Science.gov

Sample records for advanced scanning probe

  1. Ultrafast scanning probe microscopy

    DOEpatents

    Weiss, Shimon; Chemla, Daniel S.; Ogletree, D. Frank; Botkin, David

    1995-01-01

    An ultrafast scanning probe microscopy method for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample.

  2. Ultrafast scanning probe microscopy

    DOEpatents

    Weiss, S.; Chemla, D.S.; Ogletree, D.F.; Botkin, D.

    1995-05-16

    An ultrafast scanning probe microscopy method is described for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample. 6 Figs.

  3. Advanced electric-field scanning probe lithography on molecular resist using active cantilever

    NASA Astrophysics Data System (ADS)

    Kaestner, Marcus; Aydogan, Cemal; Lipowicz, Hubert-Seweryn; Ivanov, Tzvetan; Lenk, Steve; Ahmad, Ahmad; Angelov, Tihomir; Reum, Alexander; Ishchuk, Valentyn; Atanasov, Ivaylo; Krivoshapkina, Yana; Hofer, Manuel; Holz, Mathias; Rangelow, Ivo W.

    2015-03-01

    The routine "on demand" fabrication of features smaller than 10 nm opens up new possibilities for the realization of many novel nanoelectronic, NEMS, optical and bio-nanotechnology-based devices. Based on the thermally actuated, piezoresistive cantilever technology we have developed a first prototype of a scanning probe lithography (SPL) platform able to image, inspect, align and pattern features down to single digit nano regime. The direct, mask-less patterning of molecular resists using active scanning probes represents a promising path circumventing the problems in today's radiation-based lithography. Here, we present examples of practical applications of the previously published electric field based, current-controlled scanning probe lithography on molecular glass resist calixarene by using the developed tabletop SPL system. We demonstrate the application of a step-and-repeat scanning probe lithography scheme including optical as well as AFM based alignment and navigation. In addition, sequential read-write cycle patterning combining positive and negative tone lithography is shown. We are presenting patterning over larger areas (80 x 80 μm) and feature the practical applicability of the lithographic processes.

  4. Ultrafast scanning probe microscopy

    SciTech Connect

    Botkin, D.; Weiss, S.; Ogletree, D.F.; Salmeron, M.; Chemla, D.S.

    1994-01-01

    The authors have developed a general technique which combines the temporal resolution of ultrafast laser spectroscopy with the spatial resolution of scanned probe microscopy (SPM). Using this technique with scanning tunneling microscopy (STM), they have obtained simultaneous 2 ps time resolution and 50 {angstrom} spatial resolution. This improves the time resolution currently attainable with STM by nine orders of magnitude. The potential of this powerful technique for studying ultrafast dynamical phenomena on surfaces with atomic resolution is discussed.

  5. Scanning Probe Microscopy and Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wiesendanger, Roland

    1994-09-01

    Preface; List of acronyms; Introduction; Part I. Experimental Methods and Theoretical Background of Scanning Probe Microscopy and Spectroscopy: 1. Scanning tunnelling microscopy; 2. Scanning force microscopy; 3. Related scanning probe techniques; Part II. Applications of Scanning Probe Microscopy and Spectroscopy: 4. Condensed matter physics; 5. Chemistry; 6. Organic materials; 7. Metrology and standards; 8. Nanotechnology; References; Index.

  6. Advanced electric-field scanning probe lithography on molecular resist using active cantilever

    NASA Astrophysics Data System (ADS)

    Kaestner, Marcus; Aydogan, Cemal; Ivanov, Tzvetan; Ahmad, Ahmad; Angelov, Tihomir; Reum, Alexander; Ishchuk, Valentyn; Krivoshapkina, Yana; Hofer, Manuel; Lenk, Steve; Atanasov, Ivaylo; Holz, Mathias; Rangelow, Ivo W.

    2015-07-01

    The routine "on demand" fabrication of features smaller than 10 nm opens up new possibilities for the realization of many devices. Driven by the thermally actuated piezoresistive cantilever technology, we have developed a prototype of a scanning probe lithography (SPL) platform which is able to image, inspect, align, and pattern features down to the single digit nanoregime. Here, we present examples of practical applications of the previously published electric-field based current-controlled scanning probe lithography. In particular, individual patterning tests are carried out on calixarene by using our developed table-top SPL system. We have demonstrated the application of a step-and-repeat SPL method including optical as well as atomic force microscopy-based navigation and alignment. The closed-loop lithography scheme was applied to sequentially write positive and negative tone features. Due to the integrated unique combination of read-write cycling, each single feature is aligned separately with the highest precision and inspected after patterning. This routine was applied to create a pattern step by step. Finally, we have demonstrated the patterning over larger areas, over existing topography, and the practical applicability of the SPL processes for lithography down to 13-nm pitch patterns. To enhance the throughput capability variable beam diameter electric field, current-controlled SPL is briefly discussed.

  7. Adaptive scanning probe microscopies

    SciTech Connect

    Swartzentruber, B.S.; Bouchard, A.M.; Osbourn, G.C.

    1997-02-01

    This work is comprised of two major sections. In the first section the authors develop multivariate image classification techniques to distinguish and identify surface electronic species directly from multiple-bias scanning tunneling microscope (STM) images. Multiple measurements at each site are used to distinguish and categorize inequivalent electronic or atomic species on the surface via a computerized classification algorithm. Then, comparison with theory or other suitably chosen experimental data enables the identification of each class. They demonstrate the technique by analyzing dual-polarity constant-current topographs of the Ge(111) surface. Just two measurements, negative- and positive-bias topography height, permit pixels to be separated into seven different classes. Labeling four of the classes as adatoms, first-layer atoms, and two inequivalent rest-atom sites, they find excellent agreement with the c(2 x 8) structure. The remaining classes are associated with structural defects and contaminants. This work represents a first step toward developing a general electronic/chemical classification and identification tool for multivariate scanning probe microscopy imagery. In the second section they report measurements of the diffusion of Si dimers on the Si(001) surface at temperatures between room temperature and 128 C using a novel atom-tracking technique that can resolve every diffusion event. The atom tracker employs lateral-positioning feedback to lock the STM probe tip into position above selected atoms with sub-Angstrom precision. Once locked the STM tracks the position of the atoms as they migrate over the crystal surface. By tracking individual atoms directly, the ability of the instrument to measure dynamic events is increased by a factor of {approximately} 1,000 over conventional STM imaging techniques.

  8. Scanning probe nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Dinelli, F.; Menozzi, C.; Baschieri, P.; Facci, P.; Pingue, P.

    2010-02-01

    The present paper reports on a novel lithographic approach at the nanoscale level, which is based on scanning probe microscopy (SPM) and nanoimprint lithography (NIL). The experimental set-up consists of an atomic force microscope (AFM) operated via software specifically developed for the purpose. In particular, this software allows one to apply a predefined external load for a given lapse of time while monitoring in real-time the relative distance between the tip and the sample as well as the normal and lateral force during the embossing process. Additionally, we have employed AFM tips sculptured by means of focused ion beam in order to create indenting tools of the desired shape. Anti-sticking layers can also be used to functionalize the tips if one needs to investigate the effects of different treatments on the indentation and de-molding processes. The lithographic capabilities of this set-up are demonstrated on a polystyrene NIL-patterned sample, where imprinted features have been obtained upon using different normal load values for increasing time intervals, and on a thermoplastic polymer film, where the imprint process has been monitored in real-time.

  9. Functional probes for scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yukio; Akiyama, Kotone; Hamada, Masayuki; Eguchi, Toyoaki; An, Toshu; Fujikawa, Yasunori; Sakurai, Toshio

    2008-03-01

    Inspite of importance of the probe in scanning probe microscopy (SPM), little attention was paid for the SPM probes for most of the measurements of SPM. We developed sharp metal-tip cantilevers with a typical curvature radius better than 5nm using focused ion beam (FIB) suitable for Kelvin probe force microscopy (KFM)^1. We obtained atomically resolved KFM images with an energy resolution less than 3meV with the probe^2. We also developed a glass-coated tungsten tip for synchrotron radiation-scanning tunneling microscopy with the FIB method^3 and obtained elementally resolved images in a resolution less than 20nm^4. We are now developing a precise atomic force microscope (AFM) lithography^5 with the FIB-milled tip attached to a quartz tuning fork controlled by noncontact AFM. We will present recent results of our AFM lithography, such as an Au line with a width of 20˜30 nm and characters drawn with Au nano dots on a Si surface. 1 K. Akiyama et al., RSI 76, 033705 (2005) 2 T. Eguchi, K. Akiyama et al., PRL 93, 266102 (2004) 3 K. Akiyama et al., RSI 76, 083711 (2005) 4 T. Eguchi, K. Akiyama et al., APL 89, 243119 (2006) 5 K. Akiyama et al., JP 61, 22 (2007).

  10. Functional Probes for Scanning Probe Microscopy

    NASA Astrophysics Data System (ADS)

    Akiyama, Kotone; Eguchi, Toyoaki; An, Toshu; Fujikawa, Yasunori; Hasegawa, Yukio; Sakurai, Toshio

    2007-03-01

    For superior performance of scanning probe microscopy, we are working to fabricate functional probes. For Kelvin probe force microscopy, we fabricated a metal-tip cantilever by attaching a thin metal wire to a regular Si cantilever and milling it by focused ion beam (FIB)^1. By using the W tip with a curvature radius of 3.5 nm, we obtained the potential profile of Ge/Si(105) surface in atomic resolution with the energy resolution better than 3 meV^2. For synchrotron-radiation-light-irradiated scanning tunneling microscopy which aims at atomically resolved elemental analysis, we fabricated a glass-coated W tip using FIB^3. It is found that the glass coating blocks the unwanted secondary electrons, which come from large area of the sample, by a factor of 40 with respect to the case no coating. Using the tip to detect the electrons emitted just below the tip, we obtained element specific images with a spatial resolution better than 20 nm under the photo irradiation whose energy is just above the adsorption edge of the element^4. 1 K. Akiyama et al., RSI 76, 033705 (2005) 2 T. Eguchi, K. Akiyama et al., PRL 93, 266102 (2004) 3 K. Akiyama et al., RSI 76, 083711 (2005) 4 T. Eguchi, K. Akiyama et al., APL, in press

  11. Skimming & Scanning. Advanced Level.

    ERIC Educational Resources Information Center

    Fry, Edward B.

    Part of a series intended to develop essential specialized reading skills, this text/workbook is designed to provide instruction and practice in skimming and scanning for students reading at the seventh through tenth grade reading levels, considered the advanced level. Part 1 of the book deals with skimming. A lesson defines skimming (the rapid…

  12. Development and Application of Multiple-Probe Scanning Probe Microscopes

    SciTech Connect

    Nakayama, T.; Kubo, O.; Shingaya, Y.; Higuchi, S.; Hasegawa, T.; Jiang, C. S.; Okuda, T.; Kuwahara, Y.; Takami, K.; Aono, M.

    2012-04-03

    the research of advanced materials based on nanoscience and nanotechnology, it is often desirable to measure nanoscale local electrical conductivity at a designated position of a given sample. For this purpose, multiple-probe scanning probe microscopes (MP-SPMs), in which two, three or four scanning tunneling microscope (STM) or atomic force microscope (AFM) probes are operated independently, have been developed. Each probe in an MP-SPM is used not only for observing high-resolution STM or AFM images but also for forming an electrical contact enabling nanoscale local electrical conductivity measurement. The world's first double-probe STM (DP-STM) developed by the authors, which was subsequently modified to a triple-probe STM (TP-STM), has been used to measure the conductivities of one-dimensional metal nanowires and carbon nanotubes and also two-dimensional molecular films. A quadruple-probe STM (QP-STM) has also been developed and used to measure the conductivity of two-dimensional molecular films without the ambiguity of contact resistance between the probe and sample. Moreover, a quadruple-probe AFM (QP-AFM) with four conductive tuning-fork-type self-detection force sensing probes has been developed to measure the conductivity of a nanostructure on an insulating substrate. A general-purpose computer software to control four probes at the same time has also been developed and used in the operation of the QP-AFM. These developments and applications of MP-SPMs are reviewed in this paper.

  13. Ion Implantation with Scanning Probe Alignment

    SciTech Connect

    Persaud, A.; Liddle, J.A.; Schenkel, T.; Bokor, J.; Ivanov, Tzv.; Rangelow, I.W.

    2005-07-12

    We describe a scanning probe instrument which integrates ion beams with the imaging and alignment function of a piezo-resistive scanning probe in high vacuum. The beam passes through several apertures and is finally collimated by a hole in the cantilever of the scanning probe. The ion beam spot size is limited by the size of the last aperture. Highly charged ions are used to show hits of single ions in resist, and we discuss the issues for implantation of single ions.

  14. Integration of scanning probes and ion beams

    SciTech Connect

    Persaud, A.; Park, S.J.; Liddle, J.A.; Schenkel, T.; Bokor, J.; Rangelow, I.

    2005-03-30

    We report the integration of a scanning force microscope with ion beams. The scanning probe images surface structures non-invasively and aligns the ion beam to regions of interest. The ion beam is transported through a hole in the scanning probe tip. Piezoresistive force sensors allow placement of micromachined cantilevers close to the ion beam lens. Scanning probe imaging and alignment is demonstrated in a vacuum chamber coupled to the ion beam line. Dot arrays are formed by ion implantation in resist layers on silicon samples with dot diameters limited by the hole size in the probe tips of a few hundred nm.

  15. Piezoresistive sensors for scanning probe microscopy

    PubMed

    Gotszalk; Grabiec; Rangelow

    2000-02-01

    In this article we summarize the efforts devoted to the realization of our ideas of the development of piezoresistive sensor family used in scanning probe microscopy. All the sensors described here are fabricated based on advanced silicon micromachining and standard CMOS processing. The fabrication scenario presented in this article allows for the production of different sensors with the same tip deflection piezoresistive detection scheme. In this way we designed and fabricated, as a basic sensor, piezoresistive cantilever for atomic force microscopy, which enables surface topography measurements with a resolution of 0.1 nm. Next, by introducing a conductive tip isolated from the beam we obtained a microprobe for scanning capacitance microscopy and scanning tunneling microscopy. With this microprobe we measured capacitance between the microtip and the surface in the range of 10(-22) F. Furthermore, a modification of the piezoresistors placement, based on the finite element method (FEM) simulation permits fabrication of the multipurpose sensor for lateral force microscopy, which enables measurements of friction forces with a resolution of 1 nN. Finally, using the same basic device idea and only slightly modified process sequence we manufactured femtocalorimeter for the detection of heat energy in the range of 50 pJ. PMID:10741650

  16. Probe microscopy: Scanning below the cell surface

    NASA Astrophysics Data System (ADS)

    Sahin, Ozgur

    2008-08-01

    Conventional atomic force microscopy probes only the surface of specimens. A related technique called scanning near-field ultrasonic holography can now image nanoparticles buried below the surfaces of cells, which could prove useful in nanotoxicology.

  17. Nanoscale mapping of lithium-ion diffusion in a cathode within an all-solid-state lithium-ion battery by advanced scanning probe microscopy techniques.

    PubMed

    Zhu, Jing; Lu, Li; Zeng, Kaiyang

    2013-02-26

    High-resolution real-space mapping of Li-ion diffusion in the LiNi(1/3)Co(1/3)Mn(1/3)O₂ cathode within an all-solid-state thin film Li-ion battery has been conducted using advanced scanning probe microscopy techniques, namely, band excitation electrochemical strain microscopy (BE-ESM) and conductive atomic force microscopy. In addition, local variations of the electrochemical response in the LiNi(1/3)Co(1/3)Mn(1/3)O₂ thin film cathode at different cycling stages have been investigated. This work demonstrates the unique feature and applications of the BE-ESM technique on battery research. The results allow us to establish a direct relationship of the changes in ionic mobility as well as the electrochemical activity at the nanoscale with the numbers of charge/discharge cycles. Furthermore, various factors influencing the BE-ESM measurements, including sample mechanical properties (e.g., elastic and dissipative properties) as well as surface electrical properties, have also been studied to investigate the coupling effects on the electrochemical strain. The study on the relationships between the Li-ion redistribution and microstructure of the electrode materials within thin film Li-ion battery will provide further understanding of the electrochemical degradation mechanisms of Li-ion rechargeable batteries at the nanoscale. PMID:23336441

  18. Soft stylus probes for scanning electrochemical microscopy.

    PubMed

    Cortés-Salazar, Fernando; Träuble, Markus; Li, Fei; Busnel, Jean-Marc; Gassner, Anne-Laure; Hojeij, Mohamad; Wittstock, Gunther; Girault, Hubert H

    2009-08-15

    A soft stylus microelectrode probe has been developed to carry out scanning electrochemical microscopy (SECM) of rough, tilted, and large substrates in contact mode. It is fabricated by first ablating a microchannel in a polyethylene terephthalate thin film and filling it with a conductive carbon ink. After curing the carbon track and lamination with a polymer film, the V-shaped stylus was cut thereby forming a probe, with the cross section of the carbon track at the tip being exposed either by UV-photoablation machining or by blade cutting followed by polishing to produce a crescent moon-shaped carbon microelectrode. The probe properties have been assessed by cyclic voltammetry, approach curves, and line scans over electrochemically active and inactive substrates of different roughness. The influence of probe bending on contact mode imaging was then characterized using simple patterns. Boundary element method simulations were employed to rationalize the distance-dependent electrochemical response of the soft stylus probes. PMID:19630394

  19. Scanning Probe Microscopy of Graphene

    NASA Astrophysics Data System (ADS)

    Tautz, Pamela

    2011-10-01

    Scanning tunneling microscopy has been used to study the unusual electronic properties of graphene. In an effort to support the graphene with minimal interaction with the substrate, we used a hexagonal boron nitride (hBN) substrate. To minimize contaminants between the CVD graphene and boron nitride, the graphene samples were cleaned with distilled water and isopropanol prior to transfer to hBN substrate. We have also examined the growth of graphene flakes by chemical vapor deposition. In particular, we examined the relationship between the orientations of the first and second layer of CVD grown graphene. We found the growth mechanism preferentially resulted in rotations of 9^o or less indicating flakes with first and second layers aligned.

  20. Scanning probe image wizard: A toolbox for automated scanning probe microscopy data analysis

    NASA Astrophysics Data System (ADS)

    Stirling, Julian; Woolley, Richard A. J.; Moriarty, Philip

    2013-11-01

    We describe SPIW (scanning probe image wizard), a new image processing toolbox for SPM (scanning probe microscope) images. SPIW can be used to automate many aspects of SPM data analysis, even for images with surface contamination and step edges present. Specialised routines are available for images with atomic or molecular resolution to improve image visualisation and generate statistical data on surface structure.

  1. An interchangeable scanning Hall probe/scanning SQUID microscope

    SciTech Connect

    Tang, Chiu-Chun; Lin, Hui-Ting; Wu, Sing-Lin; Chen, Tse-Jun; Wang, M. J.; Ling, D. C.; Chi, C. C.; Chen, Jeng-Chung

    2014-08-15

    We have constructed a scanning probe microscope for magnetic imaging, which can function as a scanning Hall probe microscope (SHPM) and as a scanning SQUID microscope (SSM). The scanning scheme, applicable to SHPM and SSM, consists of a mechanical positioning (sub) micron-XY stage and a flexible direct contact to the sample without a feedback control system for the Z-axis. With the interchangeable capability of operating two distinct scanning modes, our microscope can incorporate the advantageous functionalities of the SHPM and SSM with large scan range up to millimeter, high spatial resolution (⩽4 μm), and high field sensitivity in a wide range of temperature (4.2 K-300 K) and magnetic field (10{sup −7} T-1 T). To demonstrate the capabilities of the system, we present magnetic images scanned with SHPM and SSM, including a RbFeB magnet and a nickel grid pattern at room temperature, surface magnetic domain structures of a La{sub 2/3}Ca{sub 1/3}MnO{sub 3} thin film at 77 K, and superconducting vortices in a striped niobium film at 4.2 K.

  2. Nanotubes as nanoprobes in scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Dai, Hongjie; Hafner, Jason H.; Rinzler, Andrew G.; Colbert, Daniel T.; Smalley, Richard E.

    1996-11-01

    SINCE the invention of the scanning tunnelling microscope1, the value of establishing a physical connection between the macroscopic world and individual nanometre-scale objects has become increasingly evident, both for probing these objects2-4 and for direct manipulation5-7 and fabrication8-10 at the nanometre scale. While good progress has been made in controlling the position of the macroscopic probe of such devices to sub-ångström accuracy, and in designing sensitive detection schemes, less has been done to improve the probe tip itself4. Ideally the tip should be as precisely defined as the object under investigation, and should maintain its integrity after repeated use not only in high vacuum but also in air and water. The best tips currently used for scanning probe microscopy do sometimes achieve sub-nanometre resolution, but they seldom survive a 'tip crash' with the surface, and it is rarely clear what the atomic configuration of the tip is during imaging. Here we show that carbon nanotubes11,12 might constitute well defined tips for scanning probe microscopy. We have attached individual nanotubes several micrometres in length to the silicon cantilevers of conventional atomic force microscopes. Because of their flexibility, the tips are resistant to damage from tip crashes, while their slenderness permits imaging of sharp recesses in surface topography. We have also been able to exploit the electrical conductivity of nanotubes by using them for scanning tunnelling microscopy.

  3. High-resolution scanning hall probe microscopy

    NASA Astrophysics Data System (ADS)

    Hicks, Clifford; Luan, Lan; Hendrik Bluhm, J.; Moler, Kathryn; Guikema, Janice; Zeldov, Eli; Shtrikman, Hadas

    2006-03-01

    Scanning hall sensors can be used to directly image magnetic fields at surfaces. They offer high resolution, high sensitivity, operability over a broad temperature range, and linearity. We have fabricated hall sensors on GaAs / Al0.35Ga0.65As and GaAs / Al0.3Ga0.7As heterostructures containing 2D electron gases 40, 39 and 140nm beneath the surface. The sensitive areas of our probes range from microns to 85nm on a side. We report on the field sensitivities of probes of various sizes and their spatial resolution in a scanning configuration.

  4. Scanned probe characterization of semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Law, James Jeremy Macdonald

    Advances in the synthesis of materials and device structures have accentuated the need to understand nanoscale electronic structure and its implications. Scanning probe microscopy offers a rich variety of highly spatially accurate techniques that can further our understanding of the interactions that occur in nanoscale semiconductor materials and devices. The promising nitride semiconductor materials system suffers from perturbations in local electronic structure due to crystallographic defects. Understanding the electronic properties and physical origin of these defects can be invaluable in mitigating their impacts or eliminating them all together. In the second chapter of this dissertation, scanning capacitance microscopy (SCM) is used to characterize local electronic structure in alpha-plane n-type gallium nitride. Analysis reveals the presence of a linear, positively charged feature aligned along the [1¯100] direction which likely corresponds to a partial dislocation at the edge of a stacking fault. In the third chapter, conductive atomic force microscopy is used to determine the effects of Ga/N flux on the conductive behavior of reverse-bias leakage paths in gallium nitride grown by molecular beam epitaxy (MBE). Our data reveal a band of fluxes near Ga/N ≈ 1 for which these pathways cease to be observable. These observations suggest a method for controlling the primary source of reverse-bias Schottky contact leakage in n-type GaN grown by MBE. A deeper understanding of the interaction between macro-scale objects and nanoscale electronic properties is required to bring the exciting new possibilities that semiconductor nanowires offer to fruition. In the fourth chapter, SCM is used to examine the effects of micron-scale metal contacts on carrier modulation and electrostatic behavior in indium arsenide semiconductor nanowires. We interpret a pronounced dependence of capacitance spectra on distance between the probe tip and nanowire contact as a consequence of

  5. Vertically aligned nanostructure scanning probe microscope tips

    SciTech Connect

    Guillorn, Michael A.; Ilic, Bojan; Melechko, Anatoli V.; Merkulov, Vladimir I.; Lowndes, Douglas H.; Simpson, Michael L.

    2006-12-19

    Methods and apparatus are described for cantilever structures that include a vertically aligned nanostructure, especially vertically aligned carbon nanofiber scanning probe microscope tips. An apparatus includes a cantilever structure including a substrate including a cantilever body, that optionally includes a doped layer, and a vertically aligned nanostructure coupled to the cantilever body.

  6. High-resolution scanning hall probe microscopy

    NASA Astrophysics Data System (ADS)

    Hicks, C. W.; Guikema, J. W.; Zeldov, E.

    2005-03-01

    Scanning hall sensors can be used to directly image magnetic fields at surfaces. They offer high resolution, high sensitivity, operability from cryogenic to room temperature, and linearity. We have fabricated hall sensors on GaAs / Al0.35Ga0.65As and GaAs / Al0.3Ga0.7As heterostructures, one containing a 2D electron gas 40 nanometers below the surface and another 140nm below the surface, as well as an In0.5Al0.5As / GaSb / AlSb / InAs heterostructure containing a 2DEG 21nm below the surface. The sensitive areas of our probes range from microns to 60nm on a side. We report on the field sensitivities of the probes and their spatial resolution in a scanning configuration.

  7. Advanced Langmuir Probe (LP)

    NASA Technical Reports Server (NTRS)

    Voronka, N. R.; Block, B. P.; Carignan, G. R.

    1991-01-01

    The dynamic response of the MK-2 version of the Langmuir probe amplifier was studied. The settling time of the step response is increased by: (1) stray node-to-ground capacitance at series connections between high value feedback resistors; and (2) input capacitance due to the input cable, FET switches, and input source follower. The stray node-to-ground capacitances can be reduced to tolerable levels by elevating the string of feedback resistors above the printing board. A new feedback network was considered, with promising results. The design uses resistances having much lower nominal values, thereby minimizing the effect of stray capacitances. Faster settling times can be achieved by using an operational amplifier having a higher gain-bandwidth product.

  8. Intermittent contact hydration scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Aloisi, G.; Bacci, F.; Carlà, M.; Dolci, D.

    2010-07-01

    Hydration scanning probe microscopy is a technique similar to scanning tunneling microscopy, in which the probe current, sustained by the slight surface conduction of a thin hydration layer covering an insulating support surface, is essentially electrochemical in nature instead of electronic tunneling. Such a technique allows the imaging of a great variety of samples, including insulators, provided that they are hydrophilic, as well as the study of molecular samples of biological interest (such as DNA) fixed on a suitable supporting surface. The main problem to obtain stable and reproducible images comes from the very critical determination of the operating conditions under which the probe-hydration layer interaction does not lead to the formation of a relatively large water meniscus. It has been suggested that this issue can be removed by adding a high frequency oscillation to the probe movement, as in tapping atomic force microscopy. Meniscus formation and breakup have been investigated in order to determine the best values for the amplitude and the frequency of the oscillation. Results obtained in this mode are discussed in comparison with the usual continuous contact mode.

  9. Key notes to the advancement of optical scanning (Keynote Paper)

    NASA Astrophysics Data System (ADS)

    Beiser, Leo

    2005-08-01

    In forming an historical perspective of the development of optical scanning, we ask a probing question: What was the first major optical scanning innovation? We offer one having unexpected attributes, and seek audience ideas. We then demonstrate the pioneering work in Optical Scanning for information transfer, some created long before we arrived on the scene. Our job has been and is: Make it Faster and Better. The body of the presentation addresses how our technology advanced to this useful state.

  10. Improved controlled atmosphere high temperature scanning probe microscope

    NASA Astrophysics Data System (ADS)

    Hansen, K. V.; Wu, Y.; Jacobsen, T.; Mogensen, M. B.; Theil Kuhn, L.

    2013-07-01

    To locally access electrochemical active surfaces and interfaces in operando at the sub-micron scale at high temperatures in a reactive gas atmosphere is of great importance to understand the basic mechanisms in new functional materials, for instance, for energy technologies, such as solid oxide fuel cells and electrolyzer cells. Here, we report on advanced improvements of our original controlled atmosphere high temperature scanning probe microscope, CAHT-SPM. The new microscope can employ a broad range of the scanning probe techniques including tapping mode, scanning tunneling microscopy, scanning tunneling spectroscopy, conductive atomic force microscopy, and Kelvin probe force microscopy. The temperature of the sample can be as high as 850 °C. Both reducing and oxidizing gases such as oxygen, hydrogen, and nitrogen can be added in the sample chamber and the oxygen partial pressure (pO2) is monitored by an oxygen sensor. We present here some examples of its capabilities demonstrated by high temperature topography with simultaneously ac electrical conductance measurements during atmosphere changes, electrochemical impedance spectroscopy at various temperatures, and measurements of the surface potential. The improved CAHT-SPM, therefore, holds a great potential for local sub-micron analysis of high-temperature and gas induced changes of a wide range of materials.

  11. Low cost PC based scanning Kelvin probe

    NASA Astrophysics Data System (ADS)

    Baikie, I. D.; Estrup, P. J.

    1998-11-01

    We have developed a novel, low cost, scanning Kelvin probe (SKP) system that can measure work function (wf) and surface potential (sp) topographies to within 1 meV energy resolution. The control and measurement subcomponents are PC based and incorporate a flexible user interface, permitting software control of major parameters and allowing easy user implementation via automatic setup and scanning procedures. We review the mode of operation and design features of the SKP including the digital oscillator, the compact ambient voice-coil head-stage, and signal processing techniques. This system offers unique tip-to-sample spacing control (to within 40 nm) which provides a method of simultaneously imaging sample height topographies and is essential to avoid spurious or "apparent" wf changes due to scanning-induced spacing changes. We illustrate SKP operation in generating high resolution wf/sp profiles of metal interfaces (as a tip characterization procedure) and operational electronic devices. The SKP potentially has a very wide range of applications ranging from semiconductor quality control thin film and surface analyses to corrosion and biopotential imaging.

  12. Scanning Probe Microscopy of Organic Solar Cells

    NASA Astrophysics Data System (ADS)

    Reid, Obadiah G.

    Nanostructured composites of organic semiconductors are a promising class of materials for the manufacture of low-cost solar cells. Understanding how the nanoscale morphology of these materials affects their efficiency as solar energy harvesters is crucial to their eventual potential for large-scale deployment for primary power generation. In this thesis we describe the use of optoelectronic scanning-probe based microscopy methods to study this efficiency-structure relationship with nanoscale resolution. In particular, our objective is to make spatially resolved measurements of each step in the power conversion process from photons to an electric current, including charge generation, transport, and recombination processes, and correlate them with local device structure. We have achieved two aims in this work: first, to develop and apply novel electrically sensitive scanning probe microscopy experiments to study the optoelectronic materials and processes discussed above; and second, to deepen our understanding of the physics underpinning our experimental techniques. In the first case, we have applied conductive-, and photoconductive atomic force (cAFM & pcAFM) microscopy to measure both local photocurrent collection and dark charge transport properties in a variety of model and novel organic solar cell composites, including polymer/fullerene blends, and polymer-nanowire/fullerene blends, finding that local heterogeneity is the rule, and that improvements in the uniformity of specific beneficial nanostructures could lead to large increases in efficiency. We have used scanning Kelvin probe microscopy (SKPM) and time resolved-electrostatic force microscopy (trEFM) to characterize all-polymer blends, quantifying their sensitivity to photochemical degradation and the subsequent formation of local charge traps. We find that while trEFM provides a sensitive measure of local quantum efficiency, SKPM is generally unsuited to measurements of efficiency, less sensitive than tr

  13. Design of a scanning probe microscope with advanced sample treatment capabilities: An atomic force microscope combined with a miniaturized inductively coupled plasma source

    SciTech Connect

    Hund, Markus; Herold, Hans

    2007-06-15

    We describe the design and performance of an atomic force microscope (AFM) combined with a miniaturized inductively coupled plasma source working at a radio frequency of 27.12 MHz. State-of-the-art scanning probe microscopes (SPMs) have limited in situ sample treatment capabilities. Aggressive treatments such as plasma etching or harsh treatments such as etching in aggressive liquids typically require the removal of the sample from the microscope. Consequently, time consuming procedures are required if the same sample spot has to be imaged after successive processing steps. We have developed a first prototype of a SPM which features a quasi in situ sample treatment using a modified commercial atomic force microscope. A sample holder is positioned in a special reactor chamber; the AFM tip can be retracted by several millimeters so that the chamber can be closed for a treatment procedure. Most importantly, after the treatment, the tip is moved back to the sample with a lateral drift per process step in the 20 nm regime. The performance of the prototype is characterized by consecutive plasma etching of a nanostructured polymer film.

  14. Three-axis positional drift correction in scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Follin, Nathan D.; Musalo, Christopher J.; Trawick, Matthew L.

    2011-03-01

    Positional drift in scanning probe microscopy can cause image distortion and metrological errors of tens of nanometers or more. It can arise from thermal drift, due to thermal expansion of materials in the sample and microscope while scanning, or from piezo creep, particularly along the z axis. We present a technique for correcting positional drift errors in all three axes. Our method works by comparing each scanned topographical image to a second, partial scan, taken immediately afterwards, on which the fast and slow scan axes have been reversed. We model the positional distortion as a low-order polynomial function in three dimensions, searching for the set of correctional coefficients that minimizes the difference between the two scans. Using this technique we have successfully reduced positional errors from 50 nm to 0.5 nm in the z axis, and from 40 nm to 2 nm (about half of a single pixel) in the xy plane. Supported by an award from Research Corporation for Science Advancement, and by the American Chemical Society Petroleum Research Fund through Grant number 46380-GB7.

  15. Probing ultrafast spin dynamics with optical pump-probe scanning tunnelling microscopy.

    PubMed

    Yoshida, Shoji; Aizawa, Yuta; Wang, Zi-han; Oshima, Ryuji; Mera, Yutaka; Matsuyama, Eiji; Oigawa, Haruhiro; Takeuchi, Osamu; Shigekawa, Hidemi

    2014-08-01

    Studies of spin dynamics in low-dimensional systems are important from both fundamental and practical points of view. Spin-polarized scanning tunnelling microscopy allows localized spin dynamics to be characterized and plays important roles in nanoscale science and technology. However, nanoscale analysis of the ultrafast dynamics of itinerant magnetism, as well as its localized characteristics, should be pursued to advance further the investigation of quantum dynamics in functional structures of small systems. Here, we demonstrate the optical pump-probe scanning tunnelling microscopy technique, which enables the nanoscale probing of spin dynamics with the temporal resolution corresponding, in principle, to the optical pulse width. Spins are optically oriented using circularly polarized light, and their dynamics are probed by scanning tunnelling microscopy based on the optical pump-probe method. Spin relaxation in a single quantum well with a width of 6 nm was observed with a spatial resolution of ∼ 1 nm. In addition to spin relaxation dynamics, spin precession, which provides an estimation of the Landé g factor, was observed successfully. PMID:24974938

  16. Probing ultrafast spin dynamics with optical pump-probe scanning tunnelling microscopy

    NASA Astrophysics Data System (ADS)

    Yoshida, Shoji; Aizawa, Yuta; Wang, Zi-Han; Oshima, Ryuji; Mera, Yutaka; Matsuyama, Eiji; Oigawa, Haruhiro; Takeuchi, Osamu; Shigekawa, Hidemi

    2014-08-01

    Studies of spin dynamics in low-dimensional systems are important from both fundamental and practical points of view. Spin-polarized scanning tunnelling microscopy allows localized spin dynamics to be characterized and plays important roles in nanoscale science and technology. However, nanoscale analysis of the ultrafast dynamics of itinerant magnetism, as well as its localized characteristics, should be pursued to advance further the investigation of quantum dynamics in functional structures of small systems. Here, we demonstrate the optical pump-probe scanning tunnelling microscopy technique, which enables the nanoscale probing of spin dynamics with the temporal resolution corresponding, in principle, to the optical pulse width. Spins are optically oriented using circularly polarized light, and their dynamics are probed by scanning tunnelling microscopy based on the optical pump-probe method. Spin relaxation in a single quantum well with a width of 6 nm was observed with a spatial resolution of ~1 nm. In addition to spin relaxation dynamics, spin precession, which provides an estimation of the Landé g factor, was observed successfully.

  17. Creating and Probing Graphene Electron Optics with Local Scanning Probes

    NASA Astrophysics Data System (ADS)

    Stroscio, Joseph

    Ballistic propagation and the light-like dispersion of graphene charge carriers make graphene an attractive platform for optics-inspired graphene electronics where gate tunable potentials can control electron refraction and transmission. In analogy to optical wave propagation in lenses, mirrors and metamaterials, gate potentials can be used to create a negative index of refraction for Veselago lensing and Fabry-Pérot interferometers. In circular geometries, gate potentials can induce whispering gallery modes (WGM), similar to optical and acoustic whispering galleries albeit on a much smaller length scale. Klein scattering of Dirac carriers plays a central role in determining the coherent propagation of electron waves in these resonators. In this talk, I examine the probing of electron resonators in graphene confined by linear and circular gate potentials with the scanning tunneling microscope (STM). The tip in the STM tunnel junction serves both as a tunable local gate potential, and as a probe of the graphene states through tunneling spectroscopy. A combination of a back gate potential, Vg, and tip potential, Vb, creates and controls a circular pn junction that confines the WGM graphene states. The resonances are observed in two separate channels in the tunneling spectroscopy experiment: first, by directly tunneling into the state at the bias energy eVb, and, second, by tunneling from the resonance at the Fermi level as the state is gated by the tip potential. The second channel produces a fan-like set of WGM peaks, reminiscent of the fringes seen in planar geometries by transport measurements. The WGM resonances split in a small applied magnetic field, with a large energy splitting approaching the WGM spacing at 0.5 T. These results agree well with recent theory on Klein scattering in graphene electron resonators. This work is done in collaboration with Y. Zhao, J. Wyrick, F.D. Natterer, J. F. Rodriquez-Nieva, C. Lewandoswski, K. Watanabe, T. Taniguchi, N. B

  18. Complete information acquisition in scanning probe microscopy

    SciTech Connect

    Belianinov, Alex; Kalinin, Sergei V.; Jesse, Stephen

    2015-03-13

    In the last three decades, scanning probe microscopy (SPM) has emerged as a primary tool for exploring and controlling the nanoworld. A critical part of the SPM measurements is the information transfer from the tip-surface junction to a macroscopic measurement system. This process reduces the many degrees of freedom of a vibrating cantilever to relatively few parameters recorded as images. Similarly, the details of dynamic cantilever response at sub-microsecond time scales of transients, higher-order eigenmodes and harmonics are averaged out by transitioning to millisecond time scale of pixel acquisition. Hence, the amount of information available to the external observer is severely limited, and its selection is biased by the chosen data processing method. Here, we report a fundamentally new approach for SPM imaging based on information theory-type analysis of the data stream from the detector. This approach allows full exploration of complex tip-surface interactions, spatial mapping of multidimensional variability of material s properties and their mutual interactions, and SPM imaging at the information channel capacity limit.

  19. Complete information acquisition in scanning probe microscopy

    DOE PAGESBeta

    Belianinov, Alex; Kalinin, Sergei V.; Jesse, Stephen

    2015-03-13

    In the last three decades, scanning probe microscopy (SPM) has emerged as a primary tool for exploring and controlling the nanoworld. A critical part of the SPM measurements is the information transfer from the tip-surface junction to a macroscopic measurement system. This process reduces the many degrees of freedom of a vibrating cantilever to relatively few parameters recorded as images. Similarly, the details of dynamic cantilever response at sub-microsecond time scales of transients, higher-order eigenmodes and harmonics are averaged out by transitioning to millisecond time scale of pixel acquisition. Hence, the amount of information available to the external observer ismore » severely limited, and its selection is biased by the chosen data processing method. Here, we report a fundamentally new approach for SPM imaging based on information theory-type analysis of the data stream from the detector. This approach allows full exploration of complex tip-surface interactions, spatial mapping of multidimensional variability of material s properties and their mutual interactions, and SPM imaging at the information channel capacity limit.« less

  20. The Scanning Theremin Microscope: A Model Scanning Probe Instrument for Hands-On Activities

    ERIC Educational Resources Information Center

    Quardokus, Rebecca C.; Wasio, Natalie A.; Kandel, S. Alex

    2014-01-01

    A model scanning probe microscope, designed using similar principles of operation to research instruments, is described. Proximity sensing is done using a capacitance probe, and a mechanical linkage is used to scan this probe across surfaces. The signal is transduced as an audio tone using a heterodyne detection circuit analogous to that used in…

  1. EDITORIAL: Scanning probe microscopy: a visionary development Scanning probe microscopy: a visionary development

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2013-07-01

    The development of scanning probe microscopy repositioned modern physics. When Rohrer and Binnig first used electronic tunnelling effects to image atoms and quantum states they did more than pin down theoretical hypotheses to real-world observables; the scanning tunnelling microscope fed imaginations, prompting researchers to consider new directions and possibilities [1]. As Rohrer once commented, 'We could show that you can easily manipulate or position something small in space with an accuracy of 10 pm.... When you can do that, you simply have ideas of what you can do' [2]. The development heralded a cavalry of scanning probe techniques—such as atomic force microscopy (AFM) [3-5], scanning near-field optical microscopy (SNOM) [6-8] and Kelvin probe force microscopy (KPFM) [9, 10]—that still continue to bring nanomaterials and nanoscale phenomena into fresh focus. Not long after the development of scanning tunnelling microscopy, Binnig, Quate and Gerber collaborating in California in the US published work on a new type of microscope also capable of atomic level resolution [3]. The original concept behind scanning tunnelling microscopy uses electrical conductance, which places substantial limitations on the systems that it can image. Binnig, Quate and Gerber developed the AFM to 'feel' the topology of surfaces like the needle of an old fashioned vinyl player. In this way insulators could be imaged as well. The development of a force modulation mode AFM extended the tool's reach to soft materials making images of biological samples accessible with the technique [4]. There have now been a number of demonstrations of image capture at rates that allow dynamics at the nanoscale to be tracked in real time, opening further possibilities in applications of the AFM as described in a recent review by Toshio Ando at Kanazawa University [5]. Researchers also found a way to retrieve optical information at 'super-resolution' [6, 7]. Optical microscopy provides spectral

  2. Analysis of scanning probe microscope images using wavelets.

    PubMed

    Gackenheimer, C; Cayon, L; Reifenberger, R

    2006-03-01

    The utility of wavelet transforms for analysis of scanning probe images is investigated. Simulated scanning probe images are analyzed using wavelet transforms and compared to a parallel analysis using more conventional Fourier transform techniques. The wavelet method introduced in this paper is particularly useful as an image recognition algorithm to enhance nanoscale objects of a specific scale that may be present in scanning probe images. In its present form, the applied wavelet is optimal for detecting objects with rotational symmetry. The wavelet scheme is applied to the analysis of scanning probe data to better illustrate the advantages that this new analysis tool offers. The wavelet algorithm developed for analysis of scanning probe microscope (SPM) images has been incorporated into the WSxM software which is a versatile freeware SPM analysis package. PMID:16439061

  3. Band excitation method applicable to scanning probe microscopy

    DOEpatents

    Jesse, Stephen; Kalinin, Sergei V.

    2015-08-04

    Scanning probe microscopy may include a method for generating a band excitation (BE) signal and simultaneously exciting a probe at a plurality of frequencies within a predetermined frequency band based on the excitation signal. A response of the probe is measured across a subset of frequencies of the predetermined frequency band and the excitation signal is adjusted based on the measured response.

  4. Scanning probe microscope simulator for the assessment of noise in scanning probe microscopy controllers

    SciTech Connect

    Wutscher, T.; Niebauer, J.; Giessibl, F. J.

    2013-07-15

    We present an electronic circuit that allows to calibrate and troubleshoot scanning probe microscopy (SPM) controllers with respect to their noise performance. The control signal in an SPM is typically highly nonlinear—the tunneling current in scanning tunneling microscopy (STM) varies exponentially with distance. The exponential current-versus-voltage characteristics of diodes allow to model the current dependence in STM. Additional inputs allow to simulate the effects of external perturbations and the reactions of the control electronics. We characterized the noise performance of the feedback controller using the apparent topography roughness of recorded images. For a comparison of different STM controllers, an optimal gain parameter was determined by exploring settling times through a rectangular perturbation signal. We used the circuit to directly compare the performance of two types of SPM controllers used in our laboratory.

  5. Scanning probe microscope simulator for the assessment of noise in scanning probe microscopy controllers.

    PubMed

    Wutscher, T; Niebauer, J; Giessibl, F J

    2013-07-01

    We present an electronic circuit that allows to calibrate and troubleshoot scanning probe microscopy (SPM) controllers with respect to their noise performance. The control signal in an SPM is typically highly nonlinear-the tunneling current in scanning tunneling microscopy (STM) varies exponentially with distance. The exponential current-versus-voltage characteristics of diodes allow to model the current dependence in STM. Additional inputs allow to simulate the effects of external perturbations and the reactions of the control electronics. We characterized the noise performance of the feedback controller using the apparent topography roughness of recorded images. For a comparison of different STM controllers, an optimal gain parameter was determined by exploring settling times through a rectangular perturbation signal. We used the circuit to directly compare the performance of two types of SPM controllers used in our laboratory. PMID:23902073

  6. Scanned probe microscopy for thin film superconductor development

    SciTech Connect

    Moreland, J.

    1996-12-31

    Scanned probe microscopy is a general term encompassing the science of imaging based on piezoelectric driven probes for measuring local changes in nanoscale properties of materials and devices. Techniques like scanning tunneling microscopy, atomic force microscopy, and scanning potentiometry are becoming common tools in the production and development labs in the semiconductor industry. The author presents several examples of applications specific to the development of high temperature superconducting thin films and thin-film devices.

  7. Scanning probe microscopy on new dental alloys

    NASA Astrophysics Data System (ADS)

    Reusch, B.; Geis-Gerstorfer, J.; Ziegler, C.

    Surface analytical methods such as scanning force microscopy (SFM), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were used to determine the surface properties of amalgam substitutes as tooth filling materials. In particular the corrosion and the passivation behavior of new gallium restorative materials were studied. To give relevant practical data, the measurements were performed with and without the alloys being stored in artificial saliva to simulate physiological oral conditions.

  8. Three-dimensional Analysis of Nanomaterials by Scanning Probe Nanotomography

    NASA Astrophysics Data System (ADS)

    Efimov, Anton E.; Agapova, Olga I.; Mochalov, Konstantin E.; Agapov, Igor I.

    Micro and nanostructure of scaffolds made from fibroin of Bombyx mori silkworm by salt leaching technique was studied by scanning probe nanotomography. Nanopores with dimensions in range from 30 to 180 nm are observed in the scaffold volume. Three - dimensional analysis of obtained data shows that degree of scaffold nanoporosity is 0.5% and nanopores are not interconnected with each other. Usage of scanning probe nanotomography technique enables to obtain unique nanoscale information of 3D structure of biopolymer nanomaterials.

  9. Fabrication of all diamond scanning probes for nanoscale magnetometry.

    PubMed

    Appel, Patrick; Neu, Elke; Ganzhorn, Marc; Barfuss, Arne; Batzer, Marietta; Gratz, Micha; Tschöpe, Andreas; Maletinsky, Patrick

    2016-06-01

    The electronic spin of the nitrogen vacancy (NV) center in diamond forms an atomically sized, highly sensitive sensor for magnetic fields. To harness the full potential of individual NV centers for sensing with high sensitivity and nanoscale spatial resolution, NV centers have to be incorporated into scanning probe structures enabling controlled scanning in close proximity to the sample surface. Here, we present an optimized procedure to fabricate single-crystal, all-diamond scanning probes starting from commercially available diamond and show a highly efficient and robust approach for integrating these devices in a generic atomic force microscope. Our scanning probes consisting of a scanning nanopillar (200 nm diameter, 1-2 μm length) on a thin (<1 μm) cantilever structure enable efficient light extraction from diamond in combination with a high magnetic field sensitivity (ηAC≈50±20nT/Hz). As a first application of our scanning probes, we image the magnetic stray field of a single Ni nanorod. We show that this stray field can be approximated by a single dipole and estimate the NV-to-sample distance to a few tens of nanometer, which sets the achievable resolution of our scanning probes. PMID:27370455

  10. Fabrication of all diamond scanning probes for nanoscale magnetometry

    NASA Astrophysics Data System (ADS)

    Appel, Patrick; Neu, Elke; Ganzhorn, Marc; Barfuss, Arne; Batzer, Marietta; Gratz, Micha; Tschöpe, Andreas; Maletinsky, Patrick

    2016-06-01

    The electronic spin of the nitrogen vacancy (NV) center in diamond forms an atomically sized, highly sensitive sensor for magnetic fields. To harness the full potential of individual NV centers for sensing with high sensitivity and nanoscale spatial resolution, NV centers have to be incorporated into scanning probe structures enabling controlled scanning in close proximity to the sample surface. Here, we present an optimized procedure to fabricate single-crystal, all-diamond scanning probes starting from commercially available diamond and show a highly efficient and robust approach for integrating these devices in a generic atomic force microscope. Our scanning probes consisting of a scanning nanopillar (200 nm diameter, 1-2 μm length) on a thin (<1 μm) cantilever structure enable efficient light extraction from diamond in combination with a high magnetic field sensitivity ( η AC ≈ 50 ± 20 nT / √{ Hz } ). As a first application of our scanning probes, we image the magnetic stray field of a single Ni nanorod. We show that this stray field can be approximated by a single dipole and estimate the NV-to-sample distance to a few tens of nanometer, which sets the achievable resolution of our scanning probes.

  11. Quantification of thermal and contact resistances of scanning thermal probes

    SciTech Connect

    Kim, Kyeongtae E-mail: meyhofer@umich.edu Jeong, Wonho; Lee, Woochul; Sadat, Seid; Thompson, Dakotah; Meyhofer, Edgar E-mail: meyhofer@umich.edu; Reddy, Pramod E-mail: meyhofer@umich.edu

    2014-11-17

    Scanning thermal probes are widely used for imaging temperature fields with nanoscale resolution, for studying near-field radiative heat transport and for locally heating samples. In all these applications, it is critical to know the thermal resistance to heat flow within the probe and the thermal contact resistance between the probe and the sample. Here, we present an approach for quantifying the aforementioned thermal resistances using picowatt resolution heat flow calorimeters. The measured contact resistance is found to be in good agreement with classical predictions for thermal contact resistance. The techniques developed here are critical for quantitatively probing heat flows at the nanoscale.

  12. Micromachined photoplastic probe for scanning near-field optical microscopy

    NASA Astrophysics Data System (ADS)

    Genolet, G.; Despont, M.; Vettiger, P.; Staufer, U.; Noell, W.; de Rooij, N. F.; Cueni, T.; Bernal, M.-P.; Marquis-Weible, F.

    2001-10-01

    We present a hybrid probe for scanning near-field optical microscopy (SNOM), which consists of a micromachined photoplastic tip with a metallic aperture at the apex that is attached to an optical fiber, thus combining the advantages of optical fiber probes and micromachined tips. The tip and aperture are batch fabricated and assembled to a preetched optical fiber with micrometer centering precision. Rectangular apertures of 50 nm×130 nm have been produced without the need of any postprocessing. Topographical and optical imaging with a probe having an aperture of 300 nm demonstrate the great potential of the photoplastic probe for SNOM applications.

  13. Solid-state electrochemistry on the nanometer and atomic scales: the scanning probe microscopy approach.

    PubMed

    Strelcov, Evgheni; Yang, Sang Mo; Jesse, Stephen; Balke, Nina; Vasudevan, Rama K; Kalinin, Sergei V

    2016-08-01

    Energy technologies of the 21(st) century require an understanding and precise control over ion transport and electrochemistry at all length scales - from single atoms to macroscopic devices. This short review provides a summary of recent studies dedicated to methods of advanced scanning probe microscopy for probing electrochemical transformations in solids at the meso-, nano- and atomic scales. The discussion presents the advantages and limitations of several techniques and a wealth of examples highlighting peculiarities of nanoscale electrochemistry. PMID:27146961

  14. Solid-state electrochemistry on the nanometer and atomic scales: the scanning probe microscopy approach

    DOE PAGESBeta

    Strelcov, Evgheni; Yang, Sang Mo; Jesse, Stephen; Balke, Nina; Vasudevan, Rama K.; Kalinin, Sergei V.

    2016-04-21

    Energy technologies of the 21st century require an understanding and precise control over ion transport and electrochemistry at all length scales – from single atoms to macroscopic devices. Our short review provides a summary of recent studies dedicated to methods of advanced scanning probe microscopy for probing electrochemical transformations in solids at the meso-, nano- and atomic scales. In this discussion we present the advantages and limitations of several techniques and a wealth of examples highlighting peculiarities of nanoscale electrochemistry.

  15. Solid-state electrochemistry on the nanometer and atomic scales: the scanning probe microscopy approach

    NASA Astrophysics Data System (ADS)

    Strelcov, Evgheni; Yang, Sang Mo; Jesse, Stephen; Balke, Nina; Vasudevan, Rama K.; Kalinin, Sergei V.

    2016-07-01

    Energy technologies of the 21st century require an understanding and precise control over ion transport and electrochemistry at all length scales - from single atoms to macroscopic devices. This short review provides a summary of recent studies dedicated to methods of advanced scanning probe microscopy for probing electrochemical transformations in solids at the meso-, nano- and atomic scales. The discussion presents the advantages and limitations of several techniques and a wealth of examples highlighting peculiarities of nanoscale electrochemistry.

  16. Carbon nanotube scanning probe for imaging in aqueous environment

    NASA Technical Reports Server (NTRS)

    Stevens, Ramsey M.; Nguyen, Cattien V.; Meyyappan, M.

    2004-01-01

    Carbon nanotubes (CNTs) used as a probe for scanning probe microscopy has become one of the many potential usages of CNTs that is finding real applications in scientific research and industrial communities. It has been proposed that the unique mechanical buckling properties of the CNT would lessen the imaging force exerted on the sample and, thus, make CNT scanning probes ideal for imaging soft materials, including biological samples in liquid environments. The hydrophobic nature of the CNT graphitic sidewall is clearly chemically incompatible with the aqueous solution requirements in some biological imaging applications. In this paper, we present electron micrograph results demonstrating the instability of CNT scanning probes when submerged in aqueous solution. Moreover, we also introduce a novel approach to resolve this chemical incompatibility problem. By coating the CNT probe with ethylenediamine, thus rendering the CNT probe less hydrophobic, we demonstrate the liquid imaging capability of treated CNT probes. Experimental data for imaging in aqueous solutions are presented, which include an ultrathin Ir film and DNA molecules on a mica surface.

  17. Correcting nonlinear drift distortion of scanning probe and scanning transmission electron microscopies from image pairs with orthogonal scan directions.

    PubMed

    Ophus, Colin; Ciston, Jim; Nelson, Chris T

    2016-03-01

    Unwanted motion of the probe with respect to the sample is a ubiquitous problem in scanning probe and scanning transmission electron microscopies, causing both linear and nonlinear artifacts in experimental images. We have designed a procedure to correct these artifacts by using orthogonal scan pairs to align each measurement line-by-line along the slow scan direction, by fitting contrast variation along the lines. We demonstrate the accuracy of our algorithm on both synthetic and experimental data and provide an implementation of our method. PMID:26716724

  18. Four-probe measurements with a three-probe scanning tunneling microscope

    SciTech Connect

    Salomons, Mark; Martins, Bruno V. C.; Zikovsky, Janik; Wolkow, Robert A.

    2014-04-15

    We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position by imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe.

  19. Non-Contact Measurement Using A Laser Scanning Probe

    NASA Astrophysics Data System (ADS)

    Modjarrad, Amir

    1989-03-01

    Traditional high accuracy touch-trigger probing can now be complemented by high speed, non-contact, profile scanning to give another "dimension" to the three-dimensional Co-ordinate Measuring Machines (CMMs). Some of the features of a specially developed laser scanning probe together with the trade-offs involved in the design of inspection systems that use triangulation are examined. Applications of such a laser probe on CMMs are numerous since high speed scanning allows inspection of many different components and surfaces. For example, car body panels, tyre moulds, aircraft wing skins, turbine blades, wax and clay models, plastics, etc. Other applications include in-process surveillance in manufacturing and food processing, robotics vision and many others. Some of these applications are discussed and practical examples, case studies and experimental results are given with particular reference to use on CMMs. In conclusion, future developments and market trends in high speed non-contact measurement are discussed.

  20. Open Source Scanning Probe Microscopy Control Software Package Gxsm

    SciTech Connect

    Zahl P.; Wagner, T.; Moller, R.; Klust, A.

    2009-08-10

    Gxsm is a full featured and modern scanning probe microscopy (SPM) software. It can be used for powerful multidimensional image/data processing, analysis, and visualization. Connected toan instrument, it is operating many different avors of SPM, e.g., scanning tunneling microscopy(STM) and atomic force microscopy (AFM) or in general two-dimensional multi channel data acquisition instruments. The Gxsm core can handle different data types, e.g., integer and oating point numbers. An easily extendable plug-in architecture provides many image analysis and manipulation functions. A digital signal processor (DSP) subsystem runs the feedback loop, generates the scanning signals and acquires the data during SPM measurements. The programmable Gxsm vector probe engine performs virtually any thinkable spectroscopy and manipulation task, such as scanning tunneling spectroscopy (STS) or tip formation. The Gxsm software is released under the GNU general public license (GPL) and can be obtained via the Internet.

  1. Optimization of Designs for Nanotube-based Scanning Probes

    NASA Technical Reports Server (NTRS)

    Harik, V. M.; Gates, T. S.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Optimization of designs for nanotube-based scanning probes, which may be used for high-resolution characterization of nanostructured materials, is examined. Continuum models to analyze the nanotube deformations are proposed to help guide selection of the optimum probe. The limitations on the use of these models that must be accounted for before applying to any design problem are presented. These limitations stem from the underlying assumptions and the expected range of nanotube loading, end conditions, and geometry. Once the limitations are accounted for, the key model parameters along with the appropriate classification of nanotube structures may serve as a basis for the design optimization of nanotube-based probe tips.

  2. Fast and reliable method of conductive carbon nanotube-probe fabrication for scanning probe microscopy

    SciTech Connect

    Dremov, Vyacheslav Fedorov, Pavel; Grebenko, Artem; Fedoseev, Vitaly

    2015-05-15

    We demonstrate the procedure of scanning probe microscopy (SPM) conductive probe fabrication with a single multi-walled carbon nanotube (MWNT) on a silicon cantilever pyramid. The nanotube bundle reliably attached to the metal-covered pyramid is formed using dielectrophoresis technique from the MWNT suspension. It is shown that the dimpled aluminum sample can be used both for shortening/modification of the nanotube bundle by applying pulse voltage between the probe and the sample and for controlling the probe shape via atomic force microscopy imaging the sample. Carbon nanotube attached to cantilever covered with noble metal is suitable for SPM imaging in such modulation regimes as capacitance contrast microscopy, Kelvin probe microscopy, and scanning gate microscopy. The majority of such probes are conductive with conductivity not degrading within hours of SPM imaging.

  3. Fast and reliable method of conductive carbon nanotube-probe fabrication for scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Dremov, Vyacheslav; Fedoseev, Vitaly; Fedorov, Pavel; Grebenko, Artem

    2015-05-01

    We demonstrate the procedure of scanning probe microscopy (SPM) conductive probe fabrication with a single multi-walled carbon nanotube (MWNT) on a silicon cantilever pyramid. The nanotube bundle reliably attached to the metal-covered pyramid is formed using dielectrophoresis technique from the MWNT suspension. It is shown that the dimpled aluminum sample can be used both for shortening/modification of the nanotube bundle by applying pulse voltage between the probe and the sample and for controlling the probe shape via atomic force microscopy imaging the sample. Carbon nanotube attached to cantilever covered with noble metal is suitable for SPM imaging in such modulation regimes as capacitance contrast microscopy, Kelvin probe microscopy, and scanning gate microscopy. The majority of such probes are conductive with conductivity not degrading within hours of SPM imaging.

  4. Cantilevers with integrated organic LEDs for scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    An, Kwang Hyup; O'Connor, Brendan; Zhao, Yiying; Loh, William; Pipe, Kevin P.; Shtein, Max

    2007-02-01

    Organic thin films which are based on Van der Waals-bonded molecular organic compounds can be deposited onto a variety of substrates including scanning probe cantilevers without the lattice-matching constraints of conventional covalently-bonded semiconductors. Here we demonstrate organic light-emitting devices (OLEDs) fabricated on scanning probe cantilevers using thermal evaporation of molecular organic compounds and metallic electrodes. Ion beam lithography was used to define the emissive region in the shape of a ring having a diameter of 5 micrometers. The width of the ring emission was less than a micron as measured in the far field. Stable light emission was observed from the device at forward bias, with a current-voltage response similar to that of archetypal OLEDs. Such a probe can enable a new form of electrically-pumped SNOM compatible with existing atomic force microscopy tools and techniques. The emission wavelength can be tuned across the entire visible spectrum, including white light emission, by altering the composition of the emissive layer with a wide range of luminescent dyes. Should the ring-shaped light emission be used for imaging, the sample image can be deconvolved using a ring filter to achieve high resolution. The OLED probe can also be used to transfer excitons through the cathode to a sample via plasmon-assisted energy transfer; such a probe would be valuable for studying exciton dynamics in organic or organic/inorganic hybrid photovoltaic devices. By demonstrating the first active organic device on a scanning probe cantilever, this work opens the door to a wide range of new scanning probe techniques based on this class of materials for areas such as biological imaging.

  5. Handheld probes and galvanometer scanning for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Duma, V.-F.; Dobre, G.; Demian, D.; Cernat, R.; Sinescu, C.; Topala, F. I.; Negrutiu, M. L.; Hutiu, Gh.; Bradu, A.; Rolland, J. P.; Podoleanu, A. G.

    2015-09-01

    As part of the ongoing effort of the biomedical imaging community to move Optical Coherence Tomography (OCT) systems from the lab to the clinical environment and produce OCT systems appropriate for multiple types of investigations in a medical department, handheld probes equipped with different types of scanners need to be developed. These allow different areas of a patient's body to be investigated using OCT with the same system and even without changing the patient's position. This paper reviews first the state of the art regarding OCT handheld probes. Novel probes with a uni-dimensional (1D) galvanometer-based scanner (GS) developed in our groups are presented. Their advantages and limitations are discussed. Aspects regarding the use of galvoscanners with regard to Micro-Electro- Mechanical Systems (MEMS) are pointed out, in relationship with our studies on optimal scanning functions of galvanometer devices in OCT. These scanning functions are briefly discussed with regard to their main parameters: profile, theoretical duty cycle, scan frequency, and scan amplitude. The optical design of the galvoscanner and refractive optics combination in the probe head, optimized for various applications, is considered. Perspectives of the field are pointed out in the final part of the paper.

  6. Endoscope two dimensional scanning fiber probe and the driving method

    NASA Astrophysics Data System (ADS)

    Li, Guangping; Gao, He; Zhou, Ai; Liu, Zhihai

    2011-11-01

    We design and fabricate an endoscope scanning fiber probe based on the piezoelectric transducer (PZT) for optical coherence tomography (OCT) to perform two-dimensional scanning. The driving part of the optical fiber probe is composed of two piezoelectric ceramics and a thin conductive substrate. The optical fiber is fixed in the middle of the piezoelectric ceramics to form a configuration of cantilever. A sine wave is employed for driving the PZT to make the cantilever vibrate along the vertical direction and form a line scanning. A saw tooth wave is load on the PZT to make the cantilever vibrate along the horizontal direction and form the field scanning. The frequency of the sine wave is set to be close to the resonance frequency of the fiber cantilever to increase the scanning range, whereas the frequency of the saw tooth wave is much lower than the resonance frequency to avoid the generation of blind spots. The finite element model is established for the theorical analysis of the device. Experimental results show that the scanning range can reach to 500x500 μm, and the scanning range can be adjusted by changing the amplitude of the drive signals.

  7. Massively Multiplexed Cantilever-free Scanning Probe Lithography

    NASA Astrophysics Data System (ADS)

    Brown, Keith A.; Eichelsdoerfer, Daniel J.; Shim, Wooyoung; Boya, Radha; Schmucker, Abrin L.; Liu, Guoliang; Mirkin, Chad A.

    2013-03-01

    Cantilever-free scanning probe lithography has emerged as a low-cost technique for rapidly patterning nanoscale materials. In this architecture, an array of probes is fabricated on a soft backing layer that provides mechanical compliance to each probe while an underlying hard surface maintains the structural integrity of the array. One drawback of this technique is that each probe in the array acts simultaneously and thus generates a copy of the same pattern. Here, we discuss recent efforts to incorporate heaters into these probe arrays so that when a given heater is activated, the thermal expansion of the elastomer actuates a single tip. We find thermal actuation to be powerful enough to actuate individual tips over 4 μm with minimal crosstalk, fast enough to actuate on relevant time scales (20 ms), and scalable by virtue of being electrically addressable. Furthermore, tuning the individual heaters allows for variability in the arrays to be compensated for precisely, resulting in high quality nanopatterning. The addition of tunable actuators transforms cantilever-free scanning probe lithography into a technique capable of true desktop nanofabrication.

  8. Plant cell wall characterization using scanning probe microscopy techniques

    PubMed Central

    Yarbrough, John M; Himmel, Michael E; Ding, Shi-You

    2009-01-01

    Lignocellulosic biomass is today considered a promising renewable resource for bioenergy production. A combined chemical and biological process is currently under consideration for the conversion of polysaccharides from plant cell wall materials, mainly cellulose and hemicelluloses, to simple sugars that can be fermented to biofuels. Native plant cellulose forms nanometer-scale microfibrils that are embedded in a polymeric network of hemicelluloses, pectins, and lignins; this explains, in part, the recalcitrance of biomass to deconstruction. The chemical and structural characteristics of these plant cell wall constituents remain largely unknown today. Scanning probe microscopy techniques, particularly atomic force microscopy and its application in characterizing plant cell wall structure, are reviewed here. We also further discuss future developments based on scanning probe microscopy techniques that combine linear and nonlinear optical techniques to characterize plant cell wall nanometer-scale structures, specifically apertureless near-field scanning optical microscopy and coherent anti-Stokes Raman scattering microscopy. PMID:19703302

  9. Cleaved thin-film probes for scanning tunneling microscopy.

    PubMed

    Siahaan, T; Kurnosikov, O; Barcones, B; Swagten, H J M; Koopmans, B

    2016-01-22

    We introduce an alternative type of probe for scanning tunneling microscopy (STM). Instead of using a needle-like tip made from a piece of metallic wire, a sharp-edged cleaved insulating substrate, which is initially covered by a thin conductive film, is used. The sharp tip is formed at the intersection of the two cleaved sides. Using this approach a variety of materials for STM probes can be used, and functionalization of STM probes is possible. The working principle of different probes made of metallic (Pt, Co, and CoB), indium-tin oxide, as well as Cu/Pt and Co/Pt multilayer films are demonstrated by STM imaging of clean Cu(001) and Cu(111) surfaces as well as the epitaxial Co clusters on Cu(111). PMID:26636763

  10. Scanning probe lithography approach for beyond CMOS devices

    NASA Astrophysics Data System (ADS)

    Durrani, Zahid; Jones, Mervyn; Kaestner, Marcus; Hofer, Manuel; Guliyev, Elshad; Ahmad, Ahmad; Ivanov, Tzvetan; Zoellner, Jens-Peter; Rangelow, Ivo W.

    2013-03-01

    As present CMOS devices approach technological and physical limits at the sub-10 nm scale, a `beyond CMOS' information-processing technology is necessary for timescales beyond the semiconductor technology roadmap. This requires new approaches to logic and memory devices, and to associated lithographic processes. At the sub-5 nm scale, a technology platform based on a combination of high-resolution scanning probe lithography (SPL) and nano-imprint lithography (NIL) is regarded as a promising candidate for both resolution and high throughput production. The practical application of quantum-effect devices, such as room temperature single-electron and quantum-dot devices, then becomes feasible. This paper considers lithographic and device approaches to such a `single nanometer manufacturing' technology. We consider the application of scanning probes, capable of imaging, probing of material properties and lithography at the single nanometer scale. Modified scanning probes are used to pattern molecular glass based resist materials, where the small particle size (<1 nm) and mono-disperse nature leads to more uniform and smaller lithographic pixel size. We also review the current status of single-electron and quantum dot devices capable of room-temperature operation, and discuss the requirements for these devices with regards to practical application.

  11. Compact piezoelectric transducer fiber scanning probe for optical coherence tomography.

    PubMed

    Zhang, Ning; Tsai, Tsung-Han; Ahsen, Osman O; Liang, Kaicheng; Lee, Hsiang-Chieh; Xue, Ping; Li, Xingde; Fujimoto, James G

    2014-01-15

    We developed a compact, optical fiber scanning piezoelectric transducer (PZT) probe for endoscopic and minimally invasive optical coherence tomography (OCT). Compared with previous forward-mount fiber designs, we present a reverse-mount design that achieves a shorter rigid length. The fiber was mounted at the proximal end of a quadruple PZT tube and scanned inside the hollow PZT tube to reduce the probe length. The fiber resonant frequency was 338 Hz using a 17-mm-long fiber. A 0.9 mm fiber deflection was achieved with a driving amplitude of 35 V. Using a GRIN lens-based optical design with a 1.3× magnification, a ∼6 μm spot was scanned over a 1.2 mm diameter field. The probe was encased in a metal hypodermic tube with a ∼25 mm rigid length and covered with a 3.2 mm outer diameter (OD) plastic sheath. Imaging was performed with a swept source OCT system based on a Fourier domain modelocked laser (FDML) light source at a 240 kHz axial scan rate and 8 μm axial resolution (in air). En face OCT imaging of skin in vivo and human colon ex vivo was demonstrated. PMID:24562102

  12. Tip Based Nanofabrication Using Multi-mode Scanning Probe Microscopy

    NASA Astrophysics Data System (ADS)

    Hu, Weihua

    Scanning probe microscopy (SPM) based nanotechnology is a promising technology in nano-device fabrication. It is able to both manipulate nanostructures and characterize the created nanopatterns using the nano-tip of the scanning probe on a mechanical basis or electrical basis. With the tip and device on similar scales, nano-tip based fabrication permits accurate control over the device geometry through tip manipulation with nanometer (or better) accuracy. However, SPM based nanofabrication is a slow process because the scanning velocity of the microscopy is low. Large, multi-tip arrays offer the possibility for parallel device fabrication, allowing mass fabrication with nanometer control. The goal of Tip-directed Field-emission Assisted Nanofabrication (TFAN) project was to realize parallel fabrication using our probe arrays. We started by fabricating nanodevice using one single probe. In this work, we investigated the study of fabricating single electron transistor (SET) using one single SPM probe. There were four stages we went through toward fabricating a SET. The first stage was to accomplish atomic-precision lithography in TFAN system. Atomic level lithography was achieved by desorbing hydrogen atoms, which were previously adsorbed to the Si(100)-2 × 1 surface, in ultrahigh vacuum scanning tunneling microscopy (UHV-STM). The second stage was to develop method for fabricating SET. SPM based local oxidation was chosen as the method to fabricate a SET on a thin titanium (Ti) film. A multi-mode SPM oxidation method was developed, in which both scanning tunneling microscopy (STM) mode and atomic microscopy (AFM) mode local oxidation were used to fabricated Ti-TiOx-Ti structures with the same conductive AFM probe. This multi-mode method enabled significantly fine feature size control by STM mode, working on insulating SiO2 substrates needed to isolate the device by AFM mode and in situ electrical characterization with conductive AFM mode. After developing the multi

  13. Integration of Ion Implantation with Scanning ProbeAlignment

    SciTech Connect

    Persaud, A.; Rangelow, I.W.; Schenkel, T.

    2005-03-01

    We describe a scanning probe instrument which integrates ion beams with imaging and alignment functions of a piezo resistive scanning probe in high vacuum. Energetic ions (1 to a few hundred keV) are transported through holes in scanning probe tips [1]. Holes and imaging tips are formed by Focused Ion Beam (FIB) drilling and ion beam assisted thin film deposition. Transport of single ions can be monitored through detection of secondary electrons from highly charged dopant ions (e. g., Bi{sup 45+}) enabling single atom device formation. Fig. 1 shows SEM images of a scanning probe tip formed by ion beam assisted Pt deposition in a dual beam FIB. Ion beam collimating apertures are drilled through the silicon cantilever with a thickness of 5 {micro}m. Aspect ratio limitations preclude the direct drilling of holes with diameters well below 1 {micro}m, and smaller hole diameters are achieved through local thin film deposition [2]. The hole in Fig. 1 was reduced from 2 {micro}m to a residual opening of about 300 nm. Fig. 2 shows an in situ scanning probe image of an alignment dot pattern taken with the tip from Fig. 1. Transport of energetic ions through the aperture in the scanning probe tip allows formation of arbitrary implant patterns. In the example shown in Fig. 2 (right), a 30 nm thick PMMA resist layer on silicon was exposed to 7 keV Ar{sup 2+} ions with an equivalent dose of 10{sup 14} ions/cm{sup 2} to form the LBL logo. An exciting goal of this approach is the placement of single dopant ions into precise locations for integration of single atom devices, such as donor spin based quantum computers [3, 4]. In Fig. 3, we show a section of a micron size dot area exposed to a low dose (10{sup 11}/cm{sup 2}) of high charge state dopant ions. The Bi{sup 45+} ions (200 keV) were extracted from a low emittance highly charged ions source [5]. The potential energy of B{sup 45+}, i. e., the sum of the binding energies required to remove the electrons, amounts to 36 ke

  14. Band excitation method applicable to scanning probe microscopy

    DOEpatents

    Jesse, Stephen [Knoxville, TN; Kalinin, Sergei V [Knoxville, TN

    2010-08-17

    Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation). An apparatus includes a band excitation signal generator; a probe coupled to the band excitation signal generator; a detector coupled to the probe; and a relevant dynamic parameter extractor component coupled to the detector, the relevant dynamic parameter extractor including a processor that performs a mathematical transform selected from the group consisting of an integral transform and a discrete transform.

  15. Band excitation method applicable to scanning probe microscopy

    DOEpatents

    Jesse, Stephen; Kalinin, Sergei V

    2013-05-28

    Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation). An apparatus includes a band excitation signal generator; a probe coupled to the band excitation signal generator; a detector coupled to the probe; and a relevant dynamic parameter extractor component coupled to the detector, the relevant dynamic parameter extractor including a processor that performs a mathematical transform selected from the group consisting of an integral transform and a discrete transform.

  16. Multifrequency scanning probe microscopy study of nanodiamond agglomerates

    NASA Astrophysics Data System (ADS)

    Aravind, Vasudeva; Lippold, Stephen; Li, Qian; Strelcov, Evgheny; Okatan, Baris; Legum, Benjamin; Kalinin, Sergei; Clarion University Team; Oak Ridge National Laboratory Team

    Due to their rich surface chemistry and excellent mechanical properties and non-toxic nature, nanodiamond particles have found applications such as biomedicine, tribology and lubrication, targeted drug delivery systems, tissue scaffolds and surgical implants. Although single nanodiamond particles have diameters about 4-5nm, they tend to form agglomerates. While these agglomerates can be useful for some purposes, many applications of nanodiamonds require single particle, disaggregated nanodiamonds. This work is oriented towards studying forces and interactions that contribute to agglomeration in nanodiamonds. In this work, using multifrequency scanning probe microscopy techniques, we show that agglomerate sizes can vary between 50-100nm in raw nanodiamonds. Extremeties of particles and Interfaces between agglomerates show dissipative forces with scanning probe microscope tip, indicating agglomerates could act as points of increased adhesion, thus reducing lubricating efficiency when nanodiamonds are used as lubricant additives. This research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

  17. Quantum metrology with a scanning probe atom interferometer.

    PubMed

    Ockeloen, Caspar F; Schmied, Roman; Riedel, Max F; Treutlein, Philipp

    2013-10-01

    We use a small Bose-Einstein condensate on an atom chip as an interferometric scanning probe to map out a microwave field near the chip surface with a few micrometers resolution. With the use of entanglement between the atoms, our interferometer overcomes the standard quantum limit of interferometry by 4 dB and maintains enhanced performance for interrogation times up to 10 ms. This corresponds to a microwave magnetic field sensitivity of 77 pT/√Hz in a probe volume of 20 μm(3). Quantum metrology with entangled atoms is useful in measurements with high spatial resolution, since the atom number in the probe volume is limited by collisional loss. High-resolution measurements of microwave near fields, as demonstrated here, are important for the development of integrated microwave circuits for quantum information processing and applications in communication technology. PMID:24138235

  18. Tailored molecular glass resists for scanning probe lithography

    NASA Astrophysics Data System (ADS)

    Neuber, Christian; Schmidt, Hans-Werner; Strohriegl, Peter; Ringk, Andreas; Kolb, Tristan; Schedl, Andreas; Fokkema, Vincent; van Veghel, Marijn G. A.; Cooke, Mike; Rawlings, Colin; Dürig, Urs; Knoll, Armin; de Marneffe, Jean-François; el Otell, Ziad; Kaestner, Marcus; Krivoshapkina, Yana; Budden, Matthias; Rangelow, Ivo W.

    2015-03-01

    In the presented work solvent-free film preparation from tailored molecular glass resists, their thermal analysis, the characterization of etch resistance for plasma etching transfer processes, and the evaluation of the patterning performance using scanning probe lithography (SPL) tools, in particular electric field and thermal based SPL, are demonstrated. Therefore a series of fully aromatic spiro-based and tris-substituted twisted resist materials were systematically investigated. The materials feature very high glass transition temperatures of up to 173 °C, which allows solvent-free thin film preparation by physical vapor deposition (PVD) due to their high thermal stability. The PVD prepared films offer distinct advantages compared to spin coated films such as no pinholes, defects, or residual solvent domains, which can locally affect the film properties. In addition, PVD prepared films do not need a post apply bake (PAB) and can be precisely prepared in the nanometer range layer thickness. An observed sufficient plasma etching resistance is promising for an efficient pattern transfer even by utilizing only 10 nm thin resist films. Their lithographic resolution potential is demonstrated by a positive and a negative tone patterning using electric field, current controlled scanning probe lithography (EF-CC-SPL) at the Technical University of Ilmenau or thermal scanning probe lithography (tSPL) investigations at the IBM Research - Zurich. High resolution tSPL prepared patterns of 11 nm half pitch and at 4 nm patterning depth are demonstrated.

  19. Charge trapping in polymer transistors probed by terahertz spectroscopy and scanning probe potentiometry

    NASA Astrophysics Data System (ADS)

    Lloyd-Hughes, J.; Richards, T.; Sirringhaus, H.; Castro-Camus, E.; Herz, L. M.; Johnston, M. B.

    2006-09-01

    Terahertz time-domain spectroscopy and scanning probe potentiometry were used to investigate charge trapping in polymer field-effect transistors fabricated on a silicon gate. The hole density in the transistor channel was determined from the reduction in the transmitted terahertz radiation under an applied gate voltage. Prolonged device operation creates an exponential decay in the differential terahertz transmission, compatible with an increase in the density of trapped holes in the polymer channel. Taken in combination with scanning probe potentionmetry measurements, these results indicate that device degradation is largely a consequence of hole trapping, rather than of changes to the mobility of free holes in the polymer.

  20. Potential Applications of Scanning Probe Microscopy in Forensic Science

    NASA Astrophysics Data System (ADS)

    Watson, G. S.; Watson, J. A.

    2007-04-01

    The forensic community utilises a myriad of techniques to investigate a wide range of materials, from paint flakes to DNA. The various microscopic techniques have provided some of the greatest contributions, e.g., FT-IR (Fourier-transform infrared) microspectroscopy utilised in copy toner discrimination, multi-layer automobile paint fragment examination, etc, SEM-EDA (scanning electron microscopy with energy dispersive analysis) used to investigate glass fragments, fibers, and explosives, and SEM in microsampling for elemental analysis, just to name a few. This study demonstrates the ability of the Scanning Probe Microscope (SPM) to analyse human fingerprints on surfaces utilising a step-and-scan feature, enabling analysis of a larger field-of-view. We also extend a line crossings study by incorporating height analysis and surface roughness measurements. The study demonstrates the potential for SPM techniques to be utilised for forensic analysis which could complement the more traditional methodologies used in such investigations.

  1. Thermal scanning probe microscopy in the development of pharmaceuticals.

    PubMed

    Dai, Xuan; Moffat, Jonathan G; Wood, John; Reading, Mike

    2012-04-01

    The ability to characterize the physical and chemical properties of dosage forms is crucial to a more complete understanding of how vehicles for drug delivery behave and therefore how effective they are. Spatially resolved characterization that enables the visualization of properties on the nanoscale is particularly powerful. The usefulness of scanning probe microscopy (SPM) in the field of drug delivery is becoming increasingly well established and the use of thermal probes offers new capabilities thus enabling SPM to provide more and sometimes unique information. One type of measurement enabled by thermal probes is determining transition temperatures by means of local thermal analysis. The ability to identify and characterize materials in this way has found applications in characterizing a wide range of dosage forms. A complimentary thermal probe technique is photothermal infrared microspectroscopy (PTMS). PTMS offers a variety of advantages over more conventional approaches including the ability analyze compacts without the need for thin sections. It is also able to achieve sub-micron spatial resolution. Thermal probe techniques can characterize pharmaceutical dosage forms in terms of their physical properties and their chemical composition. PMID:21856345

  2. Correlation-steered scanning for scanning probe microscopes to overcome thermal drift for ultra-long time scanning.

    PubMed

    Zhang, Liansheng; Long, Qian; Liu, Yongbin; Zhang, Jie; Feng, Zhihua

    2016-07-01

    The thermal effect is one of the most important factors that influence the accuracy of nanoscale measurement and the surface topography of samples in scanning probe microscopes (SPMs). We propose a method called correlation-steered scanning, which is capable of overcoming three-dimensional thermal drifts in real time for ultra-long time scanned images. The image is scanned band by band with overlapping parts between adjacent bands. The vertical drift can be considered as linear and can thus be eliminated together with the tilt of the sample by applying the flattening method. Each band is artificially divided into several blocks for conveniently calculating lateral drifts on the basis of the overlapping area of adjacent bands through digital image correlation. The calculated lateral drifts are compensated to steer the scanning of the subsequent blocks, thus ensuring that all bands are parallel to one another. Experimental results proved that images scanned by the proposed method exhibited less distortions than those obtained from the traditional raster scanning method. The nanoscale measurement results based on the image obtained by the proposed method also showed high accuracy, with an error of less than 1.5%. By scanning as many bands as needed, the correlation-steered scanning method can obtain a highly precise SPM image of an ultra-large area. PMID:27107628

  3. Low-Temperature Scanning Capacitance Probe for Imaging Electron Motion

    NASA Astrophysics Data System (ADS)

    Bhandari, S.; Westervelt, R. M.

    2014-12-01

    Novel techniques to probe electronic properties at the nanoscale can shed light on the physics of nanoscale devices. In particular, studying the scattering of electrons from edges and apertures at the nanoscale and imaging the electron profile in a quantum dot, have been of interest [1]. In this paper, we present the design and implementation of a cooled scanning capacitance probe that operates at liquid He temperatures to image electron waves in nanodevices. The conducting tip of a scanned probe microscope is held above the nanoscale structure, and an applied sample-to-tip voltage creates an image charge that is measured by a cooled charge amplifier [2] adjacent to the tip. The circuit is based on a low-capacitance, high- electron-mobility transistor (Fujitsu FHX35X). The input is a capacitance bridge formed by a low capacitance pinched-off HEMT transistor and tip-sample capacitance. We have achieved low noise level (0.13 e/VHz) and high spatial resolution (100 nm) for this technique, which promises to be a useful tool to study electronic behavior in nanoscale devices.

  4. Scanning-probe Single-electron Capacitance Spectroscopy

    PubMed Central

    Walsh, Kathleen A.; Romanowich, Megan E.; Gasseller, Morewell; Kuljanishvili, Irma; Ashoori, Raymond; Tessmer, Stuart

    2013-01-01

    The integration of low-temperature scanning-probe techniques and single-electron capacitance spectroscopy represents a powerful tool to study the electronic quantum structure of small systems - including individual atomic dopants in semiconductors. Here we present a capacitance-based method, known as Subsurface Charge Accumulation (SCA) imaging, which is capable of resolving single-electron charging while achieving sufficient spatial resolution to image individual atomic dopants. The use of a capacitance technique enables observation of subsurface features, such as dopants buried many nanometers beneath the surface of a semiconductor material1,2,3. In principle, this technique can be applied to any system to resolve electron motion below an insulating surface. As in other electric-field-sensitive scanned-probe techniques4, the lateral spatial resolution of the measurement depends in part on the radius of curvature of the probe tip. Using tips with a small radius of curvature can enable spatial resolution of a few tens of nanometers. This fine spatial resolution allows investigations of small numbers (down to one) of subsurface dopants1,2. The charge resolution depends greatly on the sensitivity of the charge detection circuitry; using high electron mobility transistors (HEMT) in such circuits at cryogenic temperatures enables a sensitivity of approximately 0.01 electrons/Hz½ at 0.3 K 5. PMID:23929222

  5. Scanning probe microscopy investigation of complex-oxide heterostructures

    NASA Astrophysics Data System (ADS)

    Bi, Feng

    Advances in the growth of precisely tailored complex-oxide heterostructures have led to new emergent behavior and associated discoveries. One of the most successful examples consists of an ultrathin layer of LaAlO 3 (LAO) deposited on TiO2-terminated SrTiO3 (STO), where a high mobility quasi-two dimensional electron liquid (2DEL) is formed at the interface. Such 2DEL demonstrates a variety of novel properties, including field tunable metal-insulator transition, superconductivity, strong spin-orbit coupling, magnetic and ferroelectric like behavior. Particularly, for 3-unit-cell (3 u.c.) LAO/STO heterostructures, it was demonstrated that a conductive atomic force microscope (c-AFM) tip can be used to "write" or "erase" nanoscale conducting channels at the interface, making LAO/STO a highly flexible platform to fabricate novel nanoelectronics. This thesis is focused on scanning probe microscopy studies of LAO/STO properties. We investigate the mechanism of c-AFM lithography over 3 u.c. LAO/STO in controlled ambient conditions by using a vacuum AFM, and find that the water molecules dissociated on the LAO surface play a critical role during the c-AFM lithography process. We also perform electro-mechanical response measurements over top-gated LAO/STO devices. Simultaneous piezoresponse force microscopy (PFM) and capacitance measurements reveal a correlation between LAO lattice distortion and interfacial carrier density, which suggests that PFM could not only serve as a powerful tool to map the carrier density at the interface but also provide insight into previously reported frequency dependence of capacitance enhancement of top-gated LAO/STO structures. To study magnetism at the LAO/STO interface, magnetic force microscopy (MFM) and magnetoelectric force microscopy (MeFM) are carried out to search for magnetic signatures that depend on the carrier density at the interface. Results demonstrate an electronicallycontrolled ferromagnetic phase on top-gated LAO

  6. Ion Channel Probes for Scanning Ion Conductance Microscopy

    PubMed Central

    2015-01-01

    The sensitivity and selectivity of ion channels provide an appealing opportunity for sensor development. Here, we describe ion channel probes (ICPs), which consist of multiple ion channels reconstituted into lipid bilayers suspended across the opening of perflourinated glass micropipets. When incorporated with a scanning ion conductance microscope (SICM), ICPs displayed a distance-dependent current response that depended on the number of ion channels in the membrane. With distance-dependent current as feedback, probes were translated laterally, to demonstrate the possibility of imaging with ICPs. The ICP platform yields several potential advantages for SICM that will enable exciting opportunities for incorporation of chemical information into imaging and for high-resolution imaging. PMID:25425190

  7. Band Excitation in Scanning Probe Microscopy: Recognition and Functional Imaging

    SciTech Connect

    Jesse, Stephen; Vasudevan, Dr. Rama; Collins, Liam; Strelcov, Evgheni; Okatan, Mahmut B; Belianinov, Alex; Baddorf, Arthur P; Proksch, Roger; Kalinin, Sergei V

    2014-01-01

    Field confinement at the junction between a biased scanning probe microscope s (SPM) tip and solid surface enables local probing of various bias-induced transformations such as polarization switching, ionic motion, or electrochemical reactions to name a few. The nanoscale size of the biased region is smaller or comparable to features like grain boundaries and dislocations, potentially allows for the study of kinetics and thermodynamics at the level of a single defect. In contrast to classical statistically averaged approaches, this allows one to link structure to functionality and deterministically decipher associated mesoscopic and atomistic mechanisms. Furthermore, this type of information can serve as a fingerprint of local material functionality, allowing for local recognition imaging. Here, current progress in multidimensional SPM techniques based on band-excitation time and voltage spectroscopies is illustrated, including discussions on data acquisition, dimensionality reduction, and visualization along with future challenges and opportunities for the field.

  8. Method for nanoscale spatial registration of scanning probes with substrates and surfaces

    NASA Technical Reports Server (NTRS)

    Wade, Lawrence A. (Inventor)

    2010-01-01

    Embodiments in accordance with the present invention relate to methods and apparatuses for aligning a scanning probe used to pattern a substrate, by comparing the position of the probe to a reference location or spot on the substrate. A first light beam is focused on a surface of the substrate as a spatial reference point. A second light beam then illuminates the scanning probe being used for patterning. An optical microscope images both the focused light beam, and a diffraction pattern, shadow, or light backscattered by the illuminated scanning probe tip of a scanning probe microscope (SPM), which is typically the tip of the scanning probe on an atomic force microscope (AFM). Alignment of the scanning probe tip relative to the mark is then determined by visual observation of the microscope image. This alignment process may be repeated to allow for modification or changing of the scanning probe microscope tip.

  9. Temperature mapping of operating nanoscale devices by scanning probe thermometry

    PubMed Central

    Menges, Fabian; Mensch, Philipp; Schmid, Heinz; Riel, Heike; Stemmer, Andreas; Gotsmann, Bernd

    2016-01-01

    Imaging temperature fields at the nanoscale is a central challenge in various areas of science and technology. Nanoscopic hotspots, such as those observed in integrated circuits or plasmonic nanostructures, can be used to modify the local properties of matter, govern physical processes, activate chemical reactions and trigger biological mechanisms in living organisms. The development of high-resolution thermometry techniques is essential for understanding local thermal non-equilibrium processes during the operation of numerous nanoscale devices. Here we present a technique to map temperature fields using a scanning thermal microscope. Our method permits the elimination of tip–sample contact-related artefacts, a major hurdle that so far has limited the use of scanning probe microscopy for nanoscale thermometry. We map local Peltier effects at the metal–semiconductor contacts to an indium arsenide nanowire and self-heating of a metal interconnect with 7 mK and sub-10 nm spatial temperature resolution. PMID:26936427

  10. Temperature mapping of operating nanoscale devices by scanning probe thermometry

    NASA Astrophysics Data System (ADS)

    Menges, Fabian; Mensch, Philipp; Schmid, Heinz; Riel, Heike; Stemmer, Andreas; Gotsmann, Bernd

    2016-03-01

    Imaging temperature fields at the nanoscale is a central challenge in various areas of science and technology. Nanoscopic hotspots, such as those observed in integrated circuits or plasmonic nanostructures, can be used to modify the local properties of matter, govern physical processes, activate chemical reactions and trigger biological mechanisms in living organisms. The development of high-resolution thermometry techniques is essential for understanding local thermal non-equilibrium processes during the operation of numerous nanoscale devices. Here we present a technique to map temperature fields using a scanning thermal microscope. Our method permits the elimination of tip-sample contact-related artefacts, a major hurdle that so far has limited the use of scanning probe microscopy for nanoscale thermometry. We map local Peltier effects at the metal-semiconductor contacts to an indium arsenide nanowire and self-heating of a metal interconnect with 7 mK and sub-10 nm spatial temperature resolution.

  11. Temperature mapping of operating nanoscale devices by scanning probe thermometry.

    PubMed

    Menges, Fabian; Mensch, Philipp; Schmid, Heinz; Riel, Heike; Stemmer, Andreas; Gotsmann, Bernd

    2016-01-01

    Imaging temperature fields at the nanoscale is a central challenge in various areas of science and technology. Nanoscopic hotspots, such as those observed in integrated circuits or plasmonic nanostructures, can be used to modify the local properties of matter, govern physical processes, activate chemical reactions and trigger biological mechanisms in living organisms. The development of high-resolution thermometry techniques is essential for understanding local thermal non-equilibrium processes during the operation of numerous nanoscale devices. Here we present a technique to map temperature fields using a scanning thermal microscope. Our method permits the elimination of tip-sample contact-related artefacts, a major hurdle that so far has limited the use of scanning probe microscopy for nanoscale thermometry. We map local Peltier effects at the metal-semiconductor contacts to an indium arsenide nanowire and self-heating of a metal interconnect with 7 mK and sub-10 nm spatial temperature resolution. PMID:26936427

  12. Multiple-scanning-probe tunneling microscope with nanoscale positional recognition function

    SciTech Connect

    Higuchi, Seiji; Kuramochi, Hiromi; Machida, Shinichi; Aono, Masakazu; Laurent, Olivier; Komatsubara, Takashi; Obori, Kenichi; Nakayama, Tomonobu

    2010-07-15

    Over the past decade, multiple-scanning-probe microscope systems with independently controlled probes have been developed for nanoscale electrical measurements. We developed a quadruple-scanning-probe tunneling microscope (QSPTM) that can determine and control the probe position through scanning-probe imaging. The difficulty of operating multiple probes with submicrometer precision drastically increases with the number of probes. To solve problems such as determining the relative positions of the probes and avoiding of contact between the probes, we adopted sample-scanning methods to obtain four images simultaneously and developed an original control system for QSPTM operation with a function of automatic positional recognition. These improvements make the QSPTM a more practical and useful instrument since four images can now be reliably produced, and consequently the positioning of the four probes becomes easier owing to the reduced chance of accidental contact between the probes.

  13. Scanning thermal microscopy with heat conductive nanowire probes.

    PubMed

    Timofeeva, Maria; Bolshakov, Alexey; Tovee, Peter D; Zeze, Dagou A; Dubrovskii, Vladimir G; Kolosov, Oleg V

    2016-03-01

    Scanning thermal microscopy (SThM), which enables measurement of thermal transport and temperature distribution in devices and materials with nanoscale resolution is rapidly becoming a key approach in resolving heat dissipation problems in modern processors and assisting development of new thermoelectric materials. In SThM, the self-heating thermal sensor contacts the sample allowing studying of the temperature distribution and heat transport in nanoscaled materials and devices. The main factors that limit the resolution and sensitivities of SThM measurements are the low efficiency of thermal coupling and the lateral dimensions of the probed area of the surface studied. The thermal conductivity of the sample plays a key role in the sensitivity of SThM measurements. During the SThM measurements of the areas with higher thermal conductivity the heat flux via SThM probe is increased compared to the areas with lower thermal conductivity. For optimal SThM measurements of interfaces between low and high thermal conductivity materials, well defined nanoscale probes with high thermal conductivity at the probe apex are required to achieve a higher quality of the probe-sample thermal contact while preserving the lateral resolution of the system. In this paper, we consider a SThM approach that can help address these complex problems by using high thermal conductivity nanowires (NW) attached to a tip apex. We propose analytical models of such NW-SThM probes and analyse the influence of the contact resistance between the SThM probe and the sample studied. The latter becomes particularly important when both tip and sample surface have high thermal conductivities. These models were complemented by finite element analysis simulations and experimental tests using prototype probe where a multiwall carbon nanotube (MWCNT) is exploited as an excellent example of a high thermal conductivity NW. These results elucidate critical relationships between the performance of the SThM probe on

  14. Role of space charge in scanned probe oxidation

    NASA Astrophysics Data System (ADS)

    Dagata, J. A.; Inoue, T.; Itoh, J.; Matsumoto, K.; Yokoyama, H.

    1998-12-01

    The growth rate and electrical character of nanostructures produced by scanned probe oxidation are investigated by integrating an in situ electrical force characterization technique, scanning Maxwell-stress microscopy, into the fabrication process. Simultaneous topographical, capacitance, and surface potential data are obtained for oxide features patterned on n- and p-type silicon and titanium thin-film substrates. The electric field established by an applied voltage pulse between the probe tip and substrate depends upon reactant and product ion concentrations associated with the water meniscus at the tip-substrate junction and within the growing oxide film. Space-charge effects are consistent with the rapid decline of high initial growth rates, account for observed doping and voltage-pulse dependencies, and provide a basis for understanding local density variations within oxide features. An obvious method for avoiding the buildup of space charge is to employ voltage modulation and other dynamic pulse-shaping techniques during the oxidation pulse. Voltage modulation leads to a significant enhancement of the growth rate and to improvements in the aspect ratio compared with static voltage pulses.

  15. Potentiostatic deposition of DNA for scanning probe microscopy.

    PubMed Central

    Lindsay, S M; Tao, N J; DeRose, J A; Oden, P I; Lyubchenko YuL; Harrington, R E; Shlyakhtenko, L

    1992-01-01

    We describe a procedure for reversible adsorption of DNA onto a gold electrode maintained under potential control. The adsorbate can be imaged by scanning probe microscopy in situ. Quantitative control of a molecular adsorbate for microscopy is now possible. We found a potential window (between 0 and 180 mV versus a silver wire quasi reference) over which a gold (111) surface under phosphate buffer is positively charged, but is not covered with a dense adsorbate. When DNA is present in these conditions, molecules adsorb onto the electrode and remain stable under repeated scanning with a scanning tunneling microscope (STM). They become removed when the surface is brought to a negative charge. When operated at tunnel currents below approximately 0.4 nA, the STM yields a resolution of approximately 1 nm, which is better than can be obtained with atomic force microscopy (AFM) at present. We illustrate this procedure by imaging a series of DNA molecules made by ligating a 21 base-pair oligonucleotide. We observed the expected series of fragment lengths but small fragments are adsorbed preferentially. Images FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 8 FIGURE 9 FIGURE 10 FIGURE 11 PMID:1617139

  16. Nanopatterning reconfigurable magnetic landscapes via thermally assisted scanning probe lithography

    NASA Astrophysics Data System (ADS)

    Albisetti, E.; Petti, D.; Pancaldi, M.; Madami, M.; Tacchi, S.; Curtis, J.; King, W. P.; Papp, A.; Csaba, G.; Porod, W.; Vavassori, P.; Riedo, E.; Bertacco, R.

    2016-06-01

    The search for novel tools to control magnetism at the nanoscale is crucial for the development of new paradigms in optics, electronics and spintronics. So far, the fabrication of magnetic nanostructures has been achieved mainly through irreversible structural or chemical modifications. Here, we propose a new concept for creating reconfigurable magnetic nanopatterns by crafting, at the nanoscale, the magnetic anisotropy landscape of a ferromagnetic layer exchange-coupled to an antiferromagnetic layer. By performing localized field cooling with the hot tip of a scanning probe microscope, magnetic structures, with arbitrarily oriented magnetization and tunable unidirectional anisotropy, are reversibly patterned without modifying the film chemistry and topography. This opens unforeseen possibilities for the development of novel metamaterials with finely tuned magnetic properties, such as reconfigurable magneto-plasmonic and magnonic crystals. In this context, we experimentally demonstrate spatially controlled spin wave excitation and propagation in magnetic structures patterned with the proposed method.

  17. Scanning Hall probe microscopy of a diluted magnetic semiconductor

    SciTech Connect

    Kweon, Seongsoo; Samarth, Nitin; Lozanne, Alex de

    2009-05-01

    We have measured the micromagnetic properties of a diluted magnetic semiconductor as a function of temperature and applied field with a scanning Hall probe microscope built in our laboratory. The design philosophy for this microscope and some details are described. The samples analyzed in this work are Ga{sub 0.94}Mn{sub 0.06}As films grown by molecular beam epitaxy. We find that the magnetic domains are 2-4 mum wide and fairly stable with temperature. Magnetic clusters are observed above T{sub C}, which we ascribe to MnAs defects too small and sparse to be detected by a superconducting quantum interference device magnetometer.

  18. Ferroelectric Switching by the Grounded Scanning Probe Microscopy Tip

    SciTech Connect

    Ievlev, Anton V.; Morozovska, A. N.; Shur, Vladimir Ya.; Kalinin, Sergei V.

    2015-06-19

    The process of polarization reversal by the tip of scanning probe microscope was intensively studied for last two decades. Number of the abnormal switching phenomena was reported by the scientific groups worldwide. In particularly it was experimentally and theoretically shown that slow dynamics of the surface screening controls kinetics of the ferroelectric switching, backswitching and relaxation and presence of the charges carriers on the sample surface and in the sample bulk significantly change polarization reversal dynamics. Here we experimentally demonstrated practical possibility of the history dependent polarization reversal by the grounded SPM tip. This phenomenon was attributed to induction of the slowly dissipating charges into the surface of the grounded tip that enables polarization reversal under the action of the produced electric field. Analytical and numerical electrostatic calculations allow additional insight into nontrivial abnormal switching phenomena reported earlier.

  19. Ferroelectric Switching by the Grounded Scanning Probe Microscopy Tip

    DOE PAGESBeta

    Ievlev, Anton V.; Morozovska, A. N.; Shur, Vladimir Ya.; Kalinin, Sergei V.

    2015-06-19

    The process of polarization reversal by the tip of scanning probe microscope was intensively studied for last two decades. Number of the abnormal switching phenomena was reported by the scientific groups worldwide. In particularly it was experimentally and theoretically shown that slow dynamics of the surface screening controls kinetics of the ferroelectric switching, backswitching and relaxation and presence of the charges carriers on the sample surface and in the sample bulk significantly change polarization reversal dynamics. Here we experimentally demonstrated practical possibility of the history dependent polarization reversal by the grounded SPM tip. This phenomenon was attributed to induction ofmore » the slowly dissipating charges into the surface of the grounded tip that enables polarization reversal under the action of the produced electric field. Analytical and numerical electrostatic calculations allow additional insight into nontrivial abnormal switching phenomena reported earlier.« less

  20. Design and manufacturing of scanning probe acoustic microscope test phantom

    NASA Astrophysics Data System (ADS)

    Chen, Xiaohui; Fang, Xiaoyue; Song, Jitao; Ding, Mingyue

    2015-03-01

    Acquiring nondestructive internal structures acoustic image as well as the morphology images using scanning probe acoustic microscope (SPAM) is a challenge and no known metrology tools to identify the ultrasonic internal resolution and detectable depth of SPAM in a nondestructive way. Monitoring these defects necessitates the identification of their technical parameters of SPAM. In this paper, the specific materials (test phantoms) were designed and processed so that the ultrasound internal resolution of SPAM in nondestructive imaging of the embedded or buried substructures as well as the morphology images were measured. Experimental results demonstrated the successful identification of embedded or buried defects under the test phantom with the resolution of 50nm for SPAM as well as the detectable depth of more than 100μm.

  1. Nanopatterning reconfigurable magnetic landscapes via thermally assisted scanning probe lithography.

    PubMed

    Albisetti, E; Petti, D; Pancaldi, M; Madami, M; Tacchi, S; Curtis, J; King, W P; Papp, A; Csaba, G; Porod, W; Vavassori, P; Riedo, E; Bertacco, R

    2016-06-01

    The search for novel tools to control magnetism at the nanoscale is crucial for the development of new paradigms in optics, electronics and spintronics. So far, the fabrication of magnetic nanostructures has been achieved mainly through irreversible structural or chemical modifications. Here, we propose a new concept for creating reconfigurable magnetic nanopatterns by crafting, at the nanoscale, the magnetic anisotropy landscape of a ferromagnetic layer exchange-coupled to an antiferromagnetic layer. By performing localized field cooling with the hot tip of a scanning probe microscope, magnetic structures, with arbitrarily oriented magnetization and tunable unidirectional anisotropy, are reversibly patterned without modifying the film chemistry and topography. This opens unforeseen possibilities for the development of novel metamaterials with finely tuned magnetic properties, such as reconfigurable magneto-plasmonic and magnonic crystals. In this context, we experimentally demonstrate spatially controlled spin wave excitation and propagation in magnetic structures patterned with the proposed method. PMID:26950242

  2. Single-molecule protein arrays enabled by scanning probe block copolymer lithography.

    PubMed

    Chai, Jinan; Wong, Lu Shin; Giam, Louise; Mirkin, Chad A

    2011-12-01

    The ability to control the placement of individual protein molecules on surfaces could enable advances in a wide range of areas, from the development of nanoscale biomolecular devices to fundamental studies in cell biology. Such control, however, remains a challenge in nanobiotechnology due to the limitations of current lithographic techniques. Herein we report an approach that combines scanning probe block copolymer lithography with site-selective immobilization strategies to create arrays of proteins down to the single-molecule level with arbitrary pattern control. Scanning probe block copolymer lithography was used to synthesize individual sub-10-nm single crystal gold nanoparticles that can act as scaffolds for the adsorption of functionalized alkylthiol monolayers, which facilitate the immobilization of specific proteins. The number of protein molecules that adsorb onto the nanoparticles is dependent upon particle size; when the particle size approaches the dimensions of a protein molecule, each particle can support a single protein. This was demonstrated with both gold nanoparticle and quantum dot labeling coupled with transmission electron microscopy imaging experiments. The immobilized proteins remain bioactive, as evidenced by enzymatic assays and antigen-antibody binding experiments. Importantly, this approach to generate single-biomolecule arrays is, in principle, applicable to many parallelized cantilever and cantilever-free scanning probe molecular printing methods. PMID:22106270

  3. Probing Access Resistance of Solid-state Nanopores with a Scanning Probe Microscope Tip.

    PubMed

    Hyun, Changbae; Rollings, Ryan; Li, Jiali

    2012-02-01

    An apparatus that integrates solid-state nanopore ionic current measurement with a Scanning Probe Microscope has been developed. When a micrometer-scale scanning probe tip is near a voltage biased nanometer-scale pore (10-100 nm), the tip partially blocks the flow of ions to the pore and increases the pore access resistance. The apparatus records the current blockage caused by the probe tip and the location of the tip simultaneously. By measuring the current blockage map near a nanopore as a function of the tip position in 3D space in salt solution, we estimate the relative pore resistance increase due to the tip, ΔR/R(0), as a function of the tip location, nanopore geometry, and salt concentration. The amplitude of ΔR/R(0) also depends on the ratio of the pore length to its radius as Ohm's law predicts. When the tip is very close to the pore surface, ~10 nm, our experiments show that ΔR/R(0) depends on salt concentration as predicted by the Poisson and Nernst-Planck equations. Furthermore, our measurements show that ΔR/R(0) goes to zero when the tip is about five times the pore diameter away from the center of the pore entrance. The results in this work not only demonstrate a way to probe the access resistance of nanopores experimentally, they also provide a way to locate the nanopore in salt solution, and open the door to future nanopore experiments for detecting single biomolecules attached to a probe tip. PMID:22393313

  4. Probing access resistance of solid-state nanopores with a scanning-probe microscope tip.

    PubMed

    Hyun, Changbae; Rollings, Ryan; Li, Jiali

    2012-02-01

    An apparatus that integrates solid-state nanopore ionic current measurement with a scanning-probe microscope is developed. When a micrometer-scale scanning-probe tip is near a voltage-biased nanometer-scale pore (10–100 nm), the tip partially blocks the flow of ions to the pore and increases the pore access resistance. The apparatus records the current blockage caused by the probe tip and the location of the tip simultaneously. By measuring the current blockage map near a nanopore as a function of the tip position in 3D space in salt solution, the relative pore resistance increases due to the tip and ΔR/R0 is estimated as a function of the tip location, nanopore geometry, and salt concentration. The amplitude of ΔR/R0 also depends on the ratio of the pore length to its radius as Ohm's law predicts. When the tip is very close to the pore surface, ≈10 nm, experiments show that ΔR/R0 depends on salt concentration as predicted by the Poisson and Nernst–Planck equations. Furthermore, the measurements show that ΔR/R0 goes to zero when the tip is about five times the pore diameter away from the center of the pore entrance. The results in this work not only demonstrate a way to probe the access resistance of nanopores experimentally; they also provide a way to locate the nanopore in salt solution, and open the door to future nanopore experiments for detecting single biomolecules attached to a probe tip. PMID:22287084

  5. Simulation of near-field scanning optical microscopy using a plasmonic gap probe

    NASA Astrophysics Data System (ADS)

    Tanaka, Kazuo; Tanaka, Masahiro; Katayama, Kiyofumi

    2006-10-01

    Imaging by near-field scanning optical microscopy (NSOM) with a plasmonic gap probe (PGP) is simulated to confirm the operation of the recently proposed PGP. The simulations demonstrate that the probe works in illumination, collection-reflection and collection mode, and that is it not necessary to vibrate the probe tip in order to remove background noise. The resolution of the scanned image is also shown to be approximately equal to the diameter of the probe tip. Furthermore, the throughput of the probe is much higher than conventional aperture probes providing similar resolution. The proposed probe thus has the advantages of both aperture probes and scattering probes, and is expected to have excellent characteristics for use as a scanning probe for NSOM.

  6. Thermochemical scanning probe lithography of protein gradients at the nanoscale.

    PubMed

    Albisetti, E; Carroll, K M; Lu, X; Curtis, J E; Petti, D; Bertacco, R; Riedo, E

    2016-08-01

    Patterning nanoscale protein gradients is crucial for studying a variety of cellular processes in vitro. Despite the recent development in nano-fabrication technology, combining nanometric resolution and fine control of protein concentrations is still an open challenge. Here, we demonstrate the use of thermochemical scanning probe lithography (tc-SPL) for defining micro- and nano-sized patterns with precisely controlled protein concentration. First, tc-SPL is performed by scanning a heatable atomic force microscopy tip on a polymeric substrate, for locally exposing reactive amino groups on the surface, then the substrate is functionalized with streptavidin and laminin proteins. We show, by fluorescence microscopy on the patterned gradients, that it is possible to precisely tune the concentration of the immobilized proteins by varying the patterning parameters during tc-SPL. This paves the way to the use of tc-SPL for defining protein gradients at the nanoscale, to be used as chemical cues e.g. for studying and regulating cellular processes in vitro. PMID:27344982

  7. Thermochemical scanning probe lithography of protein gradients at the nanoscale

    NASA Astrophysics Data System (ADS)

    Albisetti, E.; Carroll, K. M.; Lu, X.; Curtis, J. E.; Petti, D.; Bertacco, R.; Riedo, E.

    2016-08-01

    Patterning nanoscale protein gradients is crucial for studying a variety of cellular processes in vitro. Despite the recent development in nano-fabrication technology, combining nanometric resolution and fine control of protein concentrations is still an open challenge. Here, we demonstrate the use of thermochemical scanning probe lithography (tc-SPL) for defining micro- and nano-sized patterns with precisely controlled protein concentration. First, tc-SPL is performed by scanning a heatable atomic force microscopy tip on a polymeric substrate, for locally exposing reactive amino groups on the surface, then the substrate is functionalized with streptavidin and laminin proteins. We show, by fluorescence microscopy on the patterned gradients, that it is possible to precisely tune the concentration of the immobilized proteins by varying the patterning parameters during tc-SPL. This paves the way to the use of tc-SPL for defining protein gradients at the nanoscale, to be used as chemical cues e.g. for studying and regulating cellular processes in vitro.

  8. Teaching Plasmonics, Scanning Probe Microscopy and Other Useful Experiments at the Upper Level

    NASA Astrophysics Data System (ADS)

    Sanchez, Erik

    2012-10-01

    It is important to teach students concepts and experimental skills relating to modern research being performed today. Experiments that help educate students about the latest research helps them get jobs and into the doors at many great academic institutions. PSU's Advanced Experimental Class for physics undergraduates offers many novel experiments to help the students accomplish this task. Labs involving Plasmonics, thin film deposition, scanning probe microscopy (SPM) and more will be discussed. In addition, a new NSF funded project involving the building of a Do-It-Yourself (DIY) SPM will be discussed.

  9. Integrated scanning Kelvin probe-scanning electrochemical microscope system: development and first applications.

    PubMed

    Maljusch, Artjom; Schönberger, Bernd; Lindner, Armin; Stratmann, Martin; Rohwerder, Michael; Schuhmann, Wolfgang

    2011-08-01

    The integration of a scanning Kelvin probe (SKP) and a scanning electrochemical microscope (SECM) into a single SKP-SECM setup, the concept of the proposed system, its technical realization, and first applications are presented and discussed in detail. A preloaded piezo actuator placed in a grounded stainless steel case was used as the driving mechanism for oscillation of a Pt disk electrode as conventionally used in SECM when the system was operated in the SKP mode. Thus, the same tip is recording the contact potential difference (CPD) during SKP scanning and is used as a working electrode for SECM imaging in the redox-competition mode (RC-SECM). The detection of the local CPD is established by amplification of the displacement current at an ultralow noise operational amplifier and its compensation by application of a variable backing potential (V(b)) in the external circuit. The control of the tip-to-sample distance is performed by applying an additional alternating voltage with a much lower frequency than the oscillation frequency of the Kelvin probe. The main advantage of the SKP-SECM system is that it allows constant distance measurements of the CPD in air under ambient conditions and in the redox-competition mode of the SECM in the electrolyte of choice over the same sample area without replacement of the sample or exchange of the working electrode. The performance of the system was evaluated using a test sample made by sputtering thin Pt and W films on an oxidized silicon wafer. The obtained values of the CPD correlate well with known data, and the electrochemical activity for oxygen reduction is as expected higher over Pt than W. PMID:21675763

  10. Monolithically Integrated, Mechanically Resilient Carbon-Based Probes for Scanning Probe Microscopy

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Megerian, Krikor G.; Jennings, Andrew T.; Greer, Julia R.

    2010-01-01

    Scanning probe microscopy (SPM) is an important tool for performing measurements at the nanoscale in imaging bacteria or proteins in biology, as well as in the electronics industry. An essential element of SPM is a sharp, stable tip that possesses a small radius of curvature to enhance spatial resolution. Existing techniques for forming such tips are not ideal. High-aspect-ratio, monolithically integrated, as-grown carbon nanofibers (CNFs) have been formed that show promise for SPM applications by overcoming the limitations present in wet chemical and separate substrate etching processes.

  11. Sparse sampling and reconstruction for electron and scanning probe microscope imaging

    SciTech Connect

    Anderson, Hyrum; Helms, Jovana; Wheeler, Jason W.; Larson, Kurt W.; Rohrer, Brandon R.

    2015-07-28

    Systems and methods for conducting electron or scanning probe microscopy are provided herein. In a general embodiment, the systems and methods for conducting electron or scanning probe microscopy with an undersampled data set include: driving an electron beam or probe to scan across a sample and visit a subset of pixel locations of the sample that are randomly or pseudo-randomly designated; determining actual pixel locations on the sample that are visited by the electron beam or probe; and processing data collected by detectors from the visits of the electron beam or probe at the actual pixel locations and recovering a reconstructed image of the sample.

  12. Electrical Measurements and Nanomechanics Using Scanning Probe Microscopy

    NASA Astrophysics Data System (ADS)

    Chang, Yong

    2002-10-01

    In the early 1980s, G. Binnig et al. invented the Scanning Tunneling Microscopy (STM) [1], making it possible to obtain atomic resolution images of conducting surfaces. After that, many different types of Scanning Probe Microscopy (SPM) were invented and some of the most useful representatives are Atomic Force Microscopy (AFM) [2], Electrostatic Force Microscopy (EFM) [3] and Kelvin Probe Force Microscopy (KPFM) [4,5]. In 1985, G. Binnig et al. [2] invented the AFM, which now is used as a fundamental tool in many fields of research. Developed from AFM, Y. Martin et al. [3] invented EFM in 1987. The development of AC mode AFM allows the detection of weak long-range forces. EFM has also been used to study other systems and phenomena, such as thin liquid films on solid surfaces [6], electrically stressed gold nanowires [7], and spatial charge distribution in quantum wires [8]. In 1991, M. Nonnenmacher et al. [5] invented Kelvin Probe Force Microscopy. KPFM is used to study any property that affects the tip-surface Contact Potential Difference (CPD), such as voltage signals in integrated circuits (IC) [9], charged grain boundaries in polycrystalline silicon [10] and surface potential variations in multilayer semiconductor devices [11]. The aim of this poster is to discuss the application of SPM to electrical measurements. The theory of SPM was presented. The AFM was firstly introduced as it was developed before the other two. The design and theory were discussed. The force-distance curve was introduced. After this EFM was presented. EFM was developed from AC mode AFM. The technique was achieved by applying a DC voltage between the tip and the sample. The design, theory and features of it were surveyed. KPFM was also discussed. KPFM was developed from EFM. The central part of this technique is to measure the CPD. Experimental measurements of SPM were described after theory part. Research work using AFM was presented. The newest technique of AFM, UHV-AFM has been used in

  13. Nanoscale Electromechanics of Ferroelectric and Biological Systems: A New Dimension in Scanning Probe Microscopy

    SciTech Connect

    Kalinin, Sergei V; Rodriguez, Brian J; Jesse, Stephen; Karapetian, Edgar; Mirman, B; Eliseev, E. A.; Morozovska, A. N.

    2007-01-01

    Functionality of biological and inorganic systems ranging from nonvolatile computer memories and microelectromechanical systems to electromotor proteins and cellular membranes is ultimately based on the intricate coupling between electrical and mechanical phenomena. In the past decade, piezoresponse force microscopy (PFM) has been established as a powerful tool for nanoscale imaging, spectroscopy, and manipulation of ferroelectric and piezoelectric materials. Here, we give an overview of the fundamental image formation mechanism in PFM and summarize recent theoretical and technological advances. In particular, we show that the signal formation in PFM is complementary to that in the scanning tunneling microscopy (STM) and atomic force microscopy (AFM) techniques, and we discuss the implications. We also consider the prospect of extending PFM beyond ferroelectric characterization for quantitative probing of electromechanical behavior in molecular and biological systems and high-resolution probing of static and dynamic polarization switching processes in low-dimensional ferroelectric materials and heterostructures.

  14. Thermal Wave-Based Scanning Probe Microscopy and Its Applications

    NASA Astrophysics Data System (ADS)

    Pelzl, J.; Chirtoc, M.; Meckenstock, R.

    2013-09-01

    In the last two decades scanning thermal microscopes (SThM) with DC- and AC-heating have been developed offering resolutions down to the nanometer scale. The SThM is based on an atomic force microscope (AFM) that is equipped with a temperature sensitive nanoprobe. Most frequently a tip with a temperature-dependent electrical resistor is used which can be operated as a thermometer or as a heater. The lateral resolution of about 100 nm is determined by the tip radius. Alternatively, if the thermoelastic response is detected by a smaller AFM probe, a spatial resolution of about 10 nm can be attained. Thermal wave-based SThM-techniques (AC-SThM) are used (i) to control the thermal management of electronic devices and to image thermal parameters with submicron resolution and (ii) to study resonance absorption processes of optical, infrared, and microwave radiation on the nanometer scale. Examples presented comprise the thermal imaging of hot spots in high power and in-plane-gate transistors and local studies of the temperature dependence of the thermal conductivity of nano-structured NiTi shape memory alloys by the method. The use of the SThM as a tool for a spatially resolved spectroscopy is demonstrated by locally resolved ferromagnetic resonance measurements in thin iron and nickel films deposited on various substrates.

  15. Ultrasonic Wave Field Modeling in a Conical Scanning Probe Tip

    NASA Astrophysics Data System (ADS)

    Every, Arthur; Wenke, Ingo; Aebi, Laurent; Dual, Jurg

    2011-06-01

    The ultrasonic wave field modeling reported in this paper has been undertaken with a view to optimizing the design of a conical scanning probe microscope tip to be used in measuring the near surface elastic properties of solids at high frequencies and high spatial resolution. The modeling is concerned with the evolution of a pulse which is launched from the upper spherical shaped surface of the tip, and is aimed at achieving the greatest possible concentration of acoustic energy at the lower sharp end of the tip. The calculations assume a transversely isotropic medium. Two complementary approaches have been taken, firstly the discretization of the equations of motion on a 1000×1000 mesh and solution using the commercial FE package ABAQUS, and secondly an analytical approach based on the angular spectrum method and stationary phase approximation. A high degree of consistency is achieved between the two approaches regarding the characteristics of the focal region, dispersion of the pulse attendant on the discretization of the system, and other features of the wave field. With the combination of the two approaches we are able to model the wave field over a very wide range of frequencies from low frequencies, where advantage lies with the FE method, to high frequencies where the computational cost of the FE method is inordinate and the analytical approach becomes progressively more accurate.

  16. Laser scanning dental probe for endodontic root canal treatment

    NASA Astrophysics Data System (ADS)

    Blank, Molly A. B.; Friedrich, Michal; Hamilton, Jeffrey D.; Lee, Peggy; Berg, Joel; Seibel, Eric J.

    2011-03-01

    Complications that arise during endodontic procedures pose serious threats to the long-term integrity and health of the tooth. Potential complexities of root canals include residual pulpal tissue, cracks, mesial-buccal 2 and accessory canals. In the case of a failed root canal, a successful apicoectomy can be jeopardized by isthmuses, accessory canals, and root microfracture. Confirming diagnosis using a small imaging probe would allow proper treatment and prevent retreatment of endodontic procedures. An ultrathin and flexible laser scanning endoscope of 1.2 to 1.6mm outer diameter was used in vitro to image extracted teeth with varied root configurations. Teeth were opened using a conventional bur and high speed drill. Imaging within the opened access cavity clarified the location of the roots where canal filing would initiate. Although radiographs are commonly used to determine the root canal size, position, and shape, the limited 2D image perspective leaves ambiguity that could be clarified if used in conjunction with a direct visual imaging tool. Direct visualization may avoid difficulties in locating the root canal and reduce the number of radiographs needed. A transillumination imaging device with the separated illumination and light collection functions rendered cracks visible in the prepared teeth that were otherwise indiscernible using reflected visible light. Our work demonstrates that a small diameter endoscope with high spatial resolution may significantly increase the efficiency and success of endodontic procedures.

  17. Scanning magnetoresistive microscopy: An advanced characterization tool for magnetic nanosystems.

    PubMed

    Mitin, D; Grobis, M; Albrecht, M

    2016-02-01

    An advanced scanning magnetoresistive microscopy (SMRM) - a robust magnetic imaging and probing technique - will be presented, which utilizes state-of-the-art recording heads of a hard disk drive as sensors. The spatial resolution of modern tunneling magnetoresistive sensors is nowadays comparable to the more commonly used magnetic force microscopes. Important advantages of SMRM are the ability to detect pure magnetic signals directly proportional to the out-of-plane magnetic stray field, negligible sensor stray fields, and the ability to apply local bipolar magnetic field pulses up to 10 kOe with bandwidths from DC up to 1 GHz. Moreover, the SMRM can be further equipped with a heating stage and external magnetic field units. The performance of this method and corresponding best practices are demonstrated by presenting various examples, including a temperature dependent recording study on hard magnetic L1(0) FeCuPt thin films, imaging of magnetic vortex states in an in-plane magnetic field, and their controlled manipulation by applying local field pulses. PMID:26931856

  18. Scanning magnetoresistive microscopy: An advanced characterization tool for magnetic nanosystems

    NASA Astrophysics Data System (ADS)

    Mitin, D.; Grobis, M.; Albrecht, M.

    2016-02-01

    An advanced scanning magnetoresistive microscopy (SMRM) — a robust magnetic imaging and probing technique — will be presented, which utilizes state-of-the-art recording heads of a hard disk drive as sensors. The spatial resolution of modern tunneling magnetoresistive sensors is nowadays comparable to the more commonly used magnetic force microscopes. Important advantages of SMRM are the ability to detect pure magnetic signals directly proportional to the out-of-plane magnetic stray field, negligible sensor stray fields, and the ability to apply local bipolar magnetic field pulses up to 10 kOe with bandwidths from DC up to 1 GHz. Moreover, the SMRM can be further equipped with a heating stage and external magnetic field units. The performance of this method and corresponding best practices are demonstrated by presenting various examples, including a temperature dependent recording study on hard magnetic L10 FeCuPt thin films, imaging of magnetic vortex states in an in-plane magnetic field, and their controlled manipulation by applying local field pulses.

  19. Improved optical fiber probes for scanning near field optical microscopy

    NASA Astrophysics Data System (ADS)

    Wheaton, Bryan R.

    2004-12-01

    The motivation behind this work stems from a combination of my interest in atomic force microscopy (AFM) and the need to apply AFM to several areas of glass research. AFM was used as the main characterization tool in the study of near-field scanning optical microscopy (NSOM) tip formation, evaluation of phase separation in glasses and copper oxide semiconductor film formation. The use of atomic force microscopy (AFM) to evaluate the evolving tip structure of an optical fiber probe for NSOM was studied. This study demonstrates the feasibility of predicting the final tip cone angle, without taking the etching process to completion. Cone angles reported in this study ranged from 58 to 152 degrees, depending on the fiber type and etch conditions. The ability to vary the probe cone angle, and utilize AFM to evaluate the cone angle that results from a set of etch conditions, are valuable additions to the development of NSOM fiber tips. The chemical and spatial variation of phase separated morphologies in glasses can range from a few angstroms to microns, often requiring very high magnification for detection. Historically phase separated glasses have been characterized by transmission electron microscopy (TEM), a time consuming and costly technique. Atomic force microscopy (AFM) provides an inexpensive alternative to TEM and has proven to be a powerful tool in the evaluation of type, degree and scale of phase separation in glasses down to the nanometer level. AFM was used to show that the thickness and uniformity of the CuO films grown in-situ on the surface of copper containing alkali borosilicate glasses increased with time and temperature, however an upper time limit was reached in which no further thickness increases were realized. Tenorite, cuprite and copper metal films were produced depending on the heat treatment environment. XPS was utilized to confirm that copper oxide film formation during heat treatments of glasses near Tg results from the oxidation of copper

  20. Electronic linearization of piezoelectric actuators and noise budget in scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Aloisi, G.; Santucci, A.; Carlà, M.; Dolci, D.; Lanzi, L.

    2006-07-01

    The maximum resolution achievable with a scanning probe microscope is limited by the probe size, by the mechanism of interaction with the sample, as is widely known, and by the electronic noise in the instrument. The evaluation of this noise for the three motion axes of a linearized high resolution scanning electrochemical microscope has been carried through and the intrinsic maximum resolution is discussed.

  1. Probing Individual Ice Nucleation Events with Environmental Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Bingbing; China, Swarup; Knopf, Daniel; Gilles, Mary; Laskin, Alexander

    2016-04-01

    Heterogeneous ice nucleation is one of the processes of critical relevance to a range of topics in the fundamental and the applied science and technologies. Heterogeneous ice nucleation initiated by particles proceeds where microscopic properties of particle surfaces essentially control nucleation mechanisms. Ice nucleation in the atmosphere on particles governs the formation of ice and mixed phase clouds, which in turn influence the Earth's radiative budget and climate. Heterogeneous ice nucleation is still insufficiently understood and poses significant challenges in predictive understanding of climate change. We present a novel microscopy platform allowing observation of individual ice nucleation events at temperature range of 193-273 K and relative humidity relevant for ice formation in the atmospheric clouds. The approach utilizes a home built novel ice nucleation cell interfaced with Environmental Scanning Electron Microscope (IN-ESEM system). The IN-ESEM system is applied for direct observation of individual ice formation events, determining ice nucleation mechanisms, freezing temperatures, and relative humidity onsets. Reported microanalysis of the ice nucleating particles (INP) include elemental composition detected by the energy dispersed analysis of X-rays (EDX), and advanced speciation of the organic content in particles using scanning transmission x-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). The performance of the IN-ESEM system is validated through a set of experiments with kaolinite particles with known ice nucleation propensity. We demonstrate an application of the IN-ESEM system to identify and characterize individual INP within a complex mixture of ambient particles.

  2. Scanning Hall probe microscopy of supercurrents in YBCO films

    NASA Astrophysics Data System (ADS)

    Dinner, Rafael Baruch

    High-temperature superconductors were discovered 20 years ago, inspiring dreams of levitating trains fed by superconducting power lines. The cuprates, particularly YBa2Cu3O7-delta (YBCO), still promise to fulfill such applications, but must be made to carry higher current density, Jc, which is limited by the rapid onset of dissipation. The dissipation arises from the movement of magnetic vortices in the material, driven by the magnetic field of the current. It is therefore natural to use magnetic imaging to understand these limits on the current. Initially, I fix a mesoscopic ring of YBCO to a micro-Hall sensor and demonstrate that the sensor is capable of detecting small numbers of vortices. I then proceed with magnetic imaging, constructing a cryogenic scanning Hall probe microscope that combines a 1 x 4 cm scan range with 200 nm positioning resolution by coupling stepper motors to high-resolution drivers and reducing gears. It enables me to image an entire sample, then zoom in on regions of interest, down to the level of an individual quantized vortex. Applying this capability to current-carrying YBCO strips, I generate magnetic movies of the materials' periodic response to applied ac currents. From the movies, I reconstruct current density by inverting the Biot-Savart law, and electric field by approximating dB/dt and using Faraday's law. I thereby obtain complete, space- and time-resolved characterizations of the materials, including maps of ac power losses. After demonstrating this analysis on a single-crystal film, I image two "coated conductors"---YBCO grown on metal tape. I find relatively homogeneous flux penetration in a film grown by pulsed laser deposition (PLD) on an ion beam assisted deposition (IBAD) substrate, which contrasts with the weak-link behavior of grain boundaries in a film grown by metalorganic deposition (MOD) on rolling assisted biaxially textured substrate (RABiTS). Nonetheless, the in-plane meandering of the MOD film's boundaries

  3. Miniaturized magnetic-driven scanning probe for endoscopic optical coherence tomography.

    PubMed

    Pang, Ziwei; Wu, Jigang

    2015-06-01

    We designed and implemented a magnetic-driven scanning (MDS) probe for endoscopic optical coherence tomography (OCT). The probe uses an externally-driven tiny magnet in the distal end to achieve unobstructed 360-degree circumferential scanning at the side of the probe. The design simplifies the scanning part inside the probe and thus allows for easy miniaturization and cost reduction. We made a prototype probe with an outer diameter of 1.4 mm and demonstrated its capability by acquiring OCT images of ex vivo trachea and artery samples from a pigeon. We used a spectrometer-based Fourier-domain OCT system and the system sensitivity with our prototype probe was measured to be 91 dB with an illumination power of 850 μW and A-scan exposure time of 1 ms. The axial and lateral resolutions of the system are 6.5 μm and 8.1 μm, respectively. PMID:26114041

  4. Scanning thermal microscopy probe capable of simultaneous electrical imaging and the addition of diamond tip

    NASA Astrophysics Data System (ADS)

    Brown, E.; Hao, L.; Cox, D. C.; Gallop, J. C.

    2008-03-01

    Scanning Thermal Microscopy (SThM) is a scanning probe technique that allows the mapping of the thermal properties and/or temperature of a substrate. Developments in this scanning probe technique are of great importance to further the study of thermal transport at the micron and at the nano scale, for instance to better the understanding of heat transport in nano-electronic devices or energy transfer in biological systems. Here we describe: 1) the scanning technique developed to acquire simultaneous images of the topography, the thermal and electrical properties of the substrate using a commercially available Veeco SThM probe; 2) how the SThM probe was modified by mounting a micron-sized diamond pyramid on its tip in order to improve the probe's lateral resolution and the topography resolution tests on the performance of the modified probe.

  5. PVD prepared molecular glass resists for scanning probe lithography

    NASA Astrophysics Data System (ADS)

    Neuber, Christian; Schmidt, Hans-Werner; Strohriegl, Peter; Wagner, Daniel; Krohn, Felix; Schedl, Andreas; Bonanni, Simon; Holzner, Felix; Rawlings, Colin; Dürig, Urs; Knoll, Armin W.

    2016-03-01

    In the presented work solvent-free film preparation from molecular glass resists, the evaluation of the patterning performance using thermal scanning probe lithography (tSPL) and an efficient etch transfer process are demonstrated. As the presented materials have a high tendency to crystallize and thus form crystalline films of bad quality when processed by solution casting, two component mixtures prepared by coevaporation were investigated. Stable amorphous films were obtained by selecting compatible material pairs for the coevaporation. One optimized material pair is based on trissubstituted, twisted resist materials with a distinct difference in molecular design. Here a high resolution tSPL prepared pattern of 18 nm half pitch in a 10 nm thick film is demonstrated. A further optimization is reported for "small" cubic silsequioxane molecules. Again single component films show independent to applied film preparation techniques bad film forming properties due to the high crystallinity of the symmetric cubic silsequioxane molecules. But coevaporation of the phenyl substituted octaphenylsilsequioxane combined with the fully aromatic 2,2',7,7'-tetraphenyl-9,9'-spirobi[fluorene] results in stable amorphous thin films. tSPL investigations demonstrate the patternability by writing high resolution line features of 20 nm half pitch. An important advantage of such a silicon rich resist material is that it can be directly converted to SiO2, yielding to a patterned hardmask of SiO2. This proof of principle is demonstrated and an efficient pattern transfer of 60 nm half pitch line into the underlying HM8006 is reported.

  6. A resonant scanning dipole-antenna probe for enhanced nanoscale imaging.

    PubMed

    Neumann, Lars; van 't Oever, Jorick; van Hulst, Niek F

    2013-11-13

    We present a scanning antenna probe that provides 35 nm optical hotspots with a 16-fold excitation enhancement. A resonant optical antenna, tuned to operation in the visible, is carved into the aluminum-coated scanning probe. The antenna resonances, field localization, excitation, and polarization response are probed in the near-field by scanning over single fluorescent nanobeads. At the same time, the distance-dependent coupling of the emission to the antenna mode is mapped. Good agreement with theory is obtained. The presented scanning antenna approach is useful for both nanoscale plasmonic mode imaging and (bio)imaging. PMID:24124987

  7. Advances in Defocused-Beam Electron-Probe Microanalysis

    NASA Astrophysics Data System (ADS)

    Carpenter, P. K.; Zeigler, R. A.; Jolliff, B. L.

    2010-03-01

    Advances in defocused-beam electron-probe microanalysis are presented, with an Excel VBA algorithm which uses a polynomial alpha factor correction algorithm coupled with a catanorm procedure to correct DBA data.

  8. Advanced scanning methods with tracking optical coherence tomography

    PubMed Central

    Ferguson, R. Daniel; Iftimia, Nicusor V.; Ustun, Teoman; Wollstein, Gadi; Ishikawa, Hiroshi; Gabriele, Michelle L.; Dilworth, William D.; Kagemann, Larry; Schuman, Joel S.

    2013-01-01

    An upgraded optical coherence tomography system with integrated retinal tracker (TOCT) was developed. The upgraded system uses improved components to extend the tracking bandwidth, fully integrates the tracking hardware into the optical head of the clinical OCT system, and operates from a single software platform. The system was able to achieve transverse scan registration with sub-pixel accuracy (~10 μm). We demonstrate several advanced scan sequences with the TOCT, including composite scans averaged (co-added) from multiple B-scans taken consecutively and several hours apart, en face images collected by summing the A-scans of circular, line, and raster scans, and three-dimensional (3D) retinal maps of the fovea and optic disc. The new system achieves highly accurate OCT scan registration yielding composite images with significantly improved spatial resolution, increased signal-to-noise ratio, and reduced speckle while maintaining well-defined boundaries and sharp fine structure compared to single scans. Precise re-registration of multiple scans over separate imaging sessions demonstrates TOCT utility for longitudinal studies. En face images and 3D data cubes generated from these data reveal high fidelity image registration with tracking, despite scan durations of more than one minute. PMID:19498823

  9. Three-Dimensional Nanoprinting via Scanning Probe Lithography-Delivered Layer-by-Layer Deposition.

    PubMed

    Zhao, Jianli; Swartz, Logan A; Lin, Wei-Feng; Schlenoff, Philip S; Frommer, Jane; Schlenoff, Joseph B; Liu, Gang-Yu

    2016-06-28

    Three-dimensional (3D) printing has been a very active area of research and development due to its capability to produce 3D objects by design. Miniaturization and improvement of spatial resolution are major challenges in current 3D printing technology development. This work reports advances in miniaturizing 3D printing to the nanometer scale using scanning probe microscopy in conjunction with local material delivery. Using polyelectrolyte polymers and complexes, we have demonstrated the concept of layer-by-layer nanoprinting by design. Nanometer precision is achieved in all three dimensions, as well as in interlayer registry. The approach enables production of designed functional 3D materials with nanometer resolution and, as such, creates a platform for conducting scientific research in designed 3D nanoenvironments as well. In doing so, it enables production of nanomaterials and scaffolds for photonics devices, biomedicine, and tissue engineering. PMID:27203853

  10. Spatial-scanning hyperspectral imaging probe for bio-imaging applications

    NASA Astrophysics Data System (ADS)

    Lim, Hoong-Ta; Murukeshan, Vadakke Matham

    2016-03-01

    The three common methods to perform hyperspectral imaging are the spatial-scanning, spectral-scanning, and snapshot methods. However, only the spectral-scanning and snapshot methods have been configured to a hyperspectral imaging probe as of today. This paper presents a spatial-scanning (pushbroom) hyperspectral imaging probe, which is realized by integrating a pushbroom hyperspectral imager with an imaging probe. The proposed hyperspectral imaging probe can also function as an endoscopic probe by integrating a custom fabricated image fiber bundle unit. The imaging probe is configured by incorporating a gradient-index lens at the end face of an image fiber bundle that consists of about 50 000 individual fiberlets. The necessary simulations, methodology, and detailed instrumentation aspects that are carried out are explained followed by assessing the developed probe's performance. Resolution test targets such as United States Air Force chart as well as bio-samples such as chicken breast tissue with blood clot are used as test samples for resolution analysis and for performance validation. This system is built on a pushbroom hyperspectral imaging system with a video camera and has the advantage of acquiring information from a large number of spectral bands with selectable region of interest. The advantages of this spatial-scanning hyperspectral imaging probe can be extended to test samples or tissues residing in regions that are difficult to access with potential diagnostic bio-imaging applications.

  11. Multifunctional cantilever-free scanning probe arrays coated with multilayer graphene.

    PubMed

    Shim, Wooyoung; Brown, Keith A; Zhou, Xiaozhu; Rasin, Boris; Liao, Xing; Mirkin, Chad A

    2012-11-01

    Scanning probe instruments have expanded beyond their traditional role as imaging or "reading" tools and are now routinely used for "writing." Although a variety of scanning probe lithography techniques are available, each one imposes different requirements on the types of probes that must be used. Additionally, throughput is a major concern for serial writing techniques, so for a scanning probe lithography technique to become widely applied, there needs to be a reasonable path toward a scalable architecture. Here, we use a multilayer graphene coating method to create multifunctional massively parallel probe arrays that have wear-resistant tips of uncompromised sharpness and high electrical and thermal conductivities. The optical transparency and mechanical flexibility of graphene allow this procedure to be used for coating exceptionally large, cantilever-free arrays that can pattern with electrochemical desorption and thermal, in addition to conventional, dip-pen nanolithography. PMID:23086161

  12. Multifunctional cantilever-free scanning probe arrays coated with multilayer graphene

    PubMed Central

    Shim, Wooyoung; Brown, Keith A.; Zhou, Xiaozhu; Rasin, Boris; Liao, Xing; Mirkin, Chad A.

    2012-01-01

    Scanning probe instruments have expanded beyond their traditional role as imaging or “reading” tools and are now routinely used for “writing.” Although a variety of scanning probe lithography techniques are available, each one imposes different requirements on the types of probes that must be used. Additionally, throughput is a major concern for serial writing techniques, so for a scanning probe lithography technique to become widely applied, there needs to be a reasonable path toward a scalable architecture. Here, we use a multilayer graphene coating method to create multifunctional massively parallel probe arrays that have wear-resistant tips of uncompromised sharpness and high electrical and thermal conductivities. The optical transparency and mechanical flexibility of graphene allow this procedure to be used for coating exceptionally large, cantilever-free arrays that can pattern with electrochemical desorption and thermal, in addition to conventional, dip-pen nanolithography. PMID:23086161

  13. Carbon Nanotube Tip Probes: Stability and Lateral Resolution in Scanning Probe Microscopy and Application to Surface Science to Semiconductors

    NASA Technical Reports Server (NTRS)

    Nguyen, Cattien V.; Chao, Kuo-Jen; Stevens, Ramsey M. D.; Delzeit, Lance; Cassell, Alan; Han, Jie; Meyyappan, M.; Arnold, James (Technical Monitor)

    2001-01-01

    In this paper we present results on the stability and lateral resolution capability of carbon nanotube (CNT) scanning probes as applied to atomic force microscopy (AFM). Surface topography images of ultra-thin films (2-5 nm thickness) obtained with AFM are used to illustrate the lateral resolution capability of single-walled carbon nanotube probes. Images of metal films prepared by ion beam sputtering exhibit grain sizes ranging from greater than 10 nm to as small as approximately 2 nm for gold and iridium respectively. In addition, imaging stability and lifetime of multi-walled carbon nanotube scanning probes are studied on a relatively hard surface of silicon nitride (Si3N4). AFM images Of Si3N4 surface collected after more than 15 hrs of continuous scanning show no detectable degradation in lateral resolution. These results indicate the general feasibility of CNT tips and scanning probe microscopy for examining nanometer-scale surface features of deposited metals as well as non-conductive thin films. AFM coupled with CNT tips offers a simple and nondestructive technique for probing a variety of surfaces, and has immense potential as a surface characterization tool in integrated circuit manufacturing.

  14. Metamaterial-inspired miniaturized microwave edge coupled surface scanning probe

    NASA Astrophysics Data System (ADS)

    Wiwatcharagoses, Nophadon; Park, Kyoung Y.; Chahal, Premjeet; Udpa, Lalita

    2013-01-01

    This paper introduces a new concept on sub-wavelength resolution imaging and surface scanning using metamaterial based near field sensor array. Multiple split ring resonator structures (SRRs), having different band stop frequencies, are implemented in a microstrip transmission line configuration. A mirror image copy of these resonators is also incorporated on the transmission line to achieve built in frequency references. A smart card is scanned to detect buried antenna and Si chip within the plastic card.

  15. Two Simple Classroom Demonstrations for Scanning Probe Microscopy Based on a Macroscopic Analogy

    ERIC Educational Resources Information Center

    Hajkova, Zdenka; Fejfar, Antonin; Smejkal, Petr

    2013-01-01

    This article describes two simple classroom demonstrations that illustrate the principles of scanning probe microscopy (SPM) based on a macroscopic analogy. The analogy features the bumps in an egg carton to represent the atoms on a chemical surface and a probe that can be represented by a dwarf statue (illustrating an origin of the prefix…

  16. Fast scanning probe for the NSTX spherical tokamak.

    PubMed

    Boedo, J A; Crocker, N; Chousal, L; Hernandez, R; Chalfant, J; Kugel, H; Roney, P; Wertenbaker, J

    2009-12-01

    We describe a fast reciprocating Langmuir probe and drive system, which has four main new features: (1) use of high-temperature, vacuum, circuit boards instead of cables to reduce weight and increase to 21 the number of possible connections, (2) rotatable and removable shaft, (3) 10 tip construction with designed hardware bandwidth up to 10 MHz, and (4) a detachable and modular tip assembly for easy maintenance. The probe is mounted in a fast pneumatic drive capable of speeds approximately 7 m/s and approximately 20g's acceleration in order to reach the scrape-off layer (SOL) and pedestal regions and remain inserted long enough to obtain good statistics while minimizing the heat deposition to the tips and head in a power density environment of 1-10 MW/m2. The National Spherical Torus Experiment SOL features electron temperature, T(e) approximately 10-30 eV, and electron density, n(e) approximately 0.1-5x10(12) cm(-3) while the pedestal features n(e) approximately 0.5-1.5x10(13) cm(-3) and T(e) approximately 30-150 eV. The probe described here has ten tips which obtain a wide spectrum of plasma parameters: electron temperature profile T(e)(r), electron density profile n(e)(r) and Mach number profile M(r), floating potential V(f)(r), poloidal and radial electric field profiles E(theta)(r) and E(rho)(r), saturation current profile I(sat)(r), and their fluctuations up to 3 MHz. We describe the probe and show representative radial profiles of various parameters. PMID:20073119

  17. Fast scanning probe for the NSTX spherical tokamak

    NASA Astrophysics Data System (ADS)

    Boedo, J. A.; Crocker, N.; Chousal, L.; Hernandez, R.; Chalfant, J.; Kugel, H.; Roney, P.; Wertenbaker, J.; NSTX Team

    2009-12-01

    We describe a fast reciprocating Langmuir probe and drive system, which has four main new features: (1) use of high-temperature, vacuum, circuit boards instead of cables to reduce weight and increase to 21 the number of possible connections, (2) rotatable and removable shaft, (3) 10 tip construction with designed hardware bandwidth up to 10 MHz, and (4) a detachable and modular tip assembly for easy maintenance. The probe is mounted in a fast pneumatic drive capable of speeds ˜7 m/s and ˜20g's acceleration in order to reach the scrape-off layer (SOL) and pedestal regions and remain inserted long enough to obtain good statistics while minimizing the heat deposition to the tips and head in a power density environment of 1-10 MW/m2. The National Spherical Torus Experiment SOL features electron temperature, Te˜10-30 eV, and electron density, ne˜0.1-5×1012 cm-3 while the pedestal features ne˜0.5-1.5×1013 cm-3 and Te˜30-150 eV. The probe described here has ten tips which obtain a wide spectrum of plasma parameters: electron temperature profile Te(r), electron density profile ne(r) and Mach number profile M(r ), floating potential Vf(r), poloidal and radial electric field profiles Eθ(r) and Eρ(r), saturation current profile Isat(r), and their fluctuations up to 3 MHz. We describe the probe and show representative radial profiles of various parameters.

  18. Characterization of charge motion in Poly(3-alkylthiophene) field effect transistors with Scanning Probe Microscopy

    NASA Astrophysics Data System (ADS)

    Moscatello, Jason P.; Patterson, Morgen; Davis, Andrew R.; Carter, Kenneth R.; Aidala, Katherine E.

    2014-03-01

    Poly(3-hexylthiophene) (P3HT) is a promising conductive organic polymer for applications such as organic FETs and photovoltaics. Key to proper utilization of P3HT is the understanding of how charges move and are trapped in the polymer, which directly affects the mobility of the charges as well as device efficiency. Scanning probe techniques, such as Kelvin Probe Force Microscopy, offer the advantage of being able to observe charges and local potentials down to the nano-scale. We present our work using scanning probe techniques to study charge injection and flow through P3HT FETs.

  19. Surface characterization of InP trenches embedded in oxide using scanning probe microscopy

    SciTech Connect

    Mannarino, Manuel E-mail: manuelmannarino@gmail.com; Chintala, Ravi; Vandervorst, Wilfried; Moussa, Alain; Merckling, Clement; Eyben, Pierre; Paredis, Kristof

    2015-12-14

    Metrology for structural and electrical analyses at device level has been identified as one of the major challenges to be resolved for the sub-14 nm technology nodes. In these advanced nodes, new high mobility semiconductors, such as III–V compounds, are grown in narrow trenches on a Si substrate. Probing the nature of the defects, the defect density, and the role of processing steps on the surface of such structures are prime metrology requirements. In order to enable defect analysis on a (III–V) surface, a proper sample preparation for oxide removal is of primary importance. In this work, the effectiveness of different chemical cleanings and thermal annealing procedures is investigated on both blanket InP and oxide embedded InP trenches by means of scanning probe microscopy techniques. It is found that the most effective approach is a combination of an HCl-based chemical cleaning combined with a low-temperature thermal annealing leading to an oxide free surface with atomically flat areas. Scanning tunneling microscopy (STM) has been the preferred method for such investigations on blanket films due to its intrinsic sub-nm spatial resolution. However, its application on oxide embedded structures is non-trivial. To perform STM on the trenches of interest (generally <20 nm wide), we propose a combination of non-contact atomic force microscopy and STM using the same conductive atomic force microscopy tip Our results prove that with these procedures, it is possible to perform STM in narrow InP trenches showing stacking faults and surface reconstruction. Significant differences in terms of roughness and terrace formation are also observed between the blanket and the oxide embedded InP.

  20. Surface characterization of InP trenches embedded in oxide using scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Mannarino, Manuel; Chintala, Ravi; Moussa, Alain; Merckling, Clement; Eyben, Pierre; Paredis, Kristof; Vandervorst, Wilfried

    2015-12-01

    Metrology for structural and electrical analyses at device level has been identified as one of the major challenges to be resolved for the sub-14 nm technology nodes. In these advanced nodes, new high mobility semiconductors, such as III-V compounds, are grown in narrow trenches on a Si substrate. Probing the nature of the defects, the defect density, and the role of processing steps on the surface of such structures are prime metrology requirements. In order to enable defect analysis on a (III-V) surface, a proper sample preparation for oxide removal is of primary importance. In this work, the effectiveness of different chemical cleanings and thermal annealing procedures is investigated on both blanket InP and oxide embedded InP trenches by means of scanning probe microscopy techniques. It is found that the most effective approach is a combination of an HCl-based chemical cleaning combined with a low-temperature thermal annealing leading to an oxide free surface with atomically flat areas. Scanning tunneling microscopy (STM) has been the preferred method for such investigations on blanket films due to its intrinsic sub-nm spatial resolution. However, its application on oxide embedded structures is non-trivial. To perform STM on the trenches of interest (generally <20 nm wide), we propose a combination of non-contact atomic force microscopy and STM using the same conductive atomic force microscopy tip Our results prove that with these procedures, it is possible to perform STM in narrow InP trenches showing stacking faults and surface reconstruction. Significant differences in terms of roughness and terrace formation are also observed between the blanket and the oxide embedded InP.

  1. Handheld scanning probes for optical coherence tomography: developments, applications, and perspectives

    NASA Astrophysics Data System (ADS)

    Duma, V.-F.; Demian, D.; Sinescu, C.; Cernat, R.; Dobre, G.; Negrutiu, M. L.; Topala, F. I.; Hutiu, Gh.; Bradu, A.; Podoleanu, A. G.

    2016-03-01

    We present the handheld scanning probes that we have recently developed in our current project for biomedical imaging in general and for Optical Coherence Tomography (OCT) in particular. OCT is an established, but dynamic imagistic technique based on laser interferometry, which offers micrometer resolutions and millimeters penetration depths. With regard to existing devices, the newly developed handheld probes are simple, light and relatively low cost. Their design is described in detail to allow for the reproduction in any lab, including for educational purposes. Two probes are constructed almost entirely from off-the-shelf components, while a third, final variant is constructed with dedicated components, in an ergonomic design. The handheld probes have uni-dimensional (1D) galvanometer scanners therefore they achieve transversal sections through the biological sample investigated - in contrast to handheld probes equipped with bi-dimensional (2D) scanners that can also achieve volumetric (3D) reconstructions of the samples. These latter handheld probes are therefore also discussed, as well as the possibility to equip them with galvanometer 2D scanners or with Risley prisms. For galvanometer scanners the optimal scanning functions studied in a series of previous works are pointed out; these functions offer a higher temporal efficiency/duty cycle of the scanning process, as well as artifact-free OCT images. The testing of the handheld scanning probes in dental applications is presented, for metal ceramic prosthesis and for teeth.

  2. Nano-material processing with laser radiation in the near field of a scanning probe tip

    NASA Astrophysics Data System (ADS)

    Jersch, J.; Demming, F.; Hildenhagen, J.; Dickmann, K.

    1998-04-01

    We report preliminary results of using a scanning probe microscope/laser combination to perform nanostructuring on insulator and metal surfaces in air. This technique enables processing of structures with a lateral resolution of approximately 10 nm. In this paper we present our last structuring results with both scanning tunnelling and scanning force microscopy. Some possible interaction mechanisms responsible for the structuring will be discussed.

  3. Wall scanning probe for high-field side plasma measurements on Alcator C-Mod.

    PubMed

    Smick, Noah; LaBombard, Brian

    2009-02-01

    A new, high-field side scanning probe has been added to Alcator C-Mod's complement of edge diagnostics. The wall scanning probe is designed to provide all the benefits of a linear plunge, multielectrode scanning probe while working from the confined space of the inner tokamak wall. The drive mechanism is an embedded coil which produces a torque with the ambient toroidal magnetic field when energized, thus allowing the probe to plunge to different preprogramed depths at different times during a plasma discharge. The probe tip is designed for easy replacement and is presently configured to operate as a modified, high heat-flux "Gundestrup-type" probe with four tungsten electrodes. The probe has demonstrated the ability to obtain cross-field profiles for electron temperature, density, floating potential, and plasma flow information (parallel and perpendicular to B) up to a depth of a few millimiters inside the last-closed flux surface in standard C-Mod discharges. The tungsten-tipped probe has proved very robust and shows little or no damage though it routinely handles surface heat fluxes on the order of 100 MW/m(2) at peak insertion. PMID:19256643

  4. Double-resonance probe for near-field scanning optical microscopy

    NASA Astrophysics Data System (ADS)

    Cherkun, A. P.; Serebryakov, D. V.; Sekatskii, S. K.; Morozov, I. V.; Letokhov, V. S.

    2006-03-01

    A surface-contact transducer is developed for scanning probe microscopes, whose operating principle is based on the coincidence between the resonance frequency of a 32kHz quartz tuning fork and that of the probe attached to it. This allows the transducer to have a high quality factor and, if the vibration amplitude of the probe tip exceeds that of the tuning fork prongs, materially improves its force sensitivity. The resonance transducer proposed by us has an experimentally verified force sensitivity of 8pN (rms) in the 300Hz frequency band, which is of the same order of magnitude as the sensitivity of atomic force microscope (AFM) cantilever sensors. The manufacture of such transducers equipped with optical-fiber probes for near-field scanning optical microscopy and with tungsten probes for AFM is described as an example.

  5. Resonance oscillation damping of a scanning microscope probe by a near-surface viscous liquid layer

    NASA Astrophysics Data System (ADS)

    Maslenikov, I. I.; Reshetov, N. V.

    2016-05-01

    Viscous liquid layer motion between a probe with a tip shaped as a paraboloid of revolution and a surface is considered for semicontact-mode operation of a scanning probe microscope. The presence of a viscous liquid layer leads to energy dissipation and is one of the factors responsible for the decrease in the probe oscillation amplitude. The Reynolds equation for viscous liquid motion is used to obtain an analytic solution to the problem. The formula derived for the loss is compared with experimental data obtained for probes and layers with various curvature radii and viscosities.

  6. Improved accuracy and speed in scanning probe microscopy by image reconstruction from non-gridded position sensor data.

    PubMed

    Ziegler, Dominik; Meyer, Travis R; Farnham, Rodrigo; Brune, Christoph; Bertozzi, Andrea L; Ashby, Paul D

    2013-08-23

    Scanning probe microscopy (SPM) has facilitated many scientific discoveries utilizing its strengths of spatial resolution, non-destructive characterization and realistic in situ environments. However, accurate spatial data are required for quantitative applications but this is challenging for SPM especially when imaging at higher frame rates. We present a new operation mode for scanning probe microscopy that uses advanced image processing techniques to render accurate images based on position sensor data. This technique, which we call sensor inpainting, frees the scanner to no longer be at a specific location at a given time. This drastically reduces the engineering effort of position control and enables the use of scan waveforms that are better suited for the high inertia nanopositioners of SPM. While in raster scanning, typically only trace or retrace images are used for display, in Archimedean spiral scans 100% of the data can be displayed and at least a two-fold increase in temporal or spatial resolution is achieved. In the new mode, the grid size of the final generated image is an independent variable. Inpainting to a few times more pixels than the samples creates images that more accurately represent the ground truth. PMID:23892397

  7. Improved accuracy and speed in scanning probe microscopy by image reconstruction from non-gridded position sensor data

    NASA Astrophysics Data System (ADS)

    Ziegler, Dominik; Meyer, Travis R.; Farnham, Rodrigo; Brune, Christoph; Bertozzi, Andrea L.; Ashby, Paul D.

    2013-08-01

    Scanning probe microscopy (SPM) has facilitated many scientific discoveries utilizing its strengths of spatial resolution, non-destructive characterization and realistic in situ environments. However, accurate spatial data are required for quantitative applications but this is challenging for SPM especially when imaging at higher frame rates. We present a new operation mode for scanning probe microscopy that uses advanced image processing techniques to render accurate images based on position sensor data. This technique, which we call sensor inpainting, frees the scanner to no longer be at a specific location at a given time. This drastically reduces the engineering effort of position control and enables the use of scan waveforms that are better suited for the high inertia nanopositioners of SPM. While in raster scanning, typically only trace or retrace images are used for display, in Archimedean spiral scans 100% of the data can be displayed and at least a two-fold increase in temporal or spatial resolution is achieved. In the new mode, the grid size of the final generated image is an independent variable. Inpainting to a few times more pixels than the samples creates images that more accurately represent the ground truth.

  8. Advanced micro scanning in laryngology: implications of new advanced scanning in relation to HSDI acquired signals

    NASA Astrophysics Data System (ADS)

    Friis, Morten; Pedersen, Mette; Qvortrup, Klaus

    2012-02-01

    The objective was to provide a comprehensive overview of the advanced microscopes (light and electron) and to implicate how laryngeal science can benefit. The Core Facility for Integrated Microscopy (CFIM) has a wide range of state-of the art light and electron microscopes for users of all levels of experience and from any discipline. To explore the increasing findings with the high-speed film, researchers need to know more about the underlying pathology (tissue changes at cellular level). The scientists need to have access to state-of-the-art light and electron microscopes ready for use in their research, as well as the necessary technical assistance and support.

  9. A Scanning Probe Microscope for Surface Measurement in Nano-Scale.

    PubMed

    Yu, Huijuan; Huang, Qiangxian; Zhang, Rui; Li, Zhibo; Cheng, Zhenying

    2016-06-01

    A tapping mode scanning probe microscopy (TM SPM) system for surface measurement in nanoscale is developed, of which the main element is a scanning probe consisting of quartz tuning fork and a long sharp tungsten tip. Quartz tuning fork is a very good resonant element with piezoelectrical characteristic, and it acts as an actuator and a force sensor simultaneously in the probe. The vertical spatial resolution of the TM SPM is up to sub-nanometer (0.11 nm) and the measuring force is in micro Newton magnitude (about 30 μN). In the scanning operation, the probe vibrates at its resonant frequency, so that the amplitude or frequency (or phase) of the resonant tuning fork is very sensitive to external forces (Its quality factor in air is about 3138). Using the TM SPM constructed by this probe, silicon samples are scanned. Their topography and phase images which indicate the surface material characteristics are reconstructed effectively with a high resolution and low destructiveness. Soft materials, such as Protein structure can also be scanned theoretically without damage. In addition, because of the using of the long sharp tungsten tip, the system has the capacity of measuring micro structures with large aspect ratio, such as large micro steps, deep micro trenches, etc. PMID:27427664

  10. Development of a micro-CMM with five-axis scanning touch probe

    NASA Astrophysics Data System (ADS)

    Chu, Chih-Liang; Chen, Hung-Chi

    2016-01-01

    The purpose of this study is to develop with low cost, high precision, low contact force micro-CMM that has fiveaxis scanning touch probe. In this study, the measurement performance of the proposed system is enhanced through the use of a rigid aluminum double-arch-bridge structure to support the five-axis scanning touch probe. Furthermore, the reliability of the scanning probe mechanism of three degrees of freedom was analyzed and validated. in addition two axis (A-axis and C-axis) was added on the scanning probe. This design can be achieved independent of measurement, and minimize the dynamic error. In terms of software, a PC-Based controller was integrates five-axis motion systems with the measurement system through a five-axis control card and a data acquisition card. It also completed the functional modules of Set, Manual and Measurement. In the measurement system, we used our own developed coordinate measurement software, with the XYZ platforms system, rotating mechanism and scanning probe to achieve complex surface measurements. The micro-CMM has a working volume the micro-CMM has a working volume of 80×80×40 mm3 , and the overall dimensions is 486 × 486 × 448 mm.

  11. Development of a scanning touch probe with 5-axis measuring functions

    NASA Astrophysics Data System (ADS)

    Chu, Chih-Liang; Lai, Kuan-Wen; Chen, Hung-Chi

    2015-02-01

    The purpose of this study is to develop a five-axis scanning touch probe with high precision and low contact force. The development of scanning touch probe is consisted of three parts: mechanism design, optical path design, and rotation structure design. The mechanism design contains three parts, Z-axis system, XY-axis system, and probe mechanism. The Z-axis system applies the characteristic of the thin sheet spring to move vertically. In the design of XY-axis system, a micro-beam is employed, through which length, width, and thickness of the micro-beam and corresponding dimensions of the leaf spring are designed according to the selected contact force. The freedom degree is limited to three. And the center of the mechanism is equipped with a stylus to inhibit displacement of the Z-axis. The contact between the probe and the work piece only leads to change in the angles of X- and Y-axes, achieving the feature of 2-degree freedom. To enable rapid change for the probes, this study designs a probe mechanism, reliability of which is analyzed and validated with ANSYS software, so that the design of 3-degree freedom mechanism is completed. The sensor has a laser diode to coordinate with Position Sensor Detector (PSD) which works with the optical path designed to measure placement of Z-axis and angle placement of XY-axis. The rotation structure refers to the principle of 5-axis machining design, and the two rotary axes (A- and C-axis) to join the self-developed scanning probe. This design can achieve independent measurements and eliminate the dynamic measurement error that three-axis scanning systems typically have. By validation through an experiment, the three-dimensional scanning touch probe developed by this study has a measuring range of +/-1mm×+/-1mm×1mm, and unidirectional repeatability of 0.6μm.

  12. Localized Electroless Ag Plating at a Tip Apex for Scanning Kelvin Probe Microscopy

    NASA Astrophysics Data System (ADS)

    Lin, Chun-Ting; Yu, Ming-Han; Su, James; Chen, Po-Li; Shiao, Ming-Hua; Nemcsics, Akos; Chang, Mao-Nan

    2013-06-01

    A typical probe for scanning Kelvin probe microscopy (SKPM) consists of an atomic force microscopy (AFM) probe with a metallic coating. Such probes result in a large sensing area and lead to poor spatial resolution due to the stray-field effect. With electroless Ag plating (EAP), we employed an AFM system to form a Ag nanodot (AND) at the apex of the probe tip, which reduces the sensing area of the SKPM probe, thereby suppressing the stray-field effect. It was revealed that the tip with an AND structure had improved the spatial resolution in SKPM. Our experimental results showed that the EAP process can be completed in a few seconds, implying that localized EAP is a simple and rapid process for preparing an AND structure at the tip apex in SKPM measurements.

  13. A fast spatial scanning combination emissive and mach probe for edge plasma diagnosis

    SciTech Connect

    Lehmer, R.D.; LaBombard, B.; Conn, R.W.

    1989-04-01

    A fast spatially scanning emissive and mach probe has been developed for the measurement of plasma profiles in the PISCES facility at UCLA. A pneumatic cylinder is used to drive a multiple tip probe along a 15cm stroke in less than 400msec, giving single shot profiles while limiting power deposition to the probe. A differentially pumped sliding O-ring seal allows the probe to be moved between shots to infer two and three dimensional profiles. The probe system has been used to investigate the plasma potential, density, and parallel mach number profiles of the presheath induced by a wall surface and scrape-off-layer profile modifications in biased limiter simulation experiments. Details of the hardware, data acquisition electronics, and tests of probe reliability are discussed. 30 refs., 24 figs.

  14. An evaluation of a combined scanning probe and optical microscope for lunar regolith studies

    NASA Astrophysics Data System (ADS)

    Yang, S.; Pike, W. T.; Staufer, U.; Claus, D.; Rodenburg, J. M.

    2011-12-01

    The microscopic properties of the lunar regolith such as the shape, the surface texture and the size distribution are required for an understanding of both past surface processes and potential hazards for future human exploration [1]. To reveal the particle morphology at the sub micrometer scale, scanning-probe microscopy (SPM), first used on the 2008 Phoenix mission [1], is a proven approach; however, there are two main challenges for the measurement of lunar particles. Firstly, the SPM tip is liable to move particles during scanning, even when using the lower contact forces of the dynamic-mode imaging. Hence the particles need to be stabilised during imaging. Secondly, typically the AFM tip extends about 10 μm from its cantilever, so larger particles protruding more than this height above their substrates cannot be scanned completely. To immobilize particles and eliminate large particles during SPM scanning, micromachined Si substrates, which have been successfully applied in the Phoenix project for Mars investigation in 2008 [2], have been investigated for lunar analogue material. On these substrates micrometer pits are patterned and serve as traps to enhance the stability of the AFM scanning by grasping the particles. In addition, the diameter of pits can determine the size of dusts to be captured and reduce the adhesion for the larger dust and so eliminate the oversized particles. To extend the imaging range and assist in selecting scan areas for the SPM, we use a type of lensless optical imaging (LOM) which uses ptychographic diffractive imaging [3] to eliminate the restrictions and performance limitations of conventional focusing devices. As a reference, scanning electron microscopy (SEM) which minimizes particle-probe interactions and has the advantage of an extended depth of field, is employed to image the same particle fields at resolutions covering both the SPM and LOM. By comparing the differences and the similarities between SEM and LOM images, the

  15. Scanning probe measurements on a magnetic bead biosensor

    NASA Astrophysics Data System (ADS)

    Megens, Mischa; de Theije, Femke; de Boer, Bart; van Gaal, Frans

    2007-07-01

    We experimentally demonstrate the sensitivity of an integrated detection scheme for small superparamagnetic beads, intended for medical diagnostic applications. Detection is based on the giant magnetoresistance effect of a 100×3μm2 magnetic multilayer strip. A conductive wire to magnetize the superparamagnetic beads is integrated on the same substrate. By scanning a single bead over the wires and sensor strip using an atomic force microscope, we simultaneously measure topography and sensor resistivity in a three-dimensional volume above the sensor. The observations can be explained well by means of the macroscopically measured sensor resistivity curve and the magnetization of the beads, combined with the Biot-Savart law for the magnetic field of the wire. From these encouraging results, we project that it is possible to detect even a single 300nm superparamagnetic bead on our sensor.

  16. Application of Scanning Probe Microscopy to Genetic Analysis

    NASA Astrophysics Data System (ADS)

    Sugiyama, Shigeru; Yoshino, Tomoyuki; Tsukamoto, Kazumi; Sasou, Megumi; Kuwazaki, Seigo; Takahashi, Hirokazu; Suetsugu, Yoshitaka; Narukawa, Junko; Yamamoto, Kimiko; Ohtani, Toshio

    2006-03-01

    We are developing an integrated technique involving of nanometer-size dissection of chromosome fragments by atomic force microscopy (AFM) and direct detection of the location of genome library clones by scanning near-field optical/atomic force microscopy (SNOM/AFM). The locations of nucleus organizer regions (NORs) on barley chromosomes and a bacterial artificial chromosome (BAC) clone were successfully detected by SNOM/AFM. Nanometer-scale dissection of silkworm pachytene chromosomes was also performed by AFM, and we succeeded in three successive dissection events of the chromosome region approximately 250 nm apart from each other. If this type of integrated method can be established in the near future, we will easily obtain the nucleotide sequences with positional information on chromosomes, which lead to a time- and cost-saving genome analysis technique.

  17. Scanning mass spectrometry probe: a scanning probe electrospray ion source for imaging mass spectrometry of submerged interfaces and transient events in solution.

    PubMed

    Kottke, Peter A; Degertekin, F Levent; Fedorov, Andrei G

    2010-01-01

    The scanning mass spectrometry (SMS) probe is a new electrospray ion source. Motivated by the need for untargeted chemical imaging of dynamic events in solution, we have exploited an approach to electrospray ionization (ESI) that allows continuous sampling from a highly localized volume (approximately picoliters) in a liquid environment, softly ionizes molecules in the sample to render them amenable for mass spectrometric analysis, and sends the ions to the mass spectrometer. The key underlying concepts for our approach are (1) treating the electrospray capillary inlet as a chemical scanning probe and (2) locating the electrospray point as close as possible to the sampling point, thus providing the shortest response time possible. This approach enables chemical monitoring or imaging of submerged interfaces, providing access to details of spatial heterogeneity and temporal changes within liquid samples. It also permits direct access to liquid/ liquid interfaces for ESI-MS analysis. In this letter we report the first demonstrations of these capabilities of the SMS probe and describe some of the probe's basic characteristics. PMID:19904914

  18. Nanoscale investigation of viscoelasticity in thin polymer films using environmental scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Schmidt, Ronald Henry

    The tribological and rheological behavior of thin polymer films at the nanometer length scale has become a topic of extreme technological and scientific interest. The friction and wear characteristics of ultrathin organic coatings are critical in magnetic storage media devices, as well as emerging technologies such as microelectromechanical devices. In the microelectronics industry, the ability to produce ultrathin coatings of photoresists and electron resists that are free of scratches and thickness fluctuations is a crucial step in any lithography process. Fortunately the need to understand the behavior of ultrathin organic films has coincided with the development of the scanning probe microscope (SPM) which is able to impose shear and tensile forces, and image the resulting deformations, on the nanometer scale. In contrast to traditional scientific disciplines like condensed matter physics and physical chemistry, the "nanoscience" community has only recently begun to examine the role of temperature in material response. This is largely because piezoelectric transducers are incompatible with substantial temperature elevation. A recent advance in SPM design has isolated the transducer and accompanying electronics from the sample, enabling investigators to heat samples to temperatures as high as 170°C without affecting the performance of the instrument. Using an environmental SPM, we examined the temperature and rate dependence of tip-imposed plastic and viscoelastic deformations in thin polymer films. Viscous flow in defects in nonwetting films was investigated as well. Chapter 1 provides a brief review of viscoelastic and plastic deformations in bulk polymers, the glass transition temperature, and the effect of confining polymer molecules to an interface on the observed glass transition temperature. Chapter 2 discusses scanning probe microscopy instrumentation, techniques, and applications to polymer thin film tribology. In Chapters 3 and 4, results are

  19. Multi-scale Imaging of Cellular and Sub-cellular Structures using Scanning Probe Recognition Microscopy.

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Rice, A. F.

    2005-03-01

    Scanning Probe Recognition Microscopy is a new scanning probe capability under development within our group to reliably return to and directly interact with a specific nanobiological feature of interest. In previous work, we have successfully recognized and classified tubular versus globular biological objects from experimental atomic force microscope images using a method based on normalized central moments [ref. 1]. In this paper we extend this work to include recognition schemes appropriate for cellular and sub-cellular structures. Globular cells containing tubular actin filaments are under investigation. Thus there are differences in external/internal shapes and scales. Continuous Wavelet Transform with a differential Gaussian mother wavelet is employed for multi- scale analysis. [ref. 1] Q. Chen, V. Ayres and L. Udpa, ``Biological Investigation Using Scanning Probe Recognition Microscopy,'' Proceedings 3rd IEEE Conference on Nanotechnology, vol. 2, p 863-865 (2003).

  20. Probing electron transport and structural properties of nanostructures on Si with a quadraprobe scanning tunneling microscope

    SciTech Connect

    Kim, Tae Hwan; Wendelken, J F; Li, An-Ping

    2008-01-01

    The electron transport and structural properties of nanostructured materials have been examined with a newly developed low temperature quadraprobe scanning tunneling microscope (STM) system. The quadraprobe STM system, as a "nano" version of a four-probe station provides an integrated research platform with a low temperature four-probe STM, a molecular-beam epitaxy growth chamber, a high resolution scanning electron microscope, and a scanning Auger microscope. The four STM probes can be driven independently with sub-nanometer precision, enabling conventional STM imaging and four-point electrical transport study of surface electronic systems and nanostructured materials at temperatures down to 10 K. Self-assembled nanostructures grown on Si by doping with metal atoms (Au, Gd, Ag) have been fabricated and characterized in situ.

  1. Resolving 2D Amorphous Materials with Scanning Probe Microscopy

    NASA Astrophysics Data System (ADS)

    Burson, Kristen M.; Buechner, Christin; Lewandowski, Adrian; Heyde, Markus; Freund, Hans-Joachim

    Novel two-dimensional (2D) materials have garnered significant scientific interest due to their potential technological applications. Alongside the emphasis on crystalline materials, such as graphene and hexagonal BN, a new class of 2D amorphous materials must be pursued. For amorphous materials, a detailed understanding of the complex structure is necessary. Here we present a structural study of 2D bilayer silica on Ru(0001), an insulating material which is weakly coupled to the substrate. Atomic structure has been determined with a dual mode atomic force microscopy (AFM) and scanning tunneling microscopy (STM) sensor in ultra-high vacuum (UHV) at low temperatures, revealing a network of different ring sizes. Liquid AFM measurements with sub-nanometer resolution bridge the gap between clean UHV conditions and the environments that many material applications demand. Samples are grown and characterized in vacuum and subsequently transferred to the liquid AFM. Notably, the key structural features observed, namely nanoscale ring networks and larger holes to the substrate, show strong quantitative agreement between the liquid and UHV microscopy measurements. This provides direct evidence for the structural stability of these silica films for nanoelectronics and other applications. KMB acknowledges support from the Alexander von Humboldt Foundation.

  2. Nanoscale thermal imaging using a scanning spin probe

    NASA Astrophysics Data System (ADS)

    Laraoui, Abdelghani; Aycock-Rizzo, Halley; Gao, Yang; Riedo, Elisa; Meriles, Carlos

    We use a 30-nm diamond-nanocrystal-hosted nitrogen-vacancy (NV) center attached to the apex of a silicon tip as a local temperature sensor. First, we apply an electrical current to heat up the tip to a predefined operating temperature and rely on the NV to monitor the small thermal changes the tip experiences as it is brought into contact with surfaces of varying thermal conductivity. With the aid of a combined AFM/confocal setup, we image engineered microstructures with nanoscale resolution, and attain excellent agreement between the thermal conductivity and topographic maps. Given the small mass of the NV-hosting diamond nanoparticle, our technique shows a fast time response of order hundred microseconds, limited by the heat dissipation time of the tip. In a second approach, we heat nanostructured gold deposited on glass substrate by injecting a direct current. By monitoring the frequency shift of NV spin transitions upon scanning the AFM tip we reconstruct nanometer-resolved temperature maps. Our technique promises multiple applications ranging from the investigation of phonon dynamics in nanostructures to the characterization of heterogeneous phase transitions in various solid-state systems.

  3. Use of scanning probe microscopy to study the evolution of nanometer sized liquid structures

    NASA Astrophysics Data System (ADS)

    Aloisi, Giovanni; Bacci, Federico; Carlà, Marcello; Dolci, David

    2011-10-01

    The evolution of the profile of nanometer sized water drops on a mica surface has been studied through hydration scanning probe microscopy. A time range from a few seconds down to a fraction of millisecond after the formation of the drop has been explored. This high time resolution has been obtained by sampling a series of statistically equivalent drops. This approach also avoids any probe interference during the drop evolution process.

  4. Efficient electrochemical etching method to fabricate sharp metallic tips for scanning probe microscopes

    SciTech Connect

    Kim, Pilkyu; Kim, Jun Ho; Jeong, Mun Seok; Ko, Do-Kyeong; Lee, Jongmin; Jeong, Sungho

    2006-10-15

    A new technique based on electrochemical etching for the fabrication of sharp metallic tips for scanning probe microscopes is introduced. In the proposed method, a small Teflon mass is attached to the end of an immersed tungsten wire using an aluminum tape, which leads to a significant enhancement of yield rate of sharp tungsten tips with an apex size below 100 nm to over 60%. The functionality of the tungsten tips fabricated by the proposed method is verified by measuring the topography of a standard sample using a shear-force scanning probe microscope.

  5. Investigation of the depletion layer by scanning capacitance force microscopy with Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Uruma, Takeshi; Satoh, Nobuo; Yamamoto, Hidekazu

    2016-08-01

    We have developed a scanning probe microscope (SPM) that combines atomic force microscopy (AFM) with both Kelvin probe force microscopy (KFM — to measure the surface potential) and scanning capacitance force microscopy (SCFM — to measure the differential capacitance). The surface physical characteristics of a commercial Si Schottky barrier diode (Si-SBD), with and without an applied reverse bias, were measured over the same area by our AFM/KFM/SCFM system. We thus investigated the discrete power device by calculating the depletion-layer width and drawing an energy-band diagram.

  6. Study of wear of diamond-coated probe tips when scanning on different materials

    NASA Astrophysics Data System (ADS)

    Küng, A.; Nicolet, A.; Meli, F.

    2015-08-01

    The accuracy of today’s coordinate measuring machines (CMM) has reached a level at which the exact knowledge of each component is required. The role of the probe tip is particularly crucial because it is in contact with the sample surface. Understanding how the probe tip wears off will help to narrow the measurement errors. Today, diamond-coated probes of excellent quality are becoming commercially available. In the present work, the wear of those probes was studied when scanning on different sample materials and under different measuring conditions. The wear rate was quantified in terms of the rate of the removed diamond volume per meter scan length. It cannot be simply derived from material properties or scanning conditions. A simple calculation also shows that only a very small fraction of the friction energy is devoted to the removal of atoms from the diamond crystal. The wear rate of diamond-coated probes was found to be orders of magnitude smaller compared with the wear of traditional sapphire probes.

  7. Determination of diffusion tensors from oscillating and circulating scanning probe tips

    NASA Astrophysics Data System (ADS)

    Hahne, Susanne; Rahe, Philipp; Maass, Philipp

    2015-06-01

    We develop two methods for determining anisotropic diffusion properties of molecules on surfaces. These methods are based on the analysis of signal fluctuations recorded with moving probe tips, of, for example, a scanning tunneling microscope. In the first method, the probe tip oscillates along a straight line, which allows to quantify the effective diffusion perpendicular to the line. By varying the line orientation, the diffusion tensor is obtained. In the second method, the probe tip rotates along a circle and the diffusion tensor is determined by analysis of cross-correlations between antipodal points. Both methods are successfully validated against surrogate data from kinetic Monte Carlo simulations.

  8. Apertureless scanning microscope probe as a detector of semiconductor laser emission

    SciTech Connect

    Dunaevskiy, Mikhail; Dontsov, Anton; Monakhov, Andrei; Alekseev, Prokhor; Titkov, Alexander; Baranov, Alexei; Girard, Paul; Arinero, Richard; Teissier, Roland

    2015-04-27

    An operating semiconductor laser has been studied using a scanning probe microscope. A shift of the resonance frequency of probe that is due to its heating by laser radiation has been analyzed. The observed shift is proportional to the absorbed radiation and can be used to measure the laser near field or its output power. A periodical dependence of the measured signal has been observed as a function of distance between the probe and the surface of the laser due to the interference of the outgoing and cantilever-reflected waves. Due to the multiple reflections resulting in the interference, the light absorption by the probe cantilever is greatly enhanced compared with a single pass case. Interaction of infrared emission of a diode laser with different probes has been studied.

  9. Nanoscale electrical property studies of individual GeSi quantum rings by conductive scanning probe microscopy

    PubMed Central

    2012-01-01

    The nanoscale electrical properties of individual self-assembled GeSi quantum rings (QRs) were studied by scanning probe microscopy-based techniques. The surface potential distributions of individual GeSi QRs are obtained by scanning Kelvin microscopy (SKM). Ring-shaped work function distributions are observed, presenting that the QRs' rim has a larger work function than the QRs' central hole. By combining the SKM results with those obtained by conductive atomic force microscopy and scanning capacitance microscopy, the correlations between the surface potential, conductance, and carrier density distributions are revealed, and a possible interpretation for the QRs' conductance distributions is suggested. PMID:23194252

  10. H Scan/AHP advanced technology proposal evaluation process

    SciTech Connect

    Mack, S.; Valladares, M.R.S. de

    1996-10-01

    It is anticipated that a family of high value/impact projects will be funded by the Hydrogen Program to field test hydrogen technologies that are at advanced stages of development. These projects will add substantial value to the Program in several ways, by: demonstrating successful integration of multiple advanced technologies, providing critical insight on issues of larger scale equipment design, construction and operations management, yielding cost and performance data for competitive analysis, refining and deploying enhanced safety measures. These projects will be selected through a competitive proposal evaluation process. Because of the significant scope and funding levels of projects at these development phases, Program management has indicated the need for an augmented proposal evaluation strategy to ensure that supported projects are implemented by capable investigative teams and that their successful completion will optimally advance programmatic objectives. These objectives comprise a complex set of both quantitative and qualitative factors, many of which can only be estimated using expert judgment and opinion. To meet the above need, the National Renewable Energy Laboratory (NREL) and Energetics Inc. have jointly developed a proposal evaluation methodology called H Scan/AHP. The H Scan component of the process was developed by NREL. It is a two-part survey instrument that substantially augments the type and scope of information collected in a traditional proposal package. The AHP (Analytic Hierarchy Process) component was developed by Energetics. The AHP is an established decision support methodology that allows the Program decision makers to evaluate proposals relatively based on a unique set of weighted criteria that they have determined.

  11. Development of a scanning nanopipette probe microscope for fine processing using atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Morimatsu, Daisuke; Sugimoto, Hiromitsu; Nakamura, Atsushi; Ogino, Akihisa; Nagatsu, Masaaki; Iwata, Futoshi

    2016-08-01

    We developed a novel technique for fine material processing based on a localized atmospheric-pressure plasma jet (APPJ) using a scanning probe microscope equipped with a nanopipette. Using a nanopipette — a tapered glass capillary with an aperture of sub-micrometer diameter — as a nozzle makes it possible to localize the discharge area of the APPJ for fine surface processing. The nanopipette can also be used as a probe for a scanning probe microscope operated with shear-force feedback control, which is capable of positioning the pipette edge in the vicinity of material surfaces for APPJ processing and imaging of the processed surface. Sub-micrometer holes and line patterns were successfully processed on a photoresist film. It was possible to control the size of the processed patterns by varying the applied pulse voltage and the distance between the pipette and the surface.

  12. Single-body lensed-fiber scanning probe actuated by magnetic force for optical imaging.

    PubMed

    Min, Eun Jung; Na, Jihoon; Ryu, Seon Young; Lee, Byeong Ha

    2009-06-15

    We propose a fiber-based hand-held scanning probe suitable for the sample arm of an optical imaging system including optical coherence tomography. To achieve compactness, a single-body lensed-fiber and a solenoid actuator were utilized. The focusing lens of the probe was directly formed onto the distal end of a fiber, which eliminated the need for additional optical components and optical alignment. A ferromagnetic iron bead was glued onto the middle of the fiber to enable actuation by magnetic force, which allowed easy fabrication and good practicality. The fiber piece having the built-in fiber lens was forced to oscillate in its resonant frequency. With the implemented probe, optical coherence tomography images of a human fingertip and a pearl were obtained at an imaging speed of 30 frames/s over a scanning range of 4 mm. PMID:19529740

  13. Localized spin-wave excitation by the evanescent microwave scanning probe

    SciTech Connect

    Sakran, F.; Golosovsky, M.; Davidov, D.; Monod, P.

    2006-02-15

    We report a technique for the local contactless spin-wave excitation using the evanescent microwave scanning probe. Our probe is based on a dielectric resonator with the thin slit aperture. It operates at 8.8 GHz, has a spatial resolution of 10-100 {mu}m, and may be operated in the parallel and in the perpendicular magnetic field. The measurements can be performed in contact mode or by scanning the sample at constant probe-sample separation. Using 120-150 nm thick Permalloy films on a glass substrate as test samples, we show how our technique can be used for thickness measurements of thin magnetic films and for the mapping of their magnetic properties, such as magnetization and surface anisotropy.

  14. Single-molecule chemistry and physics explored by low-temperature scanning probe microscopy.

    PubMed

    Swart, Ingmar; Gross, Leo; Liljeroth, Peter

    2011-08-28

    It is well known that scanning probe techniques such as scanning tunnelling microscopy (STM) and atomic force microscopy (AFM) routinely offer atomic scale information on the geometric and the electronic structure of solids. Recent developments in STM and especially in non-contact AFM have allowed imaging and spectroscopy of individual molecules on surfaces with unprecedented spatial resolution, which makes it possible to study chemistry and physics at the single molecule level. In this feature article, we first review the physical concepts underlying image contrast in STM and AFM. We then focus on the key experimental considerations and use selected examples to demonstrate the capabilities of modern day low-temperature scanning probe microscopy in providing chemical insight at the single molecule level. PMID:21584325

  15. Tuning Localized Surface Plasmon Resonance in Scanning Near-Field Optical Microscopy Probes.

    PubMed

    Vasconcelos, Thiago L; Archanjo, Bráulio S; Fragneaud, Benjamin; Oliveira, Bruno S; Riikonen, Juha; Li, Changfeng; Ribeiro, Douglas S; Rabelo, Cassiano; Rodrigues, Wagner N; Jorio, Ado; Achete, Carlos A; Cançado, Luiz Gustavo

    2015-06-23

    A reproducible route for tuning localized surface plasmon resonance in scattering type near-field optical microscopy probes is presented. The method is based on the production of a focused-ion-beam milled single groove near the apex of electrochemically etched gold tips. Electron energy-loss spectroscopy and scanning transmission electron microscopy are employed to obtain highly spatially and spectroscopically resolved maps of the milled probes, revealing localized surface plasmon resonance at visible and near-infrared wavelengths. By changing the distance L between the groove and the probe apex, the localized surface plasmon resonance energy can be fine-tuned at a desired absorption channel. Tip-enhanced Raman spectroscopy is applied as a test platform, and the results prove the reliability of the method to produce efficient scattering type near-field optical microscopy probes. PMID:26027751

  16. Electromechanical response of amorphous LaAlO{sub 3} thin film probed by scanning probe microscopies

    SciTech Connect

    Borowiak, Alexis S.; Baboux, Nicolas; Albertini, David; Gautier, Brice; Vilquin, Bertrand; Saint Girons, Guillaume; Pelloquin, Sylvain

    2014-07-07

    The electromechanical response of a 3 nm thick amorphous LaAlO{sub 3} layer obtained by molecular beam epitaxy has been studied using scanning probe microscopies. Although this kind of sample is not ferroelectric due to its amorphous nature, the resulting images are identical to what is generally obtained on truly ferroelectric samples probed by piezoresponse force microscopy: domains of apparently opposite polarisation are detected, and perfect, square shaped hysteresis loops are recorded. Moreover, written patterns are stable within 72 h. We discuss in the general case the possible origins of this behaviour in terms of charge injection, ionic conduction and motion of oxygen vacancies. In the case presented in this paper, since the writing process has been conducted with applied voltages lower than the injection threshold measured by conductive atomic force Microscopy, allowing to withdraw the hypothesis of charge injection in the sample, we propose that a bistable distribution of oxygen vacancies is responsible for this contrast.

  17. Contrast analysis of near-field scanning microscopy using a metal slit probe at millimeter wavelengths

    NASA Astrophysics Data System (ADS)

    Nozokido, Tatsuo; Ishino, Manabu; Seto, Ryosuke; Bae, Jongsuck

    2015-09-01

    We describe an analytical method for investigating the signal contrast obtained in near-field scanning microscopy using a metal slit probe. The probe has a slit-like aperture at the open end of a rectangular or a parallel plate waveguide. In our method, the electromagnetic field around the metal slit aperture at the probe tip is calculated from Maxwell's equations in the Fourier domain in order to derive the electrical admittance of a sample system consisting of layered dielectrics as seen from the probe tip. A simple two-port electrical circuit terminated by this admittance is then established to calculate the complex reflection coefficient of the probe as a signal. The validity of the method is verified at millimeter wavelengths by a full-wave high frequency 3-D finite element modeler and also by experiment. The signal contrast when varying the short dimension of the slit aperture, the separation between the probe tip and the sample, and the sample thickness are successfully explained in terms of the variation in the product of the admittance and the characteristic impedance of the waveguide at the probe tip. In particular, the cause of the local minimum in the signal intensity when varying the separation is clarified.

  18. A scanning Hall probe microscope for high resolution magnetic imaging down to 300 mK

    NASA Astrophysics Data System (ADS)

    Khotkevych, V. V.; Milošević, M. V.; Bending, S. J.

    2008-12-01

    We present the design, construction, and performance of a low-temperature scanning Hall probe microscope with submicron lateral resolution and a large scanning range. The detachable microscope head is mounted on the cold flange of a commercial H3e-refrigerator (Oxford Instruments, Heliox VT-50) and operates between room temperature and 300 mK. It is fitted with a three-axis slip-stick nanopositioner that enables precise in situ adjustment of the probe location within a 6×6×7 mm3 space. The local magnetic induction at the sample surface is mapped with an easily changeable microfabricated Hall probe [typically GsAs/AlGaAs or AlGaAs/InGaAs/GaAs Hall sensors with integrated scanning tunnel microscopy (STM) tunneling tips] and can achieve minimum detectable fields ⩾10 mG/Hz1/2. The Hall probe is brought into very close proximity to the sample surface by sensing and controlling tunnel currents at the integrated STM tip. The instrument is capable of simultaneous tunneling and Hall signal acquisition in surface-tracking mode. We illustrate the potential of the system with images of superconducting vortices at the surface of a Nb thin film down to 372 mK, and also of labyrinth magnetic-domain patterns of an yttrium iron garnet film captured at room temperature.

  19. A scanning Hall probe microscope for high resolution magnetic imaging down to 300 mK

    SciTech Connect

    Khotkevych, V. V.; Bending, S. J.; Milosevic, M. V.

    2008-12-15

    We present the design, construction, and performance of a low-temperature scanning Hall probe microscope with submicron lateral resolution and a large scanning range. The detachable microscope head is mounted on the cold flange of a commercial {sup 3}He-refrigerator (Oxford Instruments, Heliox VT-50) and operates between room temperature and 300 mK. It is fitted with a three-axis slip-stick nanopositioner that enables precise in situ adjustment of the probe location within a 6x6x7 mm{sup 3} space. The local magnetic induction at the sample surface is mapped with an easily changeable microfabricated Hall probe [typically GsAs/AlGaAs or AlGaAs/InGaAs/GaAs Hall sensors with integrated scanning tunnel microscopy (STM) tunneling tips] and can achieve minimum detectable fields {>=}10 mG/Hz{sup 1/2}. The Hall probe is brought into very close proximity to the sample surface by sensing and controlling tunnel currents at the integrated STM tip. The instrument is capable of simultaneous tunneling and Hall signal acquisition in surface-tracking mode. We illustrate the potential of the system with images of superconducting vortices at the surface of a Nb thin film down to 372 mK, and also of labyrinth magnetic-domain patterns of an yttrium iron garnet film captured at room temperature.

  20. Development of a micro-CMM with scanning touch probe and high-precision coplanar platform

    NASA Astrophysics Data System (ADS)

    Chu, Chih-Liang; Lu, Chin-Tu; Chen, Hung-Chi; Ke, Jhih-Sian; Chang, Chao-Ming

    2013-10-01

    This study develops a micro-CMM incorporating a scanning touch probe and a high-precision coplanar platform. The measurement performance of the proposed system was enhanced through the use of a rigid aluminum double-arch-bridge structure to support the scanning touch probe. For the working stage, a linear motor was used for long-stroke positioning and a piezoelectric actuator was then employed to fine-tune the positioning so as to achieve a requirement of highprecision. The platform has two characteristics: (i) the driving and measuring axes are designed along the same line so that Abbe error of the stage can be eliminated; (ii) the coplanar design makes the X and Y axes reach a goal of two-axis concurrent. The aforementioned two designs can reduce the error of the platform so that the micro-CMM reaches a positioning accuracy of ±0.1μm for a working volume of 80×80×40 mm3. Furthermore, the reliability of the probe mechanism of three degrees of freedom was analyzed and validated. The sensor coordinates a laser diode with Position Sensor Detectors (PSD) working with an optical path to measure placement of Z-axis and angle placement of XY-axis. By validation through an experiment, the three dimensional scanning touch probe developed by this study has a measuring range of ±1mm × ±1mm × 1mm with a unidirectional repeatability of 0.6μm.

  1. Green's function modeling of response of two-dimensional materials to point probes for scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Tewary, V. K.; Quardokus, Rebecca C.; DelRio, Frank W.

    2016-04-01

    A Green's function (GF) method is developed for interpreting scanning probe microscopy (SPM) measurements on new two-dimensional (2D) materials. GFs for the Laplace/Poisson equations are calculated by using a virtual source method for two separate cases of a finite material containing a rectangular defect and a hexagonal defect. The prescribed boundary values are reproduced almost exactly by the calculated GFs. It is suggested that the GF is not just a mathematical artefact but a basic physical characteristic of material systems, which can be measured directly by SPM for 2D solids. This should make SPM an even more powerful technique for characterization of 2D materials.

  2. Bases for time-resolved probing of transient carrier dynamics by optical pump-probe scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Yokota, Munenori; Yoshida, Shoji; Mera, Yutaka; Takeuchi, Osamu; Oigawa, Haruhiro; Shigekawa, Hidemi

    2013-09-01

    The tangled mechanism that produces optical pump-probe scanning tunneling microscopy spectra from semiconductors was analyzed by comparing model simulation data with experimental data. The nonlinearities reflected in the spectra, namely, the excitations generated by paired laser pulses with a delay time, the logarithmic relationship between carrier density and surface photovoltage (SPV), and the effect of the change in tunneling barrier height depending on SPV, were examined along with the delay-time-dependent integration process used in measurement. The optimum conditions required to realize reliable measurement, as well as the validity of the microscopy technique, were demonstrated for the first time.

  3. Scanning electron microscopy and electron probe X-ray microanalysis (SEM-EPMA) of pink teeth

    SciTech Connect

    Ikeda, N.; Watanabe, G.; Harada, A.; Suzuki, T.

    1988-11-01

    Samples of postmortem pink teeth were investigated by scanning electron microscopy and electron probe X-ray microanalysis. Fracture surfaces of the dentin in pink teeth were noticeably rough and revealed many more smaller dentinal tubules than those of the control white teeth. Electron probe X-ray microanalysis showed that the pink teeth contained iron which seemed to be derived from blood hemoglobin. The present study confirms that under the same circumstance red coloration of teeth may occur more easily in the teeth in which the dentin is less compact and contains more dentinal tubules.

  4. Characterization of microfabricated probes for combined atomic force and high-resolution scanning electrochemical microscopy.

    PubMed

    Gullo, Maurizio R; Frederix, Patrick L T M; Akiyama, Terunobu; Engel, Andreas; deRooij, Nico F; Staufer, Urs

    2006-08-01

    A combined atomic force and scanning electrochemical microscope probe is presented. The probe is electrically insulated except at the very apex of the tip, which has a radius of curvature in the range of 10-15 nm. Steady-state cyclic voltammetry measurements for the reduction of Ru(NH3)6Cl3 and feedback experiments showed a distinct and reproducible response of the electrode. These experimental results agreed with finite element simulations for the corresponding diffusion process. Sequentially topographical and electrochemical studies of Pt lines deposited onto Si3N4 and spaced 100 nm apart (edge to edge) showed a lateral electrochemical resolution of 10 nm. PMID:16878880

  5. Solar extreme ultraviolet sensor and advanced langmuir probe

    NASA Technical Reports Server (NTRS)

    Voronka, N. R.; Block, B. P.; Carignan, G. R.

    1992-01-01

    For more than two decades, the staff of the Space Physics Research Laboratory (SPRL) has collaborated with the Goddard Space Flight Center (GSFC) in the design and implementation of Langmuir probes (LP). This program of probe development under the direction of Larry Brace of GSFC has evolved methodically with innovations to: improve measurement precision, increase the speed of measurement, and reduce the weight, size, power consumption and data rate of the instrument. Under contract NAG5-419 these improvements were implemented and are what characterize the Advanced Langmuir Probe (ALP). Using data from the Langmuir Probe on the Pioneer Venus Orbiter, Brace and Walter Hoegy of GSFC demonstrated a novel method of monitoring the solar extreme ultraviolet (EUV) flux. This led to the idea of developing a sensor similar to a Langmuir probe specifically designed to measure solar EUV (SEUV) that uses a similar electronics package. Under this contract, a combined instrument package of the ALP and SEUV sensor was to be designed, constructed, and laboratory tested. Finally the instrument was to be flight tested as part of sounding rocket experiment to acquire the necessary data to validate this method for possible use in future earth and planetary aeronomy missions. The primary purpose of this contract was to develop the electronics hardware and software for this instrument, since the actual sensors were suppied by GSFC. Due to budget constraints, only a flight model was constructed. These electronics were tested and calibrated in the laboratory, and then the instrument was integrated into the rocket payload at Wallops Flight Facility where it underwent environmental testing. After instrument recalibration at SPRL, the payload was reintegrated and launched from the Poker Flat Research Range near Fairbanks Alaska. The payload was successfully recovered and after refurbishment underwent further testing and developing to improve its performance for future use.

  6. ZnO(0001) surfaces probed by scanning tunneling spectroscopy: Evidence for an inhomogeneous electronic structure

    NASA Astrophysics Data System (ADS)

    Dumont, J.; Hackens, B.; Faniel, S.; Mouthuy, P.-O.; Sporken, R.; Melinte, S.

    2009-09-01

    The stability of the polar Zn-terminated ZnO surface is probed by low-temperature scanning tunneling microscopy and scanning tunneling spectroscopy (STS). Surface states in the bandgap of ZnO are evidenced by STS and their presence is correlated with the local surface corrugation. Very defective surface regions are characterized by a bulk electronic structure showing a wide bandgap while nanometer-scale defect free regions exhibit a narrower bandgap and surface states. We also image atomically resolved (√3 ×√3 )R30° reconstructions on the defect-free areas.

  7. Local electrochemical functionality in energy storage materials and devices by scanning probe microscopies: status and perspectives.

    PubMed

    Kalinin, Sergei V; Balke, Nina

    2010-09-15

    Energy storage and conversion systems are an integral component of emerging green technologies, including mobile electronic devices, automotive, and storage components of solar and wind energy economics. Despite the rapidly expanding manufacturing capabilities and wealth of phenomenological information on the macroscopic device behaviors, the microscopic mechanisms underpinning battery and fuel cell operations in the nanometer-micrometer range are virtually unknown. This lack of information is due to the dearth of experimental techniques capable of addressing elementary mechanisms involved in battery operation, including electronic and ion transport, vacancy injection, and interfacial reactions, on the nanometer scale. In this article, a brief overview of scanning probe microscopy (SPM) methods addressing nanoscale electrochemical functionalities is provided and compared with macroscopic electrochemical methods. Future applications of emergent SPM methods, including near field optical, electromechanical, microwave, and thermal probes and combined SPM-(S)TEM (scanning transmission electron microscopy) methods in energy storage and conversion materials are discussed. PMID:20730814

  8. Practical aspects of single-pass scan Kelvin probe force microscopy.

    PubMed

    Li, Guangyong; Mao, Bin; Lan, Fei; Liu, Liming

    2012-11-01

    The single-pass scan Kelvin probe force microscopy (KPFM) in ambient condition has a few advantages over the dual-pass lift-up scan KPFM. For example, its spatial resolution is expected to be higher; and its topographical errors caused by electrostatic forces are minimized because electrostatic forces are actively suppressed during the simultaneous topographical and KPFM measurement. Because single-pass scan KPFM in ambient condition is relatively new, it received little attention in the literature so far. In this article, we discuss several major practical aspects of single-pass scan KPFM especially in ambient condition. First, we define the resolution using a point spread function. With this definition, we analyze the relation between the resolution and the scanning parameters such as tip apex radius and tip-surface distance. We further study the accuracy of KPFM based on the point spread function. Then, we analyze the sensitivity of KPFM under different operation modes. Finally, we investigate the crosstalk between the topographical image and the surface potential image and demonstrate the practical ways to minimize the crosstalk. These discussions not only help us to understand the single-pass scan KPFM but also provide practical guidance in using single-pass scan KPFM. PMID:23206065

  9. Practical aspects of single-pass scan Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Li, Guangyong; Mao, Bin; Lan, Fei; Liu, Liming

    2012-11-01

    The single-pass scan Kelvin probe force microscopy (KPFM) in ambient condition has a few advantages over the dual-pass lift-up scan KPFM. For example, its spatial resolution is expected to be higher; and its topographical errors caused by electrostatic forces are minimized because electrostatic forces are actively suppressed during the simultaneous topographical and KPFM measurement. Because single-pass scan KPFM in ambient condition is relatively new, it received little attention in the literature so far. In this article, we discuss several major practical aspects of single-pass scan KPFM especially in ambient condition. First, we define the resolution using a point spread function. With this definition, we analyze the relation between the resolution and the scanning parameters such as tip apex radius and tip-surface distance. We further study the accuracy of KPFM based on the point spread function. Then, we analyze the sensitivity of KPFM under different operation modes. Finally, we investigate the crosstalk between the topographical image and the surface potential image and demonstrate the practical ways to minimize the crosstalk. These discussions not only help us to understand the single-pass scan KPFM but also provide practical guidance in using single-pass scan KPFM.

  10. Determining the state of non-volatile memory cells with floating gate using scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Hanzii, D.; Kelm, E.; Luapunov, N.; Milovanov, R.; Molodcova, G.; Yanul, M.; Zubov, D.

    2013-01-01

    During a failure analysis of integrated circuits, containing non-volatile memory, it is often necessary to determine its contents while Standard memory reading procedures are not applicable. This article considers how the state of NVM cells with floating gate can be determined using scanning probe microscopy. Samples preparation and measuring procedure are described with the example of Microchip microcontrollers with the EPROM memory (PIC12C508) and flash-EEPROM memory (PIC16F876A).

  11. Advances in Structural Studies of Materials using Scattering Probes

    SciTech Connect

    Huq, Ashfia; Bozin, Emil; Welberry, Dr. Richard

    2010-01-01

    Study of contemporary materials and their remarkable properties is a challenging problem. To understand these complex properties and develop better materials it is essential to understand their structures, as the two are intimately linked. Great advances in materials scattering have been achieved due to the advent of synchrotron and neutron sources along with the availability of high-speed computational algorithms. Materials scientists can now collect data with high resolution, high throughput from very small amount of sample (both single crystal and powder), and analyze vast amount of data to unravel detailed structural description that was not possible before. This article presents some of these great advances in using scattering probes for materials characterization.

  12. Advances in Atomic Force Microscopy and Scanning Tunneling Microscopy

    NASA Astrophysics Data System (ADS)

    Albrecht, Thomas Robert

    The scanning tunneling microscope (STM) and the more recently developed atomic force microscope (AFM) are high resolution scanning probe microscopes capable of three dimensional atomic-scale surface profiling. In the AFM, minute forces acting between the tip of a flexible cantilever stylus and the surface of the sample cause deflections of the cantilever which are detected by a tunneling or optical sensor with subangstrom sensitivity. The AFM work presented here involves surface profiling via repulsive contact forces between 10^{-6} and 10^{-9} N in magnitude. In this contact profiling (repulsive) mode the AFM is capable of atomic resolution on both electrically conducting and insulating surfaces (unlike the STM). AFM instrumentation for room temperature and low temperature operation is discussed. The critical component of the AFM is the cantilever stylus assembly, which should have a small mass. Several microfabrication processes have been developed to produce thin film SiO_2 and Si_3N_4 microcantilevers with integrated sharp tips. Atomic resolution has been achieved with the AFM in air on a number of samples, including graphite, MoS _2, TaSe_2, WTe_2, TaS_2, and BN (the first insulator imaged with atomic resolution by any means). Various organic and molecular samples have been imaged with nanometer resolution. The difference between STM and AFM response is shown in images of TaS _2 (a charge density wave material), and in simultaneous STM/AFM images of lattice defects and adsorbates on graphite and MoS_2. A number of artifacts make STM and AFM image interpretation subtle, such as tip shape effects, frictional effects, and tracking in atomic grooves. STM images of moire patterns near grain boundaries confirm the importance of tip shape effects. Various surface modification and lithography techniques have been demonstrated with the STM and AFM, including an STM voltage pulse technique which reproducibly creates 40 A diameter holes on the surface of graphite, and a

  13. Nanocarbon-scanning probe microscopy synergy: fundamental aspects to nanoscale devices.

    PubMed

    Kurra, Narendra; Reifenberger, Ronald G; Kulkarni, Giridhar U

    2014-05-14

    Scanning probe techniques scanning tunneling microscopy (STM) and atomic force microscopy (AFM) have emerged as unique local probes for imaging, manipulation, and modification of surfaces at the nanoscale. Exercising the fabrication of atomic and nansocale devices with desired properties have demanded rapid development of scanning probe based nanolithographies. Dip pen nanolithography (DPN) and local anodic oxidation (LAO) have been widely employed for fabricating functional patterns and prototype devices at nanoscale. This review discusses the progress in AFM bias lithography with focus on nanocarbon species on which many functional quantum device structures have been realized using local electrochemical and electrostatic processes. As water meniscus is central to AFM bias lithography, the meniscus formation, estimation and visualization is discussed briefly. A number of graphene-based nanodevices have been realized on the basis AFM bias lithography in the form of nanoribbons, nanorings and quantum dots with sufficiently small dimensions to show quantum phenomena such as conductance fluctuations. Several studies involving graphitic surfaces and carbon nanotubes are also covered. AFM based scratching technique is another promising approach for the fabrication of nanogap electrodes, important in molecular electronics. PMID:24697666

  14. Reciprocity theory of apertureless scanning near-field optical microscopy with point-dipole probes.

    PubMed

    Esslinger, Moritz; Vogelgesang, Ralf

    2012-09-25

    Near-field microscopy offers the opportunity to reveal optical contrast at deep subwavelength scales. In scanning near-field optical microscopy (SNOM), the diffraction limit is overcome by a nanoscopic probe in close proximity to the sample. The interaction of the probe with the sample fields necessarily perturbs the bare sample response, and a critical issue is the interpretation of recorded signals. For a few specific SNOM configurations, individual descriptions have been modeled, but a general and intuitive framework is still lacking. Here, we give an exact formulation of the measurable signals in SNOM which is easily applicable to experimental configurations. Our results are in close analogy with the description Tersoff and Hamann have derived for the tunneling currents in scanning tunneling microscopy. For point-like scattering probe tips, such as used in apertureless SNOM, the theory simplifies dramatically to a single scalar relation. We find that the measured signal is directly proportional to the field of the coupled tip-sample system at the position of the tip. For weakly interacting probes, the model thus verifies the empirical findings that the recorded signal is proportional to the unperturbed field of the bare sample. In the more general case, it provides guidance to an intuitive and faithful interpretation of recorded images, facilitating the characterization of tip-related distortions and the evaluation of novel SNOM configurations, both for aperture-based and apertureless SNOM. PMID:22897563

  15. The probe profile and lateral resolution of scanning transmission electron microscopy of thick specimens.

    PubMed

    Demers, Hendrix; Ramachandra, Ranjan; Drouin, Dominique; de Jonge, Niels

    2012-06-01

    Lateral profiles of the electron probe of scanning transmission electron microscopy (STEM) were simulated at different vertical positions in a micrometers-thick carbon sample. The simulations were carried out using the Monte Carlo method in CASINO software. A model was developed to fit the probe profiles. The model consisted of the sum of a Gaussian function describing the central peak of the profile and two exponential decay functions describing the tail of the profile. Calculations were performed to investigate the fraction of unscattered electrons as a function of the vertical position of the probe in the sample. Line scans were also simulated over gold nanoparticles at the bottom of a carbon film to calculate the achievable resolution as a function of the sample thickness and the number of electrons. The resolution was shown to be noise limited for film thicknesses less than 1 μm. Probe broadening limited the resolution for thicker films. The validity of the simulation method was verified by comparing simulated data with experimental data. The simulation method can be used as quantitative method to predict STEM performance or to interpret STEM images of thick specimens. PMID:22564444

  16. Development of a three dimensional scanning touch probe with high precision and low contact force

    NASA Astrophysics Data System (ADS)

    Chu, Chih-Liang; Ke, Jhih-Sian; Chen, Hung-Chi

    2013-01-01

    This study aims to develop a three dimensional scanning touch probe with high precision and low contact force. The overall design has two parts, mechanism design and optical path design. The mechanism design contains three parts, Zaxis system, XY-axis system, and probe mechanism. The Z-axis system applies the characteristic of the thin sheet spring to move vertically. In the design of XY-axis system, a micro-beam is employed, through which length, width, thickness of the micro-beam and corresponding dimensions of the leaf spring are designed according to the selected contact force. The freedom degree is limited to three. And the center of the mechanism is equipped with a stylus to inhibit displacement of the Z-axis. The contact between the probe and the workpiece only leads to change in the angles of Xand Y-axes, achieving the feature of 2-degree freedom. To enable rapid change for the probes, this study designs a probe mechanism, reliability of which is analyzed and validated with ANSYS software, so that the design of 3-degree freedom mechanism is completed. The sensor has a laser diode to coordinate with Position Sensor Detector (PSD) which works with the optical path designed to measure placement of Z-axis and angle placement of XY-axis. By validation through an experiment, the three dimensional scanning touch probe developed by this study has a measuring range of +/-1mm×+/-1mm×1mm, and unidirectional repeatability of 0.6um.

  17. Investigation of the contrast inversion effect on hydrophilic surfaces using Pt/C whisker probes in a scanning force microscope

    NASA Astrophysics Data System (ADS)

    Zhukov, M. V.; Mukhin, I. S.; Levichev, V. V.; Golubok, A. O.

    2015-02-01

    We compare the spatial resolution and image contrast of an erythrocyte surface obtained by means of scanning force microscopy (SFM) with conventional hydrophobic Si probes and probes modified by hydrophilic Pt/C whisker probes. It is shown that probes with Pt/C nanowhiskers provide a higher spatial resolution and contrast when imaging relief on the surface of erythrocytes. The contrast inversion is revealed in some areas of the SFM images when replacing Si probes by probes with Pt/C nanowhiskers. The origin of this inversion in the tapping and contact modes is discussed.

  18. Advances in Probes and Methods for Clinical EPR Oximetry

    PubMed Central

    Hou, Huagang; Khan, Nadeem; Jarvis, Lesley A.; Chen, Eunice Y.; Williams, Benjamin B.; Kuppusamy, Periannan

    2015-01-01

    EPR oximetry, which enables reliable, accurate, and repeated measurements of the partial pressure of oxygen in tissues, provides a unique opportunity to investigate the role of oxygen in the pathogenesis and treatment of several diseases including cancer, stroke, and heart failure. Building on significant advances in the in vivo application of EPR oximetry for small animal models of disease, we are developing suitable probes and instrumentation required for use in human subjects. Our laboratory has established the feasibility of clinical EPR oximetry in cancer patients using India ink, the only material presently approved for clinical use. We now are developing the next generation of probes, which are both superior in terms of oxygen sensitivity and biocompatibility including an excellent safety profile for use in humans. Further advances include the development of implantable oxygen sensors linked to an external coupling loop for measurements of deep-tissue oxygenations at any depth, overcoming the current limitation of 10 mm. This paper presents an overview of recent developments in our ability to make meaningful measurements of oxygen partial pressures in human subjects under clinical settings. PMID:24729217

  19. Novel control scheme for a high-speed metrological scanning probe microscope

    NASA Astrophysics Data System (ADS)

    Vorbringer-Dorozhovets, N.; Hausotte, T.; Manske, E.; Shen, J. C.; Jäger, G.

    2011-09-01

    Some time ago, an interferometer-based metrological scanning probe microscope (SPM) was developed at the Institute of Process Measurement and Sensor Technology of the Ilmenau University of Technology, Germany. The specialty of this SPM is the combined deflection detection system that comprises an interferometer and a beam deflection. Due to this system it is possible to simultaneously measure the displacement, bending and torsion of the probe (cantilever). The SPM is integrated into a nanopositioning and nanomeasuring machine (NPM machine) and allows measurements with a resolution of 0.1 nm over a range of 25 mm × 25 mm × 5 mm. Excellent results were achieved for measurements of calibrated step height and lateral standards and these results are comparable to the calibration values from the Physikalisch-Technische Bundesanstalt (PTB) (Dorozhovets N et al 2007 Proc. SPIE 6616 661624-1-7). The disadvantage was a low attainable scanning speed and accordingly large expenditure of time. Control dynamics and scanning speed are limited because of the high masses of the stage and corner mirror of the machine. For the vertical axis an additional high-speed piezoelectric drive is integrated in the SPM in order to increase the measuring dynamics. The movement of the piezoelectric drive is controlled and traceable measured by the interferometer. Hence, nonlinearity and hysteresis in the actuator do not affect the measurement. The outcome of this is an improvement of the bending control of the cantilever and much higher scan speeds of up to 200 µm s-1.

  20. MEMS-based non-rotatory circumferential scanning optical probe for endoscopic optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Xu, Yingshun; Singh, Janak; Siang, Teo Hui; Ramakrishna, Kotlanka; Premchandran, C. S.; Sheng, Chen Wei; Kuan, Chuah Tong; Chen, Nanguang; Olivo, Malini C.; Sheppard, Colin J. R.

    2007-07-01

    In this paper, we present a non-rotatory circumferential scanning optical probe integrated with a MEMS scanner for in vivo endoscopic optical coherence tomography (OCT). OCT is an emerging optical imaging technique that allows high resolution cross-sectional imaging of tissue microstructure. To extend its usage to endoscopic applications, a miniaturized optical probe based on Microelectromechanical Systems (MEMS) fabrication techniques is currently desired. A 3D electrothermally actuated micromirror realized using micromachining single crystal silicon (SCS) process highlights its very large angular deflection, about 45 degree, with low driving voltage for safety consideration. The micromirror is integrated with a GRIN lens into a waterproof package which is compatible with requirements for minimally invasive endoscopic procedures. To implement circumferential scanning substantially for diagnosis on certain pathological conditions, such as Barret's esophagus, the micromirror is mounted on 90 degree to optical axis of GRIN lens. 4 Bimorph actuators that are connected to the mirror on one end via supporting beams and springs are selected in this micromirror design. When actuators of the micromirror are driven by 4 channels of sinusoidal waveforms with 90 degree phase differences, beam focused by a GRIN is redirected out of the endoscope by 45 degree tilting mirror plate and achieve circumferential scanning pattern. This novel driving method making full use of very large angular deflection capability of our micromirror is totally different from previously developed or developing micromotor-like rotatory MEMS device for circumferential scanning.

  1. Critical current density measurement of striated multifilament-coated conductors using a scanning Hall probe microscope

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Fen; Kochat, Mehdi; Majkic, Goran; Selvamanickam, Venkat

    2016-08-01

    In this paper the authors succeeded in measuring the critical current density ({J}{{c}}) of multifilament-coated conductors (CCs) with thin filaments as low as 0.25 mm using the scanning hall probe microscope (SHPM) technique. A new iterative method of data analysis is developed to make the calculation of {J}{{c}} for thin filaments possible, even without a very small scan distance. The authors also discussed in detail the advantage and limitation of the iterative method using both simulation and experiment results. The results of the new method correspond well with the traditional fast Fourier transform method where this is still applicable. However, the new method is applicable for the filamentized CCs in much wider measurement conditions such as with thin filament and a large scan distance, thus overcoming the barrier for application of the SHPM technique on {J}{{c}} measurement of long filamentized CCs with narrow filaments.

  2. Quantitative scanning thermal microscopy based on determination of thermal probe dynamic resistance.

    PubMed

    Bodzenta, J; Juszczyk, J; Chirtoc, M

    2013-09-01

    Resistive thermal probes used in scanning thermal microscopy provide high spatial resolution of measurement accompanied with high sensitivity to temperature changes. At the same time their sensitivity to variations of thermal conductivity of a sample is relatively low. In typical dc operation mode the static resistance of the thermal probe is measured. It is shown both analytically and experimentally that the sensitivity of measurement can be improved by a factor of three by measuring the dynamic resistance of a dc biased probe superimposed with small ac current. The dynamic resistance can be treated as a complex value. Its amplitude represents the slope of the static voltage-current U-I characteristic for a given I while its phase describes the delay between the measured ac voltage and applied ac current component in the probe. The phase signal also reveals dependence on the sample thermal conductivity. Signal changes are relatively small but very repeatable. In contrast, the difference between dynamic and static resistance has higher sensitivity (the same maximum value as that of the 2nd and 3rd harmonics), and also much higher amplitude than higher harmonics. The proposed dc + ac excitation scheme combines the benefits of dc excitation (mechanical stability of probe-sample contact, average temperature control) with those of ac excitation (base-line stability, rejection of ambient temperature influence, high sensitivity, lock-in signal processing), when the experimental conditions prohibit large ac excitation. PMID:24089831

  3. Ultrafast nanoscale imaging of surface charges by scanning resistive probe microscopy.

    SciTech Connect

    Ko, H.; Ryu, K.; Park, H.; Park, C.; Jeon, D.; Kim, Y. K.; Jung, J.; Min, D-K.; Kim, Y.; Lee, H. N.; Park, Y.; Shin, H.; Hong, S.

    2011-01-01

    Nanoscale manipulation of surface charges and their imaging are essential for understanding local electronic behaviors of polar materials and advanced electronic devices. Electrostatic force microscopy and Kelvin probe force microscopy have been extensively used to probe and image local surface charges responsible for electrodynamics and transport phenomena. However, they rely on the weak electric force modulation of cantilever that limits both spatial and temporal resolutions. Here we present a field effect transistor embedded probe that can directly image surface charges on a length scale of 25 nm and a time scale of less than 125 {mu}s. On the basis of the calculation of net surface charges in a 25 nm diameter ferroelectric domain, we could estimate the charge density resolution to be as low as 0.08 {mu}C/cm{sup 2}, which is equivalent to 1/20 electron per nanometer square at room temperature.

  4. An advanced AFM sensor: its profile accuracy and low probe wear property for high aspect ratio patterns

    NASA Astrophysics Data System (ADS)

    Watanabe, Masahiro; Baba, Shuichi; Nakata, Toshihiko; Kurenuma, Toru; Kunitomo, Yuichi; Edamura, Manabu

    2007-03-01

    Design rule shrinkage and wider adoption of new device structures such as STI, copper damascene interconnects, and deep trench structures have made the need for in-line process monitoring of step heights and profiles of device structures more urgent. To monitor active device patterns, as opposed to test patterns as in OCD, AFM is the only non-destructive 3D monitoring tool. The barriers to using AFM in-line monitoring are its slow throughput and the accuracy degradation associated with probe tip wear and spike noise caused by unwanted oscillation on the steep slopes of high-aspect-ratio patterns. Our proprietary AFM scanning method, StepIn TM mode, is the method best suited to measuring high-aspect-ratio pattern profiles. Because the probe is not dragged on the sample surface as in conventional AFM, the profile trace fidelity across steep slopes is excellent. Because the probe does not oscillate and hit the sample at a high frequency, as in AC scanning mode, this mode is free from unwanted spurious noises on steep sample slopes and incurs extremely little probe tip wear. To take full advantage of the above properties, we have developed an AFM sensor that is optimized for in-line use and produces accurate profile data at high speeds and incurs little probe tip wear. The control scheme we have developed for the AFM sensor, which we call "Advanced StepIn TM", elaborately analyses the contact force signal, enabling efficient probe tip scanning and a low and stable contact force. With a developed AFM sensor that realizes this concept, we conducted an intensive evaluation on the effect of low and stable contact force scan. Probes with HDC (high density carbon) tips were used for the evaluation. The experiment proves that low contact force enhances the measured profile fidelity by preventing probe tip slip on steep slopes. Dynamics simulation of these phenomena was also conducted, and its results agreed well with the experimental results. The low contact force scan also

  5. A sensitive charge scanning probe based on silicon single electron transistor

    NASA Astrophysics Data System (ADS)

    Lina, Su; Xinxing, Li; Hua, Qin; Xiaofeng, Gu

    2016-04-01

    Single electron transistors (SETs) are known to be extremely sensitive electrometers owing to their high charge sensitivity. In this work, we report the design, fabrication, and characterization of a silicon-on-insulator-based SET scanning probe. The fabricated SET is located about 10 μm away from the probe tip. The SET with a quantum dot of about 70 nm in diameter exhibits an obvious Coulomb blockade effect measured at 4.1 K. The Coulomb blockade energy is about 18 meV, and the charge sensitivity is in the order of 10‑5‑10‑3 e/Hz1/2. This SET scanning probe can be used to map charge distribution and sense dynamic charge fluctuation in nanodevices or circuits under test, realizing high sensitivity and high spatial resolution charge detection. Project supported by the Instrument Developing Project of the Chinese Academy of Sciences (No. YZ201152), the National Natural Science Foundation of China (No. 11403084), the Fundamental Research Funds for Central Universities (Nos. JUSRP51510, JUDCF12032), and the Graduate Student Innovation Program for Universities of Jiangsu Province (No. CXLX12_0724).

  6. The Use Of Scanning Probe Microscopy To Investigate Crystal-Fluid Interfaces

    SciTech Connect

    Orme, C A; Giocondi, J L

    2007-04-16

    Over the past decade there has been a natural drive to extend the investigation of dynamic surfaces in fluid environments to higher resolution characterization tools. Various aspects of solution crystal growth have been directly visualized for the first time. These include island nucleation and growth using transmission electron microscopy and scanning tunneling microscopy; elemental step motion using scanning probe microscopy; and the time evolution of interfacial atomic structure using various diffraction techniques. In this lecture we will discuss the use of one such in situ method, scanning probe microscopy, as a means of measuring surface dynamics during crystal growth and dissolution. We will cover both practical aspects of imaging such as environmental control, fluid flow, and electrochemical manipulation, as well as the types of physical measurements that can be made. Measurements such as step motion, critical lengths, nucleation density, and step fluctuations, will be put in context of the information they provide about mechanistic processes at surfaces using examples from metal and mineral crystal growth.

  7. A Mythical History of the Scanning Probe Microscope - How it Could Have Been

    NASA Astrophysics Data System (ADS)

    Elings, Virgil

    2007-03-01

    The path from the ground breaking Topografiner by Young et. al. in 1972 to the current Atomic Force Microscopes was tortuous, to say the least. Now as an entrepreneur, they say that you should study the problem, work out a plan, and then execute the plan. Since this rarely works for me in real life, let's follow the mythical history of Phil the physics student whose simple approach to scanning probe microscopes during his summer job may explain life better than real life did. Comparisons between Phil's experience and real life will be made along the way to show how random real life was compared to Phil's straightforward approach. We will follow Phil as he goes from the Scanning Touching Microscope (STM) to the All Fancy Microscope (AFM) and ends up with a current scanning probe microscope. The ``lesson'' in this story is that when you are doing something new, you learn so much while you are doing it that what you thought at the beginning (the plan) is rarely the best way to go. It is more important, I believe, for entrepreneurs to explore possibilities and keep their eyes open along the way rather than pretend the path they are on is the right one. Phil is mythical because he always knew where he was headed and it was always the right direction. So how does Phil's story end? I'm working on it and will tell you at the March Meeting.

  8. Tunnelling junctions with additional degrees of freedom: An extended toolbox of scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Wagner, Christian; Temirov, Ruslan

    2015-05-01

    Considering studies of molecular adsorption we review recent developments in the field of scanning probe microscopy and in particular in scanning tunnelling microscopy, concentrating on the progress that has been achieved by controlled decoration of the microscope tip. A view is presented according to which the tip decoration generally introduces additional degrees of freedom into the scanning junction and thus extends its functionality. In particular tips decorated with atomic point-like particles may attain the additional function of a force sensor which is realized through the degrees of freedom associated with the relative position of the decorating probe-particle with respect to the tip. It is shown how the force sensor function of such tips helps when studying large molecular adsorbates. Further prospects of more complex junctions equipped with numerous internal degrees of freedom are discussed. It is argued that the main problem impeding the utilization of such junctions is related to their control. An approach towards a higher degree of control is presented that is based on the analysis of single molecule manipulation experiments.

  9. THE INTEGRATED USE OF COMPUTATIONAL CHEMISTRY, SCANNING PROBE MICROSCOPY, AND VIRTUAL REALITY TO PREDICT THE CHEMICAL REACTIVITY OF ENVIRONMENTAL SURFACES

    EPA Science Inventory

    In the last decade three new techniques scanning probe microscopy (SPM), virtual reality (YR) and computational chemistry ave emerged with the combined capability of a priori predicting the chemically reactivity of environmental surfaces. Computational chemistry provides the cap...

  10. Scanning Hall Probe Microscopy of Magnetic Vortices inVery Underdoped yttrium-barium-copper-oxide

    SciTech Connect

    Guikema, Janice Wynn; /SLAC, SSRL

    2005-12-02

    Since their discovery by Bednorz and Mueller (1986), high-temperature cuprate superconductors have been the subject of intense experimental research and theoretical work. Despite this large-scale effort, agreement on the mechanism of high-T{sub c} has not been reached. Many theories make their strongest predictions for underdoped superconductors with very low superfluid density n{sub s}/m*. For this dissertation I implemented a scanning Hall probe microscope and used it to study magnetic vortices in newly available single crystals of very underdoped YBa{sub 2}Cu{sub 3}O{sub 6+x} (Liang et al. 1998, 2002). These studies have disproved a promising theory of spin-charge separation, measured the apparent vortex size (an upper bound on the penetration depth {lambda}{sub ab}), and revealed an intriguing phenomenon of ''split'' vortices. Scanning Hall probe microscopy is a non-invasive and direct method for magnetic field imaging. It is one of the few techniques capable of submicron spatial resolution coupled with sub-{Phi}{sub 0} (flux quantum) sensitivity, and it operates over a wide temperature range. Chapter 2 introduces the variable temperature scanning microscope and discusses the scanning Hall probe set-up and scanner characterizations. Chapter 3 details my fabrication of submicron GaAs/AlGaAs Hall probes and discusses noise studies for a range of probe sizes, which suggest that sub-100 nm probes could be made without compromising flux sensitivity. The subsequent chapters detail scanning Hall probe (and SQUID) microscopy studies of very underdoped YBa{sub 2}Cu{sub 3}O{sub 6+x} crystals with T{sub c} {le} 15 K. Chapter 4 describes two experimental tests for visons, essential excitations of a spin-charge separation theory proposed by Senthil and Fisher (2000, 2001b). We searched for predicted hc/e vortices (Wynn et al. 2001) and a vortex memory effect (Bonn et al. 2001) with null results, placing upper bounds on the vison energy inconsistent with the theory. Chapter

  11. Accurate flexural spring constant calibration of colloid probe cantilevers using scanning laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Gates, Richard S.; Osborn, William A.; Shaw, Gordon A.

    2015-06-01

    Calibration of the flexural spring constant for atomic force microscope (AFM) colloid probe cantilevers provides significant challenges. The presence of a large attached spherical added mass complicates many of the more common calibration techniques such as reference cantilever, Sader, and added mass. Even the most promising option, AFM thermal calibration, can encounter difficulties during the optical lever sensitivity measurement due to strong adhesion and friction between the sphere and a surface. This may cause buckling of the end of the cantilever and hysteresis in the approach-retract curves resulting in increased uncertainty in the calibration. Most recently, a laser Doppler vibrometry thermal method has been used to accurately calibrate the normal spring constant of a wide variety of tipped and tipless commercial cantilevers. This paper describes a variant of the technique, scanning laser Doppler vibrometry, optimized for colloid probe cantilevers and capable of spring constant calibration uncertainties near ±1%.

  12. Probing plasmons in three dimensions by combining complementary spectroscopies in a scanning transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Hachtel, J. A.; Marvinney, C.; Mouti, A.; Mayo, D.; Mu, R.; Pennycook, S. J.; Lupini, A. R.; Chisholm, M. F.; Haglund, R. F.; Pantelides, S. T.

    2016-04-01

    The nanoscale optical response of surface plasmons in three-dimensional metallic nanostructures plays an important role in many nanotechnology applications, where precise spatial and spectral characteristics of plasmonic elements control device performance. Electron energy loss spectroscopy (EELS) and cathodoluminescence (CL) within a scanning transmission electron microscope have proven to be valuable tools for studying plasmonics at the nanoscale. Each technique has been used separately, producing three-dimensional reconstructions through tomography, often aided by simulations for complete characterization. Here we demonstrate that the complementary nature of the two techniques, namely that EELS probes beam-induced electronic excitations while CL probes radiative decay, allows us to directly obtain a spatially- and spectrally-resolved picture of the plasmonic characteristics of nanostructures in three dimensions. The approach enables nanoparticle-by-nanoparticle plasmonic analysis in three dimensions to aid in the design of diverse nanoplasmonic applications.

  13. Probing plasmons in three dimensions by combining complementary spectroscopies in a scanning transmission electron microscope.

    PubMed

    Hachtel, J A; Marvinney, C; Mouti, A; Mayo, D; Mu, R; Pennycook, S J; Lupini, A R; Chisholm, M F; Haglund, R F; Pantelides, S T

    2016-04-15

    The nanoscale optical response of surface plasmons in three-dimensional metallic nanostructures plays an important role in many nanotechnology applications, where precise spatial and spectral characteristics of plasmonic elements control device performance. Electron energy loss spectroscopy (EELS) and cathodoluminescence (CL) within a scanning transmission electron microscope have proven to be valuable tools for studying plasmonics at the nanoscale. Each technique has been used separately, producing three-dimensional reconstructions through tomography, often aided by simulations for complete characterization. Here we demonstrate that the complementary nature of the two techniques, namely that EELS probes beam-induced electronic excitations while CL probes radiative decay, allows us to directly obtain a spatially- and spectrally-resolved picture of the plasmonic characteristics of nanostructures in three dimensions. The approach enables nanoparticle-by-nanoparticle plasmonic analysis in three dimensions to aid in the design of diverse nanoplasmonic applications. PMID:26934391

  14. Ultrasonic probe deployment device for increased wave transmission and rapid area scan inspections

    SciTech Connect

    DiMambro, Joseph; Roach, Dennis P; Rackow, Kirk A; Nelson, Ciji L; Dasch, Cameron J; Moore, David G

    2013-02-12

    An ultrasonic probe deployment device in which an ultrasound-transmitting liquid forms the portion of the ultrasonic wave path in contact with the surface being inspected (i.e., the inspection surface). A seal constrains flow of the liquid, for example preventing the liquid from surging out and flooding the inspection surface. The seal is not rigid and conforms to variations in the shape and unevenness of the inspection surface, thus forming a seal (although possibly a leaky seal) around the liquid. The probe preferably is held in place to produce optimum ultrasonic focus on the area of interest. Use of encoders can facilitate the production of C-scan area maps of the material being inspected.

  15. Ultrasonic probe deployment device for increased wave transmission and rapid area scan inspections

    SciTech Connect

    DiMambro, Joseph; Roach, Dennis P.; Rackow, Kirk A.; Nelson, Ciji L.; Dasch, Cameron J.; Moore, David G.

    2012-01-03

    An ultrasonic probe deployment device in which an ultrasound-transmitting liquid forms the portion of the ultrasonic wave path in contact with the surface being inspected (i.e., the inspection surface). A seal constrains flow of the liquid, for example preventing the liquid from surging out and flooding the inspection surface. The seal is not rigid and conforms to variations in the shape and unevenness of the inspection surface, thus forming a seal (although possibly a leaky seal) around the liquid. The probe preferably is held in place to produce optimum ultrasonic focus on the area of interest. Use of encoders can facilitate the production of C-scan area maps of the material being inspected.

  16. Whispering-gallery acoustic sensing: characterization of mesoscopic films and scanning probe microscopy applications.

    PubMed

    La Rosa, Andres H; Li, Nan; Fernandez, Rodolfo; Wang, Xiaohua; Nordstrom, Richard; Padigi, S K

    2011-09-01

    Full understanding of the physics underlying the striking changes in viscoelasticity, relaxation time, and phase transitions that mesoscopic fluid-like films undergo at solid-liquid interfaces, or under confinement between two sliding solid boundaries, constitutes one of the major challenges in condensed matter physics. Their role in the imaging process of solid substrates by scanning probe microscopy (SPM) is also currently controversial. Aiming at improving the reliability and versatility of instrumentation dedicated to characterize mesoscopic films, a noninvasive whispering-gallery acoustic sensing (WGAS) technique is introduced; its application as feedback control in SPM is also demonstrated. To illustrate its working principle and potential merits, WGAS has been integrated into a SPM that uses a sharp tip attached to an electrically driven 32-kHz piezoelectric tuning fork (TF), the latter also tighten to the operating microscope's frame. Such TF-based SPMs typically monitor the TF's state of motion by electrical means, hence subjected to the effects caused by the inherent capacitance of the device (i.e., electrical resonance differing from the probe's mechanical resonance). Instead, the novelty of WGAS resides in exploiting the already existent microscope's frame as an acoustic cavity (its few centimeter-sized perimeter closely matching the operating acoustic wavelength) where standing-waves (generated by the nanometer-sized oscillations of the TF's tines) are sensitively detected by an acoustic transducer (the latter judiciously placed around the microscope's frame perimeter for attaining maximum detection). This way, WGAS is able to remote monitoring, via acoustic means, the nanometer-sized amplitude motion of the TF's tines. (This remote-detection method resembles the ability to hear faint, but still clear, levels of sound at the galleries of a cathedral, despite the extraordinary distance location of the sound source.) In applications aiming at

  17. Whispering-gallery acoustic sensing: Characterization of mesoscopic films and scanning probe microscopy applications

    NASA Astrophysics Data System (ADS)

    La Rosa, Andres H.; Li, Nan; Fernandez, Rodolfo; Wang, Xiaohua; Nordstrom, Richard; Padigi, S. K.

    2011-09-01

    Full understanding of the physics underlying the striking changes in viscoelasticity, relaxation time, and phase transitions that mesoscopic fluid-like films undergo at solid-liquid interfaces, or under confinement between two sliding solid boundaries, constitutes one of the major challenges in condensed matter physics. Their role in the imaging process of solid substrates by scanning probe microscopy (SPM) is also currently controversial. Aiming at improving the reliability and versatility of instrumentation dedicated to characterize mesoscopic films, a noninvasive whispering-gallery acoustic sensing (WGAS) technique is introduced; its application as feedback control in SPM is also demonstrated. To illustrate its working principle and potential merits, WGAS has been integrated into a SPM that uses a sharp tip attached to an electrically driven 32-kHz piezoelectric tuning fork (TF), the latter also tighten to the operating microscope's frame. Such TF-based SPMs typically monitor the TF's state of motion by electrical means, hence subjected to the effects caused by the inherent capacitance of the device (i.e., electrical resonance differing from the probe's mechanical resonance). Instead, the novelty of WGAS resides in exploiting the already existent microscope's frame as an acoustic cavity (its few centimeter-sized perimeter closely matching the operating acoustic wavelength) where standing-waves (generated by the nanometer-sized oscillations of the TF's tines) are sensitively detected by an acoustic transducer (the latter judiciously placed around the microscope's frame perimeter for attaining maximum detection). This way, WGAS is able to remote monitoring, via acoustic means, the nanometer-sized amplitude motion of the TF's tines. (This remote-detection method resembles the ability to hear faint, but still clear, levels of sound at the galleries of a cathedral, despite the extraordinary distance location of the sound source.) In applications aiming at

  18. Development of a detachable high speed miniature scanning probe microscope for large area substrates inspection

    NASA Astrophysics Data System (ADS)

    Sadeghian, Hamed; Herfst, Rodolf; Winters, Jasper; Crowcombe, Will; Kramer, Geerten; van den Dool, Teun; van Es, Maarten H.

    2015-11-01

    We have developed a high speed, miniature scanning probe microscope (MSPM) integrated with a Positioning Unit (PU) for accurately positioning the MSPM on a large substrate. This combination enables simultaneous, parallel operation of many units on a large sample for high throughput measurements. The size of the MSPM is 19 × 45 × 70 mm3. It contains a one-dimensional flexure stage with counter-balanced actuation for vertical scanning with a bandwidth of 50 kHz and a z-travel range of more than 2 μm. This stage is mechanically decoupled from the rest of the MSPM by suspending it on specific dynamically determined points. The motion of the probe, which is mounted on top of the flexure stage is measured by a very compact optical beam deflection (OBD). Thermal noise spectrum measurements of short cantilevers show a bandwidth of 2 MHz and a noise of less than 15 fm/Hz1/2. A fast approach and engagement of the probe to the substrate surface have been achieved by integrating a small stepper actuator and direct monitoring of the cantilever response to the approaching surface. The PU has the same width as the MSPM, 45 mm and can position the MSPM to a pre-chosen position within an area of 275×30 mm2 to within 100 nm accuracy within a few seconds. During scanning, the MSPM is detached from the PU which is essential to eliminate mechanical vibration and drift from the relatively low-resonance frequency and low-stiffness structure of the PU. Although the specific implementation of the MSPM we describe here has been developed as an atomic force microscope, the general architecture is applicable to any form of SPM. This high speed MSPM is now being used in a parallel SPM architecture for inspection and metrology of large samples such as semiconductor wafers and masks.

  19. Development of a detachable high speed miniature scanning probe microscope for large area substrates inspection.

    PubMed

    Sadeghian, Hamed; Herfst, Rodolf; Winters, Jasper; Crowcombe, Will; Kramer, Geerten; van den Dool, Teun; van Es, Maarten H

    2015-11-01

    We have developed a high speed, miniature scanning probe microscope (MSPM) integrated with a Positioning Unit (PU) for accurately positioning the MSPM on a large substrate. This combination enables simultaneous, parallel operation of many units on a large sample for high throughput measurements. The size of the MSPM is 19 × 45 × 70 mm(3). It contains a one-dimensional flexure stage with counter-balanced actuation for vertical scanning with a bandwidth of 50 kHz and a z-travel range of more than 2 μm. This stage is mechanically decoupled from the rest of the MSPM by suspending it on specific dynamically determined points. The motion of the probe, which is mounted on top of the flexure stage is measured by a very compact optical beam deflection (OBD). Thermal noise spectrum measurements of short cantilevers show a bandwidth of 2 MHz and a noise of less than 15 fm/Hz(1/2). A fast approach and engagement of the probe to the substrate surface have been achieved by integrating a small stepper actuator and direct monitoring of the cantilever response to the approaching surface. The PU has the same width as the MSPM, 45 mm and can position the MSPM to a pre-chosen position within an area of 275×30 mm(2) to within 100 nm accuracy within a few seconds. During scanning, the MSPM is detached from the PU which is essential to eliminate mechanical vibration and drift from the relatively low-resonance frequency and low-stiffness structure of the PU. Although the specific implementation of the MSPM we describe here has been developed as an atomic force microscope, the general architecture is applicable to any form of SPM. This high speed MSPM is now being used in a parallel SPM architecture for inspection and metrology of large samples such as semiconductor wafers and masks. PMID:26628143

  20. Development of a detachable high speed miniature scanning probe microscope for large area substrates inspection

    SciTech Connect

    Sadeghian, Hamed E-mail: h.sadeghianmarnani@tudelft.nl; Herfst, Rodolf; Winters, Jasper; Crowcombe, Will; Kramer, Geerten; Dool, Teun van den; Es, Maarten H. van

    2015-11-15

    We have developed a high speed, miniature scanning probe microscope (MSPM) integrated with a Positioning Unit (PU) for accurately positioning the MSPM on a large substrate. This combination enables simultaneous, parallel operation of many units on a large sample for high throughput measurements. The size of the MSPM is 19 × 45 × 70 mm{sup 3}. It contains a one-dimensional flexure stage with counter-balanced actuation for vertical scanning with a bandwidth of 50 kHz and a z-travel range of more than 2 μm. This stage is mechanically decoupled from the rest of the MSPM by suspending it on specific dynamically determined points. The motion of the probe, which is mounted on top of the flexure stage is measured by a very compact optical beam deflection (OBD). Thermal noise spectrum measurements of short cantilevers show a bandwidth of 2 MHz and a noise of less than 15 fm/Hz{sup 1/2}. A fast approach and engagement of the probe to the substrate surface have been achieved by integrating a small stepper actuator and direct monitoring of the cantilever response to the approaching surface. The PU has the same width as the MSPM, 45 mm and can position the MSPM to a pre-chosen position within an area of 275×30 mm{sup 2} to within 100 nm accuracy within a few seconds. During scanning, the MSPM is detached from the PU which is essential to eliminate mechanical vibration and drift from the relatively low-resonance frequency and low-stiffness structure of the PU. Although the specific implementation of the MSPM we describe here has been developed as an atomic force microscope, the general architecture is applicable to any form of SPM. This high speed MSPM is now being used in a parallel SPM architecture for inspection and metrology of large samples such as semiconductor wafers and masks.

  1. Scanning Hall probe microscopy of magnetic vortices in very underdoped yttrium-barium-copper-oxide

    NASA Astrophysics Data System (ADS)

    Guikema, Janice Wynn

    Since their discovery by Bednorz and Muller in 1986, high-temperature cuprate superconductors have been the subject of intense research. Despite this effort, agreement on the mechanism of high- Tc has not been reached. Many theories make their strongest predictions for underdoped superconductors with very low superfluid density ns/m*. I implemented a scanning Hall probe microscope (SHPM) and used it to study magnetic vortices in newly available single crystals of very underdoped YBa2Cu3O6+x . These studies have disproved a promising theory of spin-charge separation, measured the apparent vortex size (an upper bound on the penetration depth lambda ab), and revealed an intriguing phenomenon of "split" vortices. SHPM is a non-invasive and direct method for magnetic field imaging. It is one of the few techniques capable of submicron spatial resolution coupled with sub-phi0 (flux quantum) sensitivity, and it operates over a wide temperature range. Chapter 2 introduces the variable temperature scanning microscope and discusses the scanning Hall probe set-up and scanner characterizations. Chapter 3 details my fabrication of submicron GaAs/AlGaAs Hall probes and discusses noise studies for a range of probe sizes, which suggest that sub-100 nm probes could be made without compromising flux sensitivity. The subsequent chapters detail SHPM (and SQUID) studies of very underdoped YBa2Cu3O6+x crystals with T c ≤ 15 K. Chapter 4 describes two experimental tests for visons, essential excitations of a spin-charge separation theory proposed by Senthil and Fisher. We searched for predicted hc/ e vortices and a vortex memory effect with null results, placing upper bounds on the vison energy inconsistent with the theory. Chapter 5 discusses imaging of isolated vortices as a function of Tc. Vortex images were fit with theoretical magnetic field profiles in order to extract the apparent vortex size. The data for the lowest Tc 's (5 and 6.5 K) show some inhomogeneity and suggest that

  2. What is Scanning Probe Microscopy? And How Can It Be Used In Failure Analysis?

    SciTech Connect

    Campbell, A.; Tangyunyong, P.

    1999-03-26

    Scanning probe microscopy (SPM) techniques are not suitable as global defect-localization tools. They can, however, pinpoint the exact location of the defects once the approximate locations of the defects have been identified by other failure analysis techniques. SPM techniques also provide information such as 3-D topology, current, surface potential, and 2-D dopant profile that may not be readily obtainable with other techniques. This information, coupled with the unparalleled spatial resolution and high detection sensitivity can be used by failure analysts for root cause analysis.

  3. Bioelectromechanical Imaging by Scanning Probe Microscopy: Galvani's Experiment at the Nanoscale

    SciTech Connect

    Kalinin, Sergei V; Rodriguez, Brian J; Shin, Junsoo; Jesse, Stephen; Grichko, V.; Thundat, Thomas George; Baddorf, Arthur P; Gruverman, A.

    2006-01-01

    Since the discovery in the late 18th century of electrically induced mechanical response in muscle tissue, coupling between electrical and mechanical phenomena has been shown to be a near-universal feature of biological systems. Here, we employ scanning probe microscopy (SPM) to measure the sub-Angstrom mechanical response of a biological system induced by an electric bias applied to a conductive SPM tip. Visualization of the spiral shape and orientation of protein fibrils with 5 nm spatial resolution in a human tooth and chitin molecular bundle orientation in a butterfly wing is demonstrated. In particular, the applicability of SPM-based techniques for the determination of molecular orientation is discussed.

  4. Dual-probe scanning tunneling microscope for study of nanoscale metal-semiconductor interfaces

    NASA Astrophysics Data System (ADS)

    Yi, W.; Kaya, I. I.; Altfeder, I. B.; Appelbaum, I.; Chen, D. M.; Narayanamurti, V.

    2005-06-01

    Using a dual-probe scanning tunneling microscope, we have performed three-terminal ballistic electron emission spectroscopy on Au /GaAs(100) by contacting the patterned metallic thin film with one tip and injecting ballistic electrons with another tip. The collector current spectra agree with a Monte-Carlo simulation based on modified planar tunneling theory. Our results suggest that it is possible to study nanoscale metal-semiconductor interfaces without the requirement of an externally-contacted continuous metal thin film.

  5. Emerging scanning probe approaches to the measurement of ionic reactivity at energy storage materials.

    PubMed

    Barton, Zachary J; Rodríguez-López, Joaquín

    2016-04-01

    Many modern energy storage technologies operate via the nominally reversible shuttling of alkali ions between an anode and a cathode capable of hosting them. The degradation process that occurs with normal usage is not yet fully understood, but emerging progress in analytical tools may help address this knowledge gap. By interrogating ionic fluxes over electrified surfaces, scanning probe methods may identify features that impact the local cyclability of a material and subsequently help inform rational electrode design for future generations of batteries. Methods developed for identifying ion fluxes for batteries show great promise for broader applications, including biological interfaces, corrosion, and catalysis. Graphical Abstract Versatile ionics for next-generation batteries. PMID:26898202

  6. Principal Component Analysis of Spectroscopic Imaging Data in Scanning Probe Microscopy

    SciTech Connect

    Jesse, Stephen; Kalinin, Sergei V

    2009-01-01

    The approach for data analysis in band excitation family of scanning probe microscopies based on principal component analysis (PCA) is explored. PCA utilizes the similarity between spectra within the image to select the relevant response components. For small signal variations within the image, the PCA components coincide with the results of deconvolution using simple harmonic oscillator model. For strong signal variations, the PCA allows effective approach to rapidly process, de-noise and compress the data. The extension of PCA for correlation function analysis is demonstrated. The prospects of PCA as a universal tool for data analysis and representation in multidimensional SPMs are discussed.

  7. Transition of oxide film configuration and the critical stress inferred by scanning probe microscopy at nanoscale

    NASA Astrophysics Data System (ADS)

    Fang, Xufei; Li, Yan; Zhang, Changxing; Dong, Xuelin; Feng, Xue

    2016-09-01

    Scanning probe microscopy (SPM) equipped in high temperature nanoindentation instrument is adopted to in situ characterize the oxide film growth on Ni-base single crystal at nanoscale. SPM images reveal a transition of oxide film configuration that the originally flat surface roughens during oxidation. Based on the stress-diffusion coupling effect during oxidation, the stress evolution in the oxide film and the evolution of surface configuration are analyzed. A new method to infer the critical stress in the oxide film at the transition point is proposed by measuring the undulated surface wavelength based on the surface morphology obtained by SPM.

  8. Electrostrictive and electrostatic responses in contact mode voltage modulated Scanning Probe Microscopies

    SciTech Connect

    Eliseev, E. A.; Morozovska, A. N.; Ievlev, Anton; Balke, Nina; Maksymovych, Petro; Tselev, Alexander; Kalinin, Sergei V

    2014-01-01

    Electromechanical response of solids underpins image formation mechanism of several scanning probe microscopy techniques including the piezoresponse force microscopy (PFM) and electrochemical strain microscopy (ESM). While the theory of linear piezoelectric and ionic responses are well developed, the contributions of quadratic effects including electrostriction and capacitive tip-surface forces to measured signal remain poorly understood. Here we analyze the electrostrictive and capacitive contributions to the PFM and ESM signals and discuss the implications of the dielectric tip-surface gap on these interactions.

  9. Probing the Inelastic Interactions in Molecular Junctions by Scanning Tunneling Microscope

    NASA Astrophysics Data System (ADS)

    Xu, Chen

    With a sub-Kelvin scanning tunneling microscope, the energy resolution of spectroscopy is improved dramatically. Detailed studies of finer features of spectrum become possible. The asymmetry in the line shape of carbon monoxide vibrational spectra is observed to correlate with the couplings of the molecule to the tip and substrates. The spin-vibronic coupling in the molecular junctions is revisited with two metal phthalocyanine molecules, unveiling sharp spin-vibronic peaks. Finally, thanks to the improved spectrum resolution, the bonding structure of the acyclic compounds molecules is surveyed with STM inelastic tunneling probe, expanding the capability of the innovative high resolution imaging technique.

  10. Hotspot decorations map plasmonic patterns with the resolution of scanning probe techniques.

    PubMed

    Valev, V K; Silhanek, A V; Jeyaram, Y; Denkova, D; De Clercq, B; Petkov, V; Zheng, X; Volskiy, V; Gillijns, W; Vandenbosch, G A E; Aktsipetrov, O A; Ameloot, M; Moshchalkov, V V; Verbiest, T

    2011-06-01

    In high definition mapping of the plasmonic patterns on the surfaces of nanostructures, the diffraction limit of light remains an important obstacle. Here we demonstrate that this diffraction limit can be completely circumvented. We show that upon illuminating nanostructures made of nickel and palladium, the resulting surface-plasmon pattern is imprinted on the structures themselves; the hotspots (regions of local field enhancement) are decorated with overgrowths, allowing for their subsequent imaging with scanning-probe techniques. The resulting resolution of plasmon pattern imaging is correspondingly improved. PMID:21702624

  11. Enabling freehand lateral scanning of optical coherence tomography needle probes with a magnetic tracking system

    PubMed Central

    Yeo, Boon Y.; McLaughlin, Robert A.; Kirk, Rodney W.; Sampson, David D.

    2012-01-01

    We present a high-resolution three-dimensional position tracking method that allows an optical coherence tomography (OCT) needle probe to be scanned laterally by hand, providing the high degree of flexibility and freedom required in clinical usage. The method is based on a magnetic tracking system, which is augmented by cross-correlation-based resampling and a two-stage moving window average algorithm to improve upon the tracker's limited intrinsic spatial resolution, achieving 18 µm RMS position accuracy. A proof-of-principle system was developed, with successful image reconstruction demonstrated on phantoms and on ex vivo human breast tissue validated against histology. This freehand scanning method could contribute toward clinical implementation of OCT needle imaging. PMID:22808429

  12. Specification, design and commissioning of an ultra-low-vibration facility for Scanning probe microscopy experiments

    NASA Astrophysics Data System (ADS)

    MacLeod, Benjamin; Pennec, Yan; Wong, Vincent; Adamson, Graeme

    2012-10-01

    Scanning probe microscopes are perhaps best known for being able to image individual atoms in real space. A practical complication of this extreme spatial sensitivity is that these instruments are also extremely sensitive to mechanical vibrations; to approach ultimate levels of performance, these microscopes must therefore be operated in an environment with an extremely low level of mechanical vibrations. In this work, the specification, design and commissioning of a new ultra-low-vibration facility recently completed at the University of British Columbia is presented. Based on the pneumatically-suspended inertial slab concept used at NIST's Gaithersburg facilityfootnotetextHal Amick, Bea Sennewald, Norman C. Pardue, Clayton Teague, and Brian Scace, Noise Control Engineering Journal 46, 39-47 (1998). this system will be used as a highly stable platform for a 50mK Scanning Tunneling Microscope system.

  13. Comment on ``MEMS-based high speed scanning probe microscopy'' [Rev. Sci. Instrum. 81, 043702 (2010)

    NASA Astrophysics Data System (ADS)

    Degertekin, F. Levent; Torun, Hamdi

    2010-11-01

    In a recent article, Disseldorp et al. [Rev. Sci. Instrum. 81, 043702 (2010)] present a micromachined z-scanner for scanning probe microscopy (SPM). The scanner comprises a micromachined electrostatically actuated membrane anchored to its substrate with crab-leg flexures. This structure is used as a fast actuator specifically for atomic force microscope and scanning tunneling microscope. The authors present topographic images acquired using the scanner in this paper and elsewhere [F. C. Tabak et al., Ultramicroscopy 110, 599 (2010)]. Although the work is clearly described, it does not appear to be placed in proper context. For example, the authors claim that previous work on microelectromechanical systems SPM has not been focused on high-speed imaging with feedback, which is not supported by the existing literature. In addition, similar actuator structures, albeit slightly larger scale, have been designed and used for SPM applications. Here, we would like comment briefly on the existing literature to clarify the significance of the work.

  14. Finger probe array for topography-tolerant scanning electrochemical microscopy of extended samples.

    PubMed

    Lesch, Andreas; Chen, Po-Chung; Roelfs, Folkert; Dosche, Carsten; Momotenko, Dmitry; Cortés-Salazar, Fernando; Girault, Hubert H; Wittstock, Gunther

    2014-01-01

    Scanning electrochemical microscopy with soft microelectrode array probes has recently been used to enable reactivity imaging of extended areas and to compensate sample corrugation perpendicular to the scanning direction. Here, the use of a new type of microelectrode arrays is described in which each individual microelectrode can independently compensate corrugations of the sample surface. It consists of conventional Pt microelectrodes enclosed in an insulating glass sheath. The microelectrodes are individually fixed to a new holder system by magnetic forces. The concept was tested using a large 3D sample with heights up to 12 μm specially prepared by inkjet printing. The microelectrodes follow the topography in a constant working distance independently from each other while exerting low pressure on the surface. PMID:24328212

  15. Characterizing Surfaces of the Wide Bandgap Semiconductor Ilmenite with Scanning Probe Microcopies

    NASA Technical Reports Server (NTRS)

    Wilkins, R.; Powell, Kirk St. A.

    1997-01-01

    Ilmenite (FeTiO3) is a wide bandgap semiconductor with an energy gap of about 2.5eV. Initial radiation studies indicate that ilmenite has properties suited for radiation tolerant applications, as well as a variety of other electronic applications. Two scanning probe microscopy methods have been used to characterize the surface of samples taken from Czochralski grown single crystals. The two methods, atomic force microscopy (AFM) and scanning tunneling microscopy (STM), are based on different physical principles and therefore provide different information about the samples. AFM provides a direct, three-dimensional image of the surface of the samples, while STM give a convolution of topographic and electronic properties of the surface. We will discuss the differences between the methods and present preliminary data of each method for ilmenite samples.

  16. Orthogonal Supramolecular Polymer Formation on Highly Oriented Pyrolytic Graphite (HOPG) Surfaces Characterized by Scanning Probe Microscopy.

    PubMed

    Gong, Yongxiang; Zhang, Siqi; Geng, Yanfang; Niu, Chunmei; Yin, Shouchun; Zeng, Qingdao; Li, Min

    2015-10-27

    Formation of an orthogonal supramolecular polymer on a highly oriented pyrolytic graphite (HOPG) surface was demonstrated for the first time by means of scanning probe microscopy (SPM). Atomic force microscopy (AFM) was employed to characterize the variation of both the thickness and the topography of the film formed from (1) monomer 1, (2) monomer 1/Zn(2+), and (3) monomer 1/Zn(2+)/cross-linker 2, respectively. Scanning tunneling microscopy (STM) was used to monitor the self-assembly behavior of monomer 1 itself, as well as 1/Zn(2+) ions binary system on graphite surface, further testifying for the formation of linear polymer via coordination interaction at the single molecule level. These results, given by the strong surface characterization tool of SPM, confirm the formation of the orthogonal polymer on the surface of graphite, which has great significance in regard to fabricating a complex superstructure on surfaces. PMID:26457462

  17. Three axis vector magnet set-up for cryogenic scanning probe microscopy

    SciTech Connect

    Galvis, J. A.; Herrera, E.; Buendía, A.; Guillamón, I.; Vieira, S.; Suderow, H.; Azpeitia, J.; Luccas, R. F.; Munuera, C.; García-Hernandez, M.; and others

    2015-01-15

    We describe a three axis vector magnet system for cryogenic scanning probe microscopy measurements. We discuss the magnet support system and the power supply, consisting of a compact three way 100 A current source. We obtain tilted magnetic fields in all directions with maximum value of 5T along z-axis and of 1.2T for XY-plane magnetic fields. We describe a scanning tunneling microscopy-spectroscopy (STM-STS) set-up, operating in a dilution refrigerator, which includes a new high voltage ultralow noise piezodrive electronics and discuss the noise level due to vibrations. STM images and STS maps show atomic resolution and the tilted vortex lattice at 150 mK in the superconductor β-Bi{sub 2}Pd. We observe a strongly elongated hexagonal lattice, which corresponds to the projection of the tilted hexagonal vortex lattice on the surface. We also discuss Magnetic Force Microscopy images in a variable temperature insert.

  18. Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor

    NASA Astrophysics Data System (ADS)

    Pelliccione, Matthew; Jenkins, Alec; Ovartchaiyapong, Preeti; Reetz, Christopher; Emmanuelidu, Eve; Ni, Ni; Bleszynski Jayich, Ania

    The nitrogen vacancy (NV) defect in diamond has emerged as a promising candidate for high resolution magnetic imaging based on its atomic size and quantum-limited sensing capabilities afforded by long spin coherence times. Although the NV center has been successfully implemented as a nanoscale scanning magnetic probe at room temperature, it has remained an outstanding challenge to extend this capability to cryogenic temperatures, where many solid-state systems exhibit non-trivial magnetic order. In this talk, we present NV magnetic imaging at T = 6 K, first benchmarking the technique with a magnetic hard disk sample, then utilizing the technique to image vortices in the iron pnictide superconductor BaFe2(As0.7P0.3)2 with Tc = 30 K. In addition, we discuss other candidate solid-state systems that can benefit from the high spatial resolution and field sensitivity of the scanning NV magnetometer.

  19. Three axis vector magnet set-up for cryogenic scanning probe microscopy.

    PubMed

    Galvis, J A; Herrera, E; Guillamón, I; Azpeitia, J; Luccas, R F; Munuera, C; Cuenca, M; Higuera, J A; Díaz, N; Pazos, M; García-Hernandez, M; Buendía, A; Vieira, S; Suderow, H

    2015-01-01

    We describe a three axis vector magnet system for cryogenic scanning probe microscopy measurements. We discuss the magnet support system and the power supply, consisting of a compact three way 100 A current source. We obtain tilted magnetic fields in all directions with maximum value of 5T along z-axis and of 1.2T for XY-plane magnetic fields. We describe a scanning tunneling microscopy-spectroscopy (STM-STS) set-up, operating in a dilution refrigerator, which includes a new high voltage ultralow noise piezodrive electronics and discuss the noise level due to vibrations. STM images and STS maps show atomic resolution and the tilted vortex lattice at 150 mK in the superconductor β-Bi2Pd. We observe a strongly elongated hexagonal lattice, which corresponds to the projection of the tilted hexagonal vortex lattice on the surface. We also discuss Magnetic Force Microscopy images in a variable temperature insert. PMID:25638089

  20. Fabrication of Si nanowires on Si (100) using a scanning probe tip

    NASA Astrophysics Data System (ADS)

    Smith, Joshua; Davis, Robert; Dang, Ying Yi; Fedder, Gary; Bain, Jim; Ricketts, David

    2009-03-01

    Reliable fabrication on the nanoscale is becoming increasingly important. The co-author team is investigating a nanolithography technique for the deposition of nanoscale features entitled ``Tip-directed, field-emission assisted nanomanufacturing'' (TFAN). The TFAN process involves the adsorption of a layer of silicon-containing gas, such as disilane, to a substrate and the selective patterning of the surface with field-emitted electrons from a scanning probe tip. The electrons crack the Si containing molecules, which results in the deposition of Si on the substrate. The adsorption of the Si-containing molecules to the substrate surface is critical to the success of this approach. The investigation involves the determination of the coverage, sticking coefficient, and time constant of disilane on the Si(100) surface using temperature programmed desorption and scanning tunneling microscopy.

  1. Self-sensing cantilevers with integrated conductive coaxial tips for high-resolution electrical scanning probe metrology

    NASA Astrophysics Data System (ADS)

    Haemmerli, Alexandre J.; Harjee, Nahid; Koenig, Markus; Garcia, Andrei G. F.; Goldhaber-Gordon, David; Pruitt, Beth L.

    2015-07-01

    The lateral resolution of many electrical scanning probe techniques is limited by the spatial extent of the electrostatic potential profiles produced by their probes. Conventional unshielded conductive atomic force microscopy probes produce broad potential profiles. Shielded probes could offer higher resolution and easier data interpretation in the study of nanostructures. Electrical scanning probe techniques require a method of locating structures of interest, often by mapping surface topography. As the samples studied with these techniques are often photosensitive, the typical laser measurement of cantilever deflection can excite the sample, causing undesirable changes electrical properties. In this work, we present the design, fabrication, and characterization of probes that integrate coaxial tips for spatially sharp potential profiles with piezoresistors for self-contained, electrical displacement sensing. With the apex 100 nm above the sample surface, the electrostatic potential profile produced by our coaxial tips is more than 2 times narrower than that of unshielded tips with no long tails. In a scan bandwidth of 1 Hz-10 kHz, our probes have a displacement resolution of 2.9 Å at 293 K and 79 Å at 2 K, where the low-temperature performance is limited by amplifier noise. We show scanning gate microscopy images of a quantum point contact obtained with our probes, highlighting the improvement to lateral resolution resulting from the coaxial tip.

  2. Self-sensing cantilevers with integrated conductive coaxial tips for high-resolution electrical scanning probe metrology

    SciTech Connect

    Haemmerli, Alexandre J.; Pruitt, Beth L.; Harjee, Nahid; Koenig, Markus; Garcia, Andrei G. F.; Goldhaber-Gordon, David

    2015-07-21

    The lateral resolution of many electrical scanning probe techniques is limited by the spatial extent of the electrostatic potential profiles produced by their probes. Conventional unshielded conductive atomic force microscopy probes produce broad potential profiles. Shielded probes could offer higher resolution and easier data interpretation in the study of nanostructures. Electrical scanning probe techniques require a method of locating structures of interest, often by mapping surface topography. As the samples studied with these techniques are often photosensitive, the typical laser measurement of cantilever deflection can excite the sample, causing undesirable changes electrical properties. In this work, we present the design, fabrication, and characterization of probes that integrate coaxial tips for spatially sharp potential profiles with piezoresistors for self-contained, electrical displacement sensing. With the apex 100 nm above the sample surface, the electrostatic potential profile produced by our coaxial tips is more than 2 times narrower than that of unshielded tips with no long tails. In a scan bandwidth of 1 Hz–10 kHz, our probes have a displacement resolution of 2.9 Å at 293 K and 79 Å at 2 K, where the low-temperature performance is limited by amplifier noise. We show scanning gate microscopy images of a quantum point contact obtained with our probes, highlighting the improvement to lateral resolution resulting from the coaxial tip.

  3. Development of a c-scan photoacoutsic imaging probe for prostate cancer detection

    NASA Astrophysics Data System (ADS)

    Valluru, Keerthi S.; Chinni, Bhargava K.; Rao, Navalgund A.; Bhatt, Shweta; Dogra, Vikram S.

    2011-03-01

    Prostate cancer is the second leading cause of death in American men after lung cancer. The current screening procedures include Digital Rectal Exam (DRE) and Prostate Specific Antigen (PSA) test, along with Transrectal Ultrasound (TRUS). All suffer from low sensitivity and specificity in detecting prostate cancer in early stages. There is a desperate need for a new imaging modality. We are developing a prototype transrectal photoacoustic imaging probe to detect prostate malignancies in vivo that promises high sensitivity and specificity. To generate photoacoustic (PA) signals, the probe utilizes a high energy 1064 nm laser that delivers light pulses onto the prostate at 10Hz with 10ns duration through a fiber optic cable. The designed system will generate focused C-scan planar images using acoustic lens technology. A 5 MHz custom fabricated ultrasound sensor array located in the image plane acquires the focused PA signals, eliminating the need for any synthetic aperture focusing. The lens and sensor array design was optimized towards this objective. For fast acquisition times, a custom built 16 channel simultaneous backend electronics PCB has been developed. It consists of a low-noise variable gain amplifier and a 16 channel ADC. Due to the unavailability of 2d ultrasound arrays, in the current implementation several B-scan (depth-resolved) data is first acquired by scanning a 1d array, which is then processed to reconstruct either 3d volumetric images or several C-scan planar images. Experimental results on excised tissue using a in-vitro prototype of this technology are presented to demonstrate the system capability in terms of resolution and sensitivity.

  4. Correction of distortion due to thermal drift in scanning probe microscopy.

    PubMed

    Salmons, Brian S; Katz, Daniel R; Trawick, Matthew L

    2010-03-01

    A common source of distortion in scanning probe microscope (SPM) images is "thermal drift," the slow thermal expansion of different materials in the sample and microscope due to small changes in temperature over the course of a scan. We describe here a method for correcting this distortion by immediately following each image scan with a rescan of a small, narrow portion of the same area with the slow and fast scan axes reversed. The original, full image is corrected using a low-order polynomial mapping function, with coefficients determined by a pixel-wise comparison between the original full and rescanned partial images. We demonstrate here that this method can correctly remove distortion from a wide range of images with a precision of better than one pixel, and is also robust to common imaging artifacts. We also address some of the programming considerations that have gone into implementing this computationally intensive technique, which can now be performed using standard desktop hardware in times that range between a few seconds and a few minutes. PMID:20149540

  5. Nanolithography by scanning probes on calixarene molecular glass resist using mix-and-match lithography

    NASA Astrophysics Data System (ADS)

    Kaestner, Marcus; Hofer, Manuel; Rangelow, Ivo W.

    2013-07-01

    Going "beyond the CMOS information-processing era," taking advantage of quantum effects occurring at sub-10-nm level, requires novel device concepts and associated fabrication technologies able to produce promising features at acceptable cost levels. Herein, the challenge affecting the lithographic technologies comprises the marriage of down-scaling the device-relevant feature size towards single-nanometer resolution with a simultaneous increase of the throughput capabilities. Mix-and-match lithographic strategies are one promising path to break through this trade-off. Proof-of-concept combining electron beam lithography (EBL) with the outstanding capabilities of closed-loop electric field current-controlled scanning probe nanolithography (SPL) is demonstrated. This combination, whereby also extreme ultraviolet lithography (EUVL) is possible instead of EBL, enables more: improved patterning resolution and reproducibility in combination with excellent overlay and placement accuracy. Furthermore, the symbiosis between EBL (EUVL) and SPL expands the process window of EBL (EUVL) beyond the state of the art, allowing SPL-based pre- and post-patterning of EBL (EUVL) written features at critical dimension levels with scanning probe microscopy-based pattern overlay alignment capability. Moreover, we are able to modify the EBL (EUVL) pattern even after the development step. The ultra-high resolution mix-and-match lithography experiments are performed on the molecular glass resist calixarene using a Gaussian e-beam lithography system operating at 10 keV and a home-developed SPL setup.

  6. Facile Preparation of a Platinum Silicide Nanoparticle-Modified Tip Apex for Scanning Kelvin Probe Microscopy.

    PubMed

    Lin, Chun-Ting; Chen, Yu-Wei; Su, James; Wu, Chien-Ting; Hsiao, Chien-Nan; Shiao, Ming-Hua; Chang, Mao-Nan

    2015-12-01

    In this study, we propose an ultra-facile approach to prepare a platinum silicide nanoparticle-modified tip apex (PSM tip) used for scanning Kelvin probe microscopy (SKPM). We combined a localized fluoride-assisted galvanic replacement reaction (LFAGRR) and atmospheric microwave annealing (AMA) to deposit a single platinum silicide nanoparticle with a diameter of 32 nm on the apex of a bare silicon tip of atomic force microscopy (AFM). The total process was completed in an ambient environment in less than 3 min. The improved potential resolution in the SKPM measurement was verified. Moreover, the resolution of the topography is comparable to that of a bare silicon tip. In addition, the negative charges found on the PSM tips suggest the possibility of exploring the use of current PSM tips to sense electric fields more precisely. The ultra-fast and cost-effective preparation of the PSM tips provides a new direction for the preparation of functional tips for scanning probe microscopy. PMID:26471480

  7. Near-field microwave scanning probe imaging of conductivity inhomogeneities in CVD graphene.

    PubMed

    Tselev, Alexander; Lavrik, Nickolay V; Vlassiouk, Ivan; Briggs, Dayrl P; Rutgers, Maarten; Proksch, Roger; Kalinin, Sergei V

    2012-09-28

    We have performed near-field scanning microwave microscopy (SMM) of graphene grown by chemical vapor deposition. Due to the use of probe-sample capacitive coupling and a relatively high ac frequency of a few GHz, this scanning probe method allows mapping of local conductivity without a dedicated counter electrode, with a spatial resolution of about 50 nm. Here, the coupling was enabled by atomic layer deposition of alumina on top of graphene, which in turn enabled imaging both large-area films, as well as micron-sized islands, with a dynamic range covering a low sheet resistance of a metal film and a high resistance of highly disordered graphene. The structures of graphene grown on Ni films and Cu foils are explored, and the effects of growth conditions are elucidated. We present a simple general scheme for interpretation of the contrast in the SMM images of our graphene samples and other two-dimensional conductors, which is supported by extensive numerical finite-element modeling. We further demonstrate that combination of the SMM and numerical modeling allows quantitative information about the sheet resistance of graphene to be obtained, paving the pathway for characterization of graphene conductivity with a sub-100 nm special resolution. PMID:22948033

  8. Near-field Microwave Scanning Probe Imaging of Conductivity Inhomogeneities in CVD Graphene

    SciTech Connect

    Tselev, Alexander; Lavrik, Nickolay V; Vlassiouk, Ivan V; Briggs, Dayrl P; Rutgers, Maarten; Proksch, Roger; Kalinin, Sergei V

    2012-01-01

    We have performed near-field scanning microwave microscopy (SMM) of graphene grown by chemical vapor deposition. Due to the use of probe-sample capacitive coupling and a relatively high ac frequency of a few GHz, this scanning probe method allows mapping of local conductivity without a dedicated counter electrode, with a spatial resolution of about 50 nm. Here, the coupling was enabled by atomic layer deposition of alumina on top of graphene, which in turn enabled imaging both large-area films, as well as micron-sized islands, with a dynamic range covering a low sheet resistance of a metal film and a high resistance of highly disordered graphene. The structures of graphene grown on Ni films and Cu foils are explored, and the effects of growth conditions are elucidated. We present a simple general scheme for interpretation of the contrast in the SMM images of our graphene samples and other two-dimensional conductors, which is supported by extensive numerical finite-element modeling. We further demonstrate that combination of the SMM and numerical modeling allows quantitative information about the sheet resistance of graphene to be obtained, paving the pathway for characterization of graphene conductivity with a sub-100 nm special resolution.

  9. ac driving amplitude dependent systematic error in scanning Kelvin probe microscope measurements: Detection and correction

    SciTech Connect

    Wu Yan; Shannon, Mark A.

    2006-04-15

    The dependence of the contact potential difference (CPD) reading on the ac driving amplitude in scanning Kelvin probe microscope (SKPM) hinders researchers from quantifying true material properties. We show theoretically and demonstrate experimentally that an ac driving amplitude dependence in the SKPM measurement can come from a systematic error, and it is common for all tip sample systems as long as there is a nonzero tracking error in the feedback control loop of the instrument. We further propose a methodology to detect and to correct the ac driving amplitude dependent systematic error in SKPM measurements. The true contact potential difference can be found by applying a linear regression to the measured CPD versus one over ac driving amplitude data. Two scenarios are studied: (a) when the surface being scanned by SKPM is not semiconducting and there is an ac driving amplitude dependent systematic error; (b) when a semiconductor surface is probed and asymmetric band bending occurs when the systematic error is present. Experiments are conducted using a commercial SKPM and CPD measurement results of two systems: platinum-iridium/gap/gold and platinum-iridium/gap/thermal oxide/silicon are discussed.

  10. Nanoscale Radiative Heat Transfer between a Scanning Probe and a Flat Surface

    NASA Astrophysics Data System (ADS)

    Song, Bai; Kim, Kyeongtae; Lee, Woochul; Jeong, Won Ho; Meyhofer, Edgar; Reddy, Pramod

    2014-03-01

    Fluctuational electrodynamics based calculations predict a significant increase in the efficiency of thermophotovoltaic devices when an emitter is placed in the close proximity of an appropriately designed photovoltaic (PV) cell. The enhancement is expected to be further increased if the emissive properties of the emitter are matched to the band gap of the PV cell via nanostructuring. However, before this can be accomplished, it is necessary to better understand the underlying physics. This is especially true given the discrepancies seen between published experimental and theoretical studies. Here we present our measurements of nanoscale radiative heat transfer between the tip of scanning probes and an atomically flat surface spatially separated by very small gaps (1-10 nm). The experiments were performed in a UHV environment using custom-developed scanning probed with picowatt heat-flow resolution. Current measurements show significant deviations from computational predictions. We are currently studying radiative thermal transport between a range of materials to reveal the contribution of important effects such as non-locality and eddy currents. 1) US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under award no. DE-SC0004871 2) Army Research office (W911NF-12-1-0612), 3) NSF Thermal Transport Prcesses (CBET 1235691).

  11. Microfabrication of patterns of adherent marine bacterium Phaeobacter inhibens using soft lithography and scanning probe lithography.

    PubMed

    Zhao, Chuan; Burchardt, Malte; Brinkhoff, Thorsten; Beardsley, Christine; Simon, Meinhard; Wittstock, Gunther

    2010-06-01

    Two lithographic approaches have been explored for the microfabrication of cellular patterns based on the attachment of marine bacterium Phaeobacter inhibens strain T5. Strain T5 produces a new antibiotic that makes this bacterium potentially interesting for the pharmaceutical market and as a probiotic organism in aquacultures and in controlling biofouling. The microcontact printing (microCP) method is based on the micropatterning of self-assembled monolayers (SAMs) terminated with adhesive end groups such as CH(3) and COOH and nonadhesive groups (e.g., short oligomers of ethylene glycol (OEG)) to form micropatterned substrates for the adhesion of strain T5. The scanning probe lithographic method is based on the surface modification of OEG SAM by using a microelectrode, the probe of a scanning electrochemical microscope (SECM). Oxidizing agents (e.g., Br(2)) were electrogenerated in situ at the microelectrodes from Br(-) in aqueous solution to remove OEG SAMs locally, which allows the subsequent adsorption of bacteria. Various micropatterns of bacteria could be formed in situ on the substrate without a prefabricated template. The fabricated cellular patterns may be applied to a variety of marine biological studies that require the analysis of biofilm formation, cell-cell and cell-surface interactions, and cell-based biosensors and bioelectronics. PMID:20397716

  12. Novel failure analysis techniques using photon probing with a scanning optical microscope

    SciTech Connect

    Cole, E.I. Jr.; Soden, J.M.; Rife, J.L.; Barton, D.L.; Henderson, C.L.

    1993-12-31

    Three new failure analysis techniques for integrated circuits (ICs) have been developed using localized photon probing with a scanning optical microscope (SOM). The first two are light-induced voltage alteration (LIVA) imaging techniques that (1) localize open-circuited and damaged junctions and (2) image transistor logic states. The third technique uses the SOM to control logic states optically from the IC backside. LIVA images are produced by monitoring the voltage fluctuations of a constant current power supply as a laser beam is scanned over the IC. High selectivity for localizing defects has been demonstrated using the LIVA approach. Logic state mapping results, similar to previous work using biased optical beam induced current (OBIC) and laser probing approaches have also been produced using LIVA. Application of the two LIVA based techniques to backside failure analysis has been demonstrated using an infrared laser source. Optical logic state control is based upon earlier work examining transistor response to photon injection. The physics of each method and their applications for failure analysis are described.

  13. Design and testing of prototype handheld scanning probes for optical coherence tomography.

    PubMed

    Demian, Dorin; Duma, Virgil-Florin; Sinescu, Cosmin; Negrutiu, Meda Lavinia; Cernat, Ramona; Topala, Florin Ionel; Hutiu, Gheorghe; Bradu, Adrian; Podoleanu, Adrian Gh

    2014-08-01

    Three simple and low-cost configurations of handheld scanning probes for optical coherence tomography have been developed. Their design and testing for dentistry applications are presented. The first two configurations were built exclusively from available off-the-shelf optomechanical components, which, to the best of our knowledge, are the first designs of this type. The third configuration includes these components in an optimized and ergonomic probe. All the designs are presented in detail to allow for their duplication in any laboratory with a minimum effort, for applications that range from educational to high-end clinical investigations. Requirements that have to be fulfilled to achieve configurations which are reliable, ergonomic-for clinical environments, and easy to build are presented. While a range of applications is possible for the prototypes developed, in this study the handheld probes are tested ex vivo with a spectral domain optical coherence tomography system built in-house, for dental constructs. A previous testing with a swept source optical coherence tomography system has also been performed both in vivo and ex vivo for ear, nose, and throat-in a medical environment. The applications use the capability of optical coherence tomography to achieve real-time, high-resolution, non-contact, and non-destructive interferometric investigations with micrometer resolutions and millimeter penetration depth inside the sample. In this study, testing the quality of the material of one of the most used types of dental prosthesis, metalo-ceramic is thus demonstrated. PMID:25107512

  14. Design and testing of prototype handheld scanning probes for optical coherence tomography

    PubMed Central

    Demian, Dorin; Sinescu, Cosmin; Negrutiu, Meda Lavinia; Cernat, Ramona; Topala, Florin Ionel; Hutiu, Gheorghe; Bradu, Adrian; Podoleanu, Adrian Gh

    2014-01-01

    Three simple and low-cost configurations of handheld scanning probes for optical coherence tomography have been developed. Their design and testing for dentistry applications are presented. The first two configurations were built exclusively from available off-the-shelf optomechanical components, which, to the best of our knowledge, are the first designs of this type. The third configuration includes these components in an optimized and ergonomic probe. All the designs are presented in detail to allow for their duplication in any laboratory with a minimum effort, for applications that range from educational to high-end clinical investigations. Requirements that have to be fulfilled to achieve configurations which are reliable, ergonomic—for clinical environments, and easy to build are presented. While a range of applications is possible for the prototypes developed, in this study the handheld probes are tested ex vivo with a spectral domain optical coherence tomography system built in-house, for dental constructs. A previous testing with a swept source optical coherence tomography system has also been performed both in vivo and ex vivo for ear, nose, and throat—in a medical environment. The applications use the capability of optical coherence tomography to achieve real-time, high-resolution, non-contact, and non-destructive interferometric investigations with micrometer resolutions and millimeter penetration depth inside the sample. In this study, testing the quality of the material of one of the most used types of dental prosthesis, metalo-ceramic is thus demonstrated. PMID:25107512

  15. Scanning thermo-ionic microscopy for probing local electrochemistry at the nanoscale

    NASA Astrophysics Data System (ADS)

    Eshghinejad, Ahmadreza; Nasr Esfahani, Ehsan; Wang, Peiqi; Xie, Shuhong; Geary, Timothy C.; Adler, Stuart B.; Li, Jiangyu

    2016-05-01

    Conventional electrochemical characterization techniques based on voltage and current measurements only probe faradaic and capacitive rates in aggregate. In this work we develop a scanning thermo-ionic microscopy (STIM) to probe local electrochemistry at the nanoscale, based on imaging of Vegard strain induced by thermal oscillation. It is demonstrated from both theoretical analysis and experimental validation that the second harmonic response of thermally induced cantilever vibration, associated with thermal expansion, is present in all solids, whereas the fourth harmonic response, caused by local transport of mobile species, is only present in ionic materials. The origin of STIM response is further confirmed by its reduced amplitude with respect to increased contact force, due to the coupling of stress to concentration of ionic species and/or electronic defects. The technique has been applied to probe Sm-doped Ceria and LiFePO4, both of which exhibit higher concentrations of mobile species near grain boundaries. The STIM gives us a powerful method to study local electrochemistry with high sensitivity and spatial resolution for a wide range of ionic systems, as well as ability to map local thermomechanical response.

  16. Thermodynamics of nanodomain formation and breakdown in Scanning Probe Microscopy: Landau-Ginzburg-Devonshire approach

    SciTech Connect

    Morozovska, Anna N.; Eliseev, Eugene A.; Li, Yulan; Svechnikov, Sergei V.; Maksymovych, Peter; Shur, V. Y.; Gopalan, Venkatraman; Chen , L.Q.; Kalinin, Sergei V.

    2009-12-01

    Thermodynamics of tip-induced nanodomain formation in scanning probe microscopy of ferroelectric films and crystals is studied using the analytical Landau-Ginzburg-Devonshire approach and phase-field modeling. The local redistribution of polarization induced by the biased probe apex is analyzed including the effects of polarization gradients, field dependence of dielectric properties, intrinsic domain-wall width, and film thickness. The polarization distribution inside a 'subcritical' nucleus of the domain preceding the nucleation event is shown to be 'soft' (i.e., smooth without domain walls) and localized below the probe, and the electrostatic field distribution is dominated by the tip. In contrast, polarization distribution inside a stable domain is 'hard' (i.e., sharp contrast with delineated domain walls) and the spontaneous polarization reorientation takes place inside a localized spatial region, where the absolute value of the resulting electric field is larger than the thermodynamic coercive field. The calculated coercive biases corresponding to formation of switched domains are in a good agreement with available experimental results for typical ferroelectric materials. The microscopic origin of the observed domain-tip elongation in the region where the probe electric field is much smaller than the intrinsic coercive field is the positive depolarization field in front of the moving-counter domain wall. For infinitely thin domain wall the depolarization field outside the semiellipsoidal domain tip is always higher than the intrinsic coercive field that must initiate the local domain breakdown through the sample depth while the domain length is finite in the energetic approach evolved by Landauer and Molotskii (we refer the phenomenon as Landauer-Molotskii paradox). Our approach provides the solution of the paradox: the domain vertical growth should be accompanied by the increase in the charged domain-wall width.

  17. Thermodynamics of nanodomain formation and breakdown in Scanning Probe Microscopy: Landau-Ginzburg-Devonshire approach

    SciTech Connect

    Morozovska, A. N.; Eliseev, E. A.; Li, Yulan; Svechnikov, S. V.; Maksymovych, Petro; Gopalana, V.; Chen, Long-Qing; Kalinin, Sergei V

    2009-01-01

    Thermodynamics of tip-induced nanodomain formation in scanning probe microscopy of ferroelectric films and crystals is studied using the analytical Landau-Ginzburg-Devonshire approach and phase-field modeling. The local redistribution of polarization induced by the biased probe apex is analyzed including the effects of polarization gradients, field dependence of dielectric properties, intrinsic domain wall width, and film thickness. The polarization distribution inside a subcritical nucleus of the domain preceding the nucleation event is shown to be soft (i.e. smooth without domain walls) and localized below the probe, and the electrostatic field distribution is dominated by the tip. In contrast, polarization distribution inside a stable domain is hard (i.e. sharp contrast with delineated domain walls) and the spontaneous polarization reorientation takes place inside a localized spatial region, where the absolute value of the resulting electric field is larger than the thermodynamic coercive field. The calculated coercive biases corresponding to formation of switched domains are in a good agreement with available experimental results for typical ferroelectric materials. The microscopic origin of the observed domain tip elongation in the region where the probe electric field is much smaller than the intrinsic coercive field is the positive depolarization field in front of the moving counter domain wall. For infinitely thin domain wall the depolarization field outside the semi-ellipsoidal domain tip is always higher than the intrinsic coercive field that must initiate the local domain breakdown through the sample depth, while the domain length is finite in the energetic approach evolved by Landauer and Molotskii (we refer the phenomenon as Landauer-Molotskii paradox). Our approach provides the solution of the paradox: the domain vertical growth should be accompanied by the increase of the charged domain wall width.

  18. An exchangeable-tip scanning probe instrument for the analysis of combinatorial libraries of electrocatalysts

    NASA Astrophysics Data System (ADS)

    Rus, Eric D.; Wang, Hongsen; Legard, Anna E.; Ritzert, Nicole L.; Bruce Van Dover, Robert; Abruña, Héctor D.

    2013-02-01

    A combined scanning differential electrochemical mass spectrometer (SDEMS)-scanning electrochemical microscope (SECM) apparatus is described. The SDEMS is used to detect and spatially resolve volatile electrochemically generated species at the surface of a substrate electrode. The SECM can electrochemically probe the reactivity of the surface and also offers a convenient means of leveling the sample. It is possible to switch between these two different scanning tips and techniques without moving the sample and while maintaining potential control of the substrate electrode. A procedure for calibration of the SDEMS tip-substrate separation, based upon the transit time of electrogenerated species from the substrate to the tip is also described. This instrument can be used in the characterization of combinatorial libraries of direct alcohol fuel cell anode catalysts. The apparatus was used to analyze the products of methanol oxidation at a Pt substrate, with the SDEMS detecting carbon dioxide and methyl formate, and a PtPb-modified Pt SECM tip used for the selective detection of formic acid. As an example system, the electrocatalytic methanol oxidation activity of a sputter-deposited binary PtRu composition spread in acidic media was analyzed using the SDEMS. These results are compared with those obtained from a pH-sensitive fluorescence assay.

  19. Ultra-Compact Multitip Scanning Probe Microscope with an Outer Diameter of 50 mm

    NASA Astrophysics Data System (ADS)

    Cherepanov, Vasily; Zubkov, Evgeny; Junker, Hubertus; Korte, Stefan; Blab, Marcus; Coenen, Peter; Voigtländer, Bert

    We present a multitip scanning tunneling microscope (STM) where four independent STM units are integrated on a diameter of 50 mm. The coarse positioning of the tips is done under the control of an optical microscope or an SEM in vacuum. The heart of this STM is a new type of piezoelectric coarse approach called Koala Drive which can have a diameter greater than 2.5 mm and a length smaller than 10 mm. Alternating movements of springs move a central tube which holds the STM tip or AFM sensor. This new operating principle provides a smooth travel sequence and avoids shaking which is intrinsically present for nanopositioners based on inertial motion with saw tooth driving signals. Inserting the Koala Drive in a piezo tube for xyz-scanning integrates a complete STM inside a 4 mm outer diameter piezo tube of <10 mm length. The use of the Koala Drive makes the scanning probe microscopy design ultra-compact and accordingly leads to a high mechanical stability. The drive is UHV, low temperature, and magnetic field compatible. The compactness of the Koala Drive allows building a four-tip STM as small as a single-tip STM with a drift of <0.2 nm/min and lowest resonance frequencies of 2.5 (xy) and 5.5 kHz (z). We present examples of the performance of the multitip STM designed using the Koala Drive.

  20. Demonstration of parallel scanning probe microscope for high throughput metrology and inspection

    NASA Astrophysics Data System (ADS)

    Sadeghian, Hamed; Dekker, Bert; Herfst, Rodolf; Winters, Jasper; Eigenraam, Alexander; Rijnbeek, Ramon; Nulkes, Nicole

    2015-03-01

    With the device dimensions moving towards the 1X node and below, the semiconductor industry is rapidly approaching the point where existing metrology, inspection and review tools face huge challenges in terms of resolution, the ability to resolve 3D and the throughput. Due to the advantages of sub-nanometer resolution and the ability of true 3D scanning, scanning probe microscope (SPM) and specifically atomic force microscope (AFM) are considered as alternative technologies for CD-metrology, defect inspection and review of 1X node and below. In order to meet the increasing demand for resolution and throughput of CD-metrology, defect inspection and review, TNO has previously introduced the parallel SPM concept, consisting of parallel operation of many miniaturized SPMs on a 300 and 450 mm wafer. In this paper we will present the proof of principle of the parallelization for metrology and inspection. To give an indication of the system's specifications, the throughput of scanning is 4500 sites per hour, each within an area of 1 μm2 and 1024 ×1024 pixels.

  1. An exchangeable-tip scanning probe instrument for the analysis of combinatorial libraries of electrocatalysts.

    PubMed

    Rus, Eric D; Wang, Hongsen; Legard, Anna E; Ritzert, Nicole L; Van Dover, Robert Bruce; Abruña, Héctor D

    2013-02-01

    A combined scanning differential electrochemical mass spectrometer (SDEMS)-scanning electrochemical microscope (SECM) apparatus is described. The SDEMS is used to detect and spatially resolve volatile electrochemically generated species at the surface of a substrate electrode. The SECM can electrochemically probe the reactivity of the surface and also offers a convenient means of leveling the sample. It is possible to switch between these two different scanning tips and techniques without moving the sample and while maintaining potential control of the substrate electrode. A procedure for calibration of the SDEMS tip-substrate separation, based upon the transit time of electrogenerated species from the substrate to the tip is also described. This instrument can be used in the characterization of combinatorial libraries of direct alcohol fuel cell anode catalysts. The apparatus was used to analyze the products of methanol oxidation at a Pt substrate, with the SDEMS detecting carbon dioxide and methyl formate, and a PtPb-modified Pt SECM tip used for the selective detection of formic acid. As an example system, the electrocatalytic methanol oxidation activity of a sputter-deposited binary PtRu composition spread in acidic media was analyzed using the SDEMS. These results are compared with those obtained from a pH-sensitive fluorescence assay. PMID:23464226

  2. Advanced gamma ray technology for scanning cargo containers.

    PubMed

    Orphan, Victor J; Muenchau, Ernie; Gormley, Jerry; Richardson, Rex

    2005-01-01

    The shipping industry is striving to increase security for cargo containers without significantly impeding traffic. Three Science Applications International Corporation (SAIC) development programs are supporting this effort. SAIC's ICIS system combines SAIC's VACIS gamma ray imaging, radiation scanning, OCR, elemental analysis and other technologies to scan containers for nuclear materials and other hazards in normal terminal traffic. SAIC's enhanced gamma ray detector improves VACIS image resolution by a factor of three. And SAIC's EmptyView software analyzes VACIS images to automatically verify empty containers. PMID:15996470

  3. Hollow cathode theory and experiment. I. Plasma characterization using fast miniature scanning probes

    SciTech Connect

    Goebel, Dan M.; Jameson, Kristina K.; Watkins, Ron M.; Katz, Ira; Mikellides, Ioannis G.

    2005-12-01

    A detailed study of the spatial variation of plasma density, temperature, and potential in hollow cathodes using miniature fast scanning probes has been undertaken in order to better understand the cathode operation and to provide benchmark data for the modeling of the cathode performance and life described in a companion paper. Profiles are obtained throughout the discharge and in the very high-density orifice region by pneumatically driven Langmuir probes, which are inserted directly into the hollow cathode orifice from either the upstream insert region inside the hollow cathode or from the downstream anode-plasma region. A fast transverse-scanning probe is also used to provide radial profiles of the cathode plume as a function of position from the cathode exit. The probes are extremely small to avoid perturbing the plasma; the ceramic tube insulator is 0.05 cm in diameter with a probe tip area of 0.002 cm{sup 2}. A series of current-voltage characteristics are obtained by applying a rapid sawtooth voltage wave form to the probe as it is scanned through the plasma at speeds of up to 2 m/s to produce the profiles with a spatial resolution of about 0.05 cm. At discharge currents of 10-25 A from the 1.5-cm-diameter hollow cathode, the plasma density inside the cathode is found to exceed 10{sup 14} cm{sup -3}, with the peak density occurring upstream of the orifice. The plasma potentials on axis inside the cathode are found to be in the 10-20 V range with electron temperatures of 2-5 eV, depending on the discharge current and gas flow rate. A potential discontinuity or double layer of less than 10 V is observed in the orifice region, and under certain conditions appears in the bright 'plasma ball' in front of the cathode. This structure tends to change location and magnitude with discharge current, gas flow, and orifice size. A potential maximum proposed in the literature to exist in or near the cathode orifice is not observed. Instead, the plasma potential increases

  4. Raman mapping using advanced line-scanning systems: geological applications.

    PubMed

    Bernard, Sylvain; Beyssac, Olivier; Benzerara, Karim

    2008-11-01

    By allowing nondestructive chemical and structural imaging of heterogeneous samples with a micrometer spatial resolution, Raman mapping offers unique capabilities for assessing the spatial distribution of both mineral and organic phases within geological samples. Recently developed line-scanning Raman mapping techniques have made it possible to acquire Raman maps over large, millimeter-sized, zones of interest owing to a drastic decrease of the data acquisition time without losing spatial or spectral resolution. The synchronization of charge-coupled device (CCD) measurements with x,y motorized stage displacement has allowed dynamic line-scanning Raman mapping to be even more efficient: total acquisition time may be reduced by a factor higher than 100 compared to point-by-point mapping. Using two chemically and texturally complex geological samples, a fossil megaspore in a metamorphic rock and aragonite-garnet intergrowths in an Eclogitic marble, we compare here two recent versions of line-scanning Raman mapping systems and discuss their respective advantages and disadvantages in terms of acquisition time, image quality, spatial and imaging resolutions, and signal-to-noise ratio. We show that line-scanning Raman mapping techniques are particularly suitable for the characterization of such samples, which are representative of the general complexity of geological samples. PMID:19007458

  5. Characterization of Antisticking Layers for UV Nanoimprint Lithography Molds with Scanning Probe Microscopy

    NASA Astrophysics Data System (ADS)

    Kurihara, Masaaki; Hatakeyama, Sho; Yamada, Noriko; Shimomura, Takeya; Nagai, Takaharu; Yoshida, Kouji; Tomita, Tatsuya; Hoga, Morihisa; Hayashi, Naoya; Ohtani, Hiroyuki; Fujihira, Masamichi

    2010-06-01

    Antisticking layers (ASLs) on UV nanoimprint lithography (UV-NIL) molds were characterized by scanning probe microscopies (SPMs) in addition to macroscopic analyses of work of adhesion and separation force. Local physical properties of the ASLs were measured by atomic force microscopy (AFM) and friction force microscopy (FFM). The behavior of local adhesive forces measured with AFM on several surfaces was consistent with that of work of adhesion obtained from contact angle. The ASLs were coated by two different processes, i.e., one is a vapor-phase process and the other a spin-coating process. The homogeneity of the ASLs prepared by the vapor-phase process was better than that of those prepared by the spin-coating process. In addition, we measured the thicknesses of ASL patterns prepared by a lift-off method to investigate the effect of the ASL thicknesses on critical dimensions of the molds with ASLs and found that this effect is not negligible.

  6. Scanning Probe Microscopy for Identifying the Component Materials of a Nanostripe Structure

    NASA Astrophysics Data System (ADS)

    Mizuno, Akira; Ando, Yasuhisa

    2010-08-01

    The authors prepared a nanostripe structure in which two types of metal are arranged alternately, and successfully identified the component materials using scanning probe microscopy (SPM) to measure the lateral force distribution image. The nanostripe structure was prepared using a new method developed by the authors and joint development members. The lateral force distribution image was measured in both friction force microscopy (FFM) and lateral modulation friction force microscopy (LM-FFM) modes. In FFM mode, the effect of slope angle appeared in the lateral force distribution image; therefore, no difference in the type of material was observed. On the other hand, in LM-FFM mode, the effect of surface curvature was observed in the lateral force distribution image. A higher friction force on chromium than on gold was identified, enabling material identification.

  7. High-precision calibration of a Scanning-Probe Microscope (SPM) for manufacturing applications

    SciTech Connect

    Chernoff, D.A.; Lohr, J.D.; Hansen, D.; Lines, M.

    1996-12-31

    For ordinary SPM (Scanning Probe Microscope) work, accuracy of XYZ length measurements of about 5% is acceptable. This is accomplished by periodic calibration checks (and adjustments, if required). Measurement of critical dimensions such as feature width and spacing on integrated circuits of compact discs requires much higher accuracy. For example, the new DVD (digital video disc) standard calls for a mean track pitch of 740 nm with a maximum allowable jitter (range) of 30 nm. To achieve a range of 30 nm, the standard deviation should be 10 nm or less. According to the gage-maker`s rule, the measurement tool should be 4x more precise than the object being measured, so we need a standard deviation of 2.5 nm. This report describes the combined use of a new type of calibration standard and new software to meet these requirements.

  8. Towards quantitative electrochemical measurements on the nanoscale by scanning probe microscopy: environmental and current spreading effects

    SciTech Connect

    Arruda, Thomas M; Kumar, Amit; Veith, Gabriel M; Jesse, Stephen; Tselev, Alexander; Baddorf, Arthur P; Balke, Nina; Kalinin, Sergei V

    2013-01-01

    The application of electric bias across tip-surface junctions in scanning probe microscopy can readily induce surface and bulk electrochemical processes that can be further detected though changes in surface topography, Faradaic or conductive currents, or electromechanical strain responses. However, the basic factors controlling tip-induced electrochemical processes, including the relationship between applied tip bias and the thermodynamics of local processes remains largely unexplored. Using the model Li-ion reduction reaction on the surface in Li-ion conducting glass ceramic, we explore the factors controlling Li-metal formation and find surprisingly strong effects of atmosphere and back electrode composition on the process. These studies suggest the feasibility of SPM-based quantitative electrochemical studies under proper environmental controls, extending the concepts of ultramicroelectrodes to the single-digit nanometer scale.

  9. Fabrication of sub-12 nm thick silicon nanowires by processing scanning probe lithography masks

    SciTech Connect

    Kyoung Ryu, Yu; Garcia, Ricardo; Aitor Postigo, Pablo; Garcia, Fernando

    2014-06-02

    Silicon nanowires are key elements to fabricate very sensitive mechanical and electronic devices. We provide a method to fabricate sub-12 nm silicon nanowires in thickness by combining oxidation scanning probe lithography and anisotropic dry etching. Extremely thin oxide masks (0.3–1.1 nm) are transferred into nanowires of 2–12 nm in thickness. The width ratio between the mask and the silicon nanowire is close to one which implies that the nanowire width is controlled by the feature size of the nanolithography. This method enables the fabrication of very small single silicon nanowires with cross-sections below 100 nm{sup 2}. Those values are the smallest obtained with a top-down lithography method.

  10. Frequency Response of the Sample Vibration Mode in Scanning Probe Acoustic Microscope

    NASA Astrophysics Data System (ADS)

    Zhao, Ya-Jun; Cheng, Qian; Qian, Meng-Lu

    2010-05-01

    Based on the interaction mechanism between tip and sample in the contact mode of a scanning probe acoustic microscope (SPAM), an active mass of the sample is introduced in the mass-spring model. The tip motion and frequency response of the sample vibration mode in the SPAM are calculated by the Lagrange equation with dissipation function. For the silicon tip and glass assemblage in the SPAM the frequency response is simulated and it is in agreement with the experimental result. The living myoblast cells on the glass slide are imaged at resonance frequencies of the SPAM system, which are 20kHz, 30kHz and 120kHz. It is shown that good contrast of SPAM images could be obtained when the system is operated at the resonance frequencies of the system in high and low-frequency regions.

  11. Scanning probe acoustic microscopy of extruded starch materials: direct visual evidence of starch crystal.

    PubMed

    Liu, Zhongdong; Liu, Boxiang; Li, Mengxing; Wei, Min; Li, Hua; Liu, Peng; Wan, Tuo

    2013-10-15

    Scanning probe acoustic microscopy (SPAM) has been successfully used to study inorganic and keratin biomaterials. However, few studies have attempted to apply SPAM to structural study of non-keratin organic materials such as starch based materials. This study investigated hardness and surface finish to establish sample preparation method suitable for SPAM imaging and acquired clear acoustic images of extruded starch materials. Acquired acoustic images directly exhibited certain structure of starch materials and provided visual evidence of starch material components and aggregates. In addition, through correlating acoustic images with X-ray diffraction data, crystal-structural information in nano-scale was obtained and acoustic image contrast showed a linear relationship with starch amylose content in extruded starch materials. PMID:23987357

  12. Friedel oscillations in graphene-based systems probed by Scanning Tunneling Microscopy

    NASA Astrophysics Data System (ADS)

    Mallet, Pierre; Brihuega, Iván; Cherkez, Vladimir; Gómez-Rodríguez, Jose Marìa; Veuillen, Jean-Yves

    2016-03-01

    For the last 25 years, scientists have demonstrated the capabilities of Scanning Tunneling Microscopy (STM) to visualize in real space the response of a two-dimensional electron gas to atomic-scale impurities. The analysis of the Friedel oscillations surrounding the impurities yields valuable information regarding the elastic scattering properties, the band structure, the doping level and the symmetry of the electronic states in the two-dimensional host system. We will address in this article the use of this technique for probing the electronic properties of graphene, the star two-dimensional compound of the last decade. In particular, we will emphasize how this technique can be pushed up to unravel the electronic pseudospin, a distinctive degree of freedom of graphene's Dirac fermions. xml:lang="fr"

  13. Quantitative characterization of crosstalk effects for friction force microscopy with scan-by-probe SPMs.

    PubMed

    Prunici, Pavel; Hess, Peter

    2008-06-01

    If the photodetector and cantilever of an atomic force microscope (AFM) are not properly adjusted, crosstalk effects will appear. These effects disturb measurements of the absolute vertical and horizontal cantilever deflections, which are involved in friction force microscopy (FFM). A straightforward procedure is proposed to study quantitatively crosstalk effects observed in scan-by-probe SPMs. The advantage of this simple, fast, and accurate procedure is that no hardware change or upgrade is needed. The results indicate that crosstalk effects depend not only on the alignment of the detector but also on the cantilever properties, position, and detection conditions. The measurements may provide information on the origin of the crosstalk effect. After determination of its magnitude, simple correction formulas can be applied to correct the crosstalk effects and then the single-load wedge method, using a commercially available grating, can be employed for accurate calibration of the lateral force. PMID:18035500

  14. Scanning Hall probe measurements of field distributions of a coated conductor under applied fields

    NASA Astrophysics Data System (ADS)

    Yoo, Jaeun; Jung, Yonghwan; Lee, Jaeyoung; Lim, Sunme; Moo Lee, Sang; Jung, Ye Hyun; Youm, Dojun; Kim, Hosup; Ha, Hong Soo; Oh, Sangsoo

    2006-12-01

    We measured the field profiles near the surface of a coated conductor (CC) under various applied fields by using the scanning Hall probe method. The field, applied in the normal direction, was increased from zero to 171.5 Oe and then decreased to -58.8 Oe. We could not analyse our data completely by the direct use of Brandt's calculation but by a modification with unusual field dependences of the introduced parameters. Since Brandt's original calculation was based on homogeneous films, it was not suitable for CCs with coarse granular structures. The modified calculations with appropriate parameters are related to the coarse granular structures. Those parameters, D, Jc, and R, represent the three characteristics of the flux penetration network: the average distance of flux penetrations, the density of critical sheet currents, and the range of meandering of the flux penetration front, respectively. The external field dependences of these parameters were different from those of the classical critical state model.

  15. [Comparison of the M and XL FibroScan(®) probes to estimate liver stiffness by transient elastography].

    PubMed

    Herrero, José Ignacio; Iñarrairaegui, Mercedes; D'Avola, Delia; Sangro, Bruno; Prieto, Jesús; Quiroga, Jorge

    2014-04-01

    The FibroScan(®) XL probe has been specifically designed for obese patients to measure liver stiffness by transient elastography, but it has not been well tested in non-obese patients. The aim of this study was to compare the M and XL FibroScan(®) probes in a series of unselected obese (body mass index above 30 kg/m(2)) and non-obese patients with chronic liver disease. Two hundred and fifty-four patients underwent a transient elastography examination with both the M and XL probes. The results obtained with the two probes were compared in the whole series and in obese (n=82) and non-obese (n=167) patients separately. The reliability of the examinations was assessed using the criteria defined by Castéra et al. The proportion of reliable exams was significantly higher when the XL probe was used (83% versus 73%; P=.001). This significance was maintained in the group of obese patients (82% versus 55%; P<.001), but not in the non-obese patients (84% versus 83%). Despite a high correlation between the stiffness values obtained with the two probes (R=.897; P<.001), and a high concordance in the estimation of fibrosis obtained with the two probes (Cronbach's alpha value: 0.932), the liver stiffness values obtained with the XL probe were significantly lower than those obtained with the M probe, both in the whole series (9.5 ± 9.1 kPa versus 11.3 ± 12.6 kPa; P<0.001) and in the obese and non-obese groups. In conclusion, transient elastography with the XL probe allows a higher proportion of reliable examinations in obese patients but not in non-obese patients. Stiffness values were lower with the XL probe than with the M probe. PMID:24417906

  16. Contact transfer length investigation of a 2D nanoparticle network by scanning probe microscopy.

    PubMed

    Ruiz-Vargas, Carlos S; Reissner, Patrick A; Wagner, Tino; Wyss, Roman M; Park, Hyung Gyu; Stemmer, Andreas

    2015-09-11

    Nanoparticle network devices find growing application in sensing and electronics. One recurring challenge in the design and fabrication of this class of devices is ensuring a stable interface via robust yet unobstructive electrodes. A figure of merit which dictates the minimum electrode overlap required for optimal charge injection into the network is the contact transfer length. However, we find that traditional contact characterization using the transmission line model, an indirect method which requires extrapolation, is insufficient for network devices. Instead, we apply Kelvin probe force microscopy to characterize the contact resistance by imaging the surface potential with nanometer resolution. We then use scanning probe lithography to directly investigate the contact transfer length. We have determined the transfer length in graphene contacted devices to be 200-400 nm, thus apt for further device reduction which is often necessary for on-site sensing applications. Simulations from a two-dimensional resistor model support our observations and are expected to be an important tool for further optimizing the design of nanoparticle-based devices. PMID:26291069

  17. Quantifying charge carrier concentration in ZnO thin films by Scanning Kelvin Probe Microscopy

    PubMed Central

    Maragliano, C.; Lilliu, S.; Dahlem, M. S.; Chiesa, M.; Souier, T.; Stefancich, M.

    2014-01-01

    In the last years there has been a renewed interest for zinc oxide semiconductor, mainly triggered by its prospects in optoelectronic applications. In particular, zinc oxide thin films are being widely used for photovoltaic applications, in which the determination of the electrical conductivity is of great importance. Being an intrinsically doped material, the quantification of its doping concentration has always been challenging. Here we show how to probe the charge carrier density of zinc oxide thin films by Scanning Kelvin Probe Microscopy, a technique that allows measuring the contact potential difference between the tip and the sample surface with high spatial resolution. A simple electronic energy model is used for correlating the contact potential difference with the doping concentration in the material. Limitations of this technique are discussed in details and some experimental solutions are proposed. Two-dimensional doping concentration images acquired on radio frequency-sputtered intrinsic zinc oxide thin films with different thickness and deposited under different conditions are reported. We show that results inferred with this technique are in accordance with carrier concentration expected for zinc oxide thin films deposited under different conditions and obtained from resistivity and mobility measurements. PMID:24569599

  18. Topographical and chemical microanalysis of surfaces with a scanning probe microscope and laser-induced breakdown spectroscopy

    PubMed

    Kossakovski; Beauchamp

    2000-10-01

    Spatially resolved chemical imaging is achieved by combining a fiber-optic scanning probe microscope with laser-induced breakdown spectroscopy in a single instrument, TOPOLIBS. Elemental composition of surfaces can be mapped and correlated with topographical data. The experiment is conducted in air with minimal sample preparation. In a typical experiment, surface topography is analyzed by scanning a sharp fiber-optic probe across the sample using shear force feedback. The probe is then positioned over a feature of interest and pulsed radiation is delivered to the surface using a nitrogen laser. The pulse vaporizes material from the surface and generates a localized plasma plume. Optical emission from the plume is analyzed with a compact UV/visible spectrometer. Ablation crater size is controlled by the amount of laser power coupled into the probe. Sampling areas with submicrometer dimensions are achieved by using reduced laser power. PMID:11028639

  19. SCAN+

    SciTech Connect

    Kenneth Krebs, John Svoboda

    2009-11-01

    SCAN+ is a software application specifically designed to control the positioning of a gamma spectrometer by a two dimensional translation system above spent fuel bundles located in a sealed spent fuel cask. The gamma spectrometer collects gamma spectrum information for the purpose of spent fuel cask fuel loading verification. SCAN+ performs manual and automatic gamma spectrometer positioning functions as-well-as exercising control of the gamma spectrometer data acquisitioning functions. Cask configuration files are used to determine the positions of spent fuel bundles. Cask scanning files are used to determine the desired scan paths for scanning a spent fuel cask allowing for automatic unattended cask scanning that may take several hours.

  20. Magnetic hydroxyapatite coatings as a new tool in medicine: A scanning probe investigation.

    PubMed

    Gambardella, A; Bianchi, M; Kaciulis, S; Mezzi, A; Brucale, M; Cavallini, M; Herrmannsdoerfer, T; Chanda, G; Uhlarz, M; Cellini, A; Pedna, M F; Sambri, V; Marcacci, M; Russo, A

    2016-05-01

    Hydroxyapatite films enriched with magnetite have been fabricated via a Pulsed Plasma Deposition (PPD) system with the final aim of representing a new platform able to disincentivate bacterial adhesion and biofilm formation. The chemical composition and magnetic properties of films were respectively examined by X-ray photoelectron spectroscopy (XPS) and Superconducting Quantum Interference Device (SQUID) measurements. The morphology and conductive properties of the magnetic films were investigated via a combination of scanning probe technologies including atomic force microscopy (AFM), electrostatic force microscopy (EFM), and scanning tunneling microscopy (STM). Interestingly, the range of adopted techniques allowed determining the preservation of the chemical composition and magnetic properties of the deposition target material while STM analysis provided new insights on the presence of surface inhomogeneities, revealing the presence of magnetite-rich islands over length scales compatible with the applications. Finally, preliminary results of bacterial adhesion tests, indicated a higher ability of magnetic hydroxyapatite films to reduce Escherichia coli adhesion at 4h from seeding compared to control hydroxyapatite films. PMID:26952445

  1. Carrier density distribution in silicon nanowires investigated by scanning thermal microscopy and Kelvin probe force microscopy.

    PubMed

    Wielgoszewski, Grzegorz; Pałetko, Piotr; Tomaszewski, Daniel; Zaborowski, Michał; Jóźwiak, Grzegorz; Kopiec, Daniel; Gotszalk, Teodor; Grabiec, Piotr

    2015-12-01

    The use of scanning thermal microscopy (SThM) and Kelvin probe force microscopy (KPFM) to investigate silicon nanowires (SiNWs) is presented. SThM allows imaging of temperature distribution at the nanoscale, while KPFM images the potential distribution with AFM-related ultra-high spatial resolution. Both techniques are therefore suitable for imaging the resistance distribution. We show results of experimental examination of dual channel n-type SiNWs with channel width of 100 nm, while the channel was open and current was flowing through the SiNW. To investigate the carrier distribution in the SiNWs we performed SThM and KPFM scans. The SThM results showed non-symmetrical temperature distribution along the SiNWs with temperature maximum shifted towards the contact of higher potential. These results corresponded to those expressed by the distribution of potential gradient along the SiNWs, obtained using the KPFM method. Consequently, non-uniform distribution of resistance was shown, being a result of non-uniform carrier density distribution in the structure and showing the pinch-off effect. Last but not least, the results were also compared with results of finite-element method modeling. PMID:26381074

  2. Invited review article: A 10 mK scanning probe microscopy facility.

    PubMed

    Song, Young Jae; Otte, Alexander F; Shvarts, Vladimir; Zhao, Zuyu; Kuk, Young; Blankenship, Steven R; Band, Alan; Hess, Frank M; Stroscio, Joseph A

    2010-12-01

    We describe the design, development and performance of a scanning probe microscopy (SPM) facility operating at a base temperature of 10 mK in magnetic fields up to 15 T. The microscope is cooled by a custom designed, fully ultra-high vacuum (UHV) compatible dilution refrigerator (DR) and is capable of in situ tip and sample exchange. Subpicometer stability at the tip-sample junction is achieved through three independent vibration isolation stages and careful design of the dilution refrigerator. The system can be connected to, or disconnected from, a network of interconnected auxiliary UHV chambers, which include growth chambers for metal and semiconductor samples, a field-ion microscope for tip characterization, and a fully independent additional quick access low temperature scanning tunneling microscope (STM) and atomic force microscope (AFM) system. To characterize the system, we present the cooling performance of the DR, vibrational, tunneling current, and tip-sample displacement noise measurements. In addition, we show the spectral resolution capabilities with tunneling spectroscopy results obtained on an epitaxial graphene sample resolving the quantum Landau levels in a magnetic field, including the sublevels corresponding to the lifting of the electron spin and valley degeneracies. PMID:21198007

  3. Magnetic scanning gate microscopy of a domain wall nanosensor using microparticle probe

    NASA Astrophysics Data System (ADS)

    Corte-León, H.; Gribkov, B.; Krzysteczko, P.; Marchi, F.; Motte, J.-F.; Schumacher, H. W.; Antonov, V.; Kazakova, O.

    2016-02-01

    We apply the magnetic scanning gate microscopy (SGM) technique to study the interaction between a magnetic bead (MB) and a domain wall (DW) trapped in an L-shaped magnetic nanostructure. Magnetic SGM is performed using a custom-made probe, comprising a hard magnetic NdFeB bead of diameter 1.6 μm attached to a standard silicon tip. The MB-DW interaction is detected by measuring changes in the electrical resistance of the device as a function of the tip position. By scanning at different heights, we create a 3D map of the MB-DW interaction and extract the sensing volume for different widths of the nanostructure's arms. It is shown that for 50 nm wide devices the sensing volume is a cone of 880 nm in diameter by 1.4 μm in height, and reduces down to 800 nm in height for 100 nm devices with almost no change in its diameter.

  4. Implementation on a desktop computer of the real time feedback control loop of a scanning probe microscope

    NASA Astrophysics Data System (ADS)

    Aloisi, G.; Bacci, F.; Carlà, M.; Dolci, D.; Lanzi, L.

    2008-11-01

    A software package has been developed to implement the real time feedback control loop needed in scanning probe microscopy on a general purpose desktop computer of the current high-speed/multicore generation. The main features of the implementation of both the feedback loop and the control of the experiment on the same computer are discussed. The package can work with several general purpose data acquisition boards and can be extended in a modular way to further board models; timing performance has been tested with several hardware configurations and some applications common in scanning probe microscopy. The package is available under an Open Source license.

  5. Imaging of biological samples by a collection-mode photon scanning tunneling microscope with an apertured probe

    NASA Astrophysics Data System (ADS)

    Naya, Masayuki; Mononobe, Shuji; Uma Maheswari, R.; Saiki, Tosiharu; Ohtsu, Motoichi

    1996-02-01

    We report on high resolution imaging by a collection-mode photon scanning tunneling microscope (c-mode PSTM). In our PSTM system, we have used a novel probe with a nanometric protrusion formed from a metal coated sharpened fiber. By using this probe, flagellar filaments of salmonella of diameter 25 nm could be imaged to have a full width at half maximum of 50 nm. Obtained images strongly depended on the separation of the sample to the probe, the diameter of the aperture, and polarization of the irradiated light. Comments on the origins of these dependencies are given.

  6. Scanning probe microscopies for the creation and characterization of interfacial architectures: Studies of alkyl thiolate monolayers at gold

    SciTech Connect

    Green, J.

    1997-01-10

    Scanning probe microscopy (SPM) offers access to the structural and material properties of interfaces, and when combined with macroscopic characterization techniques results in a powerful interfacial development tool. However, the relative infancy of SPM techniques has dictated that initial investigations concentrate on model interfacial systems as benchmarks for testing the control and characterization capabilities of SPM. One such family of model interfacial systems results from the spontaneous adsorption of alkyl thiols to gold. This dissertation examines the application of SPM to the investigation of the interfacial properties of these alkyl thiolate monolayers. Structural investigations result in a proposed explanation for counterintuitive correlations between substrate roughness and heterogeneous electron transfer barrier properties. Frictional measurements are used for characterization of the surface free energy of a series of end-group functionalized monolayers, as well as for the material properties of monolayers composed of varying chain length alkyl thiols. Additional investigations used these characterization techniques to monitor the real-time evolution of chemical and electrochemical surface reactions. The results of these investigations demonstrates the value of SPM technology to the compositional mapping of surfaces, elucidation of interfacial defects, creation of molecularly sized chemically heterogeneous architectures, as well as to the monitoring of surface reactions. However, it is the future which will demonstrate the usefulness of SPM technology to the advancement of science and technology.

  7. Advances in the calibration of atom probe tomographic reconstruction

    SciTech Connect

    Gault, Baptiste; Moody, Michael P.; La Fontaine, Alexandre; Stephenson, Leigh T.; Haley, Daniel; Ringer, Simon P.; Geuser, Frederic de; Tsafnat, Guy

    2009-02-01

    Modern wide field-of-view atom probes permit observation of a wide range of crystallographic features that can be used to calibrate the tomographic reconstruction of the analyzed volume. In this study, methodologies to determine values of the geometric parameters involved in the tomographic reconstruction of atom probe data sets are presented and discussed. The influence of the tip to electrode distance and specimen temperature on these parameters is explored. Significantly, their influence is demonstrated to be very limited, indicating a relatively wide regime of experimental parameters space for sound atom probe tomography (APT) experiments. These methods have been used on several specimens and material types, and the results indicate that the reconstruction parameters are specific to each specimen. Finally, it is shown how an accurate calibration of the reconstruction enables improvements to the quality and reliability of the microscopy and microanalysis capabilities of the atom probe.

  8. Advancing Biological Understanding and Therapeutics Discovery with Small Molecule Probes

    PubMed Central

    Schreiber, Stuart L.; Kotz, Joanne D.; Li, Min; Aubé, Jeffrey; Austin, Christopher P.; Reed, John C.; Rosen, Hugh; White, E. Lucile; Sklar, Larry A.; Lindsley, Craig W.; Alexander, Benjamin R.; Bittker, Joshua A.; Clemons, Paul A.; de Souza, Andrea; Foley, Michael A.; Palmer, Michelle; Shamji, Alykhan F.; Wawer, Mathias J.; McManus, Owen; Wu, Meng; Zou, Beiyan; Yu, Haibo; Golden, Jennifer E.; Schoenen, Frank J.; Simeonov, Anton; Jadhav, Ajit; Jackson, Michael R.; Pinkerton, Anthony B.; Chung, Thomas D.Y.; Griffin, Patrick R.; Cravatt, Benjamin F.; Hodder, Peter S.; Roush, William R.; Roberts, Edward; Chung, Dong-Hoon; Jonsson, Colleen B.; Noah, James W.; Severson, William E.; Ananthan, Subramaniam; Edwards, Bruce; Oprea, Tudor I.; Conn, P. Jeffrey; Hopkins, Corey R.; Wood, Michael R.; Stauffer, Shaun R.; Emmitte, Kyle A.

    2015-01-01

    Small-molecule probes can illuminate biological processes and aid in the assessment of emerging therapeutic targets by perturbing biological systems in a manner distinct from other experimental approaches. Despite the tremendous promise of chemical tools for investigating biology and disease, small-molecule probes were unavailable for most targets and pathways as recently as a decade ago. In 2005, the U.S. National Institutes of Health launched the decade-long Molecular Libraries Program with the intent of innovating in and broadening access to small-molecule science. This Perspective describes how novel small-molecule probes identified through the program are enabling the exploration of biological pathways and therapeutic hypotheses not otherwise testable. These experiences illustrate how small-molecule probes can help bridge the chasm between biological research and the development of medicines, but also highlight the need to innovate the science of therapeutic discovery. PMID:26046436

  9. Nanomaterial datasets to advance tomography in scanning transmission electron microscopy

    PubMed Central

    Levin, Barnaby D.A.; Padgett, Elliot; Chen, Chien-Chun; Scott, M.C.; Xu, Rui; Theis, Wolfgang; Jiang, Yi; Yang, Yongsoo; Ophus, Colin; Zhang, Haitao; Ha, Don-Hyung; Wang, Deli; Yu, Yingchao; Abruña, Hector D.; Robinson, Richard D.; Ercius, Peter; Kourkoutis, Lena F.; Miao, Jianwei; Muller, David A.; Hovden, Robert

    2016-01-01

    Electron tomography in materials science has flourished with the demand to characterize nanoscale materials in three dimensions (3D). Access to experimental data is vital for developing and validating reconstruction methods that improve resolution and reduce radiation dose requirements. This work presents five high-quality scanning transmission electron microscope (STEM) tomography datasets in order to address the critical need for open access data in this field. The datasets represent the current limits of experimental technique, are of high quality, and contain materials with structural complexity. Included are tomographic series of a hyperbranched Co2P nanocrystal, platinum nanoparticles on a carbon nanofibre imaged over the complete 180° tilt range, a platinum nanoparticle and a tungsten needle both imaged at atomic resolution by equal slope tomography, and a through-focal tilt series of PtCu nanoparticles. A volumetric reconstruction from every dataset is provided for comparison and development of post-processing and visualization techniques. Researchers interested in creating novel data processing and reconstruction algorithms will now have access to state of the art experimental test data. PMID:27272459

  10. Nanomaterial datasets to advance tomography in scanning transmission electron microscopy.

    PubMed

    Levin, Barnaby D A; Padgett, Elliot; Chen, Chien-Chun; Scott, M C; Xu, Rui; Theis, Wolfgang; Jiang, Yi; Yang, Yongsoo; Ophus, Colin; Zhang, Haitao; Ha, Don-Hyung; Wang, Deli; Yu, Yingchao; Abruña, Hector D; Robinson, Richard D; Ercius, Peter; Kourkoutis, Lena F; Miao, Jianwei; Muller, David A; Hovden, Robert

    2016-01-01

    Electron tomography in materials science has flourished with the demand to characterize nanoscale materials in three dimensions (3D). Access to experimental data is vital for developing and validating reconstruction methods that improve resolution and reduce radiation dose requirements. This work presents five high-quality scanning transmission electron microscope (STEM) tomography datasets in order to address the critical need for open access data in this field. The datasets represent the current limits of experimental technique, are of high quality, and contain materials with structural complexity. Included are tomographic series of a hyperbranched Co2P nanocrystal, platinum nanoparticles on a carbon nanofibre imaged over the complete 180° tilt range, a platinum nanoparticle and a tungsten needle both imaged at atomic resolution by equal slope tomography, and a through-focal tilt series of PtCu nanoparticles. A volumetric reconstruction from every dataset is provided for comparison and development of post-processing and visualization techniques. Researchers interested in creating novel data processing and reconstruction algorithms will now have access to state of the art experimental test data. PMID:27272459

  11. Fabrication of surface confined biomolecular, polymeric, and metallic nanostructures using scanning probe and electron beam lithography

    NASA Astrophysics Data System (ADS)

    Lee, Woo Kyung

    This thesis presents the fabrication and characterization of surface-confined nanostructures of biomolecules, polymer brushes, and gold nanowires on gold and silicon substrates. The molecular recognition-mediated, stepwise fabrication of patterned proteins (biotin and streptavidin) and stimulus-responsive elastin-like polypeptide (ELP) nanostructures with feature sizes on the order of 200 nm is described. Dip-pen nanolithography (DPN) of 16-mercaptohexadecanoic acid (MHA) on gold was used to build templates to tether biomolecular nanostructures. It is shown that streptavidin nanopatterns provide adapter surfaces for biotinylated proteins by molecular recognition. Nanopatterned ELPs were shown to undergo a reversible, hydrophilic-hydrophobic phase transition in response to external stimuli. Here, this phase transition behavior was studied on the molecular level by adhesion force measurements using an AFM. The strong hydrophobic interactions between ELPs were exploited to reversibly immobilize a thioredoxin-ELP fusion protein onto ELP nanopatterns above the lower critical solution temperature (LCST), demonstrating the potential for ELP nanoarrays in reusable lab-on-chip devices for protein purification or nanoscale analysis. The fabrication of surface-confined stimulus-responsive pNIPAAM brush nanopatterns in a "grafting-from" approach that combines scanning probe lithography or electron beam lithography with surface-initiated atom transfer radical polymerization (ATRP) is described. The reversible, stimulus-responsive conformational height change of nanopatterned pNIPAAM brushes was demonstrated by inverse transition cycling in water-methanol cononsolvent mixtures. The triggered control of interfacial properties on the nanometer scale holds significant promise for actuation in bionanotechnology applications where polymeric actuators may manipulate the transport, separation, and detection of biomolecules. The potentially important phenomenon of polymer brush

  12. SCAN+

    2009-11-01

    SCAN+ is a software application specifically designed to control the positioning of a gamma spectrometer by a two dimensional translation system above spent fuel bundles located in a sealed spent fuel cask. The gamma spectrometer collects gamma spectrum information for the purpose of spent fuel cask fuel loading verification. SCAN+ performs manual and automatic gamma spectrometer positioning functions as-well-as exercising control of the gamma spectrometer data acquisitioning functions. Cask configuration files are used to determinemore » the positions of spent fuel bundles. Cask scanning files are used to determine the desired scan paths for scanning a spent fuel cask allowing for automatic unattended cask scanning that may take several hours.« less

  13. Development of single-crystal diamond scanning probes with nitrogen-vacancy centers for cryogenic magnetometry with nanoscale spatial resolution

    NASA Astrophysics Data System (ADS)

    Jenkins, Alec; Pelliccione, Matthew; Ovartchaiyapong, Preeti; Reetz, Christopher; Bleszynski Jayich, Ania

    Scanning probes based on the nitrogen-vacancy (NV) defect center in diamond are powerful tools for imaging magnetic phenomena at the nanoscale. In particular, extending the operation of these probes to cryogenic temperatures opens up a wide range of condensed matter systems that can be studied. In this talk, we demonstrate a variable temperature NV scanning magnetometer consisting of an atomic-force microscope housed in a closed-cycle cryostat integrated with custom confocal optics. With this microscope we have observed 6-nm spatial resolution and 3 μT /√{Hz} sensitivity at T = 6 K. The single-crystal diamond scanning probes that contain shallow and coherent NV centers are critical to the performance of the microscope. The probes are designed with the aim of reducing the NV-sample separation and increasing collection of NV fluorescence, both while maintaining the spin coherence properties of the defects. We describe the fabrication of these probes as well as ongoing efforts to improve their sensitivity and spatial resolution.

  14. PREDICTING CHEMICAL REACTIVITY OF HUMIC SUBSTANCES FOR MINERALS AND XENOBIOTICS: USE OF COMPUTATIONAL CHEMISTRY, SCANNING PROBE MICROSCOPY AND VIRTUAL REALITY

    EPA Science Inventory

    In this chapter we review the literature on scanning probe microscopy (SPM), virtual reality (VR), and computational chemistry and our earlier work dealing with modeling lignin, lignin-carbohydrate complexes (LCC), humic substances (HSs) and non-bonded organo-mineral interactions...

  15. Controlled-Resonant Surface Tapping-Mode Scanning Probe Electrospray Ionization Mass Spectrometry Imaging

    SciTech Connect

    Lorenz, Matthias; Ovchinnikova, Olga S; Kertesz, Vilmos; Van Berkel, Gary J

    2014-01-01

    This paper reports on the advancement of a controlled-resonance surface tapping-mode single capillary liquid junction extraction/ESI emitter for mass spectrometry imaging. The basic instrumental setup and the general operation of the system were discussed and optimized performance metrics were presented. The ability to spot sample, lane scan and chemically image in an automated and controlled fashion were demonstrated. Rapid, automated spot sampling was demonstrated for a variety of compound types including the cationic dye basic blue 7, the oligosaccharide cellopentaose, and the protein equine heart cytochrome c. The system was used for lane scanning and chemical imaging of the cationic dye crystal violet in inked lines on glass and for lipid distributions in mouse brain thin tissue sections. Imaging of the lipids in mouse brain tissue under optimized conditions provided a spatial resolution of approximately 35 m based on the ability to distinguish between features observed both in the optical and mass spectral chemical images. The sampling spatial resolution of this system was comparable to the best resolution that has been reported for other types of atmospheric pressure liquid extraction-based surface sampling/ionization techniques used for mass spectrometry imaging.

  16. Scanning electron microscopy and electron probe microanalysis studies of human pineal concretions.

    PubMed

    Kodaka, T; Mori, R; Debari, K; Yamada, M

    1994-10-01

    The calcareous concretions of human pineal bodies were investigated with scanning electron microscopy and electron probe microanalysis. The initial concretions measuring 5-7 microns in diameter may have started at the calcified pinealocytes. They grew appositionally forming concentric laminations, and then the simple calcospherulites over 20 microns occasionally aggregated with each other. Some of them became numerous spherulite-aggregated concretions. Others individually grew with scallop-shaped concentric laminations at intervals of 0.05-1 microns and became lobated calcospherulites up to 0.5 mm. The concretions over 0.5 mm were formed by their attachments. The major elements were Ca and P, while traces of S, Mg, and Na were detected. In the calcification and crystallization values, the center of the concretions over 50 microns was significantly higher than the periphery, while there were no differences among the centers and also among the peripheries. The Ca and P amounts in the center were 30.8% and 14.2% by weight and the Ca/P molar ratio was 1.68; thereby the sand-grain-shaped crystals may be nearly hydroxyapatite, as reported previously. PMID:7699308

  17. Field programmable gate array based reconfigurable scanning probe/optical microscope.

    PubMed

    Nowak, Derek B; Lawrence, A J; Dzegede, Zechariah K; Hiester, Justin C; Kim, Cliff; Sánchez, Erik J

    2011-10-01

    The increasing popularity of nanometrology and nanospectroscopy has pushed researchers to develop complex new analytical systems. This paper describes the development of a platform on which to build a microscopy tool that will allow for flexibility of customization to suit research needs. The novelty of the described system lies in its versatility of capabilities. So far, one version of this microscope has allowed for successful near-field and far-field fluorescence imaging with single molecule detection sensitivity. This system is easily adapted for reflection, polarization (Kerr magneto-optical (MO)), Raman, super-resolution techniques, and other novel scanning probe imaging and spectroscopic designs. While collecting a variety of forms of optical images, the system can simultaneously monitor topographic information of a sample with an integrated tuning fork based shear force system. The instrument has the ability to image at room temperature and atmospheric pressure or under liquid. The core of the design is a field programmable gate array (FPGA) data acquisition card and a single, low cost computer to control the microscope with analog control circuitry using off-the-shelf available components. A detailed description of electronics, mechanical requirements, and software algorithms as well as examples of some different forms of the microscope developed so far are discussed. PMID:22047297

  18. Imaging via complete cantilever dynamic detection: general dynamic mode imaging and spectroscopy in scanning probe microscopy.

    PubMed

    Somnath, Suhas; Collins, Liam; Matheson, Michael A; Sukumar, Sreenivas R; Kalinin, Sergei V; Jesse, Stephen

    2016-10-14

    We develop and implement a multifrequency spectroscopy and spectroscopic imaging mode, referred to as general dynamic mode (GDM), that captures the complete spatially- and stimulus dependent information on nonlinear cantilever dynamics in scanning probe microscopy (SPM). GDM acquires the cantilever response including harmonics and mode mixing products across the entire broadband cantilever spectrum as a function of excitation frequency. GDM spectra substitute the classical measurements in SPM, e.g. amplitude and phase in lock-in detection. Here, GDM is used to investigate the response of a purely capacitively driven cantilever. We use information theory techniques to mine the data and verify the findings with governing equations and classical lock-in based approaches. We explore the dependence of the cantilever dynamics on the tip-sample distance, AC and DC driving bias. This approach can be applied to investigate the dynamic behavior of other systems within and beyond dynamic SPM. GDM is expected to be useful for separating the contribution of different physical phenomena in the cantilever response and understanding the role of cantilever dynamics in dynamic AFM techniques. PMID:27607339

  19. Field programmable gate array based reconfigurable scanning probe/optical microscope

    NASA Astrophysics Data System (ADS)

    Nowak, Derek B.; Lawrence, A. J.; Dzegede, Zechariah K.; Hiester, Justin C.; Kim, Cliff; Sánchez, Erik J.

    2011-10-01

    The increasing popularity of nanometrology and nanospectroscopy has pushed researchers to develop complex new analytical systems. This paper describes the development of a platform on which to build a microscopy tool that will allow for flexibility of customization to suit research needs. The novelty of the described system lies in its versatility of capabilities. So far, one version of this microscope has allowed for successful near-field and far-field fluorescence imaging with single molecule detection sensitivity. This system is easily adapted for reflection, polarization (Kerr magneto-optical (MO)), Raman, super-resolution techniques, and other novel scanning probe imaging and spectroscopic designs. While collecting a variety of forms of optical images, the system can simultaneously monitor topographic information of a sample with an integrated tuning fork based shear force system. The instrument has the ability to image at room temperature and atmospheric pressure or under liquid. The core of the design is a field programmable gate array (FPGA) data acquisition card and a single, low cost computer to control the microscope with analog control circuitry using off-the-shelf available components. A detailed description of electronics, mechanical requirements, and software algorithms as well as examples of some different forms of the microscope developed so far are discussed.

  20. Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor

    NASA Astrophysics Data System (ADS)

    Pelliccione, Matthew; Jenkins, Alec; Ovartchaiyapong, Preeti; Reetz, Christopher; Emmanouilidou, Eve; Ni, Ni; Bleszynski Jayich, Ania C.

    2016-08-01

    High-spatial-resolution magnetic imaging has driven important developments in fields ranging from materials science to biology. However, to uncover finer details approaching the nanoscale with greater sensitivity requires the development of a radically new sensor technology. The nitrogen–vacancy (NV) defect in diamond has emerged as a promising candidate for such a sensor on the basis of its atomic size and quantum-limited sensing capabilities. It has remained an outstanding challenge to implement the NV centre as a nanoscale scanning magnetic probe at cryogenic temperatures, however, where many solid-state systems exhibit non-trivial magnetic order. Here, we present NV magnetic imaging down to 6 K with 3 μT Hz–1/2 field sensitivity, and use the technique to image vortices in the iron pnictide superconductor BaFe2(As0.7P0.3)2 with critical temperature Tc = 30 K. The expansion of NV-based magnetic imaging to cryogenic temperatures will enable future studies of previously inaccessible nanoscale magnetism in condensed-matter systems.

  1. Observations of liver cancer cells in scanning probe acoustic microscope: a preliminary study

    NASA Astrophysics Data System (ADS)

    Chen, Xiaohui; Fang, Xiaoyue; Xi, Qing; Guo, Hua; Zhang, Ning; Ding, Mingyue

    2016-04-01

    Scanning probe acoustic microscope (SPAM) can be used to acquire the morphology image as well as the non-destructive internal structures acoustic image. However, the observations of the morphology image as well as the internal structures acoustic image of liver cancer cells in SPAM are few. In this paper, we cultured 4 different types of liver cancer cells on the silicon wafer and coverslip to observe their morphology images as well as acoustic images in SPAM, and made a preliminary study of the 8 types of cells specimens (hereinafter referred to as the silicon specimens and coverslips specimens). The experimental measurement results showed that some cellular pseudopodium were observed in the morphology images of the coverslip specimens while no such cellular pseupodium were appeared in the morphology images of the silicon specimens, which concluded that the living liver cancer cells were less likely to grow on the silicon wafer. SPAM provides a rapid and sensitive visual method for studying the morphology and internal structures of the cancer cells. The proposed method can be also used to obtain the morphology and internal information in both solid and soft material wafers, such as silicon and cells, with the resolution of nanometer scale.

  2. Patterning a hydrogen-bonded molecular monolayer with a hand-controlled scanning probe microscope.

    PubMed

    Green, Matthew F B; Esat, Taner; Wagner, Christian; Leinen, Philipp; Grötsch, Alexander; Tautz, F Stefan; Temirov, Ruslan

    2014-01-01

    One of the paramount goals in nanotechnology is molecular-scale functional design, which includes arranging molecules into complex structures at will. The first steps towards this goal were made through the invention of the scanning probe microscope (SPM), which put single-atom and single-molecule manipulation into practice for the first time. Extending the controlled manipulation to larger molecules is expected to multiply the potential of engineered nanostructures. Here we report an enhancement of the SPM technique that makes the manipulation of large molecular adsorbates much more effective. By using a commercial motion tracking system, we couple the movements of an operator's hand to the sub-angstrom precise positioning of an SPM tip. Literally moving the tip by hand we write a nanoscale structure in a monolayer of large molecules, thereby showing that our method allows for the successful execution of complex manipulation protocols even when the potential energy surface that governs the interaction behaviour of the manipulated nanoscale object(s) is largely unknown. PMID:25383304

  3. Patterning a hydrogen-bonded molecular monolayer with a hand-controlled scanning probe microscope

    PubMed Central

    Green, Matthew F B; Esat, Taner; Wagner, Christian; Leinen, Philipp; Grötsch, Alexander; Tautz, F Stefan

    2014-01-01

    Summary One of the paramount goals in nanotechnology is molecular-scale functional design, which includes arranging molecules into complex structures at will. The first steps towards this goal were made through the invention of the scanning probe microscope (SPM), which put single-atom and single-molecule manipulation into practice for the first time. Extending the controlled manipulation to larger molecules is expected to multiply the potential of engineered nanostructures. Here we report an enhancement of the SPM technique that makes the manipulation of large molecular adsorbates much more effective. By using a commercial motion tracking system, we couple the movements of an operator's hand to the sub-angstrom precise positioning of an SPM tip. Literally moving the tip by hand we write a nanoscale structure in a monolayer of large molecules, thereby showing that our method allows for the successful execution of complex manipulation protocols even when the potential energy surface that governs the interaction behaviour of the manipulated nanoscale object(s) is largely unknown. PMID:25383304

  4. Virtual reality visual feedback for hand-controlled scanning probe microscopy manipulation of single molecules.

    PubMed

    Leinen, Philipp; Green, Matthew F B; Esat, Taner; Wagner, Christian; Tautz, F Stefan; Temirov, Ruslan

    2015-01-01

    Controlled manipulation of single molecules is an important step towards the fabrication of single molecule devices and nanoscale molecular machines. Currently, scanning probe microscopy (SPM) is the only technique that facilitates direct imaging and manipulations of nanometer-sized molecular compounds on surfaces. The technique of hand-controlled manipulation (HCM) introduced recently in Beilstein J. Nanotechnol. 2014, 5, 1926-1932 simplifies the identification of successful manipulation protocols in situations when the interaction pattern of the manipulated molecule with its environment is not fully known. Here we present a further technical development that substantially improves the effectiveness of HCM. By adding Oculus Rift virtual reality goggles to our HCM set-up we provide the experimentalist with 3D visual feedback that displays the currently executed trajectory and the position of the SPM tip during manipulation in real time, while simultaneously plotting the experimentally measured frequency shift (Δf) of the non-contact atomic force microscope (NC-AFM) tuning fork sensor as well as the magnitude of the electric current (I) flowing between the tip and the surface. The advantages of the set-up are demonstrated by applying it to the model problem of the extraction of an individual PTCDA molecule from its hydrogen-bonded monolayer grown on Ag(111) surface. PMID:26665087

  5. Electrochemical and scanning probe microscopic characterization of spontaneously adsorbed organothiolate monolayers at gold

    SciTech Connect

    Wong, Sze-Shun Season

    1999-12-10

    This dissertation presented several results which add to the general knowledge base regarding organothiolates monolayer spontaneously adsorbed at gold films. Common to the body of this work is the use of voltammetric reductive resorption and variants of scanning probe microscopy to gain insight into the nature of the monolayer formation process as well as the resulting interface. The most significant result from this work is the success of using friction force microscopy to discriminate the end group orientation of monolayer chemisorbed at smooth gold surfaces with micrometer resolution (Chapter 4). The ability to detect the differences in the orientational disposition is demonstrated by the use PDMS polymer stamp to microcontact print an adlayer of n-alkanethiolate of length n in a predefine pattern onto a gold surface, followed by the solution deposition of a n-alkanethiol of n {+-} 1 to fill in the areas on the gold surface intentionally not coated by the stamping process. These two-component monolayers can be discriminated by using friction force microscopy which detects differences in friction contributed by the differences in the orientation of the terminal groups at surfaces. This success has recently led to the detection of the orientation differences at nanometer scale. Although the substrates examined in this work consisted entirely of smooth gold films, the same test can be performed on other smooth substrates and monolayer materials.

  6. Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor.

    PubMed

    Pelliccione, Matthew; Jenkins, Alec; Ovartchaiyapong, Preeti; Reetz, Christopher; Emmanouilidou, Eve; Ni, Ni; Bleszynski Jayich, Ania C

    2016-08-01

    High-spatial-resolution magnetic imaging has driven important developments in fields ranging from materials science to biology. However, to uncover finer details approaching the nanoscale with greater sensitivity requires the development of a radically new sensor technology. The nitrogen-vacancy (NV) defect in diamond has emerged as a promising candidate for such a sensor on the basis of its atomic size and quantum-limited sensing capabilities. It has remained an outstanding challenge to implement the NV centre as a nanoscale scanning magnetic probe at cryogenic temperatures, however, where many solid-state systems exhibit non-trivial magnetic order. Here, we present NV magnetic imaging down to 6 K with 3 μT Hz(-1/2) field sensitivity, and use the technique to image vortices in the iron pnictide superconductor BaFe2(As0.7P0.3)2 with critical temperature Tc = 30 K. The expansion of NV-based magnetic imaging to cryogenic temperatures will enable future studies of previously inaccessible nanoscale magnetism in condensed-matter systems. PMID:27136130

  7. Virtual reality visual feedback for hand-controlled scanning probe microscopy manipulation of single molecules

    PubMed Central

    Leinen, Philipp; Green, Matthew F B; Esat, Taner; Wagner, Christian; Tautz, F Stefan

    2015-01-01

    Summary Controlled manipulation of single molecules is an important step towards the fabrication of single molecule devices and nanoscale molecular machines. Currently, scanning probe microscopy (SPM) is the only technique that facilitates direct imaging and manipulations of nanometer-sized molecular compounds on surfaces. The technique of hand-controlled manipulation (HCM) introduced recently in Beilstein J. Nanotechnol. 2014, 5, 1926–1932 simplifies the identification of successful manipulation protocols in situations when the interaction pattern of the manipulated molecule with its environment is not fully known. Here we present a further technical development that substantially improves the effectiveness of HCM. By adding Oculus Rift virtual reality goggles to our HCM set-up we provide the experimentalist with 3D visual feedback that displays the currently executed trajectory and the position of the SPM tip during manipulation in real time, while simultaneously plotting the experimentally measured frequency shift (Δf) of the non-contact atomic force microscope (NC-AFM) tuning fork sensor as well as the magnitude of the electric current (I) flowing between the tip and the surface. The advantages of the set-up are demonstrated by applying it to the model problem of the extraction of an individual PTCDA molecule from its hydrogen-bonded monolayer grown on Ag(111) surface. PMID:26665087

  8. Probing weak localization in chemical vapor deposition graphene wide constriction using scanning gate microscopy.

    PubMed

    Chuang, C; Matsunaga, M; Liu, F-H; Woo, T-P; Aoki, N; Lin, L-H; Wu, B-Y; Ochiai, Y; Liang, C-T

    2016-02-19

    Low-temperature scanning gate microscopy (LT-SGM) studies of graphene allow one to obtain important spatial information regarding coherent transport such as weak localization (WL) and universal conductance fluctuations. Although fascinating LT-SGM results on pristine graphene prepared by mechanical exfoliation have been reported in the literature, there appears to be a dearth of LT-SGM results on chemical vapor deposition (CVD)-grown graphene whose large scale and flexible substrate transferability make it an ideal candidate for coherent electronic applications. To this end, we have performed LT-SGM studies on CVD-grown graphene wide constriction (0.8 μm), which can be readily prepared by cost-effective optical lithography fully compatible with those in wafer foundry, in the WL regime. We find that the movable local gate can sensitively modulate the total conductance of the CVD graphene constriction possibly due to the intrinsic grain boundaries and merged domains, a great advantage for applications in coherent electronics. Moreover, such a conductance modulation by LT-SGM provides an additional, approximately magnetic-field-independent probe for studying coherent transport such as WL in graphene and spatial conductance variation. PMID:26762929

  9. Probing weak localization in chemical vapor deposition graphene wide constriction using scanning gate microscopy

    NASA Astrophysics Data System (ADS)

    Chuang, C.; Matsunaga, M.; Liu, F.-H.; Woo, T.-P.; Aoki, N.; Lin, L.-H.; Wu, B.-Y.; Ochiai, Y.; Liang, C.-T.

    2016-02-01

    Low-temperature scanning gate microscopy (LT-SGM) studies of graphene allow one to obtain important spatial information regarding coherent transport such as weak localization (WL) and universal conductance fluctuations. Although fascinating LT-SGM results on pristine graphene prepared by mechanical exfoliation have been reported in the literature, there appears to be a dearth of LT-SGM results on chemical vapor deposition (CVD)-grown graphene whose large scale and flexible substrate transferability make it an ideal candidate for coherent electronic applications. To this end, we have performed LT-SGM studies on CVD-grown graphene wide constriction (0.8 μm), which can be readily prepared by cost-effective optical lithography fully compatible with those in wafer foundry, in the WL regime. We find that the movable local gate can sensitively modulate the total conductance of the CVD graphene constriction possibly due to the intrinsic grain boundaries and merged domains, a great advantage for applications in coherent electronics. Moreover, such a conductance modulation by LT-SGM provides an additional, approximately magnetic-field-independent probe for studying coherent transport such as WL in graphene and spatial conductance variation.

  10. Imaging via complete cantilever dynamic detection: General dynamic mode imaging and spectroscopy in scanning probe microscopy

    DOE PAGESBeta

    Somnath, Suhas; Collins, Liam; Matheson, Michael A.; Sukumar, Sreenivas R.; Kalinin, Sergei V.; Jesse, Stephen

    2016-09-08

    We develop and implement a multifrequency spectroscopy and spectroscopic imaging mode, referred to as general dynamic mode (GDM), that captures the complete spatially- and stimulus dependent information on nonlinear cantilever dynamics in scanning probe microscopy (SPM). GDM acquires the cantilever response including harmonics and mode mixing products across the entire broadband cantilever spectrum as a function of excitation frequency. GDM spectra substitute the classical measurements in SPM, e.g. amplitude and phase in lock-in detection. Here, GDM is used to investigate the response of a purely capacitively driven cantilever. We use information theory techniques to mine the data and verify themore » findings with governing equations and classical lock-in based approaches. We explore the dependence of the cantilever dynamics on the tip–sample distance, AC and DC driving bias. This approach can be applied to investigate the dynamic behavior of other systems within and beyond dynamic SPM. In conclusion, GDM is expected to be useful for separating the contribution of different physical phenomena in the cantilever response and understanding the role of cantilever dynamics in dynamic AFM techniques.« less

  11. Advanced Use of Therma-Probe for Ultra-Shallow Junction Monitoring

    NASA Astrophysics Data System (ADS)

    Bogdanowicz, Janusz; Clarysse, Trudo; Smets, Gerrit; Rosseel, Erik; Vandervorst, Wilfried

    2011-11-01

    Therma-Probe® (TP) is widely used in the semiconductor industry for the Statistical Process Control (SPC) monitoring of the various ion implantation steps included in the Complementary Metal Oxide Semiconductor process. This fully optical, hence non-destructive and fast, pump-probe technique measures the probe laser reflectance (DC reflectance) as well as the pump-laser-induced changes in probe reflectance (AC reflectance, also called TW signal). In this paper, we report on the latest advances in the use of TP for the monitoring of ultra-shallow junctions both before and after annealing of the implanted layers.

  12. A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans.

    PubMed

    Meier, Tobias; Förste, Alexander; Tavassolizadeh, Ali; Rott, Karsten; Meyners, Dirk; Gröger, Roland; Reiss, Günter; Quandt, Eckhard; Schimmel, Thomas; Hölscher, Hendrik

    2015-01-01

    We describe an atomic force microscope (AFM) for the characterization of self-sensing tunneling magnetoresistive (TMR) cantilevers. Furthermore, we achieve a large scan-range with a nested scanner design of two independent piezo scanners: a small high resolution scanner with a scan range of 5 × 5 × 5 μm(3) is mounted on a large-area scanner with a scan range of 800 × 800 × 35 μm(3). In order to characterize TMR sensors on AFM cantilevers as deflection sensors, the AFM is equipped with a laser beam deflection setup to measure the deflection of the cantilevers independently. The instrument is based on a commercial AFM controller and capable to perform large-area scanning directly without stitching of images. Images obtained on different samples such as calibration standard, optical grating, EPROM chip, self-assembled monolayers and atomic step-edges of gold demonstrate the high stability of the nested scanner design and the performance of self-sensing TMR cantilevers. PMID:25821686

  13. A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans

    PubMed Central

    Förste, Alexander; Tavassolizadeh, Ali; Rott, Karsten; Meyners, Dirk; Gröger, Roland; Reiss, Günter; Quandt, Eckhard; Schimmel, Thomas; Hölscher, Hendrik

    2015-01-01

    Summary We describe an atomic force microscope (AFM) for the characterization of self-sensing tunneling magnetoresistive (TMR) cantilevers. Furthermore, we achieve a large scan-range with a nested scanner design of two independent piezo scanners: a small high resolution scanner with a scan range of 5 × 5 × 5 μm3 is mounted on a large-area scanner with a scan range of 800 × 800 × 35 μm3. In order to characterize TMR sensors on AFM cantilevers as deflection sensors, the AFM is equipped with a laser beam deflection setup to measure the deflection of the cantilevers independently. The instrument is based on a commercial AFM controller and capable to perform large-area scanning directly without stitching of images. Images obtained on different samples such as calibration standard, optical grating, EPROM chip, self-assembled monolayers and atomic step-edges of gold demonstrate the high stability of the nested scanner design and the performance of self-sensing TMR cantilevers. PMID:25821686

  14. Microscopic techniques bridging between nanoscale and microscale with an atomically sharpened tip - field ion microscopy/scanning probe microscopy/ scanning electron microscopy.

    PubMed

    Tomitori, Masahiko; Sasahara, Akira

    2014-11-01

    Over a hundred years an atomistic point of view has been indispensable to explore fascinating properties of various materials and to develop novel functional materials. High-resolution microscopies, rapidly developed during the period, have taken central roles in promoting materials science and related techniques to observe and analyze the materials. As microscopies with the capability of atom-imaging, field ion microscopy (FIM), scanning tunneling microscopy (STM), atomic force microscopy (AFM) and transmission electron microscopy (TEM) can be cited, which have been highly evaluated as methods to ultimately bring forward the viewpoint of reductionism in materials science. On one hand, there have been difficulties to derive useful and practical information on large (micro) scale unique properties of materials using these excellent microscopies and to directly advance the engineering for practical materials. To make bridges over the gap between an atomic scale and an industrial engineering scale, we have to develop emergence science step-by-step as a discipline having hierarchical structures for future prospects by combining nanoscale and microscale techniques; as promising ways, the combined microscopic instruments covering the scale gap and the extremely sophisticated methods for sample preparation seem to be required. In addition, it is noted that spectroscopic and theoretical methods should implement the emergence science.Fundamentally, the function of microscope is to determine the spatial positions of a finite piece of material, that is, ultimately individual atoms, at an extremely high resolution with a high stability. To define and control the atomic positions, the STM and AFM as scanning probe microscopy (SPM) have successfully demonstrated their power; the technological heart of SPM lies in an atomically sharpened tip, which can be observed by FIM and TEM. For emergence science we would like to set sail using the tip as a base. Meanwhile, it is significant

  15. Quantification of probe-sample interactions of a scanning thermal microscope using a nanofabricated calibration sample having programmable size.

    PubMed

    Ge, Yunfei; Zhang, Yuan; Booth, Jamie A; Weaver, Jonathan M R; Dobson, Phillip S

    2016-08-12

    We report a method for quantifying scanning thermal microscopy (SThM) probe-sample thermal interactions in air using a novel temperature calibration device. This new device has been designed, fabricated and characterised using SThM to provide an accurate and spatially variable temperature distribution that can be used as a temperature reference due to its unique design. The device was characterised by means of a microfabricated SThM probe operating in passive mode. This data was interpreted using a heat transfer model, built to describe the thermal interactions during a SThM thermal scan. This permitted the thermal contact resistance between the SThM tip and the device to be determined as 8.33 × 10(5) K W(-1). It also permitted the probe-sample contact radius to be clarified as being the same size as the probe's tip radius of curvature. Finally, the data were used in the construction of a lumped-system steady state model for the SThM probe and its potential applications were addressed. PMID:27363896

  16. Combined frequency modulated atomic force microscopy and scanning tunneling microscopy detection for multi-tip scanning probe microscopy applications

    NASA Astrophysics Data System (ADS)

    Morawski, Ireneusz; Spiegelberg, Richard; Korte, Stefan; Voigtländer, Bert

    2015-12-01

    A method which allows scanning tunneling microscopy (STM) tip biasing independent of the sample bias during frequency modulated atomic force microscopy (AFM) operation is presented. The AFM sensor is supplied by an electronic circuit combining both a frequency shift signal and a tunneling current signal by means of an inductive coupling. This solution enables a control of the tip potential independent of the sample potential. Individual tip biasing is specifically important in order to implement multi-tip STM/AFM applications. An extensional quartz sensor (needle sensor) with a conductive tip is applied to record simultaneously topography and conductivity of the sample. The high resonance frequency of the needle sensor (1 MHz) allows scanning of a large area of the surface being investigated in a reasonably short time. A recipe for the amplitude calibration which is based only on the frequency shift signal and does not require the tip being in contact is presented. Additionally, we show spectral measurements of the mechanical vibration noise of the scanning system used in the investigations.

  17. Combined frequency modulated atomic force microscopy and scanning tunneling microscopy detection for multi-tip scanning probe microscopy applications

    SciTech Connect

    Morawski, Ireneusz; Spiegelberg, Richard; Korte, Stefan; Voigtländer, Bert

    2015-12-15

    A method which allows scanning tunneling microscopy (STM) tip biasing independent of the sample bias during frequency modulated atomic force microscopy (AFM) operation is presented. The AFM sensor is supplied by an electronic circuit combining both a frequency shift signal and a tunneling current signal by means of an inductive coupling. This solution enables a control of the tip potential independent of the sample potential. Individual tip biasing is specifically important in order to implement multi-tip STM/AFM applications. An extensional quartz sensor (needle sensor) with a conductive tip is applied to record simultaneously topography and conductivity of the sample. The high resonance frequency of the needle sensor (1 MHz) allows scanning of a large area of the surface being investigated in a reasonably short time. A recipe for the amplitude calibration which is based only on the frequency shift signal and does not require the tip being in contact is presented. Additionally, we show spectral measurements of the mechanical vibration noise of the scanning system used in the investigations.

  18. Combined frequency modulated atomic force microscopy and scanning tunneling microscopy detection for multi-tip scanning probe microscopy applications.

    PubMed

    Morawski, Ireneusz; Spiegelberg, Richard; Korte, Stefan; Voigtländer, Bert

    2015-12-01

    A method which allows scanning tunneling microscopy (STM) tip biasing independent of the sample bias during frequency modulated atomic force microscopy (AFM) operation is presented. The AFM sensor is supplied by an electronic circuit combining both a frequency shift signal and a tunneling current signal by means of an inductive coupling. This solution enables a control of the tip potential independent of the sample potential. Individual tip biasing is specifically important in order to implement multi-tip STM/AFM applications. An extensional quartz sensor (needle sensor) with a conductive tip is applied to record simultaneously topography and conductivity of the sample. The high resonance frequency of the needle sensor (1 MHz) allows scanning of a large area of the surface being investigated in a reasonably short time. A recipe for the amplitude calibration which is based only on the frequency shift signal and does not require the tip being in contact is presented. Additionally, we show spectral measurements of the mechanical vibration noise of the scanning system used in the investigations. PMID:26724038

  19. Standardization in dimensional nanometrology: development of a calibration guideline for Scanning Probe Microscopy

    NASA Astrophysics Data System (ADS)

    Dziomba, Thorsten; Koenders, Ludger; Wilkening, Günter

    2005-10-01

    The continuing miniaturization in many technologies - among them the optical systems - demands high-resolution measurements with uncertainties in the nanometre-range or even well below. A brief introduction of measurement methods used at the micro- & nanometre scale is therefore given as introduction. While a wide range of these methods are well established for the determination of various physical properties down to the nanometric scale, it is Scanning Probe Microscopy (SPM) that provides a unique direct access to topographic surface features in the size range from atomic diameters to some ten or hundred micrometres. With the increasing use of SPMs as quantitative measurement instruments, the demand for standardized calibration routines also for this type of instruments rises. However, except for a few specially designed set-ups mainly at National Metrology Institutes (e. g. PTB in Germany), measurements made with SPMs usually lack traceability to the metre definition. A number of physical transfer standards have therefore been developed and are already available commercially. While detailed knowledge of the standards' properties is a prerequisite for their practical applicability, the calibration procedure itself deserves careful consideration as well. As there is, up to now, no generally accepted concept how to perform SPM calibrations, guidelines are now being developed on various national and international levels, e. g. VDI/VDE-GMA in Germany and ISO. This papers discusses the draft of an SPM calibration guideline by focusing on several critical practical aspects of SPM calibration. The paper intends to invite the readers to take active part in guideline discussions.

  20. Probing Transition Metal Dichalcogenide Monolayers and Heterostructures by Optical Spectroscopy and Scanning Tunneling Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hill, Heather M.

    Atomically thin two-dimensional materials, such as graphene and semiconductor transition metal dichalcogenides (TMDCs), exhibit remarkable and desirable optical and electronic properties. This dissertation focuses on the excitonic properties of monolayer TMDCs taken first in isolation and then in contact with another material. We begin with a study of the exciton binding energy in two monolayer TMDCs, WS2 and MoS2. We observe excited states of the exciton by two dierent optical spectroscopy techniques: reflectance contrast and photoluminescence excitation (PLE) spectroscopy. We fit a hydrogenic model to the energies associated with the excited states and infer a binding energy, which is an order of magnitude higher than the bulk material. In the second half of this work, we study two types of two-dimensional vertical heterostructures. First, we investigate heterostructures composed of monolayer WS2 partially capped with graphene one to four layers thick. Using reflectance contrast to measure the spectral broadening of the excitonic features, we measure the decrease in the coherence lifetime of the exciton in WS2 due to charge and energy transfer when in contact with graphene. We then compare our results with the exciton lifetime in MoS 2/WS2 and MoSe2/WSe2 heterostructures. In TMDC/TMDC heterostructures, the decrease in exciton lifetime is twice that in WS2/graphene heterostructures and due predominantly to charge transfer between the layers. Finally, we probe the band alignment in MoS2/WS2 heterostructures using scanning tunneling microscopy (STM) and spectroscopy (STS). We confirm the monolayer band gaps and the predicted type II band alignment in the heterostructure. Drawing from all the research presented, we arrive at a favorable conclusion about the viability of TMDC based devices.

  1. Probing core-electron orbitals by scanning transmission electron microscopy and measuring the delocalization of core-level excitations

    NASA Astrophysics Data System (ADS)

    Jeong, Jong Seok; Odlyzko, Michael L.; Xu, Peng; Jalan, Bharat; Mkhoyan, K. Andre

    2016-04-01

    By recording low-noise energy-dispersive x-ray spectroscopy maps from crystalline specimens using aberration-corrected scanning transmission electron microscopy, it is possible to probe core-level electron orbitals in real space. Both the 1 s and 2 p orbitals of Sr and Ti atoms in SrTi O3 are probed, and their projected excitation potentials are determined. This paper also demonstrates experimental measurement of the electronic excitation impact parameter and the delocalization of an excitation due to Coulombic beam-orbital interaction.

  2. Kinetics of linear domains in LiNbO{sub 3} single crystals polarized by scanning probe microscopy

    SciTech Connect

    Bo, Huifeng; College of Science, Hebei United University, Tangshan 063009 ; Jin, Yaming; Xu, Tingting; Du, Yingchao; Kan, Yi; Lu, Xiaomei Zhu, Jinsong

    2013-12-16

    Growth and decay processes of linear domains in lithium niobate single crystals fabricated utilizing scanning probe microscopy were investigated. It is found that the initial configuration of linear domains is dependent on the fabrication parameters as scan velocity and voltage. The linear domains decay at the part where the domain width is small for two different processes. A comparison of critical stable domain size between dot and linear domains was carried out. The critical linear domain width is 0.7 times as large as the critical diameter of dot domain at the same sample thickness due to their smaller surface energy.

  3. Chemical Biology Probes from Advanced DNA-encoded Libraries.

    PubMed

    Salamon, Hazem; Klika Škopić, Mateja; Jung, Kathrin; Bugain, Olivia; Brunschweiger, Andreas

    2016-02-19

    The identification of bioactive compounds is a crucial step toward development of probes for chemical biology studies. Screening of DNA-encoded small molecule libraries (DELs) has emerged as a validated technology to interrogate vast chemical space. DELs consist of chimeric molecules composed of a low-molecular weight compound that is conjugated to a DNA identifier tag. They are screened as pooled libraries using selection to identify "hits." Screening of DELs has identified numerous bioactive compounds. Some of these molecules were instrumental in gaining a deeper understanding of biological systems. One of the main challenges in the field is the development of synthesis methodology for DELs. PMID:26820267

  4. A diamond-based scanning probe spin sensor operating at low temperature in ultra-high vacuum

    NASA Astrophysics Data System (ADS)

    Schaefer-Nolte, E.; Reinhard, F.; Ternes, M.; Wrachtrup, J.; Kern, K.

    2014-01-01

    We present the design and performance of an ultra-high vacuum (UHV) low temperature scanning probe microscope employing the nitrogen-vacancy color center in diamond as an ultrasensitive magnetic field sensor. Using this center as an atomic-size scanning probe has enabled imaging of nanoscale magnetic fields and single spins under ambient conditions. In this article we describe an experimental setup to operate this sensor in a cryogenic UHV environment. This will extend the applicability to a variety of molecular systems due to the enhanced target spin lifetimes at low temperature and the controlled sample preparation under UHV conditions. The instrument combines a tuning-fork based atomic force microscope (AFM) with a high numeric aperture confocal microscope and the facilities for application of radio-frequency (RF) fields for spin manipulation. We verify a sample temperature of <50 K even for strong laser and RF excitation and demonstrate magnetic resonance imaging with a magnetic AFM tip.

  5. A diamond-based scanning probe spin sensor operating at low temperature in ultra-high vacuum

    SciTech Connect

    Schaefer-Nolte, E.; Wrachtrup, J.; 3rd Institute of Physics and Research Center SCoPE, University Stuttgart, 70569 Stuttgart ; Reinhard, F.; Ternes, M.; Kern, K.; Institut de Physique de la Matière Condenseé, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne

    2014-01-15

    We present the design and performance of an ultra-high vacuum (UHV) low temperature scanning probe microscope employing the nitrogen-vacancy color center in diamond as an ultrasensitive magnetic field sensor. Using this center as an atomic-size scanning probe has enabled imaging of nanoscale magnetic fields and single spins under ambient conditions. In this article we describe an experimental setup to operate this sensor in a cryogenic UHV environment. This will extend the applicability to a variety of molecular systems due to the enhanced target spin lifetimes at low temperature and the controlled sample preparation under UHV conditions. The instrument combines a tuning-fork based atomic force microscope (AFM) with a high numeric aperture confocal microscope and the facilities for application of radio-frequency (RF) fields for spin manipulation. We verify a sample temperature of <50 K even for strong laser and RF excitation and demonstrate magnetic resonance imaging with a magnetic AFM tip.

  6. Characterizing nanoscale scanning probes using electron microscopy: A novel fixture and a practical guide

    NASA Astrophysics Data System (ADS)

    Jacobs, Tevis D. B.; Wabiszewski, Graham E.; Goodman, Alexander J.; Carpick, Robert W.

    2016-01-01

    The nanoscale geometry of probe tips used for atomic force microscopy (AFM) measurements determines the lateral resolution, contributes to the strength of the tip-surface interaction, and can be a significant source of uncertainty in the quantitative analysis of results. While inverse imaging of the probe tip has been used successfully to determine probe tip geometry, direct observation of the tip profile using electron microscopy (EM) confers several advantages: it provides direct (rather than indirect) imaging, requires fewer algorithmic parameters, and does not require bringing the tip into contact with a sample. In the past, EM-based observation of the probe tip has been achieved using ad hoc mounting methods that are constrained by low throughput, the risk of contamination, and repeatability issues. We report on a probe fixture designed for use in a commercial transmission electron microscope that enables repeatable mounting of multiple AFM probes as well as a reference grid for beam alignment. This communication describes the design, fabrication, and advantages of this probe fixture, including full technical drawings for machining. Further, best practices are discussed for repeatable, non-destructive probe imaging. Finally, examples of the fixture's use are described, including characterization of common commercial AFM probes in their out-of-the-box condition.

  7. Characterizing nanoscale scanning probes using electron microscopy: A novel fixture and a practical guide.

    PubMed

    Jacobs, Tevis D B; Wabiszewski, Graham E; Goodman, Alexander J; Carpick, Robert W

    2016-01-01

    The nanoscale geometry of probe tips used for atomic force microscopy (AFM) measurements determines the lateral resolution, contributes to the strength of the tip-surface interaction, and can be a significant source of uncertainty in the quantitative analysis of results. While inverse imaging of the probe tip has been used successfully to determine probe tip geometry, direct observation of the tip profile using electron microscopy (EM) confers several advantages: it provides direct (rather than indirect) imaging, requires fewer algorithmic parameters, and does not require bringing the tip into contact with a sample. In the past, EM-based observation of the probe tip has been achieved using ad hoc mounting methods that are constrained by low throughput, the risk of contamination, and repeatability issues. We report on a probe fixture designed for use in a commercial transmission electron microscope that enables repeatable mounting of multiple AFM probes as well as a reference grid for beam alignment. This communication describes the design, fabrication, and advantages of this probe fixture, including full technical drawings for machining. Further, best practices are discussed for repeatable, non-destructive probe imaging. Finally, examples of the fixture's use are described, including characterization of common commercial AFM probes in their out-of-the-box condition. PMID:26827324

  8. Watching Domains Grow: In-situ studies of polarization switching by combined Scanning Probe and Scanning Transmission Electron Microscopy

    SciTech Connect

    Chang, Hye Jung; Kalinin, Sergei V; Yang, S.Y; Yu, P; Bhattacharya, S.; Wu, P; Balke, Nina; Jesse, Stephen; Chen, Long-Qing; Ramesh, R.; Pennycook, Stephen J; Borisevich, Albina Y

    2011-01-01

    Ferroelectric domain nucleation and growth in multiferroic BiFeO{sub 3} films is observed directly by applying a local electric field with a conductive tip inside a scanning transmission electron microscope. The nucleation and growth of a ferroelastic domain and its interaction with pre-existing 71{sup o} domain walls are observed and compared with the results of phase-field modeling. In particular, a preferential nucleation site and direction-dependent pinning of domain walls are observed due to slow kinetics of metastable switching in the sample without a bottom electrode. These in situ spatially resolved observations of a first-order bias-induced phase transition reveal the mesoscopic mechanisms underpinning functionality of a wide range of multiferroic materials.

  9. Noise Characteristics of 100nm-scaleGaAs/Al_xGa_{1-x}As Scanning Hall Probes

    SciTech Connect

    Hicks, C.W.; Luan, L.; Moler, K.A.; Zeldov, E.; /Weizmann Inst.

    2007-03-23

    The authors have fabricated and characterized GaAs/Al{sub x}Ga{sub 1-x}As two-dimensional electron gas scanning Hall probes for imaging perpendicular magnetic fields at surfaces. The Hall crosses range from 85 x 85 to 1000 x 1000 nm{sup 2}. They study low-frequency noise in these probes, especially random telegraph noise, and show that low-frequency noise can be significantly reduced by optimizing the voltage on a gate over the Hall cross. The authors demonstrate a 100 nm Hall probe with a sensitivity of 0.5 G/{radical}Hz (flux sensitivity of 0.25m {Phi}{sub 0}/{radical}Hz; spin sensitivity of 1.2 x 10{sup 4} {mu}{sub B}/{radical}Hz) at 3 Hz and 9 K.

  10. Imaging of enzyme activity by scanning electrochemical microscope equipped with a feedback control for substrate-probe distance.

    PubMed

    Oyamatsu, Daisuke; Hirano, Yu; Kanaya, Norihiro; Mase, Yoshiaki; Nishizawa, Matsuhiko; Matsue, Tomokazu

    2003-08-01

    The enzymatic activity of diaphorase (Dp) immobilized on a solid substrate was characterized using a scanning electrochemical microscope (SECM) with shear force feedback to control the substrate-probe distance. The shear force between the substrate and the probe was monitored with a tuning fork-type quartz crystal and used as the feedback control to set the microelectrode probe close to the substrate surface. The sensitivity and the contrast of the SECM image were improved in the constant distance mode (distance, 50 nm) with the shear force feedback compared to the image in the constant height mode without the feedback. By using this system, the SECM and topographic images of the immobilized diaphorase were simultaneously measured. The microelectrode tip used in this study was ground aslant like a syringe needle in order to obtain the shaper topographic images. This shape was also effective for avoiding the interference during the diffusion of the enzyme substrates. PMID:12893317

  11. F-18 SRA closeup of nose cap showing Advanced L-Probe Air Data Integration experiment

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This L-shaped probe mounted on the forward fuselage of a modified F-18 Systems Research Aircraft was the focus of an air data collection experiment flown at NASA's Dryden Flight Research Center, Edwards, California. The Advanced L-Probe Air Data Integration (ALADIN) experiment focused on providing pilots with angle-of-attack and angle-of-sideslip information as well as traditional airspeed and altitude data from a single system. For the experiment, the probes--one mounted on either side of the F-18's forward fuselage--were hooked to a series of four transducers, which relayed pressure measurements to an on-board research computer.

  12. Nanosphere lithography for advanced all fiber Sers probes

    NASA Astrophysics Data System (ADS)

    Pisco, Marco; Galeotti, Francesco; Quero, Giuseppe; Grisci, Giorgio; Micco, Alberto; Mercaldo, L.; Delli Veneri, P.; Cusano, Andrea

    2016-05-01

    In this work, we report a straightforward and cost-effective fabrication route for the development of nano-patterned optical fiber tips. The technique is based on self-assembling polystyrene microspheres at the air/water interface and on their successive transferring on the fiber tip of single mode optical fiber. By applying to the fiber further treatments like particle size reduction, metal coating and sphere removal, different periodic structures have been conveniently realized. The morphological analysis reveals indeed the successful creation on the optical fiber tip of regular metallic-dielectric spheres' arrays as well as metallic patterns with dimensional features down to a submicron scale. Finally, as proof of concept, we demonstrated the capability of the realized patterns to work as efficient Surface Enhanced Raman Spectroscopy (SERS) fiber probes.

  13. A silicon metal-oxide-semiconductor field-effect transistor Hall bar for scanning Hall probe microscopy.

    PubMed

    Yamaguchi, Akinobu; Saito, Hiromasa; Shimizu, Masayoshi; Miyajima, Hideki; Matsumoto, Satoru; Nakamura, Yoshiharu; Hirohata, Atsufumi

    2008-08-01

    We demonstrate successful operation of a scanning Hall probe microscope with a few micron-size resolution by using a silicon metal-oxide semiconductor field-effect transistor (Si-MOSFET) Hall bar, which is designed to improve not only the mechanical strength but also the temperature stability. The Si-MOSFET micro-Hall probe is cheaper than the current micro-Hall probes and is found to be as sensitive as a micro-Hall probe with GaAs/AlGaAs heterostructure or an epitaxial InSb two-dimensional electron gas. This was used to magnetically image the surface of a Sm(2)Co(17) permanent magnet during the magnetization reversal process as a function of an external magnetic field below 1.5 T. This revealed firm evidence of the presence of the inverse magnetic seed as theoretically predicted earlier. Magnetically pinned centers, with a typical size 80 mum, are observed to persist even under a high magnetic field, clearly indicating the robustness of the Si Hall probe against the field application as well as the repetition of the measurement. PMID:19044353

  14. Large area scanning probe microscope in ultra-high vacuum demonstrated for electrostatic force measurements on high-voltage devices

    PubMed Central

    Glatzel, Thilo; Schmölzer, Thomas; Schöner, Adolf; Reshanov, Sergey; Bartolf, Holger; Meyer, Ernst

    2015-01-01

    Summary Background: The resolution in electrostatic force microscopy (EFM), a descendant of atomic force microscopy (AFM), has reached nanometre dimensions, necessary to investigate integrated circuits in modern electronic devices. However, the characterization of conducting or semiconducting power devices with EFM methods requires an accurate and reliable technique from the nanometre up to the micrometre scale. For high force sensitivity it is indispensable to operate the microscope under high to ultra-high vacuum (UHV) conditions to suppress viscous damping of the sensor. Furthermore, UHV environment allows for the analysis of clean surfaces under controlled environmental conditions. Because of these requirements we built a large area scanning probe microscope operating under UHV conditions at room temperature allowing to perform various electrical measurements, such as Kelvin probe force microscopy, scanning capacitance force microscopy, scanning spreading resistance microscopy, and also electrostatic force microscopy at higher harmonics. The instrument incorporates beside a standard beam deflection detection system a closed loop scanner with a scan range of 100 μm in lateral and 25 μm in vertical direction as well as an additional fibre optics. This enables the illumination of the tip–sample interface for optically excited measurements such as local surface photo voltage detection. Results: We present Kelvin probe force microscopy (KPFM) measurements before and after sputtering of a copper alloy with chromium grains used as electrical contact surface in ultra-high power switches. In addition, we discuss KPFM measurements on cross sections of cleaved silicon carbide structures: a calibration layer sample and a power rectifier. To demonstrate the benefit of surface photo voltage measurements, we analysed the contact potential difference of a silicon carbide p/n-junction under illumination. PMID:26885461

  15. Advanced development of particle beam probe diagnostic systems

    SciTech Connect

    Hickok, R.L.; Crowley, T.P.; Connor, K.A.

    1990-11-01

    This progress report covers the period starting with the approval to go ahead with the 2 MeV heavy ion beam probe (HIBP) for TEXT Upgrade to the submission of the grant renewal proposal. During this period the co-principal investigators, R. L. Hickok and T. P. Crowley have each devoted 45% of their time to this Grant. Their effort has been almost exclusively devoted to the design and fabrication of the 2 MeV HIBP system. The 1989 report that described the advantages of a 2 MeV HIBP for TEXT Upgrade compared to the existing 0.5 MeV HIBP and outlined the design of the 2 MeV system is attached as Appendix A. Since the major effort under the renewal proposal will be the continued fabrication, installation and operation of the 2 MeV system on TEXT Upgrade, we describe some of the unique results that have been obtained with the 0.5 MeV system on TEXT. For completeness, we also include the preliminary operation of the 160 keV HIBP on ATF. We present the present fabrication status of the 2 MeV system with the exception of the electrostatic energy analyzer. The energy analyzer which is designed to operate with 400 kV on the top plate is a major development effort and is treated separately. Included in this section are the results obtained with a prototype no guard ring analyzer, the conceptual design for the 2 MeV analyzer, the status of the high voltage testing of full size analyzer systems and backup plans if it turns out that it is impossible to hold 400 kV on an analyzer this size.

  16. A Bright Future for Precision Medicine: Advances in Fluorescent Chemical Probe Design and Their Clinical Application.

    PubMed

    Garland, Megan; Yim, Joshua J; Bogyo, Matthew

    2016-01-21

    The Precision Medicine Initiative aims to use advances in basic and clinical research to develop therapeutics that selectively target and kill cancer cells. Under the same doctrine of precision medicine, there is an equally important need to visualize these diseased cells to enable diagnosis, facilitate surgical resection, and monitor therapeutic response. Therefore, there is a great opportunity for chemists to develop chemically tractable probes that can image cancer in vivo. This review focuses on recent advances in the development of optical probes, as well as their current and future applications in the clinical management of cancer. The progress in probe development described here suggests that optical imaging is an important and rapidly developing field of study that encourages continued collaboration among chemists, biologists, and clinicians to further refine these tools for interventional surgical imaging, as well as for diagnostic and therapeutic applications. PMID:26933740

  17. Reduced thermal quadrupole heat transport modeling in harmonic and transient regime scanning thermal microscopy using nanofabricated thermal probes

    NASA Astrophysics Data System (ADS)

    Bodzenta, J.; Chirtoc, M.; Juszczyk, J.

    2014-08-01

    The thermal model of a nanofabricated thermal probe (NTP) used in scanning thermal microscopy is proposed. It is based on consideration of the heat exchange channels between electrically heated probe, a sample, and their surroundings, in transient and harmonic regimes. Three zones in the probe-sample system were distinguished and modeled by using electrical analogies of heat flow through a chain of quadrupoles built from thermal resistances and thermal capacitances. The analytical transfer functions for two- and three-cell quadrupoles are derived. A reduced thermal quadrupole with merged RC elements allows for thermo-electrical modeling of the complex architecture of a NTP, with a minimum of independent parameters (two resistance ratios and two time constants). The validity of the model is examined by comparing computed values of discrete RC elements with results of finite element simulations and with experimental data. It is proved that the model consisting of two or three-cell quadrupole is sufficient for accurate interpretation of experimental results. The bandwidth of the NTP is limited to 10 kHz. The performance in dc regime can be simply obtained in the limit of zero frequency. One concludes that the low NTP sensitivity to sample thermal conductivity is due, much like in dc regime, to significant heat by-pass by conduction through the cantilever, and to the presence of probe-sample contact resistance in series with the sample.

  18. Towards better scanning near-field optical microscopy probes--progress and new developments.

    PubMed

    Heinzelmann, H; Freyland, J M; Eckert, R; Huser, T; Schürmann, G; Noell, W; Staufer, U; De Rooij, N F

    1999-01-01

    Several approaches are described with the aim of producing near-field optical probes with improved properties. Focused ion beam milling allows the fabrication of small apertures in a controlled fashion, resulting in probes with excellent polarization properties and increased transmission. Microfabrication processes are described that allow the production of apertures of 30-50 nm, facilitating the mass-fabrication of apertured tip structures that can be used in a combined force/near-field optical microscope. Finally, possible future developments are outlined. PMID:11388268

  19. A Miniature Forward-imaging B-scan Optical Coherence Tomography Probe to Guide Real-time Laser Ablation

    PubMed Central

    Li, Zhuoyan; Shen, Jin H.; Kozub, John A.; Prasad, Ratna; Lu, Pengcheng; Joos, Karen M.

    2014-01-01

    Background and Objective Investigations have shown that pulsed lasers tuned to 6.1 μm in wavelength are capable of ablating ocular and neural tissue with minimal collateral damage. This study investigated whether a miniature B-scan forward-imaging optical coherence tomography (OCT) probe can be combined with the laser to provide real-time visual feedback during laser incisions. Study Design/Methods and Materials A miniature 25-gauge B-scan forward-imaging OCT probe was developed and combined with a 250 μm hollow-glass waveguide to permit delivery of 6.1 μm laser energy. A gelatin mixture and both porcine corneal and retinal tissues were simultaneously imaged and lased (6.1 μm, 10 Hz, 0.4-0.7 mJ) through air. The ablation studies were observed and recorded in real time. The crater dimensions were measured using OCT imaging software (Bioptigen, Durham, NC). Histological analysis was performed on the ocular tissues. Results The combined miniature forward-imaging OCT and mid-infrared laser-delivery probe successfully imaged real-time tissue ablation in gelatin, corneal tissue, and retinal tissue. Application of a constant number of 60 pulses at 0.5 mJ/pulse to the gelatin resulted in a mean crater depth of 123 ± 15 μm. For the corneal tissue, there was a significant correlation between the number of pulses used and depth of the lased hole (Pearson correlation coefficient = 0.82; P = 0.0002). Histological analysis of the cornea and retina tissues showed discrete holes with minimal thermal damage. Conclusions A combined miniature OCT and laser -delivery probe can monitor real-time tissue laser ablation. With additional testing and improvements, this novel instrument has the future possibility of effectively guiding surgeries by simultaneously imaging and ablating tissue. PMID:24648326

  20. Probing the electronic structure of graphene sheets with various thicknesses by scanning transmission X-ray microscopy

    SciTech Connect

    Bai, Lili; Liu, Jinyin; Zhao, Guanqi; Gao, Jing; Sun, Xuhui E-mail: jzhong@suda.edu.cn; Zhong, Jun E-mail: jzhong@suda.edu.cn

    2013-12-16

    The electronic structure of an aggregation of graphene sheets with various thicknesses was probed by scanning transmission X-ray microscopy. A uniform oxidation of the graphene sheets in the flat area was observed regardless of the thickness, while in the folded area the result could be strongly affected by the geometry. Moreover, thick parts of the aggregation showed strong angle-dependence to the incident X-ray, while thin parts showed less angle-dependence, which might be related to the surface wrinkles and ripples. The electronic structure differences due to the geometry and thickness suggest a complicated situation in the aggregation of graphene sheets.

  1. Largely defocused probe scanning transmission electron microscopy for imaging local modulation of strain field in a hetero interface

    SciTech Connect

    Kim, Suhyun Jung, Younheum; Kim, Joong Jung; Lee, Sunyoung; Lee, Haebum; Oshima, Yoshifumi

    2014-10-13

    We present an innovative method for characterizing the strain field in three dimensions in a hetero interface. Largely defocused probe scanning transmission electron microscopy (LDP-STEM) was employed for imaging the inhomogeneous strain field in a germanium (Ge) layer deposited on a silicon (Si) substrate. In the LDP-STEM image, Ge-atomic columns that are relaxed or strained to the Si substrate in the Si/Ge hetero interface were observed to be distinguishable, allowing for the qualitative characterization of the coherency of the crystal growth. Our results revealed that the strain field is locally modulated along the in-plane direction in the Si/Ge hetero interface.

  2. Nano-optical scan probes: Opening doors to previously-inaccessible parameter spaces

    SciTech Connect

    Schuck, James

    2014-06-08

    I will discuss recent progress on new near-field probe geometries, including the “campanile” geometry, which has been used in recent hyperspectral imaging experiments, providing nanoscale spectral information distinct from what is obtained with other methods. Article not available.

  3. Scan parameters and the diffusion emphasis effect in diffusion-weighted imaging using a motion-probing gradient preparation pulse.

    PubMed

    Takahashi, Daisuke; Tanji, Hajime; Yamaki, Tomoya; Obara, Makoto; Machida, Yoshio

    2014-07-01

    Diffusion-sensitized driven equilibrium preparation (DSDE) is a gradient echo (GRE) diffusion-weighted imaging (DWI) sequence that employs a motion-probing gradient (MPG) preparation pulse and phase cycling. In DSDE, several scan parameters of the MPG preparation pulse and the GRE sequence affect diffusion sensitivity. Our investigation of the relationship between these scan parameters and the diffusion emphasis effect revealed the importance of "prep.TE" in the MPG preparation pulse and "TFE shot interval" in the gradient echo sequence. Appropriate choice of these parameters allows DSDE to provide a similar DWI to that of conventional single-shot SEEPI DWI. We therefore concluded DSDE to be a useful DWI method. PMID:25055943

  4. Modelling an advanced ManPAD with dual band detectors and a rosette scanning seeker head

    NASA Astrophysics Data System (ADS)

    Birchenall, Richard P.; Richardson, Mark A.; Butters, Brian; Walmsley, Roy

    2012-01-01

    Man Portable Air Defence Systems (ManPADs) have been a favoured anti aircraft weapon since their appearance on the military proliferation scene in the mid 1960s. Since this introduction there has been a 'cat and mouse' game of Missile Countermeasures (CMs) and the aircraft protection counter counter measures (CCMs) as missile designers attempt to defeat the aircraft platform protection equipment. Magnesium Teflon Viton (MTV) flares protected the target aircraft until the missile engineers discovered the art of flare rejection using techniques including track memory and track angle bias. These early CCMs relied upon CCM triggering techniques such as the rise rate method which would just sense a sudden increase in target energy and assume that a flare CM had been released by the target aircraft. This was not as reliable as was first thought as aspect changes (bringing another engine into the field of view) or glint from the sun could inadvertently trigger a CCM when not needed. The introduction of dual band detectors in the 1980s saw a major advance in CCM capability allowing comparisons between two distinct IR bands to be made thus allowing the recognition of an MTV flare to occur with minimal false alarms. The development of the rosette scan seeker in the 1980s complemented this advancement allowing the scene in the missile field of view (FOV) to be scanned by a much smaller (1/25) instantaneous FOV (IFOV) with the spectral comparisons being made at each scan point. This took the ManPAD from a basic IR energy detector to a pseudo imaging system capable of analysing individual elements of its overall FOV allowing more complex and robust CCM to be developed. This paper continues the work published in [1,2] and describes the method used to model an advanced ManPAD with a rosette scanning seeker head and robust CCMs similar to the Raytheon Stinger RMP.

  5. Covalent binding of biological samples to solid supports for scanning probe microscopy in buffer solution.

    PubMed Central

    Karrasch, S; Dolder, M; Schabert, F; Ramsden, J; Engel, A

    1993-01-01

    Scanning force microscopy allows imaging of biological molecules in their native state in buffer solution. To this end samples have to be fixed to a flat solid support so that they cannot be displaced by the scanning tip. Here we describe a method to achieve the covalent binding of biological samples to glass surfaces. Coverslips were chemically modified with the photoactivatable cross-linker N-5-azido-2-nitrobenzoyloxysuccinimide. Samples are squeezed between derivatized coverslips and then cross-linked to the glass surface by irradiation with ultraviolet light. Such samples can be imaged repeatedly by the scanning force microscope without loss of image quality, whereas identical but not immobilized samples are pushed away by the stylus. Images FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 8 PMID:8312482

  6. Local photo-assisted poling of azo copolymer films by scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    S-S Chien, F.; Y Lin, C.; Hsu, C. C.

    2008-12-01

    Azo copolymers are nonlinear-optical materials, in which polar orientation can be induced by optical poling or electrical poling. We report a new efficient approach to performing photo-assisted poling (PAP) by atomic force microscopy (AFM) for azo copolymer films containing disperse-red-1 chromophores, and to characterize the polar orientation by electrostatic force microscopy (EFM) at the submicrometre scale. Both PAP and contact electrification effects can be generated by the physical interaction between the probes and the films. We demonstrated that these two effects can be distinguished by the relationship between the signs of the charges (bound charges and transferred charges) and the probe bias. Finally, we achieve local PAP far below the glass transition temperature by AFM operated in the tapping mode, and the response of the polar chromophores to local PAP can be studied by EFM.

  7. Fabrication and characterization of a silicon cantilever probe with an integrated quartz-glass (fused-silica) tip for scanning near-field optical microscopy.

    PubMed

    Schürmann, G; Noell, W; Staufer, U; de Rooij, N F; Eckert, R; Freyland, J M; Heinzelmann, H

    2001-10-01

    A cantilever-based probe is introduced for use in scanning near-field optical microscopy (SNOM) combined with scanning atomic-force microscopy (AFM). The probes consist of silicon cantilevers with integrated 25-mum-high fused-silica tips. The probes are batch fabricated by microfabrication technology. Transmission electron microscopy reveals that the transparent quartz tips are completely covered with an opaque aluminum layer before the SNOM measurement. Static and dynamic AFM imaging was performed. SNOM imaging in transmission mode of single fluorescent molecules shows an optical resolution better than 32 nm. PMID:18364783

  8. Batch-fabrication of cantilevered magnets on attonewton-sensitivity mechanical oscillators for scanned-probe nanoscale magnetic resonance imaging

    PubMed Central

    Hickman, Steven A.; Moore, Eric W.; Lee, SangGap; Longenecker, Jonilyn G.; Wright, Sarah J.; Harrell, Lee E.; Marohn, John A.

    2015-01-01

    We have batch-fabricated cantilevers with ~100 nm diameter nickel nanorod tips and force sensitivities of a few attonewtons at 4.2 kelvin. The magnetic nanorods were engineered to overhang the leading edge of the cantilever and, consequently, the cantilevers experience what we believe is the lowest surface noise ever achieved in a scanned probe experiment. Cantilever magnetometry indicated that the tips were well magnetized, with a ≤ 20 nm dead layer; the composition of the dead layer was studied by electron microscopy and electron energy loss spectroscopy. In what we believe is the first demonstration of scanned probe detection of electron-spin resonance from a batch fabricated tip, the cantilevers were used to observe electron-spin resonance from nitroxide spin labels in a film via force-gradient-induced shifts in cantilever resonance frequency. The magnetic field dependence of the magnetic resonance signal suggests a non-uniform tip magnetization at an applied field near 0.6 T. PMID:21082863

  9. Insights into the nanoscale lateral and vertical phase separation in organic bulk heterojunctions via scanning probe microscopy.

    PubMed

    Chintala, R; Tait, J G; Eyben, P; Voroshazi, E; Surana, S; Fleischmann, C; Conard, T; Vandervorst, W

    2016-02-14

    Solution processed polymer (donor) and fullerene (acceptor) bulk heterojunctions are widely used as the photo active layer in organic solar cells. Intimate mixing of these two materials is essential for efficient charge separation and transport. Identifying relative positions of acceptor and donor rich regions in the bulk heterojunction with nanometer scale precision is crucial in understanding intricate details of operation. In this work, a combination of Ar(+)2000 gas cluster ion beam and scanning probe microscopy is used to examine the lateral and vertical phase separation within regio-regular poly(3-hexylthiophene)(P3HT):phenyl-C60-butyric acid methyl ester (PCBM) bulk heterojunction. While the Ar(+)2000 gas cluster ion beam is used as a sputter tool to expose the underneath layers, scanning probe microscopy techniques are used to obtain two-dimensional (2D) electrical maps (with sub-2 nm lateral resolution). The electrical mapping is decoded to chemical composition, essentially producing lateral and vertical maps of phase separation. Thermal stress causes large PCBM-rich hillocks to form, and consequently affecting the balance of P3HT:PCBM heterojunctions, hence a negative impact on the efficiency of the solar cell. We further developed a method to analyze the efficiency of exciton dissociation based on the current maps and a loss of 20% in efficiency is observed for thermally degraded samples compared to fresh un-annealed samples. PMID:26810305

  10. Molecular-Level Insights into Photocatalysis from Scanning Probe Microscopy Studies on TiO2(110)

    SciTech Connect

    Henderson, Michael A.; Lyubinetsky, Igor

    2013-06-12

    The field of heterogeneous photocatalysis has grown considerably in the decades since Fujishima and Honda's ground-breaking publications of photoelectrochemistry on TiO2. Numerous review articles continue to point to both progress made in the use of heterogeneous materials (such as TiO2) to perform photoconversion processes, and the many opportunities and challenges in heterogeneous photocatalysis research such as solar energy conversion and environmental remediation. The past decade has also seen an increase in the use of molecular-level approaches applied to model single crystal surfaces in an effort to obtain new insights into photocatalytic phenomena. In particular, scanning probe techniques (SPM) have enabled researchers to take a ‘nanoscale’ approach to photocatalysis that includes interrogation of the reactivities of specific sites and adsorbates on a model photocatalyst surface. The rutile TiO2(110) surface has become the prototypical oxide single crystal surface for fundamental studies of many interfacial phenomena. In particular, TiO2(110) has become an excellent model surface for probing photochemical and photocatalytic reactions at the molecular level. A variety of experimental approaches have emerged as being ideally suited for studying photochemical reactions on TiO2(110), including desorption-oriented approaches and electronic spectroscopies, but perhaps the most promising techniques for evaluating site-specific properties are those of SPM. In this review, we highlight the growing use of SPM techniques in providing molecular-level insights into surface photochemistry on the model photocatalyst surface of rutile TiO2(110). Our objective is to both illustrate the unique knowledge that scanning probe techniques have already provided the field of photocatalysis, and also to motivate a new generation of effort into the use of such approaches to obtain new insights into the molecular level details of photochemical events occurring at interfaces

  11. Detection of secondary phases in duplex stainless steel by magnetic force microscopy and scanning Kelvin probe force microscopy

    SciTech Connect

    Ramírez-Salgado, J.; Domínguez-Aguilar, M.A.; Castro-Domínguez, B.; Hernández-Hernández, P.; Newman, R.C.

    2013-12-15

    The secondary phase transformations in a commercial super duplex stainless steel were investigated by micro-chemical analyses and high resolution scanning probe microscopy. Energy dispersive X-ray and electron probe detected ferrite and austenite as well as secondary phases in unetched aged duplex stainless steel type 25Cr-7Ni-3Mo. Volta potential indicated that nitride and sigma appeared more active than ferrite, while secondary austenite and austenite presented a nobler potential. Reversal order in nobility is thought to be attributable to the potential ranking provided by oxide nature diversity as a result of secondary phase surface compositions on steel. After eutectoid transformation, secondary austenite was detected by electron probe microanalysis, whereas atomic force microscopy distinguished this phase from former austenite by image contrast. Magnetic force microscopy revealed a “ghosted” effect on the latter microstructure probably derived from metal memory reminiscence of mechanical polishing at passivity and long range magnetic forces of ferrite phase. - Highlights: • Nobility detection of secondary phases by SKPFM in DSS particles is not a straightforward procedure. • As Volta potential and contrast are not always consistent SKPFM surface oxides is thought played an important role in detection. • AFM distinguished secondary austenite from former austenite by image contrast though SEM required EPMA.

  12. Availability of feature-oriented scanning probe microscopy for remote-controlled measurements on board a space laboratory or planet exploration Rover.

    PubMed

    Lapshin, Rostislav V

    2009-06-01

    Prospects for a feature-oriented scanning (FOS) approach to investigations of sample surfaces, at the micrometer and nanometer scales, with the use of scanning probe microscopy under space laboratory or planet exploration rover conditions, are examined. The problems discussed include decreasing sensitivity of the onboard scanning probe microscope (SPM) to temperature variations, providing autonomous operation, implementing the capabilities for remote control, self-checking, self-adjustment, and self-calibration. A number of topical problems of SPM measurements in outer space or on board a planet exploration rover may be solved via the application of recently proposed FOS methods. PMID:19566423

  13. Infrared radiation emitted due to scanning of a hot spot as a probe of hidden defects

    NASA Astrophysics Data System (ADS)

    Woźny, Mariusz; Maś, Kinga; Prokhorenko, Serhiy; Ploch, Dariusz; Sheregii, E. M.

    2016-05-01

    Specially created subsurface defects in a sample are detected using a high resolution infrared camera FLIR SC7000. A scanning hot air (about 110 °C) nozzle is applied to introduce additional energy in a researched sample. The hidden defect has an increased temperature in comparison with the surrounding area that is a result of changed emissivity and thermal diffusivity. The suggested method is compared with pulse thermography which uses a xenon lamp for excitation.

  14. Note: Circuit design for direct current and alternating current electrochemical etching of scanning probe microscopy tips

    NASA Astrophysics Data System (ADS)

    Jobbins, Matthew M.; Raigoza, Annette F.; Kandel, S. Alex

    2012-03-01

    We present control circuits designed for electrochemically etching, reproducibly sharp STM probes. The design uses an Arduino UNO microcontroller to allow for both ac and dc operation, as well as a comparator driven shut-off that allows for etching to be stopped in 0.5-1 μs. The Arduino allows the instrument to be customized to suit a wide variety of potential applications without significant changes to hardware. Data is presented for coarse chemical etching of 80:20 platinum-iridium, tungsten, and nickel tips.

  15. Note: Circuit design for direct current and alternating current electrochemical etching of scanning probe microscopy tips.

    PubMed

    Jobbins, Matthew M; Raigoza, Annette F; Kandel, S Alex

    2012-03-01

    We present control circuits designed for electrochemically etching, reproducibly sharp STM probes. The design uses an Arduino UNO microcontroller to allow for both ac and dc operation, as well as a comparator driven shut-off that allows for etching to be stopped in 0.5-1 μs. The Arduino allows the instrument to be customized to suit a wide variety of potential applications without significant changes to hardware. Data is presented for coarse chemical etching of 80:20 platinum-iridium, tungsten, and nickel tips. PMID:22462971

  16. Nanoscale magnetic field mapping with a single spin scanning probe magnetometer

    SciTech Connect

    Rondin, L.; Tetienne, J.-P.; Spinicelli, P.; Roch, J.-F.; Jacques, V.; Dal Savio, C.; Karrai, K.; Dantelle, G.; Thiaville, A.; Rohart, S.

    2012-04-09

    We demonstrate quantitative magnetic field mapping with nanoscale resolution, by applying a lock-in technique on the electron spin resonance frequency of a single nitrogen-vacancy defect placed at the apex of an atomic force microscope tip. In addition, we report an all-optical magnetic imaging technique which is sensitive to large off-axis magnetic fields, thus extending the operation range of diamond-based magnetometry. Both techniques are illustrated by using a magnetic hard disk as a test sample. Owing to the non-perturbing and quantitative nature of the magnetic probe, this work should open up numerous perspectives in nanomagnetism and spintronics.

  17. Four-point probe electrical resistivity scanning system for large area conductivity and activation energy mapping

    NASA Astrophysics Data System (ADS)

    Shimanovich, Klimentiy; Bouhadana, Yaniv; Keller, David A.; Rühle, Sven; Anderson, Assaf Y.; Zaban, Arie

    2014-05-01

    The electrical properties of metal oxides play a crucial role in the development of new photovoltaic (PV) systems. Here we demonstrate a general approach for the determination and analysis of these properties in thin films of new metal oxide based PV materials. A high throughput electrical scanning system, which facilitates temperature dependent measurements at different atmospheres for highly resistive samples, was designed and constructed. The instrument is capable of determining conductivity and activation energy values for relatively large sample areas, of about 72 × 72 mm2, with the implementation of geometrical correction factors. The efficiency of our scanning system was tested using two different samples of CuO and commercially available Fluorine doped tin oxide coated glass substrates. Our high throughput tool was able to identify the electrical properties of both resistive metal oxide thin film samples with high precision and accuracy. The scanning system enabled us to gain insight into transport mechanisms with novel compositions and to use those insights to make smart choices when choosing materials for our multilayer thin film all oxide photovoltaic cells.

  18. Adlayer structures of anthracenthiol on Au(111) after removal of covering multilayers with probe scan

    NASA Astrophysics Data System (ADS)

    Azzam, Waleed

    2016-05-01

    Self-assembled monolayers (SAMs) of anthracene-2-thiol (AnT) on Au(111) have been investigated using scanning tunneling microscopy (STM). A preparation of AnT-SAMs from ethanolic solutions results in a deposition of multilayer films. As a result, the general features that have been frequently observed for different systems of thiol-modified gold surfaces are hidden in AnT-SAMs. The thin overlayers on top of the chemisorbed anthracenethiolate monolayer are removed by the STM-tip after a repetitive scanning over the same part of the SAM at nondestructive imaging conditions. After ∼2 h of consecutive and continuous STM scanning, smooth AnT-SAM surfaces were formed. The polished surfaces contain vacancy depressions rather than the elevated gold islands which are typically formed after the adsorption of purely aromatic thiols such as AnT on Au(111). The STM data showed the coexistence of two distinct stable commensurate phases, namely, α and β. High-resolution STM images revealed a (√{ 3 } × 8) structure for the α phase and a (√{ 7 } × 4) R11° structure for the β phase whose unit cells contain, respectively, four and two molecules. The β phase was found to be 50% less densely packed than the α phase. The lower molecular density of the β phase should be correlated with a significantly larger tilt angle of the AnT molecular backbone with respect to the surface normal.

  19. Four-point probe electrical resistivity scanning system for large area conductivity and activation energy mapping.

    PubMed

    Shimanovich, Klimentiy; Bouhadana, Yaniv; Keller, David A; Rühle, Sven; Anderson, Assaf Y; Zaban, Arie

    2014-05-01

    The electrical properties of metal oxides play a crucial role in the development of new photovoltaic (PV) systems. Here we demonstrate a general approach for the determination and analysis of these properties in thin films of new metal oxide based PV materials. A high throughput electrical scanning system, which facilitates temperature dependent measurements at different atmospheres for highly resistive samples, was designed and constructed. The instrument is capable of determining conductivity and activation energy values for relatively large sample areas, of about 72 × 72 mm(2), with the implementation of geometrical correction factors. The efficiency of our scanning system was tested using two different samples of CuO and commercially available Fluorine doped tin oxide coated glass substrates. Our high throughput tool was able to identify the electrical properties of both resistive metal oxide thin film samples with high precision and accuracy. The scanning system enabled us to gain insight into transport mechanisms with novel compositions and to use those insights to make smart choices when choosing materials for our multilayer thin film all oxide photovoltaic cells. PMID:24880411

  20. Challenges and Advances in Instrumentation of UHV LT Multi-Probe SPM System

    NASA Astrophysics Data System (ADS)

    Wang, Zhouhang

    The progress of nanoscience and nanotechnology can be realized only through continued advances and utilization of instruments and techniques for characterizing material properties and manipulating material and device at nanoscale. The UHV LT Multi-Probe SPM system with high resolution SEM has been developed to meet such challenges. This integrated instrument bridges dimensions from the centimeter to atomic scale, and provides an unprecedented platform for local, non-destructive transport measurements and for building, manipulating and function-testing complex nanoelectronics and nanoscale machineries. It also enables combining many different techniques for characterizing sample conductance, topography, chemical, optical or magnetic properties with complementary information at the same position or on the same nanodevice. Design and development of such complex systems pose many issues and challenges. This chapter will discuss some of the issues faced, solutions reached and advances made. Examples include: (1) Disturbance by magnetic material and magnetic field of SEM imaging and coordination of SEM/SPM position, and their influence on and disturbance of SAM spectra and SAM mapping. The design and use of non-magnetic motors for multi-probe modules will be presented and discussed. (2) Tip holder and sample holder design for easy handling, better mechanical stability over the temperature range and better thermal contact and the versatility of the sample holder with multiple contacts. (3) Use of optical fiber as one of the probe modules, and positioning of the fiber probe. CL spectra and CL mapping results will be presented.

  1. A hybrid analog-digital phase-locked loop for frequency mode non-contact scanning probe microscopy.

    PubMed

    Mehta, M M; Chandrasekhar, V

    2014-01-01

    Non-contact scanning probe microscopy (SPM) has developed into a powerful technique to image many different properties of samples. The conventional method involves monitoring the amplitude, phase, or frequency of a cantilever oscillating at or near its resonant frequency as it is scanned across the surface of a sample. For high Q factor cantilevers, monitoring the resonant frequency is the preferred method in order to obtain reasonable scan times. This can be done by using a phase-locked-loop (PLL). PLLs can be obtained as commercial integrated circuits, but these do not have the frequency resolution required for SPM. To increase the resolution, all-digital PLLs requiring sophisticated digital signal processors or field programmable gate arrays have also been implemented. We describe here a hybrid analog/digital PLL where most of the components are implemented using discrete analog integrated circuits, but the frequency resolution is provided by a direct digital synthesis chip controlled by a simple peripheral interface controller (PIC) microcontroller. The PLL has excellent frequency resolution and noise, and can be controlled and read by a computer via a universal serial bus connection. PMID:24517775

  2. Low noise, low heat dissipation, high gain AC-DC front end amplification for scanning probe microscopy.

    SciTech Connect

    Messina, P.; Fradin, F. Y.; Pittana, P.

    2009-01-01

    We report here on the design, construction and testing of a vacuum compatible AC-DC amplification system for low signal measurements with scanning probes. The most important feature of this new amplification system is incorporated within the head of a scanning tunneling microscope (STM). This is achieved with a very low thermal dissipation radio frequency amplifier at the STM head. The amplifier gain is higher than 40 dB and has a 50 dB maximum. Further, the AC noise figure is 0.7 dB between 100 and 1000 MHz. The noise induced in the DC amplifier is less than 2 pA RMS (root mean square), which enables the microscope to scan over soft insulating molecular layers. Thermal drift at the STM tip-sample interface is below 0.1 nm min{sup -1} both in air and in vacuum operation. Atomic resolution on highly oriented pyrolytic graphite surfaces is reliably achieved. Spin noise measurements are provided as an example of an application.

  3. A hybrid analog-digital phase-locked loop for frequency mode non-contact scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Mehta, M. M.; Chandrasekhar, V.

    2014-01-01

    Non-contact scanning probe microscopy (SPM) has developed into a powerful technique to image many different properties of samples. The conventional method involves monitoring the amplitude, phase, or frequency of a cantilever oscillating at or near its resonant frequency as it is scanned across the surface of a sample. For high Q factor cantilevers, monitoring the resonant frequency is the preferred method in order to obtain reasonable scan times. This can be done by using a phase-locked-loop (PLL). PLLs can be obtained as commercial integrated circuits, but these do not have the frequency resolution required for SPM. To increase the resolution, all-digital PLLs requiring sophisticated digital signal processors or field programmable gate arrays have also been implemented. We describe here a hybrid analog/digital PLL where most of the components are implemented using discrete analog integrated circuits, but the frequency resolution is provided by a direct digital synthesis chip controlled by a simple peripheral interface controller (PIC) microcontroller. The PLL has excellent frequency resolution and noise, and can be controlled and read by a computer via a universal serial bus connection.

  4. Study of surface potential variation in p-/n-type 4H-SiC using scanning kelvin probe microscopy

    NASA Astrophysics Data System (ADS)

    Ahn, Jung-Joon; You, Lin; Yu, Liangchun; Koo, Sang-Mo; Kopanski, Joseph

    2013-03-01

    We report surface potential images of p-n junctions in 4H-SiC measured using scanning kelvin probe microscopy (SKPM) and relate them to the local dopant concentration. SKPM has been demonstrated on various semiconductor materials to examine crystalline defects and doping profiles. SKPM measured surface potential depends on the local dopant concentration and clearly differentiates between n-type and p-type materials. As opposed to scanning capacitance microscopy, which requires a good quality surface insulating layer, SKPM requires a clean surface and the lack of a screening oxide might result in higher spatial resolution. For the measurement, partially de-processed SiC high power LMOSFETS were used. The p-n junctions were formed from 4H-SiC wafers having a p-epilayer on p-substrate that was ion-implanted with nitrogen and annealed to build a shallow n-type region. The samples were observed in plan-view and in cross-section. Amplitude modulated, double pass SKPM was implemented with a commercial AFM. We conducted a detailed study of various data acquisition parameters and it seems that the lateral resolution of the potential difference can be enhanced by applying higher ac modulation amplitude and small tip-sample scanning height.

  5. Adsorbate-induced quantum Hall system probed by scanning tunneling spectroscopy combined with transport measurements

    SciTech Connect

    Masutomi, Ryuichi Okamoto, Tohru

    2015-06-22

    An adsorbate-induced quantum Hall system at the cleaved InSb surfaces is investigated in magnetic fields up to 14 T using low-temperature scanning tunneling microscopy and spectroscopy combined with transport measurements. We show that an enhanced Zeeman splitting in the Shubnikov-de Haas oscillations is explained by an exchange enhancement of spin splitting and potential disorder, both of which are obtained from the spatially averaged density of states (DOS). Moreover, the Altshuler–Aronov correlation gap is observed in the spatially averaged DOS at 0 T.

  6. Scanning thermal probe microscope method for the determination of thermal diffusivity of nanocomposite thin films.

    PubMed

    Varandani, Deepak; Agarwal, Khushboo; Brugger, Juergen; Mehta, Bodh Raj

    2016-08-01

    A commercial scanning thermal microscope has been upgraded to facilitate its use in estimating the radial thermal diffusivity of thin films close to room temperature. The modified setup includes a microcontroller driven microhotplate coupled with a Bluetooth module for wireless control. The microcontroller board (Arduino Leonardo) is used to generate a bias of suitable voltage amplitude and pulse duration which is applied across the microhotplate contact pads. A corresponding heat pulse from the Pt heating element (1 mm(2)) embedded within the microhotplate is delivered to the lower surface of the thin film (25 mm(2)) deposited over it. The large difference in the dimensions of the heating source and the thin film surface causes heat to flow radially outwards on the top surface of the latter. The decay of this radial heat wave as it flows outwards is recorded by the scanning thermal microscope in terms of temperature-time (T-t) profiles at varying positions around the central heating zone. A fitting procedure is suggested to extract the thermal diffusivity value from the array of T-t profiles. The efficacy of the above setup has been established by evaluating the thermal diffusivities of Bi2Te3 and Bi2Te3:Si thin film samples. Further, with only minor alterations in design the capabilities of the above setup can be extended to estimate the axial thermal diffusivity and specific heat of thin films, as a function of temperature. PMID:27587146

  7. Scanning thermal probe microscope method for the determination of thermal diffusivity of nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Varandani, Deepak; Agarwal, Khushboo; Brugger, Juergen; Mehta, Bodh Raj

    2016-08-01

    A commercial scanning thermal microscope has been upgraded to facilitate its use in estimating the radial thermal diffusivity of thin films close to room temperature. The modified setup includes a microcontroller driven microhotplate coupled with a Bluetooth module for wireless control. The microcontroller board (Arduino Leonardo) is used to generate a bias of suitable voltage amplitude and pulse duration which is applied across the microhotplate contact pads. A corresponding heat pulse from the Pt heating element (1 mm2) embedded within the microhotplate is delivered to the lower surface of the thin film (25 mm2) deposited over it. The large difference in the dimensions of the heating source and the thin film surface causes heat to flow radially outwards on the top surface of the latter. The decay of this radial heat wave as it flows outwards is recorded by the scanning thermal microscope in terms of temperature-time (T-t) profiles at varying positions around the central heating zone. A fitting procedure is suggested to extract the thermal diffusivity value from the array of T-t profiles. The efficacy of the above setup has been established by evaluating the thermal diffusivities of Bi2Te3 and Bi2Te3:Si thin film samples. Further, with only minor alterations in design the capabilities of the above setup can be extended to estimate the axial thermal diffusivity and specific heat of thin films, as a function of temperature.

  8. Use of scanning probe microscopies to study dopants at semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Nelson, Mark William

    Dopants, in semiconductors, are detected as either protrusions or depressions in scanning tunneling microscopy (STM) images. Measured dopant heights for layered semiconductors are considerably larger than for conventional semiconductors. This is interpreted as the influence of dopant induced electrostatic forces between the tip and the sample leading to a structural deformation of the surface around the dopant atoms. To investigate the influence of electrostatic forces, we performed STM measurements on p-type MoS2 at different bias voltages. The bias dependence of the STM images indicates the presence of electrostatic forces. Additional measurements with current imaging tunneling spectroscopy (CITS) show that changes in the density of states at dopant sites play only a minor role and cannot account for the large protrusions observed. Atomic force microscopy (AFM), with an applied D.C. voltage between the cantilever and sample, also confirms the role of electrostatic forces. Recently, we developed a new TappingmodeRTM AFM (TMAFM) based dopant profiling method based on an electrostatic mechanism similar to the STM imaging of dopants in layered semiconductors. TMAFM with an applied bias was used to spatially resolve areas of different doping type and density on silicon patterned via ion implantation. The application of a D.C. bias between the cantilever and sample during the measurement results in a Coulomb interaction between the tip and sample, whose magnitude depends on the spatial variation in the doping density. This effect was utilized to detect areas differing in doping by monitoring the phase angle between the drive frequency and cantilever response while scanning over areas of differing doping density. Measurements at various bias voltages are presented to demonstrate that the phase contrast observed between differently doped areas is directly connected to the bias induced surface potential (band bending) present on these areas. A quantitative investigation

  9. Improved imaging of the carotid artery in the short-axis plane by a mechanical scanning ultrasonic probe.

    PubMed

    Kudo, Kazuki; Hasegawa, Hideyuki; Kanai, Hiroshi

    2007-03-01

    To image the intima-media complex of the carotid artery in a wider region, a method for measuring cross-sectional images in the arterial short-axis plane is presented. Using the proposed mechanical scanning system for an ultrasonic probe, cross-sectional images of a silicon rubber tube and a human carotid artery are measured in basic experiments and in in vivo experiments, respectively. These experiments show that this method successfully images the short-axis cross sections. Using the method proposed in this article, B-mode images in the short-axis plane can be accurately measured in a wider region than is possible with conventional methods. PMID:27278176

  10. Insights into the nanoscale lateral and vertical phase separation in organic bulk heterojunctions via scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Chintala, R.; Tait, J. G.; Eyben, P.; Voroshazi, E.; Surana, S.; Fleischmann, C.; Conard, T.; Vandervorst, W.

    2016-02-01

    Solution processed polymer (donor) and fullerene (acceptor) bulk heterojunctions are widely used as the photo active layer in organic solar cells. Intimate mixing of these two materials is essential for efficient charge separation and transport. Identifying relative positions of acceptor and donor rich regions in the bulk heterojunction with nanometer scale precision is crucial in understanding intricate details of operation. In this work, a combination of Ar+2000 gas cluster ion beam and scanning probe microscopy is used to examine the lateral and vertical phase separation within regio-regular poly(3-hexylthiophene)(P3HT):phenyl-C60-butyric acid methyl ester (PCBM) bulk heterojunction. While the Ar+2000 gas cluster ion beam is used as a sputter tool to expose the underneath layers, scanning probe microscopy techniques are used to obtain two-dimensional (2D) electrical maps (with sub-2 nm lateral resolution). The electrical mapping is decoded to chemical composition, essentially producing lateral and vertical maps of phase separation. Thermal stress causes large PCBM-rich hillocks to form, and consequently affecting the balance of P3HT:PCBM heterojunctions, hence a negative impact on the efficiency of the solar cell. We further developed a method to analyze the efficiency of exciton dissociation based on the current maps and a loss of 20% in efficiency is observed for thermally degraded samples compared to fresh un-annealed samples.Solution processed polymer (donor) and fullerene (acceptor) bulk heterojunctions are widely used as the photo active layer in organic solar cells. Intimate mixing of these two materials is essential for efficient charge separation and transport. Identifying relative positions of acceptor and donor rich regions in the bulk heterojunction with nanometer scale precision is crucial in understanding intricate details of operation. In this work, a combination of Ar+2000 gas cluster ion beam and scanning probe microscopy is used to examine the

  11. A flexible implementation of scanning probe microscopy utilizing a multifunction system linked to a PC-Pentium controller

    NASA Astrophysics Data System (ADS)

    Barchesi, C.; Cricenti, A.; Generosi, R.; Giammichele, C.; Luce, M.; Rinaldi, M.

    1997-10-01

    A flexible electronic setup on a PC platform and the software implementation in Windows Microsoft environment, for a multipurpose head for scanning probe microscopy (SPM), has been developed. The integrated, multiapplication data acquisition system is linked to a PC-Pentium controller, through a digital I/O board, and consists of: (i) an asynchronous acquisition for real time removal of following error from SPM images; (ii) a three-axes, computer controlled micropositioning stage; (iii) software for electronic control, data acquisition, and graphics elaboration performed through subroutines of Visual Basic (Visual Basic Programming System Professional edition for Windows is a registered trademark of Microsoft Corporation, USA.), and PV-WAVE personal edition. (PV-WAVE Personal edition for Windows is a registered trademark of Visual Numerics, USA.)

  12. Low Temperature Scanning Probe Microscope(LT-SPM) operating in a Cryogen-Free Cryostat, 1.5-300K

    NASA Astrophysics Data System (ADS)

    Karci, Ozgur; Dede, Munir; Bugoslavsky, Yury; Hall, Renny; Oral, Ahmet; Nanomagnetics Instruments Ltd. Team; Cryogenic Limited Team; Sabanci University Team

    2011-03-01

    We present the design of a Low Temperature Scanning Probe Microscope(LT-SFM) operating in a vibration-free cryogen-free cryostat. A 0.5W ultra now noise Pulse Tube cryocooler is integrated into the cryostat with a 9T magnet. Stick slip coarse approach mechanism is used to bring the sample in to close proximity of the sample. The sample can be moved in XY directions within 3 mm range, while the position is measured with capacitive encoder with 3 μ m accuracy. An improved fiber interferometer with ~ 12 fm/ √ Hz noise level is used to detect cantilever deflection. The resonance of the cantilever controlled by a digital Phase Locked Loop (PLL) integrated in our Control Electronics with 5mHz frequency resolution. We can achieve ~ 1 nm resolution in AFM mode & <10nm resolution in MFM mode. Results from different imaging modes; non-contact AFM, MFM, Piezoresponse, Conductive AFM etc. will be presented.

  13. Development of micro-four-point probe in a scanning tunneling microscope for in situ electrical transport measurement.

    PubMed

    Ge, Jian-Feng; Liu, Zhi-Long; Gao, Chun-Lei; Qian, Dong; Liu, Canhua; Jia, Jin-Feng

    2015-05-01

    Electrons at surface may behave differently from those in bulk of a material. Multi-functional tools are essential in comprehensive studies on a crystal surface. Here, we developed an in situ microscopic four-point probe (4PP) transport measurement system on the basis of a scanning tunneling microscope (STM). In particular, convenient replacement between STM tips and micro-4PPs enables systematic investigations of surface morphology, electronic structure, and electrical transport property of a same sample surface. Performances of the instrument are demonstrated with high-quality STM images, tunneling spectra, and low-noise electrical I-V characteristic curves of a single-layer FeSe film grown on a conductive SrTiO3 surface. PMID:26026532

  14. Direct fabrication of thin layer MoS{sub 2} field-effect nanoscale transistors by oxidation scanning probe lithography

    SciTech Connect

    Espinosa, Francisco M.; Ryu, Yu K.; Garcia, Ricardo; Marinov, Kolyo; Dumcenco, Dumitru; Kis, Andras

    2015-03-09

    Thin layer MoS{sub 2}-based field effect transistors (FET) are emerging candidates to fabricate very fast and sensitive devices. Here, we demonstrate a method to fabricate very narrow transistor channel widths on a single layer MoS{sub 2} flake connected to gold electrodes. Oxidation scanning probe lithography is applied to pattern insulating barriers on the flake. The process narrows the electron path to about 200 nm. The output and transfer characteristics of the fabricated FET show a behavior that is consistent with the minimum channel width of the device. The method relies on the direct and local chemical modification of MoS{sub 2}. The straightforward character and the lack of specific requirements envisage the controlled patterning of sub-100 nm electron channels in MoS{sub 2} FETs.

  15. Development of micro-four-point probe in a scanning tunneling microscope for in situ electrical transport measurement

    SciTech Connect

    Ge, Jian-Feng; Liu, Zhi-Long; Gao, Chun-Lei; Qian, Dong; Liu, Canhua E-mail: jfjia@sjtu.edu.cn; Jia, Jin-Feng E-mail: jfjia@sjtu.edu.cn

    2015-05-15

    Electrons at surface may behave differently from those in bulk of a material. Multi-functional tools are essential in comprehensive studies on a crystal surface. Here, we developed an in situ microscopic four-point probe (4PP) transport measurement system on the basis of a scanning tunneling microscope (STM). In particular, convenient replacement between STM tips and micro-4PPs enables systematic investigations of surface morphology, electronic structure, and electrical transport property of a same sample surface. Performances of the instrument are demonstrated with high-quality STM images, tunneling spectra, and low-noise electrical I-V characteristic curves of a single-layer FeSe film grown on a conductive SrTiO{sub 3} surface.

  16. Current, charge, and capacitance during scanning probe oxidation of silicon. II. Electrostatic and meniscus forces acting on cantilever bending

    NASA Astrophysics Data System (ADS)

    Dagata, J. A.; Perez-Murano, F.; Martin, C.; Kuramochi, H.; Yokoyama, H.

    2004-08-01

    A comprehensive analysis of the electrical current passing through the tip-substrate junction during oxidation of silicon by scanning probe microscopy (SPM) is presented. This analysis identifies the electronic and ionic contributions to the total current, especially at the initial stages of the reaction, determines the effective contact area of the tip-substrate junction, and unifies the roles of space charge and meniscus formation. In this work, we concentrate on noncontact SPM oxidation. We analyze simultaneous force-distance and current-distance curves to demonstrate that total current flow during noncontact oxidation is significantly less for noncontact mode than for contact oxidation, although the resulting oxide volume is nearly identical. Ionization of water layers and mobile charge reorganization prior to and following meniscus formation is also shown to alter the tip-substrate capacitance and, therefore, the bending of the SPM cantilever.

  17. Application of Tapping-Mode Scanning Probe Electrospray Ionization to Mass Spectrometry Imaging of Additives in Polymer Films

    PubMed Central

    Shimazu, Ryo; Yamoto, Yoshinari; Kosaka, Tomoya; Kawasaki, Hideya; Arakawa, Ryuichi

    2014-01-01

    We report the application of tapping-mode scanning probe electrospray ionization (t-SPESI) to mass spectrometry imaging of industrial materials. The t-SPESI parameters including tapping solvent composition, solvent flow rate, number of tapping at each spot, and step-size were optimized using a quadrupole mass spectrometer to improve mass spectrometry (MS) imaging of thin-layer chromatography (TLC) and additives in polymer films. Spatial resolution of approximately 100 μm was achieved by t-SPESI imaging mass spectrometry using a fused-silica capillary (50 μm i.d., 150 μm o.d.) with the flow rate set at 0.2 μL/min. This allowed us to obtain discriminable MS imaging profiles of three dyes separated by TLC and the additive stripe pattern of a PMMA model film depleted by UV irradiation. PMID:26819894

  18. Mesoscopic Stripes in Antiferromagnetic Fe Chalcogenide Probed by Scanning Photoelectron Spectromicroscopy

    NASA Astrophysics Data System (ADS)

    Mizokawa, Takashi; Bendele, Markus; Barinov, Alexei; Iadecola, Antonella; Joseph, Boby; Noji, Takashi; Koike, Yoji; Saini, Naurang L.

    2016-03-01

    We have performed scanning photoelectron spectromicroscopy measurements in the paramagnetic (PM) and the antiferromagnetic (AFM) phases of Fe1+δTe (δ = 0.09). The spectromicroscopy images reveal stripe modulation of the electronic structure in the AFM monoclinic phase at low temperature, that disappears at high temperature in the PM phase. The stripes, running along the monoclinic crystal axis, are characterized by different density of states around the Γ point and near the Fermi level (EF). Since the near EF electronic states around the Γ point have strong electron-lattice coupling in Fe1+δTe, the observed stripes are likely to be related to the strain modulation introduced by the monoclinic lattice distortion.

  19. An ultra-rigid close-stacked piezo motor for harsh condition scanning probe microscopy.

    PubMed

    Guo, Ying; Hou, Yubin; Lu, Qingyou

    2014-01-01

    We designed and produced a nearly closest packed stack motor with only one tiny gap of 0.15 mm in the middle of the stack. A low-voltage method of controlling the motor is introduced for the first time. Besides, the test results of the motor and the corresponding scanning tunneling microscope are also presented. To our surprise, it turns out to be so rigid that even running two oil pumps and one ultrasonic cleaner within 1 m range from a STM directly driven by this new motor cannot cause the STM to produce any visible difference in its the atomic resolution quality. This is a leap in building a true harsh condition atomic resolution SPM. PMID:25183527

  20. Probing plasmons in three dimensions in a scanning transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Hachtel, Jordan; Mouti, Anas; Mayo, Daniel; Marvinney, Claire; Mu, Richard; Haglund, Richard; Pennycook, Stephen; Chisholm, Matthew; Pantelides, Sokrates

    2015-03-01

    The optical behavior of nanostructured materials is of significant interest across many fields. Surface plasmons and their interactions with emitters in nanoscale devices allow us to control light below the coherence limit. By understanding the nature of plasmonics at the local level we can move towards unlocking the full potential of photonic devices. To this end, we examine plasmonic Ag nanoparticles suspended on insulating nanowires by combining cathodoluminescence spectroscopy, electron energy loss spectroscopy, and high resolution annular dark field imaging in a scanning transmission electron microscope. The complementary nature of CL and EELS allow us to extract optical data from a randomly shaped and oriented nanoparticle, and understand its plasmonic behavior in all three spatial dimensions. This work was sponsored by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, as well as NSF-EPS-1004083 and NSF-TN-SCORE.

  1. Advances of molecular imaging probes for the diagnosis of Alzheimer's disease.

    PubMed

    Zhou, Ming; Wang, Xiaobo; Liu, Zhiguo; Yu, Lun; Hu, Shuo; Chen, Lizhang; Zeng, Wenbin

    2014-03-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive decline in multiple cognitive domains and it becomes the most common cause of dementia in the elderly. There is an urgent need for the early diagnosis and treatment of AD to ease caregiver burden and medical costs, as well as improve patients' living activities associated with the dramatic increasing number of affected individuals. Molecular imaging with target-specific probes is contributing to identify the underlying biology in AD, which benefits to the early diagnosis of AD and the evaluation of anti-AD therapy. Molecular imaging probes, such as (11)C-PIB, (11)C-MP4A, (18)F-AV-45, and (11)F-FDG, can selectively bind to special bimolecular of AD or accurately accumulate at the location of damage areas, thus become an edge tool for a better management of the diseases in the clinical practice and new drug development. In the past decades, a large variety of probes is being developed and tested to be useful for the early and accurate diagnosis of Alzheimer's disease, patient selection for disease-modifying therapeutic trials and monitoring the effect of anti-amyloid therapy. Since imaging probes may also help to guide physicians to identify those patients that could best benefit from a given therapeutic regimen, dose, or duration of drug, this paper is to present a perspective of the available imaging probes for AD, classified on different modalities. Meanwhile, recent advances of those probes that have been selected for clinical trials and are at the different stages of the US Food and Drugs Administration (FDA) approval are outlined. Additionally, future directions and specific application of imaging strategies designed for both diagnosis and treatment for AD are discussed. PMID:24484277

  2. Imaging thermal conductivity with nanoscale resolution using a scanning spin probe.

    PubMed

    Laraoui, Abdelghani; Aycock-Rizzo, Halley; Gao, Yang; Lu, Xi; Riedo, Elisa; Meriles, Carlos A

    2015-01-01

    The ability to probe nanoscale heat flow in a material is often limited by lack of spatial resolution. Here, we use a diamond-nanocrystal-hosted nitrogen-vacancy centre attached to the apex of a silicon thermal tip as a local temperature sensor. We apply an electrical current to heat up the tip and rely on the nitrogen vacancy to monitor the thermal changes the tip experiences as it is brought into contact with surfaces of varying thermal conductivity. By combining atomic force and confocal microscopy, we image phantom microstructures with nanoscale resolution, and attain excellent agreement between the thermal conductivity and topographic maps. The small mass and high thermal conductivity of the diamond host make the time response of our technique short, which we demonstrate by monitoring the tip temperature upon application of a heat pulse. Our approach promises multiple applications, from the investigation of phonon dynamics in nanostructures to the characterization of heterogeneous phase transitions and chemical reactions in various solid-state systems. PMID:26584676

  3. Exploring Local Electrostatic Effects with Scanning Probe Microscopy: Implications for Piezoresponse Force Microscopy and Triboelectricity

    DOE PAGESBeta

    Balke, Nina; Maksymovych, Petro; Jesse, Stephen; Kravchenko, Ivan I.; Li, Qian; Kalinin, Sergei V.

    2014-09-25

    The implementation of contact mode Kelvin probe force microscopy (KPFM) utilizes the electrostatic interactions between tip and sample when the tip and sample are in contact with each other. Surprisingly, the electrostatic forces in contact are large enough to be measured even with tips as stiff as 4.5 N/m. As for traditional non-contact KPFM, the signal depends strongly on electrical properties of the sample, such as the dielectric constant, and the tip-properties, such as the stiffness. Since the tip is in contact with the sample, bias-induced changes in the junction potential between tip and sample can be measured with highermore » lateral and temporal resolution compared to traditional non-contact KPFM. Significant and reproducible variations of tip-surface capacitance are observed and attributed to surface electrochemical phenomena. Lastly, observations of significant surface charge states at zero bias and strong hysteretic electromechanical responses at non-ferroelectric surface have significant implications for fields such as triboelectricity and piezoresponse force microscopy.« less

  4. Imaging thermal conductivity with nanoscale resolution using a scanning spin probe

    SciTech Connect

    Laraoui, Abdelghani; Aycock-Rizzo, Halley; Gao, Yang; Lu, Xi; Riedo, Elisa; Meriles, Carlos A.

    2015-11-20

    The ability to probe nanoscale heat flow in a material is often limited by lack of spatial resolution. Here, we use a diamond-nanocrystal-hosted nitrogen-vacancy centre attached to the apex of a silicon thermal tip as a local temperature sensor. We apply an electrical current to heat up the tip and rely on the nitrogen vacancy to monitor the thermal changes the tip experiences as it is brought into contact with surfaces of varying thermal conductivity. By combining atomic force and confocal microscopy, we image phantom microstructures with nanoscale resolution, and attain excellent agreement between the thermal conductivity and topographic maps. The small mass and high thermal conductivity of the diamond host make the time response of our technique short, which we demonstrate by monitoring the tip temperature upon application of a heat pulse. Our approach promises multiple applications, from the investigation of phonon dynamics in nanostructures to the characterization of heterogeneous phase transitions and chemical reactions in various solid-state systems.

  5. Imaging thermal conductivity with nanoscale resolution using a scanning spin probe

    DOE PAGESBeta

    Laraoui, Abdelghani; Aycock-Rizzo, Halley; Gao, Yang; Lu, Xi; Riedo, Elisa; Meriles, Carlos A.

    2015-11-20

    The ability to probe nanoscale heat flow in a material is often limited by lack of spatial resolution. Here, we use a diamond-nanocrystal-hosted nitrogen-vacancy centre attached to the apex of a silicon thermal tip as a local temperature sensor. We apply an electrical current to heat up the tip and rely on the nitrogen vacancy to monitor the thermal changes the tip experiences as it is brought into contact with surfaces of varying thermal conductivity. By combining atomic force and confocal microscopy, we image phantom microstructures with nanoscale resolution, and attain excellent agreement between the thermal conductivity and topographic maps.more » The small mass and high thermal conductivity of the diamond host make the time response of our technique short, which we demonstrate by monitoring the tip temperature upon application of a heat pulse. Our approach promises multiple applications, from the investigation of phonon dynamics in nanostructures to the characterization of heterogeneous phase transitions and chemical reactions in various solid-state systems.« less

  6. Exploring Local Electrostatic Effects with Scanning Probe Microscopy: Implications for Piezoresponse Force Microscopy and Triboelectricity

    SciTech Connect

    Balke, Nina; Maksymovych, Petro; Jesse, Stephen; Kravchenko, Ivan I.; Li, Qian; Kalinin, Sergei V.

    2014-09-25

    The implementation of contact mode Kelvin probe force microscopy (KPFM) utilizes the electrostatic interactions between tip and sample when the tip and sample are in contact with each other. Surprisingly, the electrostatic forces in contact are large enough to be measured even with tips as stiff as 4.5 N/m. As for traditional non-contact KPFM, the signal depends strongly on electrical properties of the sample, such as the dielectric constant, and the tip-properties, such as the stiffness. Since the tip is in contact with the sample, bias-induced changes in the junction potential between tip and sample can be measured with higher lateral and temporal resolution compared to traditional non-contact KPFM. Significant and reproducible variations of tip-surface capacitance are observed and attributed to surface electrochemical phenomena. Lastly, observations of significant surface charge states at zero bias and strong hysteretic electromechanical responses at non-ferroelectric surface have significant implications for fields such as triboelectricity and piezoresponse force microscopy.

  7. Imaging thermal conductivity with nanoscale resolution using a scanning spin probe

    PubMed Central

    Laraoui, Abdelghani; Aycock-Rizzo, Halley; Gao, Yang; Lu, Xi; Riedo, Elisa; Meriles, Carlos A.

    2015-01-01

    The ability to probe nanoscale heat flow in a material is often limited by lack of spatial resolution. Here, we use a diamond-nanocrystal-hosted nitrogen-vacancy centre attached to the apex of a silicon thermal tip as a local temperature sensor. We apply an electrical current to heat up the tip and rely on the nitrogen vacancy to monitor the thermal changes the tip experiences as it is brought into contact with surfaces of varying thermal conductivity. By combining atomic force and confocal microscopy, we image phantom microstructures with nanoscale resolution, and attain excellent agreement between the thermal conductivity and topographic maps. The small mass and high thermal conductivity of the diamond host make the time response of our technique short, which we demonstrate by monitoring the tip temperature upon application of a heat pulse. Our approach promises multiple applications, from the investigation of phonon dynamics in nanostructures to the characterization of heterogeneous phase transitions and chemical reactions in various solid-state systems. PMID:26584676

  8. Characterizing the local optoelectronic performance of organic solar cells with scanning-probe microscopy

    NASA Astrophysics Data System (ADS)

    Coffey, David C.

    2007-12-01

    Conjugated polymers, small molecules, and colloidal semiconductor nanocrystals are promising materials for use in low-cost, thin-film solar cells. The photovoltaic performance of these materials, however, is highly dependent on film structure, and directly correlating local film structures with device performance remains challenging. This dissertation describes several techniques we have developed to probe and control the local optoelectronic properties of organic semiconducting films. First, with an aim of rapidly fabricating photovoltaic films with varying morphology, we demonstrate that Dip-Pen Nanolithography (DPN) can be used to control nanoscale phase separation with sub-150 nm lateral resolution in polymer films that are 20--80 nm thick. This control is based on writing monolayer chemical templates that nucleate phase separation, and we use this technique to study heterogeneous nucleation in thin films. Second, we use time-resolved electrostatic force microscopy (trEFM) to measure photoexcited charge in polymer films with a resolution of 100 nm and 100 mus. We show that such data can predict the external quantum efficiencies of polymer photodiodes, and can thus link device performance with local optoelectronic properties. When applied to the study of blended polyfluorene films, we show that domain centers can buildup charge faster then domain interfaces, which indicates that polymer/polymer blend devices should be modeled as having impure donor/acceptor domains. Third, we use photoconductive atomic force microscopy (pcAFM) to map local photocurrents with 20 nm-resolution in polymer/fullerene solar cells- achieving an order of magnitude better resolution than previous techniques. We present photocurrent maps under short-circuit conditions (zero applied bias), as well as under various applied voltages. We find significant variations in the short-circuit current between regions that appear identical in AFM topography. These variations occur from one domain to

  9. Josephson scanning tunneling microscopy -- a local and direct probe of the superconducting order parameter

    SciTech Connect

    Kimura, Hikari; Dynes, Robert; Barber Jr., Richard. P.; Ono, S.; Ando, Y.

    2009-09-01

    Direct measurements of the superconducting superfluid on the surface of vacuum-cleaved Bi2Sr2CaCu2O8+delta (BSCCO) samples are reported. These measurements are accomplished via Josephson tunneling into the sample using a novel scanning tunneling microscope (STM) equipped with a superconducting tip. The spatial resolution of the STM of lateral distances less than the superconducting coherence length allows it to reveal local inhomogeneities in the pair wavefunction of the BSCCO. Instrument performance is demonstrated first with Josephson measurements of Pb films followed by the layered superconductor NbSe2. The relevant measurement parameter, the Josephson ICRN product, is discussed within the context of both BCS superconductors and the high transition temperature superconductors. The local relationship between the ICRN product and the quasiparticle density of states (DOS) gap are presented within the context of phase diagrams for BSCCO. Excessive current densities can be produced with these measurements and have been found to alter the local DOS in the BSCCO. Systematic studies of this effect were performed to determine the practical measurement limits for these experiments. Alternative methods for preparation of the BSCCO surface are also discussed.

  10. Supercriticality of charge centers in graphene probed with scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Yuhang; Mao, Jinhai; Li, Guohong; Moldovan, D.; Masir, M. Ramezani; Peeters, F. M.; Andrei, Eva Y.

    2015-03-01

    The massless Dirac fermion carriers in graphene, with their effective fine structure constant,αg, being of order unity, provide fertile ground for exploring the physics of ultra-relativistic particles in the strong coupling limit.In particulara positive charge Z embedded in graphene is expected to exhibit supercritical behavior already for Z>Zc = 0.5/αg, in stark contrast to the atomic case where Zc ~ 170 is experimentally inaccessible. However due to the significant screening in graphene, attaining the supercritical regime is challenging. We will report on a new method to create charge centerswithin the graphene layer whose charge, Z, can be tuned to exceed the critical value. Using low temperature scanning tunneling microscopy and spectroscopy we study the evolution in the local electronic structure of graphene as a function of Z, from charge neutrality to the supercritical regime, which is identified by comparing to numerical simulations. Work supported by DOE-FG02-99ER45742 and NSF DMR 1207108.

  11. An ultra-low temperature scanning Hall probe microscope for magnetic imaging below 40 mK.

    PubMed

    Karcı, Özgür; Piatek, Julian O; Jorba, Pau; Dede, Münir; Rønnow, Henrik M; Oral, Ahmet

    2014-10-01

    We describe the design of a low temperature scanning Hall probe microscope (SHPM) for a dilution refrigerator system. A detachable SHPM head with 25.4 mm OD and 200 mm length is integrated at the end of the mixing chamber base plate of the dilution refrigerator insert (Oxford Instruments, Kelvinox MX-400) by means of a dedicated docking station. It is also possible to use this detachable SHPM head with a variable temperature insert (VTI) for 2 K-300 K operations. A microfabricated 1μm size Hall sensor (GaAs/AlGaAs) with integrated scanning tunneling microscopy tip was used for magnetic imaging. The field sensitivity of the Hall sensor was better than 1 mG/√Hz at 1 kHz bandwidth at 4 K. Both the domain structure and topography of LiHoF4, which is a transverse-field Ising model ferromagnet which orders below TC = 1.53 K, were imaged simultaneously below 40 mK. PMID:25362399

  12. Visualization of non-uniform current flow in coated conductors by scanning Hall-probe magnetic microscopy

    NASA Astrophysics Data System (ADS)

    Abiru, K.; Honda, Y.; Inoue, M.; Kiss, T.; Iijima, Y.; Kakimoto, K.; Saitoh, T.; Nakao, K.; Shiohara, Y.

    2009-10-01

    We have visualized non-uniform current flow in RE123 coated conductors by using a scanning Hall-probe magnetic microscopy (SHPM). Newly developed SHPM system allows us to measure two-dimensional magnetic field distribution with high spatial resolution in micro-meter scale. Corresponding current density distribution can be obtained from the magnetic field image by solving inverted Biot-Savart’s law. One of the most important advantages of the present system is to visualize the current density distribution in practical high transport current and also in wide scanning area. For example, the system has current leads with large capacity up to 500 A, and the operating distance can be 15 cm by 15 cm with a micro-meter step distance. Using the SHPM system, we have successfully visualized current density distributions in the coated conductor, and clarified different kinds of non-uniform current flow. Those insights are very useful to identify local defects as well as non-uniform tape quality. These results indicate that the SHPM system is a powerful diagnostic tool not only to observe spatial inhomogeneities of transport property but also to understand their reason in practical coated conductors.

  13. Scanning Kelvin Probe Microscopy Investigation of the Role of Minority Carriers on the Switching Characteristics of Organic Field-Effect Transistors.

    PubMed

    Hu, Yuanyuan; Pecunia, Vincenzo; Jiang, Lang; Di, Chong-An; Gao, Xike; Sirringhaus, Henning

    2016-06-01

    A method based on scanning Kelvin probe microscopy is developed to probe the effects of minority carriers on the switching characteristics of organic field-effect transistors. The mobility of the minority carriers is extracted and the role they play in screening of the gate potential in the OFF state and in recombination of trapped majority carriers trapped after an ON state is understood. PMID:27059526

  14. Field dependence of the vortex core size probed by scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Fente, A.; Herrera, E.; Guillamón, I.; Suderow, H.; Mañas-Valero, S.; Galbiati, M.; Coronado, E.; Kogan, V. G.

    2016-07-01

    We study the spatial distribution of the density of states (DOS) at zero bias N (r ) in the mixed state of single and multigap superconductors. We provide an analytic expression for N (r ) based on deGennes' relationship between DOS and the order parameter that reproduces well scanning tunneling microscopy (STM) data in several superconducting materials. In the single gap superconductor β -Bi2Pd , we find that N (r ) is governed by a length scale ξH=√{ϕ0/2 π H } , which decreases in rising fields. The vortex core size C , defined via the slope of the order parameter at the vortex center, C ∝(dΔ /d r |r→0) -1 , differs from ξH by a material dependent numerical factor. The new data on the tunneling conductance and vortex lattice of the 2 H -NbSe1.8S0.2 show the in-plane isotropic vortices, suggesting that substitutional scattering removes the in-plane anisotropy found in the two-gap superconductor 2 H -NbSe2. We fit the tunneling conductance of 2 H -NbSe1.8S0.2 to a two gap model and calculate the vortex core size C for each band. We find that C is field independent and has the same value for both bands. We also analyze the two-band superconductor 2 H -NbS2 and find the same result. We conclude that, independently of the magnetic field induced variation of the order parameter values in both bands, the spatial variation of the order parameter close to the vortex core is the same for all bands.

  15. Fast photodynamics of azobenzene probed by scanning excited-state potential energy surfaces using slow spectroscopy

    PubMed Central

    Tan, Eric M. M.; Amirjalayer, Saeed; Smolarek, Szymon; Vdovin, Alexander; Zerbetto, Francesco; Buma, Wybren Jan

    2015-01-01

    Azobenzene, a versatile and polymorphic molecule, has been extensively and successfully used for photoswitching applications. The debate over its photoisomerization mechanism leveraged on the computational scrutiny with ever-increasing levels of theory. However, the most resolved absorption spectrum for the transition to S1(nπ*) has not followed the computational advances and is more than half a century old. Here, using jet-cooled molecular beam and multiphoton ionization techniques we report the first high-resolution spectra of S1(nπ*) and S2(ππ*). The photophysical characterization reveals directly the structural changes upon excitation and the timescales of dynamical processes. For S1(nπ*), we find that changes in the hybridization of the nitrogen atoms are the driving force that triggers isomerization. In combination with quantum chemical calculations we conclude that photoisomerization occurs along an inversion-assisted torsional pathway with a barrier of ~2 kcal mol−1. This methodology can be extended to photoresponsive molecular systems so far deemed non-accessible to high-resolution spectroscopy. PMID:25562840

  16. Fast photodynamics of azobenzene probed by scanning excited-state potential energy surfaces using slow spectroscopy.

    PubMed

    Tan, Eric M M; Amirjalayer, Saeed; Smolarek, Szymon; Vdovin, Alexander; Zerbetto, Francesco; Buma, Wybren Jan

    2015-01-01

    Azobenzene, a versatile and polymorphic molecule, has been extensively and successfully used for photoswitching applications. The debate over its photoisomerization mechanism leveraged on the computational scrutiny with ever-increasing levels of theory. However, the most resolved absorption spectrum for the transition to S1(nπ*) has not followed the computational advances and is more than half a century old. Here, using jet-cooled molecular beam and multiphoton ionization techniques we report the first high-resolution spectra of S1(nπ*) and S2(ππ*). The photophysical characterization reveals directly the structural changes upon excitation and the timescales of dynamical processes. For S1(nπ*), we find that changes in the hybridization of the nitrogen atoms are the driving force that triggers isomerization. In combination with quantum chemical calculations we conclude that photoisomerization occurs along an inversion-assisted torsional pathway with a barrier of ~2 kcal mol(-1). This methodology can be extended to photoresponsive molecular systems so far deemed non-accessible to high-resolution spectroscopy. PMID:25562840

  17. Blinking correlation in nanocrystal quantum dots probed with novel laser scanning confocal microscopy methods

    NASA Astrophysics Data System (ADS)

    Hefti, Ryan Alf

    Semiconductor quantum dots have a vast array of applications: as fluorescent labels in biological systems, as physical or chemical sensors, as components in photovoltaic technology, and in display devices. An attribute of nearly every quantum dot is its blinking, or fluorescence intermittency, which tends to be a disadvantage in most applications. Despite the fact that blinking has been a nearly universal phenomenon among all types of fluorescent constructs, it is more prevalent in quantum dots than in traditional fluorophores. Furthermore, no unanimously accepted model of quantum dot blinking yet exists. The work encompassed by this dissertation began with an in-depth study of molecular motor protein dynamics in a variety of environments using two specially developed techniques, both of which feature applicability to live cell systems. Parked-beam confocal microscopy was utilized to increase temporal resolution of molecular motor motion dynamics by an order of magnitude over other popular methods. The second technique, fast-scanning confocal microscopy (FSCM), was used for long range observation of motor proteins. While using FSCM on motor protein assays, we discovered an unusual phenomenon. Single quantum dots seemingly communicated with neighboring quantum dots, indicated by a distinct correlation in their blinking patterns. In order to explain this novel correlation phenomenon, the majority of blinking models developed thus far would suggest a dipole-dipole interaction or a Coulomb interaction between singly charged quantum dots. However, our results indicate that the interaction energy is higher than supported by current models, thereby prompting a renewed examination. We propose that the blinking correlation we observed is due to a Coulomb interaction on the order of 3-4 elementary charges per quantum dot and that multiple charging of individual quantum dots may be required to plunge them into a non-emissive state. As a result of charging, charge carriers are

  18. Sensor probes and phantoms for advanced transcranial magnetic stimulation system developments

    NASA Astrophysics Data System (ADS)

    Meng, Qinglei; Patel, Prashil; Trivedi, Sudhir; Du, Xiaoming; Hong, Elliot; Choa, Fow-Sen

    2015-05-01

    Transcranial magnetic stimulation (TMS) has become one of the most widely used noninvasive method for brain tissue stimulation and has been used as a treatment tool for various neurological and psychiatric disorders including migraine, stroke, Parkinson's disease, dystonia, tinnitus and depression. In the process of developing advanced TMS deep brain stimulation tools, we need first to develop field measurement devices like sensory probes and brain phantoms, which can be used to calibrate the TMS systems. Currently there are commercially available DC magnetic or electric filed measurement sensors, but there is no instrument to measure transient fields. In our study, we used a commercial figure-8 shaped TMS coil to generate transient magnetic field and followed induced field and current. The coil was driven by power amplified signal from a pulse generator with tunable pulse rate, amplitude, and duration. In order to obtain a 3D plot of induced vector electric field, many types of probes were designed to detect single component of electric-field vectors along x, y and z axis in the space around TMS coil. We found that resistor probes has an optimized signal-to-noise ratio (SNR) near 3k ohm but it signal output is too weak compared with other techniques. We also found that inductor probes can have very high output for Curl E measurement, but it is not the E-field distribution we are interested in. Probes with electrical wire wrapped around iron coil can directly measure induced E-field with high sensitivity, which matched computer simulation results.

  19. Investigation of Surface Properties for Gallium- and Nitrogen-polar Gallium Nitride using Scanning Probe Microscopy Techniques

    NASA Astrophysics Data System (ADS)

    Ferguson, Josephus Daniel, III

    Because the surface plays an important role in the electrical and optical properties of GaN devices, an improved understanding of surface effects should help optimize device performance. In this work, atomic force microscopy (AFM) and related techniques have been used to characterize three unique sets of n-type GaN samples. The sample sets comprised freestanding bulk GaN with Ga-polar and N-polar surfaces, epitaxial GaN films with laterally patterned Ga- and N-polar regions on a common surface, and truncated, hexagonal GaN microstructures containing Ga-polar mesas and semipolar facets. Morphology studies revealed that bulk Ga-polar surfaces treated with a chemical-mechanical polish (CMP) were the flattest of the entire set, with rms values of only 0.4 nm. Conducting AFM (CAFM) indicated unexpected insulating behavior for N-polar GaN bulk samples, but showed expected forward and reverse-bias conduction for periodically patterned GaN samples. Using scanning Kelvin probe microscopy, these same patterned samples demonstrated surface potential differences between the two polarities of up to 0.5 eV, where N-polar showed the expected higher surface potential. An HCl cleaning procedure used to remove the surface oxide decreased this difference between the two regions by 0.2 eV. It is possible to locally inject surface charge and measure the resulting change in surface potential using CAFM in conjunction with SKPM. After injecting electrons using a 10 V applied voltage between sample and tip, the patterned polarity samples reveal that the N-polar regions become significantly more negatively charged as compared to Ga-polar regions, with up to a 2 eV difference between charged and uncharged N-polar regions. This result suggests that the N-polar regions have a thicker surface oxide that effectively stores charge. Removal of this oxide layer using HCl results in significantly decreased surface charging behavior. A phenomenological model was then developed to fit the discharging

  20. CdSe/CdS-quantum rods: fluorescent probes for in vivo two-photon laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Dimitrijevic, Jelena; Krapf, Lisa; Wolter, Christopher; Schmidtke, Christian; Merkl, Jan-Philip; Jochum, Tobias; Kornowski, Andreas; Schüth, Anna; Gebert, Andreas; Hüttmann, Gereon; Vossmeyer, Tobias; Weller, Horst

    2014-08-01

    CdSe/CdS-Quantum-dots-quantum-rods (QDQRs) with an aspect ratio of ~6 are prepared via the seeded growth method, encapsulated within a shell of crosslinked poly(isoprene)-block-poly(ethylene glycol) (PI-b-PEG) diblock copolymer, and transferred from the organic phase into aqueous media. Their photoluminescence quantum yield (PLQY) of 78% is not compromised by the phase transfer. Within a period of two months the PLQY of QDQRs in aqueous solution at neutral pH decreases only slightly (to ~65%). The two-photon (TP) action cross sections of QDQRs (~105 GM) are two orders of magnitude higher than those of CdSe/CdS/ZnS-core/shell/shell quantum dots (QDs, ~103 GM) with comparable diameter (~5 nm). After applying PI-b-PEG encapsulated QDQRs onto the small intestinal mucosa of mice in vivo, their strong red fluorescence can easily be observed by two-photon laser scanning microscopy (TPLSM) and clearly distinguished from autofluorescent background. Our results demonstrate that PI-b-PEG encapsulated CdSe/CdS-QDQRs are excellent probes for studying the uptake and fate of nanoparticles by two-photon imaging techniques in vivo.CdSe/CdS-Quantum-dots-quantum-rods (QDQRs) with an aspect ratio of ~6 are prepared via the seeded growth method, encapsulated within a shell of crosslinked poly(isoprene)-block-poly(ethylene glycol) (PI-b-PEG) diblock copolymer, and transferred from the organic phase into aqueous media. Their photoluminescence quantum yield (PLQY) of 78% is not compromised by the phase transfer. Within a period of two months the PLQY of QDQRs in aqueous solution at neutral pH decreases only slightly (to ~65%). The two-photon (TP) action cross sections of QDQRs (~105 GM) are two orders of magnitude higher than those of CdSe/CdS/ZnS-core/shell/shell quantum dots (QDs, ~103 GM) with comparable diameter (~5 nm). After applying PI-b-PEG encapsulated QDQRs onto the small intestinal mucosa of mice in vivo, their strong red fluorescence can easily be observed by two-photon laser

  1. The accuracy of an optically supported fast approach solution for scanning probe microscopy (SPM)-measuring devices

    NASA Astrophysics Data System (ADS)

    Sikora, Andrzej; Bednarz, Lukasz

    2011-09-01

    Atomic force microscopy is a diagnostic technique offering sub-micron resolution in both lateral and vertical scales due to observation of interactions between a sharp scanning tip and the surface. Before the sample is scanned, the tip must approach the surface and this process is one of the most critical procedures in terms of the risk of damaging the tip and the sample. Automatic approach methods based on only near-interaction detection cannot provide a fully safe procedure when the distance of hundreds of micrometers is reduced to about 10 nm within a reasonable time period. In this paper we present a method of determining the tip-sample distance using advanced processing of the optical picture. The obtained information can be used during the coarse approach procedure. Eventually, the final approach can be done using near-field interaction detection, more carefully than before, due to the small tip-sample distance. The results of the tests of this method proving its efficiency are presented as well.

  2. Contact resistance asymmetry of amorphous indium–gallium–zinc–oxide thin-film transistors by scanning Kelvin probe microscopy

    NASA Astrophysics Data System (ADS)

    Chen-Fei, Wu; Yun-Feng, Chen; Hai, Lu; Xiao-Ming, Huang; Fang-Fang, Ren; Dun-Jun, Chen; Rong, Zhang; You-Dou, Zheng

    2016-05-01

    In this work, a method based on scanning Kelvin probe microscopy is proposed to separately extract source/drain (S/D) series resistance in operating amorphous indium–gallium–zinc–oxide (a-IGZO) thin-film transistors. The asymmetry behavior of S/D contact resistance is deduced and the underlying physics is discussed. The present results suggest that the asymmetry of S/D contact resistance is caused by the difference in bias conditions of the Schottky-like junction at the contact interface induced by the parasitic reaction between contact metal and a-IGZO. The overall contact resistance should be determined by both the bulk channel resistance of the contact region and the interface properties of the metal-semiconductor junction. Project supported by the Key Industrial R&D Program of Jiangsu Province, China (Grant No. BE2015155), the Priority Academic Program Development of Higher Education Institutions of Jiangsu Province, China, and the Fundamental Research Funds for the Central Universities, China (Grant No. 021014380033).

  3. Temperature Dependent Anisotropic Step-Flow Growth of Metal Phthalocyanine on Silicon Studied by Scanning Probe Microscopy

    NASA Astrophysics Data System (ADS)

    Wagner, Sean; Lunt, Richard; Zhang, Pengpeng

    2013-03-01

    Control of highly ordered organic molecular thin films is currently of intense interest for integration into modern electronics due to the tunable nature of organic molecules. Here, we study the initial growth of archetypal zinc phthalocyanine (ZnPc) and copper phthalocyanine (CuPc) on the deactivated Si(111) surface. Using scanning probe microscopy (SPM), we demonstrate access to a new quasi-epitaxial anisotropic step-flow growth for both ZnPc and CuPc with a single dominant long-range ordered relationship between the organic crystalline film and the substrate, uniquely distinct from inorganic epitaxial step-flow growth. This growth mode is largely attributed to the molecular diffusion and preferential nucleation at step edges enabled by the deactivated Si surface. We demonstrate the transition of growth modes by varying substrate temperature during deposition, altering the balance between diffusion and step- and island- nucleation rates. Access to the anisotropic step-flow growth offers new potential for the integration of highly-ordered organic thin films in silicon-based electronics. This research is funded by the U. S. Department of Energy (DOE) Office of Science Early Career Research Program (Grant number DE-SC0006400) through the Office of Basic Energy Sciences and start-up support from Michigan State University.

  4. Ordering in bio-inorganic hybrid nanomaterials probed by in situ scanning transmission X-ray microscopy

    DOE PAGESBeta

    Lee, Jonathan R. I.; Bagge-Hansen, Michael; Tunuguntla, Ramya; Kim, Kyunghoon; Bangar, Mangesh; Willey, Trevor M.; Tran, Ich C.; Kilcoyne, David A.; Noy, Aleksandr; van Buuren, Tony

    2015-04-15

    Here, phospholipid bilayer coated Si nanowires are one-dimensional (1D) composites that provide versatile bio-nanoelectronic functionality via incorporation of a wide variety of biomolecules into the phospholipid matrix. The physiochemical behaviour of the phospholipid bilayer is strongly dependent on its structure and, as a consequence, substantial modelling and experimental efforts have been directed at the structural characterization of supported bilayers and unsupported phospholipid vesicles; nonetheless, the experimental studies conducted to date have exclusively involved volume-averaged techniques, which do not allow for the assignment of spatially resolved structural variations that could critically impact the performance of the 1D phospholipid-Si NW composites. Inmore » this manuscript, we use scanning transmission X-ray microscopy (STXM) to probe bond orientation and bilayer thickness as a function of position with a spatial resolution of ~30 nm for Δ9-cis 1,2-dioleoyl-sn-glycero-3-phosphocholine layers prepared Si NWs. When coupled with small angle X-ray scattering measurements, the STXM data reveal structural motifs of the Si NWs that give rise to multi-bilayer formation and enable assignment of the orientation of specific bonds known to affect the order and rigidity of phospholipid bilayers.« less

  5. Cryogen free scanning probe microscope: the solution for atomic scale surface science below 10 Kelvin without liquid helium

    NASA Astrophysics Data System (ADS)

    Choi, Byoung; Venegas, Miguel; RHK Team

    We present a cryogen free low temperature scanning probe microscope (LT-SPM) working at 9K on both tip and sample. The performance of the microscope was validated in various conditions such as noisy environment and modulated temperature as well as the long time elapsed measurements. Building on the stability and consistency of the closed cycle refrigerator, time extended measurements are available with this state-of-the-art LT-SPM. Studies can now be performed without interrupting the critical moment of the tip on the surface while refilling the conventional liquid cryogen tank. We will present the time evolution of the dopant induced topographic and spectroscopic properties of some topological insulators such as Bi2Se3 and Bi2Te3. The compact and rigid design of the microscope also allows this instrument to work as a practical variable temperature microscope without the hassle of liquid cryogen consumption. We will present temperature dependent STM/STS results on a TiSe2 surface at the temperature between 10K and 350K. Finally, we will discuss how the cryogen free LT-SPM will make the study of the atomic scale phenomenon at low temperature both economical and easy, opening promising new capabilities to surface scientists and researchers in nanotechnology.

  6. Single Molecule Investigation of Glycine-Chlorite Interaction by Cross-Correlated Scanning Probe Microscopy and Quantum Mechanics Simulations.

    PubMed

    Moro, Daniele; Ulian, Gianfranco; Valdrè, Giovanni

    2015-04-21

    In this work, we studied the interaction of glycine with the (001) surface of chlorite mineral at a single molecule level by cross-correlating scanning probe microscopy (SPM) and ab initio quantum mechanics (QM) investigations. Chlorite mineral is particularly interesting and peculiar for the interaction with organic molecules because it presents an alternated stacking of brucite-like (hydrophobic) and talc-like (hydrophilic) layers of different polarities. Brucite-like is positive, whereas talc-like is negative. The experimental atomic force microscopy (AFM) observations show that glycine is stably and selectively adsorbed on the brucite-like layer, organized in monolayers with different patterns. The sizes of single molecules of glycine measured by AFM are in agreement with those calculated by QM. Glycine molecules were found to align both at the edges and on the terraces of the brucitic surface. QM simulations confirmed the AFM observations that glycine molecule is adsorbed with high adsorption energy preferentially with its plane parallel to the (001) brucite-like surface. QM also provided the geometry conformation of the molecule and the bonding scheme between glycine and brucite surface. This kind of data can be very helpful both to biotechnological applications of this substrate and to depict some important processes that might have been occurred in prebiotic environments. PMID:25830864

  7. Advances in 4D Treatment Planning for Scanned Particle Beam Therapy — Report of Dedicated Workshops

    PubMed Central

    Bert, Christoph; Graeff, Christian; Riboldi, Marco; Nill, Simeon; Baroni, Guido; Knopf, Antje-Christin

    2014-01-01

    We report on recent progress in the field of mobile tumor treatment with scanned particle beams, as discussed in the latest editions of the 4D treatment planning workshop. The workshop series started in 2009, with about 20 people from 4 research institutes involved, all actively working on particle therapy delivery and development. The first workshop resulted in a summary of recommendations for the treatment of mobile targets, along with a list of requirements to apply these guidelines clinically. The increased interest in the treatment of mobile tumors led to a continuously growing number of attendees: the 2012 edition counted more than 60 participants from 20 institutions and commercial vendors. The focus of research discussions among workshop participants progressively moved from 4D treatment planning to complete 4D treatments, aiming at effective and safe treatment delivery. Current research perspectives on 4D treatments include all critical aspects of time resolved delivery, such as in-room imaging, motion detection, beam application, and quality assurance techniques. This was motivated by the start of first clinical treatments of hepato cellular tumors with a scanned particle beam, relying on gating or abdominal compression for motion mitigation. Up to date research activities emphasize significant efforts in investigating advanced motion mitigation techniques, with a specific interest in the development of dedicated tools for experimental validation. Potential improvements will be made possible in the near future through 4D optimized treatment plans that require upgrades of the currently established therapy control systems for time resolved delivery. But since also these novel optimization techniques rely on the validity of the 4DCT, research focusing on alternative 4D imaging technique, such as MRI based 4DCT generation will continue. PMID:24354749

  8. Visualising reacting single atoms under controlled conditions: Advances in atomic resolution in situ Environmental (Scanning) Transmission Electron Microscopy (E(S)TEM)

    NASA Astrophysics Data System (ADS)

    Boyes, Edward D.; Gai, Pratibha L.

    2014-02-01

    Advances in atomic resolution Environmental (Scanning) Transmission Electron Microscopy (E(S)TEM) for probing gas-solid catalyst reactions in situ at the atomic level under controlled reaction conditions of gas environment and temperature are described. The recent development of the ESTEM extends the capability of the ETEM by providing the direct visualisation of single atoms and the atomic structure of selected solid state heterogeneous catalysts in their working states in real-time. Atomic resolution E(S)TEM provides a deeper understanding of the dynamic atomic processes at the surface of solids and their mechanisms of operation. The benefits of atomic resolution-E(S)TEM to science and technology include new knowledge leading to improved technological processes with substantial economic benefits, improved healthcare, reductions in energy needs and the management of environmental waste generation.

  9. Scanning ultrasonic probe

    DOEpatents

    Kupperman, David S.; Reimann, Karl J.

    1982-01-01

    The invention is an ultrasonic testing device for rapid and complete examination of the test specimen, and is particularly well suited for evaluation of tubular test geometries. A variety of defect categories may be detected and analyzed at one time and their positions accurately located in a single pass down the test specimen.

  10. Scanning ultrasonic probe

    DOEpatents

    Kupperman, D.S.; Reimann, K.J.

    1980-12-09

    The invention is an ultrasonic testing device for rapid and complete examination of the test specimen, and is particularly well suited for evaluation of tubular test geometries. A variety of defect categories may be detected and anlayzed at one time and their positions accurately located in a single pass down the test specimen.

  11. Science Data Processing for the Advanced Microwave Scanning Radiometer: Earth Observing System

    NASA Technical Reports Server (NTRS)

    Goodman, H. Michael; Regner, Kathryn; Conover, Helen; Ashcroft, Peter; Wentz, Frank; Conway, Dawn; Lobl, Elena; Beaumont, Bruce; Hawkins, Lamar; Jones, Steve

    2004-01-01

    The National Aeronautics and Space Administration established the framework for the Science Investigator-led Processing Systems (SIPS) to enable the Earth science data products to be produced by personnel directly associated with the instrument science team and knowledgeable of the science algorithms. One of the first instantiations implemented for NASA was the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) SIPS. The AMSR-E SIPS is a decentralized, geographically distributed ground data processing system composed of two primary components located in California and Alabama. Initial science data processing is conducted at Remote Sensing Systems (RSS) in Santa Rosa, California. RSS ingests antenna temperature orbit data sets from JAXA and converts them to calibrated, resampled, geolocated brightness temperatures. The brightness temperatures are sent to the Global Hydrology and Climate Center in Huntsville, Alabama, which generates the geophysical science data products (e.g., water vapor, sea surface temperature, sea ice extent, etc.) suitable for climate research and applications usage. These science products are subsequently sent to the National Snow and Ice Data Center Distributed Active Archive Center in Boulder, Colorado for archival and dissemination to the at-large science community. This paper describes the organization, coordination, and production techniques employed by the AMSR-E SIPS in implementing, automating and operating the distributed data processing system.

  12. Global Climate Monitoring with the EOS PM-Platform's Advanced Microwave Scanning Radiometer (AMSR-E)

    NASA Technical Reports Server (NTRS)

    Spencer, Roy W.

    2002-01-01

    The Advanced Microwave Scanning 2 Radiometer (AMSR-E) is being built by NASDA to fly on NASA's PM Platform (now called Aqua) in December 2000. This is in addition to a copy of AMSR that will be launched on Japan's ADEOS-II satellite in 2001. The AMSRs improve upon the window frequency radiometer heritage of the SSM/I and SMMR instruments. Major improvements over those instruments include channels spanning the 6.9 GHz to 89 GHz frequency range, and higher spatial resolution from a 1.6 m reflector (AMSR-E) and 2.0 m reflector (ADEOS-II AMSR). The ADEOS-II AMSR also will have 50.3 and 52.8 GHz channels, providing sensitivity to lower tropospheric temperature. NASA funds an AMSR-E Science Team to provide algorithms for the routine production of a number of standard geophysical products. These products will be generated by the AMSR-E Science Investigator-led Processing System (SIPS) at the Global Hydrology Resource Center (GHRC) in Huntsville, Alabama. While there is a separate NASDA-sponsored activity to develop algorithms and produce products from AMSR, as well as a Joint (NASDA-NASA) AMSR Science Team 3 activity, here I will review only the AMSR-E Team's algorithms and how they benefit from the new capabilities that AMSR-E will provide. The US Team's products will be archived at the National Snow and Ice Data Center (NSIDC).

  13. Influence of the atmospheric humidity on the behaviour of silicon AFM probes in photon scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Benfedda, M.; Lahimer, S.; Bonnafe, J.

    1998-11-01

    The photon scanning tunneling microscopy (PSTM) allows to characterize the surface topography with high resolution. This microscopy exploits the exponential decay of the evanescent field achieved by the total internal reflection under the surface sample. When the distance between the sensor and the surface becomes small (sim 100 nm), the non propagating photons of the evanescent field can be converted into guided propagating mode of polaritons. A bulk Silicon probe is used in the AFM experiment as a sensor of van der Waals forces. The aim of this paper is to discuss the influence of the atmospheric humidity on the PSTM measurements. We have showed that the theoretical predictions of the dielectrical capture model (DCM) are very different from the experimental results when the humidity level is higher than a threshold value (30%). We present the results obtained with TE polarization, but the same behaviour is found with TM polarization. Although, in this paper we do not propose a theoretical model explaining the deviations between DCM values and experimental, however we found a validity threshold for our experimental results and we have emited the assumption that under high humidity level the pollution film presents on the sample surface slide during the displacement of the probe. La microscopie optique à effet tunnel (PSTM) est un outil de caractérisation de surface à haute résolution. Ce microscope exploite la décroissance du champ évanescent créé sur la surface de l'échantillon. Quand la distance entre le capteur et la surface est de quelques dizaines de nanomètres, les ondes évanescentes créées sur la surface sont converties en ondes propagatives et détectées en champ lointain. Le capteur est une sonde en silicium utilisée en microscopie à force atomique. Cet article montre l'influence des conditions atmosphériques sur les mesures PSTM. Il montre qu'au-delà d'un certain taux d'humidité (30%), les mesures ne sont plus valables et ne suivent

  14. Liver Steatosis Assessed by Controlled Attenuation Parameter (CAP) Measured with the XL Probe of the FibroScan: A Pilot Study Assessing Diagnostic Accuracy.

    PubMed

    Sasso, Magali; Audière, Stéphane; Kemgang, Astrid; Gaouar, Farid; Corpechot, Christophe; Chazouillères, Olivier; Fournier, Céline; Golsztejn, Olivier; Prince, Stéphane; Menu, Yves; Sandrin, Laurent; Miette, Véronique

    2016-01-01

    To assess liver steatosis, the controlled attenuation parameter (CAP; giving an estimate of ultrasound attenuation ∼3.5 MHz) is available with the M probe of the FibroScan. We report on the adaptation of the CAP for the FibroScan XL probe (center frequency 2.5 MHz) without modifying the range of values (100-400 dB/m). CAP validation was successfully performed on Field II simulations and on tissue-mimicking phantoms. In vivo performance was assessed in a cohort of 59 patients spanning the range of steatosis. In vivo reproducibility was good and similar with both probes. The area under receiver operative characteristic curve was equal to 0.83/0.84 and 0.92/0.91 for the M/XL probes to detect >2% and >16% liver fat, respectively, as assessed by magnetic resonance imaging. Patients can now be assessed simultaneously for steatosis and fibrosis using the FibroScan, regardless of their morphology. PMID:26386476

  15. Catalytic Scanning Probe Nanolithography (cSPL): Control of the AFM Parameters in Order to Achieve Sub-100-nm Spatially Resolved Epoxidation of Alkenes Grafted onto a Surface.

    PubMed

    Mesquita, Vincent; Botton, Julien; Valyaev, Dmitry A; François, Cyril; Patrone, Lionel; Balaban, Teodor Silviu; Abel, Mathieu; Parrain, Jean-Luc; Chuzel, Olivier; Clair, Sylvain

    2016-04-26

    Scanning probe lithography (SPL) appears to be a reliable alternative to the use of masks in traditional lithography techniques as it offers the possibility of directly producing specific chemical functionalities with nanoscale spatial control. We have recently extend the range of applications of catalytic SPL (cSPL) by introducing a homogeneous catalyst immobilized on the apex of a scanning probe. Here we investigate the importance of atomic force microscopy (AFM) physical parameters (applied force, writing speed, and interline distance) on the resultant chemical activity in this cSPL methodology through the direct topographic observation of nanostructured surfaces. Indeed, an alkene-terminated self-assembled monolayer (alkene-SAM) on a silicon wafer was locally epoxidized using a scanning probe tip with a covalently grafted manganese complex bearing the 1,4,7-triazacyclononane macrocycle as the ligand. In a post-transformation process, N-octylpiperazine was covalently grafted to the surface via a selective nucleophilic ring-opening reaction. With this procedure, we could write various patterns on the surface with high spatial control. The catalytic AFM probe thus appears to be very robust because a total area close to 500 μm(2) was patterned without any noticeable loss of catalytic activity. Finally, this methodology allowed us to reach a lower lateral line resolution down to 40 nm, thus being competitive and complementary to the other nanolithographical techniques for the nanostructuration of surfaces. PMID:27027411

  16. Scanning Probe Microscopy Study of Electronic Properties in Alkyl-substituted Oligothiopene-based Field-Effect Transitors

    NASA Astrophysics Data System (ADS)

    Afsharimani, N.; Nysten, B.

    It appeared in the past decades that semi-conducting organic liquid crystals could easily replace the inorganic semi-conductors to manufacture field-effect transistors (FET). They can be easily processed by simple methods such as inkjet printing. These simple and cheap manufacturing methods pave the way to new applications for plastic electronics: electronic tags, biosensors, flexible screens, … The performance of these liquid crystal nanomaterials is due to their specific nanoscale structure. However, one limitation to the improvement of organic electronic devices is an incomplete understanding of their optoelectronic properties at the nanoscale. The organic semiconductor films often contain a combination of many ordered and disordered regions, grain boundaries and localized traps. These features impact charge transport and trapping at the sub-100 nm length scales [1]. Electrical SPM techniques such as STM, KPFM, EFM and CS-AFM have the potential to provide the correlation between the electronic properties directly and local film structure and have already made important contributions to the field of organic electronics. Here we report on the investigation of the structural and electronic properties of p-conductive organic field-effect transistors based on alkyl-substituted oligothiophenes with bottom-contact structure. For this purpose we use atomic force microscopy (AFM) and Kelvin-probe force microscopy (KPFM) in dual frequency mode under ambient conditions. This study helps to determine the local potential in the channel of active OFETs. On the other hand the molecular arrangements of these molecules on the HOPG surface have been studied using scanning tunnelling microscopy (STM) at the liquid-solid interface.

  17. Biases in Total Precipitable Water Vapor Climatologies from Atmospheric Infrared Sounder and Advanced Microwave Scanning Radiometer

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Lambrigtsen, Bjorn H.; Eldering, Annmarie; Aumann, Hartmut H.; Chahine, Moustafa T.

    2006-01-01

    We examine differences in total precipitable water vapor (PWV) from the Atmospheric Infrared Sounder (AIRS) and the Advanced Microwave Scanning Radiometer (AMSR-E) experiments sharing the Aqua spacecraft platform. Both systems provide estimates of PWV over water surfaces. We compare AIRS and AMSR-E PWV to constrain AIRS retrieval uncertainties as functions of AIRS retrieved infrared cloud fraction. PWV differences between the two instruments vary only weakly with infrared cloud fraction up to about 70%. Maps of AIRS-AMSR-E PWV differences vary with location and season. Observational biases, when both instruments observe identical scenes, are generally less than 5%. Exceptions are in cold air outbreaks where AIRS is biased moist by 10-20% or 10-60% (depending on retrieval processing) and at high latitudes in winter where AIRS is dry by 5-10%. Sampling biases, from different sampling characteristics of AIRS and AMSR-E, vary in sign and magnitude. AIRS sampling is dry by up to 30% in most high-latitude regions but moist by 5-15% in subtropical stratus cloud belts. Over the northwest Pacific, AIRS samples conditions more moist than AMSR-E by a much as 60%. We hypothesize that both wet and dry sampling biases are due to the effects of clouds on the AIRS retrieval methodology. The sign and magnitude of these biases depend upon the types of cloud present and on the relationship between clouds and PWV. These results for PWV imply that climatologies of height-resolved water vapor from AIRS must take into consideration local meteorological processes affecting AIRS sampling.

  18. Global Climate Monitoring with the Eos Pm-Platform's Advanced Microwave Scanning Radiometer (AMSR-E)

    NASA Technical Reports Server (NTRS)

    Spencer, Roy W.

    2000-01-01

    The Advanced Microwave Scanning Radiometer (AMSR-E) is being built by NASDA to fly on NASA's PM Platform (now called "Aqua") in December 2000. This is in addition to a copy of AMSR that will be launched on Japan's ADEOS-11 satellite in 2001. The AMSRs improve upon the window frequency radiometer heritage of the SSM[l and SMMR instruments. Major improvements over those instruments include channels spanning the 6.9 GHz to 89 GHz frequency range, and higher spatial resolution from a 1.6 m reflector (AMSR-E) and 2.0 m reflector (ADEOS-11 AMSR). The ADEOS-11 AMSR also will have 50.3 and 52.8 GHz channels, providing sensitivity to lower tropospheric temperature. NASA funds an AMSR-E Science Team to provide algorithms for the routine production of a number of standard geophysical products. These products will be generated by the AMSR-E Science Investigator-led Processing System (SIPS) at the Global Hydrology Resource Center (GHRC) in Huntsville, Alabama. While there is a separate NASDA-sponsored activity to develop algorithms and produce products from AMSR, as well as a Joint (NASDA-NASA) AMSR Science Team activity, here I will review only the AMSR-E Team's algorithms and how they benefit from the new capabilities that AMSR-E will provide. The U.S. Team's products will be archived at the National Snow and Ice Data Center (NSIDC). Further information about AMSR-E can be obtained at http://www.jzhcc.msfc.nasa.Vov/AMSR.

  19. Scanning probe microscopy study of the metal-rich layered chalcogenides TaM{sub 2}Te{sub 2} (M = Co, Ni)

    SciTech Connect

    Neuhausen, J.; Evstaf`iev, V.K.; Block, T.

    1998-12-01

    The compounds TaNi{sub 2}Te{sub 2} and TaCo{sub 2}Te{sub 2} have been examined by scanning tunneling and atomic force microscopy. The title phases crystallize in layered structures with metal slabs sandwiched by tellurium atoms. Scanning probe microscope images of the surfaces of these materials arise from the surface tellurium atoms and--depending on the experimental conditions--can show very different features. The images have been simulated through surface charge densities calculated within the Extended Hueckel and LMTO frameworks.

  20. Advanced compact laser scanning system enhancements for gear and thread measurements. Final CRADA report

    SciTech Connect

    McKeethan, W.M.; Maxey, L.C.; Bernacki, B.E.; Castore, G.

    1997-04-04

    The measurement, or metrology, of physical objects is a fundamental requirement for industrial progress. Dimensional measurement capability lies at the heart of ones ability to produce objects within the required technical specifications. Dimensional metrology systems are presently dominated by touch-probe technologies, which are mature and reliable. Due to the intricate geometries required in certain fields of manufacturing, these contract probes cannot be physically brought in proximity to the measurement surface, or lack sufficient lateral resolution to satisfactorily determine the surface profile, which can occur in the measurement of gears, splines and thread. Optical probes are viable candidates to supplement the contact probes, since light can be focused to less than one micron (40 microinches), no contact occurs that can mar highly finished surfaces, and no probes must be replaced due to wear. However, optical probes typically excel only on one type of surface: mirror-like or diffuse, and the optical stylus itself is oftentimes not as compact as its contact probe counterpart. Apeiron, Inc. has pioneered the use of optical non-contact sensors to measure machined parts, especially threads, gears and splines. The Oak Ridge Metrology Center at Oak Ridge Y-12 Plant are world-class experts in dimensional metrology. The goal of this CRADA is to tap the expertise in Oak Ridge to evaluate Apeiron`s platform, and to suggest new or novel methods of optical surface sensing, if appropriate.

  1. Scanning probe microscopy investigations of the electrical properties of chemical vapor deposited graphene grown on a 6H-SiC substrate.

    PubMed

    Gajewski, Krzysztof; Kopiec, Daniel; Moczała, Magdalena; Piotrowicz, Adam; Zielony, Michał; Wielgoszewski, Grzegorz; Gotszalk, Teodor; Strupiński, Włodek

    2015-01-01

    Sublimated graphene grown on SiC is an attractive material for scientific investigations. Nevertheless the self limiting process on the Si face and its sensitivity to the surface quality of the SiC substrates may be unfavourable for later microelectronic processes. On the other hand, chemical vapor deposited (CVD) graphene does not posses such disadvantages, so further experimental investigation is needed. In this paper CVD grown graphene on 6H-SiC (0001) substrate was investigated using scanning probe microscopy (SPM). Electrical properties of graphene were characterized with the use of: scanning tunnelling microscopy, conductive atomic force microscopy (C-AFM) with locally performed C-AFM current-voltage measurements and Kelvin probe force microscopy (KPFM). Based on the contact potential difference data from the KPFM measurements, the work function of graphene was estimated. We observed conductance variations not only on structural edges, existing surface corrugations or accidental bilayers, but also on a flat graphene surface. PMID:25203361

  2. Testing Dark Energy with the Advanced Liquid-Mirror Probe of Asteroids, Cosmology and Astrophysics

    NASA Astrophysics Data System (ADS)

    LoVerde, M.; Corasaniti, P. S.; Crotts, A.; Blake, C.

    2006-06-01

    The Advanced Liquid-Mirror Probe of Asteroids, Cosmology and Astrophysics (ALPACA) is a proposed 8-meter liquid mirror telescope surveying ˜ 1000 deg2 of the southern-hemisphere sky. It will be a remarkably simple and inexpensive telescope that will nonetheless deliver a powerful sample of optical data for studying dark energy. The bulk of the cosmological data consists of nightly, high signal-to-noise, multiband light curves of SN Ia. At the end of the three-year run ALPACA is expected to collect ˜ 100,000 SN Ia up to z ˜ 1. This will allow accurate calibration of the standard-candle relation and reduce the systematic uncertainties. The survey will also provide several other datasets such as the detection of baryon acoustic oscillations in the matter power spectrum and shear weak lensing measurements. In this preliminary analysis we forecast constraints on dark energy parameters from SN Ia and baryon acoustic oscillations. The combination of these two datasets will provide competitive constraints on the dark energy parameters with minimal prior assumptions. Further studies are needed to address the accuracy of weak lensing measurements.

  3. Testing dark energy with the Advanced Liquid-mirror Probe of Asteroids, Cosmology and Astrophysics

    NASA Astrophysics Data System (ADS)

    Corasaniti, Pier Stefano; LoVerde, Marilena; Crotts, Arlin; Blake, Chris

    2006-06-01

    The Advanced Liquid-mirror Probe of Asteroids, Cosmology and Astrophysics (ALPACA) is a proposed 8-m liquid-mirror telescope surveying ~1000deg2 of the Southern hemisphere sky. It will be a remarkably simple and inexpensive telescope that none the less will deliver a powerful sample of optical data for studying dark energy. The bulk of the cosmological data consist of nightly, high signal-to-noise ratio, multiband light curves of Type Ia supernovae (SNe Ia). At the end of the 3-yr run, ALPACA is expected to collect >~100000 SNe Ia up to z ~ 1. This will allow us to reduce present systematic uncertainties affecting the standard-candle relation. The survey will also provide several other data sets such as the detection of baryon acoustic oscillations in the matter power spectrum and shear weak-lensing measurements. In this preliminary analysis, we forecast constraints on dark energy parameters from SNe Ia and baryon acoustic oscillations. The combination of these two data sets will provide competitive constraints on the dark energy parameters under minimal prior assumptions. Further studies are needed to address the accuracy of weak-lensing measurements.

  4. Plasmon-based photopolymerization: near-field probing, advanced photonic nanostructures and nanophotochemistry

    NASA Astrophysics Data System (ADS)

    Zhou, Xuan; Soppera, Olivier; Plain, Jérôme; Jradi, Safi; Sun, Xiao Wei; Demir, Hilmi Volkan; Yang, Xuyong; Deeb, Claire; Gray, Stephen K.; Wiederrecht, Gary P.; Bachelot, Renaud

    2014-11-01

    Hybrid nanomaterials are targeted by a rapidly growing group of nanooptics researchers, due to the promise of optical behavior that is difficult or even impossible to create with nanostructures of homogeneous composition. Examples of important areas of interest include coherent coupling, Fano resonances, optical gain, solar energy conversion, photocatalysis, and nonlinear optical interactions. In addition to the coupling interactions, the strong dependence of optical resonances and damping on the size, shape, and composition of the building blocks provides promise that the coupling interactions of hybrid nanomaterials can be controlled and manipulated for a desired outcome. Great challenges remain in reliably synthesizing and characterizing hybrid nanomaterials for nanooptics. In this review, we describe the synthesis, characterization, and applications of hybrid nanomaterials created through plasmon-induced photopolymerization. The work is placed within the broader context of hybrid nanomaterials involving plasmonic metal nanoparticles and molecular materials placed within the length scale of the evanescent field from the metal surface. We specifically review three important applications of free radical photopolymerization to create hybrid nanoparticles: local field probing, photoinduced synthesis of advanced hybrid nanoparticles, and nanophotochemistry.

  5. Electron beam lithographically-defined scanning electrochemical-atomic force microscopy probes: fabrication method and application to high resolution imaging on heterogeneously active surfaces.

    PubMed

    Dobson, Phillip S; Weaver, John M R; Burt, David P; Holder, Mark N; Wilson, Neil R; Unwin, Patrick R; Macpherson, Julie V

    2006-09-01

    This paper describes in detail the use of electron beam lithography (EBL) to successfully batch microfabricate combined scanning electrochemical-atomic force microscopy (SECM-AFM) probes. At present, the process produces sixty probes at a time, on a 1/4 of a three-inch wafer. Using EBL, gold triangular-shaped electrodes can be defined at the tip apex, with plasma enhanced chemical vapor deposited silicon nitride serving as an effective insulating layer, at a thickness of 75 nm. The key features of the fabrication technique and the critical steps are discussed. The capability of these probes for SECM-AFM imaging in both tapping and constant distance mode is illustrated with dual topographical-electrochemical scans over an array of closely-spaced 1 microm diameter Pt disc electrodes, held at a suitable potential to generate an electroactive species at a transport-limited rate. As highlighted herein, understanding diffusion to heterogeneous electrode surfaces, including array electrodes, is currently topical and we present preliminary data highlighting the use of SECM-AFM as a valuable tool for the investigation of diffusion and reactivity at high spatial resolution. PMID:19817052

  6. Changes in morphology and local conductance of GeTe-Sb2Te3 superlattice films on silicon observed by scanning probe microscopy in a lithography mode

    NASA Astrophysics Data System (ADS)

    Bolotov, Leonid; Tada, Tetsuya; Saito, Yuta; Tominaga, Junji

    2016-04-01

    Changes in the morphology and conductance state of [(GeTe)2(Sb2Te3)] superlattice (SL) films on Si(100) caused by external voltage were investigated by multimode scanning probe microscopy (MSPM) and scanning probe lithography (SPL) at room temperature in vacuum. After SPL patterning at a write voltage exceeding a threshold value, grain-dependent changes in transverse film conductance appeared in the MSPM current maps at a low voltage. Specific details of the conductance state switching were dependent on the film growth process. In uniform films grown in a two-step process, a threshold voltage of 1.6 V and a minimum switching power of ˜15 pW were obtained for conductance switching activated by high-energy electrons injected from the probe. Above 3.0 V, thermally driven regrowth of the SL films was observed. The results demonstrate a simple and appropriate method of optimizing topological SL films as recording media without device fabrication.

  7. A 1 kHz A-scan rate pump-probe laser-ultrasound system for robust inspection of composites.

    PubMed

    Pelivanov, Ivan; Shtokolov, Alex; Wei, Chen-Wei; O'Donnell, Matthew

    2015-09-01

    We recently built a fiber-optic laser-ultrasound (LU) scanner for nondestructive evaluation (NDE) of aircraft composites and demonstrated its greatly improved sensitivity and stability compared with current noncontact systems. It is also very attractive in terms of cost, stability to environmental noise and surface roughness, simplicity in adjustment, footprint, and flexibility. A new type of a balanced fiber-optic Sagnac interferometer is a key component of this all-optical LU pump-probe system. Very high A-scan rates can be achieved because no reference arm or stabilization feedback are needed. Here, we demonstrate LU system performance at 1000 A-scans/s combined with a fast 2-D translator operating at a scanning speed of 100 mm/s with a peak acceleration of 10 m/s(2) in both lateral directions to produce parallel B-scans at high rates. The fast scanning strategy is described in detail. The sensitivity of this system, in terms of noise equivalent pressure, was further improved to be only 8.3 dB above the Nyquist thermal noise limit. To our knowledge, this is the best reported sensitivity for a noncontact ultrasonic detector of this dimension used to inspect aircraft composites. PMID:26415130

  8. A versatile LabVIEW and field-programmable gate array-based scanning probe microscope for in operando electronic device characterization

    SciTech Connect

    Berger, Andrew J. Page, Michael R.; Young, Justin R.; Bhallamudi, Vidya P.; Johnston-Halperin, Ezekiel; Pelekhov, Denis V.; Hammel, P. Chris; Jacob, Jan; Lewis, Jim; Wenzel, Lothar

    2014-12-15

    Understanding the complex properties of electronic and spintronic devices at the micro- and nano-scale is a topic of intense current interest as it becomes increasingly important for scientific progress and technological applications. In operando characterization of such devices by scanning probe techniques is particularly well-suited for the microscopic study of these properties. We have developed a scanning probe microscope (SPM) which is capable of both standard force imaging (atomic, magnetic, electrostatic) and simultaneous electrical transport measurements. We utilize flexible and inexpensive FPGA (field-programmable gate array) hardware and a custom software framework developed in National Instrument's LabVIEW environment to perform the various aspects of microscope operation and device measurement. The FPGA-based approach enables sensitive, real-time cantilever frequency-shift detection. Using this system, we demonstrate electrostatic force microscopy of an electrically biased graphene field-effect transistor device. The combination of SPM and electrical transport also enables imaging of the transport response to a localized perturbation provided by the scanned cantilever tip. Facilitated by the broad presence of LabVIEW in the experimental sciences and the openness of our software solution, our system permits a wide variety of combined scanning and transport measurements by providing standardized interfaces and flexible access to all aspects of a measurement (input and output signals, and processed data). Our system also enables precise control of timing (synchronization of scanning and transport operations) and implementation of sophisticated feedback protocols, and thus should be broadly interesting and useful to practitioners in the field.

  9. A versatile LabVIEW and field-programmable gate array-based scanning probe microscope for in operando electronic device characterization.

    PubMed

    Berger, Andrew J; Page, Michael R; Jacob, Jan; Young, Justin R; Lewis, Jim; Wenzel, Lothar; Bhallamudi, Vidya P; Johnston-Halperin, Ezekiel; Pelekhov, Denis V; Hammel, P Chris

    2014-12-01

    Understanding the complex properties of electronic and spintronic devices at the micro- and nano-scale is a topic of intense current interest as it becomes increasingly important for scientific progress and technological applications. In operando characterization of such devices by scanning probe techniques is particularly well-suited for the microscopic study of these properties. We have developed a scanning probe microscope (SPM) which is capable of both standard force imaging (atomic, magnetic, electrostatic) and simultaneous electrical transport measurements. We utilize flexible and inexpensive FPGA (field-programmable gate array) hardware and a custom software framework developed in National Instrument's LabVIEW environment to perform the various aspects of microscope operation and device measurement. The FPGA-based approach enables sensitive, real-time cantilever frequency-shift detection. Using this system, we demonstrate electrostatic force microscopy of an electrically biased graphene field-effect transistor device. The combination of SPM and electrical transport also enables imaging of the transport response to a localized perturbation provided by the scanned cantilever tip. Facilitated by the broad presence of LabVIEW in the experimental sciences and the openness of our software solution, our system permits a wide variety of combined scanning and transport measurements by providing standardized interfaces and flexible access to all aspects of a measurement (input and output signals, and processed data). Our system also enables precise control of timing (synchronization of scanning and transport operations) and implementation of sophisticated feedback protocols, and thus should be broadly interesting and useful to practitioners in the field. PMID:25554296

  10. A versatile LabVIEW and field-programmable gate array-based scanning probe microscope for in operando electronic device characterization

    NASA Astrophysics Data System (ADS)

    Berger, Andrew J.; Page, Michael R.; Jacob, Jan; Young, Justin R.; Lewis, Jim; Wenzel, Lothar; Bhallamudi, Vidya P.; Johnston-Halperin, Ezekiel; Pelekhov, Denis V.; Hammel, P. Chris

    2014-12-01

    Understanding the complex properties of electronic and spintronic devices at the micro- and nano-scale is a topic of intense current interest as it becomes increasingly important for scientific progress and technological applications. In operando characterization of such devices by scanning probe techniques is particularly well-suited for the microscopic study of these properties. We have developed a scanning probe microscope (SPM) which is capable of both standard force imaging (atomic, magnetic, electrostatic) and simultaneous electrical transport measurements. We utilize flexible and inexpensive FPGA (field-programmable gate array) hardware and a custom software framework developed in National Instrument's LabVIEW environment to perform the various aspects of microscope operation and device measurement. The FPGA-based approach enables sensitive, real-time cantilever frequency-shift detection. Using this system, we demonstrate electrostatic force microscopy of an electrically biased graphene field-effect transistor device. The combination of SPM and electrical transport also enables imaging of the transport response to a localized perturbation provided by the scanned cantilever tip. Facilitated by the broad presence of LabVIEW in the experimental sciences and the openness of our software solution, our system permits a wide variety of combined scanning and transport measurements by providing standardized interfaces and flexible access to all aspects of a measurement (input and output signals, and processed data). Our system also enables precise control of timing (synchronization of scanning and transport operations) and implementation of sophisticated feedback protocols, and thus should be broadly interesting and useful to practitioners in the field.

  11. Probing Heterogeneous Chemistry of Individual Atmospheric Particles Using Scanning Electron Microscopy and Energy-Dispersive X-ray Analysis

    SciTech Connect

    Krueger, Brenda J.; Grassian, Vicki H.; Iedema, Martin J.; Cowin, James P.; Laskin, Alexander

    2003-10-01

    In this paper, we demonstrate the utility of single-particle analysis to investigate the chemistry of isolated, individual particles of atmospheric relevance such as NaCl, sea salt, CaCO3, and SiO2. A variety of state-of-th-art scanning electron microscopy techniques, including environmental scanning electon microscopy and computer-controlled scanning electron microscopy/energy-dispersive X-ray analysis, were utilized for monitoring and quantifying phase transitions of individual particles, morphology, and compositional changes of individual particles as they react with nitric acid.

  12. On the pH Responsive, Charge Selective, Polymer Brush-Mediated Transport Probed by Traditional and Scanning Fluorescence Correlation Spectroscopy

    PubMed Central

    Daniels, C. R.; Tauzin, L. J.; Foster, E.; Advincula, R. C.; Landes, C. F.

    2013-01-01

    The complete and reversible charge-selective sequestration of fluorophores by a weak polyelectrolyte brush, poly(2-(dimethylamino) ethyl-methacrylate) (PDMAEMA) was demonstrated using Fluorescence Correlation Spectroscopy (FCS). The chemistry and thickness of the weak polyelectrolyte PDMAEMA was tuned reversibly between neutral and cationic polymer forms. Thus, by switching the pH successively, the brush architecture was tuned to selectively trap and release anionic dye probes, while continuously excluding cationic molecules. In addition, line-scan FCS was implemented and applied for the first time to a synthetic polymer system, and used to identify a new, slower diffusion time on the order of seconds for the sequestered anionic probe under acidic conditions. These results, which quantify the selective sequestration properties of the PDMAEMA brush, are important because they enable a better understanding of transport in polymers, and establish a spectroscopic means of evaluating materials with proposed applications in separations science, charge storage/release and environmental remediation. PMID:23092304

  13. Growth and decay dynamics of a stable microbubble produced at the end of a near-field scanning optical microscopy fiber probe

    NASA Astrophysics Data System (ADS)

    Taylor, R. S.; Hnatovsky, C.

    2004-06-01

    Low power cw laser radiation coupled into a near-field scanning optical microscopy fiber probe has been used to generate a stable microbubble in water. A probe tip which was selectively chemically etched and metallized served as a microheater for the generation of the stable bubble. Bubble diameters in the range of 40-400 μm and lifetimes of over an hour have been obtained. The microbubble exhibited a linear growth phase over a period of a few seconds before reaching a maximum diameter which depended on the laser power. When the laser beam was blocked the microbubble decayed with a rate which was inversely proportional to the bubble diameter. The bubble lifetime depended on the square of the initial bubble diameter. Instabilities which transform a large stable bubble into a microjet stream of micron sized bubbles as the laser power was increased is also described.

  14. On the pH-responsive, charge-selective, polymer-brush-mediated transport probed by traditional and scanning fluorescence correlation spectroscopy.

    PubMed

    Daniels, C R; Tauzin, L J; Foster, E; Advincula, R C; Landes, C F

    2013-04-25

    The complete and reversible charge-selective sequestration of fluorophores by a weak polyelectrolyte brush, poly(2-(dimethylamino)ethylmethacrylate) (PDMAEMA) was demonstrated using fluorescence correlation spectroscopy (FCS). The chemistry and thickness of the weak polyelectrolyte PDMAEMA was tuned reversibly between neutral and cationic polymer forms. Thus, by switching the pH successively, the brush architecture was tuned to selectively trap and release anionic dye probes while continuously excluding cationic molecules. In addition, line-scan FCS was implemented and applied for the first time to a synthetic polymer system and used to identify a new, slower diffusion time on the order of seconds for the sequestered anionic probe under acidic conditions. These results, which quantify the selective sequestration properties of the PDMAEMA brush, are important because they enable a better understanding of transport in polymers and establish a spectroscopic means of evaluating materials with proposed applications in separations science, charge storage/release, and environmental remediation. PMID:23092304

  15. Two-dimensional Vortex Behavior in Highly Underdoped YBa2Cu3O6 x Observed by Scanning Hall Probe Microscopy

    SciTech Connect

    Guikema, J.W.

    2010-02-22

    We report scanning Hall probe microscopy of highly underdoped superconducting YBa{sub 2}Cu{sub 3}O{sub 6+x} with T{sub c} ranging from 5 to 15 K which showed distinct flux bundles with less than one superconducting flux quantum ({Iota}{sub 0}) through the sample surface. The sub-{Iota}{sub 0} features occurred more frequently for lower T{sub c}, were more mobile than conventional vortices, and occurred more readily when the sample was cooled with an in-plane field component. We show that these features are consistent with kinked stacks of pancake vortices.

  16. Two-dimensional Vortex Behavior in Highly Underdoped YBa_2Cu_3O_{6+x} Observed byScanning Hall Probe Microscopy

    SciTech Connect

    Guikema, J.W.; Bluhm, Hendrik; Bonn, D.A.; Liang, Ruixing; Hardy, W.N.; Moler, K.A.; /Stanford U., Appl. Phys. Dept.

    2008-04-22

    We report scanning Hall probe microscopy of highly underdoped superconducting YBa{sub 2}Cu{sub 3}O{sub 6+z} with T{sub c} ranging from 5 to 15 K which showed distinct flux bundles with less than one superconducting flux quantum ({Phi}{sub 0}) through the sample surface. The sub-{Phi}{sub 0} features occurred more frequently for lower T{sub c}, were more mobile than conventional vortices, and occurred more readily when the sample was cooled with an in-plane field component. We show that these features are consistent with kinked stacks of pancake vortices.

  17. INFLUENCE OF FILM STRUCTURE AND LIGHT ON CHARGE TRAPPING AND DISSIPATION DYNAMICS IN SPUN-CAST ORGANIC THIN-FILM TRANSISTORS MEASURED BY SCANNING KELVIN PROBE MICROSCOPY

    SciTech Connect

    Teague, L.; Moth, M.; Anthony, J.

    2012-05-03

    Herein, time-dependent scanning Kelvin probe microscopy of solution processed organic thin film transistors (OTFTs) reveals a correlation between film microstructure and OTFT device performance with the location of trapped charge within the device channel. The accumulation of the observed trapped charge is concurrent with the decrease in I{sub SD} during operation (V{sub G}=-40 V, V{sub SD}= -10 V). We discuss the charge trapping and dissipation dynamics as they relate to the film structure and show that application of light quickly dissipates the observed trapped charge.

  18. Combining low-energy electron microscopy and scanning probe microscopy techniques for surface science: Development of a novel sample-holder

    SciTech Connect

    Cheynis, F.; Leroy, F.; Ranguis, A.; Detailleur, B.; Bindzi, P.; Veit, C.; Bon, W.; Müller, P.

    2014-04-15

    We introduce an experimental facility dedicated to surface science that combines Low-Energy Electron Microscopy/Photo-Electron Emission Microscopy (LEEM/PEEM) and variable-temperature Scanning Probe Microscopy techniques. A technical challenge has been to design a sample-holder that allows to exploit the complementary specifications of both microscopes and to preserve their optimal functionality. Experimental demonstration is reported by characterizing under ultrahigh vacuum with both techniques: Au(111) surface reconstruction and a two-layer thick graphene on 6H-SiC(0001). A set of macros to analyze LEEM/PEEM data extends the capabilities of the setup.

  19. A new bend magnet beam line for scanning transmission x-ray microscopy at the Advanced Light Source

    SciTech Connect

    Warwick, Tony; Ade, Harald; Kilcoyne, A.L. David; Kritscher, Michael; Tylisczcak, Tolek; Fakra, Sirine; Hitchcock, Adam P.; Hitchcock, Peter; Padmore, Howard A.

    2001-12-12

    The high brightness of the bend magnets at the Advanced Light Source has been exploited to illuminate a Scanning Transmission X-ray Microscope (STXM). This is the first diffraction-limited scanning x-ray microscope to operate with useful count rate on a synchrotron bend magnet source. A simple, dedicated beam line has been built covering the range of photon energy from 250 eV to 600 eV. Ease of use and operational availability are radically improved compared to previous installations using undulator beams. This facility provides radiation for C 1s, N 1s and O 1s near edge x-ray absorption spectro-microscopy with a spectral resolution up to about 1:5000 and with STXM count rates in excess of 1 MHz.

  20. Diagnostic Accuracy of Ultrasound B scan using 10 MHz linear probe in ocular trauma;results from a high burden country

    PubMed Central

    Shazlee, Muhammad Kashif; Ali, Muhammad; SaadAhmed, Muhammad; Hussain, Ammad; Hameed, Kamran; Lutfi, Irfan Amjad; Khan, Muhammad Tahir

    2016-01-01

    Objective: To study the diagnostic accuracy of Ultrasound B scan using 10 MHz linear probe in ocular trauma. Methods: A total of 61 patients with 63 ocular injuries were assessed during July 2013 to January 2014. All patients were referred to the department of Radiology from Emergency Room since adequate clinical assessment of the fundus was impossible because of the presence of opaque ocular media. Based on radiological diagnosis, the patients were provided treatment (surgical or medical). Clinical diagnosis was confirmed during surgical procedures or clinical follow-up. Results: A total of 63 ocular injuries were examined in 61 patients. The overall sensitivity was 91.5%, Specificity was 98.87%, Positive predictive value was 87.62 and Negative predictive value was 99%. Conclusion: Ultrasound B-scan is a sensitive, non invasive and rapid way of assessing intraocular damage caused by blunt or penetrating eye injuries. PMID:27182245

  1. Functional imaging of proteases: recent advances in the design and application of substrate-based and activity-based probes.

    PubMed

    Edgington, Laura E; Verdoes, Martijn; Bogyo, Matthew

    2011-12-01

    Proteases are enzymes that cleave peptide bonds in protein substrates. This process can be important for regulated turnover of a target protein but it can also produce protein fragments that then perform other functions. Because the last few decades of protease research have confirmed that proteolysis is an essential regulatory process in both normal physiology and in multiple disease-associated conditions, there has been an increasing interest in developing methods to image protease activity. Proteases are also considered to be one of the few 'druggable' classes of proteins and therefore a large number of small molecule based inhibitors of proteases have been reported. These compounds serve as a starting point for the design of probes that can be used to target active proteases for imaging applications. Currently, several classes of fluorescent probes have been developed to visualize protease activity in live cells and even whole organisms. The two primary classes of protease probes make use of either peptide/protein substrates or covalent inhibitors that produce a fluorescent signal when bound to an active protease target. This review outlines some of the most recent advances in the design of imaging probes for proteases. In particular, it highlights the strengths and weaknesses of both substrate-based and activity-based probes and their applications for imaging cysteine proteases that are important biomarkers for multiple human diseases. PMID:22098719

  2. Advances in Langmuir probe diagnostics of the plasma potential and electron-energy distribution function in magnetized plasma

    NASA Astrophysics Data System (ADS)

    Popov, Tsv K.; Dimitrova, M.; Ivanova, P.; Kovačič, J.; Gyergyek, T.; Dejarnac, R.; Stöckel, J.; Pedrosa, M. A.; López-Bruna, D.; Hidalgo, C.

    2016-06-01

    Advanced Langmuir probe techniques for evaluating the plasma potential and electron-energy distribution function (EEDF) in magnetized plasma are reviewed. It is shown that when the magnetic field applied is very weak and the electrons reach the probe without collisions in the probe sheath the second-derivative Druyvesteyn formula can be used for EEDF evaluation. At low values of the magnetic field, an extended second-derivative Druyvesteyn formula yields reliable results, while at higher values of the magnetic field, the first-derivative probe technique is applicable for precise evaluation of the plasma potential and the EEDF. There is an interval of intermediate values of the magnetic field when both techniques—the extended second-derivative and the first-derivative one—can be used. Experimental results from probe measurements in different ranges of magnetic field are reviewed and discussed: low-pressure argon gas discharges in the presence of a magnetic field in the range from 0.01 to 0.08 T, probe measurements in circular hydrogen plasmas for high-temperature fusion (magnetic fields from 0.45 T to 1.3 T) in small ISTTOK and CASTOR tokamaks, D-shape COMPASS tokamak plasmas, as well as in the TJ-II stellarator. In the vicinity of the last closed flux surface (LCFS) in tokamaks and in the TJ-II stellarator, the EEDF obtained is found to be bi-Maxwellian, while close to the tokamak chamber wall it is Maxwellian. The mechanism of the appearance of a bi-Maxwellian EEDF in the vicinity of the LCFS is discussed. Comparison of the results from probe measurements with those obtained from calculations using the ASTRA and EIRENE codes shows that the main reason for the appearance of a bi-Maxwellian EEDF in the vicinity of the LCFS is the ionization of the neutral atoms.

  3. Nitroxide amide-BODIPY probe behavior in fibroblasts analyzed by advanced fluorescence microscopy.

    PubMed

    Liras, M; Simoncelli, S; Rivas-Aravena, A; García, O; Scaiano, J C; Alarcon, E I; Aspée, A

    2016-04-26

    A novel synthesized nitroxide amide-BODIPY prefluorescent probe was used to study cellular redox balance that modulates nitroxide/hydroxylamine ratio in cultured human fibroblasts. FLIM quantitatively differentiated between nitroxide states of the cytoplasm-localized probe imaged by TIRF, monitoring nitroxide depletion by hydrogen peroxide; eluding incorrect interpretation if only fluorescence intensity is considered. PMID:27065020

  4. Advances in Scanning Reflectarray Antennas Based on Ferroelectric Thin Film Phase Shifters for Deep Space Communications

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.

    2007-01-01

    Though there are a few examples of scanning phased array antennas that have flown successfully in space, the quest for low-cost, high-efficiency, large aperture microwave phased arrays continues. Fixed and mobile applications that may be part of a heterogeneous exploration communication architecture will benefit from the agile (rapid) beam steering and graceful degradation afforded by phased array antennas. The reflectarray promises greater efficiency and economy compared to directly-radiating varieties. Implementing a practical scanning version has proven elusive. The ferroelectric reflectarray, under development and described herein, involves phase shifters based on coupled microstrip patterned on Ba(x)Sr(1-x)TiO3 films, that were laser ablated onto LaAlO3 substrates. These devices outperform their semiconductor counterparts from X- through and K-band frequencies. There are special issues associated with the implementation of a scanning reflectarray antenna, especially one realized with thin film ferroelectric phase shifters. This paper will discuss these issues which include: relevance of phase shifter loss; modulo 2(pi) effects and phase shifter transient effects on bit error rate; scattering from the ground plane; presentation of a novel hybrid ferroelectric-semiconductor phase shifter; and the effect of mild radiation exposure on phase shifter performance.

  5. Oversampling advances in millimeter-wave scan imaging using inexpensive neon indicator lamp detectors

    NASA Astrophysics Data System (ADS)

    Levanon, Assaf; Kopeika, Natan S.; Yitzhaky, Yitzhak; Abramovich, Amir; Rozban, Daniel; Joseph, Hezi; Aharon, Avihai; Belenky, Alex; Gefen, Michael; Yadid-Pecht, Orly

    2013-06-01

    In recent years, much effort has been invested to develop room temperature inexpensive, but sensitive, millimeter wave (MMW) and terahertz (THz) detectors that can be used as pixels in focal plane arrays, which is important for real-time imaging. A new 18×2 neon indicator lamp MMW/THz scanner was developed. The components of the camera include horizontally shifted two-column glow discharge detectors in a scanning array. The detectors, costing about 50 cents each, are wired to a preprocessing card, a VLSI board, and a motor for scanner movement. A description of the VLSI Verilog programmable hardware of the new scanner, the physical architecture, the software user interface, and imaging results at 97 GHz are presented. At this stage, the emphasis is focused on the lamp exposure time and spatial resolution when the scanning is performed horizontally. In the future it is planned to expose all pixels simultaneously for real-time imaging. New software capabilities allow the application of digital image enhancement algorithms. Fast scanning permits obtaining images in 1 to 5 s. Oversampling yields a sharper edge response and a higher signal-to-noise ratio.

  6. Nanoscale phase transformation in Ge2Sb2Te5 using encapsulated scanning probes and retraction force microscopy.

    PubMed

    Bhaskaran, Harish; Sebastian, Abu; Pauza, Andrew; Pozidis, Haralampos; Despont, Michel

    2009-08-01

    Encapsulated conducting probes that can sustain high currents are used to study the nanoscale properties of thin-film stacks comprising of a phase-change chalcogenide, Ge(2)Sb(2)Te(5). Scaling studies on this promising candidate for random-access memory devices had thus far required extensive lithography and nanoscale growth. This seriously hampers rapid materials characterization. This article describes the use of two key techniques, an encapsulated conductive probe and its use in retraction mode, whereby the attractive force between tip and sample is used to maintain electrical contact. The effective transformation of nanoscale dots of amorphous Ge(2)Sb(2)Te(5) into the crystalline state is achieved and the electrical conductivity of the transformed structures is probed. The use of retraction force microscopy in a robust manner is demonstrated by reading the conductivity of the crystalline dots. Both these techniques could enable rapid electrical characterization of nanoscale materials, without extensive nanopatterning, thus reducing material development cycles. PMID:19725656

  7. Ex-vivo endoscopic laryngeal cancer imaging using two forward-looking fiber optic scanning endoscope probes

    NASA Astrophysics Data System (ADS)

    Cernat, R.; Tatla, T.; Pang, J.-Y.; Tadrous, P. J.; Gelikonov, G.; Gelikonov, V.; Zhang, Y. Y.; Bradu, A.; Li, X. D.; Podoleanu, A. G.

    2012-12-01

    Larynx cancer is one of the most common primary head and neck cancers. For early-stage laryngeal cancer, both surgery and radiotherapy are effective treatment modalities, offering a high rate of local control and cure. Optical coherence tomography (OCT) is an established non-invasive optical biopsy method, capable of imaging ranges of 2- 3 mm into tissue. By using the principles of low coherence light interferometry, OCT can be used to distinguish normal from unhealthy laryngeal mucosa in patients. Two forward-looking endoscope OCT probes of different sizes in a sweeping frequency OCT (SS-OCT) configuration were compared in terms of their performances for ex-vivo laryngeal cancer imaging. The setup configuration of the first OCT probe unit was designed and constructed at the Institute of Applied Physics RAS, Russia (diameter of 1.9 mm and the rigid part at the distal end is 13 mm long). The second OCT endoscope probe was constructed at the Department of Biomedical Engineering at Johns Hopkins University, USA, using a tubular piezoelectric actuator with quartered electrodes in combination with a resonant fiber cantilever (diameter of 2.4 mm, and rigid part of 45 mm). Cross-sectional images of laryngeal lesions using the two OCT configurations were aquired and compared with OCT images obtained in a 1310 nm SS-OCT classical non-endoscopic system. The work presented here is an intermediate step in our research towards in-vivo endoscopic laryngeal cancer imaging.

  8. Advances in development of fluorescent probes for detecting amyloid-β aggregates

    PubMed Central

    Xu, Ming-ming; Ren, Wen-ming; Tang, Xi-can; Hu, You-hong; Zhang, Hai-yan

    2016-01-01

    With accumulating evidence suggesting that amyloid-β (Aβ) deposition is a good diagnostic biomarker for Alzheimer's disease (AD), the discovery of active Aβ probes has become an active area of research. Among the existing imaging methods, optical imaging targeting Aβ aggregates (fibrils or oligomers), especially using near-infrared (NIR) fluorescent probes, is increasingly recognized as a promising approach for the early diagnosis of AD due to its real time detection, low cost, lack of radioactive exposure and high-resolution. In the past decade, a variety of fluorescent probes have been developed and tested for efficiency in vitro, and several probes have shown efficacy in AD transgenic mice. This review classifies these representative probes based on their chemical structures and functional modes (dominant solvent-dependent mode and a novel solvent-independent mode). Moreover, the pharmaceutical characteristics of these representative probes are summarized and discussed. This review provides important perspectives for the future development of novel NIR Aβ diagnostic probes. PMID:26997567

  9. MEMS-based handheld scanning probe with pre-shaped input signals for distortion-free images in Gabor-domain optical coherence microscopy.

    PubMed

    Cogliati, Andrea; Canavesi, Cristina; Hayes, Adam; Tankam, Patrice; Duma, Virgil-Florin; Santhanam, Anand; Thompson, Kevin P; Rolland, Jannick P

    2016-06-13

    High-speed scanning in optical coherence tomography (OCT) often comes with either compromises in image quality, the requirement for post-processing of the acquired images, or both. We report on distortion-free OCT volumetric imaging with a dual-axis micro-electro-mechanical system (MEMS)-based handheld imaging probe. In the context of an imaging probe with optics located between the 2D MEMS and the sample, we report in this paper on how pre-shaped open-loop input signals with tailored non-linear parts were implemented in a custom control board and, unlike the sinusoidal signals typically used for MEMS, achieved real-time distortion-free imaging without post-processing. The MEMS mirror was integrated into a compact, lightweight handheld probe. The MEMS scanner achieved a 12-fold reduction in volume and 17-fold reduction in weight over a previous dual-mirror galvanometer-based scanner. Distortion-free imaging with no post-processing with a Gabor-domain optical coherence microscope (GD-OCM) with 2 μm axial and lateral resolutions over a field of view of 1 × 1 mm2 is demonstrated experimentally through volumetric images of a regular microscopic structure, an excised human cornea, and in vivo human skin. PMID:27410354

  10. Helium ion microscopy and energy selective scanning electron microscopy - two advanced microscopy techniques with complementary applications

    NASA Astrophysics Data System (ADS)

    Rodenburg, C.; Jepson, M. A. E.; Boden, Stuart A.; Bagnall, Darren M.

    2014-06-01

    Both scanning electron microscopes (SEM) and helium ion microscopes (HeIM) are based on the same principle of a charged particle beam scanning across the surface and generating secondary electrons (SEs) to form images. However, there is a pronounced difference in the energy spectra of the emitted secondary electrons emitted as result of electron or helium ion impact. We have previously presented evidence that this also translates to differences in the information depth through the analysis of dopant contrast in doped silicon structures in both SEM and HeIM. Here, it is now shown how secondary electron emission spectra (SES) and their relation to depth of origin of SE can be experimentally exploited through the use of energy filtering (EF) in low voltage SEM (LV-SEM) to access bulk information from surfaces covered by damage or contamination layers. From the current understanding of the SES in HeIM it is not expected that EF will be as effective in HeIM but an alternative that can be used for some materials to access bulk information is presented.

  11. Advancing Biological Understanding and Therapeutics Discovery with Small-Molecule Probes.

    PubMed

    Schreiber, Stuart L; Kotz, Joanne D; Li, Min; Aubé, Jeffrey; Austin, Christopher P; Reed, John C; Rosen, Hugh; White, E Lucile; Sklar, Larry A; Lindsley, Craig W; Alexander, Benjamin R; Bittker, Joshua A; Clemons, Paul A; de Souza, Andrea; Foley, Michael A; Palmer, Michelle; Shamji, Alykhan F; Wawer, Mathias J; McManus, Owen; Wu, Meng; Zou, Beiyan; Yu, Haibo; Golden, Jennifer E; Schoenen, Frank J; Simeonov, Anton; Jadhav, Ajit; Jackson, Michael R; Pinkerton, Anthony B; Chung, Thomas D Y; Griffin, Patrick R; Cravatt, Benjamin F; Hodder, Peter S; Roush, William R; Roberts, Edward; Chung, Dong-Hoon; Jonsson, Colleen B; Noah, James W; Severson, William E; Ananthan, Subramaniam; Edwards, Bruce; Oprea, Tudor I; Conn, P Jeffrey; Hopkins, Corey R; Wood, Michael R; Stauffer, Shaun R; Emmitte, Kyle A

    2015-06-01

    Small-molecule probes can illuminate biological processes and aid in the assessment of emerging therapeutic targets by perturbing biological systems in a manner distinct from other experimental approaches. Despite the tremendous promise of chemical tools for investigating biology and disease, small-molecule probes were unavailable for most targets and pathways as recently as a decade ago. In 2005, the NIH launched the decade-long Molecular Libraries Program with the intent of innovating in and broadening access to small-molecule science. This Perspective describes how novel small-molecule probes identified through the program are enabling the exploration of biological pathways and therapeutic hypotheses not otherwise testable. These experiences illustrate how small-molecule probes can help bridge the chasm between biological research and the development of medicines but also highlight the need to innovate the science of therapeutic discovery. PMID:26046436

  12. Further development of soft X-ray scanning microscopy with anelliptical undulator at the Advanced Light Source

    SciTech Connect

    Warwick, Tony; Ade, Harald; Fakra, Sirine; Gilles, Mary; Hitchcock, Adam; Kilcoyne, David; Shuh, David; Tyliszczak, Tolek

    2003-04-02

    Soft x-ray scanning microscopy (1) is under continuing development at the Advanced Light Source. Significant progress has been made implementing new scan control systems in both operational microscopes (2) and they now operate at beam lines 5.3.2 and 11.0.2 with interferometer servo scanning and stabilization. The interferometer servo loop registers the images on a universal x/y coordinate system and locks the x-ray spot on selected features for spectro-microscopic studies. At the present time zone plates are in use with 35nm outer zone width and the imaging spatial resolution is at the diffraction limit of these lenses. Current research programs are underway in areas of polymer chemistry, environmental chemistry and materials science. A dedicated polymer STXM is in operation on a bend magnet beam line (4) and is the subject of a separate article (3) in this issue. Here we focus on the capabilities of STXM at a new beam line that employs an elliptical undulator (5) to give control of the polarization of the x-ray beam. This facility is in the process of commissioning and some results are available, other capabilities will be developed during the first half of 2003.

  13. The Effect of Electrode Coupling on Single Molecule Device Characteristics: An X-Ray Spectroscopy and Scanning Probe Microscopy Study

    NASA Astrophysics Data System (ADS)

    Batra, Arunabh

    This thesis studies electronic properties of molecular devices in the limiting cases of strong and weak electrode-molecule coupling. In these two limits, we use the complementary techniques of X-Ray spectroscopy and Scanning Tunneling Microscopy (STM) to understand the mechanisms for electrode-molecule bond formation, the energy level realignment due to metal-molecule bonds, the effect of coupling strength on single-molecule conductance in low-bias measurements, and the effect of coupling on transport under high-bias. We also introduce molecular designs with inherent asymmetries, and develop an analytical method to determine the effect of these features on high-bias conductance. This understanding of the role of electrode-molecule coupling in high-bias regimes enables us to develop a series of functional electronic devices whose properties can be predictably tuned through chemical design. First, we explore the weak electrode-molecule coupling regime by studing the interaction of two types of paracyclophane derivates that are coupled 'through-space' to underlying gold substrates. The two paracyclophane derivatives differ in the strength of their intramolecular through-space coupling. X-Ray photoemission spectroscopy (XPS) and Near-Edge X-ray Absorbance Fine Structure (NEXAFS) spectroscopy allows us to determine the orientation of both molecules; Resonant Photoemission Spectroscopy (RPES) then allows us to measure charge transfer time from molecule to metal for both molecules. This study provides a quantititative measure of charge transfer time as a function of through-space coupling strength. Next we use this understanding in STM based single-molecule current-voltage measurements of a series of molecules that couple through-space to one electrode, and through-bond to the other. We find that in the high-bias regime, these molecules respond differently depending on the direction of the applied field. This asymmetric response to electric field direction results in

  14. Band Alignment in MoS2/WS2 Transition Metal Dichalcogenide Heterostructures Probed by Scanning Tunneling Microscopy and Spectroscopy.

    PubMed

    Hill, Heather M; Rigosi, Albert F; Rim, Kwang Taeg; Flynn, George W; Heinz, Tony F

    2016-08-10

    Using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS), we examine the electronic structure of transition metal dichalcogenide heterostructures (TMDCHs) composed of monolayers of MoS2 and WS2. STS data are obtained for heterostructures of varying stacking configuration as well as the individual monolayers. Analysis of the tunneling spectra includes the influence of finite sample temperature, yield information about the quasi-particle bandgaps, and the band alignment of MoS2 and WS2. We report the band gaps of MoS2 (2.16 ± 0.04 eV) and WS2 (2.38 ± 0.06 eV) in the materials as measured on the heterostructure regions and the general type II band alignment for the heterostructure, which shows an interfacial band gap of 1.45 ± 0.06 eV. PMID:27298270

  15. Two glycosylase families diffusively scan DNA using a wedge residue to probe for and identify oxidatively damaged bases

    PubMed Central

    Nelson, Shane R.; Dunn, Andrew R.; Kathe, Scott D.; Warshaw, David M.; Wallace, Susan S.

    2014-01-01

    DNA glycosylases are enzymes that perform the initial steps of base excision repair, the principal repair mechanism that identifies and removes endogenous damages that occur in an organism’s DNA. We characterized the motion of single molecules of three bacterial glycosylases that recognize oxidized bases, Fpg, Nei, and Nth, as they scan for damages on tightropes of λ DNA. We find that all three enzymes use a key “wedge residue” to scan for damage because mutation of this residue to an alanine results in faster diffusion. Moreover, all three enzymes bind longer and diffuse more slowly on DNA that contains the damages they recognize and remove. Using a sliding window approach to measure diffusion constants and a simple chemomechanical simulation, we demonstrate that these enzymes diffuse along DNA, pausing momentarily to interrogate random bases, and when a damaged base is recognized, they stop to evert and excise it. PMID:24799677

  16. In-situ Visualization and Two Dimensional Mapping of Local Electric Field at Probe Apex Using Scanning Electron Optical System

    NASA Astrophysics Data System (ADS)

    Fujita, Jun-ichi; Ikeda, Yuta; Suzuki, Ikumi

    2009-06-01

    We demonstrate an in-situ visualization of electric field distribution and the two-dimensional (2D) mapping of a local field by using a conventional scanning electron microscopy (SEM) system combined with a grid detector. The deflection of the primary electron that obeys Rutherford scattering projects a cross grid shape to a shadow constructed by concentric rings and radial spokes that appear to superimpose immediately behind the conventional SEM image. The correlation of the beam scanning position with the deflection position gives the true local field intensity, and thus, the 2D electric field distribution is obtained. The resulting 2D field distribution agrees well with the field element method (FEM) simulation.

  17. Flight evaluation of advanced navigation techniques for general aviation using frequency scanning

    NASA Technical Reports Server (NTRS)

    Jackson, C. T., Jr.; Denery, D. G.; Korsak, A. J.; Conrad, B.

    1976-01-01

    Experiments on an automatic multisensor navigation concept are being conducted in a Cessna 402B. The test system consists of VOR, DME, and air data sensors controlled by a Hewlett Packard 9820A electronic calculator which processes the data and, by means of a four-state Kalman filter, outputs position and ground and wind velocities to a map display. Novel features which make such a system potentially low-cost include frequency-scanning operation of a single VOR receiver and a single DME transceiver and use of a shed-vortex true airspeed sensor. Results obtained during flight in a local area where six to eight DME NAVAIDS were receivable yielded better than 1/4-mile accuracy.

  18. Advanced fibre optical scanning in thin-layer chromatography for drug identification.

    PubMed

    Ahrens, Björn; Blankenhorn, Dirk; Spangenberg, Bernd

    2002-05-25

    A systematic toxicological analysis procedure using high-performance thin layer chromatography in combination with fibre optical scanning densitometry for identification of drugs in biological samples is presented. Two examples illustrate the practicability of the technique. First, the identification of a multiple intake of analgesics: codeine, propyphenazone, tramadol, flupirtine and lidocaine, and second, the detection of the sedative diphenhydramine. In both cases, authentic urine specimens were used. The identifications were carried out by an automatic measurement and computer-based comparison of in situ UV spectra with data from a compiled library of reference spectra using the cross-correlation function. The technique allowed a parallel recording of chromatograms and in situ UV spectra in the range of 197-612 nm. Unlike the conventional densitometry, a dependency of UV spectra by concentration of substance in a range of 250-1000 ng/spot was not observed. PMID:12016011

  19. Mapping of Heavy Metal Ion Sorption to Cell-Extracellular Polymeric Substance-Mineral Aggregates by Using Metal-Selective Fluorescent Probes and Confocal Laser Scanning Microscopy

    PubMed Central

    Li, Jianli; Kappler, Andreas; Obst, Martin

    2013-01-01

    Biofilms, organic matter, iron/aluminum oxides, and clay minerals bind toxic heavy metal ions and control their fate and bioavailability in the environment. The spatial relationship of metal ions to biomacromolecules such as extracellular polymeric substances (EPS) in biofilms with microbial cells and biogenic minerals is complex and occurs at the micro- and submicrometer scale. Here, we review the application of highly selective and sensitive metal fluorescent probes for confocal laser scanning microscopy (CLSM) that were originally developed for use in life sciences and propose their suitability as a powerful tool for mapping heavy metals in environmental biofilms and cell-EPS-mineral aggregates (CEMAs). The benefit of using metal fluorescent dyes in combination with CLSM imaging over other techniques such as electron microscopy is that environmental samples can be analyzed in their natural hydrated state, avoiding artifacts such as aggregation from drying that is necessary for analytical electron microscopy. In this minireview, we present data for a group of sensitive fluorescent probes highly specific for Fe3+, Cu2+, Zn2+, and Hg2+, illustrating the potential of their application in environmental science. We evaluate their application in combination with other fluorescent probes that label constituents of CEMAs such as DNA or polysaccharides and provide selection guidelines for potential combinations of fluorescent probes. Correlation analysis of spatially resolved heavy metal distributions with EPS and biogenic minerals in their natural, hydrated state will further our understanding of the behavior of metals in environmental systems since it allows for identifying bonding sites in complex, heterogeneous systems. PMID:23974141

  20. Advances in using MRI probes and sensors for in vivo cell tracking as applied to regenerative medicine

    PubMed Central

    Srivastava, Amit K.; Kadayakkara, Deepak K.; Bar-Shir, Amnon; Gilad, Assaf A.; McMahon, Michael T.; Bulte, Jeff W. M.

    2015-01-01

    The field of molecular and cellular imaging allows molecules and cells to be visualized in vivo non-invasively. It has uses not only as a research tool but in clinical settings as well, for example in monitoring cell-based regenerative therapies, in which cells are transplanted to replace degenerating or damaged tissues, or to restore a physiological function. The success of such cell-based therapies depends on several critical issues, including the route and accuracy of cell transplantation, the fate of cells after transplantation, and the interaction of engrafted cells with the host microenvironment. To assess these issues, it is necessary to monitor transplanted cells non-invasively in real-time. Magnetic resonance imaging (MRI) is a tool uniquely suited to this task, given its ability to image deep inside tissue with high temporal resolution and sensitivity. Extraordinary efforts have recently been made to improve cellular MRI as applied to regenerative medicine, by developing more advanced contrast agents for use as probes and sensors. These advances enable the non-invasive monitoring of cell fate and, more recently, that of the different cellular functions of living cells, such as their enzymatic activity and gene expression, as well as their time point of cell death. We present here a review of recent advancements in the development of these probes and sensors, and of their functioning, applications and limitations. PMID:26035841

  1. Advances in using MRI probes and sensors for in vivo cell tracking as applied to regenerative medicine.

    PubMed

    Srivastava, Amit K; Kadayakkara, Deepak K; Bar-Shir, Amnon; Gilad, Assaf A; McMahon, Michael T; Bulte, Jeff W M

    2015-04-01

    The field of molecular and cellular imaging allows molecules and cells to be visualized in vivo non-invasively. It has uses not only as a research tool but in clinical settings as well, for example in monitoring cell-based regenerative therapies, in which cells are transplanted to replace degenerating or damaged tissues, or to restore a physiological function. The success of such cell-based therapies depends on several critical issues, including the route and accuracy of cell transplantation, the fate of cells after transplantation, and the interaction of engrafted cells with the host microenvironment. To assess these issues, it is necessary to monitor transplanted cells non-invasively in real-time. Magnetic resonance imaging (MRI) is a tool uniquely suited to this task, given its ability to image deep inside tissue with high temporal resolution and sensitivity. Extraordinary efforts have recently been made to improve cellular MRI as applied to regenerative medicine, by developing more advanced contrast agents for use as probes and sensors. These advances enable the non-invasive monitoring of cell fate and, more recently, that of the different cellular functions of living cells, such as their enzymatic activity and gene expression, as well as their time point of cell death. We present here a review of recent advancements in the development of these probes and sensors, and of their functioning, applications and limitations. PMID:26035841

  2. Recent advances and potential applications of modulated differential scanning calorimetry (mDSC) in drug development.

    PubMed

    Knopp, Matthias Manne; Löbmann, Korbinian; Elder, David P; Rades, Thomas; Holm, René

    2016-05-25

    Differential scanning calorimetry (DSC) is frequently the thermal analysis technique of choice within preformulation and formulation sciences because of its ability to provide detailed information about both the physical and energetic properties of a substance and/or formulation. However, conventional DSC has shortcomings with respect to weak transitions and overlapping events, which could be solved by the use of the more sophisticated modulated DSC (mDSC). mDSC has multiple potential applications within the pharmaceutical field and the present review provides an up-to-date overview of these applications. It is aimed to serve as a broad introduction to newcomers, and also as a valuable reference for those already practising in the field. Complex mDSC was introduced more than two decades ago and has been an important tool for the quantification of amorphous materials and development of freeze-dried formulations. However, as discussed in the present review, a number of other potential applications could also be relevant for the pharmaceutical scientist. PMID:26721421

  3. Plasma Impedance Spectrum Analyzer (PISA): an advanced impedance probe for measuring plasma density and other parameters

    NASA Astrophysics Data System (ADS)

    Rowland, D. E.; Pfaff, R. F.; Uribe, P.; Burchill, J.

    2006-12-01

    High-accuracy, high-cadence measurements of ionospheric electron density between 100 and a few x 106 / cc and electron temperature from 200 K to a few thousand K are of critical importance for understanding conductivity, Joule heating rates, and instability growth rates. We present results from the development of an impedance probe at NASA GSFC and show its strengths relative to other measurement techniques. Complementary measurement techniques such as Langmuir Probes, while providing extremely high measurement cadence, suffer from uncertainties in calibration, surface contamination effects, and wake/sheath effects. Impedance Probes function by measuring the phase shift between the voltage on a long antenna and the current flowing from the antenna into the plasma as a function of frequency. At frequencies for which the phase shift is zero, a plasma resonance is assumed to exist. These resonances depend on a variety of plasma parameters, including the electron density, electron temperature, and magnetic field strength, as well as the antenna geometry, angle between the antenna and the magnetic field, and sheath / Debye length effects, but do not depend on the surface properties of the antenna. Previous impedance probe designs which "lock" onto the upper hybrid resonance are susceptible to losing lock in low-density environments. Information about other resonances, including the series resonance (which strongly depends on temperature) and other resonances which may occur near the upper hybrid, confounding its identification, are typically not transmitted. The novel features of the GSFC Impedance Probe (PISA) include: 1) A white noise generator that stimulates a wide range of frequencies simultaneously, allowing the instrument to send down the entire impedance frequency spectrum every few milliseconds. This allows identification of all resonance frequencies, including the series resonance which depends on temperature. 2) DC bias voltage stepping to bring the antenna

  4. Unveiling nanometric plasmons optical properties with advanced electron spectroscopy in the Scanning Transmission Electron Microscope

    NASA Astrophysics Data System (ADS)

    Kociak, Mathieu

    Since the pioneering work of Yamamoto, the use of electron spectroscopy such as Cathodoluminescence (CL) and Electron Energy Loss Spectroscopy (EELS) in a Scanning (Transmission) Electron Microscope (STEM) has considerably helped improving our understanding of the optical properties of metallic nanoparticles. The resemblance of spectroscopic signals from electron and pure optical techniques leads to the intuition that both types of techniques are very close, an idea theoretically discussed by F.J. Garcia de Abajo and coworkers. However, it is also quite intuitive that CL and EELS should be different. For example, EELS helps detecting any sort of modes while CL can only detect radiative ones. On the other hand, even between optical spectroscopy techniques, clear differences such as energy shifts or spectral shapes changes are expected in the case of plasmons. The lack of adapted instrumentation capable of performing combined EELS and CL, as well as theoretical developments allowing to account for the generic difference between EELS and CL and their optical counterparts impeached a comprehensive understanding of plasmons physics with the otherwise amazing electron spectroscopies. In this talk, I will present recent experimental results showing combined EELS and CL spectral mapping of plasmonic properties for nanoparticles with several shapes (triangles, cubes, stars...) and composition (gold, silver, aluminum...). Helped with different theoretical tools, I will try to show how these results can be related to their optical counterparts (extinction, scattering), and what type of physical insights can be gained from these combined measurements. Finally, if time allows, pointing the weaknesses of state-of-the-art CL and EELS (in terms of spectral range and/or spectral resolution), I will present EELS results obtained on highly monochromated electron beams that could cope with these limitations

  5. Atomic arrangement at ZnTe/CdSe interfaces determined by high resolution scanning transmission electron microscopy and atom probe tomography

    SciTech Connect

    Bonef, Bastien; Rouvière, Jean-Luc; Jouneau, Pierre-Henri; Bellet-Amalric, Edith; Gérard, Lionel; Mariette, Henri; André, Régis; Bougerol, Catherine; Grenier, Adeline

    2015-02-02

    High resolution scanning transmission electron microscopy and atom probe tomography experiments reveal the presence of an intermediate layer at the interface between two binary compounds with no common atom, namely, ZnTe and CdSe for samples grown by Molecular Beam Epitaxy under standard conditions. This thin transition layer, of the order of 1 to 3 atomic planes, contains typically one monolayer of ZnSe. Even if it occurs at each interface, the direct interface, i.e., ZnTe on CdSe, is sharper than the reverse one, where the ZnSe layer is likely surrounded by alloyed layers. On the other hand, a CdTe-like interface was never observed. This interface knowledge is crucial to properly design superlattices for optoelectronic applications and to master band-gap engineering.

  6. Damage behavior and atomic migration in MgAl2O4 under an 80 keV scanning focused probe in a STEM.

    PubMed

    Zhu, Guo-zhen; Botton, Gianluigi A

    2015-01-01

    With the dramatic improvement in the spatial resolution of scanning transmission electron microscopes over the past few decades, the tolerance of a specimen to the high-energy electron beam becomes the limiting factor for the quality of images and spectra obtained. Therefore, a deep understanding of the beam irradiation processes is crucial to extend the applications of electron microscopy. In this paper, we report the structural evolution of a selected oxide, MgAl2O4, under an 80 keV focused electron probe so that the beam irradiation process is not dominated by the knock-on mechanism. The formation of peroxyl bonds and the assisted atomic migration were studied using imaging and electron energy-loss spectroscopic techniques. PMID:25043440

  7. Measuring the Thickness and Potential Profiles of the Space-Charge Layer at Organic/Organic Interfaces under Illumination and in the Dark by Scanning Kelvin Probe Microscopy.

    PubMed

    Rojas, Geoffrey A; Wu, Yanfei; Haugstad, Greg; Frisbie, C Daniel

    2016-03-01

    Scanning Kelvin probe microscopy was used to measure band-bending at the model donor/acceptor heterojunction poly(3-hexylthiophene) (P3HT)/fullerene (C60). Specifically, we measured the variation in the surface potential of C60 films with increasing thicknesses grown on P3HT to produce a surface potential profile normal to the substrate both in the dark and under illumination. The results confirm a space-charge carrier region with a thickness of 10 nm, consistent with previous observations. We discuss the possibility that the domain size in bulk heterojunction organic solar cells, which is comparable to the space-charge layer thickness, is actually partly responsible for less than expected electron/hole recombination rates. PMID:26890658

  8. Scanning micro-Hall probe mapping of magnetic flux distributions and current densities in YBa2Cu3O7 thin films

    NASA Technical Reports Server (NTRS)

    Xing, W.; Heinrich, B.; Zhou, HU; Fife, A. A.; Cragg, A. R.; Grant, P. D.

    1995-01-01

    Mapping of the magnetic flux density B(sub z) (perpendicular to the film plane) for a YBa2Cu3O7 thin-film sample was carried out using a scanning micro-Hall probe. The sheet magnetization and sheet current densities were calculated from the B(sub z) distributions. From the known sheet magnetization, the tangential (B(sub x,y)) and normal components of the flux density B were calculated in the vicinity of the film. It was found that the sheet current density was mostly determined by 2B(sub x,y)/d, where d is the film thickness. The evolution of flux penetration as a function of applied field will be shown.

  9. Scanning micro-Hall probe mapping of magnetic flux distributions and current densities in YBa{sub 2}Cu{sub 3}O{sub 7}

    SciTech Connect

    Xing, W.; Heinrich, B.; Zhou, H.

    1994-12-31

    Mapping of the magnetic flux density B{sub z} (perpendicular to the film plane) for a YBa{sub 2}Cu{sub 3}O{sub 7} thin-film sample was carried out using a scanning micro-Hall probe. The sheet magnetization and sheet current densities were calculated from the B{sub z} distributions. From the known sheet magnetization, the tangential (B{sub x,y}) and normal components of the flux density B were calculated in the vicinity of the film. It was found that the sheet current density was mostly determined by 2B{sub x,y}/d, where d is the film thickness. The evolution of flux penetration as a function of applied field will be shown.

  10. Probing Dirac fermion dynamics in topological insulator Bi2Se3 films with a scanning tunneling microscope.

    PubMed

    Song, Can-Li; Wang, Lili; He, Ke; Ji, Shuai-Hua; Chen, Xi; Ma, Xu-Cun; Xue, Qi-Kun

    2015-05-01

    Scanning tunneling microscopy and spectroscopy have been used to investigate the femtosecond dynamics of Dirac fermions in the topological insulator Bi2Se3 ultrathin films. At the two-dimensional limit, bulk electrons become quantized and the quantization can be controlled by the film thickness at a single quintuple layer level. By studying the spatial decay of standing waves (quasiparticle interference patterns) off steps, we measure directly the energy and film thickness dependence of the phase relaxation length lϕ and inelastic scattering lifetime τ of topological surface-state electrons. We find that τ exhibits a remarkable (E - EF)(-2) energy dependence and increases with film thickness. We show that the features revealed are typical for electron-electron scattering between surface and bulk states. PMID:25978246

  11. Basic properties of GaAs oxide generated by scanning probe microscope tip-induced nano-oxidation process

    NASA Astrophysics Data System (ADS)

    Okada, Yoshitaka; Iuchi, Yoshimasa; Kawabe, Mitsuo; Harris, James S.

    2000-07-01

    The basic properties of GaAs oxide generated by atomic force microscope (AFM) tip-induced nano-oxidation process have been investigated. The chemical analysis of the AFM tip-generated GaAs oxide was performed by using scanning microprobe x-ray photoelectron spectroscopy, and the main constituents of GaAs anodic oxide were determined to be Ga2O3 and As2O3. The electrical characterization showed that the electron transport across a GaAs oxide nanodot of ˜5.7 nm thickness, from a doped n+-Si tip into the n+-GaAs substrate follows the Fowler-Nordheim tunneling mechanism over a range of applied bias. Further, the tip-generated GaAs oxide nanodots were found to withstand moderate thermal treatments, but some volume reduction was observed.

  12. Two photon fluorescence imaging of lipid membrane domains and potentials using advanced fluorescent probes

    NASA Astrophysics Data System (ADS)

    Kilin, Vasyl; Darwich, Zeinab; Richert, Ludovic; Didier, Pascal; Klymchenko, Andrey; Mély, Yves

    2013-02-01

    Biomembranes are ordered and dynamic nanoscale structures critical for cell functions. The biological functions of the membranes strongly depend on their physicochemical properties, such as electrostatics, phase state, viscosity, polarity and hydration. These properties are essential for the membrane structure and the proper folding and function of membrane proteins. To monitor these properties, fluorescence techniques and notably, two-photon microscopy appear highly suited due to their exquisite sensitivity and their capability to operate in complex biological systems, such as living cells and tissues. In this context, we have developed multiparametric environment-sensitive fluorescent probes tailored for precise location in the membrane bilayer. We notably developed probes of the 3-hydroxychromone family, characterized by an excited state intramolecular proton transfer reaction, which generates two tautomeric emissive species with well-separated emission bands. As a consequence, the response of these probes to changes in their environment could be monitored through changes in the ratios of the two bands, as well as through changes in the fluorescence lifetimes. Using two-photon ratiometric imaging and FLIM, these probes were used to monitor the surface membrane potential, and were applied to detect apoptotic cells and image membrane domains.

  13. The Value of Restaging With Chest and Abdominal CT/MRI Scan After Neoadjuvant Chemoradiotherapy for Locally Advanced Rectal Cancer.

    PubMed

    Liu, Guo-Chen; Zhang, Xu; Xie, E; An, Xin; Cai, Pei-Qiang; Zhu, Ying; Tang, Jing-Hua; Kong, Ling-Heng; Lin, Jun-Zhong; Pan, Zhi-Zhong; Ding, Pei-Rong

    2015-11-01

    Little was known with regard to the value of preoperative systemic restaging for patients with locally advanced rectal cancer (LARC) treated with neoadjuvant chemoradiotherapy (CRT). This study was designed to evaluate the role of chest and abdominal computed tomography (CT) scan or magnetic resonance imaging (MRI) on preoperative restaging in LARC after neoadjuvant CRT and to assess the impact on treatment strategy.Between January 2007 and April 2013, 386 newly diagnosed consecutive patients with LARC who underwent neoadjuvant CRT and received restaging with chest and abdominal CT/MRI scan were included. Imaging results before and after CRT were analyzed.Twelve patients (3.1%) (6 liver lesions, 2 peritoneal lesions, 2 distant lymph node lesions, 1 lung lesions, 1 liver and lung lesions) were diagnosed as suspicious metastases on the restaging scan after radiotherapy. Seven patients (1.8%) were confirmed as metastases by pathology or long-term follow-up. The treatment strategy was changed in 5 of the 12 patients as a result of restaging CT/MRI findings. Another 10 patients (2.6%) who present with normal restaging imaging findings were diagnosed as metastases intra-operatively. The sensitivity, specificity accuracy, negative predictive value, and positive predictive values of restaging CT/MRI was 41.4%, 98.6%, 58.3%, and 97.3%, respectively.The low incidence of metastases and minimal consequences for the treatment plan question the clinical value of routine restaging of chest and abdomen after neoadjuvant CRT. Based on this study, a routine restaging CT/MRI of chest and abdomen in patients with rectal cancer after neoadjuvant CRT is not advocated, carcino-embryonic antigen (CEA) -guided CT/MRI restaging might be an alternative. PMID:26632714

  14. Scanning multispectral IR reflectography SMIRR: an advanced tool for art diagnostics.

    PubMed

    Daffara, Claudia; Pampaloni, Enrico; Pezzati, Luca; Barucci, Marco; Fontana, Raffaella

    2010-06-15

    Spectral imaging technology, widely used in remote sensing applications, such as satellite or radar imaging, has recently gained importance in the field of artwork conservation. In particular, multispectral imaging in the near-infrared region (NIR) has proved useful in analyzing ancient paintings because of the transparency of most pigments and their varied reflectance changes over this spectral region. A variety of systems, with different detectors and filtering or dispersing technologies, have been implemented. Despite the recognized potential of multispectral NIR imaging, which provides information on both spectral and spatial domains (thus extending the capabilities of conventional imaging and spectroscopy), most of the systems currently used in art diagnostics have limitations. The technology is still in its early stages of development in this field. In this Account, we present the scanning multispectral IR reflectography (SMIRR) technique for artwork analysis, together with an integrated device for the acquisition of imaging data. The instrument prototype is a no-contact optical scanner with a single-point measurement of the reflectance, capable of simultaneously collecting a set of 14 spatially registered images at different wavelengths in the NIR range of 800-2300 nm. The data can be analyzed as a spectral cube, both as a stack of wavelength resolved images (multi-NIR reflectography) and as a series of point reflectance spectra, one for each sampled pixel on the surface (NIR spectrometry). We explore the potential of SMIRR in the analysis of ancient paintings and show its advantages over the wide-band conventional method. The multispectral option allows the choice of the most effective NIR bands and improves the ability to detect hidden features. The interband comparison aids in localizing areas of different pictorial materials with particular NIR reflectance. In addition to the analysis of single monochromatic images, enhancement procedures involving the

  15. Design and performance of a combined secondary ion mass spectrometry-scanning probe microscopy instrument for high sensitivity and high-resolution elemental three-dimensional analysis

    SciTech Connect

    Wirtz, Tom; Fleming, Yves; Gerard, Mathieu; Gysin, Urs; Glatzel, Thilo; Meyer, Ernst; Wegmann, Urs; Maier, Urs; Odriozola, Aitziber Herrero; Uehli, Daniel

    2012-06-15

    State-of-the-art secondary ion mass spectrometry (SIMS) instruments allow producing 3D chemical mappings with excellent sensitivity and spatial resolution. Several important artifacts however arise from the fact that SIMS 3D mapping does not take into account the surface topography of the sample. In order to correct these artifacts, we have integrated a specially developed scanning probe microscopy (SPM) system into a commercial Cameca NanoSIMS 50 instrument. This new SPM module, which was designed as a DN200CF flange-mounted bolt-on accessory, includes a new high-precision sample stage, a scanner with a range of 100 {mu}m in x and y direction, and a dedicated SPM head which can be operated in the atomic force microscopy (AFM) and Kelvin probe force microscopy modes. Topographical information gained from AFM measurements taken before, during, and after SIMS analysis as well as the SIMS data are automatically compiled into an accurate 3D reconstruction using the software program 'SARINA,' which was developed for this first combined SIMS-SPM instrument. The achievable lateral resolutions are 6 nm in the SPM mode and 45 nm in the SIMS mode. Elemental 3D images obtained with our integrated SIMS-SPM instrument on Al/Cu and polystyrene/poly(methyl methacrylate) samples demonstrate the advantages of the combined SIMS-SPM approach.

  16. Mapping an on-chip terahertz antenna by a scanning near-field probe and a fixed field-effect transistor

    NASA Astrophysics Data System (ADS)

    Lü, Li; Sun, Jian-Dong; Roger, A. Lewis; Sun, Yun-Fei; Wu, Dong-Min; Cai, Yong; Qin, Hua

    2015-02-01

    In the terahertz (THz) regime, the active region for a solid-state detector usually needs to be implemented accurately in the near-field region of an on-chip antenna. Mapping of the near-field strength could allow for rapid verification and optimization of new antenna/detector designs. Here, we report a proof-of-concept experiment in which the field mapping is realized by a scanning metallic probe and a fixed AlGaN/GaN field-effect transistor. Experiment results agree well with the electromagnetic-wave simulations. The results also suggest a field-effect THz detector combined with a probe tip could serve as a high sensitivity THz near-field sensor. Project partially supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KJCX2-EW-705), China Postdoctoral Science Foundation (Grant No. 2014M551678), Jiangsu Planned Projects for Postdoctoral Research Funds (Grant No. 1301054B), Instrument Developing Project of the Chinese Academy of Sciences (Grant No. YZ201152), the National Natural Science Foundation of China (Grant No. 61271157), Suzhou Science and Technology Project (Grant No. ZXG2012024), and the Chinese Academy of Sciences Visiting Professorship for Senior International Scientists (Grant No. 2010T2J07).

  17. Scanning probe microscopy studies of the highly strained epitaxy of indium arsenide on gallium arsenide(001) and scanning probe based imaging and manipulation of nanoscale three-dimensional objects

    NASA Astrophysics Data System (ADS)

    Ramachandran, T. R.

    This Dissertation contributes to three mainstream areas of current research: (a) the nature of two-dimensional (2D) to three-dimensional (3D) morphology change in the highly strained epitaxy of InAs on GaAs(001) and the formation and evolution of the InAs nanoscale 3D islands, (b) the understanding of scanning tunneling microscope (STM), and contact- and noncontact atomic force microscope (C-AFM and NC-AFM) imaging of nanoscale 3D islands/objects, and (c) the direct manipulation of nanoscale 3D objects in air, and at room temperature, using the NC-AFM. A remarkable re-entrant behavior of the 2D → 3D morphology transition in InAs/GaAs(001) is found in which small quasi-3D (Q3D) clusters of heights 2--4 monolayers (ML) act as a kinetic pathway towards InAs 3D (>4 ML high) island formation. The 2D → 3D transition is gradual, with a varying material transfer between the 2D and 3D features. The 3D islands exhibit a tendency towards lateral size (and to some extent, volume) equalization with increasing InAs delivery, theta. The combined STM/AFM results point to models for 3D island formation (from small Q3D clusters) and for 3D island evolution, that reveal the importance of various kinetic processes. Growth condition dependence of the InAs 3D morphology reveals the significance of kinetic processes such as arsenic incorporation and interplanar and intraplanar In migration. Some similarities and significant differences are found between in-situ UHV C-AFM, STM, and NC-AFM images of InAs nanoscale 3D islands. In particular, NC-AFM images show a remarkable contrast-reversal of the images of 3D nanofeatures. This behavior is partly attributed to a feedback instability related to the tip-sample interaction force gradient curve, based on our simple model of NC-AFM imaging. We find that the differences in the STM/C-AFM/NC-AFM images can be reconciled with the corresponding mechanism(s) of operation of the microscopes. Finally, we have developed protocols for

  18. Using scanning electrochemical microscopy to probe chemistry at the solid-liquid interface in chemically amplified immersion lithography

    NASA Astrophysics Data System (ADS)

    LeSuer, Robert J.; Fan, Fu-Ren F.; Bard, Allen J.; Taylor, J. Christopher; Tsiartas, Pavlos; Willson, Grant; Conley, Willard E.; Feit, Gene; Kunz, Roderick R.

    2004-05-01

    Three modes of scanning electrochemical microscopy (SECM) - voltammetry, pH, and conductivity - have been used to better understand the chemistry at, and diffusion through, the solid/liquid interface formed between a resist film and water in 193 nm immersion lithography. Emphasis has been placed on investigating the photoacid generator (PAG), triphenylsulfonium perfluorobutanesulfonate, and the corresponding photoacid. The reduction of triphenylsulfonium at a hemispherical Hg microelectrode was monitored using square wave voltammetry to detect trace amounts of the PAG leaching from the surface. pH measurements at a 100 μm diameter Sb microelectrode show the formation of acid in the water layer above a resist upon exposure with UV irradiation. Bipolar conductance measurements at a 100 μm Pt tip positioned 100 μm from the surface indicate that the conductivity of the solution during illumination is dependent upon the percentage of PAG in the film. Liquid chromatography mass spectrometric analysis of water samples in contact with resist films has been used to quantify the amounts (< 10 ng/cm2) of PAG leaching from the film in the dark which occurs within the first 30 seconds of contact time. Washing the film removes approximately 80% of the total leachable PAG.

  19. The cavity resonance mode of Bi2Sr2CaCu2O8 mesa terahertz sources as probed by scanning laser thermal microscopy

    NASA Astrophysics Data System (ADS)

    Benseman, Timothy; Koshelev, Alexei; Vlasko-Vlasov, Vitalii; Welp, Ulrich; Kwok, Wai-Kwong; Hao, Yang; Gross, Boris; Lange, Matthias; Koelle, Dieter; Kleiner, Reinhold; Kadowaki, Kazuo

    Stacked Intrinsic Josephson Junctions (IJJs) in the extremely anisotropic high-Tc superconductor Bi2Sr2CaCu2O8 are a promising solid-state source of coherent terahertz radiation in the so-called ``THz gap'' range. In these devices, a geometric resonant mode of a stack of IJJs of typical dimensions 300 x 60 x 1 microns3 acts to synchronize the individual junctions, resulting in coherent far-field THz emission. This resonance can be probed by scanning thermal laser microscopy, in which a modulated optical laser beam is rastered across the top surface of a stack. The resulting thermal perturbation to the stack's cavity mode can thus be mapped via the resulting xy-dependent modulation of the stack's electrical resistance. Here we discuss the experimentally measured scanning laser pattern of such a THz cavity mode, and the implications of its symmetry for the mechanism of IJJ synchronization in these devices. This research was supported by the Department of Energy, Office of Basic Energy Sciences, under Contract No. De-AC02-06CH11357.

  20. Advances in Ultrafast Control and Probing of Correlated-Electron Materials

    SciTech Connect

    Wall, Simon; Rini, Matteo; Dhesi, Sarnjeet S.; Schoenlein, Robert W.; Cavalleri, Andrea

    2011-02-24

    Here in this paper, we present recent results on ultrafast control and probing of strongly correlated-electron materials. We focus on magnetoresistive manganites, applying excitation and probing wavelengths that cover the mid-IR to the soft X-rays. In analogy with near-equilibrium filling and bandwidth control of phase transitions, our approach uses both visible and mid-IR pulses to stimulate the dynamics by exciting either charges across electronic bandgaps or specific vibrational resonances. Lastly, x-rays are used to unambiguously measure the microscopic electronic, orbital, and structural dynamics. Our experiments dissect and separate the nonequilibrium physics of these compounds, revealing the complex interplay and evolution of spin, lattice, charge, and orbital degrees of freedoms in the time domain.

  1. Recent Advances in the Design of Electro-Optic Sensors for Minimally Destructive Microwave Field Probing

    PubMed Central

    Lee, Dong-Joon; Kang, No-Weon; Choi, Jun-Ho; Kim, Junyeon; Whitaker, John F.

    2011-01-01

    In this paper we review recent design methodologies for fully dielectric electro-optic sensors that have applications in non-destructive evaluation (NDE) of devices and materials that radiate, guide, or otherwise may be impacted by microwave fields. In many practical NDE situations, fiber-coupled-sensor configurations are preferred due to their advantages over free-space bulk sensors in terms of optical alignment, spatial resolution, and especially, a low degree of field invasiveness. We propose and review five distinct types of fiber-coupled electro-optic sensor probes. The design guidelines for each probe type and their performances in absolute electric-field measurements are compared and summarized. PMID:22346604

  2. Advanced surface-enhanced Raman gene probe systems and methods thereof

    DOEpatents

    Vo-Dinh, Tuan

    2001-01-01

    The subject invention is a series of methods and systems for using the Surface-Enhanced Raman (SER)-labeled Gene Probe for hybridization, detection and identification of SER-labeled hybridized target oligonucleotide material comprising the steps of immobilizing SER-labeled hybridized target oligonucleotide material on a support means, wherein the SER-labeled hybridized target oligonucleotide material comprise a SER label attached either to a target oligonucleotide of unknown sequence or to a gene probe of known sequence complementary to the target oligonucleotide sequence, the SER label is unique for the target oligonucleotide strands of a particular sequence wherein the SER-labeled oligonucleotide is hybridized to its complementary oligonucleotide strand, then the support means having the SER-labeled hybridized target oligonucleotide material adsorbed thereon is SERS activated with a SERS activating means, then the support means is analyzed.

  3. Advances in Impedance Probe Applications and Design in the NRL Space Physics Simulation Chamber

    NASA Astrophysics Data System (ADS)

    Blackwell, David; Walker, David; Cothran, Christopher; Gatling, George; Tejero, Erik; Amatucci, William

    2013-10-01

    We will present recent progress in plasma impedance probe experiments and design at NRL's Space Physics Simulation Chamber. These include our network analyzer S-parameter methods as well as more portable self-contained diagnostics with an eye towards space vehicle applications. The experiments are performed under a variety of conditions with magnetized and unmagnetized collisionless, cold (Te ~ 1 - 2 eV) plasmas in density ranges of 105-108 cm-3. Large and small spheres, disks, floating dipoles and monopoles are all in development with various electronic setups, along with traditional emissive and Langmuir probes for measurement redundancy. New computational results provide experimental predictions over a larger parameter space. This work supported by the Naval Research Laboratory Base Program.

  4. Development and field validation of advanced array probes for steam generator inspection

    SciTech Connect

    Dodd, C.V.; Pate, J.R.

    1995-04-01

    The aging of the steam generators at the nation`s nuclear power plants has led to the appearance of new forms of degradation in steam generator tubes and an increase in the frequency of forced outages due to major tube leak events. The eddy-current techniques currently being used for the inspection of steam generator tubing are no longer adequate to ensure that flaws will be detected before they lead to a shutdown of the plant. To meet the need for a fast and reliable method of inspection, ORNL has designed a 16-coil eddy-current array probe which combines an inspection speed similar to that of the bobbin coil with a sensitivity to cracks of any orientation similar to the rotating pancake coil. In addition, neural network and least square methods have been developed for the automatic analysis of the data acquired with the new probes. The probes and analysis software have been tested at two working steam generators where we have found an increase in the signal-to-noise ratio of a factor of five an increase in the inspection speed of a factor of 75 over the rotating pancake coil which maintaining similar detection and characterization capabilities.

  5. Advanced slow-magic angle spinning probe for magnetic resonance imaging and spectroscopy

    DOEpatents

    Wind, Robert A.; Hu, Jian Zhi; Minard, Kevin R.; Rommereim, Donald N.

    2006-01-24

    The present invention relates to a probe and processes useful for magnetic resonance imaging and spectroscopy instruments. More particularly, the invention relates to a MR probe and processes for obtaining resolution enhancements of fluid objects, including live specimens, using an ultra-slow (magic angle) spinning (MAS) of the specimen combined with a modified phase-corrected magic angle turning (PHORMAT) pulse sequence. Proton NMR spectra were measured of the torso and the top part of the belly of a female BALBc mouse in a 2T field, while spinning the animal at a speed of 1.5 Hz. Results show that even in this relatively low field with PHORMAT, an isotropic spectrum is obtained with line widths that are a factor 4.6 smaller than those obtained in a stationary mouse. Resolution of 1H NMR metabolite spectra are thus significantly enhanced. Results indicate that PHORMAT has the potential to significantly increase the utility of 1H NMR spectroscopy for in vivo biochemical, biomedical and/or medical applications involving large-sized biological objects such as mice, rats and even humans within a hospital setting. For small-sized objects, including biological objects, such as excised tissues, organs, live bacterial cells, and biofilms, use of PASS at a spinning rate of 30 Hz and above is preferred.

  6. Illuminating the lipidome to advance biomedical research: peptide-based probes of membrane lipids

    PubMed Central

    Gao, Jianmin; Zheng, Hong

    2014-01-01

    Systematic investigation of the lipidome will reveal new opportunities for disease diagnosis and intervention. However, lipidomic research has been hampered by the lack of molecular tools to track specific lipids of interest. Accumulating reports indicate lipid recognition can be achieved with properly constructed short peptides in addition to large proteins. This review summarizes the key developments of this area within the past decade. Select lantibiotic peptides present the best examples of low-molecular-weight probes of membrane lipids, displaying selectivity comparable to lipid-binding proteins. Designed peptides, through biomimetic approaches and combinational screening, have begun to demonstrate their potential for lipid tracking in cultured cells and even in living organisms. Biophysical characterization of these lipid-targeting peptides has revealed certain features critical for selective membrane binding, including preorganized scaffolds and the balance of polar and nonpolar interactions. The knowledge summarized herein should facilitate the development of molecular tools to target a variety of membrane lipids. PMID:23682570

  7. Heavy ion beam probe advances from the first installation of the diagnostic on an RFP (invited)

    SciTech Connect

    Demers, D. R.; Fimognari, P. J.

    2012-10-15

    Heavy ion beam probes have been installed on a variety of toroidal devices, but the first and only application on a reversed field pinch is the diagnostic on the Madison Symmetric Torus. Simultaneous measurements of spatially localized equilibrium potential and fluctuations of density and potential, previously inaccessible in the core of the reversed field pinch (RFP), are now attainable. These measurements reflect the unique strength of the heavy ion beam probe (HIBP) diagnostic. They will help determine the characteristics and evolution of electrostatic fluctuations and their role in transport, and determine the relation of the interior electric field and flows. Many aspects of the RFP present original challenges to HIBP operation and inference of plasma quantities. The magnetic field contributes to a number of the issues: the comparable magnitudes of the toroidal and poloidal fields and edge reversal result in highly three-dimensional beam trajectories; partial generation of the magnetic field by plasma current cause it and hence the beam trajectories to vary with time; and temporal topology and amplitude changes are common. Associated complications include strong ultraviolet radiation and elevated particle losses that can alter functionality of the electrostatic systems and generate noise on the detectors. These complexities have necessitated the development of new operation and data analysis techniques: the implementation of primary and secondary beamlines, adoption of alternative beam steering methods, development of higher precision electrostatic system models, refinement of trajectory calculations and sample volume modeling, establishment of stray particle and noise reduction methods, and formulation of alternative data analysis techniques. These innovative methods and the knowledge gained with this system are likely to translate to future HIBP operation on large scale stellarators and tokamaks.

  8. Covalent immobilization of native biomolecules onto Au(111) via N-hydroxysuccinimide ester functionalized self-assembled monolayers for scanning probe microscopy.

    PubMed Central

    Wagner, P; Hegner, M; Kernen, P; Zaugg, F; Semenza, G

    1996-01-01

    We have worked out a procedure for covalent binding of native biomacromolecules on flat gold surfaces for scanning probe microscopy in aqueous buffer solutions and for other nanotechnological applications, such as the direct measurement of interaction forces between immobilized macromolecules, of their elastomechanical properties, etc. It is based on the covalent immobilization of amino group-containing biomolecules (e.g., proteins, phospholipids) onto atomically flat gold surfaces via omega-functionalized self-assembled monolayers. We present the synthesis of the parent compound, dithio-bis(succinimidylundecanoate) (DSU), and a detailed study of the chemical and physical properties of the monolayer it forms spontaneously on Au(111). Scanning tunneling microscopy and atomic force microscopy (AFM) revealed a monolayer arrangement with the well-known depressions that are known to stem from an etch process during the self-assembly. The total density of the omega-N-hydroxysuccinimidyl groups on atomically flat gold was 585 pmol/cm(2), as determined by chemisorption of (14)C-labeled DSU. This corresponded to approximately 75% of the maximum density of the omega-unsubstituted alkanethiol. Measurements of the kinetics of monolayer formation showed a very fast initial phase, with total coverage within 30 S. A subsequent slower rearrangement of the chemisorbed molecules, as indicated by AFM, led to a decrease in the number of monolayer depressions in approximately 60 min. The rate of hydrolysis of the omega-N-hydroxysuccinimide groups at the monolayer/water interface was found to be very slow, even at moderately alkaline pH values. Furthermore, the binding of low-molecular-weight amines and of a model protein was investigated in detail. Images FIGURE 1 FIGURE 2 FIGURE 9 PMID:9172730

  9. Probing the scale of new physics by Advanced LIGO/VIRGO

    NASA Astrophysics Data System (ADS)

    Dev, P. S. Bhupal; Mazumdar, A.

    2016-05-01

    We show that if the new physics beyond the standard model is associated with a first-order phase transition around 107- 108 GeV , the energy density stored in the resulting stochastic gravitational waves and the corresponding peak frequency are within the projected final sensitivity of the advanced LIGO/VIRGO detectors. We discuss some possible new physics scenarios that could arise at such energies, and in particular, the consequences for Peccei-Quinn and supersymmetry breaking scales.

  10. A High-altitude, Advanced-technology Scanning Laser Altimeter for the Elevation for the Nation Program

    NASA Astrophysics Data System (ADS)

    Harding, D. J.

    2007-12-01

    In January of this year the National Research Council's Committee on Floodplain Mapping Technologies recommended to Congress that an Elevation for the Nation program be initiated to enable modernization of the nation's floodplain maps and to support the many other nationwide programs reliant on high-accuracy elevation data. Their recommendation is to acquire a national, high-resolution, seamless, consistent, public-domain, elevation data set created using airborne laser swath mapping (ALSM). Although existing commercial ALSM assets can acquire elevation data of sufficient accuracy, achieving nationwide consistency in a cost-effective manner will be a challenge employing multiple low-flying commercial systems conducting local to regional mapping. This will be particularly true in vegetated terrain where reproducible measurements of ground topography and vegetation structure are required for change-detection purposes. An alternative approach using an advanced technology, wide-swath, high-altitude laser altimeter is described here, based on the Swath Imaging Multi-polarization Photon-counting Lidar (SIMPL) under development via funding from NASA's Instrument Incubator Program. The approach envisions a commercial, federal agency and state partnership, with the USGS providing program coordination, NASA implementing the advanced technology instrumentation, the commercial sector conducting data collection and processing and states defining map product requirements meeting their specific needs. An Instrument Synthesis and Analysis (ISAL) study conducted at Goddard Space Flight Center evaluated an instrument compliment deployed on a long-range Gulfstream G550 platform operating at 12 km altitude. The English Electric Canberra is an alternative platform also under consideration. Instrumentation includes a scanning, multi-beam laser altimeter that maps a 10 km wide swath, IMU and Star Trackers for attitude determination, JPL's Global Differential GPS implementation for

  11. Dopant Diffusion and Activation in Silicon Nanowires Fabricated by ex Situ Doping: A Correlative Study via Atom-Probe Tomography and Scanning Tunneling Spectroscopy.

    PubMed

    Sun, Zhiyuan; Hazut, Ori; Huang, Bo-Chao; Chiu, Ya-Ping; Chang, Chia-Seng; Yerushalmi, Roie; Lauhon, Lincoln J; Seidman, David N

    2016-07-13

    Dopants play a critical role in modulating the electric properties of semiconducting materials, ranging from bulk to nanoscale semiconductors, nanowires, and quantum dots. The application of traditional doping methods developed for bulk materials involves additional considerations for nanoscale semiconductors because of the influence of surfaces and stochastic fluctuations, which may become significant at the nanometer-scale level. Monolayer doping is an ex situ doping method that permits the post growth doping of nanowires. Herein, using atom-probe tomography (APT) with subnanometer spatial resolution and atomic-ppm detection limit, we study the distributions of boron and phosphorus in ex situ doped silicon nanowires with accurate control. A highly phosphorus doped outer region and a uniformly boron doped interior are observed, which are not predicted by criteria based on bulk silicon. These phenomena are explained by fast interfacial diffusion of phosphorus and enhanced bulk diffusion of boron, respectively. The APT results are compared with scanning tunneling spectroscopy data, which yields information concerning the electrically active dopants. Overall, comparing the information obtained by the two methods permits us to evaluate the diffusivities of each different dopant type at the nanowire oxide, interface, and core regions. The combined data sets permit us to evaluate the electrical activation and compensation of the dopants in different regions of the nanowires and understand the details that lead to the sharp p-i-n junctions formed across the nanowire for the ex situ doping process. PMID:27351447

  12. Local Magnetoelectric Effect in La-Doped BiFeO3 Multiferroic Thin Films Revealed by Magnetic-Field-Assisted Scanning Probe Microscopy

    NASA Astrophysics Data System (ADS)

    Pan, Dan-Feng; Zhou, Ming-Xiu; Lu, Zeng-Xing; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo

    2016-06-01

    Multiferroic La-doped BiFeO3 thin films have been prepared by a sol-gel plus spin-coating process, and the local magnetoelectric coupling effect has been investigated by the magnetic-field-assisted scanning probe microscopy connected with a ferroelectric analyzer. The local ferroelectric polarization response to external magnetic fields is observed and a so-called optimized magnetic field of ~40 Oe is obtained, at which the ferroelectric polarization reaches the maximum. Moreover, we carry out the magnetic-field-dependent surface conductivity measurements and illustrate the origin of local magnetoresistance in the La-doped BiFeO3 thin films, which is closely related to the local ferroelectric polarization response to external magnetic fields. This work not only provides a useful technique to characterize the local magnetoelectric coupling for a wide range of multiferroic materials but also is significant for deeply understanding the local multiferroic behaviors in the BiFeO3-based systems.

  13. Bioreactive self-assembled monolayers on hydrogen-passivated Si(111) as a new class of atomically flat substrates for biological scanning probe microscopy.

    PubMed

    Wagner, P; Nock, S; Spudich, J A; Volkmuth, W D; Chu, S; Cicero, R L; Wade, C P; Linford, M R; Chidsey, C E

    1997-07-01

    This is the first report of bioreactive self-assembled monolayers, covalently bound to atomically flat silicon surfaces and capable of binding biomolecules for investigation by scanning probe microscopy and other surface-related assays and sensing devices. These monolayers are stable under a wide range of conditions and allow tailor-made functionalization for many purposes. We describe the substrate preparation and present an STM and SFM characterization, partly performed with multiwalled carbon nanotubes as tapping-mode supertips. Furthermore, we present two strategies of introducing in situ reactive headgroup functionalities. One method entails a free radical chlorosulfonation process with subsequent sulfonamide formation. A second method employs singlet carbenemediated hydrogen-carbon insertion of a heterobifunctional, amino-reactive trifluoromethyl-diazirinyl crosslinker. We believe that this new substrate is advantageous to others, because it (i) is atomically flat over large areas and can be prepared in a few hours with standard equipment, (ii) is stable under most conditions, (iii) can be modified to adjust a certain degree of reactivity and hydrophobicity, which allows physical adsorption or covalent crosslinking of the biological specimen, (iv) builds the bridge between semiconductor microfabrication and organic/biological molecular systems, and (v) is accessible to nanopatterning and applications requiring conductive substrates. PMID:9245759

  14. Local Magnetoelectric Effect in La-Doped BiFeO3 Multiferroic Thin Films Revealed by Magnetic-Field-Assisted Scanning Probe Microscopy.

    PubMed

    Pan, Dan-Feng; Zhou, Ming-Xiu; Lu, Zeng-Xing; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo

    2016-12-01

    Multiferroic La-doped BiFeO3 thin films have been prepared by a sol-gel plus spin-coating process, and the local magnetoelectric coupling effect has been investigated by the magnetic-field-assisted scanning probe microscopy connected with a ferroelectric analyzer. The local ferroelectric polarization response to external magnetic fields is observed and a so-called optimized magnetic field of ~40 Oe is obtained, at which the ferroelectric polarization reaches the maximum. Moreover, we carry out the magnetic-field-dependent surface conductivity measurements and illustrate the origin of local magnetoresistance in the La-doped BiFeO3 thin films, which is closely related to the local ferroelectric polarization response to external magnetic fields. This work not only provides a useful technique to characterize the local magnetoelectric coupling for a wide range of multiferroic materials but also is significant for deeply understanding the local multiferroic behaviors in the BiFeO3-based systems. PMID:27356565

  15. Direct observation of electrical properties of grain boundaries in sputter-deposited CdTe using scan-probe microwave reflectivity based capacitance measurements

    NASA Astrophysics Data System (ADS)

    Tuteja, Mohit; Koirala, Prakash; MacLaren, Scott; Collins, Robert; Rockett, Angus

    2015-10-01

    Polycrystalline CdTe in 12% efficient solar cells has been studied using scanning microwave impedance microscopy (sMIM). The CdS/CdTe junctions were grown on transparent-conducting-oxide-coated soda lime glass using rf sputter deposition. sMIM based capacitance measurements were performed on the exposed surface of CdCl2 treated CdTe adjacent to thermal-evaporation-deposited Cu/Au back contacts. The sMIM instrument was operated at ˜3 GHz, and capacitance measurements were performed as a function of ac and dc voltage biases applied to the tip, with and without sample illumination. Although dc capacitance measurements are affected by sample topography, the differential capacitance measurement was shown to be topography independent. It was found that the grain boundaries exhibit a depleted carrier concentration as compared to the grain bulk. This depletion effect is enhanced under photo-generated carrier separation or under sufficiently large probe tip biases opposite to the majority carrier charge.

  16. Ordering in bio-inorganic hybrid nanomaterials probed by in situ scanning transmission X-ray microscopy

    SciTech Connect

    Lee, Jonathan R. I.; Bagge-Hansen, Michael; Tunuguntla, Ramya; Kim, Kyunghoon; Bangar, Mangesh; Willey, Trevor M.; Tran, Ich C.; Kilcoyne, David A.; Noy, Aleksandr; van Buuren, Tony

    2015-04-15

    Here, phospholipid bilayer coated Si nanowires are one-dimensional (1D) composites that provide versatile bio-nanoelectronic functionality via incorporation of a wide variety of biomolecules into the phospholipid matrix. The physiochemical behaviour of the phospholipid bilayer is strongly dependent on its structure and, as a consequence, substantial modelling and experimental efforts have been directed at the structural characterization of supported bilayers and unsupported phospholipid vesicles; nonetheless, the experimental studies conducted to date have exclusively involved volume-averaged techniques, which do not allow for the assignment of spatially resolved structural variations that could critically impact the performance of the 1D phospholipid-Si NW composites. In this manuscript, we use scanning transmission X-ray microscopy (STXM) to probe bond orientation and bilayer thickness as a function of position with a spatial resolution of ~30 nm for Δ9-cis 1,2-dioleoyl-sn-glycero-3-phosphocholine layers prepared Si NWs. When coupled with small angle X-ray scattering measurements, the STXM data reveal structural motifs of the Si NWs that give rise to multi-bilayer formation and enable assignment of the orientation of specific bonds known to affect the order and rigidity of phospholipid bilayers.

  17. Measurement of non-DLVO force on a silicon substrate coated with ammonium poly(acrylic acid) using scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Isobe, Toshihiro; Nakano, Yosuke; Kameshima, Yoshikazu; Nakajima, Akira; Okada, Kiyoshi

    2009-07-01

    The repulsive force originating from steric hindrance of polymers in aqueous solvent was investigated using scanning probe microscopy (SPM). The contact angle (CA) of ammonium poly(acrylic acid) (PAA) solution on the Si surface was measured to estimate the state of the Si substrate. Results of CA measurement show that the Si surface was fully covered with PAA at 0.1 mass% in aqueous solution. The interaction force between the Si tip and the wafer was estimated using the SPM force curve mode. The force curve measured in the ion-exchanged purified water showed the typical relation predicted by Derjaguin-Landau-Verway-Overbeek (DLVO) theory. However, the force curve shape in the 0.1 mass% PAA solution was significantly different. Only a repulsive force was observed at less than about 4 nm of separation distance between the Si wafer and cantilever tip. This distance originated from the steric repulsions of PAA adsorbed onto the Si wafer and cantilever tip.

  18. Advancing molecular-guided surgery through probe development and testing in a moderate cost evaluation pipeline

    NASA Astrophysics Data System (ADS)

    Pogue, Brian W.; Paulsen, Keith D.; Hull, Sally M.; Samkoe, Kimberley S.; Gunn, Jason; Hoopes, Jack; Roberts, David W.; Strong, Theresa V.; Draney, Daniel; Feldwisch, Joachim

    2015-03-01

    Molecular guided oncology surgery has the potential to transform the way decisions about resection are done, and can be critically important in areas such as neurosurgery where the margins of tumor relative to critical normal tissues are not readily apparent from visual or palpable guidance. Yet there are major financial barriers to advancing agents into clinical trials with commercial backing. We observe that development of these agents in the standard biological therapeutic paradigm is not viable, due to the high up front financial investment needed and the limitations in the revenue models of contrast agents for imaging. The hypothesized solution to this problem is to develop small molecular biologicals tagged with an established fluorescent reporter, through the chemical agent approval pathway, targeting a phase 0 trials initially, such that the initial startup phase can be completely funded by a single NIH grant. In this way, fast trials can be completed to de-risk the development pipeline, and advance the idea of fluorescence-guided surgery (FGS) reporters into human testing. As with biological therapies the potential successes of each agent are still moderate, but this process will allow the field to advance in a more stable and productive manner, rather than relying upon isolated molecules developed at high cost and risk. The pathway proposed and tested here uses peptide synthesis of an epidermal growth factor receptor (EGFR)-binding Affibody molecules, uniquely conjugated to IRDye 800CW, developed and tested in academic and industrial laboratories with well-established records for GMP production, fill and finish, toxicity testing, and early phase clinical trials with image guidance.

  19. Advancing Molecular-Guided Surgery through probe development and testing in a moderate cost evaluation pipeline

    PubMed Central

    Pogue, Brian W; Paulsen, Keith D; Hull, Sally M.; Samkoe, Kimberly S.; Gunn, Jason; Hoopes, Jack; Roberts, David W.; Strong, Theresa V.; Draney, Daniel; Feldwisch, Joachim

    2015-01-01

    Molecular guided oncology surgery has the potential to transform the way decisions about resection are done, and can be critically important in areas such as neurosurgery where the margins of tumor relative to critical normal tissues are not readily apparent from visual or palpable guidance. Yet there are major financial barriers to advancing agents into clinical trials with commercial backing. We observe that development of these agents in the standard biological therapeutic paradigm is not viable, due to the high up front financial investment needed and the limitations in the revenue models of contrast agents for imaging. The hypothesized solution to this problem is to develop small molecular biologicals tagged with an established fluorescent reporter, through the chemical agent approval pathway, targeting a phase 0 trials initially, such that the initial startup phase can be completely funded by a single NIH grant. In this way, fast trials can be completed to de-risk the development pipeline, and advance the idea of fluorescence-guided surgery (FGS) reporters into human testing. As with biological therapies the potential successes of each agent are still moderate, but this process will allow the field to advance in a more stable and productive manner, rather than relying upon isolated molecules developed at high cost and risk. The pathway proposed and tested here uses peptide synthesis of an epidermal growth factor receptor (EGFR)-binding Affibody molecules, uniquely conjugated to IRDye 800CW, developed and tested in academic and industrial laboratories with well-established records for GMP production, fill & finish, toxicity testing, and early phase clinical trials with image guidance. PMID:25914500

  20. A cryogenic Quadraprobe scanning tunneling microscope system with fabrication capability for nanotransport research

    SciTech Connect

    Kim, T.-H.; Wang Zhouhang; Wendelken, John F.; Weitering, Hanno H.; Li Wenzhi; Li Anping

    2007-12-15

    We describe the development and the capabilities of an advanced system for nanoscale electrical transport studies. This system consists of a low temperature four-probe scanning tunneling microscope (STM) and a high-resolution scanning electron microscope coupled to a molecular-beam epitaxy sample preparation chamber. The four STM probes can be manipulated independently with subnanometer precision, enabling atomic resolution STM imaging and four-point electrical transport study of surface electronic systems and nanostructured materials at temperatures down to 10 K. Additionally, an integrated energy analyzer allows for scanning Auger microscopy to probe chemical species of nanostructures. Some testing results are presented.