Science.gov

Sample records for advanced sampling techniques

  1. Recent advances in sample preparation techniques for effective bioanalytical methods.

    PubMed

    Kole, Prashant Laxman; Venkatesh, Gantala; Kotecha, Jignesh; Sheshala, Ravi

    2011-01-01

    This paper reviews the recent developments in bioanalysis sample preparation techniques and gives an update on basic principles, theory, applications and possibilities for automation, and a comparative discussion on the advantages and limitation of each technique. Conventional liquid-liquid extraction (LLE), protein precipitation (PP) and solid-phase extraction (SPE) techniques are now been considered as methods of the past. The last decade has witnessed a rapid development of novel sample preparation techniques in bioanalysis. Developments in SPE techniques such as selective sorbents and in the overall approach to SPE, such as hybrid SPE and molecularly imprinted polymer SPE, have been addressed. Considerable literature has been published in the area of solid-phase micro-extraction and its different versions, e.g. stir bar sorptive extraction, and their application in the development of selective and sensitive bioanalytical methods. Techniques such as dispersive solid-phase extraction, disposable pipette extraction and micro-extraction by packed sorbent offer a variety of extraction phases and provide unique advantages to bioanalytical methods. On-line SPE utilizing column-switching techniques is rapidly gaining acceptance in bioanalytical applications. PP sample preparation techniques such as PP filter plates/tubes offer many advantages like removal of phospholipids and proteins in plasma/serum. Newer approaches to conventional LLE techniques (salting-out LLE) are also covered in this review article. PMID:21154887

  2. Advanced surface treatment and cleaning techniques for the US EPA method TO-14 grab sampling containers

    SciTech Connect

    Krasnec, J.

    1994-12-31

    Increased demands and an expanding list of toxic organic compounds, including oxygenated organics and other special groups, e.g., organic sulfur compounds, require modifications and improvements to the existing sampling and measurement hardware. One critical area is the passivated stainless steel surface of the grab sampling containers. The established and proven electropolishing (SUMMA passivation) works well for the sampling of hundreds of organic and inorganic volatile compounds. However, there are instances (i.e., some oxygenated organics) where the normal passivation falls short of the required stability and storability requirements. Recent R and D efforts show some promising avenues of improvement for the surface treatment and cleaning of the sampling containers. The passivated surface can be coated with several inorganic materials to enhance its performance. The initial work shows performance improvements for some groups of organics, but not an across-the-board enhancement. The effect of surface saturation with water vapor and other materials has also been investigated. Some novel surface cleaning techniques have been explored with encouraging results. This paper will attempt to bring the audience up to date on some of the above discussed efforts.

  3. Advanced sampling techniques for hand-held FT-IR instrumentation

    NASA Astrophysics Data System (ADS)

    Arnó, Josep; Frunzi, Michael; Weber, Chris; Levy, Dustin

    2013-05-01

    FT-IR spectroscopy is the technology of choice to identify solid and liquid phase unknown samples. The challenging ConOps in emergency response and military field applications require a significant redesign of the stationary FT-IR bench-top instruments typically used in laboratories. Specifically, field portable units require high levels of resistance against mechanical shock and chemical attack, ease of use in restrictive gear, extreme reliability, quick and easy interpretation of results, and reduced size. In the last 20 years, FT-IR instruments have been re-engineered to fit in small suitcases for field portable use and recently further miniaturized for handheld operation. This article introduces the HazMatID™ Elite, a FT-IR instrument designed to balance the portability advantages of a handheld device with the performance challenges associated with miniaturization. In this paper, special focus will be given to the HazMatID Elite's sampling interfaces optimized to collect and interrogate different types of samples: accumulated material using the on-board ATR press, dispersed powders using the ClearSampler™ tool, and the touch-to-sample sensor for direct liquid sampling. The application of the novel sample swipe accessory (ClearSampler) to collect material from surfaces will be discussed in some detail. The accessory was tested and evaluated for the detection of explosive residues before and after detonation. Experimental results derived from these investigations will be described in an effort to outline the advantages of this technology over existing sampling methods.

  4. Application of Advanced Nondestructive Evaluation Techniques for Cylindrical Composite Test Samples

    NASA Technical Reports Server (NTRS)

    Martin, Richard E.; Roth, Donald J.; Salem, Jonathan A.

    2013-01-01

    Two nondestructive methods were applied to composite cylinder samples pressurized to failure in order to determine manufacturing quality and monitor damage progression under load. A unique computed tomography (CT) image processing methodology developed at NASA Glenn Research was used to assess the condition of the as-received samples while acoustic emission (AE) monitoring was used to identify both the extent and location of damage within the samples up to failure. Results show the effectiveness of both of these methods in identifying potentially critical fabrication issues and their resulting impact on performance.

  5. Advanced Analytical Techniques for the Measurement of Nanomaterials in Food and Agricultural Samples: A Review

    PubMed Central

    Bandyopadhyay, Susmita; Peralta-Videa, Jose R.; Gardea-Torresdey, Jorge L.

    2013-01-01

    Abstract Nanotechnology offers substantial prospects for the development of state-of-the-art products and applications for agriculture, water treatment, and food industry. Profuse use of nanoproducts will bring potential benefits to farmers, the food industry, and consumers, equally. However, after end-user applications, these products and residues will find their way into the environment. Therefore, discharged nanomaterials (NMs) need to be identified and quantified to determine their ecotoxicity and the levels of exposure. Detection and characterization of NMs and their residues in the environment, particularly in food and agricultural products, have been limited, as no single technique or method is suitable to identify and quantify NMs. In this review, we have discussed the available literature concerning detection, characterization, and measurement techniques for NMs in food and agricultural matrices, which include chromatography, flow field fractionation, electron microscopy, light scattering, and autofluorescence techniques, among others. PMID:23483065

  6. Analysis of leading edge and trailing edge cover glass samples before and after treatment with advanced satellite contamination removal techniques

    NASA Technical Reports Server (NTRS)

    Hotaling, S. P.

    1993-01-01

    Two samples from Long Duration Exposure Facility (LDEF) experiment M0003-4 were analyzed for molecular and particulate contamination prior to and following treatment with advanced satellite contamination removal techniques (CO2 gas/solid jet spray and oxygen ion beam). The pre- and post-cleaning measurements and analyses are presented. The jet spray removed particulates in seconds. The low energy reactive oxygen ion beam removed 5,000 A of photo polymerized organic hydrocarbon contamination in less than 1 hour. Spectroscopic analytical techniques were applied to the analysis of cleaning efficiency including: Fourier transform infrared, Auger, x ray photoemissions, energy dispersive x ray, and ultraviolet/visible. The results of this work suggest that the contamination studied here was due to spacecraft self-contamination enhanced by atomic oxygen plasma dynamics and solar UV radiation. These results also suggest the efficacy for the jet spray and ion beam contamination control technologies for spacecraft optical surfaces.

  7. ADVANCES IN PARTICLE SAMPLING AND MEASUREMENT

    EPA Science Inventory

    The paper, by five authorities who contributed significantly to the second symposium on advances to particle sampling and measurement (October 1979 in Daytona Beach, FL) summarizes salient developments in the field. Current techniques were described as being expensive, complicate...

  8. Advanced hierarchical distance sampling

    USGS Publications Warehouse

    Royle, Andy

    2016-01-01

    In this chapter, we cover a number of important extensions of the basic hierarchical distance-sampling (HDS) framework from Chapter 8. First, we discuss the inclusion of “individual covariates,” such as group size, in the HDS model. This is important in many surveys where animals form natural groups that are the primary observation unit, with the size of the group expected to have some influence on detectability. We also discuss HDS integrated with time-removal and double-observer or capture-recapture sampling. These “combined protocols” can be formulated as HDS models with individual covariates, and thus they have a commonality with HDS models involving group structure (group size being just another individual covariate). We cover several varieties of open-population HDS models that accommodate population dynamics. On one end of the spectrum, we cover models that allow replicate distance sampling surveys within a year, which estimate abundance relative to availability and temporary emigration through time. We consider a robust design version of that model. We then consider models with explicit dynamics based on the Dail and Madsen (2011) model and the work of Sollmann et al. (2015). The final major theme of this chapter is relatively newly developed spatial distance sampling models that accommodate explicit models describing the spatial distribution of individuals known as Point Process models. We provide novel formulations of spatial DS and HDS models in this chapter, including implementations of those models in the unmarked package using a hack of the pcount function for N-mixture models.

  9. Conformational sampling techniques.

    PubMed

    Hatfield, Marcus P D; Lovas, Sándor

    2014-01-01

    The potential energy hyper-surface of a protein relates the potential energy of the protein to its conformational space. This surface is useful in determining the native conformation of a protein or in examining a statistical-mechanical ensemble of structures (canonical ensemble). In determining the potential energy hyper-surface of a protein three aspects must be considered; reducing the degrees of freedom, a method to determine the energy of each conformation and a method to sample the conformational space. For reducing the degrees of freedom the choice of solvent, coarse graining, constraining degrees of freedom and periodic boundary conditions are discussed. The use of quantum mechanics versus molecular mechanics and the choice of force fields are also discussed, as well as the sampling of the conformational space through deterministic and heuristic approaches. Deterministic methods include knowledge-based statistical methods, rotamer libraries, homology modeling, the build-up method, self-consistent electrostatic field, deformation methods, tree-based elimination and eigenvector following routines. The heuristic methods include Monte Carlo chain growing, energy minimizations, metropolis monte carlo and molecular dynamics. In addition, various methods to enhance the conformational search including the deformation or smoothing of the surface, scaling of system parameters, and multi copy searching are also discussed. PMID:23947647

  10. Advanced radiographic imaging techniques.

    NASA Technical Reports Server (NTRS)

    Beal, J. B.; Brown, R. L.

    1973-01-01

    Examination of the nature and operational constraints of conventional X-radiographic and neutron imaging methods, providing a foundation for a discussion of advanced radiographic imaging systems. Two types of solid-state image amplifiers designed to image X rays are described. Operational theory, panel construction, and performance characteristics are discussed. A closed-circuit television system for imaging neutrons is then described and the system design, operational theory, and performance characteristics are outlined. Emphasis is placed on a description of the advantages of these imaging systems over conventional methods.

  11. Advanced Coating Removal Techniques

    NASA Technical Reports Server (NTRS)

    Seibert, Jon

    2006-01-01

    An important step in the repair and protection against corrosion damage is the safe removal of the oxidation and protective coatings without further damaging the integrity of the substrate. Two such methods that are proving to be safe and effective in this task are liquid nitrogen and laser removal operations. Laser technology used for the removal of protective coatings is currently being researched and implemented in various areas of the aerospace industry. Delivering thousands of focused energy pulses, the laser ablates the coating surface by heating and dissolving the material applied to the substrate. The metal substrate will reflect the laser and redirect the energy to any remaining protective coating, thus preventing any collateral damage the substrate may suffer throughout the process. Liquid nitrogen jets are comparable to blasting with an ultra high-pressure water jet but without the residual liquid that requires collection and removal .As the liquid nitrogen reaches the surface it is transformed into gaseous nitrogen and reenters the atmosphere without any contamination to surrounding hardware. These innovative technologies simplify corrosion repair by eliminating hazardous chemicals and repetitive manual labor from the coating removal process. One very significant advantage is the reduction of particulate contamination exposure to personnel. With the removal of coatings adjacent to sensitive flight hardware, a benefit of each technique for the space program is that no contamination such as beads, water, or sanding residue is left behind when the job is finished. One primary concern is the safe removal of coatings from thin aluminum honeycomb face sheet. NASA recently conducted thermal testing on liquid nitrogen systems and found that no damage occurred on 1/6", aluminum substrates. Wright Patterson Air Force Base in conjunction with Boeing and NASA is currently testing the laser remOval technique for process qualification. Other applications of liquid

  12. Advanced Wavefront Control Techniques

    SciTech Connect

    Olivier, S S; Brase, J M; Avicola, K; Thompson, C A; Kartz, M W; Winters, S; Hartley, R; Wihelmsen, J; Dowla, F V; Carrano, C J; Bauman, B J; Pennington, D M; Lande, D; Sawvel, R M; Silva, D A; Cooke, J B; Brown, C G

    2001-02-21

    this project, work was performed in four areas (1) advanced modeling tools for deformable mirrors (2) low-order wavefront correctors with Alvarez lenses, (3) a direct phase measuring heterdyne wavefront sensor, and (4) high-spatial-frequency wavefront control using spatial light modulators.

  13. Advanced qualification techniques

    SciTech Connect

    Winokur, P.S; Shaneyfelt, M.R.; Meisenheimer, T.L.; Fleetwood, D.M.

    1993-12-01

    This paper demonstrates use of the Qualified Manufacturers List (QML) methodology to qualify commercial and military microelectronics for use in space applications. QML ``builds in`` the hardness of product through statistical process control (SPC) of technology parameters relevant to the radiation response, test structure to integrated circuit (IC) correlations, and techniques for extrapolating laboratory test results to low-dose-rate space scenarios. Each of these elements is demonstrated and shown to be a cost-effective alternative to expensive end-of-line IC testing. Several examples of test structured-IC correlations are provided and recent work on complications arising from transistor scaling and geometry is discussed. The use of a 10-keV x-ray wafer-level test system to support SPC and establish ``process capability`` is illustrated and a comparison of 10-keV x-ray and Co{sup 60} gamma irradiations is provided for a wide range of CMOS technologies. The x-ray tester is shown to be cost-effective and its use in lot acceptance/qualification is recommended. Finally, a comparison is provided between MIL-STD-883D, Test Method 1019.4, which governs the testing of packaged semiconductor microcircuits in the DoD, and ESA/SSC Basic Specification No. 22900, Europe`s Total Dose Steady-State Irradiation Test Method. Test Method 1019.4 focuses on conservative estimates of MOS hardness for space and tactical applications, while Basic Specification 22900 focuses on improved simulation of low-dose-rate space environments.

  14. Advanced qualification techniques

    NASA Astrophysics Data System (ADS)

    Winokur, P. S.; Shaneyfelt, M. R.; Meisenheimer, T. L.; Fleetwood, D. M.

    This paper demonstrates use of the Qualified Manufacturers List (QML) methodology to qualify commercial and military microelectronics for use in space applications. QML 'builds in' the hardness of product through statistical process control (SPC) of technology parameters relevant to the radiation response, test structure to integrated circuit (IC) correlations, and techniques for extrapolating laboratory test results to low-dose-rate space scenarios. Each of these elements is demonstrated and shown to be a cost-effective alternative to expensive end-of-line IC testing. Several examples of test structured-IC correlations are provided and recent work on complications arising from transistor scaling and geometry is discussed. The use of a 10-keV x-ray wafer-level test system to support SPC and establish 'process capability' is illustrated and a comparison of 10-keV x-ray and Co-60 gamma irradiations is provided for a wide range of CMOS technologies. The x-ray tester is shown to be cost-effective and its use in lot acceptance/qualification is recommended. Finally, a comparison is provided between MIL-STD-883D, Test Method 1019.4, which governs the testing of packaged semiconductor microcircuits in the DoD, and ESA/SSC Basic Specification No. 22900, Europe's Total Dose Steady-State Irradiation Test Method. Test Method 1019.4 focuses on conservative estimates of MOS hardness for space and tactical applications, while Basic Specification 22900 focuses on improved simulation of low-dose-rate space environments.

  15. Advanced qualification techniques

    SciTech Connect

    Winokur, P.S.; Shaneyfelt, M.R.; Meisenheimer, T.L.; Fleetwood, D.M. )

    1994-06-01

    This paper demonstrates use of the Qualified Manufacturers List (QML) methodology to qualify commercial and military microelectronics for use in space applications. QML ''builds in'' the hardness of product through statistical process control (SPC) of technology parameters relevant to the radiation response, test structure to integrated circuit (IC) correlations, and techniques for extrapolating laboratory test results to low-dose-rate space scenarios. Each of these elements is demonstrated and shown to be a cost-effective alternative to expensive end-of-line IC testing. Several examples of test structure-to-IC correlations are provided and recent work on complications arising from transistor scaling and geometry is discussed. The use of a 10-keV x-ray wafer-level test system to support SPC and establish ''process capability'' is illustrated and a comparison of 10-kev x-ray wafer-level test system to support SPC and establish ''process capability'' is illustrated and a comparison of 10-keV x-ray and Co[sup 60] gamma irradiations is provided for a wide range of CMOS technologies. The x-ray tester is shown to be cost-effective and its use in lot acceptance/qualification is recommended. Finally, a comparison is provided between MIL-STD-883, Test Method 1019.4, which governs the testing of packaged semiconductor microcircuits in the DoD, and ESA/SCC Basic Specification No. 22900, Europe's Total Dose Steady-State Irradiation Test Method. Test Method 1019.4 focuses on conservative estimates of MOS hardness for space and tactical applications, while Basic Specification 22900 focuses on improved simulation of low-dose-rate space environments.

  16. Advanced qualification techniques

    NASA Astrophysics Data System (ADS)

    Winokur, P. S.; Shaneyfelt, M. R.; Meisenheimer, T. L.; Fleetwood, D. M.

    1994-06-01

    This paper demonstrates use of the Qualified Manufacturers List (QML) methodology to qualify commercial and military microelectronics for use in space applications. QML 'builds in' the hardness of product through statistical process control (SPC) of technology parameters relevant to the radiation response, test structure to integrated circuit (IC) correlations, and techniques for extrapolating laboratory test results to low-dose-rate space scenarios. Each of these elements is demonstrated and shown to be a cost-effective alternative to expensive end-of-line IC testing. Several examples of test structure-to-IC correlations are provided and recent work on complications arising from transistor scaling and geometry is discussed. The use of a 10-keV x-ray wafer-level test system to support SPC and establish 'process capability' is illustrated and a comparison of 10-keV x-ray and Co-60 gamma irradiations is provided for a wide range of CMOS technologies. The x-ray tester is shown to be cost-effective and its use in lot acceptance/qualification is recommended. Finally, a comparison is provided between MIL-STD-883, Test Method 1019.4, which governs the testing of packaged semiconductor microcircuits in the DoD, and ESA/SCC Basic Specification No. 22900, Europe's Total Dose Steady-State Irradiation Test Method. Test Method 1019.4 focuses on conservative estimates of MOS hardness for space and tactical applications, while Basic Specification 22900 focuses on improved simulation of low-dose-rate space environments.

  17. Field techniques for sampling ants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ants occur in most environments and ecologists ask a diverse array of questions involving ants. Thus, a key consideration in ant studies is to match the environment and question (and associated environmental variables) to the ant sampling technique. Since each technique has distinct limitations, usi...

  18. Nuclear material investigations by advanced analytical techniques

    NASA Astrophysics Data System (ADS)

    Degueldre, C.; Kuri, G.; Martin, M.; Froideval, A.; Cammelli, S.; Orlov, A.; Bertsch, J.; Pouchon, M. A.

    2010-10-01

    Advanced analytical techniques have been used to characterize nuclear materials at the Paul Scherrer Institute during the last decade. The analysed materials ranged from reactor pressure vessel (RPV) steels, Zircaloy claddings to fuel samples. The processes studied included copper cluster build up in RPV steels, corrosion, mechanical and irradiation damage behaviour of PWR and BWR cladding materials as well as fuel defect development. The used advanced techniques included muon spin resonance spectroscopy for zirconium alloy defect characterization while fuel element materials were analysed by techniques derived from neutron and X-ray scattering and absorption spectroscopy.

  19. Advances in Procedural Techniques - Antegrade

    PubMed Central

    Wilson, William; Spratt, James C.

    2014-01-01

    There have been many technological advances in antegrade CTO PCI, but perhaps most importantly has been the evolution of the “hybrid’ approach where ideally there exists a seamless interplay of antegrade wiring, antegrade dissection re-entry and retrograde approaches as dictated by procedural factors. Antegrade wire escalation with intimal tracking remains the preferred initial strategy in short CTOs without proximal cap ambiguity. More complex CTOs, however, usually require either a retrograde or an antegrade dissection re-entry approach, or both. Antegrade dissection re-entry is well suited to long occlusions where there is a healthy distal vessel and limited “interventional” collaterals. Early use of a dissection re-entry strategy will increase success rates, reduce complications, and minimise radiation exposure, contrast use as well as procedural times. Antegrade dissection can be achieved with a knuckle wire technique or the CrossBoss catheter whilst re-entry will be achieved in the most reproducible and reliable fashion by the Stingray balloon/wire. It should be avoided where there is potential for loss of large side branches. It remains to be seen whether use of newer dissection re-entry strategies will be associated with lower restenosis rates compared with the more uncontrolled subintimal tracking strategies such as STAR and whether stent insertion in the subintimal space is associated with higher rates of late stent malapposition and stent thrombosis. It is to be hoped that the algorithms, which have been developed to guide CTO operators, allow for a better transfer of knowledge and skills to increase uptake and acceptance of CTO PCI as a whole. PMID:24694104

  20. Advanced Spectroscopy Technique for Biomedicine

    NASA Astrophysics Data System (ADS)

    Zhao, Jianhua; Zeng, Haishan

    This chapter presents an overview of the applications of optical spectroscopy in biomedicine. We focus on the optical design aspects of advanced biomedical spectroscopy systems, Raman spectroscopy system in particular. Detailed components and system integration are provided. As examples, two real-time in vivo Raman spectroscopy systems, one for skin cancer detection and the other for endoscopic lung cancer detection, and an in vivo confocal Raman spectroscopy system for skin assessment are presented. The applications of Raman spectroscopy in cancer diagnosis of the skin, lung, colon, oral cavity, gastrointestinal tract, breast, and cervix are summarized.

  1. Stitching Techniques Advance Optics Manufacturing

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Because NASA depends on the fabrication and testing of large, high-quality aspheric (nonspherical) optics for applications like the James Webb Space Telescope, it sought an improved method for measuring large aspheres. Through Small Business Innovation Research (SBIR) awards from Goddard Space Flight Center, QED Technologies, of Rochester, New York, upgraded and enhanced its stitching technology for aspheres. QED developed the SSI-A, which earned the company an R&D 100 award, and also developed a breakthrough machine tool called the aspheric stitching interferometer. The equipment is applied to advanced optics in telescopes, microscopes, cameras, medical scopes, binoculars, and photolithography."

  2. Advanced measurement techniques, part 1

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.; Carraway, Debra L.; Manuel, Gregory S.; Croom, Cynthia C.

    1987-01-01

    In modern laminar flow flight and wind tunnel research, it is important to understand the specific cause(s) of laminar to turbulent boundary layer transition. Such information is crucial to the exploration of the limits of practical application of laminar flow for drag reduction on aircraft. The process of transition involves both the possible modes of disturbance growth, and the environmental conditioning of the instabilities by freestream or surface conditions. The possible modes of disturbance growth include viscous, inviscid, and modes which may bypass these natural ones. Theory provides information on the possible modes of disturbance amplification, but experimentation must be relied upon to determine which of those modes actually dominates the transition process in a given environment. The results to date of research on advanced devices and methods used for the study of transition phenomena in the subsonic and transonic flight and wind tunnel environments are presented.

  3. PREPARATION OF SOIL SAMPLING PROTOCOLS: SAMPLING TECHNIQUES AND STRATEGIES

    EPA Science Inventory

    The document serves as a companion document to the Soil Sampling Quality Assurance User's Guide, Second Edition. he two documents together provide methods, techniques, and procedures for designing a variety of soil measurement programs and associated Quality Assurance Program Pla...

  4. Wastewater Sampling Methodologies and Flow Measurement Techniques.

    ERIC Educational Resources Information Center

    Harris, Daniel J.; Keffer, William J.

    This document provides a ready source of information about water/wastewater sampling activities using various commercial sampling and flow measurement devices. The report consolidates the findings and summarizes the activities, experiences, sampling methods, and field measurement techniques conducted by the Environmental Protection Agency (EPA),…

  5. The application of advanced analytical techniques to direct coal liquefaction

    SciTech Connect

    Brandes, S.D.; Winschel, R.A.; Burke, F.P.; Robbins, G.A.

    1991-12-31

    Consol is coordinating a program designed to bridge the gap between the advanced, modern techniques of the analytical chemist and the application of those techniques by the direct coal liquefaction process developer, and to advance our knowledge of the process chemistry of direct coal liquefaction. The program is designed to provide well-documented samples to researchers who are utilizing techniques potentially useful for the analysis of coal derived samples. The choice of samples and techniques was based on an extensive survey made by Consol of the present status of analytical methodology associated with direct coal liquefaction technology. Sources of information included process developers and analytical chemists. Identified in the survey are a number of broadly characterizable needs. These categories include a need for: A better understanding of the nature of the high molecular weight, non-distillable residual materials (both soluble and insoluble) in the process streams; improved techniques for molecular characterization, heteroatom and hydrogen speciation and a knowledge of the hydrocarbon structural changes across coal liquefaction systems; better methods for sample separation; application of advanced data analysis methods; the use of more advanced predictive models; on-line analytical techniques; and better methods for catalyst monitoring.

  6. Soil Sampling Techniques For Alabama Grain Fields

    NASA Technical Reports Server (NTRS)

    Thompson, A. N.; Shaw, J. N.; Mask, P. L.; Touchton, J. T.; Rickman, D.

    2003-01-01

    Characterizing the spatial variability of nutrients facilitates precision soil sampling. Questions exist regarding the best technique for directed soil sampling based on a priori knowledge of soil and crop patterns. The objective of this study was to evaluate zone delineation techniques for Alabama grain fields to determine which method best minimized the soil test variability. Site one (25.8 ha) and site three (20.0 ha) were located in the Tennessee Valley region, and site two (24.2 ha) was located in the Coastal Plain region of Alabama. Tennessee Valley soils ranged from well drained Rhodic and Typic Paleudults to somewhat poorly drained Aquic Paleudults and Fluventic Dystrudepts. Coastal Plain s o i l s ranged from coarse-loamy Rhodic Kandiudults to loamy Arenic Kandiudults. Soils were sampled by grid soil sampling methods (grid sizes of 0.40 ha and 1 ha) consisting of: 1) twenty composited cores collected randomly throughout each grid (grid-cell sampling) and, 2) six composited cores collected randomly from a -3x3 m area at the center of each grid (grid-point sampling). Zones were established from 1) an Order 1 Soil Survey, 2) corn (Zea mays L.) yield maps, and 3) airborne remote sensing images. All soil properties were moderately to strongly spatially dependent as per semivariogram analyses. Differences in grid-point and grid-cell soil test values suggested grid-point sampling does not accurately represent grid values. Zones created by soil survey, yield data, and remote sensing images displayed lower coefficient of variations (8CV) for soil test values than overall field values, suggesting these techniques group soil test variability. However, few differences were observed between the three zone delineation techniques. Results suggest directed sampling using zone delineation techniques outlined in this paper would result in more efficient soil sampling for these Alabama grain fields.

  7. Sampling for advanced overlay process control

    NASA Astrophysics Data System (ADS)

    Choi, DongSub; Izikson, Pavel; Sutherland, Doug; Sherman, Kara; Manka, Jim; Robinson, John C.

    2008-03-01

    Overlay metrology and control have been critical for successful advanced microlithography for many years, and are taking on an even more important role as time goes on. Due to throughput constraints it is necessary to sample only a small subset of overlay metrology marks, and typical sample plans are static over time. Standard production monitoring and control involves measuring sufficient samples to calculate up to 6 linear correctables. As design rules shrink and processing becomes more complex, however, it is necessary to consider higher order modeled terms for control, fault detection, and disposition. This in turn, requires a higher level of sampling. Due to throughput concerns, however, careful consideration is needed to establish a base-line sampling, and higher levels of sampling can be considered on an exception-basis based on automated trigger mechanisms. The goal is improved scanner control and lithographic cost of ownership. This study addresses tools for establishing baseline sampling as well as motivation and initial results for dynamic sampling for application to higher order modeling.

  8. Sampling for advanced overlay process control

    NASA Astrophysics Data System (ADS)

    Kato, Cindy; Kurita, Hiroyuki; Izikson, Pavel; Robinson, John C.

    2009-03-01

    Overlay metrology and control have been critical for successful advanced microlithography for many years, and are taking on an even more important role as time goes on. Due to throughput constraints it is necessary to sample only a small subset of overlay metrology marks, and typical sample plans are static over time. Standard production monitoring and control involves measuring sufficient samples to calculate up to 6 linear correctables. As design rules shrink and processing becomes more complex, however, it is necessary to consider higher order models with additional degrees of freedom for control, fault detection, and disposition. This in turn, requires a higher level of sampling and a careful consideration of flyer removal. Due to throughput concerns, however, careful consideration is needed to establish a baseline sampling plan using rigorous statistical methods. This study focuses on establishing a 3x nm node immersion lithography production-worthy sampling plan for 3rd order modeling, verification of the accuracy, and proof of robustness of the sampling. In addition we discuss motivation for dynamic sampling for application to higher order modeling.

  9. Hybrid mesh generation using advancing reduction technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study presents an extension of the application of the advancing reduction technique to the hybrid mesh generation. The proposed algorithm is based on a pre-generated rectangle mesh (RM) with a certain orientation. The intersection points between the two sets of perpendicular mesh lines in RM an...

  10. Study of sample drilling techniques for Mars sample return missions

    NASA Technical Reports Server (NTRS)

    Mitchell, D. C.; Harris, P. T.

    1980-01-01

    To demonstrate the feasibility of acquiring various surface samples for a Mars sample return mission the following tasks were performed: (1) design of a Mars rover-mounted drill system capable of acquiring crystalline rock cores; prediction of performance, mass, and power requirements for various size systems, and the generation of engineering drawings; (2) performance of simulated permafrost coring tests using a residual Apollo lunar surface drill, (3) design of a rock breaker system which can be used to produce small samples of rock chips from rocks which are too large to return to Earth, but too small to be cored with the Rover-mounted drill; (4)design of sample containers for the selected regolith cores, rock cores, and small particulate or rock samples; and (5) design of sample handling and transfer techniques which will be required through all phase of sample acquisition, processing, and stowage on-board the Earth return vehicle. A preliminary design of a light-weight Rover-mounted sampling scoop was also developed.

  11. Development of Sampling Techniques For Planetary Surfaces

    NASA Astrophysics Data System (ADS)

    Coste, P.; Eiden, M.; Gromov, V.; Ilykorpi, T.; Kochan, H.; Re, E.; Richter, L.

    During the last 15 years, the European Space Agency has initiated the development of a number of sampling techniques for planetary surfaces, in the frame of its basic Technology and Research Programme (TRP). Sampling may be performed by means of drilling, coring, milling, grain scooping or picking, and penetration. The items addressed in particular are: the Sample Acquisition System (SAS) for the late Comet Nucleus Sample and Return mission; the Small Sample Acquisition and Distribution Tool (SSA/DT): the Mole and the Sampling Mole (SM). Some of these devices have found a direct application within an ESA planetary mission, as expected; in other cases, their concept was used and modified to fulfill updated requirements. Sampling or soil probing capabilities are included to various extents in these current or near-future ESA missions: the Huygens Probe (on NASA's CASSINI spacecraft), on its way to Titan surface; the RoLand Lander (on ROSETTA s/c), onto Comet Wirtanen; the Beagle2 Lander (carried by MARS EXPRESS s/c) sampling the Martian surface and sub- surface. Future sampling missions to Mercury, the Moon and to asteroids are being studied. Even more challenging missions to Venus are considered.

  12. OSL technique for studies of jasper samples

    NASA Astrophysics Data System (ADS)

    Teixeira, Maria Inês; Caldas, Linda V. E.

    2014-02-01

    Jasper samples (green, red, brown, ocean and striped) were studied in relation to their optically stimulated luminescence (OSL) dosimetric properties, in this work. Since 2000, the radiation metrology group of IPEN has studied different stones as new materials for application in high-dose dosimetry. The jasper samples were exposed to different radiation doses, using the Gamma-cell 220 system (60Co) of IPEN. Calibration curves were obtained for the jasper samples between 50 Gy and 300 kGy. The reproducibility of the OSL response and the lower detection doses were determined. All five types of jasper samples showed their usefulness as irradiation indicators and as high-dose dosimeters, using the OSL technique.

  13. Recent advancement of turbulent flow measurement techniques

    NASA Technical Reports Server (NTRS)

    Battle, T.; Wang, P.; Cheng, D. Y.

    1974-01-01

    Advancements of the fluctuating density gradient cross beam laser Schlieren technique, the fluctuating line-reversal temperature measurement and the development of the two-dimensional drag-sensing probe to a three-dimensional drag-sensing probe are discussed. The three-dimensionality of the instantaneous momentum vector can shed some light on the nature of turbulence especially with swirling flow. All three measured fluctuating quantities (density, temperature, and momentum) can provide valuable information for theoreticians.

  14. Sampling honeybee colonies for brood production: a double sampling technique

    SciTech Connect

    Rogers, L.E.; Gilbert, R.O.; Burgett, M.

    1983-01-01

    A procedure is described for estimating numbers of capped brood cells by double sampling combined with linear regression. A complete census of capped brood cells is better than an estimate, provided it is possible to count all brood cells directly or from photographs of brood frames. The double sampling technique, however, has the advantage of enabling data to be collected more quickly and at a lower cost than for a complete count. It also provides an estimate of the approximate variability associated with brood estimates and a mechanism for correcting biases associated with different investigators or with estimates by the same individual at different times or under different conditions. The technique is easy to apply in the field and involves minimal disturbance to the colony. A disadvantage is that the calculations associated with estimates of brood area are more arduous, estimates of variability are approximate, and brood estimates may be biased if the data are too few. All calculations can be easily adapted to a programmable calculator or small computer. Linear calibration, an alternative to the use of double sampling, is briefly discussed.

  15. Advanced Tools and Techniques for Formal Techniques in Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Knight, John C.

    2005-01-01

    This is the final technical report for grant number NAG-1-02101. The title of this grant was "Advanced Tools and Techniques for Formal Techniques In Aerospace Systems". The principal investigator on this grant was Dr. John C. Knight of the Computer Science Department, University of Virginia, Charlottesville, Virginia 22904-4740. This report summarizes activities under the grant during the period 7/01/2002 to 9/30/2004. This report is organized as follows. In section 2, the technical background of the grant is summarized. Section 3 lists accomplishments and section 4 lists students funded under the grant. In section 5, we present a list of presentations given at various academic and research institutions about the research conducted. Finally, a list of publications generated under this grant is included in section 6.

  16. Advanced Curation of Current and Future Extraterrestrial Samples

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.

    2013-01-01

    methods currently used. New analytical and screening techniques will increase the value of current sample collections. Improved web-based tools will make information on all samples more accessible to researchers and the public. Advanced curation of current and future extraterrestrial samples includes: Contamination Control - inorganic / organic Temperature of preservation - subfreezing / cryogenic Non-destructive preliminary examination - X-ray tomography / XRF mapping / Raman mapping Microscopic samples - handling / sectioning / transport Special samples - unopened lunar cores Informatics - online catalogs / community-based characterization.

  17. Advanced flow MRI: emerging techniques and applications.

    PubMed

    Markl, M; Schnell, S; Wu, C; Bollache, E; Jarvis, K; Barker, A J; Robinson, J D; Rigsby, C K

    2016-08-01

    Magnetic resonance imaging (MRI) techniques provide non-invasive and non-ionising methods for the highly accurate anatomical depiction of the heart and vessels throughout the cardiac cycle. In addition, the intrinsic sensitivity of MRI to motion offers the unique ability to acquire spatially registered blood flow simultaneously with the morphological data, within a single measurement. In clinical routine, flow MRI is typically accomplished using methods that resolve two spatial dimensions in individual planes and encode the time-resolved velocity in one principal direction, typically oriented perpendicular to the two-dimensional (2D) section. This review describes recently developed advanced MRI flow techniques, which allow for more comprehensive evaluation of blood flow characteristics, such as real-time flow imaging, 2D multiple-venc phase contrast MRI, four-dimensional (4D) flow MRI, quantification of complex haemodynamic properties, and highly accelerated flow imaging. Emerging techniques and novel applications are explored. In addition, applications of these new techniques for the improved evaluation of cardiovascular (aorta, pulmonary arteries, congenital heart disease, atrial fibrillation, coronary arteries) as well as cerebrovascular disease (intra-cranial arteries and veins) are presented. PMID:26944696

  18. Advanced Bode Plot Techniques for Ultrasonic Transducers

    NASA Astrophysics Data System (ADS)

    DeAngelis, D. A.; Schulze, G. W.

    The Bode plot, displayed as either impedance or admittance versus frequency, is the most basic test used by ultrasonic transducer designers. With simplicity and ease-of-use, Bode plots are ideal for baseline comparisons such as spacing of parasitic modes or impedance, but quite often the subtleties that manifest as poor process control are hard to interpret or are nonexistence. In-process testing of transducers is time consuming for quantifying statistical aberrations, and assessments made indirectly via the workpiece are difficult. This research investigates the use of advanced Bode plot techniques to compare ultrasonic transducers with known "good" and known "bad" process performance, with the goal of a-priori process assessment. These advanced techniques expand from the basic constant voltage versus frequency sweep to include constant current and constant velocity interrogated locally on transducer or tool; they also include up and down directional frequency sweeps to quantify hysteresis effects like jumping and dropping phenomena. The investigation focuses solely on the common PZT8 piezoelectric material used with welding transducers for semiconductor wire bonding. Several metrics are investigated such as impedance, displacement/current gain, velocity/current gain, displacement/voltage gain and velocity/voltage gain. The experimental and theoretical research methods include Bode plots, admittance loops, laser vibrometry and coupled-field finite element analysis.

  19. Advanced analysis techniques for uranium assay

    SciTech Connect

    Geist, W. H.; Ensslin, Norbert; Carrillo, L. A.; Beard, C. A.

    2001-01-01

    Uranium has a negligible passive neutron emission rate making its assay practicable only with an active interrogation method. The active interrogation uses external neutron sources to induce fission events in the uranium in order to determine the mass. This technique requires careful calibration with standards that are representative of the items to be assayed. The samples to be measured are not always well represented by the available standards which often leads to large biases. A technique of active multiplicity counting is being developed to reduce some of these assay difficulties. Active multiplicity counting uses the measured doubles and triples count rates to determine the neutron multiplication (f4) and the product of the source-sample coupling ( C ) and the 235U mass (m). Since the 35U mass always appears in the multiplicity equations as the product of Cm, the coupling needs to be determined before the mass can be known. A relationship has been developed that relates the coupling to the neutron multiplication. The relationship is based on both an analytical derivation and also on empirical observations. To determine a scaling constant present in this relationship, known standards must be used. Evaluation of experimental data revealed an improvement over the traditional calibration curve analysis method of fitting the doubles count rate to the 235Um ass. Active multiplicity assay appears to relax the requirement that the calibration standards and unknown items have the same chemical form and geometry.

  20. ADVANCES IN GROUND WATER SAMPLING PROCEDURES

    EPA Science Inventory

    Obtaining representative ground water samples is important for site assessment and remedial performance monitoring objectives. Issues which must be considered prior to initiating a ground-water monitoring program include defining monitoring goals and objectives, sampling point...

  1. Advanced Curation: Solving Current and Future Sample Return Problems

    NASA Technical Reports Server (NTRS)

    Fries, M.; Calaway, M.; Evans, C.; McCubbin, F.

    2015-01-01

    Advanced Curation is a wide-ranging and comprehensive research and development effort at NASA Johnson Space Center that identifies and remediates sample related issues. For current collections, Advanced Curation investigates new cleaning, verification, and analytical techniques to assess their suitability for improving curation processes. Specific needs are also assessed for future sample return missions. For each need, a written plan is drawn up to achieve the requirement. The plan draws while upon current Curation practices, input from Curators, the analytical expertise of the Astromaterials Research and Exploration Science (ARES) team, and suitable standards maintained by ISO, IEST, NIST and other institutions. Additionally, new technologies are adopted on the bases of need and availability. Implementation plans are tested using customized trial programs with statistically robust courses of measurement, and are iterated if necessary until an implementable protocol is established. Upcoming and potential NASA missions such as OSIRIS-REx, the Asteroid Retrieval Mission (ARM), sample return missions in the New Frontiers program, and Mars sample return (MSR) all feature new difficulties and specialized sample handling requirements. The Mars 2020 mission in particular poses a suite of challenges since the mission will cache martian samples for possible return to Earth. In anticipation of future MSR, the following problems are among those under investigation: What is the most efficient means to achieve the less than 1.0 ng/sq cm total organic carbon (TOC) cleanliness required for all sample handling hardware? How do we maintain and verify cleanliness at this level? The Mars 2020 Organic Contamination Panel (OCP) predicts that organic carbon, if present, will be present at the "one to tens" of ppb level in martian near-surface samples. The same samples will likely contain wt% perchlorate salts, or approximately 1,000,000x as much perchlorate oxidizer as organic carbon

  2. Sample Acquisition Techniques for Exobiology Flight Experiments

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel R.; Carle, Glenn C.; Stratton, David M.; Valentin, Jose R.; DeVincenzi, Donald (Technical Monitor)

    1999-01-01

    Exobiology Flight Experiments involve complex analyses conducted in environments far different than those encountered in terrestrial applications. A major part of the analytical challenge is often the selection, acquisition, delivery and, in some cases, processing of a sample suitable for the analytical requirements of the mission. The added complications of severely limited resources and sometimes rigid time constraints combine to make sample acquisition potentially a major obstacle for successful analyses. Potential samples come in a wide range including planetary atmospheric gas and aerosols (from a wide variety of pressures), planetary soil or rocks, dust and ice particles streaming off of a comet, and cemetery surface ice and rocks. Methods to collect and process sample are often mission specific, requiring continual development of innovative concepts and mechanisms. These methods must also maintain the integrity of the sample for the experimental results to be meaningful. We present here sample acquisition systems employed from past missions and proposed for future missions.

  3. Advances in procedural techniques--antegrade.

    PubMed

    Wilson, William; Spratt, James C

    2014-05-01

    There have been many technological advances in antegrade CTO PCI, but perhaps most importantly has been the evolution of the "hybrid' approach where ideally there exists a seamless interplay of antegrade wiring, antegrade dissection re-entry and retrograde approaches as dictated by procedural factors. Antegrade wire escalation with intimal tracking remains the preferred initial strategy in short CTOs without proximal cap ambiguity. More complex CTOs, however, usually require either a retrograde or an antegrade dissection re-entry approach, or both. Antegrade dissection re-entry is well suited to long occlusions where there is a healthy distal vessel and limited "interventional" collaterals. Early use of a dissection re-entry strategy will increase success rates, reduce complications, and minimise radiation exposure, contrast use as well as procedural times. Antegrade dissection can be achieved with a knuckle wire technique or the CrossBoss catheter whilst re-entry will be achieved in the most reproducible and reliable fashion by the Stingray balloon/wire. It should be avoided where there is potential for loss of large side branches. It remains to be seen whether use of newer dissection re-entry strategies will be associated with lower restenosis rates compared with the more uncontrolled subintimal tracking strategies such as STAR and whether stent insertion in the subintimal space is associated with higher rates of late stent malapposition and stent thrombosis. It is to be hoped that the algorithms, which have been developed to guide CTO operators, allow for a better transfer of knowledge and skills to increase uptake and acceptance of CTO PCI as a whole. PMID:24694104

  4. Statistical Analysis Techniques for Small Sample Sizes

    NASA Technical Reports Server (NTRS)

    Navard, S. E.

    1984-01-01

    The small sample sizes problem which is encountered when dealing with analysis of space-flight data is examined. Because of such a amount of data available, careful analyses are essential to extract the maximum amount of information with acceptable accuracy. Statistical analysis of small samples is described. The background material necessary for understanding statistical hypothesis testing is outlined and the various tests which can be done on small samples are explained. Emphasis is on the underlying assumptions of each test and on considerations needed to choose the most appropriate test for a given type of analysis.

  5. Proteomics: Challenges, Techniques and Possibilities to Overcome Biological Sample Complexity

    PubMed Central

    Chandramouli, Kondethimmanahalli; Qian, Pei-Yuan

    2009-01-01

    Proteomics is the large-scale study of the structure and function of proteins in complex biological sample. Such an approach has the potential value to understand the complex nature of the organism. Current proteomic tools allow large-scale, high-throughput analyses for the detection, identification, and functional investigation of proteome. Advances in protein fractionation and labeling techniques have improved protein identification to include the least abundant proteins. In addition, proteomics has been complemented by the analysis of posttranslational modifications and techniques for the quantitative comparison of different proteomes. However, the major limitation of proteomic investigations remains the complexity of biological structures and physiological processes, rendering the path of exploration paved with various difficulties and pitfalls. The quantity of data that is acquired with new techniques places new challenges on data processing and analysis. This article provides a brief overview of currently available proteomic techniques and their applications, followed by detailed description of advantages and technical challenges. Some solutions to circumvent technical difficulties are proposed. PMID:20948568

  6. Bringing Advanced Computational Techniques to Energy Research

    SciTech Connect

    Mitchell, Julie C

    2012-11-17

    Please find attached our final technical report for the BACTER Institute award. BACTER was created as a graduate and postdoctoral training program for the advancement of computational biology applied to questions of relevance to bioenergy research.

  7. Firearms discharge residue sample collection techniques.

    PubMed

    Goleb, J A; Midkiff, C R

    1975-10-01

    Critical comparisons of Ba and Sb in firearms discharge residue were made on samples collected by three independent collection technqiues. Collection materials studied were transparent adhesive tape, (Scotch Brand), a solution of cellulose acetate in acetone ("Film Lift"), and plastic-shafted cotton swabs wetted with dilute nitric acid. Flameless atomic absorption analyses were performed with a Jarrell-Ash Model 810 instrument equipped with a tantalum strip atomizer. Tape and cotton swabs gave comparable positive indications of residue, with frequencies of 90 and 80%, respectively. The plastic Film Lift gave fewer positives, with a frequency of 50%. With the transparent tape lift, gunshot residue particles are discernible, making nondestructive microscopic identification possible prior to destructive elemental analysis. PMID:1176924

  8. Recent Advances in Beam Diagnostic Techniques

    NASA Astrophysics Data System (ADS)

    Fiorito, R. B.

    2002-12-01

    We describe recent advances in diagnostics of the transverse phase space of charged particle beams. The emphasis of this paper is on the utilization of beam-based optical radiation for the precise measurement of the spatial distribution, divergence and emittance of relativistic charged particle beams. The properties and uses of incoherent as well as coherent optical transition, diffraction and synchrotron radiation for beam diagnosis are discussed.

  9. Advances in laparoscopic urologic surgery techniques

    PubMed Central

    Abdul-Muhsin, Haidar M.; Humphreys, Mitchell R.

    2016-01-01

    The last two decades witnessed the inception and exponential implementation of key technological advancements in laparoscopic urology. While some of these technologies thrived and became part of daily practice, others are still hindered by major challenges. This review was conducted through a comprehensive literature search in order to highlight some of the most promising technologies in laparoscopic visualization, augmented reality, and insufflation. Additionally, this review will provide an update regarding the current status of single-site and natural orifice surgery in urology. PMID:27134743

  10. Advances in laparoscopic urologic surgery techniques.

    PubMed

    Abdul-Muhsin, Haidar M; Humphreys, Mitchell R

    2016-01-01

    The last two decades witnessed the inception and exponential implementation of key technological advancements in laparoscopic urology. While some of these technologies thrived and became part of daily practice, others are still hindered by major challenges. This review was conducted through a comprehensive literature search in order to highlight some of the most promising technologies in laparoscopic visualization, augmented reality, and insufflation. Additionally, this review will provide an update regarding the current status of single-site and natural orifice surgery in urology. PMID:27134743

  11. Advance crew procedures development techniques: Procedures generation program requirements document

    NASA Technical Reports Server (NTRS)

    Arbet, J. D.; Benbow, R. L.; Hawk, M. L.

    1974-01-01

    The Procedures Generation Program (PGP) is described as an automated crew procedures generation and performance monitoring system. Computer software requirements to be implemented in PGP for the Advanced Crew Procedures Development Techniques are outlined.

  12. Advanced airfoil design empirically based transonic aircraft drag buildup technique

    NASA Technical Reports Server (NTRS)

    Morrison, W. D., Jr.

    1976-01-01

    To systematically investigate the potential of advanced airfoils in advance preliminary design studies, empirical relationships were derived, based on available wind tunnel test data, through which total drag is determined recognizing all major aircraft geometric variables. This technique recognizes a single design lift coefficient and Mach number for each aircraft. Using this technique drag polars are derived for all Mach numbers up to MDesign + 0.05 and lift coefficients -0.40 to +0.20 from CLDesign.

  13. Advanced Optical Imaging Techniques for Neurodevelopment

    PubMed Central

    Wu, Yicong; Christensen, Ryan; Colón-Ramos, Daniel; Shroff, Hari

    2013-01-01

    Over the past decade, developmental neuroscience has been transformed by the widespread application of confocal and two-photon fluorescence microscopy. Even greater progress is imminent, as recent innovations in microscopy now enable imaging with increased depth, speed, and spatial resolution; reduced phototoxicity; and in some cases without external fluorescent probes. We discuss these new techniques and emphasize their dramatic impact on neurobiology, including the ability to image neurons at depths exceeding 1 mm, to observe neurodevelopment noninvasively throughout embryogenesis, and to visualize neuronal processes or structures that were previously too small or too difficult to target with conventional microscopy. PMID:23831260

  14. Recent advances in DNA sequencing techniques

    NASA Astrophysics Data System (ADS)

    Singh, Rama Shankar

    2013-06-01

    Successful mapping of the draft human genome in 2001 and more recent mapping of the human microbiome genome in 2012 have relied heavily on the parallel processing of the second generation/Next Generation Sequencing (NGS) DNA machines at a cost of several millions dollars and long computer processing times. These have been mainly biochemical approaches. Here a system analysis approach is used to review these techniques by identifying the requirements, specifications, test methods, error estimates, repeatability, reliability and trends in the cost reduction. The first generation, NGS and the Third Generation Single Molecule Real Time (SMART) detection sequencing methods are reviewed. Based on the National Human Genome Research Institute (NHGRI) data, the achieved cost reduction of 1.5 times per yr. from Sep. 2001 to July 2007; 7 times per yr., from Oct. 2007 to Apr. 2010; and 2.5 times per yr. from July 2010 to Jan 2012 are discussed.

  15. New procedure for multielemental speciation analysis of five toxic species: As(III), As(V), Cr(VI), Sb(III) and Sb(V) in drinking water samples by advanced hyphenated technique HPLC/ICP-DRC-MS.

    PubMed

    Marcinkowska, Monika; Komorowicz, Izabela; Barałkiewicz, Danuta

    2016-05-12

    Analytical procedure dedicated for multielemental determination of toxic species: As(III), As(V), Cr(VI), Sb(III) and Sb(V) in drinking water samples using high performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry (HPLC/ICP-DRC-MS) technique was developed. Optimization of the detection and separation conditions was conducted. Dynamic reaction cell (DRC) with oxygen as a reaction gas was involved in the experiments. Obtained analytical signals for species separation were symmetrical, as studied by anion-exchange chromatography. Applied mobile phase consisted of 3 mM of EDTANa2 and 36 mM of ammonium nitrate. Full separation of species in the form of the following forms: H3AsO3, H2AsO4(-), SbO2(-), Sb(OH)6(-), CrO4(2-) was achieved in 15 min with use of gradient elution program. Detailed validation of analytical procedure proved the reliability of analytical measurements. The procedure was characterized by high precision in the range from 1.7% to 2.4%. Detection limits (LD) were 0.067 μg L(-1), 0.068 μg L(-1), 0.098 μg L(-1), 0.083 μg L(-1) and 0.038 μg L(-1) for As(III), As(V), Cr(VI), Sb(III) and Sb(V), respectively. Obtained recoveries confirmed the lack of interferences' influence on analytical signals as their values were in the range of 91%-110%. The applicability of the proposed procedure was tested on drinking water samples characterized by mineralization up to 650 mg L(-1). PMID:27114229

  16. Diagnostics of nonlocal plasmas: advanced techniques

    NASA Astrophysics Data System (ADS)

    Mustafaev, Alexander; Grabovskiy, Artiom; Strakhova, Anastasiya; Soukhomlinov, Vladimir

    2014-10-01

    This talk generalizes our recent results, obtained in different directions of plasma diagnostics. First-method of flat single-sided probe, based on expansion of the electron velocity distribution function (EVDF) in series of Legendre polynomials. It will be demonstrated, that flat probe, oriented under different angles with respect to the discharge axis, allow to determine full EVDF in nonlocal plasmas. It is also shown, that cylindrical probe is unable to determine full EVDF. We propose the solution of this problem by combined using the kinetic Boltzmann equation and experimental probe data. Second-magnetic diagnostics. This method is implemented in knudsen diode with surface ionization of atoms (KDSI) and based on measurements of the magnetic characteristics of the KDSI in presence of transverse magnetic field. Using magnetic diagnostics we can investigate the wide range of plasma processes: from scattering cross-sections of electrons to plasma-surface interactions. Third-noncontact diagnostics method for direct measurements of EVDF in remote plasma objects by combination of the flat single-sided probe technique and magnetic polarization Hanley method.

  17. An evaluation of adhesive sample holders for advanced crystallographic experiments

    SciTech Connect

    Mazzorana, Marco; Sanchez-Weatherby, Juan Sandy, James; Lobley, Carina M. C.; Sorensen, Thomas

    2014-09-01

    Commercially available adhesives have been evaluated for crystal mounting when undertaking complex macromolecular crystallography experiments. Here, their use as tools for advanced sample mounting and cryoprotection is assessed and their suitability for room-temperature data-collection and humidity-controlled studies is investigated. The hydration state of macromolecular crystals often affects their overall order and, ultimately, the quality of the X-ray diffraction pattern that they produce. Post-crystallization techniques that alter the solvent content of a crystal may induce rearrangement within the three-dimensional array making up the crystal, possibly resulting in more ordered packing. The hydration state of a crystal can be manipulated by exposing it to a stream of air at controlled relative humidity in which the crystal can equilibrate. This approach provides a way of exploring crystal hydration space to assess the diffraction capabilities of existing crystals. A key requirement of these experiments is to expose the crystal directly to the dehydrating environment by having the minimum amount of residual mother liquor around it. This is usually achieved by placing the crystal on a flat porous support (Kapton mesh) and removing excess liquid by wicking. Here, an alternative approach is considered whereby crystals are harvested using adhesives that capture naked crystals directly from their crystallization drop, reducing the process to a one-step procedure. The impact of using adhesives to ease the harvesting of different types of crystals is presented together with their contribution to background scattering and their usefulness in dehydration experiments. It is concluded that adhesive supports represent a valuable tool for mounting macromolecular crystals to be used in humidity-controlled experiments and to improve signal-to-noise ratios in diffraction experiments, and how they can protect crystals from modifications in the sample environment is discussed.

  18. Evaluation of Advanced Retrieval Techniques in an Experimental Online Catalog.

    ERIC Educational Resources Information Center

    Larson, Ray R.

    1992-01-01

    Discusses subject searching problems in online library catalogs; explains advanced information retrieval (IR) techniques; and describes experiments conducted on a test collection database, CHESHIRE (California Hybrid Extended SMART for Hypertext and Information Retrieval Experimentation), which was created to evaluate IR techniques in online…

  19. Innovative Tools Advance Revolutionary Weld Technique

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The iconic, orange external tank of the space shuttle launch system not only contains the fuel used by the shuttle s main engines during liftoff but also comprises the shuttle s backbone, supporting the space shuttle orbiter and solid rocket boosters. Given the tank s structural importance and the extreme forces (7.8 million pounds of thrust load) and temperatures it encounters during launch, the welds used to construct the tank must be highly reliable. Variable polarity plasma arc welding, developed for manufacturing the external tank and later employed for building the International Space Station, was until 1994 the best process for joining the aluminum alloys used during construction. That year, Marshall Space Flight Center engineers began experimenting with a relatively new welding technique called friction stir welding (FSW), developed in 1991 by The Welding Institute, of Cambridge, England. FSW differs from traditional fusion welding in that it is a solid-state welding technique, using frictional heat and motion to join structural components without actually melting any of the material. The weld is created by a shouldered pin tool that is plunged into the seam of the materials to be joined. The tool traverses the line while rotating at high speeds, generating friction that heats and softens but does not melt the metal. (The heat produced approaches about 80 percent of the metal s melting temperature.) The pin tool s rotation crushes and stirs the plasticized metal, extruding it along the seam as the tool moves forward. The material cools and consolidates, resulting in a weld with superior mechanical properties as compared to those weld properties of fusion welds. The innovative FSW technology promises a number of attractive benefits. Because the welded materials are not melted, many of the undesirables associated with fusion welding porosity, cracking, shrinkage, and distortion of the weld are minimized or avoided. The process is more energy efficient, safe

  20. The effect of sampling technique on PCR-based bacteriological results of bovine milk samples.

    PubMed

    Hiitiö, Heidi; Simojoki, Heli; Kalmus, Piret; Holopainen, Jani; Pyörälä, Satu; Taponen, Suvi

    2016-08-01

    The aim of the study was to evaluate the effect of sampling technique on the microbiological results of bovine milk samples using multiplex real-time PCR. Comparison was made between a technique where the milk sample was taken directly from the udder cistern of the udder quarter using a needle and vacuum tube and conventional sampling. The effect of different cycle threshold (Ct) cutoff limits on the results was also tested to estimate the amount of amplified DNA in the samples. A total of 113 quarters from 53 cows were tested pairwise using both techniques, and each sample was studied with real-time PCR. Sampling from the udder cistern reduced the number of species per sample compared with conventional sampling. In conventional samples, the number of positive Staphylococcus spp. results was over twice that of samples taken with the needle technique, indicating that most of the Staphylococcus spp. originated from the teat or environmental sources. The Ct values also showed that Staphylococcus spp. were present in most samples only in low numbers. Routine use of multiplex real-time PCR in mastitis diagnostics could benefit from critical evaluation of positive Staphylococcus spp. results with Ct values between 34.0 and 37.0. Our results emphasize the importance of a careful aseptic milk sampling technique and a microbiologically positive result for a milk sample should not be automatically interpreted as an intramammary infection or mastitis. PMID:27209134

  1. Nuts and Bolts — Techniques for Genesis Sample Curation

    NASA Astrophysics Data System (ADS)

    Burkett, P. J.; Rodriguez, M. C.; Allton, J. H.

    2011-03-01

    The Genesis curation staff at NASA JSC provides samples and data for analysis. We are showing: 1) techniques for characterization and measurement of shards; 2) allocation methods; and 3) status of the catalog by collector material, regime, and size.

  2. Advances in gamma titanium aluminides and their manufacturing techniques

    NASA Astrophysics Data System (ADS)

    Kothari, Kunal; Radhakrishnan, Ramachandran; Wereley, Norman M.

    2012-11-01

    Gamma titanium aluminides display attractive properties for high temperature applications. For over a decade in the 1990s, the attractive properties of titanium aluminides were outweighed by difficulties encountered in processing and machining at room temperature. But advances in manufacturing technologies, deeper understanding of titanium aluminides microstructure, deformation mechanisms, and advances in micro-alloying, has led to the production of gamma titanium aluminide sheets. An in-depth review of key advances in gamma titanium aluminides is presented, including microstructure, deformation mechanisms, and alloy development. Traditional manufacturing techniques such as ingot metallurgy and investment casting are reviewed and advances via powder metallurgy based manufacturing techniques are discussed. Finally, manufacturing challenges facing gamma titanium aluminides, as well as avenues to overcome them, are discussed.

  3. Advanced liner-cooling techniques for gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Norgren, C. T.; Riddlebaugh, S. M.

    1985-01-01

    Component research for advanced small gas turbine engines is currently underway at the NASA Lewis Research Center. As part of this program, a basic reverse-flow combustor geometry was being maintained while different advanced liner wall cooling techniques were investigated. Performance and liner cooling effectiveness of the experimental combustor configuration featuring counter-flow film-cooled panels is presented and compared with two previously reported combustors featuring: splash film-cooled liner walls; and transpiration cooled liner walls (Lamilloy).

  4. [Advanced online search techniques and dedicated search engines for physicians].

    PubMed

    Nahum, Yoav

    2008-02-01

    In recent years search engines have become an essential tool in the work of physicians. This article will review advanced search techniques from the world of information specialists, as well as some advanced search engine operators that may help physicians improve their online search capabilities, and maximize the yield of their searches. This article also reviews popular dedicated scientific and biomedical literature search engines. PMID:18357673

  5. 75 FR 44015 - Certain Semiconductor Products Made by Advanced Lithography Techniques and Products Containing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... COMMISSION Certain Semiconductor Products Made by Advanced Lithography Techniques and Products Containing... importation of certain semiconductor products made by advanced lithography techniques and products containing... certain semiconductor products made by advanced lithography techniques or products containing same...

  6. Initial performance of the advanced inventory verification sample system (AVIS)

    SciTech Connect

    Marlow, Johnna B; Swinhoe, Martyn T; Menlove, Howard O; Rael, Carlos D

    2009-01-01

    This paper describes the requirements, design and initial performance of the Advanced Inventory Verification Sample System (AVIS) a non-destructive assay (NDA) system to measure small samples of bulk mixed uranium-plutonium oxide (MOX) materials (powders and pellets). The AVIS design has evolved from previously developed conceptual physics and engineering designs for the Inventory Sample Verification System (INVS), a safeguards system for nondestructive assay of small samples. The AVIS is an integrated gamma-neutron system. Jointly designed by the Nuclear Material Control Center (NMCC) and the Los Alamos National Laboratory (LANL), AVIS is intended to meet a performance specification of a total measurement uncertainty of less than 0.5% in the neutron ({sup 240}Pu{sub effective}) measurement. This will allow the AVIS to replace destructive chemical analysis for many samples, with concomitant cost, exposure and waste generation savings for the facility. Data taken to date confirming the performance of the AVIS is presented.

  7. Using Candy Samples to Learn about Sampling Techniques and Statistical Data Evaluation

    ERIC Educational Resources Information Center

    Canaes, Larissa S.; Brancalion, Marcel L.; Rossi, Adriana V.; Rath, Susanne

    2008-01-01

    A classroom exercise for undergraduate and beginning graduate students that takes about one class period is proposed and discussed. It is an easy, interesting exercise that demonstrates important aspects of sampling techniques (sample amount, particle size, and the representativeness of the sample in relation to the bulk material). The exercise…

  8. Development of advanced strain diagnostic techniques for reactor environments.

    SciTech Connect

    Fleming, Darryn D.; Holschuh, Thomas Vernon,; Miller, Timothy J.; Hall, Aaron Christopher; Urrea, David Anthony,; Parma, Edward J.,

    2013-02-01

    The following research is operated as a Laboratory Directed Research and Development (LDRD) initiative at Sandia National Laboratories. The long-term goals of the program include sophisticated diagnostics of advanced fuels testing for nuclear reactors for the Department of Energy (DOE) Gen IV program, with the future capability to provide real-time measurement of strain in fuel rod cladding during operation in situ at any research or power reactor in the United States. By quantifying the stress and strain in fuel rods, it is possible to significantly improve fuel rod design, and consequently, to improve the performance and lifetime of the cladding. During the past year of this program, two sets of experiments were performed: small-scale tests to ensure reliability of the gages, and reactor pulse experiments involving the most viable samples in the Annulated Core Research Reactor (ACRR), located onsite at Sandia. Strain measurement techniques that can provide useful data in the extreme environment of a nuclear reactor core are needed to characterize nuclear fuel rods. This report documents the progression of solutions to this issue that were explored for feasibility in FY12 at Sandia National Laboratories, Albuquerque, NM.

  9. Sampling Mars: Analytical requirements and work to do in advance

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian

    1988-01-01

    Sending a mission to Mars to collect samples and return them to the Earth for analysis is without doubt one of the most exciting and important tasks for planetary science in the near future. Many scientifically important questions are associated with the knowledge of the composition and structure of Martian samples. Amongst the most exciting questions is the clarification of the SNC problem- to prove or disprove a possible Martian origin of these meteorites. Since SNC meteorites have been used to infer the chemistry of the planet Mars, and its evolution (including the accretion history), it would be important to know if the whole story is true. But before addressing possible scientific results, we have to deal with the analytical requirements, and with possible pre-return work. It is unlikely to expect that a possible Mars sample return mission will bring back anything close to the amount returned by the Apollo missions. It will be more like the amount returned by the Luna missions, or at least in that order of magnitude. This requires very careful sample selection, and very precise analytical techniques. These techniques should be able to use minimal sample sizes and on the other hand optimize the scientific output. The possibility to work with extremely small samples should not obstruct another problem: possible sampling errors. As we know from terrestrial geochemical studies, sampling procedures are quite complicated and elaborate to ensure avoiding sampling errors. The significance of analyzing a milligram or submilligram sized sample and putting that in relationship with the genesis of whole planetary crusts has to be viewed with care. This leaves a dilemma on one hand, to minimize the sample size as far as possible in order to have the possibility of returning as many different samples as possible, and on the other hand to take a sample large enough to be representative. Whole rock samples are very useful, but should not exceed the 20 to 50 g range, except in

  10. Advanced Marketing Core Curriculum. Test Items and Assessment Techniques.

    ERIC Educational Resources Information Center

    Smith, Clifton L.; And Others

    This document contains duties and tasks, multiple-choice test items, and other assessment techniques for Missouri's advanced marketing core curriculum. The core curriculum begins with a list of 13 suggested textbook resources. Next, nine duties with their associated tasks are given. Under each task appears one or more citations to appropriate…

  11. Nose biopsy: a comparison between two sampling techniques.

    PubMed

    Segal, Nili; Osyntsov, Lidia; Olchowski, Judith; Kordeluk, Sofia; Plakht, Ygal

    2016-06-01

    Pre operative biopsy is important in obtaining preliminary information that may help in tailoring the optimal treatment. The aim of this study was to compare two sampling techniques of obtaining nasal biopsy-nasal forceps and nasal scissors in terms of pathological results. Biopsies of nasal lesions were taken from patients undergoing nasal surgery by two techniques- with nasal forceps and with nasal scissors. Each sample was examined by a senior pathologist that was blinded to the sampling method. A grading system was used to rate the crush artifact in every sample (none, mild, moderate, severe). A comparison was made between the severity of the crush artifact and the pathological results of the two techniques. One hundred and forty-four samples were taken from 46 patients. Thirty-one were males and the mean age was 49.6 years. Samples taken by forceps had significantly higher grades of crush artifacts compared to those taken by scissors. The degree of crush artifacts had a significant influence on the accuracy of the pre operative biopsy. Forceps cause significant amount of crush artifacts compared to scissors. The degree of crush artifact in the tissue sample influences the accuracy of the biopsy. PMID:26319275

  12. Advances in imaging secondary ion mass spectrometry for biological samples

    SciTech Connect

    Boxer, Steven G.; Kraft, Mary L.; Weber, Peter K.

    2008-12-16

    Imaging mass spectrometry combines the power of mass spectrometry to identify complex molecules based on mass with sample imaging. Recent advances in secondary ion mass spectrometry have improved sensitivity and spatial resolution, so that these methods have the potential to bridge between high-resolution structures obtained by X-ray crystallography and cyro-electron microscopy and ultrastructure visualized by conventional light microscopy. Following background information on the method and instrumentation, we address the key issue of sample preparation. Because mass spectrometry is performed in high vacuum, it is essential to preserve the lateral organization of the sample while removing bulk water, and this has been a major barrier for applications to biological systems. Furthermore, recent applications of imaging mass spectrometry to cell biology, microbial communities, and biosynthetic pathways are summarized briefly, and studies of biological membrane organization are described in greater depth.

  13. Advances in imaging secondary ion mass spectrometry for biological samples

    DOE PAGESBeta

    Boxer, Steven G.; Kraft, Mary L.; Weber, Peter K.

    2008-12-16

    Imaging mass spectrometry combines the power of mass spectrometry to identify complex molecules based on mass with sample imaging. Recent advances in secondary ion mass spectrometry have improved sensitivity and spatial resolution, so that these methods have the potential to bridge between high-resolution structures obtained by X-ray crystallography and cyro-electron microscopy and ultrastructure visualized by conventional light microscopy. Following background information on the method and instrumentation, we address the key issue of sample preparation. Because mass spectrometry is performed in high vacuum, it is essential to preserve the lateral organization of the sample while removing bulk water, and this hasmore » been a major barrier for applications to biological systems. Furthermore, recent applications of imaging mass spectrometry to cell biology, microbial communities, and biosynthetic pathways are summarized briefly, and studies of biological membrane organization are described in greater depth.« less

  14. MONITORING WELL INSTALLATION, PURGING, AND SAMPLING TECHNIQUES. PART 1. CONCEPTUALIZATIONS

    EPA Science Inventory

    Commonly employed techniques for the installation, purging, and sampling of monitoring wells are examined. The degree to which hollow-stem augering disturbs the near-borehole environment, and how this may result in the movement of contaminated solids or fluids from one stratum to...

  15. Advanced Packaging Materials and Techniques for High Power TR Module: Standard Flight vs. Advanced Packaging

    NASA Technical Reports Server (NTRS)

    Hoffman, James Patrick; Del Castillo, Linda; Miller, Jennifer; Jenabi, Masud; Hunter, Donald; Birur, Gajanana

    2011-01-01

    The higher output power densities required of modern radar architectures, such as the proposed DESDynI [Deformation, Ecosystem Structure, and Dynamics of Ice] SAR [Synthetic Aperture Radar] Instrument (or DSI) require increasingly dense high power electronics. To enable these higher power densities, while maintaining or even improving hardware reliability, requires advances in integrating advanced thermal packaging technologies into radar transmit/receive (TR) modules. New materials and techniques have been studied and compared to standard technologies.

  16. Advancing Techniques of Radiation Therapy for Rectal Cancer.

    PubMed

    Patel, Sagar A; Wo, Jennifer Y; Hong, Theodore S

    2016-07-01

    Since the advent of radiation therapy for rectal cancer, there has been continual investigation of advancing technologies and techniques that allow for improved dose conformality to target structures while limiting irradiation of surrounding normal tissue. For locally advanced disease, intensity modulated and proton beam radiation therapy both provide more highly conformal treatment volumes that reduce dose to organs at risk, though the clinical benefit in terms of toxicity reduction is unclear. For early stage disease, endorectal contact therapy and high-dose rate brachytherapy may be a definitive treatment option for patients who are poor operative candidates or those with low-lying tumors that desire sphincter-preservation. Finally, there has been growing evidence that supports stereotactic body radiotherapy as a safe and effective salvage treatment for the minority of patients that locally recur following trimodality therapy for locally advanced disease. This review addresses these topics that remain areas of active clinical investigation. PMID:27238474

  17. An Advanced Time Averaging Modelling Technique for Power Electronic Circuits

    NASA Astrophysics Data System (ADS)

    Jankuloski, Goce

    For stable and efficient performance of power converters, a good mathematical model is needed. This thesis presents a new modelling technique for DC/DC and DC/AC Pulse Width Modulated (PWM) converters. The new model is more accurate than the existing modelling techniques such as State Space Averaging (SSA) and Discrete Time Modelling. Unlike the SSA model, the new modelling technique, the Advanced Time Averaging Model (ATAM) includes the averaging dynamics of the converter's output. In addition to offering enhanced model accuracy, application of linearization techniques to the ATAM enables the use of conventional linear control design tools. A controller design application demonstrates that a controller designed based on the ATAM outperforms one designed using the ubiquitous SSA model. Unlike the SSA model, ATAM for DC/AC augments the system's dynamics with the dynamics needed for subcycle fundamental contribution (SFC) calculation. This allows for controller design that is based on an exact model.

  18. Technology development of fabrication techniques for advanced solar dynamic concentrators

    NASA Technical Reports Server (NTRS)

    Richter, Scott W.

    1991-01-01

    The objective of the advanced concentrator program is to develop the technology that will lead to lightweight, highly reflective, accurate, scaleable, and long lived space solar dynamic concentrators. The advanced concentrator program encompasses new and innovative concepts, fabrication techniques, materials selection, and simulated space environmental testing. Fabrication techniques include methods of fabricating the substrates and coating substrate surfaces to produce high quality optical surfaces, acceptable for further coating with vapor deposited optical films. The selected materials to obtain a high quality optical surface include microsheet glass and Eccocoat EP-3 epoxy, with DC-93-500 selected as a candidate silicone adhesive and levelizing layer. The following procedures are defined: cutting, cleaning, forming, and bonding microsheet glass. Procedures are also defined for surface cleaning, and EP-3 epoxy application. The results and analyses from atomic oxygen and thermal cycling tests are used to determine the effects of orbital conditions in a space environment.

  19. Technology development of fabrication techniques for advanced solar dynamic concentrators

    NASA Technical Reports Server (NTRS)

    Richter, Scott W.

    1991-01-01

    The objective of the advanced concentrator program is to develop the technology that will lead to lightweight, highly reflective, accurate, scaleable, and long lived space solar dynamic concentrators. The advanced concentrator program encompasses new and innovative concepts, fabrication techniques, materials selection, and simulated space environmental testing. Fabrication techniques include methods of fabricating the substrates and coating substrate surfaces to produce high-quality optical surfaces, acceptable for further coating with vapor deposited optical films. The selected materials to obtain a high quality optical surface include microsheet glass and Eccocoat EP-3 epoxy, with DC-93-500 selected as a candidate silicone adhesive and levelizing layer. The following procedures are defined: cutting, cleaning, forming, and bonding microsheet glass. Procedures are also defined for surface cleaning, and EP-3 epoxy application. The results and analyses from atomic oxygen and thermal cycling tests are used to determine the effects of orbital conditions in a space environment.

  20. Advance techniques for monitoring human tolerance to positive Gz accelerations

    NASA Technical Reports Server (NTRS)

    Pelligra, R.; Sandler, H.; Rositano, S.; Skrettingland, K.; Mancini, R.

    1973-01-01

    Tolerance to positive g accelerations was measured in ten normal male subjects using both standard and advanced techniques. In addition to routine electrocardiogram, heart rate, respiratory rate, and infrared television, monitoring techniques during acceleration exposure included measurement of peripheral vision loss, noninvasive temporal, brachial, and/or radial arterial blood flow, and automatic measurement of indirect systolic and diastolic blood pressure at 60-sec intervals. Although brachial and radial arterial flow measurements reflected significant cardiovascular changes during and after acceleration, they were inconsistent indices of the onset of grayout or blackout. Temporal arterial blood flow, however, showed a high correlation with subjective peripheral light loss.

  1. Advanced computer graphic techniques for laser range finder (LRF) simulation

    NASA Astrophysics Data System (ADS)

    Bedkowski, Janusz; Jankowski, Stanislaw

    2008-11-01

    This paper show an advanced computer graphic techniques for laser range finder (LRF) simulation. The LRF is the common sensor for unmanned ground vehicle, autonomous mobile robot and security applications. The cost of the measurement system is extremely high, therefore the simulation tool is designed. The simulation gives an opportunity to execute algorithm such as the obstacle avoidance[1], slam for robot localization[2], detection of vegetation and water obstacles in surroundings of the robot chassis[3], LRF measurement in crowd of people[1]. The Axis Aligned Bounding Box (AABB) and alternative technique based on CUDA (NVIDIA Compute Unified Device Architecture) is presented.

  2. Data Compression Techniques for Advanced Space Transportation Systems

    NASA Technical Reports Server (NTRS)

    Bradley, William G.

    1998-01-01

    Advanced space transportation systems, including vehicle state of health systems, will produce large amounts of data which must be stored on board the vehicle and or transmitted to the ground and stored. The cost of storage or transmission of the data could be reduced if the number of bits required to represent the data is reduced by the use of data compression techniques. Most of the work done in this study was rather generic and could apply to many data compression systems, but the first application area to be considered was launch vehicle state of health telemetry systems. Both lossless and lossy compression techniques were considered in this study.

  3. The Advanced Space Plant Culture Device with Live Imaging Technique

    NASA Astrophysics Data System (ADS)

    Zheng, Weibo; Zhang, Tao; Tong, Guanghui

    The live imaging techniques, including the color and fluorescent imags, are very important and useful for space life science. The advanced space plant culture Device (ASPCD) with live imaging Technique, developed for Chinese Spacecraft, would be introduced in this paper. The ASPCD had two plant experimental chambers. Three cameras (two color cameras and one fluorescent camera) were installed in the two chambers. The fluorescent camera could observe flowering genes, which were labeled by GFP. The lighting, nutrient, temperature controling and water recycling were all independent in each chamber. The ASPCD would beed applied to investigate for the growth and development of the high plant under microgravity conditions on board the Chinese Spacecraft.

  4. Three-dimensional hybrid grid generation using advancing front techniques

    NASA Technical Reports Server (NTRS)

    Steinbrenner, John P.; Noack, Ralph W.

    1995-01-01

    A new 3-dimensional hybrid grid generation technique has been developed, based on ideas of advancing fronts for both structured and unstructured grids. In this approach, structured grids are first generate independently around individual components of the geometry. Fronts are initialized on these structure grids, and advanced outward so that new cells are extracted directly from the structured grids. Employing typical advancing front techniques, cells are rejected if they intersect the existing front or fail other criteria When no more viable structured cells exist further cells are advanced in an unstructured manner to close off the overall domain, resulting in a grid of 'hybrid' form. There are two primary advantages to the hybrid formulation. First, generating blocks with limited regard to topology eliminates the bottleneck encountered when a multiple block system is used to fully encapsulate a domain. Individual blocks may be generated free of external constraints, which will significantly reduce the generation time. Secondly, grid points near the body (presumably with high aspect ratio) will still maintain a structured (non-triangular or tetrahedral) character, thereby maximizing grid quality and solution accuracy near the surface.

  5. Nuts and Bolts - Techniques for Genesis Sample Curation

    NASA Technical Reports Server (NTRS)

    Burkett, Patti J.; Rodriquez, M. C.; Allton, J. H.

    2011-01-01

    The Genesis curation staff at NASA Johnson Space Center provides samples and data for analysis to the scientific community, following allocation approval by the Genesis Oversight Committee, a sub-committee of CAPTEM (Curation Analysis Planning Team for Extraterrestrial Materials). We are often asked by investigators within the scientific community how we choose samples to best fit the requirements of the request. Here we will demonstrate our techniques for characterizing samples and satisfying allocation requests. Even with a systematic approach, every allocation is unique. We are also providing updated status of the cataloging and characterization of solar wind collectors as of January 2011. The collection consists of 3721 inventoried samples consisting of a single fragment, or multiple fragments containerized or pressed between post-it notes, jars or vials of various sizes.

  6. A comparison of sampling techniques to estimate number of wetlands

    USGS Publications Warehouse

    Johnson, R.R.; Higgins, K.F.; Naugle, D.E.; Jenks, J.A.

    1999-01-01

    Service use annual estimates of the number of ponded wetlands to estimate duck production and establish duck hunting regulations. Sampling techniques that minimize bias may provide more reliable estimates of annual duck production. Using a wetland geographic information system (GIS), we estimated number of wetlands using standard counting protocol with belt transects and samples of square plots. Estimates were compared to the known number of wetlands in the GIS to determine bias. Bias in transect-derived estimates ranged from +67-87% of the known number of wetlands, compared to bias of +3-6% in estimates from samples of 10.24-km2 plots. We recommend using samples of 10.24-km2 plots stratified by wetland density to decrease bias.

  7. Proteomic Challenges: Sample Preparation Techniques for Microgram-Quantity Protein Analysis from Biological Samples

    PubMed Central

    Feist, Peter; Hummon, Amanda B.

    2015-01-01

    Proteins regulate many cellular functions and analyzing the presence and abundance of proteins in biological samples are central focuses in proteomics. The discovery and validation of biomarkers, pathways, and drug targets for various diseases can be accomplished using mass spectrometry-based proteomics. However, with mass-limited samples like tumor biopsies, it can be challenging to obtain sufficient amounts of proteins to generate high-quality mass spectrometric data. Techniques developed for macroscale quantities recover sufficient amounts of protein from milligram quantities of starting material, but sample losses become crippling with these techniques when only microgram amounts of material are available. To combat this challenge, proteomicists have developed micro-scale techniques that are compatible with decreased sample size (100 μg or lower) and still enable excellent proteome coverage. Extraction, contaminant removal, protein quantitation, and sample handling techniques for the microgram protein range are reviewed here, with an emphasis on liquid chromatography and bottom-up mass spectrometry-compatible techniques. Also, a range of biological specimens, including mammalian tissues and model cell culture systems, are discussed. PMID:25664860

  8. Established and Emerging Atmospheric Pressure Surface Sampling/Ionization Techniques for Mass Spectrometry

    SciTech Connect

    Van Berkel, Gary J; Pasilis, Sofie P; Ovchinnikova, Olga S

    2008-01-01

    The number and type of atmospheric pressure techniques suitable for sampling analytes from surfaces, forming ions from those analytes, and subsequently transporting those ions into vacuum for interrogation by mass spectrometry has rapidly expanded over the last several years. Moreover, the literature in this area is complicated by an explosion in acronyms for these techniques, many of which provide no information relating to the chemical or physical processes involved. In this review, we sort this vast array of techniques into a relatively few categories on the basis of the approaches used for surface sampling and ionization. For each technique, we explain, as best known, many of the underlying principles of operation, describe representative applications, and in some cases, discuss needed research or advancements and attempt to forecast their future analytical utility.

  9. Liquid sample delivery techniques for serial femtosecond crystallography

    PubMed Central

    Weierstall, Uwe

    2014-01-01

    X-ray free-electron lasers overcome the problem of radiation damage in protein crystallography and allow structure determination from micro- and nanocrystals at room temperature. To ensure that consecutive X-ray pulses do not probe previously exposed crystals, the sample needs to be replaced with the X-ray repetition rate, which ranges from 120 Hz at warm linac-based free-electron lasers to 1 MHz at superconducting linacs. Liquid injectors are therefore an essential part of a serial femtosecond crystallography experiment at an X-ray free-electron laser. Here, we compare different techniques of injecting microcrystals in solution into the pulsed X-ray beam in vacuum. Sample waste due to mismatch of the liquid flow rate to the X-ray repetition rate can be addressed through various techniques. PMID:24914163

  10. Improved mesh based photon sampling techniques for neutron activation analysis

    SciTech Connect

    Relson, E.; Wilson, P. P. H.; Biondo, E. D.

    2013-07-01

    The design of fusion power systems requires analysis of neutron activation of large, complex volumes, and the resulting particles emitted from these volumes. Structured mesh-based discretization of these problems allows for improved modeling in these activation analysis problems. Finer discretization of these problems results in large computational costs, which drives the investigation of more efficient methods. Within an ad hoc subroutine of the Monte Carlo transport code MCNP, we implement sampling of voxels and photon energies for volumetric sources using the alias method. The alias method enables efficient sampling of a discrete probability distribution, and operates in 0(1) time, whereas the simpler direct discrete method requires 0(log(n)) time. By using the alias method, voxel sampling becomes a viable alternative to sampling space with the 0(1) approach of uniformly sampling the problem volume. Additionally, with voxel sampling it is straightforward to introduce biasing of volumetric sources, and we implement this biasing of voxels as an additional variance reduction technique that can be applied. We verify our implementation and compare the alias method, with and without biasing, to direct discrete sampling of voxels, and to uniform sampling. We study the behavior of source biasing in a second set of tests and find trends between improvements and source shape, material, and material density. Overall, however, the magnitude of improvements from source biasing appears to be limited. Future work will benefit from the implementation of efficient voxel sampling - particularly with conformal unstructured meshes where the uniform sampling approach cannot be applied. (authors)

  11. Full Endoscopic Spinal Surgery Techniques: Advancements, Indications, and Outcomes

    PubMed Central

    Yue, James J.; Long, William

    2015-01-01

    Advancements in both surgical instrumentation and full endoscopic spine techniques have resulted in positive clinical outcomes in the treatment of cervical, thoracic, and lumbar spine pathologies. Endoscopic techniques impart minimal approach related disruption of non-pathologic spinal anatomy and function while concurrently maximizing functional visualization and correction of pathological tissues. An advanced understanding of the applicable functional neuroanatomy, in particular the neuroforamen, is essential for successful outcomes. Additionally, an understanding of the varying types of disc prolapse pathology in relation to the neuroforamen will result in more optimal surgical outcomes. Indications for lumbar endoscopic spine surgery include disc herniations, spinal stenosis, infections, medial branch rhizotomy, and interbody fusion. Limitations are based on both non spine and spine related findings. A high riding iliac wing, a more posteriorly located retroperitoneal cavity, an overly distal or proximally migrated herniated disc are all relative contra-indications to lumbar endoscopic spinal surgery techniques. Modifications in scope size and visual field of view angulation have enabled both anterior and posterior cervical decompression. Endoscopic burrs, electrocautery, and focused laser technology allow for the least invasive spinal surgical techniques in all age groups and across varying body habitus. Complications include among others, dural tears, dysesthsia, nerve injury, and infection. PMID:26114086

  12. Automated Imaging Techniques for Biosignature Detection in Geologic Samples

    NASA Astrophysics Data System (ADS)

    Williford, K. H.

    2015-12-01

    Robust biosignature detection in geologic samples typically requires the integration of morphological/textural data with biogeochemical data across a variety of scales. We present new automated imaging and coordinated biogeochemical analysis techniques developed at the JPL Astrobiogeochemistry Laboratory (abcLab) in support of biosignature detection in terrestrial samples as well as those that may eventually be returned from Mars. Automated gigapixel mosaic imaging of petrographic thin sections in transmitted and incident light (including UV epifluorescence) is supported by a microscopy platform with a digital XYZ stage. Images are acquired, processed, and co-registered using multiple software platforms at JPL and can be displayed and shared using Gigapan, a freely available, web-based toolset (e.g. . Automated large area (cm-scale) elemental mapping at sub-micrometer spatial resolution is enabled by a variable pressure scanning electron microscope (SEM) with a large (150 mm2) silicon drift energy dispersive spectroscopy (EDS) detector system. The abcLab light and electron microscopy techniques are augmented by additional elemental chemistry, mineralogy and organic detection/classification using laboratory Micro-XRF and UV Raman/fluorescence systems, precursors to the PIXL and SHERLOC instrument platforms selected for flight on the NASA Mars 2020 rover mission. A workflow including careful sample preparation followed by iterative gigapixel imaging, SEM/EDS, Micro-XRF and UV fluorescence/Raman in support of organic, mineralogic, and elemental biosignature target identification and follow up analysis with other techniques including secondary ion mass spectrometry (SIMS) will be discussed.

  13. Inspection of reinforced concrete samples by Compton backscattering technique

    NASA Astrophysics Data System (ADS)

    Boldo, E. M.; Appoloni, C. R.

    2014-02-01

    Reinforced concrete structures require frequent monitoring to ensure the concrete quality during its service life and for evaluation of in situ existing conditions. Compton backscattering of gamma rays is a nondestructive technique used for material characterization and detection of defects and inclusions in materials and can be employed on reinforced concrete. The methodology allows one-sided inspection of large structures, is relatively inexpensive and can be portable. The concept is based on detection of backscattered radiation produced from a collimated beam aimed at the sample. By measuring the spectrum of these scattered gamma rays it is possible to determine local density perturbations. In this work we used the Compton backscattering technique to locate and measure steel, defects and crushed stone inside concrete. The samples were irradiated with gamma rays from a Ø2 mm diameter collimated 241Am (100 mCi) source and the inelastically scattered photons were recorded at an angle of 135° by a high resolution CdTe semiconductor detector. Scanning was achieved by lateral movement of the sample blocks across the source and detector field of view in steps of 1 mm. A previous optimization of the experimental setup was performed with Monte Carlo simulation. The results showed that it was possible to locate inclusions and defects with Ø8 mm positioned at a depth of 20 mm below the surface of the sample. It was observed that aggregates such as crushed stone could mask defects at specific points due to high attenuation of the incident and scattered beam.

  14. Advanced computer modeling techniques expand belt conveyor technology

    SciTech Connect

    Alspaugh, M.

    1998-07-01

    Increased mining production is continuing to challenge engineers and manufacturers to keep up. The pressure to produce larger and more versatile equipment is increasing. This paper will show some recent major projects in the belt conveyor industry that have pushed the limits of design and engineering technology. Also, it will discuss the systems engineering discipline and advanced computer modeling tools that have helped make these achievements possible. Several examples of technologically advanced designs will be reviewed. However, new technology can sometimes produce increased problems with equipment availability and reliability if not carefully developed. Computer modeling techniques that help one design larger equipment can also compound operational headaches if engineering processes and algorithms are not carefully analyzed every step of the way.

  15. Advanced aeroservoelastic stabilization techniques for hypersonic flight vehicles

    NASA Technical Reports Server (NTRS)

    Chan, Samuel Y.; Cheng, Peter Y.; Myers, Thomas T.; Klyde, David H.; Magdaleno, Raymond E.; Mcruer, Duane T.

    1992-01-01

    Advanced high performance vehicles, including Single-Stage-To-Orbit (SSTO) hypersonic flight vehicles, that are statically unstable, require higher bandwidth flight control systems to compensate for the instability resulting in interactions between the flight control system, the engine/propulsion dynamics, and the low frequency structural modes. Military specifications, such as MIL-F-9490D and MIL-F-87242, tend to limit treatment of structural modes to conventional gain stabilization techniques. The conventional gain stabilization techniques, however, introduce low frequency effective time delays which can be troublesome from a flying qualities standpoint. These time delays can be alleviated by appropriate blending of gain and phase stabilization techniques (referred to as Hybrid Phase Stabilization or HPS) for the low frequency structural modes. The potential of using HPS for compensating structural mode interaction was previously explored. It was shown that effective time delay was significantly reduced with the use of HPS; however, the HPS design was seen to have greater residual response than a conventional gain stablized design. Additional work performed to advance and refine the HPS design procedure, to further develop residual response metrics as a basis for alternative structural stability specifications, and to develop strategies for validating HPS design and specification concepts in manned simulation is presented. Stabilization design sensitivity to structural uncertainties and aircraft-centered requirements are also assessed.

  16. Surfactant roles in modern sample preparation techniques: a review.

    PubMed

    Moradi, Morteza; Yamini, Yadollah

    2012-09-01

    The pressure to decrease organic solvent usage in laboratories is increasing. Thus miniaturization and improvement of sample handling using alternatives is a challenge that has been discussed by several researchers. From this perspective, surfactant-based sample preparations were an educated choice. Since the introduction of cloud point extraction by Watanabe, considerable studies have been focused on the chemical properties of surfactants in the extraction methods. The unique properties of surfactants make them flexible agents for different miniaturized sample preparation techniques based on solid- or liquid-phase extraction. As a result, the use of surfactants with different roles in sample-preparation methodologies (such as surfactant as an emulsifier, surfactant rich phase as an extraction medium, ion pair-based extraction, hemimicelle/admicelle extraction, surfactant-coated magnetic nanoparticle, solid-phase microextraction with micellar desorption) is an important contribution to minimizing the problems arising from preliminary operations, which are the weakest step in analytical measurement. This paper reviews the literature dealing with the application of surfactant-based sample preparations to the separation and the preconcentration of organic and inorganic species. PMID:22887709

  17. Vacuum sampling techniques for industrial hygienists, with emphasis on beryllium dust sampling.

    PubMed

    Creek, Kathryn L; Whitney, Gary; Ashley, Kevin

    2006-06-01

    The U.S. Department of Energy (DOE) Chronic Beryllium Disease Prevention Program Rule, 10 CFR Part 850 became effective in 2000 in response to the prevalence of Chronic Beryllium Disease (CBD) in workers. The rule requires surface and air monitoring for beryllium to determine exposure levels and the evaluation of the effectiveness of controls used to minimize or eliminate that risk. The most common methods for surface sampling use wet or dry wipes. Wipe sampling techniques may be impractical for many surfaces common to most buildings such as cinder block, textured wall surfaces, fabric and carpet. Vacuum sampling methods have been developed for the evaluation of lead or pesticides on residential surfaces such as carpets, bare floors and window sills. However, the current vacuum methods may be impractical for many workplace situations such as sampling of protective clothing, complex facility structures, or equipment surfaces. Recent work using vacuum sampling for potential bio-terrorism agents such as anthrax spores may have significant application to industrial hygiene evaluations of the workplace and may be extendable for use in sampling of metals such as beryllium. Validated vacuum sampling methods that provide meaningful data would be of great value to industrial hygienists in identifying areas having surface contamination, evaluating existing controls and work practices and determining the potential of toxic material on surfaces to become airborne and present a potential risk to workers and the public. This article discusses various vacuum sampling methodologies and recommends harmonization of sampling methods. PMID:16767227

  18. Testing aspects of advanced coherent electron cooling technique

    SciTech Connect

    Litvinenko, V.; Jing, Y.; Pinayev, I.; Wang, G.; Samulyak, R.; Ratner, D.

    2015-05-03

    An advanced version of the Coherent-electron Cooling (CeC) based on the micro-bunching instability was proposed. This approach promises significant increase in the bandwidth of the CeC system and, therefore, significant shortening of cooling time in high-energy hadron colliders. In this paper we present our plans of simulating and testing the key aspects of this proposed technique using the set-up of the coherent-electron-cooling proof-of-principle experiment at BNL.

  19. [The role of electronic techniques for advanced neuroelectrophysiology].

    PubMed

    Wang, Min; Zhang, Lijun; Cao, Maoyong

    2008-12-01

    The rapid development in the fields of electroscience, computer science, and biomedical engineering are propelling the electrophysiologyical techniques. Recent technological advances have made it possible to simultaneously record the activity of large numbers of neurons in awake and behaving animals using implanted extracellular electrodes. Several laboratories use chronically implanted electrode arrays in freely moving animals because they allow stable recordings of discriminated single neurons and/or field potentials from up to hundreds of electrodes over long time periods. In this review, we focus on the new technologies for neuroelectrophysiology. PMID:19166233

  20. Waste minimization in analytical chemistry through innovative sample preparation techniques.

    SciTech Connect

    Smith, L. L.

    1998-05-28

    water samples. In this SPME technique, a fused-silica fiber coated with a polymeric film is exposed to the sample, extraction is allowed to take place, and then the analytes are thermally desorbed for GC analysis. Unlike liquid-liquid extraction or solid-phase extraction, SPME consumes all of the extracted sample in the analysis, significantly reducing the required sample volume.

  1. Combination of Modern Visualization Techniques for Imaging of Biological Samples

    NASA Astrophysics Data System (ADS)

    Weyda, Frantisek; Dammer, Jiri

    2012-08-01

    We have used several visualization techniques to characterize biological objects. A micro-radiography with the hybrid single photon counting silicon pixel detector Medipix2 (matrix 256 x 256 sq. pixels of 55 μm pitch) is an imaging technique using X-rays in the studies of internal structures of objects. The detector Medipix2 is used as an imager of an ionizing radiation, emitted by X-ray tubes (micro or nano-focus FeinFocus). An unlimited dynamic range of the Medipix2 detector and a high spatial resolution below 1μm is particularly suitable for a non-destructive and non-invasive radiographic imaging of small biological samples in a living state, including in vivo observations and a micro-tomography. Contrast agents (based on iodine or lanthanum) could be used for dynamic studies inside of organisms. Infrared digital photography has ability to shot still photographs or movies in complete dark. Is it also possible to use it for studies of internal organs and structures inside of living biological objects. Field emission scanning electron microscopy (FESEM) in low temperature mode is sophisticated recent technique successfully used in biological laboratories. The main advantage is ability to study details of tissues and cells close to living state at very high magnification. Special cryotransfer system connected to FESEM allows deeply frozen samples to be prepared in way like freeze-fracturing followed by freeze-etching for observation directly inside of electron microscope. Combination of information from all above mentioned techniques could give us very powerful visualization tool for complex studies of biological specimen.

  2. Analysis of cesium in tissue samples using the PIXE technique

    SciTech Connect

    McKee, J.S.C.; Lapointe, C.; Birchall, J.

    1981-01-01

    Cesium content is routinely measured in tissue samples at the University of Manitoba Cyclotron Laboratory using the PIXE (Proton Induced X-Ray Emission) technique. It has been possible to estimate the accumulation of Cs in the tissue of mice treated for several days with daily intraperitoneal injection of CsCl. The estimation of Cs concentration employs the internal standard method. We have obtained a detection limit of 2 PPM in 30 min. bombardment time using a 5 nA proton beam at 30 MeV.

  3. Advancement of Solidification Processing Technology Through Real Time X-Ray Transmission Microscopy: Sample Preparation

    NASA Technical Reports Server (NTRS)

    Stefanescu, D. M.; Curreri, P. A.

    1996-01-01

    Two types of samples were prepared for the real time X-ray transmission microscopy (XTM) characterization. In the first series directional solidification experiments were carried out to evaluate the critical velocity of engulfment of zirconia particles in the Al and Al-Ni eutectic matrix under ground (l-g) conditions. The particle distribution in the samples was recorded on video before and after the samples were directionally solidified. In the second series samples of the above two type of composites were prepared for directional solidification runs to be carried out on the Advanced Gradient Heating Facility (AGHF) aboard the space shuttle during the LMS mission in June 1996. X-ray microscopy proved to be an invaluable tool for characterizing the particle distribution in the metal matrix samples. This kind of analysis helped in determining accurately the critical velocity of engulfment of ceramic particles by the melt interface in the opaque metal matrix composites. The quality of the cast samples with respect to porosity and instrumented thermocouple sheath breakage or shift could be easily viewed and thus helped in selecting samples for the space shuttle experiments. Summarizing the merits of this technique it can be stated that this technique enabled the use of cast metal matrix composite samples since the particle location was known prior to the experiment.

  4. An efficient sampling technique for sums of bandpass functions

    NASA Technical Reports Server (NTRS)

    Lawton, W. M.

    1982-01-01

    A well known sampling theorem states that a bandlimited function can be completely determined by its values at a uniformly placed set of points whose density is at least twice the highest frequency component of the function (Nyquist rate). A less familiar but important sampling theorem states that a bandlimited narrowband function can be completely determined by its values at a properly chosen, nonuniformly placed set of points whose density is at least twice the passband width. This allows for efficient digital demodulation of narrowband signals, which are common in sonar, radar and radio interferometry, without the side effect of signal group delay from an analog demodulator. This theorem was extended by developing a technique which allows a finite sum of bandlimited narrowband functions to be determined by its values at a properly chosen, nonuniformly placed set of points whose density can be made arbitrarily close to the sum of the passband widths.

  5. The alias method: A fast, efficient Monte Carlo sampling technique

    SciTech Connect

    Rathkopf, J.A.; Edwards, A.L. ); Smidt, R.K. )

    1990-11-16

    The alias method is a Monte Carlo sampling technique that offers significant advantages over more traditional methods. It equals the accuracy of table lookup and the speed of equal probable bins. The original formulation of this method sampled from discrete distributions and was easily extended to histogram distributions. We have extended the method further to applications more germane to Monte Carlo particle transport codes: continuous distributions. This paper presents the alias method as originally derived and our extensions to simple continuous distributions represented by piecewise linear functions. We also present a method to interpolate accurately between distributions tabulated at points other than the point of interest. We present timing studies that demonstrate the method's increased efficiency over table lookup and show further speedup achieved through vectorization. 6 refs., 2 figs., 1 tab.

  6. Review of recent advances in analytical techniques for the determination of neurotransmitters

    PubMed Central

    Perry, Maura; Li, Qiang; Kennedy, Robert T.

    2009-01-01

    Methods and advances for monitoring neurotransmitters in vivo or for tissue analysis of neurotransmitters over the last five years are reviewed. The review is organized primarily by neurotransmitter type. Transmitter and related compounds may be monitored by either in vivo sampling coupled to analytical methods or implanted sensors. Sampling is primarily performed using microdialysis, but low-flow push-pull perfusion may offer advantages of spatial resolution while minimizing the tissue disruption associated with higher flow rates. Analytical techniques coupled to these sampling methods include liquid chromatography, capillary electrophoresis, enzyme assays, sensors, and mass spectrometry. Methods for the detection of amino acid, monoamine, neuropeptide, acetylcholine, nucleoside, and soluable gas neurotransmitters have been developed and improved upon. Advances in the speed and sensitivity of these methods have enabled improvements in temporal resolution and increased the number of compounds detectable. Similar advances have enabled improved detection at tissue samples, with a substantial emphasis on single cell and other small samples. Sensors provide excellent temporal and spatial resolution for in vivo monitoring. Advances in application to catecholamines, indoleamines, and amino acids have been prominent. Improvements in stability, sensitivity, and selectivity of the sensors have been of paramount interest. PMID:19800472

  7. Application of Acoustic Techniques for Characterization of Biological Samples

    NASA Astrophysics Data System (ADS)

    Tittmann, Bernhard R.; Ebert, Anne

    The atomic force microscope (AFM) is emerging as a powerful tool in cell biology. Originally developed for high-resolution imaging purposes, the AFM also has unique capabilities as a nano-indenter to probe the dynamic viscoelastic material properties of living cells in culture. In particular, AFM elastography combines imaging and indentation modalities to map the spatial distribution of cell mechanical properties, which in turn reflect the structure and function of the underlying cytoskeleton. Such measurements have contributed to our understanding of cell mechanics and cell biology and appear to be sensitive to the presence of disease in individual cells. Examples of applications and considerations on the effective capability of ultrasonic AFM techniques on biological samples (both mammalian and plant) are reported in this chapter. Included in the discussion is scanning near-field ultrasound holography an acoustic technique which has been used to image structure and in particular nanoparticles inside cells. For illustration an example that is discussed in some detail is a technique for rapid in vitro single-cell elastography. The technique is based on atomic force acoustic microscopy (AFAM) but (1) requires only a few minutes of scan time, (2) can be used on live cells briefly removed from most of the nutrient fluid, (3) does negligible harm or damage to the cell, (4) provides semi-quantitative information on the distribution of modulus across the cell, and (5) yields data with 1-10 nm resolution. The technique is shown to enable rapid assessment of physical/biochemical signals on the cell modulus and contributes to current understanding of cell mechanics.

  8. Recent Advances in Techniques for Hyperspectral Image Processing

    NASA Technical Reports Server (NTRS)

    Plaza, Antonio; Benediktsson, Jon Atli; Boardman, Joseph W.; Brazile, Jason; Bruzzone, Lorenzo; Camps-Valls, Gustavo; Chanussot, Jocelyn; Fauvel, Mathieu; Gamba, Paolo; Gualtieri, Anthony; Marconcini, Mattia; Tilton, James C.; Trianni, Giovanna

    2009-01-01

    Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than 30 years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspectral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the highdimensional nature of the data, and to integrate the spatial and spectral information. Performance of the discussed techniques is evaluated in different analysis scenarios. To satisfy time-critical constraints in specific applications, we also develop efficient parallel implementations of some of the discussed algorithms. Combined, these parts provide an excellent snapshot of the state-of-the-art in those areas, and offer a thoughtful perspective on future potentials and emerging challenges in the design of robust hyperspectral imaging algorithms

  9. Surgical techniques for advanced stage pelvic organ prolapse.

    PubMed

    Brown, Douglas N; Strauchon, Christopher; Gonzalez, Hector; Gruber, Daniel

    2016-02-01

    Pelvic organ prolapse is an extremely common condition, with approximately 12% of women requiring surgical correction over their lifetime. This manuscript reviews the most recent literature regarding the comparative efficacy of various surgical repair techniques in the treatment of advanced stage pelvic organ prolapse. Uterosacral ligament suspension has similar anatomic and subjective outcomes when compared to sacrospinous ligament fixation at 12 months and is considered to be equally effective. The use of transvaginal mesh has been shown to be superior to native tissue vaginal repairs with respect to anatomic outcomes but at the cost of a higher complication rate. Minimally invasive sacrocolpopexy appears to be equivalent to abdominal sacrocolpopexy (ASC). Robot-assisted sacrocolpopexy (RSC) and laparoscopic sacrocolpopexy (LSC) appear as effective as abdominal sacrocolpopexy, however, prospective studies of comparing long-term outcomes of ASC, LSC, and RSC in relation to health care costs is paramount in the near future. Surgical correction of advanced pelvic organ prolapse can be accomplished via a variety of proven techniques. Selection of the correct surgical approach is a complex decision process and involves a multitude of factors. When deciding on the most suitable surgical intervention, the chosen route must be individualized for each patient taking into account the specific risks and benefits of each procedure. PMID:26448444

  10. Advanced IMCW Lidar Techniques for ASCENDS CO2 Column Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, Joel; lin, bing; nehrir, amin; harrison, fenton; obland, michael

    2015-04-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation.

  11. Advanced Techniques for Removal of Retrievable Inferior Vena Cava Filters

    SciTech Connect

    Iliescu, Bogdan; Haskal, Ziv J.

    2012-08-15

    Inferior vena cava (IVC) filters have proven valuable for the prevention of primary or recurrent pulmonary embolism in selected patients with or at high risk for venous thromboembolic disease. Their use has become commonplace, and the numbers implanted increase annually. During the last 3 years, in the United States, the percentage of annually placed optional filters, i.e., filters than can remain as permanent filters or potentially be retrieved, has consistently exceeded that of permanent filters. In parallel, the complications of long- or short-term filtration have become increasingly evident to physicians, regulatory agencies, and the public. Most filter removals are uneventful, with a high degree of success. When routine filter-retrieval techniques prove unsuccessful, progressively more advanced tools and skill sets must be used to enhance filter-retrieval success. These techniques should be used with caution to avoid damage to the filter or cava during IVC retrieval. This review describes the complex techniques for filter retrieval, including use of additional snares, guidewires, angioplasty balloons, and mechanical and thermal approaches as well as illustrates their specific application.

  12. Innovative techniques for sampling stream-inhabiting salamanders

    SciTech Connect

    T.M. Luhring; C.A. Young

    2006-01-01

    Although salamanders are excellent indicators of environmental health, the ability to catch them efficiently without substantially disrupting their habitat is not always practical or even possible with current techniques. Ripping open logs and raking leaf packs onto shore (Bruce 1972) are examples of such practices that are disruptive but widely used by herpetologists who have no other means of efficient collection. Drift fences with pitfall traps are effective in catching animals moving within or between habitats but are time consuming and require an initial financial investment and constant upkeep to maintain functionality and prevent animal fatalities (Gibbons and Semlitsch 1981). One current alternative to drift fences is the use of coverboards (Grant et al. 1992), which require less maintenance and sampling effort than drift fences. However, coverboards do not integrate captures over a long time period and often result in a lower number of captures per trap (Grant et al. 1992).

  13. Advanced Techniques for Power System Identification from Measured Data

    SciTech Connect

    Pierre, John W.; Wies, Richard; Trudnowski, Daniel

    2008-11-25

    Time-synchronized measurements provide rich information for estimating a power-system's electromechanical modal properties via advanced signal processing. This information is becoming critical for the improved operational reliability of interconnected grids. A given mode's properties are described by its frequency, damping, and shape. Modal frequencies and damping are useful indicators of power-system stress, usually declining with increased load or reduced grid capacity. Mode shape provides critical information for operational control actions. This project investigated many advanced techniques for power system identification from measured data focusing on mode frequency and damping ratio estimation. Investigators from the three universities coordinated their effort with Pacific Northwest National Laboratory (PNNL). Significant progress was made on developing appropriate techniques for system identification with confidence intervals and testing those techniques on field measured data and through simulation. Experimental data from the western area power system was provided by PNNL and Bonneville Power Administration (BPA) for both ambient conditions and for signal injection tests. Three large-scale tests were conducted for the western area in 2005 and 2006. Measured field PMU (Phasor Measurement Unit) data was provided to the three universities. A 19-machine simulation model was enhanced for testing the system identification algorithms. Extensive simulations were run with this model to test the performance of the algorithms. University of Wyoming researchers participated in four primary activities: (1) Block and adaptive processing techniques for mode estimation from ambient signals and probing signals, (2) confidence interval estimation, (3) probing signal design and injection method analysis, and (4) performance assessment and validation from simulated and field measured data. Subspace based methods have been use to improve previous results from block processing

  14. COAL AND CHAR STUDIES BY ADVANCED EMR TECHNIQUES

    SciTech Connect

    R. Linn Belford; Robert B. Clarkson; Mark J. Nilges; Boris M. Odintsov; Alex I. Smirnov

    2001-04-30

    Advanced electronic magnetic resonance (EMR) as well as nuclear magnetic resonance (NMR) methods have been used to examine properties of coals, chars, and molecular species related to constituents of coal. During the span of this grant, progress was made on construction and applications to coals and chars of two high frequency EMR systems particularly appropriate for such studies--48 GHz and 95 GHz electron magnetic resonance spectrometer, on new low-frequency dynamic nuclear polarization (DNP) experiments to examine the interaction between water and the surfaces of suspended char particulates in slurries, and on a variety of proton nuclear magnetic resonance (NMR) techniques to measure characteristics of the water directly in contact with the surfaces and pore spaces of carbonaceous particulates.

  15. Techniques for developing approximate optimal advanced launch system guidance

    NASA Technical Reports Server (NTRS)

    Feeley, Timothy S.; Speyer, Jason L.

    1991-01-01

    An extension to the authors' previous technique used to develop a real-time guidance scheme for the Advanced Launch System is presented. The approach is to construct an optimal guidance law based upon an asymptotic expansion associated with small physical parameters, epsilon. The trajectory of a rocket modeled as a point mass is considered with the flight restricted to an equatorial plane while reaching an orbital altitude at orbital injection speeds. The dynamics of this problem can be separated into primary effects due to thrust and gravitational forces, and perturbation effects which include the aerodynamic forces and the remaining inertial forces. An analytic solution to the reduced-order problem represented by the primary dynamics is possible. The Hamilton-Jacobi-Bellman or dynamic programming equation is expanded in an asymptotic series where the zeroth-order term (epsilon = 0) can be obtained in closed form.

  16. Advanced Fibre Bragg Grating and Microfibre Bragg Grating Fabrication Techniques

    NASA Astrophysics Data System (ADS)

    Chung, Kit Man

    Fibre Bragg gratings (FBGs) have become a very important technology for communication systems and fibre optic sensing. Typically, FBGs are less than 10-mm long and are fabricated using fused silica uniform phase masks which become more expensive for longer length or non-uniform pitch. Generally, interference UV laser beams are employed to make long or complex FBGs, and this technique introduces critical precision and control issues. In this work, we demonstrate an advanced FBG fabrication system that enables the writing of long and complex gratings in optical fibres with virtually any apodisation profile, local phase and Bragg wavelength using a novel optical design in which the incident angles of two UV beams onto an optical fibre can be adjusted simultaneously by moving just one optical component, instead of two optics employed in earlier configurations, to vary the grating pitch. The key advantage of the grating fabrication system is that complex gratings can be fabricated by controlling the linear movements of two translation stages. In addition to the study of advanced grating fabrication technique, we also focus on the inscription of FBGs written in optical fibres with a cladding diameter of several ten's of microns. Fabrication of microfibres was investigated using a sophisticated tapering method. We also proposed a simple but practical technique to filter out the higher order modes reflected from the FBG written in microfibres via a linear taper region while the fundamental mode re-couples to the core. By using this technique, reflection from the microfibre Bragg grating (MFBG) can be effectively single mode, simplifying the demultiplexing and demodulation processes. MFBG exhibits high sensitivity to contact force and an MFBG-based force sensor was also constructed and tested to investigate their suitability for use as an invasive surgery device. Performance of the contact force sensor packaged in a conforming elastomer material compares favourably to one

  17. Advanced imaging techniques for the detection of breast cancer.

    PubMed

    Jochelson, Maxine

    2012-01-01

    Mammography is the only breast imaging examination that has been shown to reduce breast cancer mortality. Population-based sensitivity is 75% to 80%, but sensitivity in high-risk women with dense breasts is only in the range of 50%. Breast ultrasound and contrast-enhanced breast magnetic resonance imaging (MRI) have become additional standard modalities used in the diagnosis of breast cancer. In high-risk women, ultrasound is known to detect approximately four additional cancers per 1,000 women. MRI is exquisitely sensitive for the detection of breast cancer. In high-risk women, it finds an additional four to five cancers per 100 women. However, both ultrasound and MRI are also known to lead to a large number of additional benign biopsies and short-term follow-up examinations. Many new breast imaging tools have improved and are being developed to improve on our current ability to diagnose early-stage breast cancer. These can be divided into two groups. The first group is those that are advances in current techniques, which include digital breast tomosynthesis and contrast-enhanced mammography and ultrasound with elastography or microbubbles. The other group includes new breast imaging platforms such as breast computed tomography (CT) scanning and radionuclide breast imaging. These are exciting advances. However, in this era of cost and radiation containment, it is imperative to look at all of them objectively to see which will provide clinically relevant additional information. PMID:24451711

  18. Active sampling technique to enhance chemical signature of buried explosives

    NASA Astrophysics Data System (ADS)

    Lovell, John S.; French, Patrick D.

    2004-09-01

    Deminers and dismounted countermine engineers commonly use metal detectors, ground penetrating radar and probes to locate mines. Many modern landmines have a very low metal content, which severely limits the effectiveness of metal detectors. Canines have also been used for landmine detection for decades. Experiments have shown that canines smell the explosives which are known to leak from most types of landmines. The fact that dogs can detect landmines indicates that vapor sensing is a viable approach to landmine detection. Several groups are currently developing systems to detect landmines by "sniffing" for the ultra-trace explosive vapors above the soil. The amount of material that is available to passive vapor sensing systems is limited to no more than the vapor in equilibrium with the explosive related chemicals (ERCs) distributed in the surface soils over and near the landmine. The low equilibrium vapor pressure of TNT in the soil/atmosphere boundary layer and the limited volume of the boundary layer air imply that passive chemical vapor sensing systems require sensitivities in the picogram range, or lower. ADA is working to overcome many of the limitations of passive sampling methods, by the use of an active sampling method that employs a high-powered (1,200+ joules) strobe lamp to create a highly amplified plume of vapor and/or ERC-bearing fine particulates. Initial investigations have demonstrated that this approach can amplify the detectability of TNT by two or three orders of magnitude. This new active sampling technique could be used with any suitable explosive sensor.

  19. Comparison of rangeland vegetation sampling techniques in the Central Grasslands

    USGS Publications Warehouse

    Stohlgren, T.J.; Bull, K.A.; Otsuki, Y.

    1998-01-01

    Maintaining native plant diversity, detecting exotic species, and monitoring rare species are becoming important objectives in rangeland conservation. Four rangeland vegetation sampling techniques were compared to see how well they captured local pant diversity. The methods tested included the commonly used Parker transects, Daubenmire transects as modified by the USDA Forest Service, a new transect and 'large quadrat' design proposed by the USDA Agricultural Research Service, and the Modified-Whittaker multi-scale vegetation plot. The 4 methods were superimposed in shortgrass steppe, mixed grass prairie, northern mixed prairie, and tallgrass prairie in the Central Grasslands of the United States with 4 replicates in each prairie type. Analysis of variance tests showed significant method effects and prairie type effects, but no significant method X type interactions for total species richness, the number of native species, the number of species with less than 1 % cover, and the time required for sampling. The methods behaved similarly in each prairie type under a wide variety of grazing regimens. The Parker, large quadrat, and Daubenmire transects significantly underestimated the total species richness and the number of native species in each prairie type, and the number of species with less than 1 % cover in all but the tallgrass prairie type. The transect techniques also consistently missed half the exotic species, including noxious weeds, in each prairie type. The Modified-Whittaker method, which included an exhaustive search for plant species in a 20 x 50 m plot, served as the baseline for species richeness comparisons. For all prairie types, the Modified-Whittaker plot captured an average of 42. (?? 2.4; 1 S.E.) plant species per site compared to 15.9 (?? 1.3), 18.9 (?? 1.2), and 22.8 (?? 1.6) plant species per site using the Parker, large quadrat, and Daubenmire transect methods, respectively. The 4 methods captured most of the dominant species at each site

  20. Advances in the Rising Bubble Technique for discharge measurement

    NASA Astrophysics Data System (ADS)

    Hilgersom, Koen; Luxemburg, Willem; Willemsen, Geert; Bussmann, Luuk

    2014-05-01

    Already in the 19th century, d'Auria described a discharge measurement technique that applies floats to find the depth-integrated velocity (d'Auria, 1882). The basis of this technique was that the horizontal distance that the float travels on its way to the surface is the image of the integrated velocity profile over depth. Viol and Semenov (1964) improved this method by using air bubbles as floats, but still distances were measured manually until Sargent (1981) introduced a technique that could derive the distances from two photographs simultaneously taken from each side of the river bank. Recently, modern image processing techniques proved to further improve the applicability of the method (Hilgersom and Luxemburg, 2012). In the 2012 article, controlling and determining the rising velocity of an air bubble still appeared a major challenge for the application of this method. Ever since, laboratory experiments with different nozzle and tube sizes lead to advances in our self-made equipment enabling us to produce individual air bubbles with a more constant rising velocity. Also, we introduced an underwater camera to on-site determine the rising velocity, which is dependent on the water temperature and contamination, and therefore is site-specific. Camera measurements of the rising velocity proved successful in a laboratory and field setting, although some improvements to the setup are necessary to capture the air bubbles also at depths where little daylight penetrates. References D'Auria, L.: Velocity of streams; A new method to determine correctly the mean velocity of any perpendicular in rivers and canals, (The) American Engineers, 3, 1882. Hilgersom, K.P. and Luxemburg, W.M.J.: Technical Note: How image processing facilitates the rising bubble technique for discharge measurement, Hydrology and Earth System Sciences, 16(2), 345-356, 2012. Sargent, D.: Development of a viable method of stream flow measurement using the integrating float technique, Proceedings of

  1. Review of online coupling of sample preparation techniques with liquid chromatography.

    PubMed

    Pan, Jialiang; Zhang, Chengjiang; Zhang, Zhuomin; Li, Gongke

    2014-03-01

    Sample preparation is still considered as the bottleneck of the whole analytical procedure, and efforts has been conducted towards the automation, improvement of sensitivity and accuracy, and low comsuption of organic solvents. Development of online sample preparation techniques (SP) coupled with liquid chromatography (LC) is a promising way to achieve these goals, which has attracted great attention. This article reviews the recent advances on the online SP-LC techniques. Various online SP techniques have been described and summarized, including solid-phase-based extraction, liquid-phase-based extraction assisted with membrane, microwave assisted extraction, ultrasonic assisted extraction, accelerated solvent extraction and supercritical fluids extraction. Specially, the coupling approaches of online SP-LC systems and the corresponding interfaces have been discussed and reviewed in detail, such as online injector, autosampler combined with transport unit, desorption chamber and column switching. Typical applications of the online SP-LC techniques have been summarized. Then the problems and expected trends in this field are attempted to be discussed and proposed in order to encourage the further development of online SP-LC techniques. PMID:24560367

  2. Accuracy and sampling error of two age estimation techniques using rib histomorphometry on a modern sample.

    PubMed

    García-Donas, Julieta G; Dyke, Jeffrey; Paine, Robert R; Nathena, Despoina; Kranioti, Elena F

    2016-02-01

    Most age estimation methods are proven problematic when applied in highly fragmented skeletal remains. Rib histomorphometry is advantageous in such cases; yet it is vital to test and revise existing techniques particularly when used in legal settings (Crowder and Rosella, 2007). This study tested Stout & Paine (1992) and Stout et al. (1994) histological age estimation methods on a Modern Greek sample using different sampling sites. Six left 4th ribs of known age and sex were selected from a modern skeletal collection. Each rib was cut into three equal segments. Two thin sections were acquired from each segment. A total of 36 thin sections were prepared and analysed. Four variables (cortical area, intact and fragmented osteon density and osteon population density) were calculated for each section and age was estimated according to Stout & Paine (1992) and Stout et al. (1994). The results showed that both methods produced a systemic underestimation of the individuals (to a maximum of 43 years) although a general improvement in accuracy levels was observed when applying the Stout et al. (1994) formula. There is an increase of error rates with increasing age with the oldest individual showing extreme differences between real age and estimated age. Comparison of the different sampling sites showed small differences between the estimated ages suggesting that any fragment of the rib could be used without introducing significant error. Yet, a larger sample should be used to confirm these results. PMID:26698389

  3. GROUND WATER SAMPLING USING LOW-FLOW TECHNIQUES

    EPA Science Inventory

    Obtaining representative ground water samples is important for site assessment and remedial performance monitoring objectives. The sampling device or method used to collect samples from monitoring or compliance well can significantly impact data quality and reliability. Low-flo...

  4. TECHNIQUES FOR SAMPLING AND ANALYZING THE MARINE MACROBENTHOS

    EPA Science Inventory

    This report presents guidelines for the quantitative assessment of the effects of marine pollution on benthic community structure and population dynamics. The sampling design addresses the number and location of stations, survey frequency, sampling gear, replication of samples, s...

  5. Comprehensive method to analyze thick insulating samples using PIXE technique

    NASA Astrophysics Data System (ADS)

    Ismail, I. M.; Rihawy, M. S.

    2013-02-01

    In this work, we present a new method to analyze thick insulating samples by PIXE technique. The method is based on the use of both an electron flood gun to compensate the charge build-up at the insulating surface and a beam profile monitor (BPM) to provide a precise indirect measurement of the beam current and accumulated charge. A filament extracted from an ordinary flashlight lamp was used as an electron flood gun. While, a commercial BPM has been adapted in order to carry out charge measurements. The results have revealed the convenience of using BPM for measuring the charge in PIXE measurements. The use of the electron flood gun has given very satisfactory results in term of preventing charge build-up and reducing its contribution to the bremsstrahlung background in the PIXE spectra. The applicability and efficiency of the overall system for elemental analysis were successfully verified using IAEA-Soil-7 reference material where both accuracy and precision were found to be better than 10% in most cases.

  6. Advances in Poly(4-aminodiphenylaniline) Nanofibers Preparation by Electrospinning Technique.

    PubMed

    Della Pina, C; Busacca, C; Frontera, P; Antonucci, P L; Scarpino, L A; Sironi, A; Falletta, E

    2016-05-01

    Polyaniline (PANI) nanofibers are drawing a great deal of interest from academia and industry due to their multiple applications, especially in biomedical field. PANI nanofibers were successfully electrospun for the first time by MacDiarmid and co-workers at the beginning of the millennium and since then many efforts have been addressed to improve their quality. However, traditional PANI prepared from aniline monomer shows some drawbacks, such as presence of toxic (i.e., benzidine) and inorganic (salts and metals) co-products, that complicate polymer post-treatment, and low solubility in common organic solvents, making hard its processing by electrospinning technique. Some industrial sectors, such as medical and biomedical, need to employ materials free from toxic and polluting species. In this regard, the oxidative polymerization of N-(4-aminophenyl)aniline, aniline dimer, to produce poly(4-aminodiphenylaniline), P4ADA, a kind of PANI, represents an innovative alternative to the traditional synthesis because the obtained polymer results free from carcinogenic and/or polluting co-products, and, moreover, more soluble than traditional PANI. This latter feature can be exploited to obtain P4ADA nanofibers by electrospinning technique. In this paper we report the advances obtained in the P4ADA nanofibers electrospinnig. A comparison among polyethylene oxide (PEO), polymethyl methacrylate (PMMA) and polystyrene (PS), as the second polymer to facilitate the electrospinning process, is shown. In order to increase the conductivity of P4ADA nanofibers, two strategies were adopted and compared: selective insulating binder removal from electrospun nanofibers by a rinsing tratment, afterwards optimizing the minimum amount of binder necessary for the electrospinning process. Moreover, the effect of PEO/P4ADA weight ratio on the fibers morphology and conductivity was highlighted. PMID:27483933

  7. A review of hemorheology: Measuring techniques and recent advances

    NASA Astrophysics Data System (ADS)

    Sousa, Patrícia C.; Pinho, Fernando T.; Alves, Manuel A.; Oliveira, Mónica S. N.

    2016-02-01

    Significant progress has been made over the years on the topic of hemorheology, not only in terms of the development of more accurate and sophisticated techniques, but also in terms of understanding the phenomena associated with blood components, their interactions and impact upon blood properties. The rheological properties of blood are strongly dependent on the interactions and mechanical properties of red blood cells, and a variation of these properties can bring further insight into the human health state and can be an important parameter in clinical diagnosis. In this article, we provide both a reference for hemorheological research and a resource regarding the fundamental concepts in hemorheology. This review is aimed at those starting in the field of hemodynamics, where blood rheology plays a significant role, but also at those in search of the most up-to-date findings (both qualitative and quantitative) in hemorheological measurements and novel techniques used in this context, including technical advances under more extreme conditions such as in large amplitude oscillatory shear flow or under extensional flow, which impose large deformations comparable to those found in the microcirculatory system and in diseased vessels. Given the impressive rate of increase in the available knowledge on blood flow, this review is also intended to identify areas where current knowledge is still incomplete, and which have the potential for new, exciting and useful research. We also discuss the most important parameters that can lead to an alteration of blood rheology, and which as a consequence can have a significant impact on the normal physiological behavior of blood.

  8. Removing baseline flame's spectrum by using advanced recovering spectrum techniques.

    PubMed

    Arias, Luis; Sbarbaro, Daniel; Torres, Sergio

    2012-09-01

    In this paper, a novel automated algorithm to estimate and remove the continuous baseline from measured flame spectra is proposed. The algorithm estimates the continuous background based on previous information obtained from a learning database of continuous flame spectra. Then, the discontinuous flame emission is calculated by subtracting the estimated continuous baseline from the measured spectrum. The key issue subtending the learning database is that the continuous flame emissions are predominant in the sooty regions, in absence of discontinuous radiation. The proposed algorithm was tested using natural gas and bio-oil flames spectra at different combustion conditions, and the goodness-of-fit coefficient (GFC) quality metric was used to quantify the performance in the estimation process. Additionally, the commonly used first derivative method (FDM) for baseline removing was applied to the same testing spectra in order to compare and to evaluate the proposed technique. The achieved results show that the proposed method is a very attractive tool for designing advanced combustion monitoring strategies of discontinuous emissions. PMID:22945158

  9. Nanocrystalline materials: recent advances in crystallographic characterization techniques

    PubMed Central

    Ringe, Emilie

    2014-01-01

    Most properties of nanocrystalline materials are shape-dependent, providing their exquisite tunability in optical, mechanical, electronic and catalytic properties. An example of the former is localized surface plasmon resonance (LSPR), the coherent oscillation of conduction electrons in metals that can be excited by the electric field of light; this resonance frequency is highly dependent on both the size and shape of a nanocrystal. An example of the latter is the marked difference in catalytic activity observed for different Pd nanoparticles. Such examples highlight the importance of particle shape in nanocrystalline materials and their practical applications. However, one may ask ‘how are nanoshapes created?’, ‘how does the shape relate to the atomic packing and crystallography of the material?’, ‘how can we control and characterize the external shape and crystal structure of such small nanocrystals?’. This feature article aims to give the reader an overview of important techniques, concepts and recent advances related to these questions. Nucleation, growth and how seed crystallography influences the final synthesis product are discussed, followed by shape prediction models based on seed crystallography and thermodynamic or kinetic parameters. The crystallographic implications of epitaxy and orientation in multilayered, core-shell nanoparticles are overviewed, and, finally, the development and implications of novel, spatially resolved analysis tools are discussed. PMID:25485133

  10. Pediatric Cardiopulmonary Resuscitation: Advances in Science, Techniques, and Outcomes

    PubMed Central

    Topjian, Alexis A.; Berg, Robert A.; Nadkarni, Vinay M.

    2009-01-01

    More than 25% of children survive to hospital discharge after in-hospital cardiac arrests, and 5% to 10% survive after out-of-hospital cardiac arrests. This review of pediatric cardiopulmonary resuscitation addresses the epidemiology of pediatric cardiac arrests, mechanisms of coronary blood flow during cardiopulmonary resuscitation, the 4 phases of cardiac arrest resuscitation, appropriate interventions during each phase, special resuscitation circumstances, extracorporeal membrane oxygenation cardiopulmonary resuscitation, and quality of cardiopulmonary resuscitation. The key elements of pathophysiology that impact and match the timing, intensity, duration, and variability of the hypoxic-ischemic insult to evidence-based interventions are reviewed. Exciting discoveries in basic and applied-science laboratories are now relevant for specific subpopulations of pediatric cardiac arrest victims and circumstances (eg, ventricular fibrillation, neonates, congenital heart disease, extracorporeal cardiopulmonary resuscitation). Improving the quality of interventions is increasingly recognized as a key factor for improving outcomes. Evolving training strategies include simulation training, just-in-time and just-in-place training, and crisis-team training. The difficult issue of when to discontinue resuscitative efforts is addressed. Outcomes from pediatric cardiac arrests are improving. Advances in resuscitation science and state-of-the-art implementation techniques provide the opportunity for further improvement in outcomes among children after cardiac arrest. PMID:18977991

  11. Advanced overlay: sampling and modeling for optimized run-to-run control

    NASA Astrophysics Data System (ADS)

    Subramany, Lokesh; Chung, WoongJae; Samudrala, Pavan; Gao, Haiyong; Aung, Nyan; Gomez, Juan Manuel; Gutjahr, Karsten; Park, DongSuk; Snow, Patrick; Garcia-Medina, Miguel; Yap, Lipkong; Demirer, Onur Nihat; Pierson, Bill; Robinson, John C.

    2016-03-01

    In recent years overlay (OVL) control schemes have become more complicated in order to meet the ever shrinking margins of advanced technology nodes. As a result, this brings up new challenges to be addressed for effective run-to- run OVL control. This work addresses two of these challenges by new advanced analysis techniques: (1) sampling optimization for run-to-run control and (2) bias-variance tradeoff in modeling. The first challenge in a high order OVL control strategy is to optimize the number of measurements and the locations on the wafer, so that the "sample plan" of measurements provides high quality information about the OVL signature on the wafer with acceptable metrology throughput. We solve this tradeoff between accuracy and throughput by using a smart sampling scheme which utilizes various design-based and data-based metrics to increase model accuracy and reduce model uncertainty while avoiding wafer to wafer and within wafer measurement noise caused by metrology, scanner or process. This sort of sampling scheme, combined with an advanced field by field extrapolated modeling algorithm helps to maximize model stability and minimize on product overlay (OPO). Second, the use of higher order overlay models means more degrees of freedom, which enables increased capability to correct for complicated overlay signatures, but also increases sensitivity to process or metrology induced noise. This is also known as the bias-variance trade-off. A high order model that minimizes the bias between the modeled and raw overlay signature on a single wafer will also have a higher variation from wafer to wafer or lot to lot, that is unless an advanced modeling approach is used. In this paper, we characterize the bias-variance trade off to find the optimal scheme. The sampling and modeling solutions proposed in this study are validated by advanced process control (APC) simulations to estimate run-to-run performance, lot-to-lot and wafer-to- wafer model term monitoring to

  12. Advanced fabrication techniques for hydrogen-cooled engine structures

    NASA Technical Reports Server (NTRS)

    Buchmann, O. A.; Arefian, V. V.; Warren, H. A.; Vuigner, A. A.; Pohlman, M. J.

    1985-01-01

    Described is a program for development of coolant passage geometries, material systems, and joining processes that will produce long-life hydrogen-cooled structures for scramjet applications. Tests were performed to establish basic material properties, and samples constructed and evaluated to substantiate fabrication processes and inspection techniques. Results of the study show that the basic goal of increasing the life of hydrogen-cooled structures two orders of magnitude relative to that of the Hypersonic Research Engine can be reached with available means. Estimated life is 19000 cycles for the channels and 16000 cycles for pin-fin coolant passage configurations using Nickel 201. Additional research is required to establish the fatigue characteristics of dissimilar-metal coolant passages (Nickel 201/Inconel 718) and to investigate the embrittling effects of the hydrogen coolant.

  13. Hybrid inverse lithography techniques for advanced hierarchical memories

    NASA Astrophysics Data System (ADS)

    Xiao, Guangming; Hooker, Kevin; Irby, Dave; Zhang, Yunqiang; Ward, Brian; Cecil, Tom; Hall, Brett; Lee, Mindy; Kim, Dave; Lucas, Kevin

    2014-03-01

    Traditional segment-based model-based OPC methods have been the mainstream mask layout optimization techniques in volume production for memory and embedded memory devices for many device generations. These techniques have been continually optimized over time to meet the ever increasing difficulties of memory and memory periphery patterning. There are a range of difficult issues for patterning embedded memories successfully. These difficulties include the need for a very high level of symmetry and consistency (both within memory cells themselves and between cells) due to circuit effects such as noise margin requirements in SRAMs. Memory cells and access structures consume a large percentage of area in embedded devices so there is a very high return from shrinking the cell area as much as possible. This aggressive scaling leads to very difficult resolution, 2D CD control and process window requirements. Additionally, the range of interactions between mask synthesis corrections of neighboring areas can extend well beyond the size of the memory cell, making it difficult to fully take advantage of the inherent designed cell hierarchy in mask pattern optimization. This is especially true for non-traditional (i.e., less dependent on geometric rule) OPC/RET methods such as inverse lithography techniques (ILT) which inherently have more model-based decisions in their optimizations. New inverse methods such as model-based SRAF placement and ILT are, however, well known to have considerable benefits in finding flexible mask pattern solutions to improve process window, improve 2D CD control, and improve resolution in ultra-dense memory patterns. They also are known to reduce recipe complexity and provide native MRC compliant mask pattern solutions. Unfortunately, ILT is also known to be several times slower than traditional OPC methods due to the increased computational lithographic optimizations it performs. In this paper, we describe and present results for a methodology to

  14. Sampling for Telephone Surveys: Do the Results Depend on Technique?

    ERIC Educational Resources Information Center

    Franz, Jennifer D.

    Two basic methods exist for drawing probability samples to be used in telephone surveys: directory sampling (from alphabetical or street directories) and random digit dialing (RDD). RDD includes unlisted numbers, whereas directory sampling includes only listed numbers. The goal of this paper is to estimate the effect of failure to include…

  15. Evaluating noninvasive genetic sampling techniques to estimate large carnivore abundance.

    PubMed

    Mumma, Matthew A; Zieminski, Chris; Fuller, Todd K; Mahoney, Shane P; Waits, Lisette P

    2015-09-01

    Monitoring large carnivores is difficult because of intrinsically low densities and can be dangerous if physical capture is required. Noninvasive genetic sampling (NGS) is a safe and cost-effective alternative to physical capture. We evaluated the utility of two NGS methods (scat detection dogs and hair sampling) to obtain genetic samples for abundance estimation of coyotes, black bears and Canada lynx in three areas of Newfoundland, Canada. We calculated abundance estimates using program capwire, compared sampling costs, and the cost/sample for each method relative to species and study site, and performed simulations to determine the sampling intensity necessary to achieve abundance estimates with coefficients of variation (CV) of <10%. Scat sampling was effective for both coyotes and bears and hair snags effectively sampled bears in two of three study sites. Rub pads were ineffective in sampling coyotes and lynx. The precision of abundance estimates was dependent upon the number of captures/individual. Our simulations suggested that ~3.4 captures/individual will result in a < 10% CV for abundance estimates when populations are small (23-39), but fewer captures/individual may be sufficient for larger populations. We found scat sampling was more cost-effective for sampling multiple species, but suggest that hair sampling may be less expensive at study sites with limited road access for bears. Given the dependence of sampling scheme on species and study site, the optimal sampling scheme is likely to be study-specific warranting pilot studies in most circumstances. PMID:25693632

  16. ADVANCED TECHNIQUES FOR RESERVOIR SIMULATION AND MODELING OF NONCONVENTIONAL WELLS

    SciTech Connect

    Louis J. Durlofsky; Khalid Aziz

    2004-08-20

    Nonconventional wells, which include horizontal, deviated, multilateral and ''smart'' wells, offer great potential for the efficient management of oil and gas reservoirs. These wells are able to contact larger regions of the reservoir than conventional wells and can also be used to target isolated hydrocarbon accumulations. The use of nonconventional wells instrumented with downhole inflow control devices allows for even greater flexibility in production. Because nonconventional wells can be very expensive to drill, complete and instrument, it is important to be able to optimize their deployment, which requires the accurate prediction of their performance. However, predictions of nonconventional well performance are often inaccurate. This is likely due to inadequacies in some of the reservoir engineering and reservoir simulation tools used to model and optimize nonconventional well performance. A number of new issues arise in the modeling and optimization of nonconventional wells. For example, the optimal use of downhole inflow control devices has not been addressed for practical problems. In addition, the impact of geological and engineering uncertainty (e.g., valve reliability) has not been previously considered. In order to model and optimize nonconventional wells in different settings, it is essential that the tools be implemented into a general reservoir simulator. This simulator must be sufficiently general and robust and must in addition be linked to a sophisticated well model. Our research under this five year project addressed all of the key areas indicated above. The overall project was divided into three main categories: (1) advanced reservoir simulation techniques for modeling nonconventional wells; (2) improved techniques for computing well productivity (for use in reservoir engineering calculations) and for coupling the well to the simulator (which includes the accurate calculation of well index and the modeling of multiphase flow in the wellbore

  17. Weldability and joining techniques for advanced fossil energy system alloys

    SciTech Connect

    Lundin, C.D.; Qiao, C.Y.P.; Liu, W.; Yang, D.; Zhou, G.; Morrison, M.

    1998-05-01

    The efforts represent the concerns for the basic understanding of the weldability and fabricability of the advanced high temperature alloys so necessary to affect increases in the efficiency of the next generation Fossil Energy Power Plants. The effort was divided into three tasks with the first effort dealing with the welding and fabrication behavior of 310HCbN (HR3C), the second task details the studies aimed at understanding the weldability of a newly developed 310TaN high temperature stainless (a modification of 310 stainless) and Task 3 addressed the cladding of austenitic tubing with Iron-Aluminide using the GTAW process. Task 1 consisted of microstructural studies on 310HCbN and the development of a Tube Weldability test which has applications to production welding techniques as well as laboratory weldability assessments. In addition, the evaluation of ex-service 310HCbN which showed fireside erosion and cracking at the attachment weld locations was conducted. Task 2 addressed the behavior of the newly developed 310 TaN modification of standard 310 stainless steel and showed that the weldability was excellent and that the sensitization potential was minimal for normal welding and fabrication conditions. The microstructural evolution during elevated temperature testing was characterized and the second phase particles evolved upon aging were identified. Task 3 details the investigation undertaken to clad 310HCbN tubing with Iron Aluminide and developed welding conditions necessary to provide a crack free cladding. The work showed that both a preheat and a post-heat was necessary for crack free deposits and the effect of a third element on the cracking potential was defined together with the effect of the aluminum level for optimum weldability.

  18. Statistical classification techniques for engineering and climatic data samples

    NASA Technical Reports Server (NTRS)

    Temple, E. C.; Shipman, J. R.

    1981-01-01

    Fisher's sample linear discriminant function is modified through an appropriate alteration of the common sample variance-covariance matrix. The alteration consists of adding nonnegative values to the eigenvalues of the sample variance covariance matrix. The desired results of this modification is to increase the number of correct classifications by the new linear discriminant function over Fisher's function. This study is limited to the two-group discriminant problem.

  19. Slice sampling technique in Bayesian extreme of gold price modelling

    NASA Astrophysics Data System (ADS)

    Rostami, Mohammad; Adam, Mohd Bakri; Ibrahim, Noor Akma; Yahya, Mohamed Hisham

    2013-09-01

    In this paper, a simulation study of Bayesian extreme values by using Markov Chain Monte Carlo via slice sampling algorithm is implemented. We compared the accuracy of slice sampling with other methods for a Gumbel model. This study revealed that slice sampling algorithm offers more accurate and closer estimates with less RMSE than other methods . Finally we successfully employed this procedure to estimate the parameters of Malaysia extreme gold price from 2000 to 2011.

  20. Investigation of joining techniques for advanced austenitic alloys

    SciTech Connect

    Lundin, C.D.; Qiao, C.Y.P.; Kikuchi, Y.; Shi, C.; Gill, T.P.S.

    1991-05-01

    Modified Alloys 316 and 800H, designed for high temperature service, have been developed at Oak Ridge National Laboratory. Assessment of the weldability of the advanced austenitic alloys has been conducted at the University of Tennessee. Four aspects of weldability of the advanced austenitic alloys were included in the investigation.

  1. Advances in Astromaterials Curation: Supporting Future Sample Return Missions

    NASA Technical Reports Server (NTRS)

    Evans, C. A.; Zeigler, R. A.; Fries, M. D..; Righter, K.; Allton, J. H.; Zolensky, M. E.; Calaway, M. J.; Bell, M. S.

    2015-01-01

    NASA's Astromaterials, curated at the Johnson Space Center in Houston, are the most extensive, best-documented, and leastcontaminated extraterrestrial samples that are provided to the worldwide research community. These samples include lunar samples from the Apollo missions, meteorites collected over nearly 40 years of expeditions to Antarctica (providing samples of dozens of asteroid bodies, the Moon, and Mars), Genesis solar wind samples, cosmic dust collected by NASA's high altitude airplanes, Comet Wild 2 and interstellar dust samples from the Stardust mission, and asteroid samples from JAXA's Hayabusa mission. A full account of NASA's curation efforts for these collections is provided by Allen, et al [1]. On average, we annually allocate about 1500 individual samples from NASA's astromaterials collections to hundreds of researchers from around the world, including graduate students and post-doctoral scientists; our allocation rate has roughly doubled over the past 10 years. The curation protocols developed for the lunar samples returned from the Apollo missions remain relevant and are adapted to new and future missions. Several lessons from the Apollo missions, including the need for early involvement of curation scientists in mission planning [1], have been applied to all subsequent sample return campaigns. From the 2013 National Academy of Sciences report [2]: "Curation is the critical interface between sample return missions and laboratory research. Proper curation has maintained the scientific integrity and utility of the Apollo, Antarctic meteorite, and cosmic dust collections for decades. Each of these collections continues to yield important new science. In the past decade, new state-of-the-art curatorial facilities for the Genesis and Stardust missions were key to the scientific breakthroughs provided by these missions." The results speak for themselves: research on NASA's astromaterials result in hundreds of papers annually, yield fundamental

  2. PREPARATION OF SOIL SAMPLING PROTOCOL: TECHNIQUES AND STRATEGIES

    EPA Science Inventory

    This report sets out a system for developing soil sampling protocols that can be used to meet the needs of the environmental scientist working under a number of situations. The body of the report discusses the factors that influence the selection of a particular sampling design a...

  3. Understanding soil-gas velocity leads to new sampling techniques

    SciTech Connect

    Roy, K.A.

    1989-12-01

    Predicting when periods of maximum vertical gas velocity occur for any geographic point mightily increases the sensitivity and reliability of detection. This article discusses sampling programs. Sampling programs can be completed during periods of maximum velocity, allowing field workers to collect the maximum amount of contaminant in trace-gas form per given unit of time.

  4. COMPARISON OF SAMPLING TECHNIQUES USED IN STUDYING LEPIDOPTERA POPULATION DYNAMICS

    EPA Science Inventory

    Four methods (light traps, foliage samples, canvas bands, and gypsy moth egg mass surveys) that are used to study the population dynamics of foliage-feeding Lepidoptera were compared for 10 species, including gypsy moth, Lymantria dispar L. Samples were collected weekly at 12 sit...

  5. Acoustic levitation as an IR spectroscopy sampling technique

    SciTech Connect

    Cronin, J. T.; Brill, T. B.

    1989-02-01

    Acoustic levitation of liquid droplets (/lt/4 mm diameter), bubbles,and solid particles is described as an unusual sampling techniquefor obtaining the infrared spectrum of samples that might be incompatiblewith conventional sample support methods, and for studies of materialsunder extreme conditions. Excellent FT-IR spectra were recorded ofbubbles of a concentrated aqueous nitrate solution, of mineral oil,and of an aqueous surfactant solution. Polymethacrylic acidpacking foam also produced a high-quality spectrum. Large aqueousdroplets and dense solids gave unsatisfactory spectra. The designof the levitator and various spectroscopic considerations are discussed.

  6. Charge mitigation techniques using glow and corona discharges for advanced gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Campsie, P.; Cunningham, L.; Hendry, M.; Hough, J.; Reid, S.; Rowan, S.; Hammond, G. D.

    2011-11-01

    Charging of silica test masses in gravitational wave detectors could potentially become a significant low-frequency noise source for advanced detectors. Charging noise has already been observed and confirmed in the GEO600 detector and is thought to have been observed in one of the LIGO detectors. In this paper, two charge mitigation techniques using glow and corona discharges were investigated to create repeatable and robust procedures. The glow discharge procedure was used to mitigate charge under vacuum and would be intended to be used in the instance where an optic has become charged while the detector is in operation. The corona discharge procedure was used to discharge samples at atmospheric pressure and would be intended to be used to discharge the detector optics during the cleaning of the optics. Both techniques were shown to reduce both polarities of surface charge on fused silica to a level that would not limit advanced LIGO. Measurements of the transmission of samples that had undergone the charge mitigation procedures showed no significant variation in transmission, at a sensitivity of ~ 200 ppm, in TiO2-doped Ta2O5/SiO2 multi-layer coated fused silica.

  7. Recent advances in coupling capillary electrophoresis based separation techniques to ESI and MALDI MS

    PubMed Central

    Zhong, Xuefei; Zhang, Zichuan; Jiang, Shan; Li, Lingjun

    2014-01-01

    Coupling capillary electrophoresis (CE) based separation techniques to mass spectrometry creates a powerful platform for analysis of a wide range of biomolecules from complex samples because it combines the high separation efficiency of CE and the sensitivity and selectivity of MS detection. ESI and MALDI, as the most common soft ionization techniques employed for CE and MS coupling, offer distinct advantages for biomolecular characterization. This review is focused primarily on technological advances in combining CE and chip-based CE with ESI and MALDI MS detection in the past five years. Selected applications in the analyses of metabolites, peptides, and proteins with the recently developed CE-MS platforms are also highlighted. PMID:24170529

  8. Enhanced Sampling Techniques in Molecular Dynamics Simulations of Biological Systems

    PubMed Central

    Bernardi, Rafael C.; Melo, Marcelo C. R.; Schulten, Klaus

    2014-01-01

    Background Molecular Dynamics has emerged as an important research methodology covering systems to the level of millions of atoms. However, insufficient sampling often limits its application. The limitation is due to rough energy landscapes, with many local minima separated by high-energy barriers, which govern the biomolecular motion. Scope of review In the past few decades methods have been developed that address the sampling problem, such as replica-exchange molecular dynamics, metadynamics and simulated annealing. Here we present an overview over theses sampling methods in an attempt to shed light on which should be selected depending on the type of system property studied. Major Conclusions Enhanced sampling methods have been employed for a broad range of biological systems and the choice of a suitable method is connected to biological and physical characteristics of the system, in particular system size. While metadynamics and replica-exchange molecular dynamics are the most adopted sampling methods to study biomolecular dynamics, simulated annealing is well suited to characterize very flexible systems. The use of annealing methods for a long time was restricted to simulation of small proteins; however, a variant of the method, generalized simulated annealing, can be employed at a relatively low computational cost to large macromolecular complexes. General Significance Molecular dynamics trajectories frequently do not reach all relevant conformational substates, for example those connected with biological function, a problem that can be addressed by employing enhanced sampling algorithms. PMID:25450171

  9. Air Monitoring: New Advances in Sampling and Detection

    PubMed Central

    Watson, Nicola; Davies, Stephen; Wevill, David

    2011-01-01

    As the harmful effects of low-level exposure to hazardous organic air pollutants become more evident, there is constant pressure to improve the detection limits of indoor and ambient air monitoring methods, for example, by collecting larger air volumes and by optimising the sensitivity of the analytical detector. However, at the other end of the scale, rapid industrialisation in the developing world and growing pressure to reclaim derelict industrial land for house building is driving the need for air monitoring methods that can reliably accommodate very-high-concentration samples in potentially aggressive matrices. This paper investigates the potential of a combination of two powerful gas chromatography—based analytical enhancements—sample preconcentration/thermal desorption and time-of-flight mass spectrometry—to improve quantitative and qualitative measurement of very-low-(ppt) level organic chemicals, even in the most complex air samples. It also describes new, practical monitoring options for addressing equally challenging high-concentration industrial samples. PMID:22241966

  10. Automatic optimization of metrology sampling scheme for advanced process control

    NASA Astrophysics Data System (ADS)

    Chue, Chuei-Fu; Huang, Chun-Yen; Shih, Chiang-Lin

    2011-03-01

    In order to ensure long-term profitability, driving the operational costs down and improving the yield of a DRAM manufacturing process are continuous efforts. This includes optimal utilization of the capital equipment. The costs of metrology needed to ensure yield are contributing to the overall costs. As the shrinking of device dimensions continues, the costs of metrology are increasing because of the associated tightening of the on-product specifications requiring more metrology effort. The cost-of-ownership reduction is tackled by increasing the throughput and availability of metrology systems. However, this is not the only way to reduce metrology effort. In this paper, we discuss how the costs of metrology can be improved by optimizing the recipes in terms of the sampling layout, thereby eliminating metrology that does not contribute to yield. We discuss results of sampling scheme optimization for on-product overlay control of two DRAM manufacturing processes at Nanya Technology Corporation. For a 6x DRAM production process, we show that the reduction of metrology waste can be as high as 27% and overlay can be improved by 36%, comparing with a baseline sampling scheme. For a 4x DRAM process, having tighter overlay specs, a gain of ca. 0.5nm on-product overlay could be achieved, without increasing the metrology effort relative to the original sampling plan.

  11. Advanced interacting sequential Monte Carlo sampling for inverse scattering

    NASA Astrophysics Data System (ADS)

    Giraud, F.; Minvielle, P.; Del Moral, P.

    2013-09-01

    The following electromagnetism (EM) inverse problem is addressed. It consists in estimating the local radioelectric properties of materials recovering an object from global EM scattering measurements, at various incidences and wave frequencies. This large scale ill-posed inverse problem is explored by an intensive exploitation of an efficient 2D Maxwell solver, distributed on high performance computing machines. Applied to a large training data set, a statistical analysis reduces the problem to a simpler probabilistic metamodel, from which Bayesian inference can be performed. Considering the radioelectric properties as a hidden dynamic stochastic process that evolves according to the frequency, it is shown how advanced Markov chain Monte Carlo methods—called sequential Monte Carlo or interacting particles—can take benefit of the structure and provide local EM property estimates.

  12. Individual Particle Analysis of Ambient PM 2.5 Using Advanced Electron Microscopy Techniques

    SciTech Connect

    Gerald J. Keeler; Masako Morishita

    2006-12-31

    The overall goal of this project was to demonstrate a combination of advanced electron microscopy techniques that can be effectively used to identify and characterize individual particles and their sources. Specific techniques to be used include high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), STEM energy dispersive X-ray spectrometry (EDX), and energy-filtered TEM (EFTEM). A series of ambient PM{sub 2.5} samples were collected in communities in southwestern Detroit, MI (close to multiple combustion sources) and Steubenville, OH (close to several coal fired utility boilers). High-resolution TEM (HRTEM) -imaging showed a series of nano-metal particles including transition metals and elemental composition of individual particles in detail. Submicron and nano-particles with Al, Fe, Ti, Ca, U, V, Cr, Si, Ba, Mn, Ni, K and S were observed and characterized from the samples. Among the identified nano-particles, combinations of Al, Fe, Si, Ca and Ti nano-particles embedded in carbonaceous particles were observed most frequently. These particles showed very similar characteristics of ultrafine coal fly ash particles that were previously reported. By utilizing HAADF-STEM, STEM-EDX, and EF-TEM, this investigation was able to gain information on the size, morphology, structure, and elemental composition of individual nano-particles collected in Detroit and Steubenville. The results showed that the contributions of local combustion sources - including coal fired utilities - to ultrafine particle levels were significant. Although this combination of advanced electron microscopy techniques by itself can not identify source categories, these techniques can be utilized as complementary analytical tools that are capable of providing detailed information on individual particles.

  13. Technology Development and Advanced Planning for Curation of Returned Mars Samples

    NASA Technical Reports Server (NTRS)

    Lindstrom, David J.; Allen, Carlton C.

    2002-01-01

    Safety Level 4) laboratories, while simultaneously maintaining cleanliness levels equaling those of state-of-the-art cleanrooms. Unique requirements for the processing of Mars samples have inspired a program to develop handling techniques that are much more precise and reliable than the approach (currently used for lunar samples) of employing gloved human hands in nitrogen-filled gloveboxes. Individual samples from Mars are expected to be much smaller than lunar samples, the total mass of samples returned by each mission being 0.5- 1 kg, compared with many tens of kg of lunar samples returned by each of the six Apollo missions. Smaller samples require much more of the processing to be done under microscopic observation. In addition, the requirements for cleanliness and high-level containment would be difficult to satisfy while using traditional gloveboxes. JSC has constructed a laboratory to test concepts and technologies important to future sample curation. The Advanced Curation Laboratory includes a new-generation glovebox equipped with a robotic arm to evaluate the usability of robotic and teleoperated systems to perform curatorial tasks. The laboratory also contains equipment for precision cleaning and the measurement of trace organic contamination.

  14. Sample detection and analysis techniques for electrophoretic separation

    NASA Technical Reports Server (NTRS)

    Falb, R. D.; Hughes, K. E.; Powell, T. R.

    1975-01-01

    Methods for detecting and analyzing biological agents suitable for space flight operations were studied primarily by literature searches which were conducted of cell separation techniques. Detection methods discussed include: photometrometric, electric, radiometric, micrometry, ultrasonic, microscopic, and photographic. A bibliography, and a directory of vendors are included along with an index of commercial hardware.

  15. Advances in downhole sampling of high temperature solutions

    SciTech Connect

    Bayhurst, G.K.; Janecky, D.R.

    1991-01-01

    A fluid sampler capable of sampling hot and/or deep wells has been developed at Los Alamos National Laboratory. In collaboration with Leutert Instruments, an off-the-shelf sampler design was modified to meet gas-tight and minimal chemical reactivity/contamination specifications for use in geothermal wells and deep ocean drillholes. This downhole sampler has been routinely used at temperatures up to 300{degrees}C and hole depths of greater than 5 km. We have tested this sampler in various continental wells, including Valles Caldera VC-2a and VC-2b, German KTB, Cajon Pass, and Yellowstone Y-10. Both the standard commercial and enhanced samplers have also been used to obtain samples from a range of depths in the Ocean Drilling Project's hole 504B and during recent mid-ocean ridge drilling efforts. The sampler has made it possible to collect samples at temperatures and conditions beyond the limits of other tools with the added advantage of chemical corrosion resistance.

  16. Study of gastric cancer samples using terahertz techniques

    NASA Astrophysics Data System (ADS)

    Wahaia, Faustino; Kasalynas, Irmantas; Seliuta, Dalius; Molis, Gediminas; Urbanowicz, Andrzej; Carvalho Silva, Catia D.; Carneiro, Fatima; Valusis, Gintaras; Granja, Pedro L.

    2014-08-01

    In the present work, samples of healthy and adenocarcinoma-affected human gastric tissue were analyzed using transmission time-domain THz spectroscopy (THz-TDS) and spectroscopic THz imaging at 201 and 590 GHz. The work shows that it is possible to distinguish between normal and cancerous regions in dried and paraffin-embedded samples. Plots of absorption coefficient α and refractive index n of normal and cancer affected tissues, as well as 2-D transmission THz images are presented and the conditions for discrimination between normal and affected tissues are discussed.

  17. Advanced techniques and technology for efficient data storage, access, and transfer

    NASA Technical Reports Server (NTRS)

    Rice, Robert F.; Miller, Warner

    1991-01-01

    Advanced techniques for efficiently representing most forms of data are being implemented in practical hardware and software form through the joint efforts of three NASA centers. These techniques adapt to local statistical variations to continually provide near optimum code efficiency when representing data without error. Demonstrated in several earlier space applications, these techniques are the basis of initial NASA data compression standards specifications. Since the techniques clearly apply to most NASA science data, NASA invested in the development of both hardware and software implementations for general use. This investment includes high-speed single-chip very large scale integration (VLSI) coding and decoding modules as well as machine-transferrable software routines. The hardware chips were tested in the laboratory at data rates as high as 700 Mbits/s. A coding module's definition includes a predictive preprocessing stage and a powerful adaptive coding stage. The function of the preprocessor is to optimally process incoming data into a standard form data source that the second stage can handle.The built-in preprocessor of the VLSI coder chips is ideal for high-speed sampled data applications such as imaging and high-quality audio, but additionally, the second stage adaptive coder can be used separately with any source that can be externally preprocessed into the 'standard form'. This generic functionality assures that the applicability of these techniques and their recent high-speed implementations should be equally broad outside of NASA.

  18. Biomarkers for nutrient intake with focus on alternative sampling techniques.

    PubMed

    Holen, T; Norheim, F; Gundersen, T E; Mitry, P; Linseisen, J; Iversen, P O; Drevon, C A

    2016-01-01

    Biomarkers of nutrient intake or nutrient status are important objective measures of foods/nutrients as one of the most important environmental factors people are exposed to. It is very difficult to obtain accurate data on individual food intake, and there is a large variation of nutrient composition of foods consumed in a population. Thus, it is difficult to obtain precise measures of exposure to different nutrients and thereby be able to understand the relationship between diet, health, and disease. This is the background for investing considerable resources in studying biomarkers of nutrients believed to be important in our foods. Modern technology with high sensitivity and specificity concerning many nutrient biomarkers has allowed an interesting development with analyses of very small amounts of blood or tissue material. In combination with non-professional collection of blood by finger-pricking and collection on filters or sticks, this may make collection of samples and analyses of biomarkers much more available for scientists as well as health professionals and even lay people in particular in relation to the marked trend of self-monitoring of body functions linked to mobile phone technology. Assuming standard operating procedures are used for collection, drying, transport, extraction, and analysis of samples, it turns out that many analytes of nutritional interest can be measured like metabolites, drugs, lipids, vitamins, minerals, and many types of peptides and proteins. The advantage of this alternative sampling technology is that non-professionals can collect, dry, and mail the samples; the samples can often be stored under room temperature in a dry atmosphere, requiring small amounts of blood. Another promising area is the potential relation between the microbiome and biomarkers that may be measured in feces as well as in blood. PMID:27551313

  19. Astrobiology Sample Analysis Program (ASAP) for Advanced Life Detection Instrumentation Development and Calibration

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel; Brinkerhoff, Will; Dworkin, Jason; Eigenbrode, Jennifer; Franz, Heather; Mahaffy, Paul; Stern, Jen; Blake, Daid; Sandford, Scott; Fries, marc; Steele, Andrew; Amashukeli, Xenia; Fisher, Anita; Grunthaner, Frank; Aubrey, Andrew; Bada, Jeff; Chiesl, Tom; Stockton, Amanda; Mathies, Rich

    2008-01-01

    Scientific ground-truth measurements for near-term Mars missions, such as the 2009 Mars Science Laboratory (MSL) mission, are essential for validating current in situ flight instrumentation and for the development of advanced instrumentation technologies for life-detection missions over the next decade. The NASA Astrobiology Institute (NAI) has recently funded a consortium of researchers called the Astrobiology Sample Analysis Program (ASAP) to analyze an identical set of homogenized martian analog materials in a "round-robin" style using both state-of-the-art laboratory techniques as well as in-situ flight instrumentation including the SAM gas chromatograph mass spectrometer and CHEMIN X-ray diffraction/fluorescence instruments on MSL and the Urey and MOMA organic analyzer instruments under development for the 2013 ExoMars missions. The analog samples studied included an Atacama Desert soil from Chile, the Murchison meteorite, a gypsum sample from the 2007 AMASE Mars analog site, jarosite from Panoche Valley, CA, a hydrothermal sample from Rio Tinto, Spain, and a "blind" sample collected during the 2007 MSL slow-motion field test in New Mexico. Each sample was distributed to the team for analysis to: (1) determine the nature and inventory of organic compounds, (2) measure the bulk carbon and nitrogen isotopic composition, (3) investigate elemental abundances, mineralogy and matrix, and (4) search for biological activity. The experimental results obtained from the ASAP Mars analog research consortium will be used to build a framework for understanding the biogeochemistry of martian analogs, help calibrate current spaceflight instrumentation, and enhance the scientific return from upcoming missions.

  20. Interlaced linear array sampling technique for electromagnetic wave imaging

    SciTech Connect

    Sheen, David M; McMakin, Douglas L

    2009-06-16

    An arrangement of receivers and transmitters used in wideband holographic imaging using a reduced number of physical antenna elements compared to established techniques and systems. At least one of the receivers is configured to receive the reflected signal from three or more of transmitters, and at least one transmitter is configured to transmit a signal to an object, the reflection of which will be received by at least three receivers. The improved arrays are easily incorporated into existing microwave and millimeter wave holographic imaging equipment utilizing the existing mechanical features of this equipment, as well as the existing wideband holographic imaging algorithms and electronics for constructing images.

  1. Multiclass Bayes error estimation by a feature space sampling technique

    NASA Technical Reports Server (NTRS)

    Mobasseri, B. G.; Mcgillem, C. D.

    1979-01-01

    A general Gaussian M-class N-feature classification problem is defined. An algorithm is developed that requires the class statistics as its only input and computes the minimum probability of error through use of a combined analytical and numerical integration over a sequence simplifying transformations of the feature space. The results are compared with those obtained by conventional techniques applied to a 2-class 4-feature discrimination problem with results previously reported and 4-class 4-feature multispectral scanner Landsat data classified by training and testing of the available data.

  2. Evaluation of Urban Air Quality By Passive Sampling Technique

    NASA Astrophysics Data System (ADS)

    Nunes, T. V.; Miranda, A. I.; Duarte, S.; Lima, M. J.

    Aveiro is a flat small city in the centre of Portugal, close to the Atlantic coast. In the last two decades an intensive development of demographic, traffic and industry growth in the region was observed which was reflected on the air quality degrada- tion. In order to evaluate the urban air quality in Aveiro, a field-monitoring network by passive sampling with high space resolution was implemented. Twenty-four field places were distributed in a area of 3x3 Km2 and ozone and NO2 concentrations were measured. The site distribution density was higher in the centre, 250x250 m2 than in periphery where a 500x500 m2 grid was used. The selection of field places took into consideration the choice criteria recommendation by United Kingdom environmental authorities, and three tubes and a blank tube for each pollutant were used at each site. The sampling system was mounted at 3m from the ground usually profiting the street lampposts. Concerning NO2 acrylic tubes were used with 85 mm of length and an in- ternal diameter of 12mm, where in one of the extremities three steel grids impregnated with a solution of TEA were placed and fixed with a polyethylene end cup (Heal et al., 1999); PFA Teflon tube with 53 mm of length and 9 mm of internal diameter and three impregnated glass filters impregnated with DPE solution fixed by a teflon end cup was used for ozone sampling (Monn and Hargartner, 1990). The passive sampling method for ozone and nitrogen dioxide was compared with continuous measurements, but the amount of measurements wasnSt enough for an accurate calibration and validation of the method. Although this constraint the field observations (June to August 2001) for these two pollutants assign interesting information about the air quality in the urban area. A krigger method of interpolation (Surfer- Golden Software-2000) was applied to field data to obtain isolines distribution of NO2 and ozone concentration for the studied area. Even the used passive sampling method has many

  3. Recent advances in microscopic techniques for visualizing leukocytes in vivo

    PubMed Central

    Jain, Rohit; Tikoo, Shweta; Weninger, Wolfgang

    2016-01-01

    Leukocytes are inherently motile and interactive cells. Recent advances in intravital microscopy approaches have enabled a new vista of their behavior within intact tissues in real time. This brief review summarizes the developments enabling the tracking of immune responses in vivo. PMID:27239292

  4. Recent advances in microscopic techniques for visualizing leukocytes in vivo.

    PubMed

    Jain, Rohit; Tikoo, Shweta; Weninger, Wolfgang

    2016-01-01

    Leukocytes are inherently motile and interactive cells. Recent advances in intravital microscopy approaches have enabled a new vista of their behavior within intact tissues in real time. This brief review summarizes the developments enabling the tracking of immune responses in vivo. PMID:27239292

  5. Bricklaying Curriculum: Advanced Bricklaying Techniques. Instructional Materials. Revised.

    ERIC Educational Resources Information Center

    Turcotte, Raymond J.; Hendrix, Laborn J.

    This curriculum guide is designed to assist bricklaying instructors in providing performance-based instruction in advanced bricklaying. Included in the first section of the guide are units on customized or architectural masonry units; glass block; sills, lintels, and copings; and control (expansion) joints. The next two units deal with cut,…

  6. Advanced NDE techniques for quantitative characterization of aircraft

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S.; Winfree, William P.

    1990-01-01

    Recent advances in nondestructive evaluation (NDE) at NASA Langley Research Center and their applications that have resulted in quantitative assessment of material properties based on thermal and ultrasonic measurements are reviewed. Specific applications include ultrasonic determination of bolt tension, ultrasonic and thermal characterization of bonded layered structures, characterization of composite materials, and disbonds in aircraft skins.

  7. Controlled environment vitrification system: an improved sample preparation technique.

    PubMed

    Bellare, J R; Davis, H T; Scriven, L E; Talmon, Y

    1988-09-01

    The controlled environment vitrification system (CEVS) permits cryofixation of hydrated biological and colloidal dispersions and aggregates from a temperature- and saturation-controlled environment. Otherwise, specimens prepared in an uncontrolled laboratory atmosphere are subject to evaporation and heat transfer, which may introduce artifacts caused by concentration, pH, ionic strength, and temperature changes. Moreover, it is difficult to fix and examine the microstructure of systems at temperatures other than ambient (e.g., biological systems at in vivo conditions and colloidal systems above room temperature). A system has been developed that ensures that a liquid or partially liquid specimen is maintained in its original state while it is being prepared before vitrification and, once prepared, is vitrified with little alteration of its microstructure. A controlled environment is provided within a chamber where temperature and chemical activity of volatile components can be controlled while the specimen is being prepared. The specimen grid is mounted on a plunger, and a synchronous shutter is opened almost simultaneously with the release of the plunger, so that the specimen is propelled abruptly through the shutter opening into a cryogenic bath. We describe the system and its use and illustrate the value of the technique with TEM micrographs of surfactant microstructures in which specimen preparation artifacts were avoided. We also discuss applications to other instruments like SEM, to other techniques like freeze-fracture, and to novel "on the grid" experiments that make it possible to freeze successive instants of dynamic processes such as membrane fusion, chemical reactions, and phase transitions. PMID:3193246

  8. High-resolution accurate mass spectrometry as a technique for characterization of complex lysimeter leachate samples.

    PubMed

    Hand, Laurence H; Marshall, Samantha J; Saeed, Mansoor; Earll, Mark; Hadfield, Stephen T; Richardson, Kevan; Rawlinson, Paul

    2016-06-01

    Lysimeter studies can be used to identify and quantify soil degradates of agrochemicals (metabolites) that have the potential to leach to groundwater. However, the apparent metabolic profile of such lysimeter leachate samples will often be significantly more complex than would be expected in true groundwater samples. This is particularly true for S-metolachlor, which has an extremely complex metabolic pathway. Consequently, it was not practically possible to apply a conventional analytical approach to identify all metabolites in an S-metolachlor lysimeter study, because there was insufficient mass to enable the use of techniques such as nuclear magnetic resonance. Recent advances in high-resolution accurate mass spectrometry, however, allow innovative screening approaches to characterize leachate samples to a greater extent than previously possible. Leachate from the S-metolachlor study was screened for accurate masses (±5 ppm of the nominal mass) corresponding to more than 400 hypothetical metabolite structures. A refined list of plausible metabolites was constructed from these data to provide a comprehensive description of the most likely metabolites present. The properties of these metabolites were then evaluated using a principal component analysis model, based on molecular descriptors, to visualize the entire chemical space and to cluster the metabolites into a number of subclasses. This characterization and principal component analysis evaluation enabled the selection of suitable representative metabolites that were subsequently used as exemplars to assess the toxicological relevance of the leachate as a whole. Environ Toxicol Chem 2016;35:1401-1412. © 2015 SETAC. PMID:26627902

  9. Backscattered Electron Microscopy as an Advanced Technique in Petrography.

    ERIC Educational Resources Information Center

    Krinsley, David Henry; Manley, Curtis Robert

    1989-01-01

    Three uses of this method with sandstone, desert varnish, and granite weathering are described. Background information on this technique is provided. Advantages of this type of microscopy are stressed. (CW)

  10. A Secure Test Technique for Pipelined Advanced Encryption Standard

    NASA Astrophysics Data System (ADS)

    Shi, Youhua; Togawa, Nozomu; Yanagisawa, Masao; Ohtsuki, Tatsuo

    In this paper, we presented a Design-for-Secure-Test (DFST) technique for pipelined AES to guarantee both the security and the test quality during testing. Unlike previous works, the proposed method can keep all the secrets inside and provide high test quality and fault diagnosis ability as well. Furthermore, the proposed DFST technique can significantly reduce test application time, test data volume, and test generation effort as additional benefits.

  11. Solventless and solvent-minimized sample preparation techniques for determining currently used pesticides in water samples: a review.

    PubMed

    Tankiewicz, Maciej; Fenik, Jolanta; Biziuk, Marek

    2011-10-30

    The intensification of agriculture means that increasing amounts of toxic organic and inorganic compounds are entering the environment. The pesticides generally applied nowadays are regarded as some of the most dangerous contaminants of the environment. Their presence in the environment, especially in water, is hazardous because they cause human beings to become more susceptible to disease. For these reasons, it is essential to monitor pesticide residues in the environment with the aid of all accessible analytical methods. The analysis of samples for the presence of pesticides is problematic, because of the laborious and time-consuming operations involved in preparing samples for analysis, which themselves may be a source of additional contaminations and errors. To date, it has been standard practice to use large quantities of organic solvents in the sample preparation process; but as these solvents are themselves hazardous, solventless and solvent-minimized techniques are coming into use. This paper discusses the most commonly used over the last 15 years sample preparation techniques for monitoring organophosphorus and organonitrogen pesticides residue in water samples. Furthermore, a significant trend in sample preparation, in accordance with the principles of 'Green Chemistry' is the simplification, miniaturization and automation of analytical techniques. In view of this aspect, several novel techniques are being developed in order to reduce the analysis step, increase the sample throughput and to improve the quality and the sensitivity of analytical methods. The paper describes extraction techniques requiring the use of solvents - liquid-liquid extraction (LLE) and its modifications, membrane extraction techniques, hollow fibre-protected two-phase solvent microextraction, liquid phase microextraction based on the solidification of a floating organic drop (LPME-SFO), solid-phase extraction (SPE) and single-drop microextraction (SDME) - as well as solvent

  12. [Spatial distribution pattern of Pontania dolichura larvae and sampling technique].

    PubMed

    Zhang, Feng; Chen, Zhijie; Zhang, Shulian; Zhao, Huiyan

    2006-03-01

    In this paper, the spatial distribution pattern of Pontania dolichura larvae was analyzed with Taylor's power law, Iwao's distribution function, and six aggregation indexes. The results showed that the spatial distribution pattern of P. dolichura larvae was of aggregated, and the basic component of the distribution was individual colony, with the aggregation intensity increased with density. On branches, the aggregation was caused by the adult behavior of laying eggs and the spatial position of leaves, while on leaves, the aggregation was caused by the spatial position of news leaves in spring when m < 2.37, and by the spatial position of news leaves in spring and the behavior of eclosion and laying eggs when m > 2.37. By using the parameters alpha and beta in Iwao's m * -m regression equation, the optimal and sequential sampling numbers were determined. PMID:16724746

  13. Coal and Coal Constituent Studies by Advanced EMR Techniques.

    SciTech Connect

    Belford, R.L.; Clarkson, R.B.; Odintsov, B.; Ceroke, P.J.

    1997-09-30

    Advanced electronic magnetic resonance (EMR) methods are used to examine properties of coals, chars, and molecular species related to constituents of coal. During this grant period, progress was made on a high frequency EMR system particularly appropriate for such studies and on low-frequency dynamic nuclear polarization (DNP) to examine the interaction between fluids such as water and the surface of suspended char particles.

  14. Coal and char studies by advanced EMR techniques

    SciTech Connect

    Belford, R.L.; Clarkson, R.B.; Odintsov, B.M.

    1998-09-30

    Advanced magnetic resonance (EMR) methods are used to examine properties of coals, chars, and molecular species related to constituents of coal. During this grant period, further progress was made on proton NMR and low-frequency dynamic nuclear polarization (DNP) to examine the interaction between fluids such as water and the surface of suspended char particles. Effects of char particle size on water nuclear spin relaxation, T2, were measured.

  15. COAL AND COAL CONSTITUENT STUDIES BY ADVANCED EMR TECHNIQUES

    SciTech Connect

    R. Linn Belford; Robert B. Clarkson

    1997-03-28

    Advanced electronic magnetic resonance (EMR) methods are used to examine properties of coals, chars, and molecular species related to constituents of coal. During this grant period, progress was made on setting up a separate high frequency EMR system particularly appropriate for such studies and exploring the use of low-frequency dynamic nuclear polarization (DNP) to examine the interaction between fluids such as water and the surface of suspended char particles.

  16. Coal and char studies by advanced EMR techniques

    SciTech Connect

    Belford, R.L.; Clarkson, R.B.; Odintsov, B.M.

    1999-03-31

    Advanced magnetic resonance (EMR) methods are used to examine properties of coals, chars, and molecular species related to constituents of coal. During this grant period, further progress was made on proton NMR and low-frequency dynamic nuclear polarization (DNP) to examine the interaction between fluids such as water and the surface of suspended char particles. Effects of char particle size and type on water nuclear spin relaxation, T2, were measured and modeled.

  17. Bias in air sampling techniques used to measure inhalation exposure.

    PubMed

    Cohen, B S; Harley, N H; Lippmann, M

    1984-03-01

    Factors have been evaluated which contribute to the lack of agreement between inhalation exposure estimates obtained by time-weighted averaging of samples taken with mini hi-volume samplers, and those measured by time integrating, low-volume, lapel mounted, personal monitors. Measurements made with real-time aerosol monitors on workers at a Be-Cu production furnace show that part of the discrepancy results from variability of the aerosol concentration within the breathing zone. Field studies of sampler inlet bias, the influences of the electrostatic fields around polystyrene filter holders, and resuspension of dust from work clothing, were done in three areas of a Be plant. No significant differences were found in Be air concentrations measured simultaneously by open and closed face cassettes, and "mini hi-volume" samplers mounted on a test stand. No significant influence on Be collection was detected between either positively or negatively charged monitors and charge neutralized control monitors. The effect of contaminated work clothing on dust collection by lapel mounted monitors is most important. Beryllium release from the fabrics affected air concentrations measured by fabric mounted monitors more than it affected concentrations measured by monitors positioned above the fabrics. The latter were placed 16 cm from the vertically mounted fabrics, to simulate the position of the nose or mouth. We conclude that dust resuspended from work clothing is the major source of the observed discrepancy between exposures estimated from lapel mounted samplers and time-weighted averages. PMID:6720582

  18. Bias in air sampling techniques used to measure inhalation exposure

    SciTech Connect

    Cohen, B.S.; Harley, N.H.; Lippmann, M.

    1984-03-01

    Factors have been evaluated which contribute to the lack of agreement between inhalation exposure estimates obtained by time-weighted averaging of samples taken with mini hi-volume samplers, and those measured by time integrating, low-volume, lapel mounted, personal monitors. Measurements made with real-time aerosol monitors on workers at a Be-Cu production furnace show that part of the discrepancy results from variability of the aerosol concentration within the breathing zone. Field studies of sampler inlet bias, the influences of the electrostatic fields around polystyrene filter holders, and resuspension of dust from work clothing, were done in three areas of a Be plant. No significant differences were found in Be air concentrations measured simultaneously by open and closed face cassettes, and mini hi-volume samplers mounted on a test stand. No significant influence on Be collection was detected between either positively or negatively charged monitors and charge neutralized control monitors. The effect of contaminated work clothing on dust collection by lapel mounted monitors is most important. Beryllium release from the fabrics affected air concentrations measured by fabric mounted monitors more than it affected concentrations measured by monitors positioned above the fabrics. The latter were placed 16 cm from the vertically mounted fabrics, to simulate the position of the nose or mouth. The authors conclude that dust resuspended from work clothing is the major source of the observed discrepancy between exposures estimated from lapel mounted samplers and time-weighted averages.

  19. Nondestructive Evaluation of Thick Concrete Using Advanced Signal Processing Techniques

    SciTech Connect

    Clayton, Dwight A; Barker, Alan M; Santos-Villalobos, Hector J; Albright, Austin P; Hoegh, Kyle; Khazanovich, Lev

    2015-09-01

    The purpose of the U.S. Department of Energy Office of Nuclear Energy’s Light Water Reactor Sustainability (LWRS) Program is to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the operating lifetimes of nuclear power plants (NPPs) beyond 60 years [1]. Since many important safety structures in an NPP are constructed of concrete, inspection techniques must be developed and tested to evaluate the internal condition. In-service containment structures generally do not allow for the destructive measures necessary to validate the accuracy of these inspection techniques. This creates a need for comparative testing of the various nondestructive evaluation (NDE) measurement techniques on concrete specimens with known material properties, voids, internal microstructure flaws, and reinforcement locations.

  20. Advanced implementations of the iterative multi region technique

    NASA Astrophysics Data System (ADS)

    Kaburcuk, Fatih

    The integration of the finite-difference time-domain (FDTD) method into the iterative multi-region (IMR) technique, an iterative approach used to solve large-scale electromagnetic scattering and radiation problems, is presented in this dissertation. The idea of the IMR technique is to divide a large problem domain into smaller subregions, solve each subregion separately, and combine the solutions of subregions after introducing the effect of interaction to obtain solutions at multiple frequencies for the large domain. Solution of the subregions using the frequency domain solvers has been the preferred approach as such solutions using time domain solvers require computationally expensive bookkeeping of time signals between subregions. In this contribution we present an algorithm that makes it feasible to use the FDTD method, a time domain numerical technique, in the IMR technique to obtain solutions at a pre-specified number of frequencies in a single simulation. As a result, a considerable reduction in memory storage requirements and computation time is achieved. A hybrid method integrated into the IMR technique is also presented in this work. This hybrid method combines the desirable features of the method of moments (MoM) and the FDTD method to solve large-scale radiation problems more efficiently. The idea of this hybrid method based on the IMR technique is to divide an original problem domain into unconnected subregions and use the more appropriate method in each domain. The most prominent feature of this proposed method is to obtain solutions at multiple frequencies in a single IMR simulation by constructing time-limited waveforms. The performance of the proposed method is investigated numerically using different configurations composed of two, three, and four objects.

  1. Application of advanced coating techniques to rocket engine components

    NASA Technical Reports Server (NTRS)

    Verma, S. K.

    1988-01-01

    The materials problem in the space shuttle main engine (SSME) is reviewed. Potential coatings and the method of their application for improved life of SSME components are discussed. A number of advanced coatings for turbine blade components and disks are being developed and tested in a multispecimen thermal fatigue fluidized bed facility at IIT Research Institute. This facility is capable of producing severe strains of the degree present in blades and disk components of the SSME. The potential coating systems and current efforts at IITRI being taken for life extension of the SSME components are summarized.

  2. Transcranial Doppler: Techniques and advanced applications: Part 2

    PubMed Central

    Sharma, Arvind K.; Bathala, Lokesh; Batra, Amit; Mehndiratta, Man Mohan; Sharma, Vijay K.

    2016-01-01

    Transcranial Doppler (TCD) is the only diagnostic tool that can provide continuous information about cerebral hemodynamics in real time and over extended periods. In the previous paper (Part 1), we have already presented the basic ultrasound physics pertaining to TCD, insonation methods, and various flow patterns. This article describes various advanced applications of TCD such as detection of right-to-left shunt, emboli monitoring, vasomotor reactivity (VMR), monitoring of vasospasm in subarachnoid hemorrhage (SAH), monitoring of intracranial pressure, its role in stoke prevention in sickle cell disease, and as a supplementary test for confirmation of brain death. PMID:27011639

  3. Transcranial Doppler: Techniques and advanced applications: Part 2.

    PubMed

    Sharma, Arvind K; Bathala, Lokesh; Batra, Amit; Mehndiratta, Man Mohan; Sharma, Vijay K

    2016-01-01

    Transcranial Doppler (TCD) is the only diagnostic tool that can provide continuous information about cerebral hemodynamics in real time and over extended periods. In the previous paper (Part 1), we have already presented the basic ultrasound physics pertaining to TCD, insonation methods, and various flow patterns. This article describes various advanced applications of TCD such as detection of right-to-left shunt, emboli monitoring, vasomotor reactivity (VMR), monitoring of vasospasm in subarachnoid hemorrhage (SAH), monitoring of intracranial pressure, its role in stoke prevention in sickle cell disease, and as a supplementary test for confirmation of brain death. PMID:27011639

  4. New advances in on-line sample preconcentration by capillary electrophoresis using dynamic pH junction.

    PubMed

    Ptolemy, Adam S; Britz-McKibbin, Philip

    2008-12-01

    The small injection volumes and narrow dimensions characteristic of microseparation techniques place constraints on concentration sensitivity that is required for trace chemical analyses. On-line sample preconcentration techniques using dynamic pH junction and its variants have emerged as simple yet effective strategies for enhancing concentration sensitivity of weakly ionic species by capillary electrophoresis (CE). Dynamic pH junction offers a convenient format for electrokinetic focusing of dilute sample plugs directly in-capillary for improved detection without off-line sample pretreatment. In this report, we highlight new advances in dynamic pH junction which have been reported to enhance method performance while discussing challenges for future research. PMID:19082065

  5. In Situ Techniques for Monitoring Electrochromism: An Advanced Laboratory Experiment

    ERIC Educational Resources Information Center

    Saricayir, Hakan; Uce, Musa; Koca, Atif

    2010-01-01

    This experiment employs current technology to enhance and extend existing lab content. The basic principles of spectroscopic and electroanalytical techniques and their use in determining material properties are covered in some detail in many undergraduate chemistry programs. However, there are limited examples of laboratory experiments with in…

  6. Advances in reduction techniques for tire contact problems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.

    1995-01-01

    Some recent developments in reduction techniques, as applied to predicting the tire contact response and evaluating the sensitivity coefficients of the different response quantities, are reviewed. The sensitivity coefficients measure the sensitivity of the contact response to variations in the geometric and material parameters of the tire. The tire is modeled using a two-dimensional laminated anisotropic shell theory with the effects of variation in geometric and material parameters, transverse shear deformation, and geometric nonlinearities included. The contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the stress resultants, the generalized displacements, and the Lagrange multipliers associated with the contact conditions. The elemental arrays are obtained by using a modified two-field, mixed variational principle. For the application of reduction techniques, the tire finite element model is partitioned into two regions. The first region consists of the nodes that are likely to come in contact with the pavement, and the second region includes all the remaining nodes. The reduction technique is used to significantly reduce the degrees of freedom in the second region. The effectiveness of the computational procedure is demonstrated by a numerical example of the frictionless contact response of the space shuttle nose-gear tire, inflated and pressed against a rigid flat surface. Also, the research topics which have high potential for enhancing the effectiveness of reduction techniques are outlined.

  7. Benefits of advanced software techniques for mission planning systems

    NASA Technical Reports Server (NTRS)

    Gasquet, A.; Parrod, Y.; Desaintvincent, A.

    1994-01-01

    The increasing complexity of modern spacecraft, and the stringent requirement for maximizing their mission return, call for a new generation of Mission Planning Systems (MPS). In this paper, we discuss the requirements for the Space Mission Planning and the benefits which can be expected from Artificial Intelligence techniques through examples of applications developed by Matra Marconi Space.

  8. Fourier transform infrared spectrometry: a versatile technique for real world samples.

    PubMed

    Rintoul, L; Panayiotou, H; Kokot, S; George, G; Cash, G; Frost, R; Bui, T; Fredericks, P

    1998-04-01

    The versatility of FTIR spectrometry was explored by considering a variety of samples drawn from industrial applications, materials science and biomedical research. These samples included polymeric insulators, bauxite ore, clay, human hair and human skin. A range of sampling techniques suitable for these samples is discussed, in particular FTIR microscopy, FTIR emission spectroscopy, attenuated total reflectance and photoacoustic FTIR spectrometry. The power of modern data processing techniques, particularly multivariate analysis, to extract useful information from spectral data is also illustrated. PMID:9684399

  9. Characterization of corrosion pit initiation in aluminum using advanced electron microscopy techniques

    NASA Astrophysics Data System (ADS)

    Elswick, Danielle S.

    The resistance to pitting corrosion in aluminum is due to the presence of a compact thin, approximately 5 nm, oxide. Certain conditions locally attack this protective oxide layer leading to its breakdown and resulting in the formation of corrosion pits. Numerous studies have investigated the growth and propagation stages of pitting corrosion yet the initiation stage remains not clearly defined nor well understood. The presence of aggressive chemical species, such as chloride, plays a critical role in the pitting phenomenon and is explored in this investigation. This dissertation focuses on the localization of pitting corrosion in high purity aluminum in order to accurately predict where and when the pit initiation process will occur so that microstructural changes associated with pit initiation can be easily identified and characterized using electron microscopy. A comprehensive investigation into the corrosion initiation process was attempted utilizing advanced characterization techniques in the transmission electron microscope (TEM) coupled with high-resolution microanalysis. Localization of pitting was successful through use of different sample geometries that reduced the length scale for which pitting events occurred. Three geometries were investigated, each with unique features for pitting corrosion. Electropolished Al needles localized pitting to a sharp tip due to a geometric field enhancement effect, while other experiments employed an Al wire micro-electrode geometry. Both geometries minimized the area where corrosion pits initiated and were electrochemically tested using a solution that contained the chloride species. A third geometry included electron beam evaporated Al films implanted with chloride, which induced pitting corrosion in an otherwise chloride-free environment. Localization of pitting was successfully achieved using novel sample geometries that isolated the desired stages of pitting corrosion, i.e. metastable pitting, through controlled

  10. Some advanced testing techniques for concentrator photovoltaic cells and lenses

    SciTech Connect

    Wiczer, J.J.; Chaffin, R.J.; Hibray, R.E.

    1982-09-01

    The authors describe two separate test techniques for evaluating concentrator photovoltaic components. For convenient characterization of concentrator solar cells, they have developed a method for measuring the entire illuminated I-V curve of a photovoltaic cell with a single flash of intense simulated sunlight. This method reduces the heat input to the cell and the time required to test a cell, thus making possible quick indoor measurements of photovoltaic conversion efficiency at concentrated illumination levels without the use of elaborate cell mounting fixtures or heat sink attachments. The other test method provides a technique to analyze the spatially dependent, spectral distribution of intense sunlight collected and focused by lenses designed for use in photovoltaic concentrator systems. This information is important in the design of multijunction photovoltaic receivers, secondary concentrators, and in optimizing the performance of conventional silicon cell concentrator systems.

  11. Characterization of PTFE Using Advanced Thermal Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Blumm, J.; Lindemann, A.; Meyer, M.; Strasser, C.

    2010-10-01

    Polytetrafluoroethylene (PTFE) is a synthetic fluoropolymer used in numerous industrial applications. It is often referred to by its trademark name, Teflon. Thermal characterization of a PTFE material was carried out using various thermal analysis and thermophysical properties test techniques. The transformation energetics and specific heat were measured employing differential scanning calorimetry. The thermal expansion and the density changes were determined employing pushrod dilatometry. The viscoelastic properties (storage and loss modulus) were analyzed using dynamic mechanical analysis. The thermal diffusivity was measured using the laser flash technique. Combining thermal diffusivity data with specific heat and density allows calculation of the thermal conductivity of the polymer. Measurements were carried out from - 125 °C up to 150 °C. Additionally, measurements of the mechanical properties were carried out down to - 170 °C. The specific heat tests were conducted into the fully molten regions up to 370 °C.

  12. Developments and advances concerning the hyperpolarisation technique SABRE.

    PubMed

    Mewis, Ryan E

    2015-10-01

    To overcome the inherent sensitivity issue in NMR and MRI, hyperpolarisation techniques are used. Signal Amplification By Reversible Exchange (SABRE) is a hyperpolarisation technique that utilises parahydrogen, a molecule that possesses a nuclear singlet state, as the source of polarisation. A metal complex is required to break the singlet order of parahydrogen and, by doing so, facilitates polarisation transfer to analyte molecules ligated to the same complex through the J-coupled network that exists. The increased signal intensities that the analyte molecules possess as a result of this process have led to investigations whereby their potential as MRI contrast agents has been probed and to understand the fundamental processes underpinning the polarisation transfer mechanism. As well as discussing literature relevant to both of these areas, the chemical structure of the complex, the physical constraints of the polarisation transfer process and the successes of implementing SABRE at low and high magnetic fields are discussed. PMID:26264565

  13. Advance techniques for monitoring human tolerance to +Gz accelerations.

    NASA Technical Reports Server (NTRS)

    Pelligra, R.; Sandler, H.; Rositano, S.; Skrettingland, K.; Mancini, R.

    1972-01-01

    Standard techniques for monitoring the acceleration-stressed human subject have been augmented by measuring (1) temporal, brachial and/or radial arterial blood flow, and (2) indirect systolic and diastolic blood pressure at 60-sec intervals. Results show that the response of blood pressure to positive accelerations is complex and dependent on an interplay of hydrostatic forces, diminishing venous return, redistribution of blood, and other poorly defined compensatory reflexes.

  14. Added Value of Assessing Adnexal Masses with Advanced MRI Techniques

    PubMed Central

    Thomassin-Naggara, I.; Balvay, D.; Rockall, A.; Carette, M. F.; Ballester, M.; Darai, E.; Bazot, M.

    2015-01-01

    This review will present the added value of perfusion and diffusion MR sequences to characterize adnexal masses. These two functional MR techniques are readily available in routine clinical practice. We will describe the acquisition parameters and a method of analysis to optimize their added value compared with conventional images. We will then propose a model of interpretation that combines the anatomical and morphological information from conventional MRI sequences with the functional information provided by perfusion and diffusion weighted sequences. PMID:26413542

  15. Sample selection and preservation techniques for the Mars sample return mission

    NASA Technical Reports Server (NTRS)

    Tsay, Fun-Dow

    1988-01-01

    It is proposed that a miniaturized electron spin resonance (ESR) spectrometer be developed as an effective, nondestructivew sample selection and characterization instrument for the Mars Rover Sample Return mission. The ESR instrument can meet rover science payload requirements and yet has the capability and versatility to perform the following in situ Martian sample analyses: (1) detection of active oxygen species, and characterization of Martian surface chemistry and photocatalytic oxidation processes; (2) determination of paramagnetic Fe(3+) in clay silicate minerals, Mn(2+) in carbonates, and ferromagnetic centers of magnetite, maghemite and hematite; (3) search for organic compounds in the form of free radicals in subsoil, and detection of Martian fossil organic matter likely to be associated with carbonate and other sedimentary deposits. The proposed instrument is further detailed.

  16. Development of processing techniques for advanced thermal protection materials

    NASA Technical Reports Server (NTRS)

    Selvaduray, Guna S.

    1994-01-01

    The effort, which was focused on the research and development of advanced materials for use in Thermal Protection Systems (TPS), has involved chemical and physical testing of refractory ceramic tiles, fabrics, threads and fibers. This testing has included determination of the optical properties, thermal shock resistance, high temperature dimensional stability, and tolerance to environmental stresses. Materials have also been tested in the Arc Jet 2 x 9 Turbulent Duct Facility (TDF), the 1 atmosphere Radiant Heat Cycler, and the Mini-Wind Tunnel Facility (MWTF). A significant part of the effort hitherto has gone towards modifying and upgrading the test facilities so that meaningful tests can be carried out. Another important effort during this period has been the creation of a materials database. Computer systems administration and support have also been provided. These are described in greater detail below.

  17. Advanced materials and techniques for fibre-optic sensing

    NASA Astrophysics Data System (ADS)

    Henderson, Philip J.

    2014-06-01

    Fibre-optic monitoring systems came of age in about 1999 upon the emergence of the world's first significant commercialising company - a spin-out from the UK's collaborative MAST project. By using embedded fibre-optic technology, the MAST project successfully measured transient strain within high-performance composite yacht masts. Since then, applications have extended from smart composites into civil engineering, energy, military, aerospace, medicine and other sectors. Fibre-optic sensors come in various forms, and may be subject to embedment, retrofitting, and remote interrogation. The unique challenges presented by each implementation require careful scrutiny before widespread adoption can take place. Accordingly, various aspects of design and reliability are discussed spanning a range of representative technologies that include resonant microsilicon structures, MEMS, Bragg gratings, advanced forms of spectroscopy, and modern trends in nanotechnology. Keywords: Fibre-optic sensors, fibre Bragg gratings, MEMS, MOEMS, nanotechnology, plasmon.

  18. Advanced techniques for characterization of ion beam modified materials

    DOE PAGESBeta

    Zhang, Yanwen; Debelle, Aurélien; Boulle, Alexandre; Kluth, Patrick; Tuomisto, Filip

    2014-10-30

    Understanding the mechanisms of damage formation in materials irradiated with energetic ions is essential for the field of ion-beam materials modification and engineering. Utilizing incident ions, electrons, photons, and positrons, various analysis techniques, including Rutherford backscattering spectrometry (RBS), electron RBS, Raman spectroscopy, high-resolution X-ray diffraction, small-angle X-ray scattering, and positron annihilation spectroscopy, are routinely used or gaining increasing attention in characterizing ion beam modified materials. The distinctive information, recent developments, and some perspectives in these techniques are reviewed in this paper. Applications of these techniques are discussed to demonstrate their unique ability for studying ion-solid interactions and the corresponding radiationmore » effects in modified depths ranging from a few nm to a few tens of μm, and to provide information on electronic and atomic structure of the materials, defect configuration and concentration, as well as phase stability, amorphization and recrystallization processes. Finally, such knowledge contributes to our fundamental understanding over a wide range of extreme conditions essential for enhancing material performance and also for design and synthesis of new materials to address a broad variety of future energy applications.« less

  19. Advanced techniques for characterization of ion beam modified materials

    SciTech Connect

    Zhang, Yanwen; Debelle, Aurélien; Boulle, Alexandre; Kluth, Patrick; Tuomisto, Filip

    2014-10-30

    Understanding the mechanisms of damage formation in materials irradiated with energetic ions is essential for the field of ion-beam materials modification and engineering. Utilizing incident ions, electrons, photons, and positrons, various analysis techniques, including Rutherford backscattering spectrometry (RBS), electron RBS, Raman spectroscopy, high-resolution X-ray diffraction, small-angle X-ray scattering, and positron annihilation spectroscopy, are routinely used or gaining increasing attention in characterizing ion beam modified materials. The distinctive information, recent developments, and some perspectives in these techniques are reviewed in this paper. Applications of these techniques are discussed to demonstrate their unique ability for studying ion-solid interactions and the corresponding radiation effects in modified depths ranging from a few nm to a few tens of μm, and to provide information on electronic and atomic structure of the materials, defect configuration and concentration, as well as phase stability, amorphization and recrystallization processes. Finally, such knowledge contributes to our fundamental understanding over a wide range of extreme conditions essential for enhancing material performance and also for design and synthesis of new materials to address a broad variety of future energy applications.

  20. Advanced techniques for constrained internal coordinate molecular dynamics.

    PubMed

    Wagner, Jeffrey R; Balaraman, Gouthaman S; Niesen, Michiel J M; Larsen, Adrien B; Jain, Abhinandan; Vaidehi, Nagarajan

    2013-04-30

    Internal coordinate molecular dynamics (ICMD) methods provide a more natural description of a protein by using bond, angle, and torsional coordinates instead of a Cartesian coordinate representation. Freezing high-frequency bonds and angles in the ICMD model gives rise to constrained ICMD (CICMD) models. There are several theoretical aspects that need to be developed to make the CICMD method robust and widely usable. In this article, we have designed a new framework for (1) initializing velocities for nonindependent CICMD coordinates, (2) efficient computation of center of mass velocity during CICMD simulations, (3) using advanced integrators such as Runge-Kutta, Lobatto, and adaptive CVODE for CICMD simulations, and (4) cancelling out the "flying ice cube effect" that sometimes arises in Nosé-Hoover dynamics. The Generalized Newton-Euler Inverse Mass Operator (GNEIMO) method is an implementation of a CICMD method that we have developed to study protein dynamics. GNEIMO allows for a hierarchy of coarse-grained simulation models based on the ability to rigidly constrain any group of atoms. In this article, we perform tests on the Lobatto and Runge-Kutta integrators to determine optimal simulation parameters. We also implement an adaptive coarse-graining tool using the GNEIMO Python interface. This tool enables the secondary structure-guided "freezing and thawing" of degrees of freedom in the molecule on the fly during molecular dynamics simulations and is shown to fold four proteins to their native topologies. With these advancements, we envision the use of the GNEIMO method in protein structure prediction, structure refinement, and in studying domain motion. PMID:23345138

  1. Advanced Techniques for Constrained Internal Coordinate Molecular Dynamics

    PubMed Central

    Wagner, Jeffrey R.; Balaraman, Gouthaman S.; Niesen, Michiel J. M.; Larsen, Adrien B.; Jain, Abhinandan; Vaidehi, Nagarajan

    2013-01-01

    Internal coordinate molecular dynamics (ICMD) methods provide a more natural description of a protein by using bond, angle and torsional coordinates instead of a Cartesian coordinate representation. Freezing high frequency bonds and angles in the ICMD model gives rise to constrained ICMD (CICMD) models. There are several theoretical aspects that need to be developed in order to make the CICMD method robust and widely usable. In this paper we have designed a new framework for 1) initializing velocities for non-independent CICMD coordinates, 2) efficient computation of center of mass velocity during CICMD simulations, 3) using advanced integrators such as Runge-Kutta, Lobatto and adaptive CVODE for CICMD simulations, and 4) cancelling out the “flying ice cube effect” that sometimes arises in Nosé-Hoover dynamics. The Generalized Newton-Euler Inverse Mass Operator (GNEIMO) method is an implementation of a CICMD method that we have developed to study protein dynamics. GNEIMO allows for a hierarchy of coarse-grained simulation models based on the ability to rigidly constrain any group of atoms. In this paper, we perform tests on the Lobatto and Runge-Kutta integrators to determine optimal simulation parameters. We also implement an adaptive coarse graining tool using the GNEIMO Python interface. This tool enables the secondary structure-guided “freezing and thawing” of degrees of freedom in the molecule on the fly during MD simulations, and is shown to fold four proteins to their native topologies. With these advancements we envision the use of the GNEIMO method in protein structure prediction, structure refinement, and in studying domain motion. PMID:23345138

  2. Advances in parameter estimation techniques applied to flexible structures

    NASA Technical Reports Server (NTRS)

    Maben, Egbert; Zimmerman, David C.

    1994-01-01

    In this work, various parameter estimation techniques are investigated in the context of structural system identification utilizing distributed parameter models and 'measured' time-domain data. Distributed parameter models are formulated using the PDEMOD software developed by Taylor. Enhancements made to PDEMOD for this work include the following: (1) a Wittrick-Williams based root solving algorithm; (2) a time simulation capability; and (3) various parameter estimation algorithms. The parameter estimations schemes will be contrasted using the NASA Mini-Mast as the focus structure.

  3. Advances in dental veneers: materials, applications, and techniques

    PubMed Central

    Pini, Núbia Pavesi; Aguiar, Flávio Henrique Baggio; Lima, Débora Alves Nunes Leite; Lovadino, José Roberto; Terada, Raquel Sano Suga; Pascotto, Renata Corrêa

    2012-01-01

    Laminate veneers are a conservative treatment of unaesthetic anterior teeth. The continued development of dental ceramics offers clinicians many options for creating highly aesthetic and functional porcelain veneers. This evolution of materials, ceramics, and adhesive systems permits improvement of the aesthetic of the smile and the self-esteem of the patient. Clinicians should understand the latest ceramic materials in order to be able to recommend them and their applications and techniques, and to ensure the success of the clinical case. The current literature was reviewed to search for the most important parameters determining the long-term success, correct application, and clinical limitations of porcelain veneers. PMID:23674920

  4. Advances in dental local anesthesia techniques and devices: An update

    PubMed Central

    Saxena, Payal; Gupta, Saurabh K.; Newaskar, Vilas; Chandra, Anil

    2013-01-01

    Although local anesthesia remains the backbone of pain control in dentistry, researches are going to seek new and better means of managing the pain. Most of the researches are focused on improvement in the area of anesthetic agents, delivery devices and technique involved. Newer technologies have been developed that can assist the dentist in providing enhanced pain relief with reduced injection pain and fewer adverse effects. This overview will enlighten the practicing dentists regarding newer devices and methods of rendering pain control comparing these with the earlier used ones on the basis of research and clinical studies available. PMID:24163548

  5. Accuracy of two osmometers on standard samples: electrical impedance technique and freezing point depression technique

    NASA Astrophysics Data System (ADS)

    García-Resúa, Carlos; Pena-Verdeal, Hugo; Miñones, Mercedes; Gilino, Jorge; Giraldez, Maria J.; Yebra-Pimentel, Eva

    2013-11-01

    High tear fluid osmolarity is a feature common to all types of dry eye. This study was designed to establish the accuracy of two osmometers, a freezing point depression osmometer (Fiske 110) and an electrical impedance osmometer (TearLab™) by using standard samples. To assess the accuracy of the measurements provided by the two instruments we used 5 solutions of known osmolarity/osmolality; 50, 290 and 850 mOsm/kg and 292 and 338 mOsm/L. Fiske 110 is designed to be used in samples of 20 μl, so measurements were made on 1:9, 1:4, 1:1 and 1:0 dilutions of the standards. Tear Lab is addressed to be used in tear film and only a sample of 0.05 μl is required, so no dilutions were employed. Due to the smaller measurement range of the TearLab, the 50 and 850 mOsm/kg standards were not included. 20 measurements per standard sample were used and differences with the reference value was analysed by one sample t-test. Fiske 110 showed that osmolarity measurements differed statistically from standard values except those recorded for 290 mOsm/kg standard diluted 1:1 (p = 0.309), the 292 mOsm/L H2O sample (1:1) and 338 mOsm/L H2O standard (1:4). The more diluted the sample, the higher the error rate. For the TearLab measurements, one-sample t-test indicated that all determinations differed from the theoretical values (p = 0.001), though differences were always small. For undiluted solutions, Fiske 110 shows similar performance than TearLab. However, for the diluted standards, Fiske 110 worsens.

  6. Advanced techniques in reliability model representation and solution

    NASA Technical Reports Server (NTRS)

    Palumbo, Daniel L.; Nicol, David M.

    1992-01-01

    The current tendency of flight control system designs is towards increased integration of applications and increased distribution of computational elements. The reliability analysis of such systems is difficult because subsystem interactions are increasingly interdependent. Researchers at NASA Langley Research Center have been working for several years to extend the capability of Markov modeling techniques to address these problems. This effort has been focused in the areas of increased model abstraction and increased computational capability. The reliability model generator (RMG) is a software tool that uses as input a graphical object-oriented block diagram of the system. RMG uses a failure-effects algorithm to produce the reliability model from the graphical description. The ASSURE software tool is a parallel processing program that uses the semi-Markov unreliability range evaluator (SURE) solution technique and the abstract semi-Markov specification interface to the SURE tool (ASSIST) modeling language. A failure modes-effects simulation is used by ASSURE. These tools were used to analyze a significant portion of a complex flight control system. The successful combination of the power of graphical representation, automated model generation, and parallel computation leads to the conclusion that distributed fault-tolerant system architectures can now be analyzed.

  7. Advanced terahertz techniques for quality control and counterfeit detection

    NASA Astrophysics Data System (ADS)

    Ahi, Kiarash; Anwar, Mehdi

    2016-04-01

    This paper reports our invented methods for detection of counterfeit electronic. These versatile techniques are also handy in quality control applications. Terahertz pulsed laser systems are capable of giving the material characteristics and thus make it possible to distinguish between the materials used in authentic components and their counterfeit clones. Components with material defects can also be distinguished in section in this manner. In this work different refractive indices and absorption coefficients were observed for counterfeit components compared to their authentic counterparts. Existence of unexpected ingredient materials was detected in counterfeit components by Fourier Transform analysis of the transmitted terahertz pulse. Thicknesses of different layers are obtainable by analyzing the reflected terahertz pulse. Existence of unexpected layers is also detectable in this manner. Recycled, sanded and blacktopped counterfeit electronic components were detected as a result of these analyses. Counterfeit ICs with die dislocations were detected by depicting the terahertz raster scanning data in a coordinate plane which gives terahertz images. In the same manner, raster scanning of the reflected pulse gives terahertz images of the surfaces of the components which were used to investigate contaminant materials and sanded points on the surfaces. The results of the later technique, reveals the recycled counterfeit components.

  8. Current advances and strategies towards fully automated sample preparation for regulated LC-MS/MS bioanalysis.

    PubMed

    Zheng, Naiyu; Jiang, Hao; Zeng, Jianing

    2014-09-01

    Robotic liquid handlers (RLHs) have been widely used in automated sample preparation for liquid chromatography-tandem mass spectrometry (LC-MS/MS) bioanalysis. Automated sample preparation for regulated bioanalysis offers significantly higher assay efficiency, better data quality and potential bioanalytical cost-savings. For RLHs that are used for regulated bioanalysis, there are additional requirements, including 21 CFR Part 11 compliance, software validation, system qualification, calibration verification and proper maintenance. This article reviews recent advances in automated sample preparation for regulated bioanalysis in the last 5 years. Specifically, it covers the following aspects: regulated bioanalysis requirements, recent advances in automation hardware and software development, sample extraction workflow simplification, strategies towards fully automated sample extraction, and best practices in automated sample preparation for regulated bioanalysis. PMID:25384595

  9. Advanced coding techniques for few mode transmission systems.

    PubMed

    Okonkwo, Chigo; van Uden, Roy; Chen, Haoshuo; de Waardt, Huug; Koonen, Ton

    2015-01-26

    We experimentally verify the advantage of employing advanced coding schemes such as space-time coding and 4 dimensional modulation formats to enhance the transmission performance of a 3-mode transmission system. The performance gain of space-time block codes for extending the optical signal-to-noise ratio tolerance in multiple-input multiple-output optical coherent spatial division multiplexing transmission systems with respect to single-mode transmission performance are evaluated. By exploiting the spatial diversity that few-mode-fibers offer, with respect to single mode fiber back-to-back performance, significant OSNR gains of 3.2, 4.1, 4.9, and 6.8 dB at the hard-decision forward error correcting limit are demonstrated for DP-QPSK 8, 16 and 32 QAM, respectively. Furthermore, by employing 4D constellations, 6 × 28Gbaud 128 set partitioned quadrature amplitude modulation is shown to outperform conventional 8 QAM transmission performance, whilst carrying an additional 0.5 bit/symbol. PMID:25835899

  10. Advanced Cell Culture Techniques for Cancer Drug Discovery

    PubMed Central

    Lovitt, Carrie J.; Shelper, Todd B.; Avery, Vicky M.

    2014-01-01

    Human cancer cell lines are an integral part of drug discovery practices. However, modeling the complexity of cancer utilizing these cell lines on standard plastic substrata, does not accurately represent the tumor microenvironment. Research into developing advanced tumor cell culture models in a three-dimensional (3D) architecture that more prescisely characterizes the disease state have been undertaken by a number of laboratories around the world. These 3D cell culture models are particularly beneficial for investigating mechanistic processes and drug resistance in tumor cells. In addition, a range of molecular mechanisms deconstructed by studying cancer cells in 3D models suggest that tumor cells cultured in two-dimensional monolayer conditions do not respond to cancer therapeutics/compounds in a similar manner. Recent studies have demonstrated the potential of utilizing 3D cell culture models in drug discovery programs; however, it is evident that further research is required for the development of more complex models that incorporate the majority of the cellular and physical properties of a tumor. PMID:24887773

  11. Recent Advances in Spaceborne Precipitation Radar Measurement Techniques and Technology

    NASA Technical Reports Server (NTRS)

    Im, Eastwood; Durden, Stephen L.; Tanelli, Simone

    2006-01-01

    NASA is currently developing advanced instrument concepts and technologies for future spaceborne atmospheric radars, with an over-arching objective of making such instruments more capable in supporting future science needs and more cost effective. Two such examples are the Second-Generation Precipitation Radar (PR-2) and the Nexrad-In-Space (NIS). PR-2 is a 14/35-GHz dual-frequency rain radar with a deployable 5-meter, wide-swath scanned membrane antenna, a dual-polarized/dual-frequency receiver, and a realtime digital signal processor. It is intended for Low Earth Orbit (LEO) operations to provide greatly enhanced rainfall profile retrieval accuracy while consuming only a fraction of the mass of the current TRMM Precipitation Radar (PR). NIS is designed to be a 35-GHz Geostationary Earth Orbiting (GEO) radar for providing hourly monitoring of the life cycle of hurricanes and tropical storms. It uses a 35-m, spherical, lightweight membrane antenna and Doppler processing to acquire 3-dimensional information on the intensity and vertical motion of hurricane rainfall.

  12. Coal and Coal Constituent Studies by Advanced EMR Techniques

    SciTech Connect

    Alex I. Smirnov; Mark J. Nilges; R. Linn Belford; Robert B. Clarkson

    1998-03-31

    Advanced electronic magnetic resonance (EMR) methods are used to examine properties of coals, chars, and molecular species related to constituents of coal. We have achieved substantial progress on upgrading the high field (HF) EMR (W-band, 95 GHz) spectrometers that are especially advantageous for such studies. Particularly, we have built a new second W-band instrument (Mark II) in addition to our Mark I. Briefly, Mark II features: (i) an Oxford custom-built 7 T superconducting magnet which is scannable from 0 to 7 T at up to 0.5 T/min; (ii) water-cooled coaxial solenoid with up to ±550 G scan under digital (15 bits resolution) computer control; (iii) custom-engineered precision feed-back circuit, which is used to drive this solenoid, is based on an Ultrastab 860R sensor that has linearity better than 5 ppm and resolution of 0.05 ppm; (iv) an Oxford CF 1200 cryostat for variable temperature studies from 1.8 to 340 K. During this grant period we have completed several key upgrades of both Mark I and II, particularly microwave bridge, W-band probehead, and computer interfaces. We utilize these improved instruments for HF EMR studies of spin-spin interaction and existence of different paramagnetic species in carbonaceous solids.

  13. Advanced liquefaction using coal swelling and catalyst dispersion techniques

    SciTech Connect

    Curtis, C.W. ); Gutterman, C. ); Chander, S. )

    1992-08-26

    Research in this project centers upon developing a new approach to the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates all aspects of the coal liquefaction process including coal selection, pretreatment, coal swelling with catalyst impregnation, coal liquefaction experimentation, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. On May 28, 1992, the Department of Energy authorized starting the experimental aspects of this projects; therefore, experimentation at Amoco started late in this quarterly report period. Research contracts with Auburn University, Pennsylvania State University, and Foster Wheeler Development Corporation were signed during June, 1992, so their work was just getting underway. Their work will be summarized in future quarterly reports. A set of coal samples were sent to Hazen Research for beneficiation. The samples were received and have been analyzed. The literature search covering coal swelling has been up-dated, and preliminary coal swelling experiments were carried out. Further swelling experimentation is underway. An up-date of the literature on the liquefaction of coal using dispersed catalysts is nearing completion; it will be included in the next quarterly report.

  14. Advanced experimental techniques for transonic wind tunnels - Final lecture

    NASA Technical Reports Server (NTRS)

    Kilgore, Robert A.

    1987-01-01

    A philosophy of experimental techniques is presented, suggesting that in order to be successful, one should like what one does, have the right tools, stick to the job, avoid diversions, work hard, interact with people, be informed, keep it simple, be self sufficient, and strive for perfection. Sources of information, such as bibliographies, newsletters, technical reports, and technical contacts and meetings are recommended. It is pointed out that adaptive-wall test sections eliminate or reduce wall interference effects, and magnetic suspension and balance systems eliminate support-interference effects, while the problem of flow quality remains with all wind tunnels. It is predicted that in the future it will be possible to obtain wind tunnel results at the proper Reynolds number, and the effects of flow unsteadiness, wall interference, and support interference will be eliminated or greatly reduced.

  15. Advances in bioanalytical techniques to measure steroid hormones in serum.

    PubMed

    French, Deborah

    2016-06-01

    Steroid hormones are measured clinically to determine if a patient has a pathological process occurring in the adrenal gland, or other hormone responsive organs. They are very similar in structure making them analytically challenging to measure. Additionally, these hormones have vast concentration differences in human serum adding to the measurement complexity. GC-MS was the gold standard methodology used to measure steroid hormones clinically, followed by radioimmunoassay, but that was replaced by immunoassay due to ease of use. LC-MS/MS has now become a popular alternative owing to simplified sample preparation than for GC-MS and increased specificity and sensitivity over immunoassay. This review will discuss these methodologies and some new developments that could simplify and improve steroid hormone analysis in serum. PMID:27217264

  16. Advanced Measurement and Modeling Techniques for Improved SOFC Cathodes

    SciTech Connect

    Stuart Adler; L. Dunyushkina; S. Huff; Y. Lu; J. Wilson

    2006-12-31

    The goal of this project was to develop an improved understanding of factors governing performance and degradation of mixed-conducting SOFC cathodes. Two new diagnostic tools were developed to help achieve this goal: (1) microelectrode half-cells for improved isolation of cathode impedance on thin electrolytes, and (2) nonlinear electrochemical impedance spectroscopy (NLEIS), a variant of traditional impedance that allows workers to probe nonlinear rates as a function of frequency. After reporting on the development and efficacy of these tools, this document reports on the use of these and other tools to better understand performance and degradation of cathodes based on the mixed conductor La{sub 1-x}Sr{sub x}CoO{sub 3-{delta}} (LSC) on gadolinia or samaria-doped ceria (GDC or SDC). We describe the use of NLEIS to measure O{sub 2} exchange on thin-film LSC electrodes, and show that O{sub 2} exchange is most likely governed by dissociative adsorption. We also describe parametric studies of porous LSC electrodes using impedance and NLEIS. Our results suggest that O{sub 2} exchange and ion transport co-limit performance under most relevant conditions, but it is O{sub 2} exchange that is most sensitive to processing, and subject to the greatest degradation and sample-to-sample variation. We recommend further work that focuses on electrodes of well-defined or characterized geometry, and probes the details of surface structure, composition, and impurities. Parallel work on primarily electronic conductors (LSM) would also be of benefit to developers, and to improved understanding of surface vs. bulk diffusion.

  17. Soil Samplers: New Techniques for Subsurface Sampling for Volatile Organic Compounds

    SciTech Connect

    Susan Sorini; John Schabron; Joseph Rovani; Mark Sanderson

    2009-03-31

    Soil sampling techniques for volatile organic analysis must be designed to minimize loss of volatile organic compounds (VOCs) from the soil that is being sampled. Preventing VOC loss from soil cores that are collected from the subsurface and brought to the surface for subsampling is often difficult. Subsurface bulk sample retrieval systems are designed to obtain intact cylindrical cores of soil ranging anywhere from one to four inches in diameter, and one to several feet in length. The current technique that is used to subsample these soil cores for VOC analysis is to expose a horizontal section of the soil core to the atmosphere; screen the exposed soil using a photoionization detector (PID) or other appropriate device to locate contamination in the soil core; and use a hand-operated coring tool to collect samples from the exposed soil for analysis. Because the soil core can be exposed to the atmosphere for a considerable length of time during screening and sample collection, the current sub-sampling technique provides opportunity for VOCs to be lost from the soil. This report describes three alternative techniques from the current technique for screening and collecting soil samples from subsurface soil cores for VOC analysis and field testing that has been done to evaluate the techniques. Based on the results of the field testing, ASTM D4547, Standard Guide for Sampling Waste and Soils for Volatile Organic Compounds, was revised to include information about the new techniques.

  18. Simulation of an advanced techniques of ion propulsion Rocket system

    NASA Astrophysics Data System (ADS)

    Bakkiyaraj, R.

    2016-07-01

    The ion propulsion rocket system is expected to become popular with the development of Deuterium,Argon gas and Hexagonal shape Magneto hydrodynamic(MHD) techniques because of the stimulation indirectly generated the power from ionization chamber,design of thrust range is 1.2 N with 40 KW of electric power and high efficiency.The proposed work is the study of MHD power generation through ionization level of Deuterium gas and combination of two gaseous ions(Deuterium gas ions + Argon gas ions) at acceleration stage.IPR consists of three parts 1.Hexagonal shape MHD based power generator through ionization chamber 2.ion accelerator 3.Exhaust of Nozzle.Initially the required energy around 1312 KJ/mol is carrying out the purpose of deuterium gas which is changed to ionization level.The ionized Deuterium gas comes out from RF ionization chamber to nozzle through MHD generator with enhanced velocity then after voltage is generated across the two pairs of electrode in MHD.it will produce thrust value with the help of mixing of Deuterium ion and Argon ion at acceleration position.The simulation of the IPR system has been carried out by MATLAB.By comparing the simulation results with the theoretical and previous results,if reaches that the proposed method is achieved of thrust value with 40KW power for simulating the IPR system.

  19. Advanced Manufacturing Techniques Demonstrated for Fabricating Developmental Hardware

    NASA Technical Reports Server (NTRS)

    Redding, Chip

    2004-01-01

    NASA Glenn Research Center's Engineering Development Division has been working in support of innovative gas turbine engine systems under development by Glenn's Combustion Branch. These one-of-a-kind components require operation under extreme conditions. High-temperature ceramics were chosen for fabrication was because of the hostile operating environment. During the designing process, it became apparent that traditional machining techniques would not be adequate to produce the small, intricate features for the conceptual design, which was to be produced by stacking over a dozen thin layers with many small features that would then be aligned and bonded together into a one-piece unit. Instead of using traditional machining, we produced computer models in Pro/ENGINEER (Parametric Technology Corporation (PTC), Needham, MA) to the specifications of the research engineer. The computer models were exported in stereolithography standard (STL) format and used to produce full-size rapid prototype polymer models. These semi-opaque plastic models were used for visualization and design verification. The computer models also were exported in International Graphics Exchange Specification (IGES) format and sent to Glenn's Thermal/Fluids Design & Analysis Branch and Applied Structural Mechanics Branch for profiling heat transfer and mechanical strength analysis.

  20. Advances in Current Rating Techniques for Flexible Printed Circuits

    NASA Technical Reports Server (NTRS)

    Hayes, Ron

    2014-01-01

    Twist Capsule Assemblies are power transfer devices commonly used in spacecraft mechanisms that require electrical signals to be passed across a rotating interface. Flexible printed circuits (flex tapes, see Figure 2) are used to carry the electrical signals in these devices. Determining the current rating for a given trace (conductor) size can be challenging. Because of the thermal conditions present in this environment the most appropriate approach is to assume that the only means by which heat is removed from the trace is thru the conductor itself, so that when the flex tape is long the temperature rise in the trace can be extreme. While this technique represents a worst-case thermal situation that yields conservative current ratings, this conservatism may lead to overly cautious designs when not all traces are used at their full rated capacity. A better understanding of how individual traces behave when they are not all in use is the goal of this research. In the testing done in support of this paper, a representative flex tape used for a flight Solar Array Drive Assembly (SADA) application was tested by energizing individual traces (conductors in the tape) in a vacuum chamber and the temperatures of the tape measured using both fine-gauge thermocouples and infrared thermographic imaging. We find that traditional derating schemes used for bundles of wires do not apply for the configuration tested. We also determine that single active traces located in the center of a flex tape operate at lower temperatures than those on the outside edges.

  1. Advances in array detectors for X-ray diffraction techniques.

    PubMed

    Hanley, Quentin S; Denton, M Bonner

    2005-09-01

    Improved focal plane array detector systems are described which can provide improved readout speeds, random addressing and even be employed to simultaneously measure position, intensity and energy. This latter capability promises to rekindle interests in Laue techniques. Simulations of three varieties of foil mask spectrometer in both on- and off-axis configurations indicate that systems of stacked silicon detectors can provide energy measurements within 1% of the true value based on the use of single 'foils' and approximately 10000 photons. An eight-detector hybrid design can provide energy coverage from 4 to 60 keV. Energy resolution can be improved by increased integration time or higher flux experiments. An off-axis spectrometer design in which the angle between the incident beam and the detector system is 45 degrees results in a shift in the optimum energy response of the spectrometer system. In the case of a 200 microm-thick silicon absorber, the energy optimum shifts from 8.7 keV to 10.3 keV as the angle of incidence goes from 0 to 45 degrees. These new designs make better use of incident photons, lower the impact of source flicker through simultaneous rather than sequential collection of intensities, and improve the energy range relative to previously reported systems. PMID:16120985

  2. Recent advances in the surface forces apparatus (SFA) technique

    NASA Astrophysics Data System (ADS)

    Israelachvili, J.; Min, Y.; Akbulut, M.; Alig, A.; Carver, G.; Greene, W.; Kristiansen, K.; Meyer, E.; Pesika, N.; Rosenberg, K.; Zeng, H.

    2010-03-01

    The surface forces apparatus (SFA) has been used for many years to measure the physical forces between surfaces, such as van der Waals (including Casimir) and electrostatic forces in vapors and liquids, adhesion and capillary forces, forces due to surface and liquid structure (e.g. solvation and hydration forces), polymer, steric and hydrophobic interactions, bio-specific interactions as well as friction and lubrication forces. Here we describe recent developments in the SFA technique, specifically the SFA 2000, its simplicity of operation and its extension into new areas of measurement of both static and dynamic forces as well as both normal and lateral (shear and friction) forces. The main reason for the greater simplicity of the SFA 2000 is that it operates on one central simple-cantilever spring to generate both coarse and fine motions over a total range of seven orders of magnitude (from millimeters to ångstroms). In addition, the SFA 2000 is more spacious and modulated so that new attachments and extra parts can easily be fitted for performing more extended types of experiments (e.g. extended strain friction experiments and higher rate dynamic experiments) as well as traditionally non-SFA type experiments (e.g. scanning probe microscopy and atomic force microscopy) and for studying different types of systems.

  3. Advanced signal processing technique for damage detection in steel tubes

    NASA Astrophysics Data System (ADS)

    Amjad, Umar; Yadav, Susheel Kumar; Dao, Cac Minh; Dao, Kiet; Kundu, Tribikram

    2016-04-01

    In recent years, ultrasonic guided waves gained attention for reliable testing and characterization of metals and composites. Guided wave modes are excited and detected by PZT (Lead Zirconate Titanate) transducers either in transmission or reflection mode. In this study guided waves are excited and detected in the transmission mode and the phase change of the propagating wave modes are recorded. In most of the other studies reported in the literature, the change in the received signal strength (amplitude) is investigated with varying degrees of damage while in this study the change in phase is correlated with the extent of damage. Feature extraction techniques are used for extracting phase and time-frequency information. The main advantage of this approach is that the bonding condition between the transducer and the specimen does not affect the phase while it can affect the strength of recorded signal. Therefore, if the specimen is not damaged but the transducer-specimen bonding is deteriorated then the received signal strength is altered but the phase remains same and thus false positive predictions for damage can be avoided.

  4. Advanced Computational and Experimental Techniques for Nacelle Liner Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Jones, Michael G.; Brown, Martha C.; Nark, Douglas

    2009-01-01

    The Curved Duct Test Rig (CDTR) has been developed to investigate sound propagation through a duct of size comparable to the aft bypass duct of typical aircraft engines. The axial dimension of the bypass duct is often curved and this geometric characteristic is captured in the CDTR. The semiannular bypass duct is simulated by a rectangular test section in which the height corresponds to the circumferential dimension and the width corresponds to the radial dimension. The liner samples are perforate over honeycomb core and are installed on the side walls of the test section. The top and bottom surfaces of the test section are acoustically rigid to simulate a hard wall bifurcation or pylon. A unique feature of the CDTR is the control system that generates sound incident on the liner test section in specific modes. Uniform air flow, at ambient temperature and flow speed Mach 0.275, is introduced through the duct. Experiments to investigate configuration effects such as curvature along the flow path on the acoustic performance of a sample liner are performed in the CDTR and reported in this paper. Combinations of treated and acoustically rigid side walls are investigated. The scattering of modes of the incident wave, both by the curvature and by the asymmetry of wall treatment, is demonstrated in the experimental results. The effect that mode scattering has on total acoustic effectiveness of the liner treatment is also shown. Comparisons of measured liner attenuation with numerical results predicted by an analytic model based on the parabolic approximation to the convected Helmholtz equation are reported. The spectra of attenuation produced by the analytic model are similar to experimental results for both walls treated, straight and curved flow path, with plane wave and higher order modes incident. The numerical model is used to define the optimized resistance and reactance of a liner that significantly improves liner attenuation in the frequency range 1900-2400 Hz. A

  5. Advanced techniques for determining long term compatibility of materials with propellants

    NASA Technical Reports Server (NTRS)

    Green, R. L.; Stebbins, J. P.; Smith, A. W.; Pullen, K. E.

    1973-01-01

    A method for the prediction of propellant-material compatibility for periods of time up to ten years is presented. Advanced sensitive measurement techniques used in the prediction method are described. These include: neutron activation analysis, radioactive tracer technique, and atomic absorption spectroscopy with a graphite tube furnace sampler. The results of laboratory tests performed to verify the prediction method are presented.

  6. Advanced Techniques for Reservoir Simulation and Modeling of Non-Conventional Wells

    SciTech Connect

    Durlofsky, Louis J.

    2000-08-28

    This project targets the development of (1) advanced reservoir simulation techniques for modeling non-conventional wells; (2) improved techniques for computing well productivity (for use in reservoir engineering calculations) and well index (for use in simulation models), including the effects of wellbore flow; and (3) accurate approaches to account for heterogeneity in the near-well region.

  7. Biotechnology Apprenticeship for Secondary-Level Students: Teaching Advanced Cell Culture Techniques for Research

    ERIC Educational Resources Information Center

    Lewis, Jennifer R.; Kotur, Mark S.; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A.; Ferrell, Nick; Sullivan, Kathryn D.; Ferrari, Mauro

    2002-01-01

    The purpose of this article is to discuss "small-group apprenticeships (SGAs)" as a method to instruct cell culture techniques to high school participants. The study aimed to teach cell culture practices and to introduce advanced imaging techniques to solve various biomedical engineering problems. Participants designed and completed experiments…

  8. Biotechnology Apprenticeship for Secondary-Level Students: Teaching Advanced Cell Culture Techniques for Research.

    ERIC Educational Resources Information Center

    Lewis, Jennifer R.; Kotur, Mark S.; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A.; Ferrell, Nick; Sullivan, Kathryn D.; Ferrari, Mauro

    2002-01-01

    Discusses small-group apprenticeships (SGAs) as a method for introducing cell culture techniques to high school participants. Teaches cell culture practices and introduces advance imaging techniques to solve various biomedical engineering problems. Clarifies and illuminates the value of small-group laboratory apprenticeships. (Author/KHR)

  9. Advances in Fourier transform infrared spectroscopy of natural glasses: From sample preparation to data analysis

    NASA Astrophysics Data System (ADS)

    von Aulock, F. W.; Kennedy, B. M.; Schipper, C. I.; Castro, J. M.; Martin, D. E.; Oze, C.; Watkins, J. M.; Wallace, P. J.; Puskar, L.; Bégué, F.; Nichols, A. R. L.; Tuffen, H.

    2014-10-01

    Fourier transform infrared spectroscopy (FTIR) is an analytical technique utilized to measure the concentrations of H and C species in volcanic glasses. Water and CO2 are the most abundant volatile species in volcanic systems. Water is present in magmas in higher concentrations than CO2 and is also more soluble at lower pressures, and, therefore it is the dominant volatile forming bubbles during volcanic eruptions. Dissolved water affects both phase equilibria and melt physical properties such as density and viscosity, therefore, water is important for understanding magmatic processes. Additionally, quantitative measurements of different volatile species using FTIR can be achieved at high spatial resolution. Recent developments in analytical equipment such as synchrotron light sources and the development of focal plane array (FPA) detectors allow higher resolution measurements and the acquisition of concentration maps. These new capabilities are being used to characterize spatial gradients (or lack thereof) around bubbles and other textural features, which in turn lead to new insights into the behavior of volcanic feeder systems. Here, practical insights about sample preparation and analysis of the distribution and speciation of volatiles in volcanic glasses using FTIR spectroscopy are discussed. New advances in the field of FTIR analysis produce reliable data at high spatial resolution that can be used to produce datasets on the distribution, dissolution and diffusion of volatiles in volcanic materials.

  10. Recent applications of on-line sample preconcentration techniques in capillary electrophoresis.

    PubMed

    Kitagawa, Fumihiko; Otsuka, Koji

    2014-03-28

    This review highlights recent developments and applications of on-line sample preconcentration techniques in capillary electrophoresis (CE) from 2010 to April 2013. Various preconcentration techniques based on the analyte velocity change in two or three discontinuous solutions system including field-amplified stacking, transient isotachophoresis, pH-mediated stacking, sweeping, and their modified and combined techniques have been employed to enrich and separate biological, environmental, food, toxicological, forensic and nanoparticle samples in CE. More than 170 published research articles collected from Scopus databases from the year 2010 described the on-line sample preconcentration techniques. This review provides comprehensive tables listing the applications of the on-line sample preconcentration techniques with categorizing by the fundamental preconcentration mechanism and application area. PMID:24210300

  11. Advanced array techniques for unattended ground sensor applications

    NASA Astrophysics Data System (ADS)

    Followill, Fred E.; Wolford, James K.; Candy, James V.

    1997-07-01

    Sensor arrays offer opportunities to beamform, and time- frequency analyses offer additional insights to the wavefield data. Data collected while monitoring three different sources with unattended ground sensors in a 16- element, small-aperture (approximately 5 meters) geophone array are used as examples of model-based seismic signal processing on actual geophone array data. The three sources monitored were: (Source 01). A frequency-modulated chirp of an electromechanical shaker mounted on a floor of an underground bunker. Three 60-second time-windows corresponding to (a) 50 Hz to 55 Hz sweep, (b) 60 Hz to 70 Hz sweep, and (c) 80 Hz to 90 Hz sweep. (Source 02). A single transient impact of a hammer striking the floor of the bunker. Twenty seconds of data (with the transient event approximately mid-point in the time window). (Source 11). The transient event of a diesel generator turning on, including a few seconds before the `turn-on time' and a few seconds after the generator reaches `steady-state conditions'. The high-frequency seismic array was positioned at the surface of the ground at a distance of 150 meters (North) of the underground bunker. Four Y-shaped subarrays (each with 2-meter apertures) in a Y-shaped pattern (with a 6-meter aperture) using a total of 163-component, high- frequency geophones were deployed. These 48 channels of seismic data were recorded at 6000 and 12000 samples per second on 16-bit data loggers. Representative examples of the data and analyses illustrate the results of this experiment.

  12. Advanced array techniques for unattended ground sensor applications

    SciTech Connect

    Followill, F.E.; Wolford, J.K.; Candy, J.V.

    1997-05-06

    Sensor arrays offer opportunities to beam form, and time-frequency analyses offer additional insights to the wavefield data. Data collected while monitoring three different sources with unattended ground sensors in a 16-element, small-aperture (approximately 5 meters) geophone array are used as examples of model-based seismic signal processing on actual geophone array data. The three sources monitored were: (Source 01). A frequency-modulated chirp of an electromechanical shaker mounted on the floor of an underground bunker. Three 60-second time-windows corresponding to (a) 50 Hz to 55 Hz sweep, (b) 60 Hz to 70 Hz sweep, and (c) 80 Hz to 90 Hz sweep. (Source 02). A single transient impact of a hammer striking the floor of the bunker. Twenty seconds of data (with the transient event approximately mid-point in the time window.(Source 11)). The transient event of a diesel generator turning on, including a few seconds before the turn-on time and a few seconds after the generator reaches steady-state conditions. The high-frequency seismic array was positioned at the surface of the ground at a distance of 150 meters (North) of the underground bunker. Four Y-shaped subarrays (each with 2-meter apertures) in a Y-shaped pattern (with a 6-meter aperture) using a total of 16 3-component, high-frequency geophones were deployed. These 48 channels of seismic data were recorded at 6000 and 12000 samples per second on 16-bit data loggers. Representative examples of the data and analyses illustrate the results of this experiment.

  13. Endoscopic therapy for early gastric cancer: Standard techniques and recent advances in ESD

    PubMed Central

    Kume, Keiichiro

    2014-01-01

    The technique of endoscopic submucosal dissection (ESD) is now a well-known endoscopic therapy for early gastric cancer. ESD was introduced to resect large specimens of early gastric cancer in a single piece. ESD can provide precision of histologic diagnosis and can also reduce the recurrence rate. However, the drawback of ESD is its technical difficulty, and, consequently, it is associated with a high rate of complications, the need for advanced endoscopic techniques, and a lengthy procedure time. Various advances in the devices and techniques used for ESD have contributed to overcoming these drawbacks. PMID:24914364

  14. Beyond simple small-angle X-ray scattering: developments in online complementary techniques and sample environments.

    PubMed

    Bras, Wim; Koizumi, Satoshi; Terrill, Nicholas J

    2014-11-01

    Small- and wide-angle X-ray scattering (SAXS, WAXS) are standard tools in materials research. The simultaneous measurement of SAXS and WAXS data in time-resolved studies has gained popularity due to the complementary information obtained. Furthermore, the combination of these data with non X-ray based techniques, via either simultaneous or independent measurements, has advanced understanding of the driving forces that lead to the structures and morphologies of materials, which in turn give rise to their properties. The simultaneous measurement of different data regimes and types, using either X-rays or neutrons, and the desire to control parameters that initiate and control structural changes have led to greater demands on sample environments. Examples of developments in technique combinations and sample environment design are discussed, together with a brief speculation about promising future developments. PMID:25485128

  15. Beyond simple small-angle X-ray scattering: developments in online complementary techniques and sample environments

    PubMed Central

    Bras, Wim; Koizumi, Satoshi; Terrill, Nicholas J

    2014-01-01

    Small- and wide-angle X-ray scattering (SAXS, WAXS) are standard tools in materials research. The simultaneous measurement of SAXS and WAXS data in time-resolved studies has gained popularity due to the complementary information obtained. Furthermore, the combination of these data with non X-ray based techniques, via either simultaneous or independent measurements, has advanced understanding of the driving forces that lead to the structures and morphologies of materials, which in turn give rise to their properties. The simultaneous measurement of different data regimes and types, using either X-rays or neutrons, and the desire to control parameters that initiate and control structural changes have led to greater demands on sample environments. Examples of developments in technique combinations and sample environment design are discussed, together with a brief speculation about promising future developments. PMID:25485128

  16. [Advances of minimally invasive technique in colorectal cancer surgery].

    PubMed

    Wang, Xishan

    2016-06-01

    Colorectal surgery is rapidly developing in the direction of minimally invasive surgery and functional surgery. New technology and ideas are constantly emerging recently. Laparoscopic colon surgery has already been recommended by NCCN guideline. However, laparoscopic rectal cancer surgery still needs to wait for survival and recurrence rates of long-term follow-up data for verification. In recent years, with the rapid progression of imaging equipment of laparoscope, the new 3D laparoscopic system will process image more quickly, and surgeons can get space depth feeling like open surgery only with a pair of glasses. The new 3D laparoscopic system has many advantages, and can also shorten the learning curve of the beginners. But it does not mean the traditional 2D laparoscopy has been out of date. It is admitted that dialectical view on the development of the technology and equipment is still required. New things also need the accumulation of time and validation, and the deficiency of imaging system remains to be improved. At present, the robotic colorectal cancer surgery is still in its infancy, and its application is relatively common in colon surgery. In respect of robotic rectal cancer surgery, it still lacks of long-term follow-up survival results for verification. To reduce physical and psychological trauma for patients is the goal of the surgeon. Surgeons are experiencing the change from minimally invasion to non-invasion. Natural orifice translumenal endoscopic surgery (NOTES) and natural orifice specimen extraction surgery (NOSES) arise at the historic moment. Among them, transanal total mesorectal excision (taTME) incorporates the concepts of NOTES, anal minimally invasive surgery and total mesorectum excision, guaranteeing the radical cure and no scar of abdomen, but it still needs multicenter, large sample and long-term follow-up clinical data to prove its safety, efficacy and indication. Therefore, surgical procedure is transforming from conventional

  17. PROCEEDINGS: ADVANCES IN PARTICLE SAMPLING AND MEASUREMENT (ASHEVILLE, NC, MAY 1978)

    EPA Science Inventory

    The proceedings consist of 17 papers on improved instruments and techniques for sampling and measuring particulate emissions and aerosols; e.g., cascade impactors, cyclone collectors, and diffusion-battery/nuclei-counter combinations. Transmissometers and instruments for measurin...

  18. Synchrotron-Based Microspectroscopic Analysis of Molecular and Biopolymer Structures Using Multivariate Techniques and Advanced Multi-Components Modeling

    SciTech Connect

    Yu, P.

    2008-01-01

    More recently, advanced synchrotron radiation-based bioanalytical technique (SRFTIRM) has been applied as a novel non-invasive analysis tool to study molecular, functional group and biopolymer chemistry, nutrient make-up and structural conformation in biomaterials. This novel synchrotron technique, taking advantage of bright synchrotron light (which is million times brighter than sunlight), is capable of exploring the biomaterials at molecular and cellular levels. However, with the synchrotron RFTIRM technique, a large number of molecular spectral data are usually collected. The objective of this article was to illustrate how to use two multivariate statistical techniques: (1) agglomerative hierarchical cluster analysis (AHCA) and (2) principal component analysis (PCA) and two advanced multicomponent modeling methods: (1) Gaussian and (2) Lorentzian multi-component peak modeling for molecular spectrum analysis of bio-tissues. The studies indicated that the two multivariate analyses (AHCA, PCA) are able to create molecular spectral corrections by including not just one intensity or frequency point of a molecular spectrum, but by utilizing the entire spectral information. Gaussian and Lorentzian modeling techniques are able to quantify spectral omponent peaks of molecular structure, functional group and biopolymer. By application of these four statistical methods of the multivariate techniques and Gaussian and Lorentzian modeling, inherent molecular structures, functional group and biopolymer onformation between and among biological samples can be quantified, discriminated and classified with great efficiency.

  19. Advanced x-ray spectrometric techniques for characterization of nuclear materials: An overview of recent laboratory activities

    NASA Astrophysics Data System (ADS)

    Misra, N. L.

    2014-11-01

    Advancements in x-ray spectrometric techniques at different stages have made this technique suitable for characterization of nuclear materials with respect to trace/major element determinations and compositional uniformity studies. The two important features of total reflection x-ray fluorescence spectrometry: 1) requirement of very small amount of sample in ng level 2) multielement analytical capability, in addition to other features, make this technique very much suitable to nuclear materials characterization as most of the nuclear materials are radioactive and the radioactive waste generated and radiation hazards to the operator are minimum when such low amount of sample is used. Similarly advanced features of energy dispersive x-ray fluorescence e.g. better geometry for high flux, reduction in background due to application of radiation filters have made the measurements of samples sealed inside thin alkathene/PVC covers possible with good sensitivity. This approach avoids putting the instrument inside a glove box for measuring radioactive samples and makes the operation/maintenance of the instrument and analysis of the samples possible in easy and fast manner. This approach has been used for major element determinations in mixed uranium-plutonium samples. Similarly μ-XRF with brilliant and micro-focused excitation sources can be used for compositional uniformity study of reactor fuel pellets. A μ-XRF study using synchrotron light source has been made to assess the compositional uniformity of mixed uranium-thorium oxide pellets produced by different processes. This approach is simple as it does not involve any sample preparation and is non-destructive. A brief summary of such activities carried out in our laboratory in past as well as ongoing and planned for the future have been discussed in the present manuscript.

  20. Laser ablation in liquids as a new technique of sampling in elemental analysis of solid materials

    NASA Astrophysics Data System (ADS)

    Muravitskaya, E. V.; Rosantsev, V. A.; Belkov, M. V.; Ershov-Pavlov, E. A.; Klyachkovskaya, E. V.

    2009-02-01

    Laser ablation in liquid media is considered as a new sample preparation technique in the elemental composition analysis of materials using optical emission spectroscopy of inductively coupled plasma (ICP-OES). Solid samples are transformed into uniform colloidal solutions of nanosized analyte particles using laser radiation focused onto the sample surface. High homogeneity of the resulting solution allows performing the ICP-OES quantitative analysis especially for the samples, which are poorly soluble in acids. The technique is compatible with the conventional solution-based standards.

  1. JSC Advanced Curation: Research and Development for Current Collections and Future Sample Return Mission Demands

    NASA Technical Reports Server (NTRS)

    Fries, M. D.; Allen, C. C.; Calaway, M. J.; Evans, C. A.; Stansbery, E. K.

    2015-01-01

    Curation of NASA's astromaterials sample collections is a demanding and evolving activity that supports valuable science from NASA missions for generations, long after the samples are returned to Earth. For example, NASA continues to loan hundreds of Apollo program samples to investigators every year and those samples are often analyzed using instruments that did not exist at the time of the Apollo missions themselves. The samples are curated in a manner that minimizes overall contamination, enabling clean, new high-sensitivity measurements and new science results over 40 years after their return to Earth. As our exploration of the Solar System progresses, upcoming and future NASA sample return missions will return new samples with stringent contamination control, sample environmental control, and Planetary Protection requirements. Therefore, an essential element of a healthy astromaterials curation program is a research and development (R&D) effort that characterizes and employs new technologies to maintain current collections and enable new missions - an Advanced Curation effort. JSC's Astromaterials Acquisition & Curation Office is continually performing Advanced Curation research, identifying and defining knowledge gaps about research, development, and validation/verification topics that are critical to support current and future NASA astromaterials sample collections. The following are highlighted knowledge gaps and research opportunities.

  2. Chemical analysis and sampling techniques for geothermal fluids and gases at the Fenton Hill Laboratory

    SciTech Connect

    Trujillo, P.E.; Counce, D.; Grigsby, C.O.; Goff, F.; Shevenell, L.

    1987-06-01

    A general description of methods, techniques, and apparatus used for the sampling, chemical analysis, and data reporting of geothermal gases and fluids is given. Step-by-step descriptions of the procedures are included in the appendixes.

  3. Comparison of acid leaching and fusion techniques to determine uranium in soil samples by alpha spectrometry.

    PubMed

    Dirican, Abdullah; Şahin, Mihriban

    2016-03-01

    Dissolution of radionuclides of interest is an indispensable first step in the alpha spectrometric analysis of soil samples. In this study a uranium recovery method for the analysis of uranium isotopes in soil samples is presented. Two different soil sample dissolution techniques were used: digestion in open beaker and fusion. The results of these techniques were compared. Two proficiency test samples and one reference material prepared by the IAEA were analyzed. Better results were obtained by fusion dissolution technique but impurities were higher than with acid leaching. Results of two techniques were more or less similar within the uncertainty limits. The detection limit (a(#)) was evaluated as part of the quality control. PMID:26651172

  4. A Novel Microcharacterization Technique in the Measurement of Strain and Orientation Gradient in Advanced Materials

    NASA Technical Reports Server (NTRS)

    Garmestai, H.; Harris, K.; Lourenco, L.

    1997-01-01

    Representation of morphology and evolution of the microstructure during processing and their relation to properties requires proper experimental techniques. Residual strains, lattice distortion, and texture (micro-texture) at the interface and the matrix of a layered structure or a functionally gradient material and their variation are among parameters important in materials characterization but hard to measure with present experimental techniques. Current techniques available to measure changes in interred material parameters (residual stress, micro-texture, microplasticity) produce results which are either qualitative or unreliable. This problem becomes even more complicated in the case of a temperature variation. These parameters affect many of the mechanical properties of advanced materials including stress-strain relation, ductility, creep, and fatigue. A review of some novel experimental techniques using recent advances in electron microscopy is presented here to measure internal stress, (micro)texture, interracial strength and (sub)grain formation and realignment. Two of these techniques are combined in the chamber of an Environmental Scanning Electron Microscope to measure strain and orientation gradients in advanced materials. These techniques which include Backscattered Kikuchi Diffractometry (BKD) and Microscopic Strain Field Analysis are used to characterize metallic and intermetallic matrix composites and superplastic materials. These techniques are compared with the more conventional x-ray diffraction and indentation techniques.

  5. On the Applications of IBA Techniques to Biological Samples Analysis: PIXE and RBS

    NASA Astrophysics Data System (ADS)

    Falcón-González, J. M.; Bernal-Alvarado, J.; García-León, M.; García-Tenorio, R.; García, Y. Morilla; Sosa, M.

    2008-08-01

    The analytical techniques based on ion beams or IBA techniques give quantitative information on elemental concentration in samples of a wide variety of nature. In this work, we focus on PIXE technique, analyzing thick target biological specimens (TTPIXE), using 3 MeV protons produced by an electrostatic accelerator. A nuclear microprobe was used performing PIXE and RBS simultaneously, in order to solve the uncertainties produced in the absolute PIXE quantifying. The advantages of using both techniques and a nuclear microprobe are discussed. Quantitative results are shown to illustrate the multielemental resolution of the PIXE technique; for this, a blood standard was used.

  6. Comparison of techniques for preserving dissolved nutrients in open-ocean seawater samples

    SciTech Connect

    Morse, J. W.; Hunt, M.; Zullig, J.; Mucci, A.; Mendez, T.

    1981-12-01

    A survey of recent literature on methods for preserving nutrients indicates that the major factors which have been considered are: filtration and type of filter, material and history of storage containers, the influence of light, storage temperature and how it is achieved, the effectiveness of various acids, poisons, and preservatives, and the source of the sample. No comprehensive studies of open ocean seawater were found. A comprehensive study of nutrient preservation techniques was conducted on surface and deep seawater samples collected in the Gulf Stream east of Miami, Florida. No preservation techniques were found to be satisfactory for near-surface open ocean seawater. Results for deep water samples are found to be substantially better. The degree of preservation was not substantially improved by complex techniques involving freezing and chemical additives. Storage of filtered samples in aged polyethylene bottles at 2/sup 0/C in the dark is recommended for samples that must be stored. (LEW)

  7. Standardization of proton-induced x-ray emission technique for analysis of thick samples

    NASA Astrophysics Data System (ADS)

    Ali, Shad; Zeb, Johar; Ahad, Abdul; Ahmad, Ishfaq; Haneef, M.; Akbar, Jehan

    2015-09-01

    This paper describes the standardization of the proton-induced x-ray emission (PIXE) technique for finding the elemental composition of thick samples. For the standardization, three different samples of standard reference materials (SRMs) were analyzed using this technique and the data were compared with the already known data of these certified SRMs. These samples were selected in order to cover the maximum range of elements in the periodic table. Each sample was irradiated for three different values of collected beam charges at three different times. A proton beam of 2.57 MeV obtained using 5UDH-II Pelletron accelerator was used for excitation of x-rays from the sample. The acquired experimental data were analyzed using the GUPIXWIN software. The results show that the SRM data and the data obtained using the PIXE technique are in good agreement.

  8. INTERCOMPARISON OF SAMPLING TECHNIQUES FOR TOXIC ORGANIC COMPOUNDS IN INDOOR AIR

    EPA Science Inventory

    People spend a major fraction of their time indoors, and there is concern over exposure to volatile organic compounds present in indoor air. The study was initiated to compare several VOC sampling techniques in an indoor environment. The techniques which were compared include dis...

  9. Modulation/demodulation techniques for satellite communications. Part 2: Advanced techniques. The linear channel

    NASA Technical Reports Server (NTRS)

    Omura, J. K.; Simon, M. K.

    1982-01-01

    A theory is presented for deducing and predicting the performance of transmitter/receivers for bandwidth efficient modulations suitable for use on the linear satellite channel. The underlying principle used is the development of receiver structures based on the maximum-likelihood decision rule. The application of the performance prediction tools, e.g., channel cutoff rate and bit error probability transfer function bounds to these modulation/demodulation techniques.

  10. Flow Cell Sampling Technique: A new approach to analyze physical soil and particle surface properties of undisturbed soil samples

    NASA Astrophysics Data System (ADS)

    Krueger, Jiem; Leue, Martin; Heinze, Stefanie; Bachmann, Jörg

    2016-04-01

    During unsaturated water conditions, water flow occurs in the soil mainly by water film flow and depends on moisture content and pore surface properties. More attention is attributed to coatings enclosing soil particles and thus may affect wetting properties as well as hydraulic soil functions. Particle coatings are most likely responsible for many adsorption processes and are expected to favor local heterogeneous microstructure with enhanced biological activity. Many of the effects described cannot be detected on the basis of conventional soil column experiments, which were usually made to study soil hydraulic processes or surface - soil solution exchange processes. The general objective of this study was to develop a new field sampling method to unravel heterogeneous flow processes on small scales in an undisturbed soil under controlled lab conditions. This will be done by using modified flow cells (Plexiglas). Beside the measurements within a flow cell as breakthrough curves, the developed technique has several additional advantages in contrast to common columns or existing flow chamber/cell designs. The direct modification from the sampling frame to the flow cell provides the advantage to combine several analyses. The new technique enables to cut up to 5 thin undisturbed soil slices (quasi-replicates) down to 10 and/or 5 mm. Relative large particles, for instance, may limit this sampling method. The large observation area of up to 150 cm2 allows the characterization of particle surface properties in a high spatial resolution within an undisturbed soil sample. This sampling technique, as shown in our study, has the opportunity to link soil wetting hydraulic and several particle surface properties to spatial soil heterogeneities. This was shown with tracer experiments, small-scale contact angle measurements and analyses of the spatial distribution of functional groups of soil organic matter via DRIFT mapping.

  11. Advanced combustion techniques for controlling NO sub x emissions of high altitude cruise aircraft

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Reck, G. M.

    1976-01-01

    An array of experiments designed to explore the potential of advanced combustion techniques for controlling the emissions of aircraft into the upper atmosphere was discussed. Of particular concern are the oxides of nitrogen (NOx) emissions into the stratosphere. The experiments utilize a wide variety of approaches varying from advanced combustor concepts to fundamental flame tube experiments. Results are presented which indicate that substantial reductions in cruise NOx emissions should be achievable in future aircraft engines. A major NASA program is described which focuses the many fundamental experiments into a planned evolution and demonstration of the prevaporized-premixed combustion technique in a full-scale engine.

  12. POC-Scale Testing of an Advanced Fine Coal Dewatering Equipment/Technique

    SciTech Connect

    Karekh, B K; Tao, D; Groppo, J G

    1998-08-28

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 mm) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy's program to show that ultra-clean coal could be effectively dewatered to 20% or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 45 months beginning September 30, 1994. This report discusses technical progress made during the quarter from January 1 - March 31, 1998.

  13. Techniques for Down-Sampling a Measured Surface Height Map for Model Validation

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin

    2012-01-01

    This software allows one to down-sample a measured surface map for model validation, not only without introducing any re-sampling errors, but also eliminating the existing measurement noise and measurement errors. The software tool of the current two new techniques can be used in all optical model validation processes involving large space optical surfaces

  14. Modulation/demodulation techniques for satellite communications. Part 3: Advanced techniques. The nonlinear channel

    NASA Technical Reports Server (NTRS)

    Omura, J. K.; Simon, M. K.

    1982-01-01

    A theory for deducing and predicting the performance of transmitter/receivers for bandwidth efficient modulations suitable for use on the nonlinear satellite channel is presented. The underlying principle used throughout is the development of receiver structures based on the maximum likelihood decision rule and aproximations to it. The bit error probability transfer function bounds developed in great detail in Part 4 is applied to these modulation/demodulation techniques. The effects of the various degrees of receiver mismatch are considered both theoretically and by numerous illustrative examples.

  15. Guidelines and techniques for obtaining water samples that accurately represent the water chemistry of an aquifer

    USGS Publications Warehouse

    Claassen, Hans C.

    1982-01-01

    Obtaining ground-water samples that accurately represent the water chemistry of an aquifer is a complex task. Before a ground-water sampling program can be started, an understanding of the kind of chemical data needed and the potential changes in water chemistry resulting from various drilling, well-completion, and sampling techniques is needed. This report provides a basis for such an evaluation and permits a choice of techniques that will result in obtaining the best possible data for the time and money allocated.

  16. Radioassay of dual-labeled samples with a Cherenkov counting technique

    NASA Astrophysics Data System (ADS)

    Fujii, Haruo; Takiue, Makoto

    1998-03-01

    A new Cherenkov counting technique which allows radioactivities of a dual-labeled sample to be determined simultaneously by using a wavelength shifter has been proposed, and tested for the pairs 32P-36Cl and 86Rb-36Cl. The minimum requirements for this method are a single channel liquid scintillation counter, a wavelength shifter and a reference sample for determining the Cherenkov counting efficiency. The simple procedure for sample preparation and measurement makes the technique very useful for routine radioassay with the help of a desk-top computer.

  17. Radioassay of dual-labeled samples with a Cherenkov counting technique

    NASA Astrophysics Data System (ADS)

    Fujii, Haruo; Takiue, Makoto

    1988-03-01

    A new Cherenkov counting technique which allows radioactivities of a dual-labeled sample to be determined simultaneously by using a wavelength shifter has been proposed, and tested for the pairs 32P 36Cl and 86Rb 36Cl. The minimum requirements for this method are a single channel liquid scintillation counter, a wavelength shifter and a reference sample for determining the Cherenkov counting efficiency. The simple procedure for sample preparation and measurement makes the technique very useful for routine radioassay with the help of a desk-top computer.

  18. Novel Technique for Sampling of Breast Implant–associated Seroma in Anaplastic Large Cell Lymphoma

    PubMed Central

    T’Kindt, Johan; Mertens, Marianne; Colpaert, Steven D. M.

    2016-01-01

    Summary: We describe a novel technique for the sampling of breast implant–associated seroma. Using a blunt-tip lipofilling cannula, we have the freedom of movement to sample all fluid collections and prevent the misfortunes of damaging the implant. Also, we have demonstrated the inability of the Coleman style I lipofilling cannula to perforate a silicone breast implant. This practical and reliable technique will prove to be useful in managing the breast implant–associated seroma, especially with the rising incidence of the anaplastic large cell lymphoma, where the sampling of seroma is mandatory. PMID:27200250

  19. EPS in Environmental Microbial Biofilms as Examined by Advanced Imaging Techniques

    NASA Astrophysics Data System (ADS)

    Neu, T. R.; Lawrence, J. R.

    2006-12-01

    lectin-binding- analysis has been suggested as a suitable approach to image glycoconjugates within the polymer matrix of biofilm communities. More recently synchrotron radiation is increasingly recognized as a powerful tool for studying biological samples. Hard X-ray excitation can be used to map elemental composition whereas IR imaging allows examination of biological macromolecules. A further technique called soft X-ray scanning transmission microscopy (STXM) has the advantage of both techniques and may be employed to detect elements as well as biomolecules. Using the appropriate spectra, near edge X-ray absorption fine structure (NEXAFS) microscopy allows quantitative chemical mapping at 50 nm resolution. In this presentation the applicability of LSM and STXM will be demonstrated using several examples of different environmental biofilm systems. The techniques in combination provide a new view of complex microbial communities and their interaction with the environment. These advanced imaging techniques offer the possibility to study the spatial structure of cellular and polymeric compounds in biofilms as well as biofilm microhabitats, biofilm functionality and biofilm processes.

  20. Arsenic, Antimony, Chromium, and Thallium Speciation in Water and Sediment Samples with the LC-ICP-MS Technique

    PubMed Central

    Jabłońska-Czapla, Magdalena

    2015-01-01

    Chemical speciation is a very important subject in the environmental protection, toxicology, and chemical analytics due to the fact that toxicity, availability, and reactivity of trace elements depend on the chemical forms in which these elements occur. Research on low analyte levels, particularly in complex matrix samples, requires more and more advanced and sophisticated analytical methods and techniques. The latest trends in this field concern the so-called hyphenated techniques. Arsenic, antimony, chromium, and (underestimated) thallium attract the closest attention of toxicologists and analysts. The properties of those elements depend on the oxidation state in which they occur. The aim of the following paper is to answer the question why the speciation analytics is so important. The paper also provides numerous examples of the hyphenated technique usage (e.g., the LC-ICP-MS application in the speciation analysis of chromium, antimony, arsenic, or thallium in water and bottom sediment samples). An important issue addressed is the preparation of environmental samples for speciation analysis. PMID:25873962

  1. Optimal spatial sampling techniques for ground truth data in microwave remote sensing of soil moisture

    NASA Technical Reports Server (NTRS)

    Rao, R. G. S.; Ulaby, F. T.

    1977-01-01

    The paper examines optimal sampling techniques for obtaining accurate spatial averages of soil moisture, at various depths and for cell sizes in the range 2.5-40 acres, with a minimum number of samples. Both simple random sampling and stratified sampling procedures are used to reach a set of recommended sample sizes for each depth and for each cell size. Major conclusions from statistical sampling test results are that (1) the number of samples required decreases with increasing depth; (2) when the total number of samples cannot be prespecified or the moisture in only one single layer is of interest, then a simple random sample procedure should be used which is based on the observed mean and SD for data from a single field; (3) when the total number of samples can be prespecified and the objective is to measure the soil moisture profile with depth, then stratified random sampling based on optimal allocation should be used; and (4) decreasing the sensor resolution cell size leads to fairly large decreases in samples sizes with stratified sampling procedures, whereas only a moderate decrease is obtained in simple random sampling procedures.

  2. Characterization techniques for semiconductors and nanostructures: a review of recent advances

    NASA Astrophysics Data System (ADS)

    Acher, Olivier

    2015-01-01

    Optical spectroscopy techniques are widely used for the characterization of semiconductors and nanostructures. Confocal Raman microscopy is useful to retrieve chemical and molecular information at the ultimate submicrometer resolution of optical microscopy. Fast imaging capabilities, 3D confocal ability, and multiple excitation wavelengths, have increased the power of the technique while making it simpler to use for material scientists. Recently, the development of the Tip Enhanced Raman Spectroscopy (TERS) has opened the way to the use of Raman information at nanoscale, by combining the resolution of scanning probe microscopy and chemical selectivity of Raman spectroscopy. Significant advances have been reported in the field of profiling the atomic composition of multilayers, using the Glow Discharge Optical Emission Spectroscopy technique, including real-time determination of etched depth by interferometry. This allows the construction of precise atomic profiles of sophisticated multilayers with a few nm resolution. Ellipsometry is another widely used technique to determine the profile of multilayers, and recent development have provided enhanced spatial resolution useful for the investigation of patterned materials. In addition to the advances of the different characterization techniques, the capability to observe the same regions at micrometer scale at different stages of material elaboration, or with different instrument, is becoming a critical issue. Several advances have been made to allow precise re-localization and co-localization of observation with different complementary characterization techniques.

  3. On the comparison of the interval estimation of the Pareto parameter under simple random sampling and ranked set sampling techniques

    NASA Astrophysics Data System (ADS)

    Aissa, Aissa Omar; Ibrahim, Kamarulzaman; Dayyeh, Walid Abu; Zin, Wan Zawiah Wan

    2015-02-01

    Ranked set sampling (RSS) is recognized as a useful sampling scheme for improving the precision of the parameter estimates and increasing the efficiency of estimation. This type of scheme is appropriate when the variable of interest is expensive or time consuming to be quantified, but easy and cheap to be ranked. In this study, the estimation of the shape parameter of the Pareto distribution of the first type when the scale is known is studied for the data that are gathered under simple random sampling (SRS), RSS, and selective order statistics based on the maximum (SORSS(max)). The confidence intervals for the shape parameter of Pareto distribution under the sampling techniques considered are determined. A simulation study is carried out to compare the confidence intervals in terms of coverage probabilities (CPs) and expected lengths (ELs). When the coverage probabilities and expected lengths for the confidence intervals of the shape parameter of Pareto distribution determined based on the different sampling methods are compared, the coverage probabilities and expected lengths are found to be more precise under RSS as opposed to SRS. In particular, it is found that the coverage probabilities under SORSS(max) is closest to the nominal value of 0.95.

  4. Elemental analyses of goundwater: demonstrated advantage of low-flow sampling and trace-metal clean techniques over standard techniques

    NASA Astrophysics Data System (ADS)

    Creasey, C. L.; Flegal, A. R.

    The combined use of both (1) low-flow purging and sampling and (2) trace-metal clean techniques provides more representative measurements of trace-element concentrations in groundwater than results derived with standard techniques. The use of low-flow purging and sampling provides relatively undisturbed groundwater samples that are more representative of in situ conditions, and the use of trace-element clean techniques limits the inadvertent introduction of contaminants during sampling, storage, and analysis. When these techniques are applied, resultant trace-element concentrations are likely to be markedly lower than results based on standard sampling techniques. In a comparison of data derived from contaminated and control groundwater wells at a site in California, USA, trace-element concentrations from this study were 2-1000 times lower than those determined by the conventional techniques used in sampling of the same wells prior to (5months) and subsequent to (1month) the collections for this study. Specifically, the cadmium and chromium concentrations derived using standard sampling techniques exceed the California Maximum Contaminant Levels (MCL), whereas in this investigation concentrations of both of those elements are substantially below their MCLs. Consequently, the combined use of low-flow and trace-metal clean techniques may preclude erroneous reports of trace-element contamination in groundwater. Résumé L'utilisation simultanée de la purge et de l'échantillonnage à faible débit et des techniques sans traces de métaux permet d'obtenir des mesures de concentrations en éléments en traces dans les eaux souterraines plus représentatives que les résultats fournis par les techniques classiques. L'utilisation de la purge et de l'échantillonnage à faible débit donne des échantillons d'eau souterraine relativement peu perturbés qui sont plus représentatifs des conditions in situ, et le recours aux techniques sans éléments en traces limite l

  5. Elemental analyses of goundwater: demonstrated advantage of low-flow sampling and trace-metal clean techniques over standard techniques

    NASA Astrophysics Data System (ADS)

    Creasey, C. L.; Flegal, A. R.

    The combined use of both (1) low-flow purging and sampling and (2) trace-metal clean techniques provides more representative measurements of trace-element concentrations in groundwater than results derived with standard techniques. The use of low-flow purging and sampling provides relatively undisturbed groundwater samples that are more representative of in situ conditions, and the use of trace-element clean techniques limits the inadvertent introduction of contaminants during sampling, storage, and analysis. When these techniques are applied, resultant trace-element concentrations are likely to be markedly lower than results based on standard sampling techniques. In a comparison of data derived from contaminated and control groundwater wells at a site in California, USA, trace-element concentrations from this study were 2-1000 times lower than those determined by the conventional techniques used in sampling of the same wells prior to (5months) and subsequent to (1month) the collections for this study. Specifically, the cadmium and chromium concentrations derived using standard sampling techniques exceed the California Maximum Contaminant Levels (MCL), whereas in this investigation concentrations of both of those elements are substantially below their MCLs. Consequently, the combined use of low-flow and trace-metal clean techniques may preclude erroneous reports of trace-element contamination in groundwater. Résumé L'utilisation simultanée de la purge et de l'échantillonnage à faible débit et des techniques sans traces de métaux permet d'obtenir des mesures de concentrations en éléments en traces dans les eaux souterraines plus représentatives que les résultats fournis par les techniques classiques. L'utilisation de la purge et de l'échantillonnage à faible débit donne des échantillons d'eau souterraine relativement peu perturbés qui sont plus représentatifs des conditions in situ, et le recours aux techniques sans éléments en traces limite l

  6. 75 FR 81643 - In the Matter of Certain Semiconductor Products Made by Advanced Lithography Techniques and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ... certain claims of U.S. Patent No. 6,042,998. 75 FR. 44,015 (July 27, 2010). The complaint named two... COMMISSION In the Matter of Certain Semiconductor Products Made by Advanced Lithography Techniques and... for ] importation, and sale within the United States after importation of certain...

  7. Advanced Diffusion-Weighted Magnetic Resonance Imaging Techniques of the Human Spinal Cord

    PubMed Central

    Andre, Jalal B.; Bammer, Roland

    2012-01-01

    Unlike those of the brain, advances in diffusion-weighted imaging (DWI) of the human spinal cord have been challenged by the more complicated and inhomogeneous anatomy of the spine, the differences in magnetic susceptibility between adjacent air and fluid-filled structures and the surrounding soft tissues, and the inherent limitations of the initially used echo-planar imaging techniques used to image the spine. Interval advances in DWI techniques for imaging the human spinal cord, with the specific aims of improving the diagnostic quality of the images, and the simultaneous reduction in unwanted artifacts have resulted in higher-quality images that are now able to more accurately portray the complicated underlying anatomy and depict pathologic abnormality with improved sensitivity and specificity. Diffusion tensor imaging (DTI) has benefited from the advances in DWI techniques, as DWI images form the foundation for all tractography and DTI. This review provides a synopsis of the many recent advances in DWI of the human spinal cord, as well as some of the more common clinical uses for these techniques, including DTI and tractography. PMID:22158130

  8. Real-time application of advanced three-dimensional graphic techniques for research aircraft simulation

    NASA Technical Reports Server (NTRS)

    Davis, Steven B.

    1990-01-01

    Visual aids are valuable assets to engineers for design, demonstration, and evaluation. Discussed here are a variety of advanced three-dimensional graphic techniques used to enhance the displays of test aircraft dynamics. The new software's capabilities are examined and possible future uses are considered.

  9. Recognizing and Managing Complexity: Teaching Advanced Programming Concepts and Techniques Using the Zebra Puzzle

    ERIC Educational Resources Information Center

    Crabtree, John; Zhang, Xihui

    2015-01-01

    Teaching advanced programming can be a challenge, especially when the students are pursuing different majors with diverse analytical and problem-solving capabilities. The purpose of this paper is to explore the efficacy of using a particular problem as a vehicle for imparting a broad set of programming concepts and problem-solving techniques. We…

  10. X-ray spectrometry and X-ray microtomography techniques for soil and geological samples analysis

    NASA Astrophysics Data System (ADS)

    Kubala-Kukuś, A.; Banaś, D.; Braziewicz, J.; Dziadowicz, M.; Kopeć, E.; Majewska, U.; Mazurek, M.; Pajek, M.; Sobisz, M.; Stabrawa, I.; Wudarczyk-Moćko, J.; Góźdź, S.

    2015-12-01

    A particular subject of X-ray fluorescence analysis is its application in studies of the multielemental sample of composition in a wide range of concentrations, samples with different matrices, also inhomogeneous ones and those characterized with different grain size. Typical examples of these kinds of samples are soil or geological samples for which XRF elemental analysis may be difficult due to XRF disturbing effects. In this paper the WDXRF technique was applied in elemental analysis concerning different soil and geological samples (therapeutic mud, floral soil, brown soil, sandy soil, calcium aluminum cement). The sample morphology was analyzed using X-ray microtomography technique. The paper discusses the differences between the composition of samples, the influence of procedures with respect to the preparation of samples as regards their morphology and, finally, a quantitative analysis. The results of the studies were statistically tested (one-way ANOVA and correlation coefficients). For lead concentration determination in samples of sandy soil and cement-like matrix, the WDXRF spectrometer calibration was performed. The elemental analysis of the samples was complemented with knowledge of chemical composition obtained by X-ray powder diffraction.

  11. Fabrication of advanced electrochemical energy materials using sol-gel processing techniques

    NASA Technical Reports Server (NTRS)

    Chu, C. T.; Chu, Jay; Zheng, Haixing

    1995-01-01

    Advanced materials play an important role in electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. They are being used as both electrodes and electrolytes. Sol-gel processing is a versatile solution technique used in fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. The application of sol-gel processing in the fabrication of advanced electrochemical energy materials will be presented. The potentials of sol-gel derived materials for electrochemical energy applications will be discussed along with some examples of successful applications. Sol-gel derived metal oxide electrode materials such as V2O5 cathodes have been demonstrated in solid-slate thin film batteries; solid electrolytes materials such as beta-alumina for advanced secondary batteries had been prepared by the sol-gel technique long time ago; and high surface area transition metal compounds for capacitive energy storage applications can also be synthesized with this method.

  12. Comparative study of four advanced 3d-conformal radiation therapy treatment planning techniques for head and neck cancer

    PubMed Central

    Herrassi, Mohamed Yassine; Bentayeb, Farida; Malisan, Maria Rosa

    2013-01-01

    For the head-and-neck cancer bilateral irradiation, intensity-modulated radiation therapy (IMRT) is the most reported technique as it enables both target dose coverage and organ-at-risk (OAR) sparing. However, during the last 20 years, three-dimensional conformal radiotherapy (3DCRT) techniques have been introduced, which are tailored to improve the classic shrinking field technique, as regards both planning target volume (PTV) dose conformality and sparing of OAR’s, such as parotid glands and spinal cord. In this study, we tested experimentally in a sample of 13 patients, four of these advanced 3DCRT techniques, all using photon beams only and a unique isocentre, namely Bellinzona, Forward-Planned Multisegments (FPMS), ConPas, and field-in-field (FIF) techniques. Statistical analysis of the main dosimetric parameters of PTV and OAR’s DVH’s as well as of homogeneity and conformity indexes was carried out in order to compare the performance of each technique. The results show that the PTV dose coverage is adequate for all the techniques, with the FPMS techniques providing the highest value for D95%; on the other hand, the best sparing of parotid glands is achieved using the FIF and ConPas techniques, with a mean dose of 26 Gy to parotid glands for a PTV prescription dose of 54 Gy. After taking into account both PTV coverage and parotid sparing, the best global performance was achieved by the FIF technique with results comparable to that of IMRT plans. This technique can be proposed as a valid alternative when IMRT equipment is not available or patient is not suitable for IMRT treatment. PMID:23776314

  13. Investigation of Automated Sampling Techniques to Measure Total Mercury in Stream- Water During Storm-Events

    NASA Astrophysics Data System (ADS)

    Riscassi, A. L.; Scanlon, T. M.

    2008-12-01

    High-flow events (storms and snowmelt) are a dominant transport mechanism for total mercury (HgT) from the terrestrial to the aqueous environment. High-gradient headwater catchments are a primary source of downstream contamination because they store large pools of Hg in soils and sediments. Consistent, high- frequency event-sampling of headwater streams is rare, however, because of the unpredictability of high flows, remoteness of sites, and the difficulties associated with the ultra-clean sampling procedures. The use of automated sampling techniques with an ISCO® sampler has been demonstrated in several studies for trace metals, but their use for collection of HgT samples has not been systematically evaluated in the literature. Even with clean equipment at deployment, subsequent contamination and loss by evasion are possible considering the bottles, as currently designed, are open to the atmosphere before sampling and until retrieval. Field tests are conducted using an ISCO® sampler retrofitted with pre- cleaned Teflon® sampling lines and glass bottles to determine the relative errors associated with the automated sampling method for a variety of HgT concentrations and preservation techniques. Differences between quality assurance and quality control results for automated and manual sampling are also investigated. Sample containers are filled with known standards of HgT solution and left in the ISCO® containers at the field site and each day (up to 7 days) are capped and returned for analysis. During a storm event, manual samples are taken from the middle of the water column concurrently with the ISCO® at hourly intervals using "clean hands" procedures. Evaluations of results are used to establish quality assurance guidelines for future field campaigns using automated techniques for HgT sampling.

  14. Crystal nucleation of hard spheres using molecular dynamics, umbrella sampling, and forward flux sampling: A comparison of simulation techniques

    NASA Astrophysics Data System (ADS)

    Filion, L.; Hermes, M.; Ni, R.; Dijkstra, M.

    2010-12-01

    Over the last number of years several simulation methods have been introduced to study rare events such as nucleation. In this paper we examine the crystal nucleation rate of hard spheres using three such numerical techniques: molecular dynamics, forward flux sampling, and a Bennett-Chandler-type theory where the nucleation barrier is determined using umbrella sampling simulations. The resulting nucleation rates are compared with the experimental rates of Harland and van Megen [Phys. Rev. E 55, 3054 (1997)], Sinn et al. [Prog. Colloid Polym. Sci. 118, 266 (2001)], Schätzel and Ackerson [Phys. Rev. E 48, 3766 (1993)], and the predicted rates for monodisperse and 5% polydisperse hard spheres of Auer and Frenkel [Nature 409, 1020 (2001)]. When the rates are examined in units of the long-time diffusion coefficient, we find agreement between all the theoretically predicted nucleation rates, however, the experimental results display a markedly different behavior for low supersaturation. Additionally, we examined the precritical nuclei arising in the molecular dynamics, forward flux sampling, and umbrella sampling simulations. The structure of the nuclei appears independent of the simulation method, and in all cases, the nuclei contains on average significantly more face-centered-cubic ordered particles than hexagonal-close-packed ordered particles.

  15. A technique for extracting blood samples from mice in fire toxicity tests

    NASA Technical Reports Server (NTRS)

    Bucci, T. J.; Hilado, C. J.; Lopez, M. T.

    1976-01-01

    The extraction of adequate blood samples from moribund and dead mice has been a problem because of the small quantity of blood in each animal and the short time available between the animals' death and coagulation of the blood. These difficulties are particularly critical in fire toxicity tests because removal of the test animals while observing proper safety precautions for personnel is time-consuming. Techniques for extracting blood samples from mice were evaluated, and a technique was developed to obtain up to 0.8 ml of blood from a single mouse after death. The technique involves rapid exposure and cutting of the posterior vena cava and accumulation of blood in the peritoneal space. Blood samples of 0.5 ml or more from individual mice have been consistently obtained as much as 16 minutes after apparent death. Results of carboxyhemoglobin analyses of blood appeared reproducible and consistent with carbon monoxide concentrations in the exposure chamber.

  16. Note: A sub-sampling technique for frequency locking in Doppler wind lidar.

    PubMed

    Yao, Yuan; Li, Feng; Chen, Lian; Jin, Ge

    2016-05-01

    Double-edge technique is employed in Doppler wind lidar for detecting the Doppler frequency shift. A dedicated locking channel, employing one channel of a triple Fabry-Perot etalon, is designed to compensate for the effects caused by the frequency drift of outgoing laser. Agilent Oscilloscopes, with a sampling rate of 2.5 GSPS, are employed to obtain accurate amplitudes of the narrow pulses in existing experiments. In order to achieve the requirement of real-time ability and integration, a sub-sampling technique based on the theory of statistics is presented. With the technique, the drift can be acquired at a sub-sampling rate, 250 MSPS. A prototype is designed and the test results show that the prototype, providing real-time ability and better integration, has a comparable performance as the oscilloscope for frequency locking. PMID:27250482

  17. Solid Phase Microextraction and Related Techniques for Drugs in Biological Samples

    PubMed Central

    Moein, Mohammad Mahdi; Said, Rana; Bassyouni, Fatma

    2014-01-01

    In drug discovery and development, the quantification of drugs in biological samples is an important task for the determination of the physiological performance of the investigated drugs. After sampling, the next step in the analytical process is sample preparation. Because of the low concentration levels of drug in plasma and the variety of the metabolites, the selected extraction technique should be virtually exhaustive. Recent developments of sample handling techniques are directed, from one side, toward automatization and online coupling of sample preparation units. The primary objective of this review is to present the recent developments in microextraction sample preparation methods for analysis of drugs in biological fluids. Microextraction techniques allow for less consumption of solvent, reagents, and packing materials, and small sample volumes can be used. In this review the use of solid phase microextraction (SPME), microextraction in packed sorbent (MEPS), and stir-bar sorbtive extraction (SBSE) in drug analysis will be discussed. In addition, the use of new sorbents such as monoliths and molecularly imprinted polymers will be presented. PMID:24688797

  18. Application of drilling, coring, and sampling techniques to test holes and wells

    USGS Publications Warehouse

    Shuter, Eugene; Teasdale, Warren E.

    1989-01-01

    The purpose of this manual is to provide ground-water hydrologists with a working knowledge of the techniques of test drilling, auger drilling, coring and sampling, and the related drilling and sampling equipment. For the most part, the techniques discussed deal with drilling, sampling, and completion of test holes in unconsolidated sediments because a hydrologist is interested primarily in shallow-aquifer data in this type of lithology. Successful drilling and coring of these materials usually is difficult, and published research information on the subject is not readily available. The authors emphasize in-situ sampling of unconsolidated sediments to obtain virtually undisturbed samples. Particular attention is given to auger drilling and hydraulic-rotary methods of drilling because these are the principal means of test drilling performed by the U.S. Geological Survey during hydrologic studies. Techniques for sampling areas contaminated by solid or liquid waste are discussed. Basic concepts of well development and a detailed discussion of drilling muds, as related to hole conditioning, also are included in the report. The information contained in this manual is intended to help ground-water hydrologists obtain useful subsurface data and samples from their drilling programs.

  19. Improved importance sampling technique for efficient simulation of digital communication systems

    NASA Technical Reports Server (NTRS)

    Lu, Dingqing; Yao, Kung

    1988-01-01

    A new, improved importance sampling (IIS) approach to simulation is considered. Some basic concepts of IS are introduced, and detailed evolutions of simulation estimation variances for Monte Carlo (MC) and IS simulations are given. The general results obtained from these evolutions are applied to the specific previously known conventional importance sampling (CIS) technique and the new IIS technique. The derivation for a linear system with no signal random memory is considered in some detail. For the CIS technique, the optimum input scaling parameter is found, while for the IIS technique, the optimum translation parameter is found. The results are generalized to a linear system with memory and signals. Specific numerical and simulation results are given which show the advantages of CIS over MC and IIS over CIS for simulations of digital communications systems.

  20. Systematic comparison of static and dynamic headspace sampling techniques for gas chromatography.

    PubMed

    Kremser, Andreas; Jochmann, Maik A; Schmidt, Torsten C

    2016-09-01

    Six automated, headspace-based sample preparation techniques were used to extract volatile analytes from water with the goal of establishing a systematic comparison between commonly available instrumental alternatives. To that end, these six techniques were used in conjunction with the same gas chromatography instrument for analysis of a common set of volatile organic carbon (VOC) analytes. The methods were thereby divided into three classes: static sampling (by syringe or loop), static enrichment (SPME and PAL SPME Arrow), and dynamic enrichment (ITEX and trap sampling). For PAL SPME Arrow, different sorption phase materials were also included in the evaluation. To enable an effective comparison, method detection limits (MDLs), relative standard deviations (RSDs), and extraction yields were determined and are discussed for all techniques. While static sampling techniques exhibited sufficient extraction yields (approx. 10-20 %) to be reliably used down to approx. 100 ng L(-1), enrichment techniques displayed extraction yields of up to 80 %, resulting in MDLs down to the picogram per liter range. RSDs for all techniques were below 27 %. The choice on one of the different instrumental modes of operation (aforementioned classes) was thereby the most influential parameter in terms of extraction yields and MDLs. Individual methods inside each class showed smaller deviations, and the least influences were observed when evaluating different sorption phase materials for the individual enrichment techniques. The option of selecting specialized sorption phase materials may, however, be more important when analyzing analytes with different properties such as high polarity or the capability of specific molecular interactions. Graphical Abstract PAL SPME Arrow during the extraction of volatile analytes from the headspace of an aqueous sample. PMID:27526093

  1. Non-degenerated photoluminescence excitation correlation spectroscopy using an optical sampling technique

    SciTech Connect

    Hasegawa, Takayuki; Masumoto, Naofumi; Harada, Tomonori; Makino, Takayuki; Takagi, Yoshihiro

    2012-10-15

    We have developed a highly time-resolved photoluminescence spectroscopy based on the excitation correlation method. Successive irradiation of a pair of ultrashort light pulses with different wavelength combinations taken from two sub-picosecond lasers has exposed both temporal and energetic correlation in photoluminescence intensity associated with a nonlinear response of a sample. An optical sampling technique has been introduced successfully in order to avoid consideration of the synchronization control of ultrashort light pulses. We have demonstrated the abilities of this technique by applying to the nonlinear photoluminescence dynamics of organic dye molecules in solution.

  2. Green Aspects of Techniques for the Determination of Currently Used Pesticides in Environmental Samples

    PubMed Central

    Stocka, Jolanta; Tankiewicz, Maciej; Biziuk, Marek; Namieśnik, Jacek

    2011-01-01

    Pesticides are among the most dangerous environmental pollutants because of their stability, mobility and long-term effects on living organisms. Their presence in the environment is a particular danger. It is therefore crucial to monitor pesticide residues using all available analytical methods. The analysis of environmental samples for the presence of pesticides is very difficult: the processes involved in sample preparation are labor-intensive and time-consuming. To date, it has been standard practice to use large quantities of organic solvents in the sample preparation process; but as these solvents are themselves hazardous, solvent-less and solvent-minimized techniques are becoming popular. The application of Green Chemistry principles to sample preparation is primarily leading to the miniaturization of procedures and the use of solvent-less techniques, and these are discussed in the paper. PMID:22174632

  3. Advanced techniques for determining long term compatibility of materials with propellants

    NASA Technical Reports Server (NTRS)

    Green, R. L.

    1972-01-01

    The search for advanced measurement techniques for determining long term compatibility of materials with propellants was conducted in several parts. A comprehensive survey of the existing measurement and testing technology for determining material-propellant interactions was performed. Selections were made from those existing techniques which were determined could meet or be made to meet the requirements. Areas of refinement or changes were recommended for improvement of others. Investigations were also performed to determine the feasibility and advantages of developing and using new techniques to achieve significant improvements over existing ones. The most interesting demonstration was that of the new technique, the volatile metal chelate analysis. Rivaling the neutron activation analysis in terms of sensitivity and specificity, the volatile metal chelate technique was fully demonstrated.

  4. Modular Sampling and Analysis Techniques for the Real-Time Analysis of Human Breath

    SciTech Connect

    Frank, M; Farquar, G; Adams, K; Bogan, M; Martin, A; Benner, H; Spadaccini, C; Steele, P; Davis, C; Loyola, B; Morgan, J; Sankaran, S

    2007-07-09

    At LLNL and UC Davis, we are developing several techniques for the real-time sampling and analysis of trace gases, aerosols and exhaled breath that could be useful for a modular, integrated system for breath analysis. Those techniques include single-particle bioaerosol mass spectrometry (BAMS) for the analysis of exhaled aerosol particles or droplets as well as breath samplers integrated with gas chromatography mass spectrometry (GC-MS) or MEMS-based differential mobility spectrometry (DMS). We describe these techniques and present recent data obtained from human breath or breath condensate, in particular, addressing the question of how environmental exposure influences the composition of breath.

  5. PROCEEDINGS: ADVANCES IN PARTICLE SAMPLING AND MEASUREMENT (DAYTONA BEACH, FL, OCTOBER 1981)

    EPA Science Inventory

    The proceedings consist of reports of research on equipment and techniques for sampling and characterizing particulate emissions from industrial sources (e.g., nickel smelters and a power plant burning low-sulfur coal) and other aerosols (e.g., uranium oxide in high-energy enviro...

  6. A comparison of techniques to sample salamander assemblages along highland streams of Maryland.

    PubMed

    Strain, G F; Raesly, R L; Hilderbrand, R H

    2009-09-01

    Amphibians may be useful indicators of biological condition in small streams so determining which sampling technique maximizes encounters at the least cost and at the optimal time of year is important. Area constrained surveys (ACS), used by the Maryland Biological Stream Survey, were tested against cover board surveys, drift fences with pitfall and funnel traps, quadrat leaf litter searches, and leaf litter bags. Sixteen, 100 m-long sites were established in headwater streams in the Savage River State Forest in Garrett County, Maryland. Each technique was randomly assigned to a 25 m stream section within each overall sampling site, and sites were sampled once each month from May to October (2005) with additional sampling in March and April (2006). Area constrained surveys yielded means of 2.7 taxa and 14.9 total individuals per sampling visit, which was significantly higher than the yield of all other methods in all months except October and March, when yields were low for all techniques. Area constrained surveys were also significantly more cost-effective per taxon and per individual compared to all other methods. September produced the most taxa and individuals, October and March produced the least, and yields for April through August were similar to September. We employed removal sampling at four sites in April 2006, but abundance could not be estimated because a significant linear decrease in the accumulated catch versus catch per unit effort did not occur for three of the sites. PMID:18636337

  7. Unexpected toxicity to aquatic organisms of some aqueous bisphenol A samples treated by advanced oxidation processes.

    PubMed

    Tišler, Tatjana; Erjavec, Boštjan; Kaplan, Renata; Şenilă, Marin; Pintar, Albin

    2015-01-01

    In this study, photocatalytic and catalytic wet-air oxidation (CWAO) processes were used to examine removal efficiency of bisphenol A from aqueous samples over several titanate nanotube-based catalysts. Unexpected toxicity of bisphenol A (BPA) samples treated by means of the CWAO process to some tested species was determined. In addition, the CWAO effluent was recycled five- or 10-fold in order to increase the number of interactions between the liquid phase and catalyst. Consequently, the inductively coupled plasma mass spectrometry (ICP-MS) analysis indicated higher concentrations of some toxic metals like chromium, nickel, molybdenum, silver, and zinc in the recycled samples in comparison to both the single-pass sample and the photocatalytically treated solution. The highest toxicity of five- and 10-fold recycled solutions in the CWAO process was observed in water fleas, which could be correlated to high concentrations of chromium, nickel, and silver detected in tested samples. The obtained results clearly demonstrated that aqueous samples treated by means of advanced oxidation processes should always be analyzed using (i) chemical analyses to assess removal of BPA and total organic carbon from treated aqueous samples, as well as (ii) a battery of aquatic organisms from different taxonomic groups to determine possible toxicity. PMID:26114268

  8. Recent advances in 3D computed tomography techniques for simulation and navigation in hepatobiliary pancreatic surgery.

    PubMed

    Uchida, Masafumi

    2014-04-01

    A few years ago it could take several hours to complete a 3D image using a 3D workstation. Thanks to advances in computer science, obtaining results of interest now requires only a few minutes. Many recent 3D workstations or multimedia computers are equipped with onboard 3D virtual patient modeling software, which enables patient-specific preoperative assessment and virtual planning, navigation, and tool positioning. Although medical 3D imaging can now be conducted using various modalities, including computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasonography (US) among others, the highest quality images are obtained using CT data, and CT images are now the most commonly used source of data for 3D simulation and navigation image. If the 2D source image is bad, no amount of 3D image manipulation in software will provide a quality 3D image. In this exhibition, the recent advances in CT imaging technique and 3D visualization of the hepatobiliary and pancreatic abnormalities are featured, including scan and image reconstruction technique, contrast-enhanced techniques, new application of advanced CT scan techniques, and new virtual reality simulation and navigation imaging. PMID:24464989

  9. Spartans: Single-Sample Periocular-Based Alignment-Robust Recognition Technique Applied to Non-Frontal Scenarios.

    PubMed

    Juefei-Xu, Felix; Luu, Khoa; Savvides, Marios

    2015-12-01

    In this paper, we investigate a single-sample periocular-based alignment-robust face recognition technique that is pose-tolerant under unconstrained face matching scenarios. Our Spartans framework starts by utilizing one single sample per subject class, and generate new face images under a wide range of 3D rotations using the 3D generic elastic model which is both accurate and computationally economic. Then, we focus on the periocular region where the most stable and discriminant features on human faces are retained, and marginalize out the regions beyond the periocular region since they are more susceptible to expression variations and occlusions. A novel facial descriptor, high-dimensional Walsh local binary patterns, is uniformly sampled on facial images with robustness toward alignment. During the learning stage, subject-dependent advanced correlation filters are learned for pose-tolerant non-linear subspace modeling in kernel feature space followed by a coupled max-pooling mechanism which further improve the performance. Given any unconstrained unseen face image, the Spartans can produce a highly discriminative matching score, thus achieving high verification rate. We have evaluated our method on the challenging Labeled Faces in the Wild database and solidly outperformed the state-of-the-art algorithms under four evaluation protocols with a high accuracy of 89.69%, a top score among image-restricted and unsupervised protocols. The advancement of Spartans is also proven in the Face Recognition Grand Challenge and Multi-PIE databases. In addition, our learning method based on advanced correlation filters is much more effective, in terms of learning subject-dependent pose-tolerant subspaces, compared with many well-established subspace methods in both linear and non-linear cases. PMID:26285149

  10. 3D-Laser-Scanning Technique Applied to Bulk Density Measurements of Apollo Lunar Samples

    NASA Technical Reports Server (NTRS)

    Macke, R. J.; Kent, J. J.; Kiefer, W. S.; Britt, D. T.

    2015-01-01

    In order to better interpret gravimetric data from orbiters such as GRAIL and LRO to understand the subsurface composition and structure of the lunar crust, it is import to have a reliable database of the density and porosity of lunar materials. To this end, we have been surveying these physical properties in both lunar meteorites and Apollo lunar samples. To measure porosity, both grain density and bulk density are required. For bulk density, our group has historically utilized sub-mm bead immersion techniques extensively, though several factors have made this technique problematic for our work with Apollo samples. Samples allocated for measurement are often smaller than optimal for the technique, leading to large error bars. Also, for some samples we were required to use pure alumina beads instead of our usual glass beads. The alumina beads were subject to undesirable static effects, producing unreliable results. Other investigators have tested the use of 3d laser scanners on meteorites for measuring bulk volumes. Early work, though promising, was plagued with difficulties including poor response on dark or reflective surfaces, difficulty reproducing sharp edges, and large processing time for producing shape models. Due to progress in technology, however, laser scanners have improved considerably in recent years. We tested this technique on 27 lunar samples in the Apollo collection using a scanner at NASA Johnson Space Center. We found it to be reliable and more precise than beads, with the added benefit that it involves no direct contact with the sample, enabling the study of particularly friable samples for which bead immersion is not possible

  11. Laser ablation--reflections on a very complex technique for solid sampling.

    PubMed

    Niemax, K

    2001-06-01

    This paper is an attempt to point out the complex correlations between the experimental conditions in solid sampling by lasers. In particular, the influence of the laser properties, the surrounding gas, and the matrix on the analytical results of laser ablation techniques, such as laser induced breakdown spectrometry or laser ablation-ICP-MS, will be discussed. PMID:11495052

  12. MONITORING WELL INSTALLATION, PURGING, AND SAMPLING TECHNIQUES. PART 2. CASE HISTORIES

    EPA Science Inventory

    Three case histories are presented to illustrate the problems encountered using some monitoring well installation, purging, and sampling techniques. Hollow-stem augering was found to pose problems during the installation of monitoring wells in terms of potential for cross-contami...

  13. Comparison of diagnostic performances among bronchoscopic sampling techniques in the diagnosis of peripheral pulmonary lesions

    PubMed Central

    Kanoksil, Wasana; Laungdamerongchai, Sarangrat

    2015-01-01

    Background There are many sampling techniques dedicated to radial endobronchial ultrasound (R-EBUS) guided flexible bronchoscopy (FB). However, data regarding the diagnostic performances among bronchoscopic sampling techniques is limited. This study was conducted to compare the diagnostic yields among bronchoscopic sampling techniques in the diagnosis of peripheral pulmonary lesions (PPLs). Methods A prospective study was conducted on 112 patients who were diagnosed with PPLs and underwent R-EBUS-guided FB between Oct 2012 and Sep 2014. Sampling techniques—including transbronchial biopsy (TBB), brushing cell block, brushing smear, rinsed fluid of brushing, and bronchoalveolar lavage (BAL)—were evaluated for the diagnosis. Results The mean diameter of the PPLs was 23.5±9.5 mm. The final diagnoses included 76 malignancies and 36 benign lesions. The overall diagnostic yield of R-EBUS-guided bronchoscopy was 80.4%; TBB gave the highest yield among the 112 specimens: 70.5%, 34.8%, 62.5%, 50.0% and 42.0% for TBB, brushing cell block, brushing smear, rinsed brushing fluid, and BAL fluid (BALF), respectively (P<0.001). TBB provided high diagnostic yield irrespective of the size and etiology of the PPLs. The combination of TBB and brushing smear achieved the maximum diagnostic yield. Of 31 infectious PPLs, BALF culture gave additional microbiological information in 20 cases. Conclusions TBB provided the highest diagnostic yield; however, to achieve the highest diagnostic performance, TBB, brushing smear and BAL techniques should be performed together. PMID:25973236

  14. Source description and sampling techniques in PEREGRINE Monte Carlo calculations of dose distributions for radiation oncology

    SciTech Connect

    Schach von Wittenau, A.E.; Cox, L.J.; Bergstrom, P.H., Jr.; Chandler, W.P.; Hartmann-Siantar, C.L.; Hornstein, S.M.

    1997-10-31

    We outline the techniques used within PEREGRINE, a 3D Monte Carlo code calculation system, to model the photon output from medical accelerators. We discuss the methods used to reduce the phase-space data to a form that is accurately and efficiently sampled.

  15. Attempts to develop a new nuclear measurement technique of β-glucuronidase levels in biological samples

    NASA Astrophysics Data System (ADS)

    Ünak, T.; Avcibasi, U.; Yildirim, Y.; Çetinkaya, B.

    2003-01-01

    β-Glucuronidase is one of the most important hydrolytic enzymes in living systems and plays an essential role in the detoxification pathway of toxic materials incorporated into the metabolism. Some organs, especially liver and some tumour tissues, have high level of β-glucuronidase activity. As a result the enzymatic activity of some kind of tumour cells, the radiolabelled glucuronide conjugates of cytotoxic, as well as radiotoxic compounds have potentially very valuable diagnostic and therapeutic applications in cancer research. For this reason, a sensitive measurement of β-glucuronidase levels in normal and tumour tissues is a very important step for these kinds of applications. According to the classical measurement method of β-glucuronidase activity, in general, the quantity of phenolphthalein liberated from its glucuronide conjugate, i.e. phenolphthalein-glucuronide, by β-glucuronidase has been measured by use of the spectrophotometric technique. The lower detection limit of phenolphthalein by the spectrophotometric technique is about 1 3 μg. This means that the β-glucuronidase levels could not be detected in biological samples having lower levels of β-glucuronidase activity and therefore the applications of the spectrophotometric technique in cancer research are very seriously limited. Starting from this consideration, we recently attempted to develop a new nuclear technique to measure much lower concentrations of β-glucuronidase in biological samples. To improve the detection limit, phenolphthalein-glucuronide and also phenyl-N-glucuronide were radioiodinated with 131I and their radioactivity was measured by use of the counting technique. Therefore, the quantity of phenolphthalein or aniline radioiodinated with 131I and liberated by the deglucuronidation reactivity of β-glucuronidase was used in an attempt to measure levels lower than the spectrophotometric measurement technique. The results obtained clearly verified that 0.01 pg level of

  16. Attempts to develop a new nuclear measurement technique of β-glucuronidase levels in biological samples

    NASA Astrophysics Data System (ADS)

    Ünak, T.; Avcibasi, U.; Yildirim, Y.; Çetinkaya, B.

    2003-01-01

    β-Glucuronidase is one of the most important hydrolytic enzymes in living systems and plays an essential role in the detoxification pathway of toxic materials incorporated into the metabolism. Some organs, especially liver and some tumour tissues, have high level of β-glucuronidase activity. As a result the enzymatic activity of some kind of tumour cells, the radiolabelled glucuronide conjugates of cytotoxic, as well as radiotoxic compounds have potentially very valuable diagnostic and therapeutic applications in cancer research. For this reason, a sensitive measurement of β-glucuronidase levels in normal and tumour tissues is a very important step for these kinds of applications. According to the classical measurement method of β-glucuronidase activity, in general, the quantity of phenolphthalein liberated from its glucuronide conjugate, i.e. phenolphthalein-glucuronide, by β-glucuronidase has been measured by use of the spectrophotometric technique. The lower detection limit of phenolphthalein by the spectrophotometric technique is about 1-3 μg. This means that the β-glucuronidase levels could not be detected in biological samples having lower levels of β-glucuronidase activity and therefore the applications of the spectrophotometric technique in cancer research are very seriously limited. Starting from this consideration, we recently attempted to develop a new nuclear technique to measure much lower concentrations of β-glucuronidase in biological samples. To improve the detection limit, phenolphthalein-glucuronide and also phenyl-N-glucuronide were radioiodinated with 131I and their radioactivity was measured by use of the counting technique. Therefore, the quantity of phenolphthalein or aniline radioiodinated with 131I and liberated by the deglucuronidation reactivity of β-glucuronidase was used in an attempt to measure levels lower than the spectrophotometric measurement technique. The results obtained clearly verified that 0.01 pg level of

  17. Comparative analysis of two sampling techniques for pollen gathered by Nannotrigona testaceicornis Lepeletier (Apidae, Meliponini).

    PubMed

    Malagodi-Braga, K S; Kleinert, A M P

    2009-01-01

    Pollen counts from samples taken from storage pots throughout one year (from October to September) were adjusted by Tasei's volumetric correction coefficient for the determination of pollen sources exploited by two colonies of Nannotrigona testaceicornis in São Paulo, Brazil. The results obtained by this sampling technique for seven months (December to June) were compared with those from corbicula load samples taken within the same period. This species visited a large variety of plant species, but few of them were frequently used. As a rule, pollen sources that appeared at frequencies greater than 1% were found with both sampling methods and significant positive correlations (Spearman correlation coefficient) were found between their values. The pollen load sample data showed that N. testaceicornis gathered pollen throughout the external activity period. PMID:19551648

  18. Dynamic dialysis: an efficient technique for large-volume sample desalting.

    PubMed

    Yuan, Peng; Le, Zhen; Zhong, Lipeng; Huang, Chunhong

    2015-08-18

    Dialysis is a well-known technique for laboratory separation. However, its efficiency is commonly restricted by the dialyzer volume and its passive diffusion manner. In addition, the sample is likely to be precipitated and inactive during a long dialysis process. To overcome these drawbacks, a dynamic dialysis method was described and evaluated. The dynamic dialysis was performed by two peristaltic pumps working in reverse directions, in order to drive countercurrent parallel flow of sample and buffer, respectively. The efficiency and capacity of this dynamic dialysis method was evaluated by recording and statistically comparing the variation of conductance from retentate under different conditions. The dynamic method was proven to be effective in dialyzing a large-volume sample, and its efficiency changes proportionally to the flow rate of sample. To sum up, circulating the sample and the buffer creates the highest possible concentration gradient to significantly improve dialysis capacity and shorten dialysis time. PMID:25036273

  19. [THE APPLICATION OF DOT-TECHNIQUE FOR DETECTING ANTIGENS OF ADENOVIRUS IN CLINICAL SAMPLES].

    PubMed

    Ivanova, I A; Pisareva, M M; Leontieva, G F; Smirnova, T D; Sorokin, E V; Amosova, I V; Petrova, E R; Shaldjian, A A; Sirosh, A A; Maiorova, V G

    2016-02-01

    The article substantiates possibility of application of point enzyme-linked immunosorbent assay (dot-technique) for detecting viral antigens in samples from patients. To diagnose adenovirus infection conjugate of virus-specific monoclonal antibodies and peroxidase of horse-radish were used The chromatographic rectification of conjugate from free peroxidase permits diminishing background coloring of nitrocellulose membrane and therefore to increase sensitivity. The application of direct conjugates on the basis of virus-specific monoclonal antibodies increases specifcity of dot-technique and significantly shortens time period of analysis. As in case of application of direct conjugates on the basis of polyclonal serum, samples from patients require preliminary processing with detergent for preventing non-specific reactions. The dot-technique demonstrates good coincidence with data of polymerase chain reaction and after clinical trials it can be used in diagnostic of human viral infections. PMID:27455569

  20. Atmospheric Pressure Surface Sampling/Ionization Techniques for Direct Coupling of Planar Separations with Mass Spectrometry

    SciTech Connect

    Pasilis, Sofie P; Van Berkel, Gary J

    2010-01-01

    Planar separations, which include thin layer chromatography and gel electrophoresis, are in widespread use as important and powerful tools for conducting separations of complex mixtures. To increase the utility of planar separations, new methods are needed that allow in-situ characterization of the individual components of the separated mixtures. A large number of atmospheric pressure surface sampling and ionization techniques for use with mass spectrometry have emerged in the past several years, and several have been investigated as a means for mass spectrometric read-out of planar separations. In this article, we review the atmospheric pressure surface sampling and ionization techniques that have been used for the read-out of planar separation media. For each technique, we briefly explain the operational basics and discuss the analyte type for which it is appropriate and some specific applications from the literature.

  1. Performance and operating results from the demonstration of advanced combustion techniques for wall-fired boilers

    SciTech Connect

    Sorge, J.N.; Baldwin, A.L.

    1993-11-01

    This paper discusses the technical progress of a US Department of Energy Innovative Clean Coal Technology project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The primary objective of the demonstration is to determine the long-term performance of advanced overfire air and low NO{sub x} burners applied in a stepwise fashion to a 500 MW boiler. A 50 percent NO{sub x} reduction target has been established for the project. The focus of this paper is to present the effects of excess oxygen level and burner settings on NO{sub x} emissions and unburned carbon levels and recent results from the phase of the project when low NO{sub x} burners were used in conjunction with advanced overfire air.

  2. Comparison of two sample preparation techniques for sniffing experiments with broccoli (Brassica oleracea var. italica Plenck).

    PubMed

    Ulrich, D; Krumbein, A; Schonhof, I; Hoberg, E

    1998-12-01

    The suitability of the headspace solid phase microextraction (HSSPME) for gas chromatography-olfactometry (GC-O) with aroma extract dilution analysis in comparison to the dynamic head space sampling on a Tenax trap was tested exemplarily by the aroma volatiles of fresh broccoli. A high number of odour sensations in qualitative olfactometry was registered with both sample preparation techniques. The key aroma compounds of the fresh broccoli material are represented by high flavour dilution factors with dynamic head space sampling and headspace SPME. The SPME method has found to be a convenient and fast technique suitable especially for qualitative GC-O. The adsorption selectivity of the fiber and the substance discrimination have to be taken into account for quantitative use like aroma extract dilution analysis. PMID:9881367

  3. Toward greener analytical techniques for the absolute quantification of peptides in pharmaceutical and biological samples.

    PubMed

    Van Eeckhaut, Ann; Mangelings, Debby

    2015-09-10

    Peptide-based biopharmaceuticals represent one of the fastest growing classes of new drug molecules. New reaction types included in the synthesis strategies to reduce the rapid metabolism of peptides, along with the availability of new formulation and delivery technologies, resulted in an increased marketing of peptide drug products. In this regard, the development of analytical methods for quantification of peptides in pharmaceutical and biological samples is of utmost importance. From the sample preparation step to their analysis by means of chromatographic or electrophoretic methods, many difficulties should be tackled to analyze them. Recent developments in analytical techniques emphasize more and more on the use of green analytical techniques. This review will discuss the progresses in and challenges observed during green analytical method development for the quantification of peptides in pharmaceutical and biological samples. PMID:25864956

  4. Advances in the surface modification techniques of bone-related implants for last 10 years

    PubMed Central

    Qiu, Zhi-Ye; Chen, Cen; Wang, Xiu-Mei; Lee, In-Seop

    2014-01-01

    At the time of implanting bone-related implants into human body, a variety of biological responses to the material surface occur with respect to surface chemistry and physical state. The commonly used biomaterials (e.g. titanium and its alloy, Co–Cr alloy, stainless steel, polyetheretherketone, ultra-high molecular weight polyethylene and various calcium phosphates) have many drawbacks such as lack of biocompatibility and improper mechanical properties. As surface modification is very promising technology to overcome such problems, a variety of surface modification techniques have been being investigated. This review paper covers recent advances in surface modification techniques of bone-related materials including physicochemical coating, radiation grafting, plasma surface engineering, ion beam processing and surface patterning techniques. The contents are organized with different types of techniques to applicable materials, and typical examples are also described. PMID:26816626

  5. Unified Instrumentation: Examining the Simultaneous Application of Advanced Measurement Techniques for Increased Wind Tunnel Testing Capability

    NASA Technical Reports Server (NTRS)

    Fleming, Gary A. (Editor); Bartram, Scott M.; Humphreys, William M., Jr.; Jenkins, Luther N.; Jordan, Jeffrey D.; Lee, Joseph W.; Leighty, Bradley D.; Meyers, James F.; South, Bruce W.; Cavone, Angelo A.; Ingram, JoAnne L.

    2002-01-01

    A Unified Instrumentation Test examining the combined application of Pressure Sensitive Paint, Projection Moire Interferometry, Digital Particle Image Velocimetry, Doppler Global Velocimetry, and Acoustic Microphone Array has been conducted at the NASA Langley Research Center. The fundamental purposes of conducting the test were to: (a) identify and solve compatibility issues among the techniques that would inhibit their simultaneous application in a wind tunnel, and (b) demonstrate that simultaneous use of advanced instrumentation techniques is feasible for increasing tunnel efficiency and identifying control surface actuation / aerodynamic reaction phenomena. This paper provides summary descriptions of each measurement technique used during the Unified Instrumentation Test, their implementation for testing in a unified fashion, and example results identifying areas of instrument compatibility and incompatibility. Conclusions are drawn regarding the conditions under which the measurement techniques can be operated simultaneously on a non-interference basis. Finally, areas requiring improvement for successfully applying unified instrumentation in future wind tunnel tests are addressed.

  6. The development of optical microscopy techniques for the advancement of single-particle studies

    NASA Astrophysics Data System (ADS)

    Marchuk, Kyle

    Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-field imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called "non-blinking" quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also used to

  7. The development of optical microscopy techniques for the advancement of single-particle studies

    SciTech Connect

    Marchuk, Kyle

    2013-05-15

    Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-field imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called “non-blinking” quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also used to

  8. POC-scale testing of an advanced fine coal dewatering equipment/technique

    SciTech Connect

    1998-09-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 pm) clean coal. Economical dewatering of an ultra-fine clean-coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20% or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 36 months beginning September 30, 1994. This report discusses technical progress made during the quarter from July 1 - September 30, 1997.

  9. An example of requirements for Advanced Subsonic Civil Transport (ASCT) flight control system using structured techniques

    NASA Technical Reports Server (NTRS)

    Mclees, Robert E.; Cohen, Gerald C.

    1991-01-01

    The requirements are presented for an Advanced Subsonic Civil Transport (ASCT) flight control system generated using structured techniques. The requirements definition starts from initially performing a mission analysis to identify the high level control system requirements and functions necessary to satisfy the mission flight. The result of the study is an example set of control system requirements partially represented using a derivative of Yourdon's structured techniques. Also provided is a research focus for studying structured design methodologies and in particular design-for-validation philosophies.

  10. New test techniques and analytical procedures for understanding the behavior of advanced propellers

    NASA Technical Reports Server (NTRS)

    Stefko, G. L.; Bober, L. J.; Neumann, H. E.

    1983-01-01

    Analytical procedures and experimental techniques were developed to improve the capability to design advanced high speed propellers. Some results from the propeller lifting line and lifting surface aerodynamic analysis codes are compared with propeller force data, probe data and laser velocimeter data. In general, the code comparisons with data indicate good qualitative agreement. A rotating propeller force balance demonstrated good accuracy and reduced test time by 50 percent. Results from three propeller flow visualization techniques are shown which illustrate some of the physical phenomena occurring on these propellers.

  11. The investigation of advanced remote sensing techniques for the measurement of aerosol characteristics

    NASA Technical Reports Server (NTRS)

    Deepak, A.; Becher, J.

    1979-01-01

    Advanced remote sensing techniques and inversion methods for the measurement of characteristics of aerosol and gaseous species in the atmosphere were investigated. Of particular interest were the physical and chemical properties of aerosols, such as their size distribution, number concentration, and complex refractive index, and the vertical distribution of these properties on a local as well as global scale. Remote sensing techniques for monitoring of tropospheric aerosols were developed as well as satellite monitoring of upper tropospheric and stratospheric aerosols. Computer programs were developed for solving multiple scattering and radiative transfer problems, as well as inversion/retrieval problems. A necessary aspect of these efforts was to develop models of aerosol properties.

  12. Combined preputial advancement and phallopexy as a revision technique for treating paraphimosis in a dog.

    PubMed

    Wasik, S M; Wallace, A M

    2014-11-01

    A 7-year-old neutered male Jack Russell terrier-cross was presented for signs of recurrent paraphimosis, despite previous surgical enlargement of the preputial ostium. Revision surgery was performed using a combination of preputial advancement and phallopexy, which resulted in complete and permanent coverage of the glans penis by the prepuce, and at 1 year postoperatively, no recurrence of paraphimosis had been observed. The combined techniques allow preservation of the normal penile anatomy, are relatively simple to perform and provide a cosmetic result. We recommend this combination for the treatment of paraphimosis in the dog, particularly when other techniques have failed. PMID:25348145

  13. Advanced digital modulation: Communication techniques and monolithic GaAs technology

    NASA Technical Reports Server (NTRS)

    Wilson, S. G.; Oliver, J. D., Jr.; Kot, R. C.; Richards, C. R.

    1983-01-01

    Communications theory and practice are merged with state-of-the-art technology in IC fabrication, especially monolithic GaAs technology, to examine the general feasibility of a number of advanced technology digital transmission systems. Satellite-channel models with (1) superior throughput, perhaps 2 Gbps; (2) attractive weight and cost; and (3) high RF power and spectrum efficiency are discussed. Transmission techniques possessing reasonably simple architectures capable of monolithic fabrication at high speeds were surveyed. This included a review of amplitude/phase shift keying (APSK) techniques and the continuous-phase-modulation (CPM) methods, of which MSK represents the simplest case.

  14. Study of advanced techniques for determining the long term performance of components

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The application of existing and new technology to the problem of determining the long-term performance capability of liquid rocket propulsion feed systems is discussed. The long term performance of metal to metal valve seats in a liquid propellant fuel system is stressed. The approaches taken in conducting the analysis are: (1) advancing the technology of characterizing components through the development of new or more sensitive techniques and (2) improving the understanding of the physical of degradation.

  15. ADVANCING THE FUNDAMENTAL UNDERSTANDING AND SCALE-UP OF TRISO FUEL COATERS VIA ADVANCED MEASUREMENT AND COMPUTATIONAL TECHNIQUES

    SciTech Connect

    Biswas, Pratim; Al-Dahhan, Muthanna

    2012-11-01

    to advance the fundamental understanding of the hydrodynamics by systematically investigating the effect of design and operating variables, to evaluate the reported dimensionless groups as scaling factors, and to establish a reliable scale-up methodology for the TRISO fuel particle spouted bed coaters based on hydrodynamic similarity via advanced measurement and computational techniques. An additional objective is to develop an on-line non-invasive measurement technique based on gamma ray densitometry (i.e. Nuclear Gauge Densitometry) that can be installed and used for coater process monitoring to ensure proper performance and operation and to facilitate the developed scale-up methodology. To achieve the objectives set for the project, the work will use optical probes and gamma ray computed tomography (CT) (for the measurements of solids/voidage holdup cross-sectional distribution and radial profiles along the bed height, spouted diameter, and fountain height) and radioactive particle tracking (RPT) (for the measurements of the 3D solids flow field, velocity, turbulent parameters, circulation time, solids lagrangian trajectories, and many other of spouted bed related hydrodynamic parameters). In addition, gas dynamic measurement techniques and pressure transducers will be utilized to complement the obtained information. The measurements obtained by these techniques will be used as benchmark data to evaluate and validate the computational fluid dynamic (CFD) models (two fluid model or discrete particle model) and their closures. The validated CFD models and closures will be used to facilitate the developed methodology for scale-up, design and hydrodynamic similarity. Successful execution of this work and the proposed tasks will advance the fundamental understanding of the coater flow field and quantify it for proper and safe design, scale-up, and performance. Such achievements will overcome the barriers to AGR applications and will help assure that the US maintains

  16. POC-scale testing of an advanced fine coal dewatering equipment/technique

    SciTech Connect

    Groppo, J.G.; Parekh, B.K.; Rawls, P.

    1995-11-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. As the contract title suggests, the main focus of the program is on proof-of-concept testing of a dewatering technique for a fine clean coal product. The coal industry is reluctant to use the advanced fine coal recovery technology due to the non-availability of an economical dewatering process. in fact, in a recent survey conducted by U.S. DOE and Battelle, dewatering of fine clean coal was identified as the number one priority for the coal industry. This project will attempt to demonstrate an efficient and economic fine clean coal slurry dewatering process.

  17. Impact of sampling techniques on measured stormwater quality data for small streams

    USGS Publications Warehouse

    Harmel, R.D.; Slade, R.M., Jr.; Haney, R.L.

    2010-01-01

    Science-based sampling methodologies are needed to enhance water quality characterization for setting appropriate water quality standards, developing Total Maximum Daily Loads, and managing nonpoint source pollution. Storm event sampling, which is vital for adequate assessment of water quality in small (wadeable) streams, is typically conducted by manual grab or integrated sampling or with an automated sampler. Although it is typically assumed that samples from a single point adequately represent mean cross-sectional concentrations, especially for dissolved constituents, this assumption of well-mixed conditions has received limited evaluation. Similarly, the impact of temporal (within-storm) concentration variability is rarely considered. Therefore, this study evaluated differences in stormwater quality measured in small streams with several common sampling techniques, which in essence evaluated within-channel and within-storm concentration variability. Constituent concentrations from manual grab samples and from integrated samples were compared for 31 events, then concentrations were also compared for seven events with automated sample collection. Comparison of sampling techniques indicated varying degrees of concentration variability within channel cross sections for both dissolved and particulate constituents, which is contrary to common assumptions of substantial variability in particulate concentrations and of minimal variability in dissolved concentrations. Results also indicated the potential for substantial within-storm (temporal) concentration variability for both dissolved and particulate constituents. Thus, failing to account for potential cross-sectional and temporal concentration variability in stormwater monitoring projects can introduce additional uncertainty in measured water quality data. Copyright ?? 2010 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  18. High speed multi-channel optical sampling technique for analog-to-digital converters

    NASA Astrophysics Data System (ADS)

    Noman, Mohammad; Donkor, Eric; Hayduk, Michael J.; Bussjager, Rebecca J.

    2005-05-01

    We describe the design and implementation of an eight channel optical sampling technique for analog-to-digital (A/D) converters. A single mode-locked laser source with a pulse reprtition rate of 250 MHz is used to generate eight highly synchronized smapling clocks each running at 500 MHz. The basic sampling circuit consistes of a reversed-biased photodiode which operates as a very fast optoelectronic switch. Actuating the photodiode ON and OFF with mode-locked laser pulses produce sampled RF signals. In the implementation of this A/D architecture, the optical clocks are delayed relative to each other using fixed passive delay lines. The time-shifted clock signals allow for sampling different phases of the input RF signal resulting in an aggregate sampling rate of 4 Gigasamples/sec (GSPS). We shall show the optical clock setup necessary in order to achieve a 4 BSPS rate. We shall also present sampling results for input RF signals with frequencies ranging from 10 to 500. Interleaving of the sampled RF output from different sampling channels will also be demonstrated.

  19. Advanced Time-Resolved Fluorescence Microscopy Techniques for the Investigation of Peptide Self-Assembly

    NASA Astrophysics Data System (ADS)

    Anthony, Neil R.

    The ubiquitous cross beta sheet peptide motif is implicated in numerous neurodegenerative diseases while at the same time offers remarkable potential for constructing isomorphic high-performance bionanomaterials. Despite an emerging understanding of the complex folding landscape of cross beta structures in determining disease etiology and final structure, we lack knowledge of the critical initial stages of nucleation and growth. In this dissertation, I advance our understanding of these key stages in the cross-beta nucleation and growth pathways using cutting-edge microscopy techniques. In addition, I present a new combined time-resolved fluorescence analysis technique with the potential to advance our current understanding of subtle molecular level interactions that play a pivotal role in peptide self-assembly. Using the central nucleating core of Alzheimer's Amyloid-beta protein, Abeta(16 22), as a model system, utilizing electron, time-resolved, and non-linear microscopy, I capture the initial and transient nucleation stages of peptide assembly into the cross beta motif. In addition, I have characterized the nucleation pathway, from monomer to paracrystalline nanotubes in terms of morphology and fluorescence lifetime, corroborating the predicted desolvation process that occurs prior to cross-beta nucleation. Concurrently, I have identified unique heterogeneous cross beta domains contained within individual nanotube structures, which have potential bionanomaterials applications. Finally, I describe a combined fluorescence theory and analysis technique that dramatically increases the sensitivity of current time-resolved techniques. Together these studies demonstrate the potential for advanced microscopy techniques in the identification and characterization of the cross-beta folding pathway, which will further our understanding of both amyloidogenesis and bionanomaterials.

  20. ANALYSIS OF SAMPLING TECHNIQUES FOR IMBALANCED DATA: AN N=648 ADNI STUDY

    PubMed Central

    Dubey, Rashmi; Zhou, Jiayu; Wang, Yalin; Thompson, Paul M.; Ye, Jieping

    2013-01-01

    Many neuroimaging applications deal with imbalanced imaging data. For example, in Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, the mild cognitive impairment (MCI) cases eligible for the study are nearly two times the Alzheimer’s disease (AD) patients for structural magnetic resonance imaging (MRI) modality and six times the control cases for proteomics modality. Constructing an accurate classifier from imbalanced data is a challenging task. Traditional classifiers that aim to maximize the overall prediction accuracy tend to classify all data into the majority class. In this paper, we study an ensemble system of feature selection and data sampling for the class imbalance problem. We systematically analyze various sampling techniques by examining the efficacy of different rates and types of undersampling, oversampling, and a combination of over and under sampling approaches. We thoroughly examine six widely used feature selection algorithms to identify significant biomarkers and thereby reduce the complexity of the data. The efficacy of the ensemble techniques is evaluated using two different classifiers including Random Forest and Support Vector Machines based on classification accuracy, area under the receiver operating characteristic curve (AUC), sensitivity, and specificity measures. Our extensive experimental results show that for various problem settings in ADNI, (1). a balanced training set obtained with K-Medoids technique based undersampling gives the best overall performance among different data sampling techniques and no sampling approach; and (2). sparse logistic regression with stability selection achieves competitive performance among various feature selection algorithms. Comprehensive experiments with various settings show that our proposed ensemble model of multiple undersampled datasets yields stable and promising results. PMID:24176869

  1. A technique for cannulating the Cisterna magna and sampling cerebrospinal fluid from socially housed birds.

    PubMed

    Moore, M S; Kuenzel, W J; Mench, J A

    1994-04-01

    The measurement of central levels of neurochemicals is an important approach to the understanding of the neurophysiological basis of behavior patterns in animals. Previous studies have utilized central sampling techniques developed for individually housed animals. The purpose of this study was to develop a cannulation technique and a method for sampling cerebrospinal fluid (CSF) from socially housed birds to facilitate the study of the neurophysiological basis of social behaviors. The cannulation technique involved the surgical implantation of a 22-gauge concentric guide cannula into the cisterna magna of 16-wk-old, feed-restricted male broiler breeders (n = 6). Individual-specific coordinates and optimum angle and depth of implantation of the cannula were determined in order to place the cannula correctly in the designated site. Once implanted, the guide cannula proved to be unobtrusive and secure and did not attract aggressive pecking from other birds in the pen. Two methods of CSF sampling were then examined. The first method required the use of a push-pull perfusion pump to withdraw CSF at a rate of 1 to 2 microL/min. The second method (passive), which did not use a pump, involved simply removing a "dummy" cannula from the guide cannula to release the CSF, which was then collected with a glass Hamilton syringe. Samples ranging from 100 to 500 microL were collected using the passive method. The combination of the cannulation technique described and the passive sampling method proved to be the most simple, efficient, and reliable method for measuring central levels of neurochemicals in socially housed broiler breeder males. PMID:8202435

  2. Symptoms and problems in a nationally representative sample of advanced cancer patients.

    PubMed

    Johnsen, A T; Petersen, M A; Pedersen, L; Groenvold, M

    2009-09-01

    Little is known about the need for palliative care among advanced cancer patients who are not in specialist palliative care. The purpose was to identify prevalence and predictors of symptoms and problems in a nationally representative sample of Danish advanced cancer patients. Patients with cancer stage 3 or 4 from 54 hospital departments (n = 1630) received the EORTC QLQ-C30 questionnaire. Mean scores were calculated according to the scoring manual and in addition a 'symptom/problem' and a 'severe symptom/problem' was defined and calculated. Multiple logistic regression was used to identify predictors. In total, 977 (60%) patients participated. The most frequent symptoms/problems were fatigue (57%; severe 22%) followed by reduced role function, insomnia and pain. Age, cancer stage, primary tumour, type of department, marital status and whether the patient had recently been hospitalized or not were associated with several symptoms and problems. This is probably the first nationally representative study of its kind. It shows that advanced cancer patients in Denmark have symptoms and problems that deserve attention and that some patient groups are especially at risk. PMID:19443525

  3. The efficacy of field techniques for obtaining and storing blood samples from fishes.

    PubMed

    Clark, T D; Donaldson, M R; Drenner, S M; Hinch, S G; Patterson, D A; Hills, J; Ives, V; Carter, J J; Cooke, S J; Farrell, A P

    2011-11-01

    Prompted by the dramatic increase in the use of blood analyses in fisheries research and monitoring, this study investigated the efficacy of common field techniques for sampling and storing blood from fishes. Three questions were addressed: (1) Do blood samples taken via rapid caudal puncture (the 'grab-and-stab' technique) yield similar results for live v. sacrificed groups of fishes? (2) Do rapidly obtained caudal blood samples accurately represent blood properties of fishes prior to capture? (3) Does storage of whole blood in an ice slurry for a working day (8·5 h) modify the properties of the plasma? It was shown that haematocrit, plasma ions, metabolites, stress hormones and sex hormones of caudal blood samples were statistically similar when taken from live v. recently sacrificed groups of adult coho salmon Oncorhynchus kisutch. Moreover, this study confirmed by using paired blood samples from cannulated O. kisutch that blood acquired through the caudal puncture technique (mean ±s.e. 142 ± 26 s after capture) was representative of fish prior to capture. Long-term (8·5 h) cold storage of sockeye salmon Oncorhynchus nerka whole blood caused significant decreases in plasma potassium and chloride, and a significant increase in plasma glucose. Previous research has suggested that these changes largely result from net movements of ions and molecules between the plasma and erythrocytes, movements that can occur within minutes of storage. Thus, blood samples from fishes should be centrifuged as quickly as practicable in the field for separation of plasma and erythrocytes to prevent potentially misleading data. PMID:22026608

  4. An advanced technique for speciation of organic nitrogen in atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Samy, S.; Robinson, J.; Hays, M. D.

    2011-12-01

    threshold as water-soluble free AA, with an average concentration of 22 ± 9 ng m-3 (N=13). Following microwave-assisted gas phase hydrolysis, the total AA concentration in the forest environment increased significantly (70 ± 35 ng m-3) and additional compounds (methionine, isoleucine) were detected above the reporting threshold. The ability to quantify AA in aerosol samples without derivatization reduces time consuming preparation procedures while providing the advancement of selective mass determination that eliminates potential interferences associated with traditional fluorescence detection. This step forward in precise mass determination with the use of internal standardization, improves the confidence of compound identification. With the increasing focus on WSOC (including ON) characterization in the atmospheric science community, native detection by LC-MS (Q-TOF) will play a central role in determining the most direct approach to quantify an increasing fraction of the co-extracted polar organic compounds. Method application for further characterization of atmospheric ON will be discussed. Reference: Samy, S., Robinson, J., and M.D. Hays. "An Advanced LC-MS (Q-TOF) Technique for the Detection of Amino Acids in Atmospheric Aerosols", Analytical Bioanalytical Chemistry, 2011, DOI: 10.1007/s00216-011-5238-2

  5. Use of tracer gas technique for industrial exhaust hood efficiency evaluation--where to sample?

    PubMed

    Hampl, V; Niemelä, R; Shulman, S; Bartley, D L

    1986-05-01

    A tracer gas technique using sulfur hexafluoride (SF6) was developed for the evaluation of industrial exhaust hood efficiency. In addition to other parameters, accuracy of this method depends on proper location of the sampling probe. The sampling probe should be located in the duct at a minimum distance from the investigated hood where the SF6 is dispersed uniformly across the duct cross section. To determine the minimum sampling distance, the SF6 dispersion in the duct in fully developed turbulent flow was studied at four duct configurations frequently found in industry: straight duct, straight duct-side branch, straight duct-one elbow, and straight duct-two elbows combinations. Based on the established SF6 dispersion factor, the minimum sampling distances were determined as follows: for straight duct, at least 50 duct diameters; for straight duct-side branch combination, at least 25 duct diameters; for straight duct-one elbow combination, 7 duct diameters; and for straight duct-two elbow combination, 4 duct diameters. Sampling at (or beyond) these distances minimizes the error caused by the non-homogeneous dispersion of SF6 in the duct and contributes to the accuracy of the tracer gas technique. PMID:3717012

  6. Characterization of Some Iraqi Archaeological Samples Using IBA, Analytical X-ray and Other Complementary Techniques

    NASA Astrophysics Data System (ADS)

    Shihab Al-Sarraj, Ziyad; Roumie, Mohamad; Damboos, Hassan I.

    2012-07-01

    The present work aimed at investigating the compositions and microstructures of some archaeological samples which dated back to various periods of the ancient Iraqi civilizations using PIXE, XRF, XRD, and SEM techniques. The models selected for the study (ceramics, glaze, etc.) were diverse in size and nature, therefore a limited number of samples were then butted from them by a small diamond wheel. Conventional powder metallurgy method was then used to prepare the samples. Dried samples were then coated with a thin layer of carbon, and analyzed using the ion beam accelerator of the LAEC. Three other groups of samples were also prepared for the purpose of analysis by X-ray fluorescence (XRF), X-ray diffraction (XRD), and scanning electron microscope (SEM). Analysis results of the chemical composition showed good agreement between the various techniques as well as for phases, while the fine structure analysis obtained by optical and scanning microscopy exhibited features of a structure where it got an intensified densification in the final stage of sintering and accompanied by quasi-homogeneous distribution of the closed pores. This will lead to the conclusion that the temperature used for sintering by ancient Iraqi was sufficient and it may fall in the range between 950-1200°C, also the mixes and the forming methods used by them, were both suitable to obtain good sintered bodies with even distribution of pores. A ring-shaped trace noticed in SEM micrographs need more work and study to explain what it is?

  7. Sample environments and techniques combined with small angle X-ray scattering.

    PubMed

    Bras, W; Ryan, A J

    1998-03-31

    The number of synchrotron radiation-based Small Angle X-ray Scattering beamlines has increased considerably over the last decade. With the high X-ray flux and collimation of these beamlines it not only has become possible to perform time-resolved experiments on time scales down to the millisecond/frame range, but also it allows experimenters to utilise new sample environments and use simultaneous several experimental techniques on one sample. An overview of recent developments in this field is given. PMID:9611762

  8. Applications of Advanced Nondestructive Measurement Techniques to Address Safety of Flight Issues on NASA Spacecraft

    NASA Technical Reports Server (NTRS)

    Prosser, Bill

    2016-01-01

    Advanced nondestructive measurement techniques are critical for ensuring the reliability and safety of NASA spacecraft. Techniques such as infrared thermography, THz imaging, X-ray computed tomography and backscatter X-ray are used to detect indications of damage in spacecraft components and structures. Additionally, sensor and measurement systems are integrated into spacecraft to provide structural health monitoring to detect damaging events that occur during flight such as debris impacts during launch and assent or from micrometeoroid and orbital debris, or excessive loading due to anomalous flight conditions. A number of examples will be provided of how these nondestructive measurement techniques have been applied to resolve safety critical inspection concerns for the Space Shuttle, International Space Station (ISS), and a variety of launch vehicles and unmanned spacecraft.

  9. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate (dynamic fatigue) testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rates in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  10. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate ('dynamic fatigue') testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rate in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  11. Development of a Rapid Vertical Sampling Technique for Turbulence Measurements in Stably-Stratified Shear Flows

    NASA Astrophysics Data System (ADS)

    Takagi, M.; Desanctis, G. D.; Stretch, D. D.; Nomura, K. K.; Rottman, J. W.; Keller, K. H.; van Atta, C. W.

    2001-11-01

    A new technique for very rapidly obtaining vertical profiles of vertical velocity and temperature in a thermally-stratified turbulent shear flow is presented. The main purpose of these experiments is to gain a better understanding of what vertical sampling in the ocean tells us about oceanic turbulence and mixing. The technique consists of a cold wire probe for temperature measurements and a hot wire probe for velocity measurements propelled vertically through a thermally-stratified wind tunnel by a pneumatic piston. Speeds of nearly 15 m/s are reached as it traverses the central part of the tunnel. This speed is sufficient to freeze the flow structure sampled by the sensors, so the measured profiles are effectively instantaneous. The design and construction of the vertical traverse device and data acquisition system are described. Ensemble-averaged measurements of the vertical velocity and temperature profiles are presented and comparisons made with single-point time-averaged measurements.

  12. Hybrid sample-inverted reflow and soft-lithography technique for fabrication of conicoid microlens arrays.

    PubMed

    He, Miao; Yuan, Xiaocong; Bu, Jing; Cheong, Wai Chye

    2005-07-01

    We report a cost-effective fabrication method, with a combination of the sample-inverted reflow technique and the soft-lithography replication method, to fabricate conicoid refractive microlens arrays (MLAs), including hyperboloid, paraboloid, and ellipsoid MLAs in inorganic-organic hybrid SiO2-ZrO2 solgel material. The fabrication procedures involve two basic steps. First, a master of the conicoid MLA was made in photoresist by the sample-inverted reflow technique. Second, we built a negative mold of the master by casting polydimethylsiloxane (PDMS) onto a silicone elastomer against the master, and then the profile was imprinted onto the solgel glass. As a result, the fabricated solgel MLAs have been obtained with excellent smooth profiles, having negligible discrepancies from the profiles of ideal conicoid MLAs. PMID:16004061

  13. Hybrid sample-inverted reflow and soft-lithography technique for fabrication of conicoid microlens arrays

    NASA Astrophysics Data System (ADS)

    He, Miao; Yuan, Xiaocong; Bu, Jing; Chye Cheong, Wai

    2005-07-01

    We report a cost-effective fabrication method, with a combination of the sample-inverted reflow technique and the soft-lithography replication method, to fabricate conicoid refractive microlens arrays (MLAs), including hyperboloid, paraboloid, and ellipsoid MLAs in inorganic-organic hybrid SiO2-ZrO2 solgel material. The fabrication procedures involve two basic steps. First, a master of the conicoid MLA was made in photoresist by the sample-inverted reflow technique. Second, we built a negative mold of the master by casting polydimethylsiloxane (PDMS) onto a silicone elastomer against the master, and then the profile was imprinted onto the solgel glass. As a result, the fabricated solgel MLAs have been obtained with excellent smooth profiles, having negligible discrepancies from the profiles of ideal conicoid MLAs.

  14. Recent Advances in the Determination of Pesticides in Environmental Samples by Capillary Electrophoresis.

    PubMed

    Chang, Po-Ling; Hsieh, Ming-Mu; Chiu, Tai-Chia

    2016-04-01

    Nowadays, owing to the increasing population and the attempts to satisfy its needs, pesticides are widely applied to control the quantity and quality of agricultural products. However, the presence of pesticide residues and their metabolites in environmental samples is hazardous to the health of humans and all other living organisms. Thus, monitoring these compounds is extremely important to ensure that only permitted levels of pesticide are consumed. To this end, fast, reliable, and environmentally friendly methods that can accurately analyze dilute, complex samples containing both parent substances and their metabolites are required. Focusing primarily on research published since 2010, this review summarizes the use of various sample pretreatment techniques to extract pesticides from various matrices, combined with on-line preconcentration strategies for sensitivity improvement, and subsequent capillary electrophoresis analysis. PMID:27070634

  15. Regression modeling of particle size distributions in urban storm water: advancements through improved sample collection methods

    USGS Publications Warehouse

    Fienen, Michael N.; Selbig, William R.

    2012-01-01

    A new sample collection system was developed to improve the representation of sediment entrained in urban storm water by integrating water quality samples from the entire water column. The depth-integrated sampler arm (DISA) was able to mitigate sediment stratification bias in storm water, thereby improving the characterization of suspended-sediment concentration and particle size distribution at three independent study locations. Use of the DISA decreased variability, which improved statistical regression to predict particle size distribution using surrogate environmental parameters, such as precipitation depth and intensity. The performance of this statistical modeling technique was compared to results using traditional fixed-point sampling methods and was found to perform better. When environmental parameters can be used to predict particle size distributions, environmental managers have more options when characterizing concentrations, loads, and particle size distributions in urban runoff.

  16. Recent Advances in the Determination of Pesticides in Environmental Samples by Capillary Electrophoresis

    PubMed Central

    Chang, Po-Ling; Hsieh, Ming-Mu; Chiu, Tai-Chia

    2016-01-01

    Nowadays, owing to the increasing population and the attempts to satisfy its needs, pesticides are widely applied to control the quantity and quality of agricultural products. However, the presence of pesticide residues and their metabolites in environmental samples is hazardous to the health of humans and all other living organisms. Thus, monitoring these compounds is extremely important to ensure that only permitted levels of pesticide are consumed. To this end, fast, reliable, and environmentally friendly methods that can accurately analyze dilute, complex samples containing both parent substances and their metabolites are required. Focusing primarily on research published since 2010, this review summarizes the use of various sample pretreatment techniques to extract pesticides from various matrices, combined with on-line preconcentration strategies for sensitivity improvement, and subsequent capillary electrophoresis analysis. PMID:27070634

  17. Analytical techniques for identification and study of organic matter in returned lunar samples

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.

    1974-01-01

    The results of geochemical research are reviewed. Emphasis is placed on the contribution of mass spectrometric data to the solution of specific structural problems. Information on the mass spectrometric behavior of compounds of geochemical interest is reviewed and currently available techniques of particular importance to geochemistry, such as gas chromatograph-mass spectrometer coupling, modern sample introduction methods, and computer application in high resolution mass spectrometry, receive particular attention.

  18. Analysis of sampling techniques for imbalanced data: An n = 648 ADNI study.

    PubMed

    Dubey, Rashmi; Zhou, Jiayu; Wang, Yalin; Thompson, Paul M; Ye, Jieping

    2014-02-15

    Many neuroimaging applications deal with imbalanced imaging data. For example, in Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, the mild cognitive impairment (MCI) cases eligible for the study are nearly two times the Alzheimer's disease (AD) patients for structural magnetic resonance imaging (MRI) modality and six times the control cases for proteomics modality. Constructing an accurate classifier from imbalanced data is a challenging task. Traditional classifiers that aim to maximize the overall prediction accuracy tend to classify all data into the majority class. In this paper, we study an ensemble system of feature selection and data sampling for the class imbalance problem. We systematically analyze various sampling techniques by examining the efficacy of different rates and types of undersampling, oversampling, and a combination of over and undersampling approaches. We thoroughly examine six widely used feature selection algorithms to identify significant biomarkers and thereby reduce the complexity of the data. The efficacy of the ensemble techniques is evaluated using two different classifiers including Random Forest and Support Vector Machines based on classification accuracy, area under the receiver operating characteristic curve (AUC), sensitivity, and specificity measures. Our extensive experimental results show that for various problem settings in ADNI, (1) a balanced training set obtained with K-Medoids technique based undersampling gives the best overall performance among different data sampling techniques and no sampling approach; and (2) sparse logistic regression with stability selection achieves competitive performance among various feature selection algorithms. Comprehensive experiments with various settings show that our proposed ensemble model of multiple undersampled datasets yields stable and promising results. PMID:24176869

  19. Fabric phase sorptive extraction: Two practical sample pretreatment techniques for brominated flame retardants in water.

    PubMed

    Huang, Guiqi; Dong, Sheying; Zhang, Mengfei; Zhang, Haihan; Huang, Tinglin

    2016-09-15

    Sample pretreatment is the critical section for residue monitoring of hazardous pollutants. In this paper, using the cellulose fabric as host matrix, three extraction sorbents such as poly (tetrahydrofuran) (PTHF), poly (ethylene glycol) (PEG) and poly (dimethyldiphenylsiloxane) (PDMDPS), were prepared on the surface of the cellulose fabric. Two practical extraction techniques including stir bar fabric phase sorptive extraction (stir bar-FPSE) and magnetic stir fabric phase sorptive extraction (magnetic stir-FPSE) have been designed, which allow stirring of fabric phase sorbent during the whole extraction process. In the meantime, three brominated flame retardants (BFRs) [tetrabromobisphenol A (TBBPA), tetrabromobisphenol A bisallylether (TBBPA-BAE), tetrabromobisphenol A bis(2,3-dibromopropyl)ether (TBBPA-BDBPE)] in the water sample were selected as model analytes for the practical evaluation of the proposed two techniques using high-performance liquid chromatography (HPLC). Moreover, various experimental conditions affecting extraction process such as the type of fabric phase, extraction time, the amount of salt and elution conditions were also investigated. Due to the large sorbent loading capacity and unique stirring performance, both techniques possessed high extraction capability and fast extraction equilibrium. Under the optimized conditions, high recoveries (90-99%) and low limits of detection (LODs) (0.01-0.05 μg L(-1)) were achieved. In addition, the reproducibility was obtained by evaluating the intraday and interday precisions with relative standard deviations (RSDs) less than 5.1% and 6.8%, respectively. The results indicated that two pretreatment techniques were promising and practical for monitoring of hazardous pollutants in the water sample. Due to low solvent consumption and high repeated use performance, proposed techniques also could meet green analytical criteria. PMID:27300591

  20. Predictors of diagnostic yield in bronchoscopy: a retrospective cohort study comparing different combinations of sampling techniques

    PubMed Central

    Roth, Kjetil; Hardie, Jon A; Andreassen, Alf H; Leh, Friedemann; Eagan, Tomas ML

    2008-01-01

    Background The reported diagnostic yield from bronchoscopies in patients with lung cancer varies greatly. The optimal combination of sampling techniques has not been finally established. The objectives of this study were to find the predictors of diagnostic yield in bronchoscopy and to evaluate different combinations of sampling techniques. Methods All bronchoscopies performed on suspicion of lung malignancy in 2003 and 2004 were reviewed, and 363 patients with proven malignant lung disease were included in the study. Sampling techniques performed were biopsy, transbronchial needle aspiration (TBNA), brushing, small volume lavage (SVL), and aspiration of fluid from the entire procedure. Logistic regression analyses were adjusted for sex, age, endobronchial visibility, localization (lobe), distance from carina, and tumor size. Results The adjusted odds ratios (OR) with 95% confidence intervals (CI) for a positive diagnostic yield through all procedures were 17.0 (8.5–34.0) for endobronchial lesions, and 2.6 (1.3–5.2) for constriction/compression, compared to non-visible lesions; 3.8 (1.3–10.7) for lesions > 4 cm, 6.7 (2.1–21.8) for lesions 3–4 cm, and 2.5 (0.8–7.9) for lesions 2–3 cm compared with lesions <= 2 cm. The combined diagnostic yield of biopsy and TBNA was 83.7% for endobronchial lesions and 54.2% for the combined group without visible lesions. This was superior to either technique alone, whereas additional brushing, SVL, and aspiration did not significantly increase the diagnostic yield. Conclusion In patients with malignant lung disease, visible lesions and larger tumor size were significant predictors of higher diagnostic yield, after adjustment for sex, age, distance from carina, side and lobe. The combined diagnostic yield of biopsy and TBNA was significant higher than with either technique alone. PMID:18221551

  1. Advanced spatio-temporal filtering techniques for photogrammetric image sequence analysis in civil engineering material testing

    NASA Astrophysics Data System (ADS)

    Liebold, F.; Maas, H.-G.

    2016-01-01

    The paper shows advanced spatial, temporal and spatio-temporal filtering techniques which may be used to reduce noise effects in photogrammetric image sequence analysis tasks and tools. As a practical example, the techniques are validated in a photogrammetric spatio-temporal crack detection and analysis tool applied in load tests in civil engineering material testing. The load test technique is based on monocular image sequences of a test object under varying load conditions. The first image of a sequence is defined as a reference image under zero load, wherein interest points are determined and connected in a triangular irregular network structure. For each epoch, these triangles are compared to the reference image triangles to search for deformations. The result of the feature point tracking and triangle comparison process is a spatio-temporally resolved strain value field, wherein cracks can be detected, located and measured via local discrepancies. The strains can be visualized as a color-coded map. In order to improve the measuring system and to reduce noise, the strain values of each triangle must be treated in a filtering process. The paper shows the results of various filter techniques in the spatial and in the temporal domain as well as spatio-temporal filtering techniques applied to these data. The best results were obtained by a bilateral filter in the spatial domain and by a spatio-temporal EOF (empirical orthogonal function) filtering technique.

  2. Sample transport efficiency with electrothermal vaporization and electrostatic deposition technique in multielement solid sample analysis of plant and cereal materials

    NASA Astrophysics Data System (ADS)

    Bernhardt, Jens; Buchkamp, Thomas; Hermann, Gerd; Lasnitschka, Georg

    2000-05-01

    A graphite furnace of the boat-in-tube type as electrothermal vaporizer (ETV) and an electrostatic precipitator were used for determining analyte transport efficiencies and dependencies on plant and cereal matrices, and on carrier elements. All analytical measurements were carried out with coherent forward scattering (CFS) using simultaneous multielement determinations. Transport efficiencies of up to 19% for Cu, 21% for Fe and Mn, and 36% for Pb from the ETV boat to the L'vov platform were obtained for the standard reference materials BCR CRM 281 rye grass, BCR CRM 189 wholemeal flour and NIST SRM 1567 wheat flour and multielement standard solutions containing approximately the same element ratios as certified for the solid samples. The analytical accuracy of the procedure including the ETV process and the electrostatic deposition was tested with Cu, Fe and Pb in BCR CRM 281, Cu, Fe and Mn in BCR CRM 189, and Fe and Mn in NIST SRM 1567 by weighing the solid sample onto the ETV-boat and calibrating against multielement standard solutions dosed into the ETV-boat as well. The analyte addition technique was tested with Cu, Fe and Mn in wholemeal flour. The deviations of the results were below 10% and the relative standard deviations (R.S.D.) values were typically 3-10%. The influence of added potassium and palladium nitrates as physical carriers on the transport efficiencies of Ag, Al, Cd, Cu, Fe, Ni, Pb and Zn standard solutions was investigated with simultaneous multielement determination. Using K and Pd as carriers increased transport efficiencies by factors up to 1.74 in comparison to measurements without an added carrier.

  3. Large ensemble modeling of last deglacial retreat of the West Antarctic Ice Sheet: comparison of simple and advanced statistical techniques

    NASA Astrophysics Data System (ADS)

    Pollard, D.; Chang, W.; Haran, M.; Applegate, P.; DeConto, R.

    2015-11-01

    A 3-D hybrid ice-sheet model is applied to the last deglacial retreat of the West Antarctic Ice Sheet over the last ~ 20 000 years. A large ensemble of 625 model runs is used to calibrate the model to modern and geologic data, including reconstructed grounding lines, relative sea-level records, elevation-age data and uplift rates, with an aggregate score computed for each run that measures overall model-data misfit. Two types of statistical methods are used to analyze the large-ensemble results: simple averaging weighted by the aggregate score, and more advanced Bayesian techniques involving Gaussian process-based emulation and calibration, and Markov chain Monte Carlo. Results for best-fit parameter ranges and envelopes of equivalent sea-level rise with the simple averaging method agree quite well with the more advanced techniques, but only for a large ensemble with full factorial parameter sampling. Best-fit parameter ranges confirm earlier values expected from prior model tuning, including large basal sliding coefficients on modern ocean beds. Each run is extended 5000 years into the "future" with idealized ramped climate warming. In the majority of runs with reasonable scores, this produces grounding-line retreat deep into the West Antarctic interior, and the analysis provides sea-level-rise envelopes with well defined parametric uncertainty bounds.

  4. Study of the IDGS technique for mixed plutonium-uranium (MOX) samples

    SciTech Connect

    Li, T. K.; Vo, Duc T.; Sumi, M.; Suzuki, T.

    2004-01-01

    The isotope dilution gamma-ray spectrometry (IDGS) technique has been demonstrated for simultaneously measuring concentrations and isotopic compositions of plutonium in spent-fuel input dissolver solutions. For timely analyzing nuclear materials on the purpose of material accountancy and quality control/assurance, we have performed a feasibility study to implement the IDGS for measuring mixed plutonium-uranium oxide (MOX) samples at the Plutonium Fuel Center (PFC) of Japan Nuclear Cycle Development Institute (JNC). Proof-of-principle experiments and analysis have been conducted for developing simultaneous plutonium and uranium measurements in MOX samples with wide variation of Pu/U ratios including powder, pellets and process scraps from the MOX fuel fabrication plant at PFC. We have shown that FRAM can be used with the IDGS technique to simultaneously determine plutonium and uranium isotopic compositions and concentrations in MOX samples at PFC, JNC. The uncertainties of the results are somewhat large due to weak statistics. If better statistics are obtained by either using more plutonium in the measurements, acquire the data for longer time, or using higher efficiency detector then the results can be better. The accuracy of the results can also be improved by a factor of 2-3 by using the generalized IDGS technique instead of this traditional IDGS.

  5. A robust X-ray fluorescence technique for multielemental analysis of solid samples.

    PubMed

    Kallithrakas-Kontos, Nikolaos; Foteinis, Spyros; Paigniotaki, Katherine; Papadogiannakis, Minos

    2016-02-01

    X-ray fluorescence (XRF) quantitation software programs are widely used for analyzing environmental samples due to their versatility but at the expense of accuracy. In this work, we propose an accurate, robust, and versatile technique for multielemental X-ray fluorescence analytical applications, by spiking solid matrices with standard solutions. National Institute of Standards and Technology (NIST)-certified soil standards were spiked with standard solutions, mixed well, desiccated, and analyzed by an energy dispersive XRF. Homogenous targets were produced and low error calibration curves, for the added and not added, neighboring, elements, were obtained. With the addition of few elements, the technique provides reliable multielemental analysis, even for concentrations of the order of milligram per kilogram (ppm). When results were compared to the ones obtained from XRF commercial quantitation software programs, which are widely used in environmental monitoring and assessment applications, they were found to fit certified values better. Moreover, in all examined cases, results were reliable. Hence, this technique can also be used to overcome difficulties associated with interlaboratory consistency and for cross-validating results. The technique was applied to samples with an environmental interest, collected from a ship/boat repainting area. Increased copper, zinc, and lead loads were observed (284, 270, and 688 mg/kg maximum concentrations in soil, respectively), due to vessels being paint stripped and repainted. PMID:26815558

  6. Advances in EBSD and EBSD/EDS integration for the characterization of mineralogical samples

    NASA Astrophysics Data System (ADS)

    Palasse, L.; Goran, D.; Schwager, T.

    2013-12-01

    Electron BackScatter Diffraction (EBSD) is a well-known powerful technique for petrofabric studies using Scanning Electron Microscope. By assessing the quantitative microstructural information, i.e. crystallographic orientation data, it allows a large variety of applications: understanding the deformation mechanisms, seismic properties, metamorphic processes; and more recently, performing phase identification and discrimination when combined with Energy Dispersive X-Ray Spectroscopy (EDS). However, it is known that for multiphase mineralogical samples, the information delivered either by EBSD or by EDS alone is not enough to successfully distinguish the present phases. Typical examples for EBSD related indexing issues are phases creating similar patterns; and for EDS technique alone, phases with similar chemical composition like calcite and aragonite, quartz and cristobalite. Recent software and hardware developments have significantly improved the data quality as well as the efficiency/productivity. This presentation aims to reveal the latest development in data processing that has transformed the combination of the two complementary techniques into a powerful tool for characterizing multiphase materials. Through geosciences application examples, we will present the advantages brought by this new approach which uses the quantified EDS results and EBSP to identify the correct phase, reducing the need of data cleaning, and without spending extra time at the SEM. We will also demonstrate how powerful EBSD indexing algorithm can overcome the limitation from sample preparation, with some examples of high hit rate achieved on polyphase mineralogical specimen and even on shock-metamorphosed minerals. Last but not least, recent developments also enable the investigation of nanostructured materials in the scanning electron microscope (SEM) by Transmission Kikuchi Diffraction (TKD). Through some mineralogical applications, we will demonstrate the high spatial resolution

  7. Water stable isotope measurements of Antarctic samples by means of IRMS and WS-CRDS techniques

    NASA Astrophysics Data System (ADS)

    Michelini, Marzia; Bonazza, Mattia; Braida, Martina; Flora, Onelio; Dreossi, Giuliano; Stenni, Barbara

    2010-05-01

    In the last years in the scientific community there has been an increasing interest for the application of stable isotope techniques to several environmental problems such as drinking water safeguarding, groundwater management, climate change, soils and paleoclimate studies etc. For example, the water stable isotopes, being natural tracers of the hydrological cycle, have been extensively used as tools to characterize regional aquifers and to reconstruct past temperature changes from polar ice cores. Here the need for improvements in analytical techniques: the high request for information calls for technologies that can offer a great quantity of analyses in short times and with low costs. Furthermore, sometimes it is difficult to obtain big amount of samples (as is the case for Antarctic ice cores or interstitial water) preventing the possibility to replicate the analyses. Here, we present oxygen and hydrogen measurements performed on water samples covering a big range of isotopic values (from very negative antarctic precipitation to mid-latitude precipitation values) carried out with both the conventional Isotope Ratio Mass Spectrometry (IRMS) technique and with a new method based on laser absorption techniques, the Wavelenght Scanned Cavity Ringdown Spectroscopy (WS-CRDS). This study is focusing on improving the precision of the measurements carried out with WS-CRDS in order to extensively apply this method to Antarctic ice core paleoclimate studies. The WS-CRDS is a variation of the CRDS developed in 1988 by O'Keef and Deacon. In CRDS a pulse of light goes through a box with high reflective inner surfaces; when there is no sample in the box the light beam doesn't find any obstacle in its path, but the reflectivity of the walls is not perfect so eventually there will be an absorption of the light beam; when the sample is injected in the box there is absorption and the difference between the time of absorption without and with sample is proportional to the quantity

  8. Estimating biomass of submersed vegetation using a simple rake sampling technique

    USGS Publications Warehouse

    Kenow, K.P.; Lyon, J.E.; Hines, R.K.; Elfessi, A.

    2007-01-01

    We evaluated the use of a simple rake sampling technique for predicting the biomass of submersed aquatic vegetation. Vegetation sampled from impounded areas of the Mississippi River using a rake sampling technique, was compared with vegetation harvested from 0.33-m2 quadrats. The resulting data were used to model the relationship between rake indices and vegetation biomass (total and for individual species). We constructed linear regression models using log-transformed biomass data for sites sampled in 1999 and 2000. Data collected in 2001 were used to validate the resulting models. The coefficient of determination (R 2) for predicting total biomass was 0.82 and ranged from 0.59 (Potamogeton pectinatus) to 0.89 (Ceratophyllum demersum) for individual species. Application of the model to estimate total submersed aquatic vegetation is illustrated using data collected independent of this study. The accuracy and precision of the models tested indicate that the rake method data may be used to predict total vegetation biomass and biomass of selected species; however, the method should be tested in other regions, in other plant communities, and on other species. ?? 2006 Springer Science+Business Media B.V.

  9. Decomposition and (importance) sampling techniques for multi-stage stochastic linear programs

    SciTech Connect

    Infanger, G.

    1993-11-01

    The difficulty of solving large-scale multi-stage stochastic linear programs arises from the sheer number of scenarios associated with numerous stochastic parameters. The number of scenarios grows exponentially with the number of stages and problems get easily out of hand even for very moderate numbers of stochastic parameters per stage. Our method combines dual (Benders) decomposition with Monte Carlo sampling techniques. We employ importance sampling to efficiently obtain accurate estimates of both expected future costs and gradients and right-hand sides of cuts. The method enables us to solve practical large-scale problems with many stages and numerous stochastic parameters per stage. We discuss the theory of sharing and adjusting cuts between different scenarios in a stage. We derive probabilistic lower and upper bounds, where we use importance path sampling for the upper bound estimation. Initial numerical results turned out to be promising.

  10. Impact of advanced microstructural characterization techniques on modeling and analysis of radiation damage

    SciTech Connect

    Garner, F.A.; Odette, G.R.

    1980-01-01

    The evolution of radiation-induced alterations of dimensional and mechanical properties has been shown to be a direct and often predictable consequence of radiation-induced microstructural changes. Recent advances in understanding of the nature and role of each microstructural component in determining the property of interest has led to a reappraisal of the type and priority of data needed for further model development. This paper presents an overview of the types of modeling and analysis activities in progress, the insights that prompted these activities, and specific examples of successful and ongoing efforts. A review is presented of some problem areas that in the authors' opinion are not yet receiving sufficient attention and which may benefit from the application of advanced techniques of microstructural characterization. Guidelines based on experience gained in previous studies are also provided for acquisition of data in a form most applicable to modeling needs.

  11. System engineering techniques for establishing balanced design and performance guidelines for the advanced telerobotic testbed

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.; Matijevic, J. R.

    1987-01-01

    Novel system engineering techniques have been developed and applied to establishing structured design and performance objectives for the Telerobotics Testbed that reduce technical risk while still allowing the testbed to demonstrate an advancement in state-of-the-art robotic technologies. To estblish the appropriate tradeoff structure and balance of technology performance against technical risk, an analytical data base was developed which drew on: (1) automation/robot-technology availability projections, (2) typical or potential application mission task sets, (3) performance simulations, (4) project schedule constraints, and (5) project funding constraints. Design tradeoffs and configuration/performance iterations were conducted by comparing feasible technology/task set configurations against schedule/budget constraints as well as original program target technology objectives. The final system configuration, task set, and technology set reflected a balanced advancement in state-of-the-art robotic technologies, while meeting programmatic objectives and schedule/cost constraints.

  12. Advanced MRI techniques to improve our understanding of experience-induced neuroplasticity.

    PubMed

    Tardif, Christine Lucas; Gauthier, Claudine Joëlle; Steele, Christopher John; Bazin, Pierre-Louis; Schäfer, Andreas; Schaefer, Alexander; Turner, Robert; Villringer, Arno

    2016-05-01

    Over the last two decades, numerous human MRI studies of neuroplasticity have shown compelling evidence for extensive and rapid experience-induced brain plasticity in vivo. To date, most of these studies have consisted of simply detecting a difference in structural or functional images with little concern for their lack of biological specificity. Recent reviews and public debates have stressed the need for advanced imaging techniques to gain a better understanding of the nature of these differences - characterizing their extent in time and space, their underlying biological and network dynamics. The purpose of this article is to give an overview of advanced imaging techniques for an audience of cognitive neuroscientists that can assist them in the design and interpretation of future MRI studies of neuroplasticity. The review encompasses MRI methods that probe the morphology, microstructure, function, and connectivity of the brain with improved specificity. We underline the possible physiological underpinnings of these techniques and their recent applications within the framework of learning- and experience-induced plasticity in healthy adults. Finally, we discuss the advantages of a multi-modal approach to gain a more nuanced and comprehensive description of the process of learning. PMID:26318050

  13. The potential of electrophoretic sample pretreatment techniques and new instrumentation for bioanalysis, with a focus on peptidomics and metabolomics.

    PubMed

    Lindenburg, Petrus W; Ramautar, Rawi; Hankemeier, Thomas

    2013-11-01

    This Review highlights the potential of new electromigration-based sample pretreatment techniques for bioanalysis. Sample pretreatment is a challenging part of the analytical workflow, especially in the fields of peptidomics and metabolomics, where the analytes are very diverse, both in physicochemical properties and in endogenous concentration. Electromigration-based techniques have several strengths, such as fast selective analyte concentration and that complementary information on the content of a sample can be obtained when compared with more conventional (chromatography-based) techniques. In the past decade, various new electromigration-based sample pretreatment techniques have been developed, and importantly, new instrumental setups. In this Review, we provide an introduction on electromigration and its strengths. Then, selected examples of electromigration-based sample pretreatment techniques and instrumentation are discussed, namely free-flow electrophoresis, isoelectric focusing, isotachophoresis, electrodialysis, electromembrane extraction and electroextraction. Finally, the promising perspectives of electromigration-based sample pretreatment techniques are outlined. PMID:24256359

  14. Microwave-accelerated bioassay technique for rapid and quantitative detection of biological and environmental samples.

    PubMed

    Mohammed, Muzaffer; Syed, Maleeha F; Aslan, Kadir

    2016-01-15

    Quantitative detection of molecules of interest from biological and environmental samples in a rapid manner, particularly with a relevant concentration range, is imperative to the timely assessment of human diseases and environmental issues. In this work, we employed the microwave-accelerated bioassay (MAB) technique, which is based on the combined use of circular bioassay platforms and microwave heating, for rapid and quantitative detection of Glial Fibrillary Acidic Protein (GFAP) and Shiga like toxin (STX 1). The proof-of-principle use of the MAB technique with the circular bioassay platforms for the rapid detection of GFAP in buffer based on colorimetric and fluorescence readouts was demonstrated with a 900W kitchen microwave. We also employed the MAB technique with a new microwave system (called the iCrystal system) for the detection of GFAP from mice with brain injuries and STX 1 from a city water stream. Control bioassays included the commercially available gold standard bioassay kits run at room temperature. Our results show that the lower limit of detection (LLOD) of the colorimetric and fluorescence based bioassays for GFAP was decreased by ~1000 times using the MAB technique and our circular bioassay platforms as compared to the commercially available bioassay kits. The overall bioassay time for GFAP and STX 1 was reduced from 4h using commercially available bioassay kits to 10min using the MAB technique. PMID:26356762

  15. Determination of Electromagnetic Properties of Mesh Material Using Advanced Radiometer Techniques

    NASA Technical Reports Server (NTRS)

    Arrington, R. F.; Blume, H. J. C.

    1985-01-01

    The need for a large diameter deployable antenna to map soil moisture with a 10 kilometer or better resolution using a microwave radiometer is discussed. A 6 meter deployable antenna is also needed to map sea surface temperature on the Navy Remote Ocean Sensor System (NROSS). Both of these deployable antennas require a mesh membrane material as the reflecting surface. The determination of the electromagnetic properties of mesh materials is a difficult problem. The Antenna and Microwave Research Branch (AMRB) of Langley Research Center was asked to measure the material to be used on MROSS by NRL. A cooperative program was initiated to measure this mesh material using two advanced radiometer techniques.

  16. Measuring the microbiome: perspectives on advances in DNA-based techniques for exploring microbial life

    PubMed Central

    Bunge, John; Gilbert, Jack A.; Moore, Jason H.

    2012-01-01

    This article reviews recent advances in ‘microbiome studies’: molecular, statistical and graphical techniques to explore and quantify how microbial organisms affect our environments and ourselves given recent increases in sequencing technology. Microbiome studies are moving beyond mere inventories of specific ecosystems to quantifications of community diversity and descriptions of their ecological function. We review the last 24 months of progress in this sort of research, and anticipate where the next 2 years will take us. We hope that bioinformaticians will find this a helpful springboard for new collaborations with microbiologists. PMID:22308073

  17. Techniques for measurement of the thermal expansion of advanced composite materials

    NASA Technical Reports Server (NTRS)

    Tompkins, Stephen S.

    1989-01-01

    Techniques available to measure small thermal displacements in flat laminates and structural tubular elements of advanced composite materials are described. Emphasis is placed on laser interferometry and the laser interferometric dilatometer system used at the National Aeronautics and Space Administration (NASA) Langley Research Center. Thermal expansion data are presented for graphite-fiber reinforced 6061 and 2024 aluminum laminates and for graphite fiber reinforced AZ91 C and QH21 A magnesium laminates before and after processing to minimize or eliminate thermal strain hysteresis. Data are also presented on the effects of reinforcement volume content on thermal expansion of silicon-carbide whisker and particulate reinforced aluminum.

  18. [Recent advances in the techniques of protein-protein interaction study].

    PubMed

    Wang, Ming-Qiang; Wu, Jin-Xia; Zhang, Yu-Hong; Han, Ning; Bian, Hong-Wu; Zhu, Mu-Yuan

    2013-11-01

    Protein-protein interactions play key roles in the development of organisms and the response to biotic and abiotic stresses. Several wet-lab methods have been developed to study this challenging area,including yeast two-hybrid system, tandem affinity purification, Co-immunoprecipitation, GST Pull-down, bimolecular fluorescence complementation, fluorescence resonance energy transfer and surface plasmon resonance analysis. In this review, we discuss theoretical principles and relative advantages and disvantages of these techniques,with an emphasis on recent advances to compensate for limitations. PMID:24579310

  19. Determination of trace organic pollutants in aqueous samples using GC/MS and SPE techniques

    SciTech Connect

    Yoo, L.J.; Yamamoto, M.; Fitzsimmons, S.; Shen, Y.

    1996-11-01

    This study evaluates the advantage of using GC/MS (ion trap) and solid phase extraction (SPE) for the determination of semi-volatile organics which cover priority pollutants, such as polycyclic aromatic hydrocarbons, pesticides, phthalates, and synthetic organic analytes. SPE of trace organic compounds using reverse phase sorbent is attractive compared to the more traditional methods that utilize liquid-liquid extraction or microextraction for the removal of these pollutants from aqueous samples. GC/MS method involving SPE for sample preparation reduces manual labor, speed sample processing,and substantially reduces the volume of solvent required. Also, the application of axial modulation ion trap mass spectrometry improved sensitivity in GC/MS analysis and the method accuracy and precision of semi-volatile organics from GC/MS (ion trap) are very competitive with electron capture detector and photo ionization detector. Systematic studies were done to determine the factors that effect the optimum disk sampling/elution conditions to achieve the quality control requirements for the compliance monitoring. The recoveries of phthalates, polycyclic aromatic hydrocarbons (PAH`s) and most of the organic pesticides, which have very hydrophobic nature and high boiling points, are very acceptable. Consequently GC/MS analysis using solid phase extraction (SPE) techniques can be applied as the primary analytical method and final conformation tool for the routine monitoring samples such as ground water, surface water and reclaimed water for the determination of trace organic pollutants with improved sensitivity, reduced extraction time and monitoring expense.

  20. Applied Focused Ion Beam Techniques for Sample Preparation of Astromaterials for Integrated Nano-Analysis

    SciTech Connect

    Graham, G A; Teslich, N E; Kearsley, A T; Stadermann, F J; Stroud, R M; Dai, Z R; Ishii, H A; Hutcheon, I D; Bajt, S; Snead, C J; Weber, P K; Bradley, J P

    2007-02-20

    Sample preparation is always a critical step in study of micrometer sized astromaterials available for study in the laboratory, whether their subsequent analysis is by electron microscopy or secondary ion mass spectrometry. A focused beam of gallium ions has been used to prepare electron transparent sections from an interplanetary dust particle, as part of an integrated analysis protocol to maximize the mineralogical, elemental, isotopic and spectroscopic information extracted from one individual particle. In addition, focused ion beam techniques have been employed to extract cometary residue preserved on the rims and walls of micro-craters in 1100 series aluminum foils that were wrapped around the sample tray assembly on the Stardust cometary sample collector. Non-ideal surface geometries and inconveniently located regions of interest required creative solutions. These include support pillar construction and relocation of a significant portion of sample to access a region of interest. Serial sectioning, in a manner similar to ultramicrotomy, is a significant development and further demonstrates the unique capabilities of focused ion beam microscopy for sample preparation of astromaterials.

  1. Nonmedical influences on medical decision making: an experimental technique using videotapes, factorial design, and survey sampling.

    PubMed Central

    Feldman, H A; McKinlay, J B; Potter, D A; Freund, K M; Burns, R B; Moskowitz, M A; Kasten, L E

    1997-01-01

    OBJECTIVE: To study nonmedical influences on the doctor-patient interaction. A technique using simulated patients and "real" doctors is described. DATA SOURCES: A random sample of physicians, stratified on such characteristics as demographics, specialty, or experience, and selected from commercial and professional listings. STUDY DESIGN: A medical appointment is depicted on videotape by professional actors. The patient's presenting complaint (e.g., chest pain) allows a range of valid interpretation. Several alternative versions are taped, featuring the same script with patient-actors of different age, sex, race, or other characteristics. Fractional factorial design is used to select a balanced subset of patient characteristics, reducing costs without biasing the outcome. DATA COLLECTION: Each physician is shown one version of the videotape appointment and is asked to describe how he or she would diagnose or treat such a patient. PRINCIPAL FINDINGS: Two studies using this technique have been completed to date, one involving chest pain and dyspnea and the other involving breast cancer. The factorial design provided sufficient power, despite limited sample size, to demonstrate with statistical significance various influences of the experimental and stratification variables, including the patient's gender and age and the physician's experience. Persistent recruitment produced a high response rate, minimizing selection bias and enhancing validity. CONCLUSION: These techniques permit us to determine, with a degree of control unattainable in observational studies, whether medical decisions as described by actual physicians and drawn from a demographic or professional group of interest, are influenced by a prescribed set of nonmedical factors. PMID:9240285

  2. A comparison of conventional and advanced ultrasonic inspection techniques in the characterization of TMC materials

    NASA Astrophysics Data System (ADS)

    Holland, Mark R.; Handley, Scott M.; Miller, James G.; Reighard, Mark K.

    Results obtained with a conventional ultrasonic inspection technique as well as those obtained with more advanced ultrasonic NDE methods in the characterization of an 8-ply quasi-isotropic titanium matrix composite (TMC) specimen are presented. Images obtained from a conventional ultrasonic inspection of TMC material are compared with those obtained using more sophisticated ultrasonic inspection methods. It is suggested that the latter techniques are able to provide quantitative images of TMC material. They are able to reveal the same potential defect indications while simultaneously providing more quantitative information concerning the material's inherent properties. Band-limited signal loss and slope-of-attenuation images provide quantitative data on the inherent material characteristics and defects in TMC.

  3. A comparison of conventional and advanced ultrasonic inspection techniques in the characterization of TMC materials

    NASA Technical Reports Server (NTRS)

    Holland, Mark R.; Handley, Scott M.; Miller, James G.; Reighard, Mark K.

    1992-01-01

    Results obtained with a conventional ultrasonic inspection technique as well as those obtained with more advanced ultrasonic NDE methods in the characterization of an 8-ply quasi-isotropic titanium matrix composite (TMC) specimen are presented. Images obtained from a conventional ultrasonic inspection of TMC material are compared with those obtained using more sophisticated ultrasonic inspection methods. It is suggested that the latter techniques are able to provide quantitative images of TMC material. They are able to reveal the same potential defect indications while simultaneously providing more quantitative information concerning the material's inherent properties. Band-limited signal loss and slope-of-attenuation images provide quantitative data on the inherent material characteristics and defects in TMC.

  4. An Electromagnetic Gauge Technique for Measuring Shocked Particle Velocity in Electrically Conductive Samples

    NASA Astrophysics Data System (ADS)

    Cheng, David; Yoshinaka, Akio

    2014-11-01

    Electromagnetic velocity (EMV) gauges are a class of film gauges which permit the direct in-situ measurement of shocked material flow velocity. The active sensing element, typically a metallic foil, requires exposure to a known external magnetic field in order to produce motional electromotive force (emf). Due to signal distortion caused by mutual inductance between sample and EMV gauge, this technique is typically limited to shock waves in non-conductive materials. In conductive samples, motional emf generated in the EMV gauge has to be extracted from the measured signal which results from the combined effects of both motional emf and voltage changes from induced currents. An electromagnetic technique is presented which analytically models the dynamics of induced current between a copper disk moving as a rigid body with constant 1D translational velocity toward an EMV gauge, where both disk and gauge are exposed to a uniform external static magnetic field. The disk is modelled as a magnetic dipole loop where its Foucault current is evaluated from the characteristics of the fields, whereas the EMV gauge is modelled as a circuit loop immersed in the field of the magnetic dipole loop, the intensity of which is calculated as a function of space and, implicitly, time. Equations of mutual induction are derived and the current induced in the EMV gauge loop is solved, allowing discrimination of the motional emf. Numerical analysis is provided for the step response of the induced EMV gauge current with respect to the Foucault current in the moving copper sample.

  5. An Electromagnetic Gauge Technique for Measuring Shocked Particle Velocity in Electrically Conductive Samples

    NASA Astrophysics Data System (ADS)

    Cheng, David; Yoshinaka, Akio

    2014-10-01

    Electromagnetic velocity (EMV) gauges are a class of film gauges which permit the direct in-situ measurement of shocked material flow velocity. The active sensing element, typically a metallic foil, requires exposure to a known external magnetic field in order to produce motional electromotive force (emf). Due to signal distortion caused by mutual inductance between sample and EMV gauge, this technique is typically limited to shock waves in non-conductive materials. In conductive samples, motional emf generated in the EMV gauge has to be extracted from the measured signal which results from the combined effects of both motional emf and voltage changes from induced currents. An electromagnetic technique is presented which analytically models the dynamics of induced current between a copper disk moving as a rigid body with constant 1D translational velocity toward an EMV gauge, where both disk and gauge are exposed to a uniform external static magnetic field. The disk is modelled as a magnetic dipole loop where its Foucault current is evaluated from the characteristics of the fields, whereas the EMV gauge is modelled as a circuit loop immersed in the field of the magnetic dipole loop, the intensity of which is calculated as a function of space and, implicitly, time. Equations of mutual induction are derived and the current induced in the EMV gauge loop is solved, allowing discrimination of the motional emf. Numerical analysis is provided for the step response of the induced EMV gauge current with respect to the Foucault current in the moving copper sample.

  6. A comparison of concentration techniques for the analysis of polar compounds in canister samples

    SciTech Connect

    Cardin, D.B.; Deschenes, J.T.

    1994-12-31

    The analysis of polar volatile organic compounds (PVOCs) in ambient air by GC/MS requires sample preconcentration to achieve 0.1 ppb detection limits. Necessary sample volumes can exceed 300 c resulting in the co-collection of approximately 3--6 {micro}l of water, depending on the humidity of the sample. This much water will degrade column performance and will cause signal attenuation in benchtop mass spectrometers making quantification of target analytes difficult. A concentration system utilizing yet a third water management technique called Cold Trap Dehydration (CTD) will be presented. Using this technique, water can be substantially eliminated without loss of polar VOCs of interest. CO{sub 2} is also eliminated before GC/MS injection resulting in superior chromatographic performance and a more consistent GC/MS response for the extreme light VOCs. The preconcentrator uses the same hardware trapping configuration for Cold Trap Dehydration as it does for Automated 2-Dimensional Chromatography and Microscale Purge and Trap, and can select any one of the three applications under software control. To determine which approach is best for TO14 and CAAA Title 3 compounds, all three water management procedures will be examined and compared. Data will be presented showing detection limits and %RSD`s from the analysis of PVOCs in canisters using the 3-stage Entech 2000/2016CM Automated preconcentration system and an HP 5972 GC/MS.

  7. Determination of Se in soil samples using the proton induced X-ray emission technique

    NASA Astrophysics Data System (ADS)

    Cruvinel, Paulo E.; Flocchini, Robert G.

    1993-04-01

    An alternative method for the direct determination of total Se in soil samples is presented. A large number of trace elements is present in soil at concentration values in the range of part per billion and tenths of parts of million. The most common are the trace elements of Al, Si, K, Ca, Ti, V, Cr, Fe, Cu, Zn, Br, Rb, Mo, Cd and Pb. As for biological samples many of these elements are of great importance for the nutrition of plants, while others are toxic and others have an unknown role. Selenium is an essential micronutrient for humans and animals but it is also known that in certain areas Se deficiency or toxicity has caused endemic disease to livestock and humans through the soil-plant-animal linkage. In this work the suitability of the proton induced X-ray emission (PIXE) technique as a fast and nondestructive technique useful to measure total the Se content in soil samples is demonstrated. To validate the results a comparison of data collected using the conventional atomic absorption spectrophotometry (AAS) method was performed.

  8. Recent Advances and New Techniques in Visualization of Ultra-short Relativistic Electron Bunches

    SciTech Connect

    Xiang, Dao; /SLAC

    2012-06-05

    Ultrashort electron bunches with rms length of {approx} 1 femtosecond (fs) can be used to generate ultrashort x-ray pulses in FELs that may open up many new regimes in ultrafast sciences. It is also envisioned that ultrashort electron bunches may excite {approx}TeV/m wake fields for plasma wake field acceleration and high field physics studies. Recent success of using 20 pC electron beam to drive an x-ray FEL at LCLS has stimulated world-wide interests in using low charge beam (1 {approx} 20 pC) to generate ultrashort x-ray pulses (0.1 fs {approx} 10 fs) in FELs. Accurate measurement of the length (preferably the temporal profile) of the ultrashort electron bunch is essential for understanding the physics associated with the bunch compression and transportation. However, the shorter and shorter electron bunch greatly challenges the present beam diagnostic methods. In this paper we review the recent advances in the measurement of ultra-short electron bunches. We will focus on several techniques and their variants that provide the state-of-the-art temporal resolution. Methods to further improve the resolution of these techniques and the promise to break the 1 fs time barrier is discussed. We review recent advances in the measurement of ultrashort relativistic electron bunches. We will focus on several techniques and their variants that are capable of breaking the femtosecond time barrier in measurements of ultrashort bunches. Techniques for measuring beam longitudinal phase space as well as the x-ray pulse shape in an x-ray FEL are also discussed.

  9. Single-Parent Families: Results of Profiling Techniques in a Sample of Welfare ADC Families. Final Report.

    ERIC Educational Resources Information Center

    Eisenberg, Jeanne G.; And Others

    A longitudinal study of children and their families in Manhattan, New York City, this study comprises two samples: (1) a cross-sectional sample of 1034 families, and (2) a welfare (Aid to Dependent Children) sample of 1,000 families. The results of several profiling techniques which were conducted on the Welfare Sample are disucssed. While the…

  10. Recent advances in capillary electrophoretic migration techniques for pharmaceutical analysis (2013-2015).

    PubMed

    El Deeb, Sami; Wätzig, Hermann; Abd El-Hady, Deia; Sänger-van de Griend, Cari; Scriba, Gerhard K E

    2016-07-01

    This review updates and follows-up a previous review by highlighting recent advancements regarding capillary electromigration methodologies and applications in pharmaceutical analysis. General approaches such as quality by design as well as sample injection methods and detection sensitivity are discussed. The separation and analysis of drug-related substances, chiral CE, and chiral CE-MS in addition to the determination of physicochemical constants are addressed. The advantages of applying affinity capillary electrophoresis in studying receptor-ligand interactions are highlighted. Finally, current aspects related to the analysis of biopharmaceuticals are reviewed. The present review covers the literature between January 2013 and December 2015. PMID:26988029

  11. Low-mass molecular dynamics simulation: A simple and generic technique to enhance configurational sampling

    SciTech Connect

    Pang, Yuan-Ping

    2014-09-26

    Highlights: • Reducing atomic masses by 10-fold vastly improves sampling in MD simulations. • CLN025 folded in 4 of 10 × 0.5-μs MD simulations when masses were reduced by 10-fold. • CLN025 folded as early as 96.2 ns in 1 of the 4 simulations that captured folding. • CLN025 did not fold in 10 × 0.5-μs MD simulations when standard masses were used. • Low-mass MD simulation is a simple and generic sampling enhancement technique. - Abstract: CLN025 is one of the smallest fast-folding proteins. Until now it has not been reported that CLN025 can autonomously fold to its native conformation in a classical, all-atom, and isothermal–isobaric molecular dynamics (MD) simulation. This article reports the autonomous and repeated folding of CLN025 from a fully extended backbone conformation to its native conformation in explicit solvent in multiple 500-ns MD simulations at 277 K and 1 atm with the first folding event occurring as early as 66.1 ns. These simulations were accomplished by using AMBER forcefield derivatives with atomic masses reduced by 10-fold on Apple Mac Pros. By contrast, no folding event was observed when the simulations were repeated using the original AMBER forcefields of FF12SB and FF14SB. The results demonstrate that low-mass MD simulation is a simple and generic technique to enhance configurational sampling. This technique may propel autonomous folding of a wide range of miniature proteins in classical, all-atom, and isothermal–isobaric MD simulations performed on commodity computers—an important step forward in quantitative biology.

  12. Biotechnology Apprenticeship for Secondary-Level Students: Teaching Advanced Cell Culture Techniques for Research

    PubMed Central

    Lewis, Jennifer R.; Kotur, Mark S.; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A.; Ferrell, Nick; Sullivan, Kathryn D.; Ferrari, Mauro

    2002-01-01

    The purpose of this article is to discuss small-group apprenticeships (SGAs) as a method to instruct cell culture techniques to high school participants. The study aimed to teach cell culture practices and to introduce advanced imaging techniques to solve various biomedical engineering problems. Participants designed and completed experiments using both flow cytometry and laser scanning cytometry during the 1-month summer apprenticeship. In addition to effectively and efficiently teaching cell biology laboratory techniques, this course design provided an opportunity for research training, career exploration, and mentoring. Students participated in active research projects, working with a skilled interdisciplinary team of researchers in a large research institution with access to state-of-the-art instrumentation. The instructors, composed of graduate students, laboratory managers, and principal investigators, worked well together to present a real and worthwhile research experience. The students enjoyed learning cell culture techniques while contributing to active research projects. The institution's researchers were equally enthusiastic to instruct and serve as mentors. In this article, we clarify and illuminate the value of small-group laboratory apprenticeships to the institution and the students by presenting the results and experiences of seven middle and high school participants and their instructors. PMID:12587031

  13. Biotechnology apprenticeship for secondary-level students: teaching advanced cell culture techniques for research.

    PubMed

    Lewis, Jennifer R; Kotur, Mark S; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A; Ferrell, Nick; Sullivan, Kathryn D; Ferrari, Mauro

    2002-01-01

    The purpose of this article is to discuss small-group apprenticeships (SGAs) as a method to instruct cell culture techniques to high school participants. The study aimed to teach cell culture practices and to introduce advanced imaging techniques to solve various biomedical engineering problems. Participants designed and completed experiments using both flow cytometry and laser scanning cytometry during the 1-month summer apprenticeship. In addition to effectively and efficiently teaching cell biology laboratory techniques, this course design provided an opportunity for research training, career exploration, and mentoring. Students participated in active research projects, working with a skilled interdisciplinary team of researchers in a large research institution with access to state-of-the-art instrumentation. The instructors, composed of graduate students, laboratory managers, and principal investigators, worked well together to present a real and worthwhile research experience. The students enjoyed learning cell culture techniques while contributing to active research projects. The institution's researchers were equally enthusiastic to instruct and serve as mentors. In this article, we clarify and illuminate the value of small-group laboratory apprenticeships to the institution and the students by presenting the results and experiences of seven middle and high school participants and their instructors. PMID:12587031

  14. Advancement of an Infra-Red Technique for Whole-Field Concentration Measurements in Fluidized Beds

    PubMed Central

    Medrano, Jose A.; de Nooijer, Niek C. A.; Gallucci, Fausto; van Sint Annaland, Martin

    2016-01-01

    For a better understanding and description of the mass transport phenomena in dense multiphase gas-solids systems such as fluidized bed reactors, detailed and quantitative experimental data on the concentration profiles is required, which demands advanced non-invasive concentration monitoring techniques with a high spatial and temporal resolution. A novel technique based on the selective detection of a gas component in a gas mixture using infra-red properties has been further developed. The first stage development was carried out using a very small sapphire reactor and CO2 as tracer gas. Although the measuring principle was demonstrated, the real application was hindered by the small reactor dimensions related to the high costs and difficult handling of large sapphire plates. In this study, a new system has been developed, that allows working at much larger scales and yet with higher resolution. In the new system, propane is used as tracer gas and quartz as reactor material. In this study, a thorough optimization and calibration of the technique is presented which is subsequently applied for whole-field measurements with high temporal resolution. The developed technique allows the use of a relatively inexpensive configuration for the measurement of detailed concentration fields and can be applied to a large variety of important chemical engineering topics. PMID:26927127

  15. Advancement of an Infra-Red Technique for Whole-Field Concentration Measurements in Fluidized Beds.

    PubMed

    Medrano, Jose A; de Nooijer, Niek C A; Gallucci, Fausto; van Sint Annaland, Martin

    2016-01-01

    For a better understanding and description of the mass transport phenomena in dense multiphase gas-solids systems such as fluidized bed reactors, detailed and quantitative experimental data on the concentration profiles is required, which demands advanced non-invasive concentration monitoring techniques with a high spatial and temporal resolution. A novel technique based on the selective detection of a gas component in a gas mixture using infra-red properties has been further developed. The first stage development was carried out using a very small sapphire reactor and CO₂ as tracer gas. Although the measuring principle was demonstrated, the real application was hindered by the small reactor dimensions related to the high costs and difficult handling of large sapphire plates. In this study, a new system has been developed, that allows working at much larger scales and yet with higher resolution. In the new system, propane is used as tracer gas and quartz as reactor material. In this study, a thorough optimization and calibration of the technique is presented which is subsequently applied for whole-field measurements with high temporal resolution. The developed technique allows the use of a relatively inexpensive configuration for the measurement of detailed concentration fields and can be applied to a large variety of important chemical engineering topics. PMID:26927127

  16. Assessment of fracture-sampling techniques for laboratory tests on core

    USGS Publications Warehouse

    Severson, G.R.; Boernge, J.M.

    1991-01-01

    As part of the site characterization work to be done at Yucca Mountain in Nye County, Nevada, a candidate site for the first mined-geologic repository for high-level nuclear waste, laboratory tests are proposed to evaluate fluid flow in single fractures. Laboratory and onsite tests were conducted to develop methods for collecting rock-core samples containing single fractures for the subsequent laboratory tests. Techniques for collecting rock cores with axial (parallel to the core axis) and radial (perpendicular to the core axis) fractures are discussed.

  17. Non-destructive high-resolution thermal imaging techniques to evaluate wildlife and delicate biological samples

    NASA Astrophysics Data System (ADS)

    Lavers, C.; Franklin, P.; Franklin, P.; Plowman, A.; Sayers, G.; Bol, J.; Shepard, D.; Fields, D.

    2009-07-01

    Thermal imaging cameras now allows routine monitoring of dangerous yet endangered wildlife in captivity. This study looks at the potential applications of radiometrically calibrated thermal data to wildlife, as well as providing parameters for future materials applications. We present a non-destructive active testing technique suitable for enhancing imagery contrast of thin or delicate biological specimens yielding improved thermal contrast at room temperature, for analysis of sample thermal properties. A broad spectrum of animals is studied with different textured surfaces, reflective and emissive properties in the infra red part of the electromagnetic spectrum. Some surface features offer biomimetic materials design opportunities.

  18. Development of Advanced Nuclide Separation and Recovery Methods using Ion-Exchanhge Techniques in Nuclear Backend

    NASA Astrophysics Data System (ADS)

    Miura, Hitoshi

    The development of compact separation and recovery methods using selective ion-exchange techniques is very important for the reprocessing and high-level liquid wastes (HLLWs) treatment in the nuclear backend field. The selective nuclide separation techniques are effective for the volume reduction of wastes and the utilization of valuable nuclides, and expected for the construction of advanced nuclear fuel cycle system and the rationalization of waste treatment. In order to accomplish the selective nuclide separation, the design and synthesis of novel adsorbents are essential for the development of compact and precise separation processes. The present paper deals with the preparation of highly functional and selective hybrid microcapsules enclosing nano-adsorbents in the alginate gel polymer matrices by sol-gel methods, their characterization and the clarification of selective adsorption properties by batch and column methods. The selective separation of Cs, Pd and Re in real HLLW was further accomplished by using novel microcapsules, and an advanced nuclide separation system was proposed by the combination of selective processes using microcapsules.

  19. Use of Advanced Magnetic Resonance Imaging Techniques in Neuromyelitis Optica Spectrum Disorder

    PubMed Central

    Kremer, Stephane; Renard, Felix; Achard, Sophie; Lana-Peixoto, Marco A.; Palace, Jacqueline; Asgari, Nasrin; Klawiter, Eric C.; Tenembaum, Silvia N.; Banwell, Brenda; Greenberg, Benjamin M.; Bennett, Jeffrey L.; Levy, Michael; Villoslada, Pablo; Saiz, Albert; Fujihara, Kazuo; Chan, Koon Ho; Schippling, Sven; Paul, Friedemann; Kim, Ho Jin; de Seze, Jerome; Wuerfel, Jens T.

    2016-01-01

    Brain parenchymal lesions are frequently observed on conventional magnetic resonance imaging (MRI) scans of patients with neuromyelitis optica (NMO) spectrum disorder, but the specific morphological and temporal patterns distinguishing them unequivocally from lesions caused by other disorders have not been identified. This literature review summarizes the literature on advanced quantitative imaging measures reported for patients with NMO spectrum disorder, including proton MR spectroscopy, diffusion tensor imaging, magnetization transfer imaging, quantitative MR volumetry, and ultrahigh-field strength MRI. It was undertaken to consider the advanced MRI techniques used for patients with NMO by different specialists in the field. Although quantitative measures such as proton MR spectroscopy or magnetization transfer imaging have not reproducibly revealed diffuse brain injury, preliminary data from diffusion-weighted imaging and brain tissue volumetry indicate greater white matter than gray matter degradation. These findings could be confirmed by ultrahigh-field MRI. The use of nonconventional MRI techniques may further our understanding of the pathogenic processes in NMO spectrum disorders and may help us identify the distinct radiographic features corresponding to specific phenotypic manifestations of this disease. PMID:26010909

  20. Advanced grazing-incidence techniques for modern soft-matter materials analysis

    SciTech Connect

    Hexemer, Alexander; Müller-Buschbaum, Peter

    2015-01-01

    The complex nano-morphology of modern soft-matter materials is successfully probed with advanced grazing-incidence techniques. Based on grazing-incidence small- and wide-angle X-ray and neutron scattering (GISAXS, GIWAXS, GISANS and GIWANS), new possibilities arise which are discussed with selected examples. Due to instrumental progress, highly interesting possibilities for local structure analysis in this material class arise from the use of micro- and nanometer-sized X-ray beams in micro- or nanofocused GISAXS and GIWAXS experiments. The feasibility of very short data acquisition times down to milliseconds creates exciting possibilities forin situandin operandoGISAXS and GIWAXS studies. Tuning the energy of GISAXS and GIWAXS in the soft X-ray regime and in time-of flight GISANS allows the tailoring of contrast conditions and thereby the probing of more complex morphologies. In addition, recent progress in software packages, useful for data analysis for advanced grazing-incidence techniques, is discussed.

  1. Advanced MRI Techniques in the Evaluation of Complex Cystic Breast Lesions

    PubMed Central

    Popli, Manju Bala; Gupta, Pranav; Arse, Devraj; Kumar, Pawan; Kaur, Prabhjot

    2016-01-01

    OBJECTIVE The purpose of this research work was to evaluate complex cystic breast lesions by advanced MRI techniques and correlating imaging with histologic findings. METHODS AND MATERIALS In a cross-sectional design from September 2013 to August 2015, 50 patients having sonographically detected complex cystic lesions of the breast were included in the study. Morphological characteristics were assessed. Dynamic contrast-enhanced MRI along with diffusion-weighted imaging and MR spectroscopy were used to further classify lesions into benign and malignant categories. All the findings were correlated with histopathology. RESULTS Of the 50 complex cystic lesions, 32 proved to be benign and 18 were malignant on histopathology. MRI features of heterogeneous enhancement on CE-MRI (13/18), Type III kinetic curve (13/18), reduced apparent diffusion coefficient (18/18), and tall choline peak (17/18) were strong predictors of malignancy. Thirteen of the 18 lesions showed a combination of Type III curve, reduced apparent diffusion coefficient value, and tall choline peak. CONCLUSIONS Advanced MRI techniques like dynamic imaging, diffusion-weighted sequences, and MR spectroscopy provide a high level of diagnostic confidence in the characterization of complex cystic breast lesion, thus allowing early diagnosis and significantly reducing patient morbidity and mortality. From our study, lesions showing heterogeneous contrast enhancement, Type III kinetic curve, diffusion restriction, and tall choline peak were significantly associated with malignant complex cystic lesions of the breast. PMID:27330299

  2. Advanced grazing-incidence techniques for modern soft-matter materials analysis

    DOE PAGESBeta

    Hexemer, Alexander; Müller-Buschbaum, Peter

    2015-01-01

    The complex nano-morphology of modern soft-matter materials is successfully probed with advanced grazing-incidence techniques. Based on grazing-incidence small- and wide-angle X-ray and neutron scattering (GISAXS, GIWAXS, GISANS and GIWANS), new possibilities arise which are discussed with selected examples. Due to instrumental progress, highly interesting possibilities for local structure analysis in this material class arise from the use of micro- and nanometer-sized X-ray beams in micro- or nanofocused GISAXS and GIWAXS experiments. The feasibility of very short data acquisition times down to milliseconds creates exciting possibilities forin situandin operandoGISAXS and GIWAXS studies. Tuning the energy of GISAXS and GIWAXS in themore » soft X-ray regime and in time-of flight GISANS allows the tailoring of contrast conditions and thereby the probing of more complex morphologies. In addition, recent progress in software packages, useful for data analysis for advanced grazing-incidence techniques, is discussed.« less

  3. Use of Advanced Magnetic Resonance Imaging Techniques in Neuromyelitis Optica Spectrum Disorder.

    PubMed

    Kremer, Stephane; Renard, Felix; Achard, Sophie; Lana-Peixoto, Marco A; Palace, Jacqueline; Asgari, Nasrin; Klawiter, Eric C; Tenembaum, Silvia N; Banwell, Brenda; Greenberg, Benjamin M; Bennett, Jeffrey L; Levy, Michael; Villoslada, Pablo; Saiz, Albert; Fujihara, Kazuo; Chan, Koon Ho; Schippling, Sven; Paul, Friedemann; Kim, Ho Jin; de Seze, Jerome; Wuerfel, Jens T; Cabre, Philippe; Marignier, Romain; Tedder, Thomas; van Pelt, Danielle; Broadley, Simon; Chitnis, Tanuja; Wingerchuk, Dean; Pandit, Lekha; Leite, Maria Isabel; Apiwattanakul, Metha; Kleiter, Ingo; Prayoonwiwat, Naraporn; Han, May; Hellwig, Kerstin; van Herle, Katja; John, Gareth; Hooper, D Craig; Nakashima, Ichiro; Sato, Douglas; Yeaman, Michael R; Waubant, Emmanuelle; Zamvil, Scott; Stüve, Olaf; Aktas, Orhan; Smith, Terry J; Jacob, Anu; O'Connor, Kevin

    2015-07-01

    Brain parenchymal lesions are frequently observed on conventional magnetic resonance imaging (MRI) scans of patients with neuromyelitis optica (NMO) spectrum disorder, but the specific morphological and temporal patterns distinguishing them unequivocally from lesions caused by other disorders have not been identified. This literature review summarizes the literature on advanced quantitative imaging measures reported for patients with NMO spectrum disorder, including proton MR spectroscopy, diffusion tensor imaging, magnetization transfer imaging, quantitative MR volumetry, and ultrahigh-field strength MRI. It was undertaken to consider the advanced MRI techniques used for patients with NMO by different specialists in the field. Although quantitative measures such as proton MR spectroscopy or magnetization transfer imaging have not reproducibly revealed diffuse brain injury, preliminary data from diffusion-weighted imaging and brain tissue volumetry indicate greater white matter than gray matter degradation. These findings could be confirmed by ultrahigh-field MRI. The use of nonconventional MRI techniques may further our understanding of the pathogenic processes in NMO spectrum disorders and may help us identify the distinct radiographic features corresponding to specific phenotypic manifestations of this disease. PMID:26010909

  4. Advanced grazing-incidence techniques for modern soft-matter materials analysis

    PubMed Central

    Hexemer, Alexander; Müller-Buschbaum, Peter

    2015-01-01

    The complex nano-morphology of modern soft-matter materials is successfully probed with advanced grazing-incidence techniques. Based on grazing-incidence small- and wide-angle X-ray and neutron scattering (GISAXS, GIWAXS, GISANS and GIWANS), new possibilities arise which are discussed with selected examples. Due to instrumental progress, highly interesting possibilities for local structure analysis in this material class arise from the use of micro- and nanometer-sized X-ray beams in micro- or nanofocused GISAXS and GIWAXS experiments. The feasibility of very short data acquisition times down to milliseconds creates exciting possibilities for in situ and in operando GISAXS and GIWAXS studies. Tuning the energy of GISAXS and GIWAXS in the soft X-ray regime and in time-of flight GISANS allows the tailoring of contrast conditions and thereby the probing of more complex morphologies. In addition, recent progress in software packages, useful for data analysis for advanced grazing-incidence techniques, is discussed. PMID:25610632

  5. Self-normalized photoacoustic technique for thermo-optical characterization of samples mounted between transparent media

    NASA Astrophysics Data System (ADS)

    Balderas-López, J. A.; Díaz-Reyes, J.; Jaime-Fonseca, M. R.; Martínez-Pérez, L.; Pescador-Rojas, J. A.

    2016-03-01

    A self-normalized photoacoustic technique for thermo-optical characterization of materials, mounted between transparent media, is presented. It involves a complex ratio of photoacoustic signals in transmission and front configurations, taking the modulation frequency as the only variable. The analytical solutions for the corresponding 1D heat diffusion problems are analyzed to provide suitable methodologies for measuring the optical absorption coefficients and thermal diffusivity of such samples. This methodology was tested by measuring the optical absorption coefficient, at 660 nm, of methylene blue solutions at various concentrations and the thermal diffusivity of a black drawing ink sample. In addition, an approximated range of optical absorption coefficients, where this photoacoustic methodology is adequate, was established.

  6. Activated sampling in complex materials at finite temperature: The properly obeying probability activation-relaxation technique

    NASA Astrophysics Data System (ADS)

    Vocks, Henk; Chubynsky, M. V.; Barkema, G. T.; Mousseau, Normand

    2005-12-01

    While the dynamics of many complex systems is dominated by activated events, there are very few simulation methods that take advantage of this fact. Most of these procedures are restricted to relatively simple systems or, as with the activation-relaxation technique (ART), sample the conformation space efficiently at the cost of a correct thermodynamical description. We present here an extension of ART, the properly obeying probability ART (POP-ART), that obeys detailed balance and samples correctly the thermodynamic ensemble. Testing POP-ART on two model systems, a vacancy and an interstitial in crystalline silicon, we show that this method recovers the proper thermodynamical weights associated with the various accessible states and is significantly faster than molecular dynamics in the simulations of a vacancy below 700 K.

  7. Activated sampling in complex materials at finite temperature: the properly obeying probability activation-relaxation technique.

    PubMed

    Vocks, Henk; Chubynsky, M V; Barkema, G T; Mousseau, Normand

    2005-12-22

    While the dynamics of many complex systems is dominated by activated events, there are very few simulation methods that take advantage of this fact. Most of these procedures are restricted to relatively simple systems or, as with the activation-relaxation technique (ART), sample the conformation space efficiently at the cost of a correct thermodynamical description. We present here an extension of ART, the properly obeying probability ART (POP-ART), that obeys detailed balance and samples correctly the thermodynamic ensemble. Testing POP-ART on two model systems, a vacancy and an interstitial in crystalline silicon, we show that this method recovers the proper thermodynamical weights associated with the various accessible states and is significantly faster than molecular dynamics in the simulations of a vacancy below 700 K. PMID:16396563

  8. Techniques for avoiding discrimination errors in the dynamic sampling of condensable vapors

    NASA Technical Reports Server (NTRS)

    Lincoln, K. A.

    1983-01-01

    In the mass spectrometric sampling of dynamic systems, measurements of the relative concentrations of condensable and noncondensable vapors can be significantly distorted if some subtle, but important, instrumental factors are overlooked. Even with in situ measurements, the condensables are readily lost to the container walls, and the noncondensables can persist within the vacuum chamber and yield a disproportionately high output signal. Where single pulses of vapor are sampled this source of error is avoided by gating either the mass spectrometer ""on'' or the data acquisition instrumentation ""on'' only during the very brief time-window when the initial vapor cloud emanating directly from the vapor source passes through the ionizer. Instrumentation for these techniques is detailed and its effectiveness is demonstrated by comparing gated and nongated spectra obtained from the pulsed-laser vaporization of several materials.

  9. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, J. F.; Lin, B.; Nehrir, A. R.; Obland, M. D.; Liu, Z.; Browell, E. V.; Chen, S.; Kooi, S. A.; Fan, T. F.

    2015-12-01

    Global and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and Atmospheric Carbon and Transport (ACT) - America airborne investigation are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are being investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the mission science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of intervening optically thin clouds, thereby minimizing bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the Earth's surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques and provides very high (at sub-meter level) range resolution. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These techniques are used in a new data processing architecture to support the ASCENDS CarbonHawk Experiment Simulator (ACES) and ACT-America programs.

  10. Advanced intensity-modulation continuous-wave lidar techniques for ASCENDS CO2 column measurements

    NASA Astrophysics Data System (ADS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. W.; Obland, Michael D.; Meadows, Byron

    2015-10-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  11. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for ASCENDS O2 Column Measurements

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. Wallace; Obland, Michael D.; Meadows, Byron

    2015-01-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  12. Issues in the analyze of low content gold mining samples by fire assay technique

    NASA Astrophysics Data System (ADS)

    Cetean, Valentina

    2016-04-01

    The classic technique analyze of samples with low gold content - below 0.1 g/t (=100 ppb = parts per billion), either ore or gold sediments, involves the preparation of sample by fire assay extraction, followed by the chemical attack with aqua regia (hydrochloric and nitric acid) and measuring the gold content by atomic absorption spectrometry or inductively coupled mass spectrometry. The issues raised by this analysis are well known for the world laboratories, commercial or research ones. The author's knowledge regarding this method of determining the gold content, accumulated in such laboratory from Romania (with more than 40 years of experience, even if not longer available from 2014) confirms the obtaining of reliable results required a lot of attention, amount of work and the involving of an experienced fire assayer specialist. The analytical conclusion for a research laboratory is that most reliable and statistically valid results are till reached for samples with more than 100 ppb gold content; the degree of confidence below this value is lower than 90%. Usually, for samples below 50 ppb, it does not exceed 50-70 %, unless without very strictly control of each stage, that involve additional percentage of hours allocated for successive extracting tests and knowing more precisely the other compounds that appear in the sample (Cu, Sb, As, sulfur / sulphides, Te, organic matter, etc.) or impurities. The most important operation is the preparation, namely: - grinding and splitting of sample (which can cause uneven distribution of gold flakes in the double samples for analyzed); - pyro-metallurgical recovery of gold = fire assay stage, involving the more precise temperature control in furnace during all stages (fusion and cupellation) and adjusting of the fire assay flux components to produce a successful fusion depending of the sample matrix and content; - reducing the sample weight to decrease the amount of impurities that can be concentrated in the lead button

  13. System Design Techniques for Reducing the Power Requirements of Advanced life Support Systems

    NASA Technical Reports Server (NTRS)

    Finn, Cory; Levri, Julie; Pawlowski, Chris; Crawford, Sekou; Luna, Bernadette (Technical Monitor)

    2000-01-01

    The high power requirement associated with overall operation of regenerative life support systems is a critical Z:p technological challenge. Optimization of individual processors alone will not be sufficient to produce an optimized system. System studies must be used in order to improve the overall efficiency of life support systems. Current research efforts at NASA Ames Research Center are aimed at developing approaches for reducing system power and energy usage in advanced life support systems. System energy integration and energy reuse techniques are being applied to advanced life support, in addition to advanced control methods for efficient distribution of power and thermal resources. An overview of current results of this work will be presented. The development of integrated system designs that reuse waste heat from sources such as crop lighting and solid waste processing systems will reduce overall power and cooling requirements. Using an energy integration technique known as Pinch analysis, system heat exchange designs are being developed that match hot and cold streams according to specific design principles. For various designs, the potential savings for power, heating and cooling are being identified and quantified. The use of state-of-the-art control methods for distribution of resources, such as system cooling water or electrical power, will also reduce overall power and cooling requirements. Control algorithms are being developed which dynamically adjust the use of system resources by the various subsystems and components in order to achieve an overall goal, such as smoothing of power usage and/or heat rejection profiles, while maintaining adequate reserves of food, water, oxygen, and other consumables, and preventing excessive build-up of waste materials. Reductions in the peak loading of the power and thermal systems will lead to lower overall requirements. Computer simulation models are being used to test various control system designs.

  14. Study of solid oxide fuel cell interconnects, protective coatings and advanced physical vapor deposition techniques

    NASA Astrophysics Data System (ADS)

    Gannon, Paul Edward

    High energy conversion efficiency, decreased environmentally-sensitive emissions and fuel flexibility have attracted increasing attention toward solid oxide fuel cell (SOFC) systems for stationary, transportation and portable power generation. Critical durability and cost issues, however, continue to impede wide-spread deployment. Many intermediate temperature (600-800°C) planar SOFC systems employ metallic alloy interconnect components, which physically connect individual fuel cells into electric series, facilitate gas distribution to appropriate SOFC electrode chambers (fuel/anode and oxidant[air]/cathode) and provide SOFC stack mechanical support. These demanding multifunctional requirements challenge commercially-available and inexpensive metallic alloys due to corrosion and related effects. Many ongoing investigations are aimed at enabling inexpensive metallic alloys (via bulk and/or surface modifications) as SOFC interconnects (SOFC(IC)s). In this study, two advanced physical vapor deposition (PVD) techniques: large area filtered vacuum arc deposition (LAFAD), and filtered arc plasma-assisted electron beam PVD (FA-EBPVD) were used to deposit a wide-variety of protective nanocomposite (amorphous/nanocrystalline) ceramic thin-film (<5microm) coatings on commercial and specialty stainless steels with different surface finishes. Both bare and coated steel specimens were subjected to SOFC(IC)-relevant exposures and evaluated using complimentary surface analysis techniques. Significant improvements were observed under simulated SOFC(IC) exposures with many coated specimens at ˜800°C relative to uncoated specimens: stable surface morphology; low area specific resistance (ASR <100mO·cm 2 >1,000 hours); and, dramatically reduced Cr volatility (>30-fold). Analyses and discussions of SOFC(IC) corrosion, advanced PVD processes and protective coating behavior are intended to advance understanding and accelerate the development of durable and commercially-viable SOFC

  15. The use of ESR technique for assessment of heating temperatures of archaeological lentil samples

    NASA Astrophysics Data System (ADS)

    Aydaş, Canan; Engin, Birol; Dönmez, Emel Oybak; Belli, Oktay

    2010-01-01

    Heat-induced paramagnetic centers in modern and archaeological lentils ( Lens culinaris, Medik.) were studied by X-band (9.3 GHz) electron spin resonance (ESR) technique. The modern red lentil samples were heated in an electrical furnace at increasing temperatures in the range 70-500 °C. The ESR spectral parameters (the intensity, g-value and peak-to-peak line width) of the heat-induced organic radicals were investigated for modern red lentil ( Lens culinaris, Medik.) samples. The obtained ESR spectra indicate that the relative number of heat-induced paramagnetic species and peak-to-peak line widths depends on the temperature and heating time of the modern lentil. The g-values also depend on the heating temperature but not heating time. Heated modern red lentils produced a range of organic radicals with g-values from g = 2.0062 to 2.0035. ESR signals of carbonised archaeological lentil samples from two archaeological deposits of the Van province in Turkey were studied and g-values, peak-to-peak line widths, intensities and elemental compositions were compared with those obtained for modern samples in order to assess at which temperature these archaeological lentils were heated in prehistoric sites. The maximum temperatures of the previous heating of carbonised UA5 and Y11 lentil seeds are as follows about 500 °C and above 500 °C, respectively.

  16. Source of statistical noises in the Monte Carlo sampling techniques for coherently scattered photons

    PubMed Central

    Muhammad, Wazir; Lee, Sang Hoon

    2013-01-01

    Detailed comparisons of the predictions of the Relativistic Form Factors (RFFs) and Modified Form Factors (MFFs) and their advantages and shortcomings in calculating elastic scattering cross sections can be found in the literature. However, the issues related to their implementation in the Monte Carlo (MC) sampling for coherently scattered photons is still under discussion. Secondly, the linear interpolation technique (LIT) is a popular method to draw the integrated values of squared RFFs/MFFs (i.e. ) over squared momentum transfer (). In the current study, the role/issues of RFFs/MFFs and LIT in the MC sampling for the coherent scattering were analyzed. The results showed that the relative probability density curves sampled on the basis of MFFs are unable to reveal any extra scientific information as both the RFFs and MFFs produced the same MC sampled curves. Furthermore, no relationship was established between the multiple small peaks and irregular step shapes (i.e. statistical noise) in the PDFs and either RFFs or MFFs. In fact, the noise in the PDFs appeared due to the use of LIT. The density of the noise depends upon the interval length between two consecutive points in the input data table of and has no scientific background. The probability density function curves became smoother as the interval lengths were decreased. In conclusion, these statistical noises can be efficiently removed by introducing more data points in the data tables. PMID:22984278

  17. 32 CFR Appendix D to Part 110 - Application of Advanced Course Formula (Male and Female Members) (Sample)

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Female Members) (Sample) D Appendix D to Part 110 National Defense Department of Defense OFFICE OF THE... COMMUTATION INSTEAD OF UNIFORMS FOR MEMBERS OF THE SENIOR RESERVE OFFICERS' TRAINING CORPS Pt. 110, App. D Appendix D to Part 110—Application of Advanced Course Formula (Male and Female Members) (Sample) Zone...

  18. 32 CFR Appendix D to Part 110 - Application of Advanced Course Formula (Male and Female Members) (Sample)

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Female Members) (Sample) D Appendix D to Part 110 National Defense Department of Defense OFFICE OF THE... COMMUTATION INSTEAD OF UNIFORMS FOR MEMBERS OF THE SENIOR RESERVE OFFICERS' TRAINING CORPS Pt. 110, App. D Appendix D to Part 110—Application of Advanced Course Formula (Male and Female Members) (Sample) Zone...

  19. 32 CFR Appendix D to Part 110 - Application of Advanced Course Formula (Male and Female Members) (Sample)

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Female Members) (Sample) D Appendix D to Part 110 National Defense Department of Defense OFFICE OF THE... COMMUTATION INSTEAD OF UNIFORMS FOR MEMBERS OF THE SENIOR RESERVE OFFICERS' TRAINING CORPS Pt. 110, App. D Appendix D to Part 110—Application of Advanced Course Formula (Male and Female Members) (Sample) Zone...

  20. Advanced atomic force microscopy techniques for characterizing the properties of cellulosic nanomaterials

    NASA Astrophysics Data System (ADS)

    Wagner, Ryan Bradley

    The measurement of nanomechanical properties is of great interest to science and industry. Key to progress in this area is the development of new techniques and analysis methods to identify, measure, and quantify these properties. In this dissertation, new data analysis methods and experimental techniques for measuring nanomechanical properties with the atomic force microscope (AFM) are considered. These techniques are then applied to the study of cellulose nanoparticles, an abundant, plant derived nanomaterial. Quantifying uncertainty is a prerequisite for the manufacture of reliable nano-engineered materials and products. However, rigorous uncertainty quantification is rarely applied for material property measurements with the AFM. A framework is presented to ascribe uncertainty to local nanomechanical properties of any nanoparticle or surface measured with the AFM by taking into account the main uncertainty sources inherent in such measurements. This method is demonstrated by quantifying uncertainty in force displacement AFM based measurements of the transverse elastic modulus of tunicate cellulose nanocrystals. Next, a more comprehensive study of different types of cellulose nanoparticles is undertaken with contact resonance (CR) AFM. CR-AFM is a dynamic AFM technique that exploits the resonance frequency of the AFM cantilever while it is permanent contact with the sample surface to predict nanomechanical properties. This technique offers improved measurement sensitivity over static AFM methods for some material systems. The effects of cellulose source material and processing technique on the properties of cellulose nanoparticles are compared. Finally, dynamic AFM cantilever vibration shapes are studied. Many AFM modes exploit the dynamic response of a cantilever in permanent contact with a sample to extract local material properties. A common challenge to these modes is that they assume a certain shape of cantilever vibration, which is not accessible in

  1. Advanced Ecosystem Mapping Techniques for Large Arctic Study Domains Using Calibrated High-Resolution Imagery

    NASA Astrophysics Data System (ADS)

    Macander, M. J.; Frost, G. V., Jr.

    2015-12-01

    Regional-scale mapping of vegetation and other ecosystem properties has traditionally relied on medium-resolution remote sensing such as Landsat (30 m) and MODIS (250 m). Yet, the burgeoning availability of high-resolution (<=2 m) imagery and ongoing advances in computing power and analysis tools raises the prospect of performing ecosystem mapping at fine spatial scales over large study domains. Here we demonstrate cutting-edge mapping approaches over a ~35,000 km² study area on Alaska's North Slope using calibrated and atmospherically-corrected mosaics of high-resolution WorldView-2 and GeoEye-1 imagery: (1) an a priori spectral approach incorporating the Satellite Imagery Automatic Mapper (SIAM) algorithms; (2) image segmentation techniques; and (3) texture metrics. The SIAM spectral approach classifies radiometrically-calibrated imagery to general vegetation density categories and non-vegetated classes. The SIAM classes were developed globally and their applicability in arctic tundra environments has not been previously evaluated. Image segmentation, or object-based image analysis, automatically partitions high-resolution imagery into homogeneous image regions that can then be analyzed based on spectral, textural, and contextual information. We applied eCognition software to delineate waterbodies and vegetation classes, in combination with other techniques. Texture metrics were evaluated to determine the feasibility of using high-resolution imagery to algorithmically characterize periglacial surface forms (e.g., ice-wedge polygons), which are an important physical characteristic of permafrost-dominated regions but which cannot be distinguished by medium-resolution remote sensing. These advanced mapping techniques provide products which can provide essential information supporting a broad range of ecosystem science and land-use planning applications in northern Alaska and elsewhere in the circumpolar Arctic.

  2. PREFACE: 16th International workshop on Advanced Computing and Analysis Techniques in physics research (ACAT2014)

    NASA Astrophysics Data System (ADS)

    Fiala, L.; Lokajicek, M.; Tumova, N.

    2015-05-01

    This volume of the IOP Conference Series is dedicated to scientific contributions presented at the 16th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2014), this year the motto was ''bridging disciplines''. The conference took place on September 1-5, 2014, at the Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic. The 16th edition of ACAT explored the boundaries of computing system architectures, data analysis algorithmics, automatic calculations, and theoretical calculation technologies. It provided a forum for confronting and exchanging ideas among these fields, where new approaches in computing technologies for scientific research were explored and promoted. This year's edition of the workshop brought together over 140 participants from all over the world. The workshop's 16 invited speakers presented key topics on advanced computing and analysis techniques in physics. During the workshop, 60 talks and 40 posters were presented in three tracks: Computing Technology for Physics Research, Data Analysis - Algorithms and Tools, and Computations in Theoretical Physics: Techniques and Methods. The round table enabled discussions on expanding software, knowledge sharing and scientific collaboration in the respective areas. ACAT 2014 was generously sponsored by Western Digital, Brookhaven National Laboratory, Hewlett Packard, DataDirect Networks, M Computers, Bright Computing, Huawei and PDV-Systemhaus. Special appreciations go to the track liaisons Lorenzo Moneta, Axel Naumann and Grigory Rubtsov for their work on the scientific program and the publication preparation. ACAT's IACC would also like to express its gratitude to all referees for their work on making sure the contributions are published in the proceedings. Our thanks extend to the conference liaisons Andrei Kataev and Jerome Lauret who worked with the local contacts and made this conference possible as well as to the program

  3. Solving mercury (Hg) speciation in soil samples by synchrotron X-ray microspectroscopic techniques.

    PubMed

    Terzano, Roberto; Santoro, Anna; Spagnuolo, Matteo; Vekemans, Bart; Medici, Luca; Janssens, Koen; Göttlicher, Jörg; Denecke, Melissa A; Mangold, Stefan; Ruggiero, Pacifico

    2010-08-01

    Direct mercury (Hg) speciation was assessed for soil samples with a Hg concentration ranging from 7 up to 240 mg kg(-1). Hg chemical forms were identified and quantified by sequential extractions and bulk- and micro-analytical techniques exploiting synchrotron generated X-rays. In particular, microspectroscopic techniques such as mu-XRF, mu-XRD and mu-XANES were necessary to solve bulk Hg speciation, in both soil fractions <2 mm and <2 microm. The main Hg-species found in the soil samples were metacinnabar (beta-HgS), cinnabar (alpha-HgS), corderoite (Hg(3)S(2)Cl(2)), and an amorphous phase containing Hg bound to chlorine and sulfur. The amount of metacinnabar and amorphous phases increased in the fraction <2 microm. No interaction among Hg-species and soil components was observed. All the observed Hg-species originated from the slow weathering of an inert Hg-containing waste material (K106, U.S. EPA) dumped in the area several years ago, which is changing into a relatively more dangerous source of pollution. PMID:20605298

  4. A percutaneous needle biopsy technique for sampling the supraclavicular brown adipose tissue depot of humans

    PubMed Central

    Annamalai, Palam; Chondronikola, Maria; Chao, Tony; Porter, Craig; Saraf, Manish K.; Cesani, Fernardo; Sidossis, Labros S.

    2015-01-01

    Brown adipose tissue (BAT) has been proposed as a potential target tissue against obesity and its related metabolic complications. Although the molecular and functional characteristics of BAT have been intensively studied in rodents, only a small number of studies have used human BAT specimens due to the difficulty of sampling human BAT deposits. We established a novel positron emission tomography and computed tomography-guided Bergström needle biopsy technique to acquire human BAT specimens from the supraclavicular area in human subjects. Forty-three biopsies were performed on 23 participants. The procedure was tolerated well by the majority of participants. No major complications were noted. Numbness (9.6%) and hematoma (2.3%) were the two minor complications noted, which fully resolved. Thus, the proposed biopsy technique can be considered safe with only minimal risk of adverse events. Adoption of the proposed method is expected to increase the sampling of the supraclavicular BAT depot for research purposes so as to augment the scientific knowledge of the biology of human BAT. PMID:25920777

  5. Nano-Scale Tensile Testing and Sample Preparation Techniques for Silicon Nanowires

    NASA Astrophysics Data System (ADS)

    Fujii, Tatsuya; Sudoh, Koichi; Sakakihara, Shouichi; Naito, Muneyuki; Inoue, Shozo; Namazu, Takahiro

    2013-11-01

    In this paper, we describe an experimental technique to achieve a highly reliable characterization of the mechanical properties of silicon (Si) nanowires (NWs). A reusable on-chip Si device consisting of comb-drive electrostatic actuator for generating tensile force and capacitive sensors for measuring tensile force and displacement was designed and developed for quasi-static tensile test of Si NWs. The combination of focused ion beam (FIB) fabrication, FIB-assisted chemical vapor deposition, and probe manipulation enabled us to directly fabricate the NWs on the device. This sampling technique led to high yielding percentage of nano-scale tensile testing. The NWs were made from 200-nm-thick Si membranes that were produced by using silicon-on-nothing membrane fabrication technique. Several Si NWs were annealed at 700 °C in ultrahigh vacuum (UHV) for 5 min in order to examine the influence of annealing on the mechanical characteristics. The mean Young's modulus for nonannealed NWs was 129.1+/-10.1 GPa. After UHV annealing, the mean value was improved to be 168.1+/-1.3 GPa, comparable to the ideal value for Si(001)[110]. The annealing process gave rise to improving the Young's modulus, whereas it degraded the strength. Transmission electron microscopy suggested that recrystallization and gallium nanoclusters formation by annealing would have changed the mechanical characteristics.

  6. Review of available fluid sampling tools and sample recovery techniques for groundwater and unconventional geothermal research as well as carbon storage in deep sedimentary aquifers

    NASA Astrophysics Data System (ADS)

    Wolff-Boenisch, Domenik; Evans, Katy

    2014-05-01

    Sampling fluids from deep wells and subsequent sample treatment prior to gas and liquid analysis requires special equipment and sampling techniques to account for the relatively high temperatures, pressures, and potential gas content present at depth. This paper reviews five major sampling methodologies, ranging from different in situ wireline samplers to producing pumps and the U-tube and discusses their advantages and drawbacks in the light of three principal applications, deep groundwater research, unconventional geothermal exploration, and carbon storage. Geochemical modelling is used to investigate the probability of decarbonation and concomitant carbonate scaling during sampling in geothermal and carbon sequestration applications. The two principal sample recovery techniques associated with the fluid samplers are also presented.

  7. Utilization of advanced calibration techniques in stochastic rock fall analysis of quarry slopes

    NASA Astrophysics Data System (ADS)

    Preh, Alexander; Ahmadabadi, Morteza; Kolenprat, Bernd

    2016-04-01

    In order to study rock fall dynamics, a research project was conducted by the Vienna University of Technology and the Austrian Central Labour Inspectorate (Federal Ministry of Labour, Social Affairs and Consumer Protection). A part of this project included 277 full-scale drop tests at three different quarries in Austria and recording key parameters of the rock fall trajectories. The tests involved a total of 277 boulders ranging from 0.18 to 1.8 m in diameter and from 0.009 to 8.1 Mg in mass. The geology of these sites included strong rock belonging to igneous, metamorphic and volcanic types. In this paper the results of the tests are used for calibration and validation a new stochastic computer model. It is demonstrated that the error of the model (i.e. the difference between observed and simulated results) has a lognormal distribution. Selecting two parameters, advanced calibration techniques including Markov Chain Monte Carlo Technique, Maximum Likelihood and Root Mean Square Error (RMSE) are utilized to minimize the error. Validation of the model based on the cross validation technique reveals that in general, reasonable stochastic approximations of the rock fall trajectories are obtained in all dimensions, including runout, bounce heights and velocities. The approximations are compared to the measured data in terms of median, 95% and maximum values. The results of the comparisons indicate that approximate first-order predictions, using a single set of input parameters, are possible and can be used to aid practical hazard and risk assessment.

  8. Advances of Peripheral Nerve Repair Techniques to Improve Hand Function: A Systematic Review of Literature

    PubMed Central

    P, Mafi; S, Hindocha; M, Dhital; M, Saleh

    2012-01-01

    Concepts of neuronal damage and repair date back to ancient times. The research in this topic has been growing ever since and numerous nerve repair techniques have evolved throughout the years. Due to our greater understanding of nerve injuries and repair we now distinguish between central and peripheral nervous system. In this review, we have chosen to concentrate on peripheral nerve injuries and in particular those involving the hand. There are no reviews bringing together and summarizing the latest research evidence concerning the most up-to-date techniques used to improve hand function. Therefore, by identifying and evaluating all the published literature in this field, we have summarized all the available information about the advances in peripheral nerve techniques used to improve hand function. The most important ones are the use of resorbable poly[(R)-3-hydroxybutyrate] (PHB), epineural end-to-end suturing, graft repair, nerve transfer, side to side neurorrhaphy and end to side neurorrhaphy between median, radial and ulnar nerves, nerve transplant, nerve repair, external neurolysis and epineural sutures, adjacent neurotization without nerve suturing, Agee endoscopic operation, tourniquet induced anesthesia, toe transfer and meticulous intrinsic repair, free auto nerve grafting, use of distal based neurocutaneous flaps and tubulization. At the same time we found that the patient’s age, tension of repair, time of repair, level of injury and scar formation following surgery affect the prognosis. Despite the thorough findings of this systematic review we suggest that further research in this field is needed. PMID:22431951

  9. New advanced surface modification technique: titanium oxide ceramic surface implants: long-term clinical results

    NASA Astrophysics Data System (ADS)

    Szabo, Gyorgy; Kovacs, Lajos; Barabas, Jozsef; Nemeth, Zsolt; Maironna, Carlo

    2001-11-01

    The purpose of this paper is to discuss the background to advanced surface modification technologies and to present a new technique, involving the formation of a titanium oxide ceramic coating, with relatively long-term results of its clinical utilization. Three general techniques are used to modify surfaces: the addition or removal of material and the change of material already present. Surface properties can also be changed without the addition or removal of material, through the laser or electron beam thermal treatment. The new technique outlined in this paper relates to the production of a corrosion-resistant 2000-2500 A thick, ceramic oxide layer with a coherent crystalline structure on the surface of titanium implants. The layer is grown electrochemically from the bulk of the metal and is modified by heat treatment. Such oxide ceramic-coated implants have a number of advantageous properties relative to implants covered with various other coatings: a higher external hardness, a greater force of adherence between the titanium and the oxide ceramic coating, a virtually perfect insulation between the organism and the metal (no possibility of metal allergy), etc. The coated implants were subjected to various physical, chemical, electronmicroscopic, etc. tests for a qualitative characterization. Finally, these implants (plates, screws for maxillofacial osteosynthesis and dental root implants) were applied in surgical practice for a period of 10 years. Tests and the experience acquired demonstrated the good properties of the titanium oxide ceramic-coated implants.

  10. Measurements of the subcriticality using advanced technique of shooting source during operation of NPP reactors

    SciTech Connect

    Lebedev, G. V. Petrov, V. V.; Bobylyov, V. T.; Butov, R. I.; Zhukov, A. M.; Sladkov, A. A.

    2014-12-15

    According to the rules of nuclear safety, the measurements of the subcriticality of reactors should be carried out in the process of performing nuclear hazardous operations. An advanced technique of shooting source of neutrons is proposed to meet this requirement. As such a source, a pulsed neutron source (PNS) is used. In order to realize this technique, it is recommended to enable a PNS with a frequency of 1–20 Hz. The PNS is stopped after achieving a steady-state (on average) number of neutrons in the reactor volume. The change in the number of neutrons in the reactor volume is measured in time with an interval of discreteness of ∼0.1 s. The results of these measurements with the application of a system of point-kinetics equations are used in order to calculate the sought subcriticality. The basic idea of the proposed technique used to measure the subcriticality is elaborated in a series of experiments on the Kvant assembly. The conditions which should be implemented in order to obtain a positive result of measurements are formulated. A block diagram of the basic version of the experimental setup is presented, whose main element is a pulsed neutron generator.

  11. Measurements of the subcriticality using advanced technique of shooting source during operation of NPP reactors

    NASA Astrophysics Data System (ADS)

    Lebedev, G. V.; Petrov, V. V.; Bobylyov, V. T.; Butov, R. I.; Zhukov, A. M.; Sladkov, A. A.

    2014-12-01

    According to the rules of nuclear safety, the measurements of the subcriticality of reactors should be carried out in the process of performing nuclear hazardous operations. An advanced technique of shooting source of neutrons is proposed to meet this requirement. As such a source, a pulsed neutron source (PNS) is used. In order to realize this technique, it is recommended to enable a PNS with a frequency of 1-20 Hz. The PNS is stopped after achieving a steady-state (on average) number of neutrons in the reactor volume. The change in the number of neutrons in the reactor volume is measured in time with an interval of discreteness of ˜0.1 s. The results of these measurements with the application of a system of point-kinetics equations are used in order to calculate the sought subcriticality. The basic idea of the proposed technique used to measure the subcriticality is elaborated in a series of experiments on the Kvant assembly. The conditions which should be implemented in order to obtain a positive result of measurements are formulated. A block diagram of the basic version of the experimental setup is presented, whose main element is a pulsed neutron generator.

  12. Performance evaluation of an importance sampling technique in a Jackson network

    NASA Astrophysics Data System (ADS)

    brahim Mahdipour, E.; Masoud Rahmani, Amir; Setayeshi, Saeed

    2014-03-01

    Importance sampling is a technique that is commonly used to speed up Monte Carlo simulation of rare events. However, little is known regarding the design of efficient importance sampling algorithms in the context of queueing networks. The standard approach, which simulates the system using an a priori fixed change of measure suggested by large deviation analysis, has been shown to fail in even the simplest network settings. Estimating probabilities associated with rare events has been a topic of great importance in queueing theory, and in applied probability at large. In this article, we analyse the performance of an importance sampling estimator for a rare event probability in a Jackson network. This article carries out strict deadlines to a two-node Jackson network with feedback whose arrival and service rates are modulated by an exogenous finite state Markov process. We have estimated the probability of network blocking for various sets of parameters, and also the probability of missing the deadline of customers for different loads and deadlines. We have finally shown that the probability of total population overflow may be affected by various deadline values, service rates and arrival rates.

  13. Evaluation of surface sampling techniques for collection of Bacillus spores on common drinking water pipe materials.

    PubMed

    Packard, Benjamin H; Kupferle, Margaret J

    2010-01-01

    Drinking water utilities may face biological contamination of the distribution system from a natural incident or deliberate contamination. Determining the extent of contamination or the efficacy of decontamination is a challenge, because it may require sampling of the wetted surfaces of distribution infrastructure. This study evaluated two sampling techniques that utilities might use to sample exhumed pipe sections. Polyvinyl chloride (PVC), cement-lined ductile iron, and ductile iron pipe coupons (3 cm x 14 cm) cut from new water main piping were conditioned for three months in dechlorinated Cincinnati, Ohio tap water. Coupons were spiked with Bacillus atrophaeus subsp. globigii, a surrogate for Bacillus anthracis. Brushing and scraping were used to recover the inoculated spores from the coupons. Mean recoveries for all materials ranged from 37 +/- 30% to 43 +/- 20% for brushing vs. 24 +/- 10% to 51 +/- 29% for scraping. On cement-lined pipe, brushing yielded a significantly different recovery than scraping. No differences were seen between brushing and scraping the PVC and iron pipe coupons. Mean brushing and scraping recoveries from PVC coupons were more variable than mean recoveries from cement-lined and iron coupons. Spore retention differed between pipe materials and the presence of established biofilms also had an impact. Conditioned PVC coupons (with established biofilms) had significantly lower spore retention (31 +/- 11%) than conditioned cement-lined coupons (61 +/- 14%) and conditioned iron coupons (71 +/- 8%). PMID:20082033

  14. Sample Processing technique onboard ExoMars (MOMA) to analyze organic compounds by Gas Chromatography-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Buch, A.; Freissinet, C.; Sternberg, R.; Szopa, C.; Coll, P. J.; Brault, A.; Pinnick, V.; Siljeström, S.; Raulin, F.; Steininger, H.; Goesmann, F.; MOMA Team

    2011-12-01

    With the aim of separating and detecting organic compounds from Martian soil onboard the Mars Organic Molecule Analyzer (MOMA) experiment of the ExoMars 2018 upcoming joint ESA/NASA mission, we have developed three different space compatible sample preparation techniques compatible with space missions, able to extract and analyze by GC-MS a wide range of volatile and refractory compounds, including chirality analysis. Then, a sample processing utilizing three derivatization/extraction reactions has been carried out. The first reaction is based on a silyl reagent N-Methyl-N- (Tert-Butyldimethylsilyl)trifluoroacetamide (MTBSTFA) [1], the second one, N,N-Dimethylformamide Dimethylacetal (DMF-DMA) [2,3] is dedicated to the chirality detection and the third one is a thermochemolysis based on the use of tetramethylammoniumhydroxide (TMAH). The sample processing system is performed in an oven, dedicated to the MOMA experiment containing the solid sample (50-100mg). The internal temperature of the oven ranges from 20 to 900 °C. The extraction step is achieved by using thermodesorption in the range of 100 to 300°C for 5 to 20 min. Then, the chemical derivatization of the extracted compounds is performed directly on the soil sample by using a derivatyization capsule which contains a mixture of MTBSTFA-DMF or DMF-DMA solution when enantiomeric separation is required. By decreasing the polarity of the targeted molecules, this step allows their volatilization at a temperature below 250°C without any thermal degradation. Once derivatized, the volatile target molecules are trapped in a chemical trap and promptly desorbed into the gas chromatograph coupled to a mass spectrometer. Thermochemolysis is directly performed in the oven at 400°C during 5 min with a 25% (w/w) methanol solution of tetramethylammonium hydroxide (TMAH). Then, pyrolysis in the presence of TMAH allows both an efficient cleavage of polar bonds and the subsequent methylation of COOH, OH and NH2 groups, hence

  15. Investigation into alternative sample preparation techniques for the determination of heavy metals in stationary source emission samples collected on quartz filters.

    PubMed

    Goddard, Sharon L; Brown, Richard J C

    2014-01-01

    Monitoring stationary source emissions for heavy metals generally requires the use of quartz filters to collect samples because of the high temperature and high moisture sampling environment. The documentary standard method sample preparation technique in Europe, EN 14385, uses digestion in hydrofluoric acid and nitric acid (HF/HNO3) followed by complexing with boric acid (H3BO3) prior to analysis. However, the use of this method presents a number of problems, including significant instrumental drift during analysis caused by the matrix components, often leading to instrument breakdown and downtime for repairs, as well as posing significant health and safety risks. The aim of this work was to develop an alternative sample preparation technique for emissions samples on quartz filters. The alternative techniques considered were: (i) acid digestion in a fluoroboric acid (HBF4) and HNO3 mixture and (ii) acid extraction in an aqua regia (AR) mixture (HCl and HNO3). Assessment of the effectiveness of these options included determination of interferences and signal drift, as well as validating the different methods by measurement of matrix certified reference materials (CRMs), and comparing the results obtained from real test samples and sample blanks to determine limits of detection. The results showed that the HBF4/HNO3 mixture provides the most viable alternative to the documentary standard preparation technique. PMID:25407906

  16. Investigation into Alternative Sample Preparation Techniques for the Determination of Heavy Metals in Stationary Source Emission Samples Collected on Quartz Filters

    PubMed Central

    Goddard, Sharon L.; Brown, Richard J. C.

    2014-01-01

    Monitoring stationary source emissions for heavy metals generally requires the use of quartz filters to collect samples because of the high temperature and high moisture sampling environment. The documentary standard method sample preparation technique in Europe, EN 14385, uses digestion in hydrofluoric acid and nitric acid (HF/HNO3) followed by complexing with boric acid (H3BO3) prior to analysis. However, the use of this method presents a number of problems, including significant instrumental drift during analysis caused by the matrix components, often leading to instrument breakdown and downtime for repairs, as well as posing significant health and safety risks. The aim of this work was to develop an alternative sample preparation technique for emissions samples on quartz filters. The alternative techniques considered were: (i) acid digestion in a fluoroboric acid (HBF4) and HNO3 mixture and (ii) acid extraction in an aqua regia (AR) mixture (HCl and HNO3). Assessment of the effectiveness of these options included determination of interferences and signal drift, as well as validating the different methods by measurement of matrix certified reference materials (CRMs), and comparing the results obtained from real test samples and sample blanks to determine limits of detection. The results showed that the HBF4/HNO3 mixture provides the most viable alternative to the documentary standard preparation technique. PMID:25407906

  17. A New Fast, Reliable Technique for the Sampling of Dissolved Inorganic Carbon in Sea Ice

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Wang, F.; Rysgaard, S.; Barber, D. G.

    2015-12-01

    For a long time, sea ice was considered to act as a lid over seawater preventing CO2 exchange between the atmosphere and ocean. Recent observations suggest that sea ice can be an active source or a sink for CO2, although its magnitude is not very clear. The direct measurements on CO2 flux based on the chamber method and eddy covariance often do not agree with each other. It is therefore important to measure the dissolved inorganic carbon (DIC) stock in sea ice precisely in order to better understand the CO2 flux through sea ice. The challenges in sea ice DIC sampling is how to melt the ice core without being exposed to the air gaining or losing CO2. A common practice is to seal the ice core in a self-prepared gas-tight plastic bag and suck the air out of the bag gently using a syringe (together with a needle) through a valve mounted on one side of the bag. However, this method is time consuming (takes up to several minutes to suck the air out) and very often there is large headspace found in the bag after the ice melts due to the imperfect bag-preparation, which might affect the DIC concentration in melt ice-water. We developed a new technique by using a commercially available plastic bag with a vacuum sealer to seal the ice core. In comparison to syringe-based method, this technique is fast and easy to operate; it takes less than 10 seconds to vacuum and seal the bag all in one button with no headspace left in the bag. Experimental tests with replicate ice cores sealed by those two methods showed that there is no difference in the DIC concentration measured after these two methods, suggesting that there is no loss of DIC during the course of vacuum sealing. In addition, a time series experiment on DIC in melt ice-water stored in the new bag shows that when the samples were not poisoned, the DIC concentration remains unchanged for at least 3 days in the bag; while poisoned by HgCl2, there is no change in DIC for at least 21 days, indicating that this new bag is

  18. Planning and scheduling the Hubble Space Telescope: Practical application of advanced techniques

    NASA Technical Reports Server (NTRS)

    Miller, Glenn E.

    1994-01-01

    NASA's Hubble Space Telescope (HST) is a major astronomical facility that was launched in April, 1990. In late 1993, the first of several planned servicing missions refurbished the telescope, including corrections for a manufacturing flaw in the primary mirror. Orbiting above the distorting effects of the Earth's atmosphere, the HST provides an unrivaled combination of sensitivity, spectral coverage and angular resolution. The HST is arguably the most complex scientific observatory ever constructed and effective use of this valuable resource required novel approaches to astronomical observation and the development of advanced software systems including techniques to represent scheduling preferences and constraints, a constraint satisfaction problem (CSP) based scheduler and a rule based planning system. This paper presents a discussion of these systems and the lessons learned from operational experience.

  19. Planning and scheduling the Hubble Space Telescope: Practical application of advanced techniques

    NASA Astrophysics Data System (ADS)

    Miller, Glenn E.

    1994-10-01

    NASA's Hubble Space Telescope (HST) is a major astronomical facility that was launched in April, 1990. In late 1993, the first of several planned servicing missions refurbished the telescope, including corrections for a manufacturing flaw in the primary mirror. Orbiting above the distorting effects of the Earth's atmosphere, the HST provides an unrivaled combination of sensitivity, spectral coverage and angular resolution. The HST is arguably the most complex scientific observatory ever constructed and effective use of this valuable resource required novel approaches to astronomical observation and the development of advanced software systems including techniques to represent scheduling preferences and constraints, a constraint satisfaction problem (CSP) based scheduler and a rule based planning system. This paper presents a discussion of these systems and the lessons learned from operational experience.

  20. Vibrio parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques

    PubMed Central

    Letchumanan, Vengadesh; Chan, Kok-Gan; Lee, Learn-Han

    2014-01-01

    Vibrio parahaemolyticus is a Gram-negative halophilic bacterium that is found in estuarine, marine and coastal environments. V. parahaemolyticus is the leading causal agent of human acute gastroenteritis following the consumption of raw, undercooked, or mishandled marine products. In rare cases, V. parahaemolyticus causes wound infection, ear infection or septicaemia in individuals with pre-existing medical conditions. V. parahaemolyticus has two hemolysins virulence factors that are thermostable direct hemolysin (tdh)-a pore-forming protein that contributes to the invasiveness of the bacterium in humans, and TDH-related hemolysin (trh), which plays a similar role as tdh in the disease pathogenesis. In addition, the bacterium is also encodes for adhesions and type III secretion systems (T3SS1 and T3SS2) to ensure its survival in the environment. This review aims at discussing the V. parahaemolyticus growth and characteristics, pathogenesis, prevalence and advances in molecular identification techniques. PMID:25566219

  1. Effects of age, system experience, and navigation technique on driving with an advanced traveler information system.

    PubMed

    Dingus, T A; Hulse, M C; Mollenhauer, M A; Fleischman, R N; McGehee, D V; Manakkal, N

    1997-06-01

    This paper explores the effects of age, system experience, and navigation technique on driving, navigation performance, and safety for drivers who used TravTek, an Advanced Traveler Information System. The first two studies investigated various route guidance configurations on the road in a specially equipped instrumented vehicle with an experimenter present. The third was a naturalistic quasi-experimental field study that collected data unobtrusively from more than 1200 TravTek rental car drivers with no in-vehicle experimenter. The results suggest that with increased experience, drivers become familiar with the system and develop strategies for substantially more efficient and safer use. The results also showed that drivers over age 65 had difficulty driving and navigating concurrently. They compensated by driving slowly and more cautiously. Despite this increased caution, older drivers made more safety-related errors than did younger drivers. The results also showed that older drivers benefited substantially from a well-designed ATIS driver interface. PMID:9302887

  2. Visualisation of Ecohydrological Processes and Relationships for Teaching Using Advanced Techniques

    NASA Astrophysics Data System (ADS)

    Guan, H.; Wang, H.; Gutierrez-Jurado, H. A.; Yang, Y.; Deng, Z.

    2014-12-01

    Ecohydrology is an emerging discipline with a rapid research growth. This calls for enhancing ecohydrology education in both undergraduate and postgraduate levels. In other hydrology disciplines, hydrological processes are commonly observed in environments (e.g. streamflow, infiltration) or easily demonstrated in labs (e.g. Darcy's column). It is relatively difficult to demonstrate ecohydrological concepts and processes (e.g. soil-vegetation water relationship) in teaching. In this presentation, we report examples of using some advanced techniques to illustrate ecohydrological concepts, relationships, and processes, with measurements based on a native vegetation catchment in South Australia. They include LIDAR images showing the relationship between topography-control hdyroclimatic conditions and vegetation distribution, electrical resistivity tomography derived images showing stem structures, continuous stem water potential monitoring showing diurnal variations of plant water status, root zone moisture depletion during dry spells, and responses to precipitation inputs, and incorporating sapflow measurements to demonstrate environmental stress on plant stomatal behaviours.

  3. Integrating advanced materials simulation techniques into an automated data analysis workflow at the Spallation Neutron Source

    SciTech Connect

    Borreguero Calvo, Jose M; Campbell, Stuart I; Delaire, Olivier A; Doucet, Mathieu; Goswami, Monojoy; Hagen, Mark E; Lynch, Vickie E; Proffen, Thomas E; Ren, Shelly; Savici, Andrei T; Sumpter, Bobby G

    2014-01-01

    This presentation will review developments on the integration of advanced modeling and simulation techniques into the analysis step of experimental data obtained at the Spallation Neutron Source. A workflow framework for the purpose of refining molecular mechanics force-fields against quasi-elastic neutron scattering data is presented. The workflow combines software components to submit model simulations to remote high performance computers, a message broker interface for communications between the optimizer engine and the simulation production step, and tools to convolve the simulated data with the experimental resolution. A test application shows the correction to a popular fixed-charge water model in order to account polarization effects due to the presence of solvated ions. Future enhancements to the refinement workflow are discussed. This work is funded through the DOE Center for Accelerating Materials Modeling.

  4. Optimizing the implementation of the target motion sampling temperature treatment technique - How fast can it get?

    SciTech Connect

    Tuomas, V.; Jaakko, L.

    2013-07-01

    This article discusses the optimization of the target motion sampling (TMS) temperature treatment method, previously implemented in the Monte Carlo reactor physics code Serpent 2. The TMS method was introduced in [1] and first practical results were presented at the PHYSOR 2012 conference [2]. The method is a stochastic method for taking the effect of thermal motion into account on-the-fly in a Monte Carlo neutron transport calculation. It is based on sampling the target velocities at collision sites and then utilizing the 0 K cross sections at target-at-rest frame for reaction sampling. The fact that the total cross section becomes a distributed quantity is handled using rejection sampling techniques. The original implementation of the TMS requires 2.0 times more CPU time in a PWR pin-cell case than a conventional Monte Carlo calculation relying on pre-broadened effective cross sections. In a HTGR case examined in this paper the overhead factor is as high as 3.6. By first changing from a multi-group to a continuous-energy implementation and then fine-tuning a parameter affecting the conservativity of the majorant cross section, it is possible to decrease the overhead factors to 1.4 and 2.3, respectively. Preliminary calculations are also made using a new and yet incomplete optimization method in which the temperature of the basis cross section is increased above 0 K. It seems that with the new approach it may be possible to decrease the factors even as low as 1.06 and 1.33, respectively, but its functionality has not yet been proven. Therefore, these performance measures should be considered preliminary. (authors)

  5. PREFACE: 14th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2011)

    NASA Astrophysics Data System (ADS)

    Teodorescu, Liliana; Britton, David; Glover, Nigel; Heinrich, Gudrun; Lauret, Jérôme; Naumann, Axel; Speer, Thomas; Teixeira-Dias, Pedro

    2012-06-01

    ACAT2011 This volume of Journal of Physics: Conference Series is dedicated to scientific contributions presented at the 14th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2011) which took place on 5-7 September 2011 at Brunel University, UK. The workshop series, which began in 1990 in Lyon, France, brings together computer science researchers and practitioners, and researchers from particle physics and related fields in order to explore and confront the boundaries of computing and of automatic data analysis and theoretical calculation techniques. It is a forum for the exchange of ideas among the fields, exploring and promoting cutting-edge computing, data analysis and theoretical calculation techniques in fundamental physics research. This year's edition of the workshop brought together over 100 participants from all over the world. 14 invited speakers presented key topics on computing ecosystems, cloud computing, multivariate data analysis, symbolic and automatic theoretical calculations as well as computing and data analysis challenges in astrophysics, bioinformatics and musicology. Over 80 other talks and posters presented state-of-the art developments in the areas of the workshop's three tracks: Computing Technologies, Data Analysis Algorithms and Tools, and Computational Techniques in Theoretical Physics. Panel and round table discussions on data management and multivariate data analysis uncovered new ideas and collaboration opportunities in the respective areas. This edition of ACAT was generously sponsored by the Science and Technology Facility Council (STFC), the Institute for Particle Physics Phenomenology (IPPP) at Durham University, Brookhaven National Laboratory in the USA and Dell. We would like to thank all the participants of the workshop for the high level of their scientific contributions and for the enthusiastic participation in all its activities which were, ultimately, the key factors in the

  6. Robotic-assisted laparoscopic anterior pelvic exenteration in patients with advanced ovarian cancer: Farghaly's technique.

    PubMed

    Farghaly, S A

    2010-01-01

    The safety and efficacy of the robotic-assisted laparoscopic approach to anterior pelvic exenteration is evaluated in patients with advanced ovarian cancer undergoing anterior pelvic exenteration for involvement of the urinary bladder during primary cytoreduction surgery. All patients undergo preoperative lab work, imaging studies and bowel preparation prior to surgery. The Davinci surgical system is used to perform urinary cystectomy, total hysterectomy, bilateral salpingo-oophorectomy, bilateral pelvic adenectomy (including obturator, hypogastic, external iliac, and common iliac lymph nodes). In addition, debulking to less than 1 cm is performed. The anterior pelvic exenteration procedure involves wide perivesical dissection. Then the robot is locked, and ileal conduit is performed via a 6 cm lower midline incision. Operative time can be maintained in 4.6 hours with a mean blood loss of 215 ml and hospital stay of five days. Farghaly's technique of robotic-assisted laparoscopic anterior pelvic exenteration in patients with advanced ovarian cancer is safe, feasible, and cost-effective with acceptable operative, pathological and short- and long-term clinical outcomes. It retains the advantage of minimally invasive surgery. PMID:20882872

  7. Characterization of water movement in a reconstructed slope in Keokuk, Iowa, using advanced geophysical techniques

    NASA Astrophysics Data System (ADS)

    Schettler, Megan Elizabeth

    This project addresses the topic of evaluating water movement inside a hillslope using a combination of conventional and advanced geophysical techniques. While slope dynamics have been widely studied, ground water movement in hills is still poorly understood. A combination of piezometers, ground-penetrating radar (GPR), and electrical resistivity (ER) surveys were used in an effort to monitor fluctuations in the subsurface water level in a reengineered slope near Keokuk, Iowa. This information, integrated with rainfall data, formed a picture of rainfall-groundwater response dynamics. There were two hypotheses: 1) that the depth and fluctuation of the water table could be accurately sensed using a combination of monitoring wells, ground-penetrating radar and resistivity surveys; and 2) that the integration of data from the instrumentation array and the geophysical surveys would enable the characterization of water movement in the slope in response to rainfall events. This project also sought to evaluate the utility and limitations of using these techniques in landslide and hydrology studies, advance our understanding of hillslope hydrology, and improve our capacity to better determine when slope failure may occur. Results from monitoring wells, stratigraphy, and resistivity surveys at the study site indicated the presence of a buried swale, channelizing subsurface storm flow and creating variations in groundwater. Although there was some success in defining hydrologic characteristics and response of the slope using this integrated approach, it was determined that GPR was ultimately not well suited to this site. However, the use of GPR as part of an integrated approach to study hillslope hydrology still appears to hold potential, and future work to further evaluate the applicability and potential of this approach would be warranted.

  8. Novel Techniques for Optical Characterization of Single-Walled Carbon Nanotube Samples

    NASA Astrophysics Data System (ADS)

    Streit, Jason K.

    Photoluminescence spectroscopy has emerged as a powerful tool for characterizing the structure and optical properties of single-walled carbon nanotube (SWCNT) samples. This thesis will discuss the development and application of new fluorescence-based methods designed to fully characterize bulk SWCNT suspensions by length and structural composition. An efficient new method is demonstrated to measure length distributions of aqueous SWCNT samples by analyzing the diffusional motions of many individual nanotubes captured in sequences of short-wave infrared (SWIR) fluorescence images. This method, termed length analysis by nanotube diffusion (LAND), provides distributions in very good agreement with those obtained by conventional atomic force microscopy analysis. A novel microscopy technique is described to measure the peak emission wavelengths of many individual nanotubes without the use of a spectrometer. We exploit the chromatic aberration of an objective lens to deduce emission wavelength from focal depth. Spectral measurements successfully reproduce bulk emission spectra and also provide relative abundances of specific SWCNT structures. A new approach is applied to find nanotube concentrations by directly counting SWCNTs in SWIR fluorescence images. Concentrations are used to rigorously determine absolute absorption cross sections for the E11 and E22 electronic transitions of the (6,5), (7,5), (7,6), (8,6), (8,7) and (9,7) SWCNT species. It is found that the absorption cross section per carbon atom decreases with increasing nanotube diameter. Finally, the spectral analysis of fluorescence fluctuations (SAFF) method is developed and used to characterize SWCNT samples by structural composition, sample quality, and aggregation state. Fluorescence spectra are sequentially measured from small volumes of slowly flowing dilute samples and the intensity fluctuations resulting from small statistical variations in nanotube concentration are analyzed. The ratio of the squared

  9. Analytical techniques for the detection and identification of chemical warfare materials from environmental samples

    SciTech Connect

    Beaudry, W.T.; Weimaster, J.F.

    1995-06-01

    The detection and identification of chemical warfare (CW) material in diverse and complex matrices has become increasingly important to support the environmental clean-up of military and industrial sites that were historically used in the research, production, use, storage and/or demilitarization of chemical weapons. Reliable and defensible identification of hazardous materials (HM) is necessary to comply with the increasingly stringent regulations imposed by local, state, and federal agencies which govern handling, treatment, storage, and disposal of HM. In addition, before sites can be reutilized, existing HM must be properly identified so that the proper methods of removal, treatment and disposal can be determined. An overview of sample preparation and analytical techniques for the detection and identification of CW materials is presented in this paper.

  10. Ambient light cancellation in photoplethysmogram application using alternating sampling and charge redistribution technique.

    PubMed

    Kim, Jongpal; Lee, Takhyung; Kim, Jihoon; Ko, Hyoungho

    2015-01-01

    To overcome a large DC offset, ambient light interference, and optical path variation, a robust PPG readout chip is fabricated using 0.13-μm CMOS process. Against the large DC offset, a saturation detection and current feedback method can compensate a current of up to 30 μA. To be robust against optical path variation, an automatic emitting light compensation method is adopted. To remove the ambient light interference, we propose an alternating sampling and charge redistribution technique, in which no additional power is consumed, and only three differential switches and one capacitor are required. The PPG readout channel consumes 26 μW and has a input referred current noise of 260 pArms. PMID:26737767

  11. Simulative Investigation on Spectral Efficiency of Unipolar Codes based OCDMA System using Importance Sampling Technique

    NASA Astrophysics Data System (ADS)

    Farhat, A.; Menif, M.; Rezig, H.

    2013-09-01

    This paper analyses the spectral efficiency of Optical Code Division Multiple Access (OCDMA) system using Importance Sampling (IS) technique. We consider three configurations of OCDMA system namely Direct Sequence (DS), Spectral Amplitude Coding (SAC) and Fast Frequency Hopping (FFH) that exploits the Fiber Bragg Gratings (FBG) based encoder/decoder. We evaluate the spectral efficiency of the considered system by taking into consideration the effect of different families of unipolar codes for both coherent and incoherent sources. The results show that the spectral efficiency of OCDMA system with coherent source is higher than the incoherent case. We demonstrate also that DS-OCDMA outperforms both others in terms of spectral efficiency in all conditions.

  12. Effective gene selection method with small sample sets using gradient-based and point injection techniques.

    PubMed

    Huang, D; Chow, Tommy W S

    2007-01-01

    Microarray gene expression data usually consist of a large amount of genes. Among these genes, only a small fraction is informative for performing cancer diagnostic test. This paper focuses on effective identification of informative genes. We analyze gene selection models from the perspective of optimization theory. As a result, a new strategy is designed to modify conventional search engines. Also, as overfitting is likely to occur in microarray data because of their small sample set, a point injection technique is developed to address the problem of overfitting. The proposed strategies have been evaluated on three kinds of cancer diagnosis. Our results show that the proposed strategies can improve the performance of gene selection substantially. The experimental results also indicate that the proposed methods are very robust under all the investigated cases. PMID:17666766

  13. Correlative Microscopy Techniques for the Analysis of Particles in Safeguards Environmental Samples

    NASA Astrophysics Data System (ADS)

    Dzigal, N.; Chinea-Cano, E.

    2015-10-01

    This paper presents a novel approach to environmental particle analysis for safeguards by means of a combination of micro-analytical techniques. It includes the tandem utilization of two separate light microscopes, a scanning electron microscope and a femtosecond laser-ablation ICP-MS. These are: a light microscopy automated particle relocation device (Zeiss Z2m); an optical-microscopy-based laser micro-dissection system (IX83 MMI+Olympus); a focussed ion beam scanning electron microscope equipped with a time-of-flight mass spectrometer extension (Tescan Lyra3) and a fs LA-ICP-MS (J200 from Applied Spectra Inc. and Thermofisher Scientific iCap Q). The samples examined in this contribution are analysed for their nuclear material signatures, in particular the presence of uranium isotopes.

  14. Up-conversion single-photon detector using multi-wavelength sampling techniques.

    PubMed

    Ma, Lijun; Bienfang, Joshua C; Slattery, Oliver; Tang, Xiao

    2011-03-14

    The maximum achievable data-rate of a quantum communication system can be critically limited by the efficiency and temporal resolution of the system's single-photon detectors. Frequency up-conversion technology can be used to increase detection efficiency for IR photons. In this paper we describe a scheme to improve the temporal resolution of an up-conversion single-photon detector using multi-wavelength optical-sampling techniques, allowing for increased transmission rates in single-photon communications systems. We experimentally demonstrate our approach with an up-conversion detector using two spectrally and temporally distinct pump pulses, and show that it allows for high-fidelity single-photon detection at twice the rate supported by a conventional single-pump up-conversion detector. We also discuss the limiting factors of this approach and identify important performance-limiting trade offs. PMID:21445185

  15. A Coordinated Focused Ion Beam/Ultramicrotomy Technique for Serial Sectioning of Hayabusa Particles and Other Returned Samples

    NASA Technical Reports Server (NTRS)

    Berger, E. L.; Keller, L. P.

    2014-01-01

    Recent sample return missions, such as NASA's Stardust mission to comet 81P/Wild 2 and JAXA's Hayabusa mission to asteroid 25143 Itokawa, have returned particulate samples (typically 5-50 µm) that pose tremendous challenges to coordinated analysis using a variety of nano- and micro-beam techniques. The ability to glean maximal information from individual particles has become increasingly important and depends critically on how the samples are prepared for analysis. This also holds true for other extraterrestrial materials, including interplanetary dust particles, micrometeorites and lunar regolith grains. Traditionally, particulate samples have been prepared using microtomy techniques (e.g., [1]). However, for hard mineral particles ?20 µm, microtome thin sections are compromised by severe chatter and sample loss. For these difficult samples, we have developed a hybrid technique that combines traditional ultramicrotomy with focused ion beam (FIB) techniques, allowing for the in situ investigation of grain surfaces and interiors. Using this method, we have increased the number of FIB-SEM prepared sections that can be recovered from a particle with dimensions on the order of tens of µms. These sections can be subsequently analyzed using a variety of electron beam techniques. Here, we demonstrate this sample preparation technique on individual lunar regolith grains in order to study their space-weathered surfaces. We plan to extend these efforts to analyses of individual Hayabusa samples.

  16. Synchrotron X-ray measurement techniques for thermal barrier coated cylindrical samples under thermal gradients

    SciTech Connect

    Siddiqui, Sanna F.; Knipe, Kevin; Manero, Albert; Raghavan, Seetha; Meid, Carla; Wischek, Janine; Bartsch, Marion; Okasinski, John; Almer, Jonathan; Karlsson, Anette M.

    2013-08-15

    Measurement techniques to obtain accurate in situ synchrotron strain measurements of thermal barrier coating systems (TBCs) applied to hollow cylindrical specimens are presented in this work. The Electron Beam Physical Vapor Deposition coated specimens with internal cooling were designed to achieve realistic temperature gradients over the TBC coated material such as that occurring in the turbine blades of aeroengines. Effects of the circular cross section on the x-ray diffraction (XRD) measurements in the various layers, including the thermally grown oxide, are investigated using high-energy synchrotron x-rays. Multiple approaches for beam penetration including collection, tangential, and normal to the layers, along with variations in collection parameters are compared for their ability to attain high-resolution XRD data from the internal layers. This study displays the ability to monitor in situ, the response of the internal layers within the TBC, while implementing a thermal gradient across the thickness of the coated sample. The thermal setup maintained coating surface temperatures in the range of operating conditions, while monitoring the substrate cooling, for a controlled thermal gradient. Through variation in measurement location and beam parameters, sufficient intensities are obtained from the internal layers which can be used for depth resolved strain measurements. Results are used to establish the various techniques for obtaining XRD measurements through multi-layered coating systems and their outcomes will pave the way towards goals in achieving realistic in situ testing of these coatings.

  17. Determination of steroid hormones in biological and environmental samples using green microextraction techniques: an overview.

    PubMed

    Aufartová, Jana; Mahugo-Santana, Cristina; Sosa-Ferrera, Zoraida; Santana-Rodríguez, José Juan; Nováková, Lucie; Solich, Petr

    2011-10-17

    Residues of steroid hormones have become a cause for concern because they can affect the biological activity of non-target organisms. Steroid hormones are a potential risk for wildlife and humans through the consumption of contaminated food or water. Their determination requires extraction and clean-up steps, prior to detection, to reach low concentration levels. In recent years, a great effort has been made to develop new analytical methodologies, such as microextraction techniques, that reduce environmental pollution. Researchers have modified old methods to incorporate procedures that use less-hazardous chemicals or that use smaller amounts of them. They are able to do direct analysis using miniaturised equipment and reduced amounts of solvents and wastes. These accomplishments are the main objectives of green analytical chemistry. In this overview, we focus on microextraction techniques for the determination of steroid hormones in biological (e.g., human urine, human serum, fish, shrimp and prawn tissue and milk) and environmental (e.g., wastewaters, surface waters, tap waters, river waters, sewage sludges, marine sediments and river sediments) samples. We comment on the most recent applications in sorptive-microextraction modes, such as solid phase microextraction (SPME) with molecularly imprinted polymers (MIPs), in-tube solid-phase microextraction (IT-SPME), stir-bar sorptive extraction (SBSE) and microextraction in packed sorbent (MEPS). We also describe liquid-phase microextraction (LPME) approaches reported in the literature that are applied to the determination of steroid hormones. PMID:21907019

  18. Synchrotron X-ray measurement techniques for thermal barrier coated cylindrical samples under thermal gradients.

    PubMed

    Siddiqui, Sanna F; Knipe, Kevin; Manero, Albert; Meid, Carla; Wischek, Janine; Okasinski, John; Almer, Jonathan; Karlsson, Anette M; Bartsch, Marion; Raghavan, Seetha

    2013-08-01

    Measurement techniques to obtain accurate in situ synchrotron strain measurements of thermal barrier coating systems (TBCs) applied to hollow cylindrical specimens are presented in this work. The Electron Beam Physical Vapor Deposition coated specimens with internal cooling were designed to achieve realistic temperature gradients over the TBC coated material such as that occurring in the turbine blades of aeroengines. Effects of the circular cross section on the x-ray diffraction (XRD) measurements in the various layers, including the thermally grown oxide, are investigated using high-energy synchrotron x-rays. Multiple approaches for beam penetration including collection, tangential, and normal to the layers, along with variations in collection parameters are compared for their ability to attain high-resolution XRD data from the internal layers. This study displays the ability to monitor in situ, the response of the internal layers within the TBC, while implementing a thermal gradient across the thickness of the coated sample. The thermal setup maintained coating surface temperatures in the range of operating conditions, while monitoring the substrate cooling, for a controlled thermal gradient. Through variation in measurement location and beam parameters, sufficient intensities are obtained from the internal layers which can be used for depth resolved strain measurements. Results are used to establish the various techniques for obtaining XRD measurements through multi-layered coating systems and their outcomes will pave the way towards goals in achieving realistic in situ testing of these coatings. PMID:24007076

  19. Development of techniques for advanced optical contamination measurement with internal reflection spectroscopy, phase 1, volume 1

    NASA Technical Reports Server (NTRS)

    Hayes, J. D.

    1972-01-01

    The feasibility of monitoring volatile contaminants in a large space simulation chamber using techniques of internal reflection spectroscopy was demonstrated analytically and experimentally. The infrared spectral region was selected as the operational spectral range in order to provide unique identification of the contaminants along with sufficient sensitivity to detect trace contaminant concentrations. It was determined theoretically that a monolayer of the contaminants could be detected and identified using optimized experimental procedures. This ability was verified experimentally. Procedures were developed to correct the attenuated total reflectance spectra for thick sample distortion. However, by using two different element designs the need for such correction can be avoided.

  20. Advancements in sensing and perception using structured lighting techniques :an LDRD final report.

    SciTech Connect

    Novick, David Keith; Padilla, Denise D.; Davidson, Patrick A. Jr.; Carlson, Jeffrey J.

    2005-09-01

    This report summarizes the analytical and experimental efforts for the Laboratory Directed Research and Development (LDRD) project entitled ''Advancements in Sensing and Perception using Structured Lighting Techniques''. There is an ever-increasing need for robust, autonomous ground vehicles for counterterrorism and defense missions. Although there has been nearly 30 years of government-sponsored research, it is undisputed that significant advancements in sensing and perception are necessary. We developed an innovative, advanced sensing technology for national security missions serving the Department of Energy, the Department of Defense, and other government agencies. The principal goal of this project was to develop an eye-safe, robust, low-cost, lightweight, 3D structured lighting sensor for use in broad daylight outdoor applications. The market for this technology is wide open due to the unavailability of such a sensor. Currently available laser scanners are slow, bulky and heavy, expensive, fragile, short-range, sensitive to vibration (highly problematic for moving platforms), and unreliable for outdoor use in bright sunlight conditions. Eye-safety issues are a primary concern for currently available laser-based sensors. Passive, stereo-imaging sensors are available for 3D sensing but suffer from several limitations : computationally intensive, require a lighted environment (natural or man-made light source), and don't work for many scenes or regions lacking texture or with ambiguous texture. Our approach leveraged from the advanced capabilities of modern CCD camera technology and Center 6600's expertise in 3D world modeling, mapping, and analysis, using structured lighting. We have a diverse customer base for indoor mapping applications and this research extends our current technology's lifecycle and opens a new market base for outdoor 3D mapping. Applications include precision mapping, autonomous navigation, dexterous manipulation, surveillance and

  1. Investigation to advance prediction techniques of the low-speed aerodynamics of V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Maskew, B.; Strash, D.; Nathman, J.; Dvorak, F. A.

    1985-01-01

    A computer program, VSAERO, has been applied to a number of V/STOL configurations with a view to advancing prediction techniques for the low-speed aerodynamic characteristics. The program couples a low-order panel method with surface streamline calculation and integral boundary layer procedures. The panel method--which uses piecewise constant source and doublet panels-includes an iterative procedure for wake shape and models boundary layer displacement effect using the source transpiration technique. Certain improvements to a basic vortex tube jet model were installed in the code prior to evaluation. Very promising results were obtained for surface pressures near a jet issuing at 90 deg from a flat plate. A solid core model was used in the initial part of the jet with a simple entrainment model. Preliminary representation of the downstream separation zone significantly improve the correlation. The program accurately predicted the pressure distribution inside the inlet on the Grumman 698-411 design at a range of flight conditions. Furthermore, coupled viscous/potential flow calculations gave very close correlation with experimentally determined operational boundaries dictated by the onset of separation inside the inlet. Experimentally observed degradation of these operational boundaries between nacelle-alone tests and tests on the full configuration were also indicated by the calculation. Application of the program to the General Dynamics STOL fighter design were equally encouraging. Very close agreement was observed between experiment and calculation for the effects of power on pressure distribution, lift and lift curve slope.

  2. Advancing the Frontiers in Nanocatalysis, Biointerfaces, and Renewable Energy Conversion by Innovations of Surface Techniques

    SciTech Connect

    Somorjai, G.A.; Frei, H.; Park, J.Y.

    2009-07-23

    The challenge of chemistry in the 21st century is to achieve 100% selectivity of the desired product molecule in multipath reactions ('green chemistry') and develop renewable energy based processes. Surface chemistry and catalysis play key roles in this enterprise. Development of in situ surface techniques such as high-pressure scanning tunneling microscopy, sum frequency generation (SFG) vibrational spectroscopy, time-resolved Fourier transform infrared methods, and ambient pressure X-ray photoelectron spectroscopy enabled the rapid advancement of three fields: nanocatalysts, biointerfaces, and renewable energy conversion chemistry. In materials nanoscience, synthetic methods have been developed to produce monodisperse metal and oxide nanoparticles (NPs) in the 0.8-10 nm range with controlled shape, oxidation states, and composition; these NPs can be used as selective catalysts since chemical selectivity appears to be dependent on all of these experimental parameters. New spectroscopic and microscopic techniques have been developed that operate under reaction conditions and reveal the dynamic change of molecular structure of catalysts and adsorbed molecules as the reactions proceed with changes in reaction intermediates, catalyst composition, and oxidation states. SFG vibrational spectroscopy detects amino acids, peptides, and proteins adsorbed at hydrophobic and hydrophilic interfaces and monitors the change of surface structure and interactions with coadsorbed water. Exothermic reactions and photons generate hot electrons in metal NPs that may be utilized in chemical energy conversion. The photosplitting of water and carbon dioxide, an important research direction in renewable energy conversion, is discussed.

  3. Updates in advanced diffusion-weighted magnetic resonance imaging techniques in the evaluation of prostate cancer

    PubMed Central

    Vargas, Hebert Alberto; Lawrence, Edward Malnor; Mazaheri, Yousef; Sala, Evis

    2015-01-01

    Diffusion-weighted magnetic resonance imaging (DW-MRI) is considered part of the standard imaging protocol for the evaluation of patients with prostate cancer. It has been proven valuable as a functional tool for qualitative and quantitative analysis of prostate cancer beyond anatomical MRI sequences such as T2-weighted imaging. This review discusses ongoing controversies in DW-MRI acquisition, including the optimal number of b-values to be used for prostate DWI, and summarizes the current literature on the use of advanced DW-MRI techniques. These include intravoxel incoherent motion imaging, which better accounts for the non-mono-exponential behavior of the apparent diffusion coefficient as a function of b-value and the influence of perfusion at low b-values. Another technique is diffusion kurtosis imaging (DKI). Metrics from DKI reflect excess kurtosis of tissues, representing its deviation from Gaussian diffusion behavior. Preliminary results suggest that DKI findings may have more value than findings from conventional DW-MRI for the assessment of prostate cancer. PMID:26339460

  4. Advanced Modeling Techniques to Study Anthropogenic Influences on Atmospheric Chemical Budgets

    NASA Technical Reports Server (NTRS)

    Mathur, Rohit

    1997-01-01

    This research work is a collaborative effort between research groups at MCNC and the University of North Carolina at Chapel Hill. The overall objective of this research is to improve the level of understanding of the processes that determine the budgets of chemically and radiatively active compounds in the atmosphere through development and application of advanced methods for calculating the chemical change in atmospheric models. The research performed during the second year of this project focused on four major aspects: (1) The continued development and refinement of multiscale modeling techniques to address the issue of the disparate scales of the physico-chemical processes that govern the fate of atmospheric pollutants; (2) Development and application of analysis methods utilizing process and mass balance techniques to increase the interpretive powers of atmospheric models and to aid in complementary analysis of model predictions and observations; (3) Development of meteorological and emission inputs for initial application of the chemistry/transport model over the north Atlantic region; and, (4) The continued development and implementation of a totally new adaptive chemistry representation that changes the details of what is represented as the underlying conditions change.

  5. Development of Advanced In-Situ Techniques for Chemistry Monitoring and Corrosion Mitigation in SCWO Environments

    SciTech Connect

    Macdonald, D. D.; Lvov, S. N.

    2000-03-31

    This project is developing sensing technologies and corrosion monitoring techniques for use in super critical water oxidation (SCWO) systems to reduce the volume of mixed low-level nuclear waste by oxidizing organic components in a closed cycle system where CO2 and other gaseous oxides are produced, leaving the radioactive elements concentrated in ash. The technique uses water at supercritical temperatures under highly oxidized conditions by maintaining a high fugacity of molecular oxygen in the system, which causes high corrosion rates of even the most corrosive resistant reactor materials. This project significantly addresses the high corrosion shortcoming through development of (a) advanced electrodes and sensors for in situ potentiometric monitoring of pH in high subcritical and supercritical aqueous solutions, (b) an approach for evaluating the association constants for 1-1 aqueous electrolytes using a flow-through electrochemical thermocell; (c) an electrochemical noise sensor for the in situ measurement of corrosion rate in subcritical and supercritical aqueous systems; (d) a model for estimating the effect of pressure on reaction rates, including corrosion reactions, in high subcritical and supercritical aqueous systems. The project achieved all objectives, except for installing some of the sensors into a fully operating SCWO system.

  6. Advanced system identification techniques for wind turbine structures with special emphasis on modal parameters

    SciTech Connect

    Bialasiewicz, J.T.

    1995-06-01

    The goal of this research is to develop advanced system identification techniques that can be used to accurately measure the frequency response functions of a wind-turbine structure immersed in wind noise. To allow for accurate identification, the authors have developed a special test signal called the Pseudo-Random Binary Sequence (PRBS). The Matlab program that generates this signal allows the user to interactively tailor its parameters for the frequency range of interest based on the response of the wind turbine under test. By controlling NREL`s Mobile Hydraulic Shaker System, which is attached to the wind turbine structure, the PRBS signal produces the wide-band excitation necessary to perform system identification in the presence of wind noise. The techniques presented here will enable researchers to obtain modal parameters from an operating wind turbine, including frequencies, damping coefficients, and mode shapes. More importantly, the algorithms they have developed and tested (so far using input-output data from a simulated structure) permit state-space representation of the system under test, particularly the modal state space representation. This is the only system description that reveals the internal behavior the system, such as the interaction between the physical parameters, and which, in contrast to transfer functions, is valid for non-zero initial conditions.

  7. Advanced 3D-Sonographic Imaging as a Precise Technique to Evaluate Tumor Volume

    PubMed Central

    Pflanzer, R.; Hofmann, M.; Shelke, A.; Habib, A.; Derwich, W.; Schmitz-Rixen, T.; Bernd, A.; Kaufmann, R.; Bereiter-Hahn, J.

    2014-01-01

    Determination of tumor volume in subcutaneously inoculated xenograft models is a standard procedure for clinical and preclinical evaluation of tumor response to treatment. Practitioners frequently use a hands-on caliper method in conjunction with a simplified formula to assess tumor volume. Non-invasive and more precise techniques as investigation by MR or (μ)CT exist but come with various adverse effects in terms of radiation, complex setup or elevated cost of investigations. Therefore, we propose an advanced three-dimensional sonographic imaging technique to determine small tumor volumes in xenografts with high precision and minimized observer variability. We present a study on xenograft carcinoma tumors from which volumes and shapes were calculated with the standard caliper method as well as with a clinically available three-dimensional ultrasound scanner and subsequent processing software. Statistical analysis reveals the suitability of this non-invasive approach for the purpose of a quick and precise calculation of tumor volume in small rodents. PMID:25500076

  8. Improving Microchip Capillary Electrophoresis with Electrochemical Detection Using a Bubble Cell and Sample Stacking Techniques

    PubMed Central

    Guan, Qian; Henry, Charles S.

    2010-01-01

    Two efforts to improve the sensitivity and limits of detection for MCE with electrochemical detection are presented here. One is the implementation of a capillary expansion (bubble cell) at the detection zone to increase the exposed working electrode surface area. Bubble cell widths were varied from 1× to 10× the separation channel width (50 μm) to investigate the effects of electrode surface area on detection sensitivity, LOD, and separation efficiency. Improved detection sensitivity and decreased detection limits were obtained with increased bubble cell width, and LODs of dopamine and catechol detected in a 5× bubble cell were 25 nM and 50 nM, respectively. Meanwhile, fluorescent imaging results demonstrated ~8% and ~12% loss in separation efficiency in 4× and 5× bubble cell, respectively. Another effort for reducing the LOD involves using field amplified sample injection (FASI) for gated injection and field amplified sample stacking (FASS) for hydrodynamic injection. Stacking effects are shown for both methods using amperometric detection and pulsed amperometric detection (PAD). The LODs of dopamine in a 4× bubble cell were 8 nM and 20 nM using FASI and FASS, respectively. However, improved LODs were not obtained for anionic analytes using either stacking technique. PMID:19802848

  9. Sampled-Data Techniques Applied to a Digital Controller for an Altitude Autopilot

    NASA Technical Reports Server (NTRS)

    Schmidt, Stanley F.; Harper, Eleanor V.

    1959-01-01

    Sampled-data theory, using the Z transformation, is applied to the design of a digital controller for an aircraft-altitude autopilot. Particular attention is focused on the sensitivity of the design to parameter variations and the abruptness of the response, that is, the normal acceleration required to carry out a transient maneuver. Consideration of these two characteristics of the system has shown that the finite settling time design method produces an unacceptable system, primarily because of the high sensitivity of the response to parameter variations, although abruptness can be controlled by increasing the sampling period. Also demonstrated is the importance of having well-damped poles or zeros if cancellation is attempted in the design methods. A different method of smoothing the response and obtaining a design which is not excessively sensitive is proposed, and examples are carried through to demonstrate the validity of the procedure. This method is based on design concepts of continuous systems, and it is shown that if no pole-zero cancellations are allowed in the design, one can obtain a response which is not too abrupt, is relatively insensitive to parameter variations, and is not sensitive to practical limits on control-surface rate. This particular design also has the simplest possible pulse transfer function for the digital controller. Simulation techniques and root loci are used for the verification of the design philosophy.

  10. [Determination of the ofloxacin in the biologic samples by fluorescence microscopic imaging technique].

    PubMed

    Liu, Ying; Yu, Yan-Min; Li, Hui; Li, Jin-Shu

    2011-11-01

    The method of CTMAB-Al(3+)-OFLX ternary complex fluorescence microscopic imaging technique was established for the determination of ofloxacin based on the capillary effect of solvent on solid supports, and the concentration in the serum after the chicken was burdened with ofloxacin tablet, the concentration in the human urines and the percentage composition in the honeies, ofloxacin tablets and eye-drops were measured with satisfaction, respectively. In the presence of pH 9. 50 NH3-NH4Cl buffer solution and PVA-124, CTMAB-Al(3+)-OFLX ternary complex can form a self-ordered ring on the hydrophobic supports with the diameter of 1.63 mm and its ring belt width of 50 microm. When a 0.20 microL droplet was spotted, the fluorescence intensity of the ring had a favorable linear relation (r = 0.999 2) with the drug concentration in the range of 3.30 x 10(-13) - 1.65 x 10(-12) mol x ring(-1) (0.60-2.98 mg x L(-1)) and the limit of detection can reach 4.10 x 10(-15) mol x ring(-1) (7.41 microg x L(-1)) with three times of signal to noise ratio. This method has been applied to the average concentration of ofloxacin in the chicken serum with the recovery of 96.4%-101.2% after two hours of being burdened with ofloxacin tablet. Then the technique was applied to the determination of ofloxacin in the three healthy volunteer's urines after oral administration with recovery of 98.2% - 106.%. It was found that the concentrations of ofloxacin in urines were the highest after three hours of taking medicine; the result was similar to reports in the literature. The residues of ofloxacin in three different honey samples were satisfactorily determined with the recoveries of 98.2% - 106.1%, and RSD was less than 2.3%. The contents of active constituent in tablet samples and eye-drops sample were determined with recoveries of 93.5%-101.5% and 95.8%-104.2%, and RSD was 3.5% and 3.6%, respectively, which were similar to marked values. PMID:22242500

  11. PREFACE: 15th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT2013)

    NASA Astrophysics Data System (ADS)

    Wang, Jianxiong

    2014-06-01

    This volume of Journal of Physics: Conference Series is dedicated to scientific contributions presented at the 15th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2013) which took place on 16-21 May 2013 at the Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China. The workshop series brings together computer science researchers and practitioners, and researchers from particle physics and related fields to explore and confront the boundaries of computing and of automatic data analysis and theoretical calculation techniques. This year's edition of the workshop brought together over 120 participants from all over the world. 18 invited speakers presented key topics on the universe in computer, Computing in Earth Sciences, multivariate data analysis, automated computation in Quantum Field Theory as well as computing and data analysis challenges in many fields. Over 70 other talks and posters presented state-of-the-art developments in the areas of the workshop's three tracks: Computing Technologies, Data Analysis Algorithms and Tools, and Computational Techniques in Theoretical Physics. The round table discussions on open-source, knowledge sharing and scientific collaboration stimulate us to think over the issue in the respective areas. ACAT 2013 was generously sponsored by the Chinese Academy of Sciences (CAS), National Natural Science Foundation of China (NFSC), Brookhaven National Laboratory in the USA (BNL), Peking University (PKU), Theoretical Physics Cernter for Science facilities of CAS (TPCSF-CAS) and Sugon. We would like to thank all the participants for their scientific contributions and for the en- thusiastic participation in all its activities of the workshop. Further information on ACAT 2013 can be found at http://acat2013.ihep.ac.cn. Professor Jianxiong Wang Institute of High Energy Physics Chinese Academy of Science Details of committees and sponsors are available in the PDF

  12. Recent Advances in Stable Isotope Techniques for N2O Source Partitioning in Soils

    NASA Astrophysics Data System (ADS)

    Baggs, E.; Mair, L.; Mahmood, S.

    2007-12-01

    The use of 13C, 15N and 18O enables us to overcome uncertainties associated with soil C and N processes and to assess the links between species diversity and ecosystem function. Recent advances in stable isotope techniques enable determination of process rates, and are fundamental for examining interactions between C and N cycles. Here we will introduce the 15N-, 18O- and 13C-enrichment techniques we have developed to distinguish between different N2O-producing processes in situ in soils, presenting selected results, and will critically assess their potential, alone and in combination with molecular techniques, to help address key research questions for soil biogeochemistry and microbial ecology. We have developed 15N- 18O-enrichment techniques to distinguish between, and to quantify, N2O production during ammonia oxidation, nitrifier denitrification and denitrification. This provides a great advantage over natural abundance approaches as it enables quantification of N2O from each microbial source, which can be coupled with quantification of N2 production, and used to examine interactions between different processes and cycles. These approaches have also provided new insights into the N cycle and how it interacts with the C cycle. For example, we now know that ammonia oxidising bacteria significantly contribute to N2O emissions from soils, both via the traditionally accepted ammonia oxidation pathway, and also via denitrification (nitrifier denitrification) which can proceed even under aerobic conditions. We are also linking emissions from each source to diversity and activity of relevant microbial functional groups, for example through the development and application of a specific nirK primer for the nitrite reductase in ammonia oxidising bacteria. Recently, isotopomers have been proposed as an alternative for source partitioning N2O at natural abundance levels, and offers the potential to investigate N2O production from nitrate ammonification, and overcomes the

  13. Glycoproteomics on the rise: established methods, advanced techniques, sophisticated biological applications.

    PubMed

    Lazar, Iulia M; Lee, Wooram; Lazar, Alexandru C

    2013-01-01

    Glycosylation is the most complex form of protein PTMs. Affected proteins may carry dozens of glycosylation sites with tens to hundreds of glycan residues attached to every site. Glycosylated proteins have many important functions in biology, from cellular to organismal levels, being involved in cell-cell signaling, cell adhesion, immune response, host-pathogen interactions, and development and growth. Glycosylation, however, expands the biological functional diversity of proteins at the expense of a tremendous increase in structural heterogeneity. Aberrant glycosylation of cell surface proteins, as well as their detectable fingerprint in plasma samples, has been associated with cancer, inflammatory and degenerative diseases, and congenital disorders of glycosylation. Therefore, there are on-going efforts directed toward developing new technologies and approaches for glycan sequencing and high-throughput analysis of glycosylated proteins in complex samples with simultaneous characterization of both the protein and glycan moieties. This work is aimed primarily at pinpointing the challenges associated with the large-scale analysis of glycoproteins and the latest developments in glycoproteomic research, with focus on recent advancements (2011-2012) in microcolumn separations and MS detection. PMID:23161435

  14. Effects on Animal Wellbeing and Sample Quality of 2 Techniques for Collecting Blood from the Facial Vein of Mice

    PubMed Central

    Francisco, Cassie C; Howarth, Gordon S; Whittaker, Alexandra L

    2015-01-01

    When sampling blood from mice, several different techniques can be used, with retroorbital sinus sampling traditionally being the most common. Given the severe tissue trauma caused by retroorbital sampling, alternative methods such as the facial vein route have been developed. The aim of this study was to evaluate 2 techniques for facial vein bleeding in conscious mice to ascertain whether differences in clinical outcomes, practicability of sample collection, and hematologic parameters were apparent. Blood samples were obtained from the facial vein of 40 BALB/c mice by using either a 21-gauge needle or a lancet. Subsequently, the protocol was repeated with isoflurane-anesthetized mice sampled by using the lancet method (n = 20). Behavior immediately after sampling was observed, and sample quantity, sampling time, and time until bleeding ceased were measured. Clinical pathology data and hematoma diameter at necropsy were analyzed also. The mean sample quantity collected (approximately 0.2 mL) was comparable among methods, but sampling was much more rapid when mice were anesthetized by using isoflurane. The only other noteworthy finding was a significantly reduced number of platelets in samples from anesthetized mice. Adverse, ongoing clinical signs were rare regardless of the method used. The results revealed no significant differences in welfare implications or blood sample quality among the methods or between conscious and anesthetized mice. Therefore, any of the methods we evaluated for obtaining blood samples from the facial vein are appropriate for use in research studies. PMID:25651095

  15. Advanced NMR-based techniques for pore structure analysis of coal

    SciTech Connect

    Smith, D.M.

    1992-01-01

    One of the main problems in coal utilization is the inability to properly characterize its complex pore structure. Coals typically have micro/ultra-micro pores but they also exhibit meso and macroporosity. Conventional pore size techniques (adsorption/condensation, mercury porosimetry) are limited because of this broad pore size range, microporosity, reactive nature of coal, samples must be completely dried, and network/percolation effects. Small angle scattering is limited because it probes both open and closed pores. Although one would not expect any single technique to provide a satisfactory description of a coal's structure, it is apparent that better techniques are necessary. We believe that measurement of the NMR parameters of various gas phase and adsorbed phase NMR active probes can provide the resolution to this problem. We now have two suites of well-characterized microporous materials including oxides (zeolites and silica gel) and activated carbons from our industrial partner, Air Products in Allentown, PA. Our current work may be divided into three areas: small-angle X-ray scattering (SAXS), adsorption, and NMR.

  16. Introduction of soft X-ray spectromicroscopy as an advanced technique for plant biopolymers research.

    PubMed

    Karunakaran, Chithra; Christensen, Colleen R; Gaillard, Cedric; Lahlali, Rachid; Blair, Lisa M; Perumal, Vijayan; Miller, Shea S; Hitchcock, Adam P

    2015-01-01

    Soft X-ray absorption spectroscopy coupled with nano-scale microscopy has been widely used in material science, environmental science, and physical sciences. In this work, the advantages of soft X-ray absorption spectromicroscopy for plant biopolymer research were demonstrated by determining the chemical sensitivity of the technique to identify common plant biopolymers and to map the distributions of biopolymers in plant samples. The chemical sensitivity of soft X-ray spectroscopy to study biopolymers was determined by recording the spectra of common plant biopolymers using soft X-ray and Fourier Transform mid Infrared (FT-IR) spectroscopy techniques. The soft X-ray spectra of lignin, cellulose, and polygalacturonic acid have distinct spectral features. However, there were no distinct differences between cellulose and hemicellulose spectra. Mid infrared spectra of all biopolymers were unique and there were differences between the spectra of water soluble and insoluble xylans. The advantage of nano-scale spatial resolution exploited using soft X-ray spectromicroscopy for plant biopolymer research was demonstrated by mapping plant cell wall biopolymers in a lentil stem section and compared with the FT-IR spectromicroscopy data from the same sample. The soft X-ray spectromicroscopy enables mapping of biopolymers at the sub-cellular (~30 nm) resolution whereas, the limited spatial resolution in the micron scale range in the FT-IR spectromicroscopy made it difficult to identify the localized distribution of biopolymers. The advantages and limitations of soft X-ray and FT-IR spectromicroscopy techniques for biopolymer research are also discussed. PMID:25811457

  17. Advanced NMR-based techniques for pore structure analysis of coal

    SciTech Connect

    Smith, D.M.

    1992-01-01

    One of the main problems in coal utilization is the inability to properly characterize its complex pore structure. Coals typically have micro/ultra-micro pores but they also exhibit meso and macroporosity. Conventional pore size techniques (adsorption/condensation, mercury porosimetry) are limited because of this broad pore size range, microporosity, reactive nature of coal, samples must be completely dried, and network/percolation effects. Small angle scattering is limited because it probes both open and closed pores. Although one would not expect any single technique to provide a satisfactory description of a coal's structure, it is apparent that better techniques are necessary. We believe that measurement of the NMR parameters of various gas phase and adsorbed phase NMR active probes can provide the resolution to this problem. We will investigate the dependence of the common NMR parameters such as chemical shifts and relaxation times of several different nuclei and compounds on the pore structure of model microporous solids, carbons, and coals. In particular, we will study the interaction between several small molecules and the pore surfaces in coals. These molecules have been selected for their chemical and physical properties. A special NMR probe will be constructed which will allow the concurrent measurement of NMR properties and adsorption uptake at a variety of temperatures. All samples will be subjected to a suite of conventional'' pore structure analyses. These include nitrogen adsorption at 77 K with BET analysis, CO[sub 2] and CH[sub 4] adsorption at 273 K with D-R (Dubinin-Radushkevich) analysis, helium pycnometry, and small angle X-ray scattering as well as gas diffusion measurements.

  18. Introduction of Soft X-Ray Spectromicroscopy as an Advanced Technique for Plant Biopolymers Research

    PubMed Central

    Karunakaran, Chithra; Christensen, Colleen R.; Gaillard, Cedric; Lahlali, Rachid; Blair, Lisa M.; Perumal, Vijayan; Miller, Shea S.; Hitchcock, Adam P.

    2015-01-01

    Soft X-ray absorption spectroscopy coupled with nano-scale microscopy has been widely used in material science, environmental science, and physical sciences. In this work, the advantages of soft X-ray absorption spectromicroscopy for plant biopolymer research were demonstrated by determining the chemical sensitivity of the technique to identify common plant biopolymers and to map the distributions of biopolymers in plant samples. The chemical sensitivity of soft X-ray spectroscopy to study biopolymers was determined by recording the spectra of common plant biopolymers using soft X-ray and Fourier Transform mid Infrared (FT-IR) spectroscopy techniques. The soft X-ray spectra of lignin, cellulose, and polygalacturonic acid have distinct spectral features. However, there were no distinct differences between cellulose and hemicellulose spectra. Mid infrared spectra of all biopolymers were unique and there were differences between the spectra of water soluble and insoluble xylans. The advantage of nano-scale spatial resolution exploited using soft X-ray spectromicroscopy for plant biopolymer research was demonstrated by mapping plant cell wall biopolymers in a lentil stem section and compared with the FT-IR spectromicroscopy data from the same sample. The soft X-ray spectromicroscopy enables mapping of biopolymers at the sub-cellular (~30 nm) resolution whereas, the limited spatial resolution in the micron scale range in the FT-IR spectromicroscopy made it difficult to identify the localized distribution of biopolymers. The advantages and limitations of soft X-ray and FT-IR spectromicroscopy techniques for biopolymer research are also discussed. PMID:25811457

  19. Comparison of two headspace sampling techniques for the analysis of off-flavour volatiles from oat based products.

    PubMed

    Cognat, Claudine; Shepherd, Tom; Verrall, Susan R; Stewart, Derek

    2012-10-01

    Two different headspace sampling techniques were compared for analysis of aroma volatiles from freshly produced and aged plain oatcakes. Solid phase microextraction (SPME) using a Carboxen-Polydimethylsiloxane (PDMS) fibre and entrainment on Tenax TA within an adsorbent tube were used for collection of volatiles. The effects of variation in the sampling method were also considered using SPME. The data obtained using both techniques were processed by multivariate statistical analysis (PCA). Both techniques showed similar capacities to discriminate between the samples at different ages. Discrimination between fresh and rancid samples could be made on the basis of changes in the relative abundances of 14-15 of the constituents in the volatile profiles. A significant effect on the detection level of volatile compounds was observed when samples were crushed and analysed by SPME-GC-MS, in comparison to undisturbed product. The applicability and cost effectiveness of both methods were considered. PMID:25005987

  20. Advanced Materials and Fabrication Techniques for the Orion Attitude Control Motor

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Holmes, Richard; O'Dell, John; McKechnie, Timothy; Shchetkovskiy, Anatoliy

    2013-01-01

    Rhenium, with its high melting temperature, excellent elevated temperature properties, and lack of a ductile-to-brittle transition temperature (DBTT), is ideally suited for the hot gas components of the ACM (Attitude Control Motor), and other high-temperature applications. However, the high cost of rhenium makes fabricating these components using conventional fabrication techniques prohibitive. Therefore, near-net-shape forming techniques were investigated for producing cost-effective rhenium and rhenium alloy components for the ACM and other propulsion applications. During this investigation, electrochemical forming (EL-Form ) techniques were evaluated for producing the hot gas components. The investigation focused on demonstrating that EL-Form processing techniques could be used to produce the ACM flow distributor. Once the EL-Form processing techniques were established, a representative rhenium flow distributor was fabricated, and samples were harvested for material properties testing at both room and elevated temperatures. As a lower cost and lighter weight alternative to an all-rhenium component, rhenium- coated graphite and carbon-carbon were also evaluated. The rhenium-coated components were thermal-cycle tested to verify that they could withstand the expected thermal loads during service. High-temperature electroforming is based on electrochemical deposition of compact layers of metals onto a mandrel of the desired shape. Mandrels used for electro-deposition of near-net shaped parts are generally fabricated from high-density graphite. The graphite mandrel is easily machined and does not react with the molten electrolyte. For near-net shape components, the inner surface of the electroformed part replicates the polished graphite mandrel. During processing, the mandrel itself becomes the cathode, and scrap or refined refractory metal is the anode. Refractory metal atoms from the anode material are ionized in the molten electrolytic solution, and are deposited

  1. Testing the applicability of six macroscopic skeletal aging techniques on a modern Southeast Asian sample.

    PubMed

    Gocha, Timothy P; Ingvoldstad, Megan E; Kolatorowicz, Adam; Cosgriff-Hernandez, Meghan-Tomasita J; Sciulli, Paul W

    2015-04-01

    Most macroscopic skeletal aging techniques used by forensic anthropologists have been developed and tested only on reference material from western populations. This study examined the performance of six aging techniques on a known age sample of 88 Southeast Asian individuals. Methods examined included the Suchey-Brooks method of aging the symphyseal face of the os pubis (Brooks and Suchey, Hum. Evol. 5 (1990) 227), Buckberry and Chamberlain's, Am. J. Phys. Anthropol. 119 (2002) 231 and Osborne et al.'s, J. Forensic Sci. 49 (2004) 1 revisions of the Lovejoy et al., Am. J. Phys. Anthropol. 68 (1985) 15 method of aging the auricular surface of the ilium, İşcan et al.'s, J. Forensic Sci. 29 (1984) 1094, İşcan et al.'s, J. Forensic Sci. 30 (1985) 853 method of aging the sternal end of the fourth rib, and Meindl and Lovejoy's, Am. J. Phys. Anthropol. 68 (1985) 57 methods for aging both lateral-anterior and vault sutures on the cranium. The results of this study indicate that application of aging techniques commonly used in forensic anthropology to individuals identified as Asian, and more specifically Southeast Asian, should not be undertaken injudiciously. Of the six individual methods tested here, the Suchey-Brooks pubic symphysis aging method performs best, though average age estimates were still off by nearly 10 years or greater. Methods for aging the auricular surface perform next best, though the Osborne et al. method works better for individuals below 50 years and the Buckberry and Chamberlain method works better for those above 50 years. Methods for age estimation from the sternal ends of the fourth rib and vault and lateral-anterior cranial sutures perform poorly and are not recommended for use on remains of Southeast Asian ancestry. Combining age estimates from multiple indicators, specifically the pubic symphysis and one auricular surface method, was superior to individual methods. Data and a worked example are provided for calculating the conditional

  2. Comparative study of manual liquid-based cytology (MLBC) technique and direct smear technique (conventional) on fine-needle cytology/fine-needle aspiration cytology samples

    PubMed Central

    Pawar, Prajkta Suresh; Gadkari, Rasika Uday; Swami, Sunil Y.; Joshi, Anil R.

    2014-01-01

    Background: Liquid-based cytology technique enables cells to be suspended in a liquid medium and spread in a monolayer, making better morphological assessment. Automated techniques have been widely used, but limited due to cost and availability. Aim: The aim was to establish manual liquid-based cytology (MLBC) technique on fine-needle aspiration cytology (FNAC) material and compare its results with conventional technique. Materials and Methods: In this study, we examined cells trapped in needles hub used for the collection of FNAC samples. 50 cases were examined by the MLBC technique and compared with the conventional FNAC technique. By centrifugation, sediment was obtained and imprint was taken on defined area. Papanicolaou (Pap) and May-Grünwald Giemsa (MGG) staining was done. Direct smears and MLBC smears were compared for cellularity, background, cellular preservation, and nuclear preservation. Slides were diagnosed independently by two cytologists with more than 5 years’ experience. Standard error of proportion was used for statistical analysis. Results: Cellularity was low in MLBC as compared with conventional smears, which is expected as remnant material in the needle hub was used. Nuclei overlap to a lesser extent and hemorrhage and necrosis was reduced, so cell morphology can be better studied in the MLBC technique. P value obtained was <0.05. Conclusion: This MLBC technique gives results comparable to the conventional technique with better morphology. In a set up where aspirators are learners, this technique will ensure adequacy due to remnant in needle hub getting processed PMID:25210235

  3. Detection of Mycobacterium avium subspecies paratuberculosis in tie-stall dairy herds using a standardized environmental sampling technique and targeted pooled samples.

    PubMed

    Arango-Sabogal, Juan C; Côté, Geneviève; Paré, Julie; Labrecque, Olivia; Roy, Jean-Philippe; Buczinski, Sébastien; Doré, Elizabeth; Fairbrother, Julie H; Bissonnette, Nathalie; Wellemans, Vincent; Fecteau, Gilles

    2016-07-01

    Mycobacterium avium ssp. paratuberculosis (MAP) is the etiologic agent of Johne's disease, a chronic contagious enteritis of ruminants that causes major economic losses. Several studies, most involving large free-stall herds, have found environmental sampling to be a suitable method for detecting MAP-infected herds. In eastern Canada, where small tie-stall herds are predominant, certain conditions and management practices may influence the survival and transmission of MAP and recovery (isolation). Our objective was to estimate the performance of a standardized environmental and targeted pooled sampling technique for the detection of MAP-infected tie-stall dairy herds. Twenty-four farms (19 MAP-infected and 5 non-infected) were enrolled, but only 20 were visited twice in the same year, to collect 7 environmental samples and 2 pooled samples (sick cows and cows with poor body condition). Concurrent individual sampling of all adult cows in the herds was also carried out. Isolation of MAP was achieved using the MGIT Para TB culture media and the BACTEC 960 detection system. Overall, MAP was isolated in 7% of the environmental cultures. The sensitivity of the environmental culture was 44% [95% confidence interval (CI): 20% to 70%] when combining results from 2 different herd visits and 32% (95% CI: 13% to 57%) when results from only 1 random herd visit were used. The best sampling strategy was to combine samples from the manure pit, gutter, sick cows, and cows with poor body condition. The standardized environmental sampling technique and the targeted pooled samples presented in this study is an alternative sampling strategy to costly individual cultures for detecting MAP-infected tie-stall dairies. Repeated samplings may improve the detection of MAP-infected herds. PMID:27408329

  4. Application and development of advanced Lorentz microscopy techniques for the study of magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Beacham, Robert J.

    This PhD project presents an investigation into the development of magnetic imaging methods in the TEM and their application in imaging narrow domain walls in multilayer magnetic structures. Lorentz microscopy techniques are limited in quantitative magnetic imaging as this generally requires using scanning imaging modes which limits the capability of imaging dynamic processes. The first imaging method developed in this study is a phase gradient technique with the aim of producing quantitative magnetic contrast proportional to the magnetic induction of the sample whilst maintaining a live imaging mode. This method uses a specifically engineered, semi-electron-transparent graded wedge aperture to controllably perturb intensity in the back focal plane. The results of this study found that this method could produce magnetic contrast proportional to the sample induction, however the required gradient of the wedge aperture made this contrast close to the noise level with large associated errors. In the second part of this study we investigated the development of a technique aimed at gaining sub-microsecond temporal resolution within TEMs based on streak imaging. We are using ramped pulsed magnetic fields, applied across nanowire samples to both induce magnetic behaviour and detect the electron beam across the detector with respect to time. We are coupling this with a novel pixelated detector on the TEM in the form of a Medipix/Timepix chip capable of microsecond exposure times without adding noise. Running this detector in integral mode and allowing for practical limitations such as experiment time and aperture stability, the resultant streak images were taken in Fresnel, Foucault and low angle diffraction imaging modes. We found that while this method is theoretically viable, the limiting factor was the contrast of the magnetic signal in the streak and therefore the total image counts. Domain walls (DWs) in synthetic antiferromagnetically (SAF) coupled films patterned

  5. Craniospinal Irradiation Techniques: A Dosimetric Comparison of Proton Beams With Standard and Advanced Photon Radiotherapy

    SciTech Connect

    Yoon, Myonggeun; Shin, Dong Ho; Kim, Jinsung; Kim, Jong Won; Kim, Dae Woong; Park, Sung Yong; Lee, Se Byeong; Kim, Joo Young; Park, Hyeon-Jin; Park, Byung Kiu; Shin, Sang Hoon

    2011-11-01

    Purpose: To evaluate the dosimetric benefits of advanced radiotherapy techniques for craniospinal irradiation in cancer in children. Methods and Materials: Craniospinal irradiation (CSI) using three-dimensional conformal radiotherapy (3D-CRT), tomotherapy (TOMO), and proton beam treatment (PBT) in the scattering mode was planned for each of 10 patients at our institution. Dosimetric benefits and organ-specific radiation-induced cancer risks were based on comparisons of dose-volume histograms (DVHs) and on the application of organ equivalent doses (OEDs), respectively. Results: When we analyzed the organ-at-risk volumes that received 30%, 60%, and 90% of the prescribed dose (PD), we found that PBT was superior to TOMO and 3D-CRT. On average, the doses delivered by PBT to the esophagus, stomach, liver, lung, pancreas, and kidney were 19.4 Gy, 0.6 Gy, 0.3 Gy, 2.5 Gy, 0.2 Gy, and 2.2 Gy for the PD of 36 Gy, respectively, which were significantly lower than the doses delivered by TOMO (22.9 Gy, 4.5 Gy, 6.1 Gy, 4.0 Gy, 13.3 Gy, and 4.9 Gy, respectively) and 3D-CRT (34.6 Gy, 3.6 Gy, 8.0 Gy, 4.6 Gy, 22.9 Gy, and 4.3 Gy, respectively). Although the average doses delivered by PBT to the chest and abdomen were significantly lower than those of 3D-CRT or TOMO, these differences were reduced in the head-and-neck region. OED calculations showed that the risk of secondary cancers in organs such as the stomach, lungs, thyroid, and pancreas was much higher when 3D-CRT or TOMO was used than when PBT was used. Conclusions: Compared with photon techniques, PBT showed improvements in most dosimetric parameters for CSI patients, with lower OEDs to organs at risk.

  6. Application of Energy Integration Techniques to the Design of Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Levri, Julie; Finn, Cory

    2000-01-01

    Exchanging heat between hot and cold streams within an advanced life support system can save energy. This savings will reduce the equivalent system mass (ESM) of the system. Different system configurations are examined under steady-state conditions for various percentages of food growth and waste treatment. The scenarios investigated represent possible design options for a Mars reference mission. Reference mission definitions are drawn from the ALSS Modeling and Analysis Reference Missions Document, which includes definitions for space station evolution, Mars landers, and a Mars base. For each scenario, streams requiring heating or cooling are identified and characterized by mass flow, supply and target temperatures and heat capacities. The Pinch Technique is applied to identify good matches for energy exchange between the hot and cold streams and to calculate the minimum external heating and cooling requirements for the system. For each pair of hot and cold streams that are matched, there will be a reduction in the amount of external heating and cooling required, and the original heating and cooling equipment will be replaced with a heat exchanger. The net cost savings can be either positive or negative for each stream pairing, and the priority for implementing each pairing can be ranked according to its potential cost savings. Using the Pinch technique, a complete system heat exchange network is developed and heat exchangers are sized to allow for calculation of ESM. The energy-integrated design typically has a lower total ESM than the original design with no energy integration. A comparison of ESM savings in each of the scenarios is made to direct future Pinch Analysis efforts.

  7. Sample preparation toward seamless 3D imaging technique from micrometer to nanometer scale.

    PubMed

    Miyake, Akira; Matsuno, Junya; Toh, Shoichi

    2014-11-01

    Three-dimensional (3D) imaging techniques, such as x-ray computed tomography (XCT), serial sectioning method, transmission electron microtomography (TEMT) and 3D atom probe (3DAP), provides 3D internal structures and external form of objects. In order to obtain the 3D images of one object from the synchrotron-XCT (SR-XCT), FIB-SEM serial sectioning, TEMT and 3DAP, in the present study, the common sample holder and improvement in the TEM tomography retainer were made. We report the sample holder, the TEM retainer, and the sample preparation method using focused ion beam (FIB) and show the 3D images obtained from SR-XCT, FIB-SEM and TEMT of quartz sample containing fluid inclusions.The present common sample holder was made from tungsten needle and copper pipe. The tungsten needle was made from the wire by electropolishing in aqueous ammonia and salt as molten material. A micro-sample of quartz containing fluid inclusions was picked up from the thin section using a focused ion beam (FIB) system (FEI, Quanta 200 3DS), Kyoto University. The FIB system used a Ga(+) ion gun at the condition of 30 kV and 3-65 nA. After a specific area (ca. several ten μm on a side) of the quartz was cut out to a depth of 10 - 30 µm by FIB, it was held at a tip of tungsten needle with platinum deposition (Figure 1a) [1]. Then it was observed by imaging tomography system using a Frenel zone plate at BL47XU, SPring-8, Japan [2]. The size of voxel (pixel in 3D) was 50-80 nm, which gave the effective spatial resolution of ∼200 nm. The characteristic of this method (FIB-XCT) is that the XCT sample can be exactly picked up from a specific area from thin section and bulk specimen after the observation using optical microscopy and/or scanning electron microscopy (SEM). After the FIB-XCT observation, the sample held at a tip of tungsten needle was directly inserted into the FIB-SEM system and the cross-section surface were observed by FIB-SEM. Figure 1b shows a snap shot of the cross

  8. Development of novel separation techniques for biological samples in capillary electrophoresis

    SciTech Connect

    Chang, H.T.

    1994-07-27

    This dissertation includes three different topics: general introduction of capillary electrophoresis (CE); gradient in CE and CE in biological separations; and capillary gel electrophoresis (CGE) for DNA separation. Factors such as temperature, viscosity, pH, and the surface of capillary walls affecting the separation performance are demonstrated. A pH gradient between 3.0 and 5.2 is useful to improve the resolution among eight different organic acids. A flow gradient due to the change in the concentration of surfactant, which is able to coat to the capillary wall to change the flow rate and its direction, is also shown as a good way to improve the resolution for organic compounds. A temperature gradient caused by joule heat is shown by voltage programming to enhance the resolution and shorten the separation time for several phenolic compounds. The author also shows that self-regulating dynamic control of electroosmotic flow in CE by simply running separation in different concentrations of surfactant has less matrix effect on the separation performance. One of the most important demonstrations in this dissertation is that the author proposes on-column reaction which gives several advantages including the use of a small amount of sample, low risk of contamination, and time saving and kinetic features. The author uses this idea with laser induced fluorescence (LIF) as a detection mode to detect an on-column digestion of sub-ng of protein. This technique also is applied to single cell analysis in the group.

  9. Objective color scale for the SWYPE surface sampling technique using computerized image analysis tools.

    PubMed

    Ceballos, Diana M; Yost, Michael G; Whittaker, Stephen G; Camp, Janice; Dills, Russell

    2009-10-01

    Colorimetric SWYPE pads are useful tools for identifying unpolymerized aliphatic isocyanates on a variety of surfaces. This technique has been used in autobody shops to determine the presence of hexamethylene diisocyanate and other aliphatic isocyanates that are important constituents of many automotive coatings. SWYPEs have the advantage of being relatively inexpensive, rapid, and portable. The color change elicited by aliphatic isocyanates (from yellow to red) provides a visual indication of the extent of surface contamination. To quantify isocyanate contamination based on the colorimetric response, an objective color scale was developed for isocyanate loading. Sampled pads were digitized on a calibrated, portable flatbed scanner, and red-green-blue (RGB) histograms of SWYPE images were created. A calibration curve was created from a series of reference images derived from SWYPEs loaded with an isocyanate-containing product. The SWYPE RGB analysis allowed for quantification over a range of isocyanate loadings: from approximately 0.01 to 24.0 microg/cm(2), with reproducibility of >90%, accuracy >90%, and a surface extraction efficiency of >90%. RGB analysis exhibited a lower detection limit than visual scoring (approximately 3 microg versus approximately 10 microg). The colorimetric response was cross validated with a high-performance liquid chromatography quantitative assay. When combined with RGB analysis, SWYPE colorimetric wipes represent a rapid and inexpensive method to assess objectively surface contamination with aliphatic isocyanates. PMID:19606376

  10. Application of recent advances in aerosol sampling science towards the development of improved sampling devices: the way ahead.

    PubMed

    Vincent, J H; Ramachandran, G; Thomassen, Y; Keeler, G J

    1999-08-01

    This paper reviews the framework that underpins the development of a new generation of personal samplers capable of operating at much lower flowrates that those of the current generation and so capable of being used for exposure assessment not only for 'traditional' occupational populations (i.e., industrial workers) but also for people exposed to aerosols in the ambient atmosphere (including children). The opportunity for this new generation of samplers stems from the availability of very light and compact low-flowrate pumps. The development and deployment of such instruments presents: (a) physical challenges in terms of how to collect particle size fractions in a manner which is consistent with the new particle size-selective sampling criteria, and (b) analytical challenges in terms of how to quantitate the much smaller amounts of collected material that need to be analysed. The paper lays out the physical and analytical scenarios, and points the way forward to how such challenges can be overcome. Work is already in progress in several countries to develop prototype instruments for applications like those described. PMID:11529124

  11. Improving IRT Parameter Estimates with Small Sample Sizes: Evaluating the Efficacy of a New Data Augmentation Technique

    ERIC Educational Resources Information Center

    Foley, Brett Patrick

    2010-01-01

    The 3PL model is a flexible and widely used tool in assessment. However, it suffers from limitations due to its need for large sample sizes. This study introduces and evaluates the efficacy of a new sample size augmentation technique called Duplicate, Erase, and Replace (DupER) Augmentation through a simulation study. Data are augmented using…

  12. An Efficient Referencing And Sample Positioning System To Investigate Heterogeneous Substances With Combined Microfocused Synchrotron X-ray Techniques

    SciTech Connect

    Spangenberg, Thomas; Goettlicher, Joerg; Steininger, Ralph

    2009-01-29

    A referencing and sample positioning system has been developed to transfer object positions measured with an offline microscope to a synchrotron experimental station. The accuracy should be sufficient to deal with heterogeneous samples on micrometer scale. Together with an online fluorescence mapping visualisation the optical alignment helps to optimize measuring procedures for combined microfocused X-ray techniques.

  13. Contributions from the data samples in NOC technique on the extracting of the Sq variation

    NASA Astrophysics Data System (ADS)

    Wu, Yingyan; Xu, Wenyao

    2015-04-01

    The solar quiet daily variation, Sq, a rather regular variation is usually observed at mid-low latitudes on magnetic quiet days or less-disturbed days. It is mainly resulted from the dynamo currents in the ionospheric E region, which are driven by the atmospheric tidal wind and different processes and flow as two current whorls in each of the northern and southern hemispheres[1]. The Sq exhibits a conspicuous day-to-day (DTD) variability in daily range (or strength), shape (or phase) and its current focus. This variability is mainly attributed to changes in the ionospheric conductivity and tidal winds, varying with solar radiation and ionospheric conditions. Furthermore, it presents a seasonal variation and solar cycle variation[2-4]. In generally, Sq is expressed with the average value of the five international magnetic quiet days. Using data from global magnetic stations, equivalent current system of daily variation can be constructed to reveal characteristics of the currents[5]. In addition, using the differences of H component at two stations on north and south side of the Sq currents of focus, Sq is extracted much better[6]. Recently, the method of Natural Orthoganal Components (NOC) is used to decompose the magnetic daily variation and express it as the summation of eigenmodes, and indicate the first NOC eigenmode as the solar quiet daily variation, the second as the disturbance daily variation[7-9]. As we know, the NOC technique can help reveal simpler patterns within a complex set of variables, without designed basic-functions such as FFT technique. But the physical explanation of the NOC eigenmodes is greatly depends on the number of data samples and data regular-quality. Using the NOC method, we focus our present study on the analysis of the hourly means of the H component at BMT observatory in China from 2001 to 2008. The contributions of the number and the regular-quality of the data samples on which eigenmode corresponds to the Sq are analyzed, by

  14. High-rate-long-distance fiber-optic communication based on advanced modulation techniques.

    PubMed

    Ivankovski, Y; Mendlovic, D

    1999-09-10

    The presence of fiber attenuation and chromatic dispersion is one of the major design aspects of fiber-optic communication systems when one addresses high-rate and long-distance digital data transmission. Conventional digital communication systems implement a modulation technique that generates light pulses at the fiber input end and tries to detect them at the fiber output end. Here an advanced modulation transmission system is developed based on knowledge of the exact dispersion parameters of the fiber and the principles of space-time mathematical analogy. The information encodes the phase of the input light beam (a continuous laser beam). This phase is designed such that, when the signal is transmitted through a fiber with a given chromatic dispersion, high peak pulses emerge at the output, which follows a desired bit pattern. Thus the continuous input energy is concentrated into short time intervals in which the information needs to be represented at the output. The proposed method provides a high rate-distance product even for fibers with high dispersion parameters, high power at the output, and also unique protection properties. Theoretical analysis of the proposed method, computer simulations, and some design aspects are given. PMID:18324062

  15. Advanced real-time dynamic scene generation techniques for improved performance and fidelity

    NASA Astrophysics Data System (ADS)

    Bowden, Mark H.; Buford, James A.; Mayhall, Anthony J.

    2000-07-01

    Recent advances in real-time synthetic scene generation for Hardware-in-the-loop (HWIL) testing at the U.S. Army Aviation and Missile Command (AMCOM) Aviation and Missile Research, Development, and Engineering Center (AMRDEC) improve both performance and fidelity. Modeling ground target scenarios requires tradeoffs because of limited texture memory for imagery and limited main memory for elevation data. High- resolution insets have been used in the past to provide better fidelity in specific areas, such as in the neighborhood of a target. Improvements for ground scenarios include smooth transitions for high-resolution insets to reduce high spatial frequency artifacts at the borders of the inset regions and dynamic terrain paging to support large area databases. Transport lag through the scene generation system, including sensor emulation and interface components, has been dealt with in the past through the use of sub-window extraction from oversize scenes. This compensates for spatial effects of transport lag but not temporal effects. A new system has been developed and used successfully to compensate for a flashing coded beacon in the scene. Other techniques have been developed to synchronize the scene generator with the seeker under test (SUT) and to model atmospheric effects, sensor optic and electronics, and angular emissivity attenuation.

  16. On Advanced Estimation Techniques for Exoplanet Detection and Characterization Using Ground-based Coronagraphs

    PubMed Central

    Lawson, Peter R.; Poyneer, Lisa; Barrett, Harrison; Frazin, Richard; Caucci, Luca; Devaney, Nicholas; Furenlid, Lars; Gładysz, Szymon; Guyon, Olivier; Krist, John; Maire, Jérôme; Marois, Christian; Mawet, Dimitri; Mouillet, David; Mugnier, Laurent; Pearson, Iain; Perrin, Marshall; Pueyo, Laurent; Savransky, Dmitry

    2015-01-01

    The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer and the Hotelling observer. We propose a formal comparison of techniques using a blind data challenge with an evaluation of performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in March of 2012. PMID:26347393

  17. Classification of human colonic tissues using FTIR spectra and advanced statistical techniques

    NASA Astrophysics Data System (ADS)

    Zwielly, A.; Argov, S.; Salman, A.; Bogomolny, E.; Mordechai, S.

    2010-04-01

    One of the major public health hazards is colon cancer. There is a great necessity to develop new methods for early detection of cancer. If colon cancer is detected and treated early, cure rate of more than 90% can be achieved. In this study we used FTIR microscopy (MSP), which has shown a good potential in the last 20 years in the fields of medical diagnostic and early detection of abnormal tissues. Large database of FTIR microscopic spectra was acquired from 230 human colonic biopsies. Five different subgroups were included in our database, normal and cancer tissues as well as three stages of benign colonic polyps, namely, mild, moderate and severe polyps which are precursors of carcinoma. In this study we applied advanced mathematical and statistical techniques including principal component analysis (PCA) and linear discriminant analysis (LDA), on human colonic FTIR spectra in order to differentiate among the mentioned subgroups' tissues. Good classification accuracy between normal, polyps and cancer groups was achieved with approximately 85% success rate. Our results showed that there is a great potential of developing FTIR-micro spectroscopy as a simple, reagent-free viable tool for early detection of colon cancer in particular the early stages of premalignancy among the benign colonic polyps.

  18. Analysis of deformation patterns through advanced DINSAR techniques in Istanbul megacity

    NASA Astrophysics Data System (ADS)

    Balik Sanli, F.; Calò, F.; Abdikan, S.; Pepe, A.; Gorum, T.

    2014-09-01

    As result of the Turkey's economic growth and heavy migration processes from rural areas, Istanbul has experienced a high urbanization rate, with severe impacts on the environment in terms of natural resources pressure, land-cover changes and uncontrolled sprawl. As a consequence, the city became extremely vulnerable to natural and man-made hazards, inducing ground deformation phenomena that threaten buildings and infrastructures and often cause significant socio-economic losses. Therefore, the detection and monitoring of such deformation patterns is of primary importance for hazard and risk assessment as well as for the design and implementation of effective mitigation strategies. Aim of this work is to analyze the spatial distribution and temporal evolution of deformations affecting the Istanbul metropolitan area, by exploiting advanced Differential SAR Interferometry (DInSAR) techniques. In particular, we apply the Small BAseline Subset (SBAS) approach to a dataset of 43 TerraSAR-X images acquired, between November 2010 and June 2012, along descending orbits with an 11-day revisit time and a 3 m × 3 m spatial resolution. The SBAS processing allowed us to remotely detect and monitor subsidence patterns over all the urban area as well as to provide detailed information at the scale of the single building. Such SBAS measurements, effectively integrated with ground-based monitoring data and thematic maps, allows to explore the relationship between the detected deformation phenomena and urbanization, contributing to improve the urban planning and management.

  19. Recent Advance in Liquid Chromatography/Mass Spectrometry Techniques for Environmental Analysis in Japan

    PubMed Central

    Suzuki, Shigeru

    2014-01-01

    The techniques and measurement methods developed in the Environmental Survey and Monitoring of Chemicals by Japan’s Ministry of the Environment, as well as a large amount of knowledge archived in the survey, have led to the advancement of environmental analysis. Recently, technologies such as non-target liquid chromatography/high resolution mass spectrometry and liquid chromatography with micro bore column have further developed the field. Here, the general strategy of a method developed for the liquid chromatography/mass spectrometry (LC/MS) analysis of environmental chemicals with a brief description is presented. Also, a non-target analysis for the identification of environmental pollutants using a provisional fragment database and “MsMsFilter,” an elemental composition elucidation tool, is presented. This analytical method is shown to be highly effective in the identification of a model chemical, the pesticide Bendiocarb. Our improved micro-liquid chromatography injection system showed substantially enhanced sensitivity to perfluoroalkyl substances, with peak areas 32–71 times larger than those observed in conventional LC/MS. PMID:26819891

  20. On Advanced Estimation Techniques for Exoplanet Detection and Characterization using Ground-based Coronagraphs

    NASA Technical Reports Server (NTRS)

    Lawson, Peter; Frazin, Richard

    2012-01-01

    The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer and the Hotelling observer. We propose a formal comparison of techniques using a blind data challenge with an evaluation of performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in March of 2012

  1. On Advanced Estimation Techniques for Exoplanet Detection and Characterization using Ground-Based Coronagraphs

    NASA Technical Reports Server (NTRS)

    Lawson, Peter R.; Frazin, Richard; Barrett, Harrison; Caucci, Luca; Devaney, Nicholas; Furenlid, Lars; Gladysz, Szymon; Guyon, Olivier; Krist, John; Maire, Jerome; Marois, Christian; Mawet, Dimitri; Mouillet, David; Mugnier, Laurent; Perrin, Marshall; Poyneer, Lisa; Pueyo, Laurent; Savransky, Dmitry; Soummer, Remi

    2012-01-01

    The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer and the Hotelling observer. We provide a formal comparison of techniques through a blind data challenge and evaluate performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in March of 2012.

  2. Advanced fabrication techniques for hydrogen-cooled engine structures. Final report, October 1975-June 1982

    SciTech Connect

    Buchmann, O.A.; Arefian, V.V.; Warren, H.A.; Vuigner, A.A.; Pohlman, M.J.

    1985-11-01

    Described is a program for development of coolant passage geometries, material systems, and joining processes that will produce long-life hydrogen-cooled structures for scramjet applications. Tests were performed to establish basic material properties, and samples constructed and evaluated to substantiate fabrication processes and inspection techniques. Results of the study show that the basic goal of increasing the life of hydrogen-cooled structures two orders of magnitude relative to that of the Hypersonic Research Engine can be reached with available means. Estimated life is 19000 cycles for the channels and 16000 cycles for pin-fin coolant passage configurations using Nickel 201. Additional research is required to establish the fatigue characteristics of dissimilar-metal coolant passages (Nickel 201/Inconel 718) and to investigate the embrittling effects of the hydrogen coolant.

  3. Advanced Cu chemical displacement technique for SiO2-based electrochemical metallization ReRAM application.

    PubMed

    Chin, Fun-Tat; Lin, Yu-Hsien; You, Hsin-Chiang; Yang, Wen-Luh; Lin, Li-Min; Hsiao, Yu-Ping; Ko, Chum-Min; Chao, Tien-Sheng

    2014-01-01

    This study investigates an advanced copper (Cu) chemical displacement technique (CDT) with varying the chemical displacement time for fabricating Cu/SiO2-stacked resistive random-access memory (ReRAM). Compared with other Cu deposition methods, this CDT easily controls the interface of the Cu-insulator, the switching layer thickness, and the immunity of the Cu etching process, assisting the 1-transistor-1-ReRAM (1T-1R) structure and system-on-chip integration. The modulated shape of the Cu-SiO2 interface and the thickness of the SiO2 layer obtained by CDT-based Cu deposition on SiO2 were confirmed by scanning electron microscopy and atomic force microscopy. The CDT-fabricated Cu/SiO2-stacked ReRAM exhibited lower operation voltages and more stable data retention characteristics than the control Cu/SiO2-stacked sample. As the Cu CDT processing time increased, the forming and set voltages of the CDT-fabricated Cu/SiO2-stacked ReRAM decreased. Conversely, decreasing the processing time reduced the on-state current and reset voltage while increasing the endurance switching cycle time. Therefore, the switching characteristics were easily modulated by Cu CDT, yielding a high performance electrochemical metallization (ECM)-type ReRAM. PMID:25364318

  4. Probing ternary solvent effect in high Voc polymer solar cells using advanced AFM techniques

    DOE PAGESBeta

    Li, Chao; Soleman, Mikhael; Lorenzo, Josie; Dhasmana, Nitesh; Chantharasupawong, Panit; Ievlev, Anton; Gesquiere, Andre; Tetard, Laurene; Thomas, Jayan

    2016-01-25

    This work describes a simple method to develop a high Voc low band gap PSCs. In addition, two new atomic force microscopy (AFM)-based nanoscale characterization techniques to study the surface morphology and physical properties of the structured active layer are introduced. With the help of ternary solvent processing of the active layer and C60 buffer layer, a bulk heterojunction PSC with Voc more than 0.9 V and conversion efficiency 7.5% is developed. In order to understand the fundamental properties of the materials ruling the performance of the PSCs tested, AFM-based nanoscale characterization techniques including Pulsed-Force-Mode AFM (PFM-AFM) and Mode-Synthesizing AFMmore » (MSAFM) are introduced. Interestingly, MSAFM exhibits high sensitivity for direct visualization of the donor–acceptor phases in the active layer of the PSCs. Lastly, conductive-AFM (cAFM) studies reveal local variations in conductivity in the donor and acceptor phases as well as a significant increase in photocurrent in the PTB7:ICBA sample obtained with the ternary solvent processing.« less

  5. Techniques Optimized for Reducing Instabilities in Advanced Nickel-Base Superalloys for Turbine Blades

    NASA Technical Reports Server (NTRS)

    MacKay, Rebecca A.; Locci, Ivan E.; Garg, anita; Ritzert, Frank J.

    2002-01-01

    is a three-phase constituent composed of TCP and stringers of gamma phase in a matrix of gamma prime. An incoherent grain boundary separates the SRZ from the gammagamma prime microstructure of the superalloy. The SRZ is believed to form as a result of local chemistry changes in the superalloy due to the application of the diffusion aluminide bondcoat. Locally high surface stresses also appear to promote the formation of the SRZ. Thus, techniques that change the local alloy chemistry or reduce surface stresses have been examined for their effectiveness in reducing SRZ. These SRZ-reduction steps are performed on the test specimen or the turbine blade before the bondcoat is applied. Stressrelief heat treatments developed at NASA Glenn have been demonstrated to reduce significantly the amount of SRZ that develops during subsequent high-temperature exposures. Stress-relief heat treatments reduce surface stresses by recrystallizing a thin surface layer of the superalloy. However, in alloys with very high propensities to form SRZ, stress relief heat treatments alone do not eliminate SRZ entirely. Thus, techniques that modify the local chemistry under the bondcoat have been emphasized and optimized successfully at Glenn. One such technique is carburization, which changes the local chemistry by forming submicron carbides near the surface of the superalloy. Detailed characterizations have demonstrated that the depth and uniform distribution of these carbides are enhanced when a stress relief treatment and an appropriate surface preparation are employed in advance of the carburization treatment. Even in alloys that have the propensity to develop a continuous SRZ layer beneath the diffusion zone, the SRZ has been completely eliminated or reduced to low, manageable levels when this combination of techniques is utilized. Now that the techniques to mitigate SRZ have been established at Glenn, TCP phase formation is being emphasized in ongoing work under the UEET Program. The

  6. Advancement and application of gas chromatography isotope ratio mass spectrometry techniques for atmospheric trace gas analysis

    NASA Astrophysics Data System (ADS)

    Giebel, Brian M.

    2011-12-01

    The use of gas chromatography isotope ratio mass spectrometry (GC-IRMS) for compound specific stable isotope analysis is an underutilized technique because of the complexity of the instrumentation and high analytical costs. However stable isotopic data, when coupled with concentration measurements, can provide additional information on a compounds production, transformation, loss, and cycling within the biosphere and atmosphere. A GC-IRMS system was developed to accurately and precisely measure delta13C values for numerous oxygenated volatile organic compounds having natural and anthropogenic sources. The OVOCs include methanol, ethanol, acetone, methyl ethyl ketone, 2-pentanone, and 3-pentanone. Guided by the requirements for analysis of trace components in air, the GC-IRMS system was developed with the goals of increasing sensitivity, reducing dead-volume and peak band broadening, optimizing combustion and water removal, and decreasing the split ratio to the IRMS. The technique relied on a two-stage preconcentration system, a low-volume capillary reactor and water trap, and a balanced reference gas delivery system. Measurements were performed on samples collected from two distinct sources (i.e. biogenic and vehicle emissions) and ambient air collected from downtown Miami and Everglades National Park. However, the instrumentation and the method have the capability to analyze a variety of source and ambient samples. The measured isotopic signatures that were obtained from source and ambient samples provide a new isotopic constraint for atmospheric chemists and can serve as a new way to evaluate their models and budgets for many OVOCs. In almost all cases, OVOCs emitted from fuel combustion were enriched in 13C when compared to the natural emissions of plants. This was particularly true for ethanol gas emitted in vehicle exhaust, which was observed to have a uniquely enriched isotopic signature that was attributed to ethanol's corn origin and use as an alternative

  7. APPLICATION OF ADVANCED IN VITRO TECHNIQUES TO MEASURE, UNDERSTAND AND PREDICT THE KINETICS AND MECHANISMS OF XENOBIOTIC METABOLISM

    EPA Science Inventory

    We have developed a research program in metabolism that involves numerous collaborators across EPA as well as other federal and academic labs. A primary goal is to develop and apply advanced in vitro techniques to measure, understand and predict the kinetics and mechanisms of xen...

  8. Gamma self-shielding correction factors calculation for aqueous bulk sample analysis by PGNAA technique.

    PubMed

    Nasrabadi, M N; Mohammadi, A; Jalali, M

    2009-01-01

    In this paper bulk sample prompt gamma neutron activation analysis (BSPGNAA) was applied to aqueous sample analysis using a relative method. For elemental analysis of an unknown bulk sample, gamma self-shielding coefficient was required. Gamma self-shielding coefficient of unknown samples was estimated by an experimental method and also by MCNP code calculation. The proposed methodology can be used for the determination of the elemental concentration of unknown aqueous samples by BSPGNAA where knowledge of the gamma self-shielding within the sample volume is required. PMID:19328700

  9. Automated sample mounting and technical advance alignment system for biological crystallography at a synchrotron source

    SciTech Connect

    Snell, Gyorgy; Cork, Carl; Nordmeyer, Robert; Cornell, Earl; Meigs, George; Yegian, Derek; Jaklevic, Joseph; Jin, Jian; Stevens, Raymond C.; Earnest, Thomas

    2004-01-07

    High-throughput data collection for macromolecular crystallography requires an automated sample mounting system for cryo-protected crystals that functions reliably when integrated into protein-crystallography beamlines at synchrotrons. Rapid mounting and dismounting of the samples increases the efficiency of the crystal screening and data collection processes, where many crystals can be tested for the quality of diffraction. The sample-mounting subsystem has random access to 112 samples, stored under liquid nitrogen. Results of extensive tests regarding the performance and reliability of the system are presented. To further increase throughput, we have also developed a sample transport/storage system based on ''puck-shaped'' cassettes, which can hold sixteen samples each. Seven cassettes fit into a standard dry shipping Dewar. The capabilities of a robotic crystal mounting and alignment system with instrumentation control software and a relational database allows for automated screening and data collection to be developed.

  10. Advances in Airborne Altimetric Techniques for the Measurement of Snow on Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Newman, T.; Farrell, S. L.; Richter-Menge, J.; Elder, B. C.; Ruth, J.; Connor, L. N.

    2014-12-01

    Current sea ice observations and models indicate a transition towards a more seasonal Arctic ice pack with a smaller, and geographically more variable, multiyear ice component. To gain a comprehensive understanding of the processes governing this transition it is important to include the impact of the snow cover, determining the mechanisms by which snow is both responding to and forcing changes to the sea ice pack. Data from NASA's Operation IceBridge (OIB) snow radar system, which has been making yearly surveys of the western Arctic since 2009, offers a key resource for investigating the snow cover. In this work, we characterize the OIB snow radar instrument response to ascertain the location of 'side-lobes', aiding the interpretation of snow radar data. We apply novel wavelet-based techniques to identify the primary reflecting interfaces within the snow pack from which snow depth estimates are derived. We apply these techniques to the range of available snow radar data collected over the last 6 years during the NASA OIB mission. Our results are validated through comparison with a range of in-situ data. We discuss the impact of sea ice surface morphology on snow radar returns (with respect to ice type) and the topographic conditions over which accurate snow-radar-derived snow depths may be obtained. Finally we present improvements to in situ survey design that will allow for both an improved sampling of the snow radar footprint and more accurate assessment of the uncertainties in radar-derived snow depths in the future.

  11. The precision of bacterial quantification techniques on different kinds of environmental samples and the effect of ultrasonic treatment.

    PubMed

    Böllmann, Jörg; Rathsack, Kristina; Martienssen, Marion

    2016-07-01

    The precision of cell number quantification in environmental samples depends on the complexity of the sample and on the applied technique. We compared fluorescence microscopy after filtration, quantification of gene copies and the cultivation based most probable number technique for their precision. We further analyzed the effect of increasing complexity of the sample material on the precision of the different methods by using pure cultures of Pseudomonas aeruginosa, fresh water samples and sediment slurries with and without ultrasonic treatment for analyses. Microscopy reached the highest precision, which was similar between pure cultures and water samples, but lower for sediment samples due to a higher percentage of cells in clusters and flocks. The PCR based quantification was most precise for pure cultures. Water and sediment samples were similar but less precise, which might be caused by the applied DNA extraction techniques. MPN measurements were equally precise for pure cultures and water samples. For sediment slurries the precision was slightly lower. The applied ultrasonic treatment of the slurries dispersed the cell clusters and flocks, increased the precision of microscopical and MPN measurements and also increased the number of potential colony forming units. However, the culturable cell number decreased by half. For MPN quantification of viable cells in samples with a high proportion of clustered cells we therefore recommend an optimization of ultrasonic treatment and a confirmation by microscopy and cultivation to reach highest possible dispersion of the cells with a minimum of inactivation. As a result of these observations we suggest a correction factor for MPN measurements to consider the effect of sonication on complex samples. The results are most likely applicable to other complex samples such as soil or biofilms. PMID:27184085

  12. Comparative determination of methyl mercury in whole blood samples using GC-ICP-MS and GC-MS techniques.

    PubMed

    Hippler, J; Hoppe, H W; Mosel, F; Rettenmeier, A W; Hirner, A V

    2009-08-15

    Two methods for the determination of methyl mercury (MeHg) in whole blood samples based on different mass spectrometric detection techniques are compared. The methods were employed in two studies in which the internal exposure of a group of mercury-exposed workers to total mercury and MeHg was investigated. Blood samples of these workers were analysed for MeHg independently from each other in two laboratories using similar extraction procedures but different detection techniques, viz. coupled GC-EI-MS/ICP-MS and GC-MS using D(3)-MeHg as internal standard. MeHg was detected in all blood samples in concentrations ranging from 0.3 to 9.0 microg/L. Though different detection techniques were employed, the results obtained by the two laboratories were in relatively good agreement. PMID:19560985

  13. Application of the mid-IR radio correlation to the Ĝ sample and the search for advanced extraterrestrial civilisations

    NASA Astrophysics Data System (ADS)

    Garrett, M. A.

    2015-09-01

    Wright et al. (2014, ApJ, 792, 26) have embarked on a search for advanced Karadashev Type III civilisations via the compilation of a sample of sources with extreme mid-IR emission and colours. The aim is to furnish a list of candidate galaxies that might harbour an advanced Kardashev Type III civilisation; in this scenario, the mid-IR emission is then primarily associated with waste heat energy by-products. I apply the mid-IR radio correlation to this Glimpsing Heat from Alien Technology (Ĝ) sample, a catalogue of 93 candidate galaxies compiled by Griffith et al. (2015, ApJS, 217, 25). I demonstrate that the mid-IR and radio luminosities are correlated for the sample, determining a k-corrected value of q22 = 1.35 ± 0.42. By comparison, a similar measurement for 124 galaxies drawn from the First Look Survey (FLS) has q22 = 0.87 ± 0.27. The statistically significant difference of the mean value of q22 for these two samples, taken together with their more comparable far-IR properties, suggests that the Ĝ sample shows excessive emission in the mid-IR. The fact that the Ĝ sample largely follows the mid-IR radio correlation strongly suggests that the vast majority of these sources are associated with galaxies in which natural astrophysical processes are dominant. This simple application of the mid-IR radio correlation can substantially reduce the number of false positives in the Ĝ catalogue since galaxies occupied by advanced Kardashev Type III civilisations would be expected to exhibit very high values of q. I identify nine outliers in the sample with q22> 2 of which at least three have properties that are relatively well explained via standard astrophysical interpretations e.g. dust emission associated with nascent star formation and/or nuclear activity from a heavily obscured AGN. The other outliers have not been studied in any great detail, and are deserving of further observation. I also note that the comparison of resolved mid-IR and radio images of galaxies

  14. Advanced Sensing and Control Techniques to Facilitate Semi-Autonomous Decommissioning

    SciTech Connect

    Schalkoff, Robert J.

    1999-06-01

    This research is intended to advance the technology of semi-autonomous teleoperated robotics as applied to Decontamination and Decommissioning (D&D) tasks. Specifically, research leading to a prototype dual-manipulator mobile work cell is underway. This cell is supported and enhanced by computer vision, virtual reality and advanced robotics technology.

  15. Fast patient-specific Monte Carlo brachytherapy dose calculations via the correlated sampling variance reduction technique

    SciTech Connect

    Sampson, Andrew; Le Yi; Williamson, Jeffrey F.

    2012-02-15

    Purpose: To demonstrate potential of correlated sampling Monte Carlo (CMC) simulation to improve the calculation efficiency for permanent seed brachytherapy (PSB) implants without loss of accuracy. Methods: CMC was implemented within an in-house MC code family (PTRAN) and used to compute 3D dose distributions for two patient cases: a clinical PSB postimplant prostate CT imaging study and a simulated post lumpectomy breast PSB implant planned on a screening dedicated breast cone-beam CT patient exam. CMC tallies the dose difference, {Delta}D, between highly correlated histories in homogeneous and heterogeneous geometries. The heterogeneous geometry histories were derived from photon collisions sampled in a geometrically identical but purely homogeneous medium geometry, by altering their particle weights to correct for bias. The prostate case consisted of 78 Model-6711 {sup 125}I seeds. The breast case consisted of 87 Model-200 {sup 103}Pd seeds embedded around a simulated lumpectomy cavity. Systematic and random errors in CMC were unfolded using low-uncertainty uncorrelated MC (UMC) as the benchmark. CMC efficiency gains, relative to UMC, were computed for all voxels, and the mean was classified in regions that received minimum doses greater than 20%, 50%, and 90% of D{sub 90}, as well as for various anatomical regions. Results: Systematic errors in CMC relative to UMC were less than 0.6% for 99% of the voxels and 0.04% for 100% of the voxels for the prostate and breast cases, respectively. For a 1 x 1 x 1 mm{sup 3} dose grid, efficiency gains were realized in all structures with 38.1- and 59.8-fold average gains within the prostate and breast clinical target volumes (CTVs), respectively. Greater than 99% of the voxels within the prostate and breast CTVs experienced an efficiency gain. Additionally, it was shown that efficiency losses were confined to low dose regions while the largest gains were located where little difference exists between the homogeneous and

  16. A comparative study between the dynamic method and passive can technique of radon exhalation measurements from samples.

    PubMed

    Raj Menon, Sreeja; Sahoo, B K; Balasundar, S; Gaware, J J; Jose, M T; Venkatraman, B; Mayya, Y S

    2015-05-01

    A comparative study has been carried out between the SSNTD based 'can' technique and active monitors based dynamic method using nine different samples, eight of granite and one of phosphogypsum. Besides radon ((222)Rn) exhalation, thoron((220)Rn) exhalation and (226)Ra and (232)Th content were also measured. The results are: (i) presence of significant thoron exhalation from samples and (ii) observation of thoron interference and leak (~0.05h(-1)) from the 'can' in the SSNTD based 'can' technqiue. The study unequivocally demonstrates the presence of intrinsic uncertainty in SSNTD based 'can' technique. Instead, dynamic method offers a more reliable and faster method. PMID:25770859

  17. Large loop conformation sampling using the activation relaxation technique, ART-nouveau method.

    PubMed

    St-Pierre, Jean-François; Mousseau, Normand

    2012-07-01

    We present an adaptation of the ART-nouveau energy surface sampling method to the problem of loop structure prediction. This method, previously used to study protein folding pathways and peptide aggregation, is well suited to the problem of sampling the conformation space of large loops by targeting probable folding pathways instead of sampling exhaustively that space. The number of sampled conformations needed by ART nouveau to find the global energy minimum for a loop was found to scale linearly with the sequence length of the loop for loops between 8 and about 20 amino acids. Considering the linear scaling dependence of the computation cost on the loop sequence length for sampling new conformations, we estimate the total computational cost of sampling larger loops to scale quadratically compared to the exponential scaling of exhaustive search methods. PMID:22488731

  18. The SALUT Project: Study of Advanced Laser Techniques for the Uncovering of Polychromed Works of Art

    NASA Astrophysics Data System (ADS)

    van der Snickt, G.; De Boeck, A.; Keutgens, K.; Anthierens, D.

    In order to find out whether the existing laser systems can be employed to remove superimposed layers of paint on secco wall paintings in a selective way, laser tests were carried out on three types of prepared samples simulating three stratigraphies that are frequently encountered in practice. OM, EPMA, colorimetry, μRaman, and FT-IR were used to evaluate the results. It was found that Q-switched Nd:YAG lasers emitting at 1,064nm could be employed to remove unwanted layers of oil paint and limewash, but the treatment of large areas requires implementation of a computer-controlled X-Y-Z station in order to control the parameters. However, the applicability of this technique will remain limited as ablation at the established optimum parameters implied a discoloration of the pigments cinnabar, yellow ochre, and burnt sienna. Moreover, it was observed that no ablation took place when the limewash thickness exceeds 25 μm. Unwanted layers of acrylic could be removed in an efficient way with an excimer laser emitting at 193 nm.

  19. Magnetic and Structural characterization of Co nanowires using advanced electron microscopy techniques

    NASA Astrophysics Data System (ADS)

    Cantu-Valle, Jesus; Ruiz-Zepeda, Francisco; Sanchez, John Eder; Mendoza-Santoyo, Fernando; Ponnce, Arturo; UTSA Team

    2015-03-01

    We report the magnetic imaging and crystalline structure of high aspect ratio cobalt nanowires. Experimental results of magnetization reversal in cobalt nanowires are presented to illustrate the functionality of the in situ magnetization process through the manipulation of the objective lens. By making use of this applicability, we measure the magnetization and show experimental evidence of the magnetic flux distribution in polycrystalline cobalt nanowires using off-axis electron holography. The retrieved phase map can distinguishes the magnetic contribution from the crystalline contribution with high accuracy. To determine the size and orientation of the grains within the Co nanowires, PED-assisted orientation mapping was performed. Finally, the magnetic analysis performed at individual nanowires was correlated with the crystalline orientation map, obtained by PED-assisted crystal phase orientation mapping. The large shape anisotropy determines the mayor magnetization direction rather than the magneto-crystalline anisotropy in the studied nanowires. The combination of the two techniques allowed us to directly visualize the effects of the crystallographic texture on the magnetization of the nanowire. The authors would like to acknowledge Dr. B.J.H. Stadler for providing the samples and financial support from NSF PREM #DMR 0934218, CONACYT, #215762 and Department of Defense #64756-RT-REP.

  20. Demonstrating Reliable High Level Waste Slurry Sampling Techniques to Support Hanford Waste Processing

    SciTech Connect

    Kelly, Steven E.

    2013-11-11

    The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capability using simulated Hanford High-Level Waste (HL W) formulations. This work represents one of the remaining technical issues with the high-level waste treatment mission at Hanford. The TOC must demonstrate the ability to adequately mix and sample high-level waste feed to meet the WTP Waste Acceptance Criteria and Data Quality Objectives. The sampling method employed must support both TOC and WTP requirements. To facilitate information transfer between the two facilities the mixing and sampling demonstrations are led by the One System Integrated Project Team. The One System team, Waste Feed Delivery Mixing and Sampling Program, has developed a full scale sampling loop to demonstrate sampler capability. This paper discusses the full scale sampling loops ability to meet precision and accuracy requirements, including lessons learned during testing. Results of the testing showed that the Isolok(R) sampler chosen for implementation provides precise, repeatable results. The Isolok(R) sampler accuracy as tested did not meet test success criteria. Review of test data and the test platform following testing by a sampling expert identified several issues regarding the sampler used to provide reference material used to judge the Isolok's accuracy. Recommendations were made to obtain new data to evaluate the sampler's accuracy utilizing a reference sampler that follows good sampling protocol.