R.

    2015-12-01

    We have developed a 2-D finite difference thermokinetic model to describe the evolution of open-system magma reservoirs incorporating crustal assimilation, melt recharge and fractional crystallization. The model is based on a T-crystallization relationship coupled to a zircon growth model calibrated from zircon solubility and a crustal T-assimilation curve from the EC-RAFC models of Spera and Bohrson (2004). Our model takes into account the latent heat of melting and/or solidification and features temperature-dependent thermal diffusivity. Trace element abundances in the melt are calculated through conservation of mass and isotopic speciation allowing prediction of the distribution of ɛHf values in zircons. Applications to model the evolution of deeply emplaced large granitoids (i.e., ~25km, ~15000 km3) show that steady recharge yields a zircon population that records the full spectrum of ɛHf in the system whereas no recharge yields a much narrower range. . Insights gained from modeling reinforce our view that the relationship between assimilation and geothermal structure can be used to estimate past crustal thickness of convergent margins. Modeling of shallow, initially small, subvolcanic magma reservoirs (i.e., ~7 km, ~200 km3) permits insights into zircon age and compositional variability for large silicic volcanic fields and associated calderas. Thermal modeling indicates that substantial recharge is required to maintain magmatic temperatures in the core of an intrusive complex where zircon remains saturated for periods of 100's of kiloyears. Coupled with previously developed statistical methods, zircon rim-ages predicted by the model were compared to the U-Th rim ages measured from five distinct lava domes of the Altiplano-Puna Volcanic Complex erupted between ca. 87 and 120 ka. The fitting constrains the amount of recharge to ~10-3 km3/a between the time of initial intrusion (>500 ka) and the eruption age (75-100 ka). Thus zircons may have the potential to

  19. Subglacial melting associated with activity at Bárdarbunga volcano, Iceland, explored using numerical reservoir simulations

    NASA Astrophysics Data System (ADS)

    Reynolds, Hannah I.; Gudmundsson, Magnús T.; Högnadóttir, Thórdís

    2015-04-01

    cause rapid increase in geothermal activity. However, a shallow intrusion into a cold groundwater reservoir will have a very muted thermal response even when an intrusion stops within a few tens of meters from the surface. Thus, our results indicate that minor subglacial eruptions, similar or slightly larger than the small eruption north of the glacier on the 29 August, are the most plausible explanation for the formation of the ice cauldrons observed. These results have implications for the understanding and interpretation of thermal signals observed at ice-covered volcanoes, highlighting the importance of reservoir/bedrock thermal state prior to intrusion.

  20. Numerical simulations of depressurization-induced gas production from gas hydrate reservoirs at the Walker Ridge 312 site, northern Gulf of Mexico

    SciTech Connect

    Myshakin, Evgeniy M.; Gaddipati, Manohar; Rose, Kelly; Anderson, Brian J.

    2012-06-01

    In 2009, the Gulf of Mexico (GOM) Gas Hydrates Joint-Industry-Project (JIP) Leg II drilling program confirmed that gas hydrate occurs at high saturations within reservoir-quality sands in the GOM. A comprehensive logging-while-drilling dataset was collected from seven wells at three sites, including two wells at the Walker Ridge 313 site. By constraining the saturations and thicknesses of hydrate-bearing sands using logging-while-drilling data, two-dimensional (2D), cylindrical, r-z and three-dimensional (3D) reservoir models were simulated. The gas hydrate occurrences inferred from seismic analysis are used to delineate the areal extent of the 3D reservoir models. Numerical simulations of gas production from the Walker Ridge reservoirs were conducted using the depressurization method at a constant bottomhole pressure. Results of these simulations indicate that these hydrate deposits are readily produced, owing to high intrinsic reservoir-quality and their proximity to the base of hydrate stability. The elevated in situ reservoir temperatures contribute to high (5–40 MMscf/day) predicted production rates. The production rates obtained from the 2D and 3D models are in close agreement. To evaluate the effect of spatial dimensions, the 2D reservoir domains were simulated at two outer radii. The results showed increased potential for formation of secondary hydrate and appearance of lag time for production rates as reservoir size increases. Similar phenomena were observed in the 3D reservoir models. The results also suggest that interbedded gas hydrate accumulations might be preferable targets for gas production in comparison with massive deposits. Hydrate in such accumulations can be readily dissociated due to heat supply from surrounding hydrate-free zones. Special cases were considered to evaluate the effect of overburden and underburden permeability on production. The obtained data show that production can be significantly degraded in comparison with a case using

  1. Advanced wellbore thermal simulator GEOTEMP2 research report

    SciTech Connect

    Mitchell, R.F.

    1982-02-01

    The development of the GEOTEMP2 wellbore thermal simulator is described. The major technical features include a general purpose air and mist drilling simulator and a two-phase steam flow simulator that can model either injection or production.

  2. Advanced reservoir characterization and evaluation of CO{sub 2} gravity drainage in the naturally fractured Spraberry Trend Area. Annual report, September 1, 1996--August 31, 1997

    SciTech Connect

    Schechter, D.S.

    1998-07-01

    The overall goal of this project is to assess the economic feasibility of CO{sub 2} flooding the naturally fractured Spraberry Trend Area in West Texas. This objective is being accomplished by conducting research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interaction in the reservoirs, (3) reservoir performance analysis, and (4) experimental investigations on CO{sub 2} gravity drainage in Spraberry whole cores. This report provides results of the second year of the five-year project for each of the four areas. In the first area, the author has completed the reservoir characterization, which includes matrix description and detection (from core-log integration) and fracture characterization. This information is found in Section 1. In the second area, the author has completed extensive inhibition experiments that strongly indicate that the weakly water-wet behavior of the reservoir rock may be responsible for poor waterflood response observed in many Spraberry fields. In the third area, the author has made significant progress in analytical and numerical simulation of performance in Spraberry reservoirs as seen in Section 3. In the fourth area, the author has completed several suites of CO{sub 2} gravity drainage in Spraberry and Berea whole cores at reservoir conditions and reported in Section 4. The results of these experiments have been useful in developing a model for free-fall gravity drainage and have validated the premise that CO{sub 2} will recover oil from tight, unconfined Spraberry matrix. The final three years of this project involves implementation of the CO{sub 2} pilot. Up to twelve new wells are planned in the pilot area; water injection wells to contain the CO{sub 2}, three production wells to monitor performance of CO{sub 2}, CO{sub 2} injection wells including one horizontal injection well and logging observation wells to monitor CO{sub 2} flood fronts. Results of drilling

  3. Genome Reshuffling for Advanced Intercross Permutation (GRAIP): Simulation and permutation for advanced intercross population analysis

    SciTech Connect

    Pierce, Jeremy; Broman, Karl; Lu, Lu; Chesler, Elissa J; Zhou, Guomin; Airey, David; Birmingham, Amanda; Williams, Robert

    2008-04-01

    Background: Advanced intercross lines (AIL) are segregating populations created using a multi-generation breeding protocol for fine mapping complex trait loci (QTL) in mice and other organisms. Applying QTL mapping methods for intercross and backcross populations, often followed by na ve permutation of individuals and phenotypes, does not account for the effect of AIL family structure in which final generations have been expanded and leads to inappropriately low significance thresholds. The critical problem with na ve mapping approaches in AIL populations is that the individual is not an exchangeable unit. Methodology/Principal Findings: The effect of family structure has immediate implications for the optimal AIL creation (many crosses, few animals per cross, and population expansion before the final generation) and we discuss these and the utility of AIL populations for QTL fine mapping. We also describe Genome Reshuffling for Advanced Intercross Permutation, (GRAIP) a method for analyzing AIL data that accounts for family structure. GRAIP permutes a more interchangeable unit in the final generation crosses - the parental genome - and simulating regeneration of a permuted AIL population based on exchanged parental identities. GRAIP determines appropriate genome-wide significance thresholds and locus-specific Pvalues for AILs and other populations with similar family structures. We contrast GRAIP with na ve permutation using a large densely genotyped mouse AIL population (1333 individuals from 32 crosses). A na ve permutation using coat color as a model phenotype demonstrates high false-positive locus identification and uncertain significance levels, which are corrected using GRAIP. GRAIP also detects an established hippocampus weight locus and a new locus, Hipp9a. Conclusions and Significance: GRAIP determines appropriate genome-wide significance thresholds and locus-specific Pvalues for AILs and other populations with similar family structures. The effect of

  4. Advanced Simulation Capability for Environmental Management (ASCEM) Phase II Demonstration

    SciTech Connect

    Freshley, M.; Hubbard, S.; Flach, G.; Freedman, V.; Agarwal, D.; Andre, B.; Bott, Y.; Chen, X.; Davis, J.; Faybishenko, B.; Gorton, I.; Murray, C.; Moulton, D.; Meyer, J.; Rockhold, M.; Shoshani, A.; Steefel, C.; Wainwright, H.; Waichler, S.

    2012-09-28

    In 2009, the National Academies of Science (NAS) reviewed and validated the U.S. Department of Energy Office of Environmental Management (EM) Technology Program in its publication, Advice on the Department of Energy’s Cleanup Technology Roadmap: Gaps and Bridges. The NAS report outlined prioritization needs for the Groundwater and Soil Remediation Roadmap, concluded that contaminant behavior in the subsurface is poorly understood, and recommended further research in this area as a high priority. To address this NAS concern, the EM Office of Site Restoration began supporting the development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific approach that uses an integration of toolsets for understanding and predicting contaminant fate and transport in natural and engineered systems. The ASCEM modeling toolset is modular and open source. It is divided into three thrust areas: Multi-Process High Performance Computing (HPC), Platform and Integrated Toolsets, and Site Applications. The ASCEM toolsets will facilitate integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. During fiscal year 2012, the ASCEM project continued to make significant progress in capabilities development. Capability development occurred in both the Platform and Integrated Toolsets and Multi-Process HPC Simulator areas. The new Platform and Integrated Toolsets capabilities provide the user an interface and the tools necessary for end-to-end model development that includes conceptual model definition, data management for model input, model calibration and uncertainty analysis, and model output processing including visualization. The new HPC Simulator capabilities target increased functionality of process model representations, toolsets for interaction with the Platform, and model confidence testing and verification for

  5. Petrophysical Characterization and Reservoir Simulator for Methane Gas Production from Gulf of Mexico Hydrates

    SciTech Connect

    Kishore Mohanty; Bill Cook; Mustafa Hakimuddin; Ramanan Pitchumani; Damiola Ogunlana; Jon Burger; John Shillinglaw

    2006-06-30

    Gas hydrates are crystalline, ice-like compounds of gas and water molecules that are formed under certain thermodynamic conditions. Hydrate deposits occur naturally within ocean sediments just below the sea floor at temperatures and pressures existing below about 500 meters water depth. Gas hydrate is also stable in conjunction with the permafrost in the Arctic. Most marine gas hydrate is formed of microbially generated gas. It binds huge amounts of methane into the sediments. Estimates of the amounts of methane sequestered in gas hydrates worldwide are speculative and range from about 100,000 to 270,000,000 trillion cubic feet (modified from Kvenvolden, 1993). Gas hydrate is one of the fossil fuel resources that is yet untapped, but may play a major role in meeting the energy challenge of this century. In this project novel techniques were developed to form and dissociate methane hydrates in porous media, to measure acoustic properties and CT properties during hydrate dissociation in the presence of a porous medium. Hydrate depressurization experiments in cores were simulated with the use of TOUGHFx/HYDRATE simulator. Input/output software was developed to simulate variable pressure boundary condition and improve the ease of use of the simulator. A series of simulations needed to be run to mimic the variable pressure condition at the production well. The experiments can be matched qualitatively by the hydrate simulator. The temperature of the core falls during hydrate dissociation; the temperature drop is higher if the fluid withdrawal rate is higher. The pressure and temperature gradients are small within the core. The sodium iodide concentration affects the dissociation pressure and rate. This procedure and data will be useful in designing future hydrate studies.

  6. Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report, October 1--December 31, 1995

    SciTech Connect

    1996-01-22

    Objective is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery and to transfer this technology to oil and gas producers in the Permian Basin. The demonstration plan includes developing a control area using standard reservoir management techniques and comparing the performance of the control area with an area developed using advanced management methods. Specific goals are (1) to demonstrate that a development drilling program and pressure maintenance program, based on advanced reservoir management methods, can significantly improve oil recovery compared with existing technology applications, and (2) to transfer the advanced technologies to oil and gas producers in the Permian Basin and elswhere in the US oil and gas industry. This is the first quarterly progress report on the project; results to date are summarized.

  7. Monte Carlo molecular simulation of the hydration of Na-montmorillonite at reservoir conditions.

    PubMed

    de Pablo, L; Chávez, M L; Sum, A K; de Pablo, J J

    2004-01-08

    The hydration of Na-saturated Wyoming-type montmorillonite is investigated by Monte Carlo simulations at constant stress in the NP(zz)T ensemble and at constant chemical potential in the microVT ensemble, at the sedimentary basin temperature of 353 K and pressure of 625 bar, equivalent to 2-4 km depth. The simulations use procedures established in Chavez-Paez et al. [J. Chem. Phys. 114, 1405 (2001)]. At these conditions, simulations predict a single stable form of 1,2-water layer Na-montmorillonite, containing 164.38 mg/g or 53.37 molecules/layer of adsorbed water and having a spacing of 12.72 A. The corresponding density is 0.32 g/ml. Sodium ions are coordinated with six molecules of water separated 2.30-2.33 A. Water molecules are closer to the central interlayer plane and the spacing is larger than that at 300 K and 1 bar. The interlayer configuration consists of two symmetrical layers of oriented water molecules 1.038 A from the central plane, with the hydrogen atoms in two outermost layers, 3.826 A apart, and the sodium ions on the central plane located between the water layers. The interlayer configuration can be considered to be a stable two-layer intermediate between the one- and two-layer hydrates. Our simulations do not predict formation of other hydrates of Na-montmorillonite at 353 K and 615 bar.

  8. Simulation Modeling of Zooplankton and Benthos in Reservoirs: Documentation and Development of Model Constructs.

    DTIC Science & Technology

    1980-03-01

    phosphorus to account for material flow in the system. Fourth, the recommended minimum time frame for model simulation is 1 day. Subject areas covered by...percent N after 15 weeks in a buffered Hexamine solution (Hopkins 1968). Hopkins believed that most of the leached material was protein. Similar...Modeling such a simple flow of material would be relatively easy, but, unfortunately, it would probably have little relation to the real world. The

  9. Intercomparison of simulation models for CO{sub 2} disposal in underground storage reservoirs

    SciTech Connect

    Pruess, K.; Tsang, C.F.; Law, D.; Oldenburg, C.

    2001-01-01

    An intercomparison study between simulation codes for terrestrial sequestration of CO{sub 2} is proposed. The objectives are, on the one hand, to focus and evaluate key processes through numerical simulation and, on the other, to explore the strengths of different codes and achieve acceptance of such codes for use in the development of geologic systems for CO{sub 2} disposal. This will be carried out through the study of a series of test problems by groups using their simulation codes. A progression from simple and uncoupled to increasingly complex and coupled problems is envisioned. The proposed study will attempt to involve interested technical groups worldwide, and will proceed through an iterative process of problem definition, solution comparison, discussion and refinement. The Internet will be used as a medium for communicating and organizing activities, and for a flexible exchange of information and documentation of results. In addition, it is planned to hold a series of workshops. The present write-up includes an initial set of eight proposed test problems and represents the first step in the process. Readers are encouraged to communicate with us at the email address above to indicate their interest and to provide suggestions and input.

  10. Modeling and simulation challenges pursued by the Consortium for Advanced Simulation of Light Water Reactors (CASL)

    SciTech Connect

    Turinsky, Paul J.; Kothe, Douglas B.

    2016-05-15

    The Consortium for the Advanced Simulation of Light Water Reactors (CASL), the first Energy Innovation Hub of the Department of Energy, was established in 2010 with the goal of providing modeling and simulation (M&S) capabilities that support and accelerate the improvement of nuclear energy's economic competitiveness and the reduction of spent nuclear fuel volume per unit energy, and all while assuring nuclear safety. To accomplish this requires advances in M&S capabilities in radiation transport, thermal-hydraulics, fuel performance and corrosion chemistry. To focus CASL's R&D, industry challenge problems have been defined, which equate with long standing issues of the nuclear power industry that M&S can assist in addressing. To date CASL has developed a multi-physics “core simulator” based upon pin-resolved radiation transport and subchannel (within fuel assembly) thermal-hydraulics, capitalizing on the capabilities of high performance computing. CASL's fuel performance M&S capability can also be optionally integrated into the core simulator, yielding a coupled multi-physics capability with untapped predictive potential. Material models have been developed to enhance predictive capabilities of fuel clad creep and growth, along with deeper understanding of zirconium alloy clad oxidation and hydrogen pickup. Understanding of corrosion chemistry (e.g., CRUD formation) has evolved at all scales: micro, meso and macro. CFD R&D has focused on improvement in closure models for subcooled boiling and bubbly flow, and the formulation of robust numerical solution algorithms. For multiphysics integration, several iterative acceleration methods have been assessed, illuminating areas where further research is needed. Finally, uncertainty quantification and data assimilation techniques, based upon sampling approaches, have been made more feasible for practicing nuclear engineers via R&D on dimensional reduction and biased sampling. Industry adoption of CASL's evolving M

  11. Application of integrated reservoir management and reservoir characterization to optimize infill drilling. Quarterly progress report, June 13, 1995--September 12, 1995

    SciTech Connect

    Pande, P.K.

    1995-09-12

    At this stage of the reservoir characterization research, the main emphasis is on the geostatistics and reservoir simulation. Progress is reported on geological analysis, reservoir simulation, and reservoir management.

  12. Simulation-based inexact chance-constrained nonlinear programming for eutrophication management in the Xiangxi Bay of Three Gorges Reservoir.

    PubMed

    Huang, Y L; Huang, G H; Liu, D F; Zhu, H; Sun, W

    2012-10-15

    Although integrated simulation and optimization approaches under stochastic uncertainty have been applied to eutrophication management problems, few studies are reported in eutrophication control planning where multiple formats of uncertainties and nonlinearities are addressed in forms of intervals and probabilistic distributions within an integrated framework. Since the impounding of Three Gorges Reservoir (TGR), China in 2003, the hydraulic conditions and aquatic environment of the Xiangxi Bay (XXB) have changed significantly. The resulting emergence of eutrophication and algal blooms leads to its deteriorated water quality. The XXB becomes an ideal case study area. Thus, a simulation-based inexact chance-constrained nonlinear programming (SICNP) model is developed and applied to eutrophication control planning in the XXB of the TGR under uncertainties. In the SICNP, the wastewater treatment costs for removing total phosphorus (TP) are set as the objective function; effluent discharge standards, stream water quality standards and eutrophication control standards are considered in the constraints; a steady-state simulation model for phosphorus transport and fate is embedded in the environmental standards constraints; the interval programming and chance-constrained approaches are integrated to provide interval decision variables but also the associated risk levels in violating the system constraints. The model results indicate that changes in the violating level (q) will result in different strategy distributions at spatial and temporal scales; the optimal value of cost objective is from [2.74, 13.41] million RMB to [2.25, 13.08] million RMB when q equals from 0.01 to 0.25; the required TP treatment efficiency for the Baisha plant is the most stringent, which is followed by the Xiakou Town and the Zhaojun Town, while the requirement for the Pingyikou cement plant is the least stringent. The model results are useful for making optimal policies on eutrophication

  13. Application of integrated reservoir management and reservoir characterization to optimize infill drilling. Annual report, June 13, 1994--June 12, 1995

    SciTech Connect

    Pande, P.K.

    1996-11-01

    This project has used a multi-disciplinary approach employing geology, geophysics, and engineering to conduct advanced reservoir characterization and management activities to design and implement an optimized infill drilling program at the North Robertson (Clearfork) Unit in Gaines County, Texas. The activities during the first Budget Period have consisted of developing an integrated reservoir description from geological, engineering, and geostatistical studies, and using this description for reservoir flow simulation. Specific reservoir management activities are being identified and tested. The geologically targeted infill drilling program will be implemented using the results of this work. A significant contribution of this project is to demonstrate the use of cost-effective reservoir characterization and management tools that will be helpful to both independent and major operators for the optimal development of heterogeneous, low permeability shallow-shelf carbonate (SSC) reservoirs. The techniques that are outlined for the formulation of an integrated reservoir description apply to all oil and gas reservoirs, but are specifically tailored for use in the heterogeneous, low permeability carbonate reservoirs of West Texas.

  14. Genome Reshuffling for Advanced Intercross Permutation (GRAIP): Simulation and permutation for advanced intercross population analysis

    SciTech Connect

    Pierce, Jeremy; Broman, Karl; Chesler, Elissa J; Zhou, Guomin; Airey, David; Birmingham, Amanda; Williams, Robert

    2008-01-01

    Abstract Background Advanced intercross lines (AIL) are segregating populations created using a multigeneration breeding protocol for fine mapping complex traits in mice and other organisms. Applying quantitative trait locus (QTL) mapping methods for intercross and backcross populations, often followed by na ve permutation of individuals and phenotypes, does not account for the effect of family structure in AIL populations in which final generations have been expanded and leads to inappropriately low significance thresholds. The critical problem with a na ve mapping approach in such AIL populations is that the individual is not an exchangeable unit given the family structure. Methodology/Principal Findings The effect of family structure has immediate implications for the optimal AIL creation (many crosses, few animals per cross, and population expansion before the final generation) and we discuss these and the utility of AIL populations for QTL fine mapping. We also describe Genome Reshuffling for Advanced Intercross Permutation, (GRAIP) a method for analyzing AIL data that accounts for family structure. RAIP permutes a more interchangeable unit in the final generation crosses - the parental genome - and simulating regeneration of a permuted AIL population based on exchanged parental identities. GRAIP determines appropriate genome- ide significance thresholds and locus-specific P-values for AILs and other populations with similar family structures. We contrast GRAIP with na ve permutation using a large densely genotyped mouse AIL population (1333 individuals from 32 crosses). A na ve permutation using coat color as a model phenotype demonstrates high false-positive locus identification and uncertain significance levels in our AIL population, which are corrected by use of GRAIP. We also show that GRAIP detects an established hippocampus weight locus and a new locus, Hipp9a. Conclusions and Significance GRAIP determines appropriate genome-wide significance thresholds

  15. Advancement of DOE's EnergyPlus Building Energy Simulation Payment

    SciTech Connect

    Gu, Lixing; Shirey, Don; Raustad, Richard; Nigusse, Bereket; Sharma, Chandan; Lawrie, Linda; Strand, Rick; Pedersen, Curt; Fisher, Dan; Lee, Edwin; Witte, Mike; Glazer, Jason; Barnaby, Chip

    2011-09-30

    EnergyPlus{sup TM} is a new generation computer software analysis tool that has been developed, tested, and commercialized to support DOE's Building Technologies (BT) Program in terms of whole-building, component, and systems R&D (http://www.energyplus.gov). It is also being used to support evaluation and decision making of zero energy building (ZEB) energy efficiency and supply technologies during new building design and existing building retrofits. The 5-year project was managed by the National Energy Technology Laboratory and was divided into 5 budget period between 2006 and 2011. During the project period, 11 versions of EnergyPlus were released. This report summarizes work performed by an EnergyPlus development team led by the University of Central Florida's Florida Solar Energy Center (UCF/FSEC). The team members consist of DHL Consulting, C. O. Pedersen Associates, University of Illinois at Urbana-Champaign, Oklahoma State University, GARD Analytics, Inc., and WrightSoft Corporation. The project tasks involved new feature development, testing and validation, user support and training, and general EnergyPlus support. The team developed 146 new features during the 5-year period to advance the EnergyPlus capabilities. Annual contributions of new features are 7 in budget period 1, 19 in period 2, 36 in period 3, 41 in period 4, and 43 in period 5, respectively. The testing and validation task focused on running test suite and publishing report, developing new IEA test suite cases, testing and validating new source code, addressing change requests, and creating and testing installation package. The user support and training task provided support for users and interface developers, and organized and taught workshops. The general support task involved upgrading StarTeam (team sharing) software and updating existing utility software. The project met the DOE objectives and completed all tasks successfully. Although the EnergyPlus software was enhanced significantly

  16. BM platform, B Field, Offshore Northwest Java: A case history of multi-disciplinary integration including 3D seismic, reservoir simulation and horizontal drilling

    SciTech Connect

    Cooke, D.; Aziz, A.; Baldauff, J.; Diswarin, N.

    1996-12-31

    This case history describes how a multidisciplinary team used a 3D survey and reservoir simulation to review and revise the development plans for the BM platform, located in the B Field, Offshore Northwest Java, Indonesia. The case history starts with the collection of necessary parophysical, geologic and production data. These data are input to a reservoir simulation which shows there should be no problems with the new platform. However, this initial simulation has known problems with contradicting input structure maps and fluid contacts. Hopefully, these problems can be addressed with a new 3D seismic survey - if the seismic data can be acquired, processed, interpreted and input to the simulation before drilling starts at the BM platform. The seismic acquisition could not be done with the traditional towed seismic streamer cables - instead stationary ocean bottom cables with dual geophone-hydrophone sensors were used. Processing of the seismic data was done in a way that allowed interpretation of the critical area even before acquisition of the entire survey was finished. The new 3D structure maps changed the MDT`s opinion of what reservoir and what areas contained the bulk of the oil reserves. Unfortunately, the new maps were not available until after the jacket was set but before the wells drilled. The NMT updated the simulation with the new 3D data, which led to changes in development well bottom hole locations and an ambitious horizontal well.

  17. Advanced Simulation in Undergraduate Pilot Training: Systems Integration. Final Report (February 1972-March 1975).

    ERIC Educational Resources Information Center

    Larson, D. F.; Terry, C.

    The Advanced Simulator for Undergraduate Pilot Training (ASUPT) was designed to investigate the role of simulation in the future Undergraduate Pilot Training (UPT) program. The problem addressed in this report was one of integrating two unlike components into one synchronized system. These two components were the Basic T-37 Simulators and their…

  18. Simulation of Sediment and Cesium Transport in the Ukedo River and the Ogi Dam Reservoir during a Rainfall Event using the TODAM Code

    SciTech Connect

    Onishi, Yasuo; Yokuda, Satoru T.; Kurikami, Hiroshi

    2014-03-28

    The accident at the Fukushima Daiichi Nuclear Power Plant in March 2011 caused widespread environmental contamination. Although decontamination activities have been performed in residential areas of the Fukushima area, decontamination of forests, rivers, and reservoirs is still controversial because of the economical, ecological, and technical difficulties. Thus, an evaluation of contaminant transport in such an environment is important for safety assessment and for implementation of possible countermeasures to reduce radiation exposure to the public. The investigation revealed that heavy rainfall events play a significant role in transporting radioactive cesium deposited on the land surface, via soil erosion and sediment transport in rivers. Therefore, we simulated the sediment and cesium transport in the Ukedo River and its tributaries in Fukushima Prefecture, including the Ogaki Dam Reservoir, and the Ogi Dam Reservoir of the Oginosawa River in Fukushima Prefecture during and after a heavy rainfall event by using the TODAM (Time-dependent, One-dimensional Degradation And Migration) code. The main outcomes are the following: • Suspended sand is mostly deposited on the river bottom. Suspended silt and clay, on the other hand, are hardly deposited in the Ukedo River and its tributaries except in the Ogaki Dam Reservoir in the Ukedo River even in low river discharge conditions. • Cesium migrates mainly during high river discharge periods during heavy rainfall events. Silt and clay play more important roles in cesium transport to the sea than sand does. • The simulation results explain variations in the field data on cesium distributions in the river. Additional field data currently being collected and further modeling with these data may shed more light on the cesium distribution variations. • Effects of 40-hour heavy rainfall events on clay and cesium transport continue for more than a month. This is because these reservoirs slow down the storm-induced high

  19. Geological and petrophysical characterization of the Ferron Sandstone for 3-D simulation of a fluvial-deltaic reservoir. Quarterly report, July 1--September 30, 1997

    SciTech Connect

    Allison, M.L.

    1997-11-01

    The objective of this project is to develop a comprehensive, interdisciplinary, and quantitative characterization of a fluvial-deltaic reservoir which will allow realistic inter-well and reservoir-scale modeling to be constructed for improved oil-field development in similar reservoirs world-wide. The geological and petrophysical properties of the Cretaceous Ferron Sandstone in east-central Utah will be quantitatively determined. Both new and existing data will be integrated into a three-dimensional representation of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. Two activities continued this quarter as part of the geological and petrophysical characterization of the fluvial-deltaic Ferron Sandstone: (1) evaluation of the Ivie Creek and Willow Springs Wash case-study areas and (2) technology transfer.

  20. Geological and petrophysical characterization of the Ferron Sandstone for 3-D simulation of a fluvial-deltaic reservoir. Quarterly report, April 1--June 30, 1998

    SciTech Connect

    Chidsey, T.C. Jr.

    1998-07-01

    The objective of this project is to develop a comprehensive, interdisciplinary, and quantitative characterization of a fluvial-deltaic reservoir which will allow realistic inter-well and reservoir-scale modeling to be constructed for improved oil-field development in similar reservoirs world-wide. The geological and petrophysical properties of the Cretaceous Ferron Sandstone in east-central Utah will be quantitatively determined. Both new and existing data will be integrated into a three-dimensional representation of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. Transfer of the project results to the petroleum industry is an integral component of the project. Two activities continued this quarter as part of the geological and petrophysical characterization of the fluvial-deltaic Ferron Sandstone: (1) preparation of the project final report and (2) technology transfer.

  1. Session: Reservoir Technology

    SciTech Connect

    Renner, Joel L.; Bodvarsson, Gudmundur S.; Wannamaker, Philip E.; Horne, Roland N.; Shook, G. Michael

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five papers: ''Reservoir Technology'' by Joel L. Renner; ''LBL Research on the Geysers: Conceptual Models, Simulation and Monitoring Studies'' by Gudmundur S. Bodvarsson; ''Geothermal Geophysical Research in Electrical Methods at UURI'' by Philip E. Wannamaker; ''Optimizing Reinjection Strategy at Palinpinon, Philippines Based on Chloride Data'' by Roland N. Horne; ''TETRAD Reservoir Simulation'' by G. Michael Shook

  2. HEC Activities in Reservoir Analysis.

    DTIC Science & Technology

    1980-06-01

    June 1979. Now, HEC-5, "Simulation of Flood Con- trol and Conservation Systems," (9) is our primary reservoir simulation program. Since its June release...are being incorporated into the reservoir simulation model HEC-5. The objective is to provide a computer program and methodology for total water

  3. Simulation of spatial and temporal distributions of non-point source pollution load in the Three Gorges Reservoir Region.

    PubMed

    Shen, Zhenyao; Qiu, Jiali; Hong, Qian; Chen, Lei

    2014-09-15

    Non-point source (NPS) pollution has become the largest threat to water quality in recent years. Major pollutants, particularly from agricultural activities, which include nitrogen, phosphorus and sediment that have been released into aquatic environments, have caused a range of problems in the Three Gorges Reservoir Region (TGRR), China. It is necessary to identify the spatial and temporal distributions of NPS pollutants and the highly polluted areas for the purpose of watershed management. In this study, the NPS pollutant load was simulated using the Soil and Water Assessment Tool (SWAT) and the small-scale watershed extended method (SWEM). The simulation results for four typical small catchments were extended to the entire watershed leading to estimates of the NPS load from 2001 to 2009. The results demonstrated that the NPS pollution load in the western area was the highest and that agricultural land was the primary pollutant source. The similar annual variation trends of runoff and sediment loads demonstrated that the sediment load was closely related to runoff. The loads of total nitrogen (TN) and total phosphorus (TP) were relatively stable from 2001 to 2007, except for high loads in 2006. The increase in pollution source strength was an important reason for the significant upward trend of TN and TP loads from 2008 to 2009. The rainfall from April to October contributed to the largest amount of runoff, sediment and nutrient loads for the year. The NPS load intensities in each sub-basin reveal large variations in the spatial distribution of different pollutants. It was shown that the temporal and spatial distributions of pollutant loads were positively correlated with the annual rainfall amounts and with human activities. Furthermore, this finding illustrates that conservation practices and nutrient management should be implemented in specific sites during special periods for the purpose of NPS pollution control in the TGRR.

  4. [Landscape pattern change and its simulation forecast in Zigui County of Three Gorges Reservoir Area].

    PubMed

    Jiang, Huan-Huan; Li, Ji-Hong; Fan, Wen-Yi; Bao, Chen-Guang

    2009-02-01

    Based on the TM images of 1987 and 2002, the landscape pattern change of Zigui County from 1987 to 2002 was analyzed by using landscape index method; and the simulation forecast of this change in next 50 years was conducted by using Markov model. The results showed that in 1987-2002, the landscape pattern of Zigui County changed dramatically. The area of sparse wood land increased greatly while that of upland and shrub land decreased obviously, and the distribution of the areas of different landscape types tended to balance. The average shape index of landscape had an overall decline, which was represented by the concentrated and connected distribution of different landscape types, simplification of landscape shape, and obvious human interference. As a whole, the landscape diversity and fragmentation in Zigui County were improved to some extent. In next 50 years, the area of sparse wood land in Zigui would have a rapid increase, followed by that of forestland, while the areas of upland and shrub land would be declining, and the other landscape types would have a less fluctuation in their areas. The main driving forces of the landscape pattern change in Zigui were the relocation of the County and the implementation of forestry policies.

  5. Efficient and robust compositional two-phase reservoir simulation in fractured media

    NASA Astrophysics Data System (ADS)

    Zidane, A.; Firoozabadi, A.

    2015-12-01

    Compositional and compressible two-phase flow in fractured media has wide applications including CO2 injection. Accurate simulations are currently based on the discrete fracture approach using the cross-flow equilibrium model. In this approach the fractures and a small part of the matrix blocks are combined to form a grid cell. The major drawback is low computational efficiency. In this work we use the discrete-fracture approach to model the fractures where the fracture entities are described explicitly in the computational domain. We use the concept of cross-flow equilibrium in the fractures (FCFE). This allows using large matrix elements in the neighborhood of the fractures. We solve the fracture transport equations implicitly to overcome the Courant-Freidricks-Levy (CFL) condition in the small fracture elements. Our implicit approach is based on calculation of the derivative of the molar concentration of component i in phase (cαi ) with respect to the total molar concentration (ci ) at constant volume V and temperature T. This contributes to significant speed up of the code. The hybrid mixed finite element method (MFE) is used to solve for the velocity in both the matrix and the fractures coupled with the discontinuous Galerkin (DG) method to solve the species transport equations in the matrix, and a finite volume (FV) discretization in the fractures. In large scale problems the proposed approach is orders of magnitude faster than the existing models.

  6. Training Students to Analyze Spatial and Temporal Heterogeneities in Reservoir and Seal Petrology, Mineralogy, and Geochemistry: Implications for CO{sub 2} Sequestration Prediction, Simulation, and Monitoring

    SciTech Connect

    Bowen, Brenda

    2013-09-30

    The objective of this project was to expose and train multiple students in geological tools that are essential to reservoir characterization and geologic sequestration including but not limited to advanced petrological methods, mineralogical methods, and geochemical methods; core analysis, and geophysical well-log interpretation. These efforts have included training of multiple students through geologically based curriculum and research using advanced petrological, mineralogical, and geochemical methods. In whole, over the last 3+ years, this award has supported 5,828 hours of student research, supporting the work of several graduate and undergraduate students. They have all received training directly related to ongoing CO{sub 2} sequestration demonstrations. The students have all conducted original scientific research on topics related to understanding the importance of lithological, textural, and compositional variability in formations that are being targeted as CO{sub 2} sequestration reservoirs and seals. This research was linked to the Mount Simon Sandstone reservoir and overlying Eau Claire Formation seal in the Illinois Basin- a system where over one million tons of CO{sub 2} are actively being injected with the first large-scale demonstration of anthropogenic CO{sub 2} storage in the U.S. Student projects focused specifically on 1) reservoir porosity characterization and evaluation, 2) petrographic, mineralogical, and geochemical evidence of fluid-related diagenesis in the caprock, 3) textural changes in reservoir samples exposed to experimental CO{sub 2} + brine conditions, 4) controls on spatial heterogeneity in composition and texture in both the reservoir and seal, 5) the implications of small-scale fractures within the reservoir, and 6) petrographic and stable isotope analyses of carbonates in the seal to understand the burial history of the system. The student-led research associated with this project provided real-time and hands-on experience with a

  7. Improved recovery from Gulf of Mexico reservoirs. Quarterly status report, January 1--March 31, 1996

    SciTech Connect

    Kimbrell, W.C.; Bassiouni, Z.A.; Bourgoyne, A.T.

    1996-04-30

    On February 18, 1992, Louisiana State University with two technical subcontractors, BDM, Inc. and ICF, Inc., began a research program to estimate the potential oil and gas reserve additions that could result from the application of advanced secondary and enhanced oil recovery technologies and the exploitation of undeveloped and attic oil zones in the Gulf of Mexico oil fields that are related to piercement salt domes. This project is a one year continuation of this research and will continue work in reservoir description, extraction processes, and technology transfer. Detailed data will be collected for two previously studies reservoirs: a South Marsh Island reservoir operated by Taylor Energy and one additional Gulf of Mexico reservoir operated by Mobil. Additional reservoirs identified during the project will also be studied if possible. Data collected will include reprocessed 2-D seismic data, newly acquired 3-D data, fluid data, fluid samples, pressure data, well test data, well logs, and core data/samples. The new data will be used to refine reservoir and geologic characterization of these reservoirs. Further laboratory investigation will provide additional simulation input data in the form of PVT properties, relative permeabilities, capillary pressure, and water compatibility. Geological investigations will be conducted to refine the models of mud-rich submarine fan architectures used by seismic analysts and reservoir engineers. Research on advanced reservoir simulation will also be conducted. This report describes a review of fine-grained submarine fans and turbidite systems.

  8. Development of Kinetic Mechanisms for Next-Generation Fuels and CFD Simulation of Advanced Combustion Engines

    SciTech Connect

    Pitz, William J.; McNenly, Matt J.; Whitesides, Russell; Mehl, Marco; Killingsworth, Nick J.; Westbrook, Charles K.

    2015-12-17

    Predictive chemical kinetic models are needed to represent next-generation fuel components and their mixtures with conventional gasoline and diesel fuels. These kinetic models will allow the prediction of the effect of alternative fuel blends in CFD simulations of advanced spark-ignition and compression-ignition engines. Enabled by kinetic models, CFD simulations can be used to optimize fuel formulations for advanced combustion engines so that maximum engine efficiency, fossil fuel displacement goals, and low pollutant emission goals can be achieved.

  9. Advanced reservoir characterization and evaluation of CO{sub 2} gravity drainage in the naturally fractured Spraberry Trend Area. First annual technical progress report, September 1, 1995--August 31, 1996

    SciTech Connect

    Schechter, D.S.

    1996-12-17

    The overall goal of this project is to assess the economic feasibility of CO{sub 2} flooding the naturally fractured Spraberry Trend Area in West Texas. This objective is being accomplished by conducting research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interaction in the reservoirs, (3) analytical and numerical simulation of Spraberry reservoirs, and, (4) experimental investigations on CO{sub 2} gravity drainage in Spraberry whole cores. This report provides results of the first year of the five-year project for each of the four areas.

  10. Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico. Annual report, September 25, 1995--September 24, 1996

    SciTech Connect

    Murphy, M.B.

    1997-08-01

    The basic driver for this project is the low recovery observed in Delaware reservoirs, such as the Nash Draw Pool (NDP). This low recovery is caused by low reservoir energy, less than optimum permeabilities and porosities, and inadequate reservoir characterization and reservoir management strategies which are typical of projects operated by independent producers. Rapid oil decline rates and high gas/oil ratios are typically observed in the first year of primary production. Based on the production characteristics that have been observed in similar Delaware fields, pressure maintenance is a likely requirement at the Nash Pool. Three basic constraints to producing the Nash Draw Brushy Canyon Reservoir are: (1) limited areal and interwell geologic knowledge, (2) lack of an engineering tool to evaluate the various producing strategies, and (3) limited surface access prohibiting development with conventional drilling. The limited surface access is caused by the proximity of underground potash mining and surface playa lakes. The objectives of this project are: (1) to demonstrate that a development drilling program and pressure maintenance program, based on advanced reservoir management methods, can significantly improve oil recovery compared with existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers, especially in the Permian Basin.

  11. Reservoir System Regulation for Water Quality Control.

    DTIC Science & Technology

    1983-03-01

    Davis, California 95616. [PHASE I!- 1979 SINGLE RESERVOIR SIMULATION FOR WATER TEMPERATURE PHASE 31- 1980 TWO RESERVOIR SIMULATION FOR WATER TEMPERATURE...AND SEVEN CONSTITUENTS 1981 FIELD TESTING AND MINOR MODIFICATIONS ’IFI PHASE 3nm- 1982 TEN RESERVOIR SIMULATION FOR WATER TEMPERATURE AND SEVEN

  12. Advanced beam-dynamics simulation tools for RIA.

    SciTech Connect

    Garnett, R. W.; Wangler, T. P.; Billen, J. H.; Qiang, J.; Ryne, R.; Crandall, K. R.; Ostroumov, P.; York, R.; Zhao, Q.; Physics; LANL; LBNL; Tech Source; Michigan State Univ.

    2005-01-01

    We are developing multi-particle beam-dynamics simulation codes for RIA driver-linac simulations extending from the low-energy beam transport (LEBT) line to the end of the linac. These codes run on the NERSC parallel supercomputing platforms at LBNL, which allow us to run simulations with large numbers of macroparticles. The codes have the physics capabilities needed for RIA, including transport and acceleration of multiple-charge-state beams, beam-line elements such as high-voltage platforms within the linac, interdigital accelerating structures, charge-stripper foils, and capabilities for handling the effects of machine errors and other off-normal conditions. This year will mark the end of our project. In this paper we present the status of the work, describe some recent additions to the codes, and show some preliminary simulation results.

  13. An Elevated Reservoir of Air Pollutants over the Mid-Atlantic States During the 2011 DISCOVER-AQ Campaign: Airborne Measurements and Numerical Simulations

    NASA Technical Reports Server (NTRS)

    He, Hao; Loughner, Christopher P.; Stehr, Jeffrey W.; Arkinson, Heather L.; Brent, Lacey C.; Follette-Cook, Melanie B.; Tzortziou, Maria A.; Pickering, Kenneth E.; Thompson, Anne M.; Martins, Douglas K.; Diskin, Glenn S.; Anderson, Bruce E.; Crawford, James H.; Weinheimer, Andrew J.; Lee, Pius; Hains, Jennifer C.; Dickerson, Russell R.

    2013-01-01

    During a classic heat wave with record high temperatures and poor air quality from July 18 to 23, 2011, an elevated reservoir of air pollutants was observed over and downwind of Baltimore, MD, with relatively clean conditions near the surface. Aircraft and ozonesonde measurements detected approximately 120 parts per billion by volume ozone at 800 meters altitude, but approximately 80 parts per billion by volume ozone near the surface. High concentrations of other pollutants were also observed around the ozone peak: approximately 300 parts per billion by volume CO at 1200 meters, approximately 2 parts per billion by volume NO2 at 800 meters, approximately 5 parts per billion by volume SO2 at 600 meters, and strong aerosol optical scattering (2 x 10 (sup 4) per meter) at 600 meters. These results suggest that the elevated reservoir is a mixture of automobile exhaust (high concentrations of O3, CO, and NO2) and power plant emissions (high SO2 and aerosols). Back trajectory calculations show a local stagnation event before the formation of this elevated reservoir. Forward trajectories suggest an influence on downwind air quality, supported by surface ozone observations on the next day over the downwind PA, NJ and NY area. Meteorological observations from aircraft and ozonesondes show a dramatic veering of wind direction from south to north within the lowest 5000 meters, implying that the development of the elevated reservoir was caused in part by the Chesapeake Bay breeze. Based on in situ observations, Community Air Quality Multi-scale Model (CMAQ) forecast simulations with 12 kilometers resolution overestimated surface ozone concentrations and failed to predict this elevated reservoir; however, CMAQ research simulations with 4 kilometers and 1.33 kilometers resolution more successfully reproduced this event. These results show that high resolution is essential for resolving coastal effects and predicting air quality for cities near major bodies of water such as

  14. Impacts of boreal hydroelectric reservoirs on seasonal climate and precipitation recycling as simulated by the CRCM5: a case study of the La Grande River watershed, Canada

    NASA Astrophysics Data System (ADS)

    Irambona, C.; Music, B.; Nadeau, D. F.; Mahdi, T. F.; Strachan, I. B.

    2016-12-01

    Located in northern Quebec, Canada, eight hydroelectric reservoirs of a 9782-km2 maximal area cover 6.4% of the La Grande watershed. This study investigates the changes brought by the impoundment of these reservoirs on seasonal climate and precipitation recycling. Two 30-year climate simulations, corresponding to pre- and post-impoundment conditions, were used. They were generated with the fifth-generation Canadian Regional Climate Model (CRCM5), fully coupled to a 1D lake model (FLake). Seasonal temperatures and annual energy budget were generally well reproduced by the model, except in spring when a cold bias, probably related to the overestimation of snow cover, was seen. The difference in 2-m temperature shows that reservoirs induce localized warming in winter (+0.7 ± 0.02 °C) and cooling in the summer (-0.3 ± 0.02 °C). The available energy at the surface increases throughout the year, mostly due to a decrease in surface albedo. Fall latent and sensible heat fluxes are enhanced due to additional energy storage and availability in summer and spring. The changes in precipitation and runoff are within the model internal variability. At the watershed scale, reservoirs induce an additional evaporation of only 5.9 mm year-1 (2%). We use Brubaker's precipitation recycling model to estimate how much of the precipitation is recycled within the watershed. In both simulations, the maximal precipitation recycling occurs in July (less than 6%), indicating weak land-atmosphere coupling. Reservoirs do not seem to affect this coupling, as precipitation recycling only decreased by 0.6% in July.

  15. An elevated reservoir of air pollutants over the Mid-Atlantic States during the 2011 DISCOVER-AQ campaign: Airborne measurements and numerical simulations

    NASA Astrophysics Data System (ADS)

    He, Hao; Loughner, Christopher P.; Stehr, Jeffrey W.; Arkinson, Heather L.; Brent, Lacey C.; Follette-Cook, Melanie B.; Tzortziou, Maria A.; Pickering, Kenneth E.; Thompson, Anne M.; Martins, Douglas K.; Diskin, Glenn S.; Anderson, Bruce E.; Crawford, James H.; Weinheimer, Andrew J.; Lee, Pius; Hains, Jennifer C.; Dickerson, Russell R.

    2014-03-01

    During a classic heat wave with record high temperatures and poor air quality from July 18 to 23, 2011, an elevated reservoir of air pollutants was observed over and downwind of Baltimore, MD, with relatively clean conditions near the surface. Aircraft and ozonesonde measurements detected ˜120 ppbv ozone at 800 m altitude, but ˜80 ppbv ozone near the surface. High concentrations of other pollutants were also observed around the ozone peak: ˜300 ppbv CO at 1200 m, ˜2 ppbv NO2 at 800 m, ˜5 ppbv SO2 at 600 m, and strong aerosol optical scattering (2 × 10-4 m-1) at 600 m. These results suggest that the elevated reservoir is a mixture of automobile exhaust (high concentrations of O3, CO, and NO2) and power plant emissions (high SO2 and aerosols). Back trajectory calculations show a local stagnation event before the formation of this elevated reservoir. Forward trajectories suggest an influence on downwind air quality, supported by surface ozone observations on the next day over the downwind PA, NJ and NY area. Meteorological observations from aircraft and ozonesondes show a dramatic veering of wind direction from south to north within the lowest 5000 m, implying that the development of the elevated reservoir was caused in part by the Chesapeake Bay breeze. Based on in situ observations, CMAQ forecast simulations with 12 km resolution overestimated surface ozone concentrations and failed to predict this elevated reservoir; however, CMAQ research simulations with 4 km and 1.33 km resolution more successfully reproduced this event. These results show that high resolution is essential for resolving coastal effects and predicting air quality for cities near major bodies of water such as Baltimore on the Chesapeake Bay and downwind areas in the Northeast.

  16. Advanced Simulator Development for Power Flow and Sources

    DTIC Science & Technology

    2006-02-01

    specifications for sub-system (primary energy store, water pulse compression/transmission lines, vacuum power flow) design. Using our experience with pulsed ...also enable beneficial upgrades to existing simulator facilities. 14. SUBJECT TERMS 15. NUMBER OF PAGES 109 Marx Generator Plasma Radiation Source Pulsed ...minimize cost for large dose X area products. Based upon simple scaling from existing pulsed power simulators , we assumed that we could achieve yields

  17. [Research advances in soil nitrogen cycling models and their simulation].

    PubMed

    Tang, Guoyong; Huang, Daoyou; Tong, Chengli; Zhang, Wenju; Wu, Jinshui

    2005-11-01

    Nitrogen is one of the necessary nutrients for plant, and also a primary element leading to environmental pollution. Many researches have been concerned about the contribution of agricultural activities to environmental pollution by nitrogenous compounds, and the focus is how to simulate soil nitrogen cycling processes correctly. In this paper, the primary soil nitrogen cycling processes were reviewed in brief, with 13 cycling models and 6 simulated cycling processes introduced, and the parameterization of models discussed.

  18. Advanced Thermal Simulator Testing: Thermal Analysis and Test Results

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Reid, Robert; Adams, Mike; Davis, Joe

    2008-01-01

    Work at the NASA Marshall Space Flight Center seeks to develop high fidelity, electrically heated thermal simulators that represent fuel elements in a nuclear reactor design to support non-nuclear testing applicable to the development of a space nuclear power or propulsion system. Comparison between the fuel pins and thermal simulators is made at the outer fuel clad surface, which corresponds to the outer sheath surface in the thermal simulator. The thermal simulators that are currently being tested correspond to a SNAP derivative reactor design that could be applied for Lunar surface power. These simulators are designed to meet the geometric and power requirements of a proposed surface power reactor design, accommodate testing of various axial power profiles, and incorporate imbedded instrumentation. This paper reports the results of thermal simulator analysis and testing in a bare element configuration, which does not incorporate active heat removal, and testing in a water-cooled calorimeter designed to mimic the heat removal that would be experienced in a reactor core.

  19. Advanced Thermal Simulator Testing: Thermal Analysis and Test Results

    SciTech Connect

    Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Reid, Robert; Adams, Mike; Davis, Joe

    2008-01-21

    Work at the NASA Marshall Space Flight Center seeks to develop high fidelity, electrically heated thermal simulators that represent fuel elements in a nuclear reactor design to support non-nuclear testing applicable to the potential development of a space nuclear power or propulsion system. Comparison between the fuel pins and thermal simulators is made at the outer fuel clad surface, which corresponds to the outer sheath surface in the thermal simulator. The thermal simulators that are currently being tested correspond to a liquid metal cooled reactor design that could be applied for Lunar surface power. These simulators are designed to meet the geometric and power requirements of a proposed surface power reactor design, accommodate testing of various axial power profiles, and incorporate imbedded instrumentation. This paper reports the results of thermal simulator analysis and testing in a bare element configuration, which does not incorporate active heat removal, and testing in a water-cooled calorimeter designed to mimic the heat removal that would be experienced in a reactor core.

  20. Advanced SAR simulator with multi-beam interferometric capabilities

    NASA Astrophysics Data System (ADS)

    Reppucci, Antonio; Márquez, José; Cazcarra, Victor; Ruffini, Giulio

    2014-10-01

    State of the art simulations are of great interest when designing a new instrument, studying the imaging mechanisms due to a given scenario or for inversion algorithm design as they allow to analyze and understand the effects of different instrument configurations and targets compositions. In the framework of the studies about a new instruments devoted to the estimation of the ocean surface movements using Synthetic Aperture Radar along-track interferometry (SAR-ATI) an End-to-End simulator has been developed. The simulator, built in a high modular way to allow easy integration of different processing-features, deals with all the basic operations involved in an end to end scenario. This includes the computation of the position and velocity of the platform (airborne/spaceborne) and the geometric parameters defining the SAR scene, the surface definition, the backscattering computation, the atmospheric attenuation, the instrument configuration, and the simulation of the transmission/reception chains and the raw data. In addition, the simulator provides a inSAR processing suit and a sea surface movement retrieval module. Up to four beams (each one composed by a monostatic and a bistatic channel) can be activated. Each channel provides raw data and SLC images with the possibility of choosing between Strip-map and Scansar modes. Moreover, the software offers the possibility of radiometric sensitivity analysis and error analysis due atmospheric disturbances, instrument-noise, interferogram phase-noise, platform velocity and attitude variations. In this paper, the architecture and the capabilities of this simulator will be presented. Meaningful simulation examples will be shown.

  1. Simulated effects of proposed Arkansas Valley Conduit on hydrodynamics and water quality for projected demands through 2070, Pueblo Reservoir, southeastern Colorado

    USGS Publications Warehouse

    Ortiz, Roderick F.

    2013-01-01

    The purpose of the Arkansas Valley Conduit (AVC) is to deliver water for municipal and industrial use within the boundaries of the Southeastern Colorado Water Conservancy District. Water supplied through the AVC would serve two needs: (1) to supplement or replace existing poor-quality water to communities downstream from Pueblo Reservoir; and (2) to meet a portion of the AVC participants’ projected water demands through 2070. The Bureau of Reclamation (Reclamation) initiated an Environmental Impact Statement (EIS) to address the potential environmental consequences associated with constructing and operating the proposed AVC, entering into a conveyance contract for the Pueblo Dam north-south outlet works interconnect (Interconnect), and entering into a long-term excess capacity master contract (Master Contract). Operational changes, as a result of implementation of proposed EIS alternatives, could change the hydrodynamics and water-quality conditions in Pueblo Reservoir. An interagency agreement was initiated between Reclamation and the U.S. Geological Survey to accurately simulate hydrodynamics and water quality in Pueblo Reservoir for projected demands associated with four of the seven proposed EIS alternatives. The four alternatives submitted to the USGS for scenario simulation included various combinations (action or no action) of the proposed Arkansas Valley Conduit, Master Contract, and Interconnect options. The four alternatives were the No Action, Comanche South, Joint Use Pipeline North, and Master Contract Only. Additionally, scenario simulations were done that represented existing conditions (Existing Conditions scenario) in Pueblo Reservoir. Water-surface elevations, water temperature, dissolved oxygen, dissolved solids, dissolved ammonia, dissolved nitrate, total phosphorus, total iron, and algal biomass (measured as chlorophyll-a) were simulated. Each of the scenarios was simulated for three contiguous water years representing a wet, average, and dry

  2. A simulation-optimization approach to retrieve reservoir releasing strategies under the trade-off objectives considering flooding, sedimentation, turbidity and water supply during typhoons

    NASA Astrophysics Data System (ADS)

    Huang, C. L.; Hsu, N. S.; Yeh, W. W. G.; You, G. J. Y.

    2014-12-01

    This study develops a simulation-optimization approach for retrieving optimal multi-layer reservoir conjunctive release strategies considering the natural hazards of sedimentation, turbidity and flooding during typhoon invasion. The purposes of the developed approach are: (1) to apply WASP-based fluid dynamic sediment concentration simulation model and the developed extracting method of ideal releasing practice to search the optimal initial solution for optimization; and (2) to construct the replacing sediment concentration simulation model which embedded in the optimization model. In this study, the optimization model is solved by tabu search, and the optimized releasing hydrograph is then used for construction of the decision model. This study applies Adaptive Network-based Fuzzy Inference System (ANFIS) and Real-time Recurrent Learning Neural Network (RTRLNN) as construction tool of the concentration simulation model for total suspended solids. This developed approach is applied to the Shihmen Reservoir basin, Taiwan. The assessment index of operational outcome of multi-purpose multi-layer conjunctive releasing are maximum sediment concentration at Yuan-Shan weir, sediment removed ratio, highest water level at Shan-Yin Bridge, and final water level in Shihmen reservoir. The analyzed and optimizing results shows the following: (1) The multi-layer releasing during the stages before flood coming and before peak flow possess high potential for flood detention and sedimentation control; and during the stages after peak flow, for turbidity control and storage; (2) The ability of error toleration and adaption of ANFIS is superior, so ANFIS-based sediment concentration simulation model surpass RTRLNN-based model on simulating the mechanism and characteristics of sediment transport; and (3) The developed approach can effectively and automatically retrieve the optimal multi-layer releasing strategies under the trade-off control between flooding, sedimentation, turbidity

  3. Numerical simulation of turbomachinery flows with advanced turbulence models

    NASA Technical Reports Server (NTRS)

    Lakshminarayana, B.; Kunz, R.; Luo, J.; Fan, S.

    1992-01-01

    A three dimensional full Navier-Stokes (FNS) code is used to simulate complex turbomachinery flows. The code incorporates an explicit multistep scheme and solves a conservative form of the density averaged continuity, momentum, and energy equations. A compressible low Reynolds number form of the k-epsilon turbulence model, and a q-omega model and an algebraic Reynolds stress model have been incorporated in a fully coupled manner to approximate Reynolds stresses. The code is used to predict the viscous flow field in a backswept transonic centrifugal compressor for which laser two focus data is available. The code is also used to simulate the tip clearance flow in a cascade. The code has been extended to include unsteady Euler solutions for predicting the unsteady flow through a cascade due to incoming wakes, simulating rotor-stator interactions.

  4. Advances in Discrete-Event Simulation for MSL Command Validation

    NASA Technical Reports Server (NTRS)

    Patrikalakis, Alexander; O'Reilly, Taifun

    2013-01-01

    In the last five years, the discrete event simulator, SEQuence GENerator (SEQGEN), developed at the Jet Propulsion Laboratory to plan deep-space missions, has greatly increased uplink operations capacity to deal with increasingly complicated missions. In this paper, we describe how the Mars Science Laboratory (MSL) project makes full use of an interpreted environment to simulate change in more than fifty thousand flight software parameters and conditional command sequences to predict the result of executing a conditional branch in a command sequence, and enable the ability to warn users whenever one or more simulated spacecraft states change in an unexpected manner. Using these new SEQGEN features, operators plan more activities in one sol than ever before.

  5. Advances in simulation study on organic small molecular solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Xuan; Guo, Wenge; Li, Ming; Ma, Wentao; Meng, Sen

    2015-02-01

    Recently, more focuses have been put on organic semiconductors because of its advantages, such as its flexibility, ease of fabrication and potential low cost, etc. The reasons we pay highlight on small molecular photovoltaic material are its ease of purification, easy to adjust and determine structure, easy to assemble range units and get high carrier mobility, etc. Simulation study on organic small molecular solar cells before the experiment can help the researchers find relationship between the efficiency and structure parameters, properties of material, estimate the performance of the device, bring the optimization of guidance. Also, the applicability of the model used in simulation can be discussed by comparison with experimental data. This paper summaries principle, structure, progress of numerical simulation on organic small molecular solar cells.

  6. Design and simulation of advanced fault tolerant flight control schemes

    NASA Astrophysics Data System (ADS)

    Gururajan, Srikanth

    This research effort describes the design and simulation of a distributed Neural Network (NN) based fault tolerant flight control scheme and the interface of the scheme within a simulation/visualization environment. The goal of the fault tolerant flight control scheme is to recover an aircraft from failures to its sensors or actuators. A commercially available simulation package, Aviator Visual Design Simulator (AVDS), was used for the purpose of simulation and visualization of the aircraft dynamics and the performance of the control schemes. For the purpose of the sensor failure detection, identification and accommodation (SFDIA) task, it is assumed that the pitch, roll and yaw rate gyros onboard are without physical redundancy. The task is accomplished through the use of a Main Neural Network (MNN) and a set of three De-Centralized Neural Networks (DNNs), providing analytical redundancy for the pitch, roll and yaw gyros. The purpose of the MNN is to detect a sensor failure while the purpose of the DNNs is to identify the failed sensor and then to provide failure accommodation. The actuator failure detection, identification and accommodation (AFDIA) scheme also features the MNN, for detection of actuator failures, along with three Neural Network Controllers (NNCs) for providing the compensating control surface deflections to neutralize the failure induced pitching, rolling and yawing moments. All NNs continue to train on-line, in addition to an offline trained baseline network structure, using the Extended Back-Propagation Algorithm (EBPA), with the flight data provided by the AVDS simulation package. The above mentioned adaptive flight control schemes have been traditionally implemented sequentially on a single computer. This research addresses the implementation of these fault tolerant flight control schemes on parallel and distributed computer architectures, using Berkeley Software Distribution (BSD) sockets and Message Passing Interface (MPI) for inter

  7. The simulation research of dissolved nitrogen and phosphorus non-point source pollution in Xiao-Jiang watershed of Three Gorges Reservoir area.

    PubMed

    Wu, Lei; Long, Tian-Yu; Li, Chong-Ming

    2010-01-01

    Xiao-jiang, with a basin area of almost 5,276 km(2) and a length of 182.4 km, is located in the center of the Three Gorges Reservoir Area, and is the largest tributary of the central section in Three Gorges Reservoir Area, farmland accounts for a large proportion of Xiao-jiang watershed, and the hilly cropland of purple soil is much of the farmland of the watershed. After the second phase of water storage in the Three Gorges Reservoir, the majority of sub-rivers in the reservoir area experienced eutrophication phenomenon frequently, and non-point source (NPS) pollution has become an important source of pollution in Xiao-jiang Watershed. Because dissolved nitrogen and phosphorus non-point source pollution are related to surface runoff and interflow, using climatic, topographic and land cover data from the internet and research institutes, the Semi-Distributed Land-use Runoff Process (SLURP) hydrological model was introduced to simulate the complete hydrological cycle of the Xiao-jiang Watershed. Based on the SLURP distributed hydrological model, non-point source pollution annual output load models of land use and rural residents were respectively established. Therefore, using GIS technology, considering the losses of dissolved nitrogen and phosphorus in the course of transport, a dissolved non-point source pollution load dynamic model was established by the organic coupling of the SLURP hydrological model and land-use output model. Through the above dynamic model, the annual dissolved non-point source nitrogen and phosphorus pollution output as well as the load in different types were simulated and quantitatively estimated from 2001 to 2008, furthermore, the loads of Xiao-jiang Watershed were calculated and expressed by temporal and spatial distribution in the Three Gorges Reservoir Area. The simulation results show that: the temporal changes of dissolved nitrogen and phosphorus load in the watershed are close to the inter-annual changes of rainfall runoff, and the

  8. Cost-efficiency assessment of Advanced Life Support (ALS) courses based on the comparison of advanced simulators with conventional manikins

    PubMed Central

    Iglesias-Vázquez, José Antonio; Rodríguez-Núñez, Antonio; Penas-Penas, Mónica; Sánchez-Santos, Luís; Cegarra-García, Maria; Barreiro-Díaz, Maria Victoria

    2007-01-01

    Background Simulation is an essential tool in modern medical education. The object of this study was to assess, in cost-effective measures, the introduction of new generation simulators in an adult life support (ALS) education program. Methods Two hundred fifty primary care physicians and nurses were admitted to ten ALS courses (25 students per course). Students were distributed at random in two groups (125 each). Group A candidates were trained and tested with standard ALS manikins and Group B ones with new generation emergency and life support integrated simulator systems. Results In group A, 98 (78%) candidates passed the course, compared with 110 (88%) in group B (p < 0.01). The total cost of conventional courses was €7689 per course and the cost of the advanced simulator courses was €29034 per course (p < 0.001). Cost per passed student was €392 in group A and €1320 in group B (p < 0.001). Conclusion Although ALS advanced simulator systems may slightly increase the rate of students who pass the course, the cost-effectiveness of ALS courses with standard manikins is clearly superior. PMID:17953771

  9. A Distributed Simulation Facility to Support Human Factors Research in Advanced Air Transportation Technology

    NASA Technical Reports Server (NTRS)

    Amonlirdviman, Keith; Farley, Todd C.; Hansman, R. John, Jr.; Ladik, John F.; Sherer, Dana Z.

    1998-01-01

    A distributed real-time simulation of the civil air traffic environment developed to support human factors research in advanced air transportation technology is presented. The distributed environment is based on a custom simulation architecture designed for simplicity and flexibility in human experiments. Standard Internet protocols are used to create the distributed environment, linking all advanced cockpit simulator, all Air Traffic Control simulator, and a pseudo-aircraft control and simulation management station. The pseudo-aircraft control station also functions as a scenario design tool for coordinating human factors experiments. This station incorporates a pseudo-pilot interface designed to reduce workload for human operators piloting multiple aircraft simultaneously in real time. The application of this distributed simulation facility to support a study of the effect of shared information (via air-ground datalink) on pilot/controller shared situation awareness and re-route negotiation is also presented.

  10. Advanced Simulation and Computing Co-Design Strategy

    SciTech Connect

    Ang, James A.; Hoang, Thuc T.; Kelly, Suzanne M.; McPherson, Allen; Neely, Rob

    2015-11-01

    This ASC Co-design Strategy lays out the full continuum and components of the co-design process, based on what we have experienced thus far and what we wish to do more in the future to meet the program’s mission of providing high performance computing (HPC) and simulation capabilities for NNSA to carry out its stockpile stewardship responsibility.

  11. Advanced Computation Dynamics Simulation of Protective Structures Research

    DTIC Science & Technology

    2013-02-01

    between the steel and CMU, grout, a flowable concrete mixture, is placed into the reinforced cells. If grout is placed into every cell (including...multi-wythe walls that were fully grouted and had a brick veneer filled with a foam insulated cavity. He simulated the grout and CMU with a single

  12. Technical advances in molecular simulation since the 1980s.

    PubMed

    Field, Martin J

    2015-09-15

    This review describes how the theory and practice of molecular simulation have evolved since the beginning of the 1980s when the author started his career in this field. The account is of necessity brief and subjective and highlights the changes that the author considers have had significant impact on his research and mode of working.

  13. Advanced Shuttle Simulation Turbulence Tapes (SSTT) users guide

    NASA Technical Reports Server (NTRS)

    Tatom, F. B.; Smith, S. R.

    1981-01-01

    A nonrecursive model (based on von Karman spectra) for atmospheric turbulence along the flight path of the shuttle orbiter was developed which provides for simulation of instantaneous vertical and horizontal gusts at the vehicle center-of-gravity and also for simulation of instantaneous gust gradients. Based on this model, the time series for both gusts and gust gradients was generated and stored on a series of magnetic tapes which are entitled shuttle simulation turbulence tapes (SSTT). The time series are designed to represent atmospheric turbulence from ground level to an altitude of 120,000 meters. An appropriate description of the characteristics of the simulated turbulence stored on the tapes, as well as instructions regarding their proper use are provided. The characteristics of the turbulence series, including the spectral shape, cutoff frequencies, and variation of turbulence parameters with altitude, are discussed. Information regarding the tapes and their use is presented. Appendices provide results of spectral and statistical analyses of the SSTT and examples of how the SSTT should be used.

  14. Interim Service ISDN Satellite (ISIS) simulator development for advanced satellite designs and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerard R.

    1992-01-01

    The simulation development associated with the network models of both the Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) and the Full Service ISDN Satellite (FSIS) architectures is documented. The ISIS Network Model design represents satellite systems like the Advanced Communications Technology Satellite (ACTS) orbiting switch. The FSIS architecture, the ultimate aim of this element of the Satellite Communications Applications Research (SCAR) Program, moves all control and switching functions on-board the next generation ISDN communications satellite. The technical and operational parameters for the advanced ISDN communications satellite design will be obtained from the simulation of ISIS and FSIS engineering software models for their major subsystems. Discrete event simulation experiments will be performed with these models using various traffic scenarios, design parameters, and operational procedures. The data from these simulations will be used to determine the engineering parameters for the advanced ISDN communications satellite.

  15. DESIGN AND IMPLEMENTATION OF A CO2 FLOOD UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL INJECTION WELLS IN A SHALLOW SHELF CARBONATE APPROACHING WATERFLOOD DEPLETION

    SciTech Connect

    K.J. Harpole; Ed G. Durrett; Susan Snow; J.S. Bles; Carlon Robertson; C.D. Caldwell; D.J. Harms; R.L. King; B.A. Baldwin; D. Wegener; M. Navarrette

    2002-09-01

    The purpose of this project was to economically design an optimum carbon dioxide (CO{sub 2}) flood for a mature waterflood nearing its economic abandonment. The original project utilized advanced reservoir characterization and CO{sub 2} horizontal injection wells as the primary methods to redevelop the South Cowden Unit (SCU). The development plans; project implementation and reservoir management techniques were to be transferred to the public domain to assist in preventing premature abandonment of similar fields. The Unit was a mature waterflood with water cut exceeding 95%. Oil must be mobilized through the use of a miscible or near-miscible fluid to recover significant additional reserves. Also, because the unit was relatively small, it did not have the benefit of economies of scale inherent in normal larger scale projects. Thus, new and innovative methods were required to reduce investment and operating costs. Two primary methods used to accomplish improved economics were use of reservoir characterization to restrict the flood to the higher quality rock in the unit and use of horizontal injection wells to cut investment and operating costs. The project consisted of two budget phases. Budget Phase I started in June 1994 and ended late June 1996. In this phase Reservoir Analysis, Characterization Tasks and Advanced Technology Definition Tasks were completed. Completion enabled the project to be designed, evaluated, and an Authority for Expenditure (AFE) for project implementation submitted to working interest owners for approval. Budget Phase II consisted of the implementation and execution of the project in the field. Phase II was completed in July 2001. Performance monitoring, during Phase II, by mid 1998 identified the majority of producing wells which under performed their anticipated withdrawal rates. Newly drilled and re-activated wells had lower offtake rates than originally forecasted. As a result of poor offtake, higher reservoir pressure was a concern

  16. Reservoir System Analysis for Water Quality.

    DTIC Science & Technology

    1984-08-01

    reservoirs on flows and damages in the system. The program should also be useful In selecting the 2 PHASE Z- 1979 SINGLE RESERVOIR SIMULATION FOR WATER...TEMPERATURE PHASE H- 1980 TWO RESERVOIR SIMULATION FOR WATER TEMPERATURE AND SEVEN CONSTITUENTS 1981 FIELD TESTING AND MINOR MODIFICATIONS PHASE M- 1982...TEN RESERVOIR SIMULATION FOR WATER TEMPERATURE AND . TAB SEVEN CONSTITUENTS 1P.IX Ot1Oun4 ___ ___ __ __ ___ __ ___ __ ___ _ .zt ltl@a’tlo@ . 113

  17. Geotechnology for low-permeability gas reservoirs, 1995

    SciTech Connect

    Brown, S.; Harstad, H.; Lorenz, J.; Warpinski, N.; Boneau, T.; Holcomb, D.; Teufel, L.; Young, C.

    1995-06-01

    The permeability, and thus the economics, of tight reservoirs are largely dependent on natural fractures, and on the in situ stresses that both originated fractures and control subsequent fracture permeability. Natural fracture permeability ultimately determines the gas (or oil) producibility from the rock matrix. Therefore, it is desirable to be able to predict, both prior to drilling and during reservoir production, (1) the natural fracture characteristics, (2) the mechanical and transport properties of fractures and the surrounding rock matrix, and (3) the present in situ stress magnitudes and orientations. The combination of activities described in this report extends the earlier work to other Rocky Mountain gas reservoirs. Additionally, it extends the fracture characterizations to attempts of crosswell geophysical fracture detection using shear wave birefringence and to obtaining detailed quantitative models of natural fracture systems for use in improved numerical reservoir simulations. Finally, the project continues collaborative efforts to evaluate and advance cost-effective methods for in situ stress measurements on core.

  18. Use of TOUGHREACT to Simulate Effects of Fluid Chemistry onInjectivity in Fractured Geothermal Reservoirs with High Ionic StrengthFluids

    SciTech Connect

    Xu, Tianfu; Zhang, Guoxiang; Pruess, Karsten

    2005-02-09

    Recent studies suggest that mineral dissolution/precipitation and clay swelling effects could have a major impact on the performance of hot dry rock (HDR) and hot fractured rock (HFR) reservoirs. A major concern is achieving and maintaining adequate injectivity, while avoiding the development of preferential short-circuiting flow paths. A Pitzer ionic interaction model has been introduced into the publicly available TOUGHREACT code for solving non-isothermal multi-phase reactive geochemical transport problems under conditions of high ionic strength, expected in typical HDR and HFR systems. To explore chemically-induced effects of fluid circulation in these systems, we examine ways in which the chemical composition of reinjected waters can be modified to improve reservoir performance. We performed a number of coupled thermo-hydrologic-chemical simulations in which the fractured medium was represented by a one-dimensional MINC model (multiple interacting continua). Results obtained with the Pitzer activity coefficient model were compared with those using an extended Debye-Hueckel equation. Our simulations show that non-ideal activity effects can be significant even at modest ionic strength, and can have major impacts on permeability evolution in injection-production systems. Alteration of injection water chemistry, for example by dilution with fresh water, can greatly alter precipitation and dissolution effects, and can offer a powerful tool for operating hot dry rock and hot fractured rock reservoirs in a sustainable manner.

  19. Simulating data processing for an Advanced Ion Mobility Mass Spectrometer

    SciTech Connect

    Chavarría-Miranda, Daniel; Clowers, Brian H.; Anderson, Gordon A.; Belov, Mikhail E.

    2007-11-03

    We have designed and implemented a Cray XD-1-based sim- ulation of data capture and signal processing for an ad- vanced Ion Mobility mass spectrometer (Hadamard trans- form Ion Mobility). Our simulation is a hybrid application that uses both an FPGA component and a CPU-based soft- ware component to simulate Ion Mobility mass spectrome- try data processing. The FPGA component includes data capture and accumulation, as well as a more sophisticated deconvolution algorithm based on a PNNL-developed en- hancement to standard Hadamard transform Ion Mobility spectrometry. The software portion is in charge of stream- ing data to the FPGA and collecting results. We expect the computational and memory addressing logic of the FPGA component to be portable to an instrument-attached FPGA board that can be interfaced with a Hadamard transform Ion Mobility mass spectrometer.

  20. Influence of reservoir conditions on multiphase flow in natural sandstone using lattice Boltzmann simulation: Investigation of suitable conditions in CCS and EOR

    NASA Astrophysics Data System (ADS)

    Tsuji, T.; Jiang, F.; Christensen, K. T.

    2015-12-01

    Microscopic two-phase fluid behavior in porous media is influenced by reservoir temperature, interfacial tension, pore structure, and porous medium characteristics (e.g., wettability), which vary significantly from one reservoir to the next. Pore-scale interfacial instabilities, such as snap-off and fingering phenomena, influence the stability, injectivity, mobility, and saturation within the reservoir. Therefore, understanding microscopic multiphase flow in porous media is crucial to estimating critical reservoir-scale characteristics, including storage capacity, leakage risk, and storage efficiency. Here we calculated fluid displacements within 3D pore spaces of natural sandstone using two-phase lattice Boltzmann (LB) simulation and characterized the influence of reservoir conditions upon multiphase flow. We classified the two-phase flow behavior that occurred under various conditions into three typical fluid displacement patterns on the diagram of capillary number (Ca) and viscosity ratio of the two fluids (M). Then the saturation of the nonwetting phase was calculated and mapped on the Ca-M diagram. The saturation map is useful to investigate suitable conditions in CCS and EOR. We further characterized dynamic pore-filling events (i.e., Haines jumps) from the fluid pressure variation. The results revealed the onset of capillary fingering in natural rock at a higher Ca than previously reported for homogeneous porous media, with the crossover region between typical displacement patterns much broader than in a homogeneous granular model. These differences between two-phase flow in natural rock and in a homogeneous porous structure could be the result of the heterogeneity of the natural rock.

  1. Advanced Dynamically Adaptive Algorithms for Stochastic Simulations on Extreme Scales

    SciTech Connect

    Xiu, Dongbin

    2016-06-21

    The focus of the project is the development of mathematical methods and high-performance com- putational tools for stochastic simulations, with a particular emphasis on computations on extreme scales. The core of the project revolves around the design of highly e cient and scalable numer- ical algorithms that can adaptively and accurately, in high dimensional spaces, resolve stochastic problems with limited smoothness, even containing discontinuities.

  2. Advanced Simulation in Undergraduate Pilot Training: Motion System Development

    DTIC Science & Technology

    1975-10-01

    Resources Laboratory * a~ October 1975 DISTRIBUTED BY: National Technical Infolmation Service U. S. DEPARTMENT OF COMMERCE 329055 AFHRL-TR-75.59(11) AIR...1911 - March 1975 0 A plloved (or publ( rele.Le; ditribution unlii h¢uted. E S LABORATORY NATIONAL TECHNICAL I INFORMATION SERVICEIJS D-pvt-f Of ,CU...Force IHuman Resources Laboratory (AFSC), Wright-Patterson Air Force Base. Ohio 45433. Mr. Don R. Gur.i Simulation Techniques Branch. was tile contract

  3. Application of Integrated Reservoir Management and Reservoir Characterization to Optimize Infill Drilling

    SciTech Connect

    1998-01-01

    Infill drilling if wells on a uniform spacing without regard to reservoir performance and characterization foes not optimize reservoir development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. New and emerging technologies, such as geostatistical modeling, rigorous decline curve analysis, reservoir rock typing, and special core analysis can be used to develop a 3-D simulation model for prediction of infill locations.

  4. Application of Integrated Reservoir management and Reservoir Characterization to Optimize Infill Drilling

    SciTech Connect

    B. Pregger; D. Davies; D. Moore; G. Freeman; J. Callard; J.W. Nevans; L. Doublet; R. Vessell; T. Blasingame

    1997-08-31

    Infill drilling if wells on a uniform spacing without regard to reservoir performance and characterization foes not optimize reservoir development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. New and emerging technologies, such as geostatistical modeling, rigorous decline curve analysis, reservoir rock typing, and special core analysis can be used to develop a 3-D simulation model for prediction of infill locations.

  5. Application of Integrated Reservoir Management and Reservoir Characterization to Optimize Infill Drilling

    SciTech Connect

    1998-03-12

    Infill drilling if wells on a uniform spacing without regard to reservoir performance and characterization foes not optimize reservoir development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. New and emerging technologies, such as geostatistical modeling, rigorous decline curve analysis, reservoir rock typing, and special core analysis can be used to develop a 3-D simulation model for prediction of infill locations.

  6. Simulation of an advanced techniques of ion propulsion Rocket system

    NASA Astrophysics Data System (ADS)

    Bakkiyaraj, R.

    2016-07-01

    The ion propulsion rocket system is expected to become popular with the development of Deuterium,Argon gas and Hexagonal shape Magneto hydrodynamic(MHD) techniques because of the stimulation indirectly generated the power from ionization chamber,design of thrust range is 1.2 N with 40 KW of electric power and high efficiency.The proposed work is the study of MHD power generation through ionization level of Deuterium gas and combination of two gaseous ions(Deuterium gas ions + Argon gas ions) at acceleration stage.IPR consists of three parts 1.Hexagonal shape MHD based power generator through ionization chamber 2.ion accelerator 3.Exhaust of Nozzle.Initially the required energy around 1312 KJ/mol is carrying out the purpose of deuterium gas which is changed to ionization level.The ionized Deuterium gas comes out from RF ionization chamber to nozzle through MHD generator with enhanced velocity then after voltage is generated across the two pairs of electrode in MHD.it will produce thrust value with the help of mixing of Deuterium ion and Argon ion at acceleration position.The simulation of the IPR system has been carried out by MATLAB.By comparing the simulation results with the theoretical and previous results,if reaches that the proposed method is achieved of thrust value with 40KW power for simulating the IPR system.

  7. ADVANCES IN COMPREHENSIVE GYROKINETIC SIMULATIONS OF TRANSPORT IN TOKAMAKS

    SciTech Connect

    WALTZ RE; CANDY J; HINTON FL; ESTRADA-MILA C; KINSEY JE

    2004-10-01

    A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate core turbulent transport in actual experimental profiles and enable direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite {beta}, equilibrium ExB shear stabilization, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius ({rho}{sub *}) so as to treat the profile shear stabilization and nonlocal effects which can break gyroBohm scaling. The code operates in either a cyclic flux-tube limit (which allows only gyroBohm scaling) or a globally with physical profile variation. Rohm scaling of DIII-D L-mode has been simulated with power flows matching experiment within error bars on the ion temperature gradient. Mechanisms for broken gyroBohm scaling, neoclassical ion flows embedded in turbulence, turbulent dynamos and profile corrugations, plasma pinches and impurity flow, and simulations at fixed flow rather than fixed gradient are illustrated and discussed.

  8. The cascade of reservoirs of the ``Mayak`` Plant: Case history and the first version of a computer simulator

    SciTech Connect

    Mironenko, M.V.; Spasennykh, M.Yu.; Polyakov, V.B.

    1994-07-01

    The improvement of the ecological conditions at waste storing reservoirs is an important task of the restoration activity at Production Association (PA) ``Mayak`` (South Urals). The radionuclides mostly {sup 90}Sr, {sup 137}Cs, and chemical pollutants deposited in the reservoir water and in the bottom sediment are very dangerous sources for the contamination of Techa River below the reservoirs and the contamination of groundwater in the surrounding formations. The spreading of radioactive contaminants has both hydrogeological and the chemical features. The thermodynamic approach used to account for physical-chemical interactions between water and the bed rocks based on Gibbs free energy minimization of multicomponent system (H-O-Ca-Mg-K-Na-S-Cl-C-Sr) permitted the authors to calculate the corresponding ionic and complex species existing in the solutions, and to characterize the processes of precipitation and dissolution. The model takes into account the input and output surface and underground water fluxes, mass exchange of the reservoir with the atmosphere, radioactive decay and water-sediment interaction including processes of the {sup 90}Sr and {sup 137}Cs sorption on the grains of the sediment and the radionuclide diffusion in the pore water. This model was used in the retrospective and prognosis c