Science.gov

Sample records for advanced scatterometer ascat

  1. Compiling ASCAT Scatterometer Data for Continuing Global Vegetation State Monitoring: An initial comparison with SeaWinds-on-QuikSCAT Scatterometer Data

    NASA Astrophysics Data System (ADS)

    Schroeder, R.; McDonald, K. C.; Kimball, J. S.; Dunbar, S.; Azarderakhsh, M.; Steiner, N.; Zimmerman, R.; Küppers, M.

    2012-12-01

    The C-band advanced scatterometer instrument (ASCAT) onboard the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) Metop satellite is the current data source for meteorologists who rely on near real-time ocean surface wind field observations to provide accurate weather forecasts. Furthermore, with the demise of the Ku-band SeaWind-on-QuikSCAT scatterometer (QSCAT) in November of 2009, ASCAT is, also the only satellite-borne radar providing high-repeat (1-3 days) global vegetation state monitoring. In this study, we investigate the effects of land cover and seasonal vegetation development (phenology) on concurrent backscatter measurements made on a global basis by the ASCAT and the QSCAT instruments between November 2008 and 2009. A method for the normalization of the ASCAT backscatter dependency on incidence angle is provided. The incidence angle correction procedure relies on an 8-week long moving window applied to the ASCAT backscatter data. The resulting slope images define, for each ASCAT antenna, the input to a simple forward model. The resulting ASCAT backscatter is then normalized to a look angle of 54 degrees, equal to that of the VV-polarized QSCAT backscatter measurements. A radiometric slope correction is applied based on a digital elevation model and satellite viewing geometry (i.e. azimuth and altitude). We investigate the combined time series evolution of the backscatter responses of the QSCAT and normalized ASCAT data over vegetated pixels showing dominant (> 80 percent) land cover as defined by the Boston University MOD12Q1 V004 Land Cover Product (BU-MODIS). Despite the difference in frequency, we find that the normalized backscatter from ASCAT correlates well (R[AM] = 0.6, R[PM] = 0.63, p < 0.001) with QSCAT when all dominant land cover pixels are combined. However, the correlation between ASCAT and QSCAT is stratified largely by land cover, with very high (R > 0.77) agreement over grassland-type vegetation

  2. Coastal and rain-induced wind variability depicted by scatterometers

    NASA Astrophysics Data System (ADS)

    Portabella, M.; Lin, W.; Stoffelen, A.; Turiel, A.; Verhoef, A.; Verspeek, J.; Ballabrera, J.; Vogelzang, J.

    2012-04-01

    A detailed knowledge of local wind variability near the shore is very important since it strongly affects the weather and microclimate in coastal regions. Since coastal areas are densely populated and most activity at sea occurs near the shore, sea-surface wind field information is important for a number of applications. In the vicinity of land sea-breeze, wave fetch, katabatic and current effects are more likely than in the open ocean, thus enhancing air-sea interaction. Also very relevant for air-sea interaction are the rain-induced phenomena, such as downbursts and convergence. Relatively cold and dry air is effectively transported to the ocean surface and surface winds are enhanced. In general, both coastal and rain-induced wind variability are poorly resolved by Numerical Weather Prediction (NWP) models. Satellite real aperture radars (i.e., scatterometers) are known to provide accurate mesoscale (25-50 km resolution) sea surface wind field information used in a wide variety of applications. Nowadays, there are two operating scatterometers in orbit, i.e., the C-band Advanced Scatterometer (ASCAT) onboard Metop-A and the Ku-band scatterometer (OSCAT) onboard Oceansat-2. The EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI SAF) delivers several ASCAT level 2 wind products with 25 km and 12.5 km Wind Vector Cell (WVC) spacing, including a pre-operational coastal wind product as well as an OSCAT level 2 wind product with 50 km spacing in development status. Rain is known to both attenuate and scatter the microwave signal. In addition, there is a "splashing" effect. The roughness of the sea surface is increased because of splashing due to rain drops. The so-called "rain contamination" is larger for Ku-band scatterometer systems than for C-band systems. Moreover, the associated downdrafts lead to variable wind speeds and directions, further complicating the wind retrieval. The C-band ASCAT high resolution wind processing is validated under rainy

  3. Improving the vegetation parametrization in the ASCAT soil moisture retrieval

    NASA Astrophysics Data System (ADS)

    Hahn, Sebastian; Wagner, Wolfgang

    2016-04-01

    The TU Wien soil moisture retrieval algorithm is based upon a backscatter model designed to exploit the multi-angle viewing capabilities of space-borne fan-beam scatterometers. In the beginning the backscatter model has been developed for the scatterometers on-board ERS-1 and ERS-2 and later successfully applied on the successor instrument ASCAT (Advanced Scatterometer) on-board the series of Metop satellites. The soil moisture retrieval algorithm represents a physically motivated change detection method, which requires model parameters derived along the way to the final soil moisture estimates. The computation of the model parameters needs to be done in the time domain and is computationally expensive. However, not all model parameters are computationally estimated from the backscatter measurements, but rather defined by empirical observations. The cross-over angles belong to this group of model parameters, which unlike other model parameters, remain spatially and temporally constant on a global scale. This study investigates the possibility to optimize the cross-over angles, which are important parameters for the vegetation correction in the TU Wien soil moisture retrieval algorithm. The optimization is carried out with various cost functions and compared against soil moisture values from land surface models. First results indicate that spatially varying cross-over angles help to improve the mean annual cycle of soil moisture.

  4. Integrating reconstructed scatterometer and advanced very high resolution radiometer data for tropical forest inventory

    NASA Astrophysics Data System (ADS)

    Hardin, Perry J.; Long, David G.

    1995-11-01

    A scientific effort is currently underway to assess tropical forest degradation and its potential impact on Earth's climate. Because of the large continental regions involved, Advanced Very High Resolution Radiometer (AVHRR) imagery and its derivative vegetation index products with resolutions between 1 and 12 km are typically used to inventory the Earth's equatorial vegetation. Archival AVHRR imagery is also used to obtain a temporal baseline of historical forest extent. Recently however, 50-km Seasat-A Scatterometer (SASS) Ku-band imagery (acquired in 1978) has been reconstructed to approximately equals 4-km resolution, making it a supplement to AVHRR imagery for historical vegetation assessment. In order to test the utility of reconstructed Ku-band scatterometer imagery for this purpose, seasonal AVHRR vegetation index and SASS images of identical resolutions were constructed. Using the imagery, discrimination experiments involving 18 vegetation categories were conducted for a central South America study area. The results of these experiments indicate that AVHRR vegetation- index images are slightly superior to reconstructed SASS images for differentiating between equatorial vegetation classes when used alone. However, combining the scatterometer imagery with the vegetation-index images provides discrimination superior to any other combination of the data sets. Using the two data sets together, 90.3% of the test data could be correctly classified into broad classes of equatorial forest, degraded woodland/forest, woodland/savanna, and caatinga.

  5. Assessment of wind products obtained from multiple microwave scatterometers over the China Seas

    NASA Astrophysics Data System (ADS)

    Wang, Zhixiong; Zhao, Chaofang

    2015-09-01

    Sea surface winds (SSWs) are vital to many meteorological and oceanographic applications, especially for regional study of short-range forecasting and Numerical Weather Prediction (NWP) assimilation. Spaceborne scatterometers can provide global ocean surface vector wind products at high spatial resolution. However, given the limited spatial coverage and revisit time for an individual sensor, it is valuable to study improvements of multiple microwave scatterometer observations, including the advanced scatterometer onboard parallel satellites MetOp-A (ASCAT-A) and MetOp-B (ASCAT-B) and microwave scatterometers aboard Oceansat-2 (OSCAT) and HY-2A (HY2-SCAT). These four scatterometer-derived wind products over the China Seas (0°-40°N, 105°-135°E) were evaluated in terms of spatial coverage, revisit time, bias of wind speed and direction, after comparison with ERA-Interim forecast winds from the European Centre for Medium-Range Weather Forecasts (ECMWF) and spectral analysis of wind components along the satellite track. The results show that spatial coverage of wind data observed by combination of the four sensors over the China Seas is about 92.8% for a 12-h interval at 12:00 and 90.7% at 24:00, respectively. The analysis of revisit time shows that two periods, from 5:30-8:30 UTC and 17:00-21:00 UTC each day, had no observations in the study area. Wind data observed by the four sensors along satellite orbits in one month were compared with ERA-Interim data, indicating that bias of both wind speed and direction varies with wind speed, especially for speeds less than 7 m/s. The bias depends on characteristics of each satellite sensor and its retrieval algorithm for wind vector data. All these results will be important as guidance in choosing the most suitable wind product for applications and for constructing blended SSW products.

  6. Annual variations in sea surface wind speed around Japan observed by ASCAT

    NASA Astrophysics Data System (ADS)

    Takeyama, Y.; Shimada, S.; Ohsawa, T.; Kozai, K.; Kogaki, T.

    2015-12-01

    Sea surface wind speeds and these statistics can be applied for many marine industrial activities. For example, the averaged wind speed is crucial information for a site selection of an offshore wind farm. It has widely been recognized that a total amount of the offshore wind generation is strongly depended on the annual average wind speeds. A advanced scatterometer (ASCAT), which is a kind of scatterometer aboard METOP-A and B, has observed sea surface wind speeds at the height of 10 m above the sea surface approximately twice a day using active microwaves. The annual average wind speed can be calculated from the observed wind speed. For an actual use of the annual average wind speed, generalities and representativeness of the wind speed must be clarified. To investigate annual variations in sea surface wind speed around Japan (120°E to 165°E, 19°N to 49°N), the annual average wind speeds and these standard deviations are calculated from 5 years of ASCAT observations from 2010 through 2014. It is found that there are some sea areas where standard deviations are relatively higher than their surroundings. Annual average wind speed maps indicate that the high standard deviation is caused by strong winds from Eurasia in the winter of 2011 in part of North Pacific Ocean and Sea of Okhotsk. Additionally standard deviations for only winter are also higher than for summer in those sea areas. Therefore the strong wind speed in the winter of a particular year can easily affect to the annual average wind speed. Meanwhile off the coast of Niigata and Hokkaido, there are also higher standard deviation areas than their surroundings. Differences between monthly maximum wind speeds for the winter and minimum wind speeds for the summer in these areas are larger and the large differences seem to be a cause of the high standard deviations.

  7. Automated Steel Cleanliness Analysis Tool (ASCAT)

    SciTech Connect

    Gary Casuccio; Michael Potter; Fred Schwerer; Dr. Richard J. Fruehan; Dr. Scott Story

    2005-12-30

    or bloom disposition; and alloy development. Additional benefits of ASCAT include the identification of inclusions that tend to clog nozzles or interact with refractory materials. Several papers outlining the benefits of the ASCAT have been presented and published in the literature. The paper entitled ''Inclusion Analysis to Predict Casting Behavior'' was awarded the American Iron and Steel Institute (AISI) Medal in 2004 for special merit and importance to the steel industry. The ASCAT represents a quantum leap in inclusion analysis and will allow steel producers to evaluate the quality of steel and implement appropriate process improvements. In terms of performance, the ASCAT (1) allows for accurate classification of inclusions by chemistry and morphological parameters, (2) can characterize hundreds of inclusions within minutes, (3) is easy to use (does not require experts), (4) is robust, and (5) has excellent image quality for conventional SEM investigations (e.g., the ASCAT can be utilized as a dual use instrument). In summary, the ASCAT will significantly advance the tools of the industry and addresses an urgent and broadly recognized need of the steel industry. Commercialization of the ASCAT will focus on (1) a sales strategy that leverages our Industry Partners; (2) use of ''technical selling'' through papers and seminars; (3) leveraging RJ Lee Group's consulting services, and packaging of the product with a extensive consulting and training program; (4) partnering with established SEM distributors; (5) establishing relationships with professional organizations associated with the steel industry; and (6) an individualized plant by plant direct sales program.

  8. Soil Moisture Extremes Observed by METOP ASCAT: Was 2012 an Exceptional Year?

    NASA Astrophysics Data System (ADS)

    Wagner, Wolfgang; Paulik, Christoph; Hahn, Sebastian; Melzer, Thomas; Parinussa, Robert; de Jeu, Richard; Dorigo, Wouter; Chung, Daniel; Enenkel, Markus

    2013-04-01

    In summer 2012 the international press reported widely about the severe drought that had befallen large parts of the United States. Yet, the US drought was only one of several major droughts that occurred in 2012: Southeastern Europe, Central Asia, Brazil, India, Southern Australia and several other regions suffered from similarly dry soil conditions. This raises the question whether 2012 was an exceptionally dry year? In this presentation we will address this question by analyzing global soil moisture patterns as observed by the Advanced Scatterometer (ASCAT) flown on board of the METOP-A satellite. We firstly compare the 2012 ASCAT soil moisture data to all available ASCAT measurements acquired by the instrument since the launch of METOP-A in November 2006. Secondly, we compare the 2012 data to a long-term soil moisture data set derived by merging the ASCAT soil moisture data with other active and passive microwave soil moisture retrievals as described by Liu et al. (2012) and Wagner et al. (2012) (see also http://www.esa-soilmoisture-cci.org/). A first trend analysis of the latter long-term soil moisture data set carried out by Dorigo et al. (2012) has revealed that over the period 1988-2010 significant trends were observed over 27 % of the area covered by the data set, of which 73 % were negative (soil drying) and only 27 % were positive (soil wetting). In this presentation we will show how the inclusion of the years 2011 and 2012 affects the areal extent and strengths of these significant trends. REFERENCES Dorigo, W., R. de Jeu, D. Chung, R. Parinussa, Y. Liu, W. Wagner, D. Fernández-Prieto (2012) Evaluating global trends (1988-2010) in harmonized multi-satellite surface soil moisture, Geophysical Research Letters, 39, L18405, 1-7. Liu, Y.Y., W.A. Dorigo, R.M. Parinussa, R.A.M. de Jeu, W. Wagner, M.F. McCabe, J.P. Evans, A.I.J.M. van Dijk (2012) Trend-preserving blending of passive and active microwave soil moisture retrievals, Remote Sensing of Environment

  9. ASCAT soil moisture data assimilation in the local area model ALADIN

    NASA Astrophysics Data System (ADS)

    Schneider, S.

    2010-09-01

    Soil moisture is crucial for all biological life on land and controls the energy, water and carbon fluxes at the land surface, thus influencing the weather. Therefore, knowledge about the soil moisture distribution is of large interest for weather forecasting, flood and drought monitoring, and civil protection. Investigations are showing that the spatial and temporal distribution of soil moisture in mid-latitudes has important implications especially for the summertime convective precipitation distribution. In general, higher levels of soil moisture and evapotranspiration lead to higher levels of precipitation due to feedback mechanisms. To determine the soil moisture distribution, the field of microwave remote sensing has been an important research topic since the 1970s, but only in the last few years significant progress towards operational soil moisture services has been made. This progress became possible due to advances in sensor technology and new algorithmic approaches. The first near-real-time (broadcasting within 130 minutes after sensing) soil moisture service was started by EUMETSAT in May 2008 based on METOP ASCAT scatterometer, providing soil moisture data on a 25km grid over Europe with a temporal coverage of about 1.5 days. While there are already several investigations about assimilation of these data to global forecast models resulting in small improvements of screen level parameters, ASCAT soil moisture assimilation in local area model (LAM) is a new scientific topic. For this purpose, the high resolution measurements are assimilated at the Austrian federal weather service ZAMG into its version of the local area model ALADIN. The main goal is the further improvement of the forecast quality, especially in convective situations, taking into account the complex topography in Austria. Data assimilation is executed with an extended Kalman filter (EKF) approach developed at Météo France and CNRM within the surface modelling system SURFEX. The

  10. Polarimetric analysis of radar backscatter from ground-based scatterometers and wheat biomass monitoring with advanced synthetic aperture radar images

    NASA Astrophysics Data System (ADS)

    He, Lei; Tong, Ling; Li, Yuxia; Chen, Yan; Tan, Longfei; Guo, Caizheng

    2016-04-01

    This article presents an analysis of the scattering measurements for an entire wheat growth cycle by ground-based scatterometers at a frequency of 5.3 GHz. Since wheat ears are related to wheat growth and yield, the radar backscatter of wheat was analyzed at two different periods, i.e., with and without wheat ears. Simultaneously, parameters such as wheat and soil characteristics as well as volume scattering and soil scattering were analyzed for the two periods during the entire growth cycle. Wheat ears have been demonstrated to have a great influence on radar backscatter; therefore, a modified version of water-cloud model used for retrieving biomass should consider the effect of wheat ears. This work presents two retrieval models based on the water-cloud model and adopts the advanced integral equation model to simulate the soil backscatter before the heading stage and the backscatter from the layer under wheat ears after the heading stage. The research results showed that the biomass retrieved from the advanced synthetic aperture radar (ASAR) images to agree well with the data measured in situ after setting the modified water-cloud model for the growth stages with ears. Furthermore, it was concluded that wheat ears should form an essential component of theoretical modeling as they influence the final yield.

  11. From ASCAT to Sentinel-1: Soil Moisture Monitoring using European C-Band Radars

    NASA Astrophysics Data System (ADS)

    Wagner, Wolfgang; Bauer-Marschallinger, Bernhard; Hochstöger, Simon

    2016-04-01

    The Advanced Scatterometer (ASCAT) is a C-Band radar instrument flown on board of the series of three METOP satellites. Albeit not operating in one of the more favorable longer wavelength ranges (S, L or P-band) as the dedicated Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) missions, it is one of main microwave sensors used for monitoring of soil moisture on a global scale. Its attractiveness for soil moisture monitoring applications stems from its operational status, high radiometric accuracy and stability, short revisit time, multiple viewing directions and long heritage (Wagner et al. 2013). From an application perspective, its main limitation is its spatial resolution of about 25 km, which does not allow resolving soil moisture patterns driven by smaller-scale hydrometeorological processes (e.g. convective precipitation, runoff patterns, etc.) that are themselves related to highly variable land surface characteristics (soil characteristics, topography, vegetation cover, etc.). Fortunately, the technique of aperture synthesis allows to significantly improve the spatial resolution of spaceborne radar instruments up to the meter scale. Yet, past Synthetic Aperture Radar (SAR) missions had not yet been designed to achieve a short revisit time required for soil moisture monitoring. This has only changed recently with the development and launch of SMAP (Entekhabi et al. 2010) and Sentinel-1 (Hornacek et al. 2012). Unfortunately, the SMAP radar failed only after a few months of operations, which leaves Sentinel-1 as the only currently operational SAR mission capable of delivering high-resolution radar observations with a revisit time of about three days for Europe, about weekly for most crop growing regions worldwide, and about bi-weekly to monthly over the rest of the land surface area. Like ASCAT, Sentinel-1 acquires C-band backscatter data in VV polarization over land. Therefore, for the interpretation of both ASCAT and Sentinel-1

  12. Synergies and complementarities between ASCAT and SMOS soil moisture products

    NASA Astrophysics Data System (ADS)

    Escorihuela, Maria Jose; Quintana, Pere; Merlin, Olivier

    2014-05-01

    Soil moisture is a critical variable in many kinds of applications including agriculture, water management, meteorology or climatology. This is especially true in the Mediterranean context, where soil moisture plays an important role in water resources management and hydrometeorological risks such as floods and droughts. Unfortunately, this variable is not widely observed in situ, so we lack data on its time evolution and spatial structure. Remote sensing has been used to estimate surface soil moisture because it provides comprehensive data over large surfaces. In this study we compared two different surface soil moisture remote sensing products; one derived from active microwave data of the ASCAT scatterometer instrument onboard METOP and the other from passive microwave data of the SMOS mission the first dedicated to estimate soil moisture. SMOS measuring frequency (1.4 GHz) is theoretically more suited to measure soil moisture than ASCAT measuring frequency (5.255 GHz) because of its lower vegetation effects. On the other hand, ASCAT- like instruments have been providing measurements for more than 2 decades and have been a key input in building the CCI Soil Moisture Variable. In order to get the best global soil moisture products it is thus essential to understand their respective performances and restrictions. The comparison has been carried out in Catalonia where we have implemented the SURFEX/ISBA land-surface model, which we forced with the SAFRAN meteorological analysis system. A downscaling algorithm has been also implemented and validated over the area to provide SMOS derived soil moisture fields at 1 km spatial resolution. Catalonia is located in the northeast of the Iberian Peninsula and its climate is typically Mediterranean, mild in winter and warm in summer. The Pyrenees and the neighbouring areas have a high-altitude climate, with minimum temperatures below 0º C, annual rainfall above 1000 mm and abundant snow during the winter. Along the coast

  13. Assimilating ASCAT-derived soil moisture data into hydrological model for improved discharge forecast: a proof-of-concept study

    NASA Astrophysics Data System (ADS)

    Corrado, Davide; Corato, Giovanni; Matgen, Patrick; Claps, Pierluigi

    2013-04-01

    Data assimilation techniques can be of great support in hydrologic modelling, especially in the reduction of uncertainty and the improvement of discharge prediction in flood forecast activities. Using remotely sensed soil moisture indices, data assimilation can be used to correct the hydrological state and improve the performance of the model. In this context, we aim at testing the forecasting model and validating an assimilation procedure of remote sensing data derived by ASCAT (Advanced SCATterometer), into a hydrological SUPERFLEX model through synthetic experiments. A particle filter scheme is used for the data assimilation. The filter was modified adding a temporal decay function which allows take into account not only the remote sensing observation at the time of assimilation but also past records. In particular, the function allows make a weighting of past records ranked according to their proximity in time to the moment of assimilation. This procedure was tested on the Alzette river basin (1100 km2), located in the south-west of the Grand Duchy of Luxembourg. The period analysed spans from 1 January 2006 to 31 December 2009. The results show an improvement in discharge forecasts. However, the assimilation efficiency depends on the period considered and on the weight assigned to the particles using the temporal function. In particular, the performance improves with increasing memory of the function. Greater efficiency was obtained during dry (summer) and transition (spring-autumn) periods than for wet periods (winter).

  14. Concept of the First Russian Spaceborne Scatterometer: a Review

    NASA Astrophysics Data System (ADS)

    Karaev, Vladimir; Titchenko, Yuriy; Panfilova, Maria; Balandina, Galina; Shlaferov, Alexey; Kuznetsov, Yurii

    Regular and global measurements of the wind speed over sea surface are required for a wide range of meteorological and oceanographic applications. Information about wind field is needed to drive ocean models and surface wave models, calculate surface fluxes of heat, moisture and construct climatology. Most of the satellite active radar systems can provide information about near surface wind speed, for example, altimeter, synthetic aperture radar. However, the special radar for measurements of the wind field is scatterometer. Two concepts of the spaceborne scatterometer are used now. First of all, it is a scatterometer with fixed antenna system, for example, ASCAT. SeaWinds is scatterometer with rotating antenna system and two pencil antenna beams at VV and HH polarizations for the different incidence angles. New concepts of scatterometers are developed and next year the first scatterometer (RFSCAT) with rotating fan beam (~ 1.3x25 degrees) and measurements at VV and HH polarizations for one incidence angle will be launched. In this research we are discussing the concept of the first Russian Ku-band spaceborne scatterometer. Scatterometer will have the 1х6 degrees antenna beam and will have measurements of radar cross section at vertical and horizontal polarizations for one incidence angle. Expected altitude of orbit is 650 km and a width of swath is 1500 km. Speed of antenna rotation is approximately 5.5 rotations per minute and the wind vector cell (25 x 25 km) will be observed during flight from 4 to 10 times at each polarization. Numerical model of scatterometer was developed and numerical simulation is started. Backscattered radar cross section in each wind vector cell was calculated and new wind vector retrieval algorithm was developed. Dependence of the backscattered radar cross section on the incidence angle, wind speed and wind fetch, azimuthal angle and intensity of swell, polarization and position of wind vector cell inside of swath was investigated

  15. The Use of Near-Real-Time Global ASCAT Soil Moisture Observations for Monitoring of Water Hazards

    NASA Astrophysics Data System (ADS)

    Wagner, W.; Kidd, R. A.

    2012-04-01

    November 2009 by the European Space Agency. SMOS was the first satellite designed exclusively to measure soil moisture over land (Kerr et al. 2010). But besides this experimental satellite mission, soil moisture can also be derived from operational microwave sensors, which has the important advantage to have guarantee data access beyond the lifetime of a single satellite (Wagner et al. 2007). For example, the first operational near-real-time soil moisture observations are provided by EUMETSAT based on C-band backscatter observations acquired by the Advanced Scatterometer (ASCAT) (Bartalis et al. 2007). The ASCAT instrument is flown onboard the series of three METOP satellites, METOP-A launched in 2006 and METOP-B planned for launch in summer 2012. Together these three satellites can be expected to cover the period until 2020. For the time beyond 2020 it is planned to fly a successor instrument on-board the METOP Second Generation (MSG) satellite series. In this presentation the ASCAT soil moisture data will be presented and results from international validation efforts summarized (e.g. Albergel et al. (2012) and Parrens et al. (2011)). Also an overview of successful application examples will be given, including for example the use of the ASCAT data in numerical weather prediction (Dharssi et al. 2011), runoff forecasting (Brocca et al. 2010), and epidemiological modeling.

  16. JSME scatterometer data processing

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A software system was developed which processes digitized scatterometer data from the 13.3 GHz, 1.6 GHz and 400 MHz scatterometer systems. In addition to this, the hardware capability has been developed to recover the raw analog radar signals and the aircraft parameters from an ADAS data stream in a digital format for processing by the software package. Software for the preparation of data reports and chart presentation of scattering coefficients time histories has also been developed. This report documents the development of the software, describes key components of the processing system and presents examples of the processed data and procedure for software operation.

  17. ASCAT soil moisture data assimilation through the Ensemble Kalman Filter for improving streamflow simulation in Mediterranean catchments

    NASA Astrophysics Data System (ADS)

    Loizu, Javier; Massari, Christian; Álvarez-Mozos, Jesús; Casalí, Javier; Goñi, Mikel

    2016-04-01

    Assimilation of Surface Soil Moisture (SSM) observations obtained from remote sensing techniques have been shown to improve streamflow prediction at different time scales of hydrological modeling. Different sensors and methods have been tested for their application in SSM estimation, especially in the microwave region of the electromagnetic spectrum. The available observation devices include passive microwave sensors such as the Advanced Microwave Scanning Radiometer - Earth Observation System (AMSR-E) onboard the Aqua satellite and the Soil Moisture and Ocean Salinity (SMOS) mission. On the other hand, active microwave systems include Scatterometers (SCAT) onboard the European Remote Sensing satellites (ERS-1/2) and the Advanced Scatterometer (ASCAT) onboard MetOp-A satellite. Data assimilation (DA) include different techniques that have been applied in hydrology and other fields for decades. These techniques include, among others, Kalman Filtering (KF), Variational Assimilation or Particle Filtering. From the initial KF method, different techniques were developed to suit its application to different systems. The Ensemble Kalman Filter (EnKF), extensively applied in hydrological modeling improvement, shows its capability to deal with nonlinear model dynamics without linearizing model equations, as its main advantage. The objective of this study was to investigate whether data assimilation of SSM ASCAT observations, through the EnKF method, could improve streamflow simulation of mediterranean catchments with TOPLATS hydrological complex model. The DA technique was programmed in FORTRAN, and applied to hourly simulations of TOPLATS catchment model. TOPLATS (TOPMODEL-based Land-Atmosphere Transfer Scheme) was applied on its lumped version for two mediterranean catchments of similar size, located in northern Spain (Arga, 741 km2) and central Italy (Nestore, 720 km2). The model performs a separated computation of energy and water balances. In those balances, the soil

  18. Ring laser scatterometer

    DOEpatents

    Ackermann, Mark; Diels, Jean-Claude

    2005-06-28

    A scatterometer utilizes the dead zone resulting from lockup caused by scatter from a sample located in the optical path of a ring laser at a location where counter-rotating pulses cross. The frequency of one pulse relative to the other is varied across the lockup dead zone.

  19. Airborne test flight of HY-2A satellite microwave scatterometer and data analysis

    NASA Astrophysics Data System (ADS)

    Zou, Juhong; Guo, Maohua; Cui, Songxue; Zhou, Wu

    2017-01-01

    This paper introduces the background, aim, experimental design, configuration and data processing for an airborne test flight of the HY-2 Microwave scatterometer (HSCAT). The aim was to evaluate HSCAT performance and a developed data processing algorithm for the HSCAT before launch. There were three test flights of the scatterometer, on January 15, 18 and 22, 2010, over the South China Sea near Lingshui, Hainan. The test flights successfully generated simultaneous airborne scatterometer normalized radar cross section (NRCS), ASCAT wind, and ship-borne-measured wind datasets, which were used to analyze HSCAT performance. Azimuthal dependence of the NRCS relative to the wind direction was nearly cos(2w), with NRCS minima at crosswind directions, and maxima near upwind and downwind. The NRCS also showed a small difference between upwind and downwind directions, with upwind crosssections generally larger than those downwind. The dependence of airborne scatterometer NRCS on wind direction and speed showed favorable consistency with the NASA scatterometer geophysical model function (NSCAT GMF), indicating satisfactory HSCAT performance.

  20. Impact of Scatterometer Ocean Wind Vector Data on NOAA Operations

    NASA Astrophysics Data System (ADS)

    Jelenak, Z.; Chang, P.; Brennan, M. J.; Sienkiewicz, J. M.

    2015-12-01

    Near real-time measurements of ocean surface vector winds (OSVW), including both wind speed and direction from non-NOAA satellites, are being widely used in critical operational NOAA forecasting and warning activities. The scatterometer wind data data have had major operational impact in: a) determining wind warning areas for mid-latitude systems (gale, storm,hurricane force); b) determining tropical cyclone 34-knot and 50-knot wind radii. c) tracking the center location of tropical cyclones, including the initial identification of their formation. d) identifying and warning of extreme gap and jet wind events at all latitudes. e) identifying the current location of frontal systems and high and low pressure centers. f) improving coastal surf and swell forecasts Much has been learned about the importance and utility of satellite OSVW data in operational weather forecasting and warning by exploiting OSVW research satellites in near real-time. Since December 1999 when first data from QuikSCAT scatterometer became available in near real time NOAA operations have been benefiting from ASCAT scatterometer observations on MetOp-A and B, Indian OSCAT scatterometer on OceanSat-3 and lately NASA's RapidScat mission on International Space Station. With oceans comprising over 70 percent of the earth's surface, the impacts of these data have been tremendous in serving society's needs for weather and water information and in supporting the nation's commerce with information for safe, efficient, and environmentally sound transportation and coastal preparedness. The satellite OSVW experience that has been gained over the past decade by users in the operational weather community allows for realistic operational OSVW requirements to be properly stated for future missions. Successful model of transitioning research data into operation implemented by Ocean Winds Team in NOAA's NESDIS/STAR office and subsequent data impacts will be presented and discussed.

  1. Rainfall events and soil moisture deviations as detected by operational ASCAT soil moisture data: case study in semi-arid regions of Somalia

    NASA Astrophysics Data System (ADS)

    Doubkova, M.; Bartsch, A.; Wagner, W.

    2009-04-01

    Large and widely dispersed populations in Somalia depend on pastoralism and on rainfed and irrigated farming. Droughts and floods that have plagued the country in the course of its history were critical for the herders and farmers and have often initiated long-lasting food crises. Recently, the Somalia Water and Land Information Management (SWALIM) has initiated collaborative activities to identify and quantify the physical causes of drought for better understanding of this phenomenon and better addressing the humanitarian aid in Somalia. The soil moisture was identified as one of the parameter that may improve the drought assessment studies in Somalia. The poor accessibility and long-lasting conflicts in Somalia region caused periods of missing values in the meteorological networks that complicate or disable further weather analyses. In this study, a comparison of operational available spatial soil moisture dataset from active microwave sensor with 50 km spatial resolution - ASCAT scatterometer - with existing in-situ rainfall data is performed. The ASCAT data are processed at the Vienna University of Technology (TU WIEN), and recently became operationally available via EUMETCAST. Together with its predecessor - ERS 1/2 - the ASCAT/ERS scatterometers embrace period of 1992 until recent with existing gap over Somalia (2001-2007). The rainfall data were provided by the SWALIM organization. The focus is brought on the ability of the ASCAT scatterometer to detect first rains in the season that dictate the schedule of agricultural activities from land preparation, crop variety to selection to planting. Further, the ability to detect moisture deviations with coarse resolution soil moisture data is studied. The remote sensing data are especially important for countries like Somalia with the poor field accessibility. The improved understanding of the soil moisture data from active microwave sensor may help in interpolating data from existing in-situ networks both

  2. Aquarius Scatterometer Winds

    NASA Astrophysics Data System (ADS)

    Yueh, S. H.; Fore, A.; Freedman, A. P.; Neumann, G.; Tang, W.; Brown, S.; Chaubell, M. J.; Jones, L.; Lagerloef, G. S.; LeVine, D.; Dinnat, E. P.; Meissner, T.; Wentz, F. J.; Vandemark, D. C.

    2011-12-01

    Aquarius is a combined passive/active L-band microwave instrument developed to map the salinity field at the surface of the ocean from space. The data will support studies of the coupling between ocean circulation, the global water cycle, and climate. The primary science objective of this mission is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean with a spatial resolution of 150 km and a retrieval accuracy of 0.2 psu globally on a monthly basis. The measurement principle is based on the response of the L-band (1.413 GHz) sea surface brightness temperatures to sea surface salinity. To achieve the required 0.2 psu accuracy, the impact of sea surface roughness (e.g. wind-generated ripples and waves), along with several additional factors impacting the observed brightness temperature, must be corrected to better than a few tenths of a degree Kelvin. To this end, Aquarius includes a scatterometer to help correct for this surface roughness effect. The Aquarius/SACD was launched successfully on June 10, 2011, and the instrument is expected to be turned on in August. The prelaunch tests of Aquarius showed that the instrument should be extremely stable at the week-to-month time scale with drift of less than 0.1 K for the radiometer and 0.1 dB for the scatterometer. The current baseline algorithm for Aquarius is to use the scatterometer data in conjunction with the NCEP wind direction to derive the ocean surface wind speed and then a radiometer roughness correction. The pre-launch simulations predict 1 m/s wind speed accuracy. This will be tested using the Aquarius data collected in the coming few months. To quantify the benefits of combining passive and active microwave sensors for ocean salinity remote sensing, the Passive/Active L-band Sensor (PALS) was used to acquire data over a wide range of ocean surface wind conditions during the High Ocean Wind (HOW) Campaign in 2009. The PALS brightness

  3. Two decades [1992-2012] of surface wind analyses based on satellite scatterometer observations

    NASA Astrophysics Data System (ADS)

    Desbiolles, Fabien; Bentamy, Abderrahim; Blanke, Bruno; Roy, Claude; Mestas-Nuñez, Alberto M.; Grodsky, Semyon A.; Herbette, Steven; Cambon, Gildas; Maes, Christophe

    2017-04-01

    Surface winds (equivalent neutral wind velocities at 10 m) from scatterometer missions since 1992 have been used to build up a 20-year climate series. Optimal interpolation and kriging methods have been applied to continuously provide surface wind speed and direction estimates over the global ocean on a regular grid in space and time. The use of other data sources such as radiometer data (SSM/I) and atmospheric wind reanalyses (ERA-Interim) has allowed building a blended product available at 1/4° spatial resolution and every 6 h from 1992 to 2012. Sampling issues throughout the different missions (ERS-1, ERS-2, QuikSCAT, and ASCAT) and their possible impact on the homogeneity of the gridded product are discussed. In addition, we assess carefully the quality of the blended product in the absence of scatterometer data (1992 to 1999). Data selection experiments show that the description of the surface wind is significantly improved by including the scatterometer winds. The blended winds compare well with buoy winds (1992-2012) and they resolve finer spatial scales than atmospheric reanalyses, which make them suitable for studying air-sea interactions at mesoscale. The seasonal cycle and interannual variability of the product compare well with other long-term wind analyses. The product is used to calculate 20-year trends in wind speed, as well as in zonal and meridional wind components. These trends show an important asymmetry between the southern and northern hemispheres, which may be an important issue for climate studies.

  4. Data Fusion Approaches to Close the Spatial and Temporal Scale Gaps between MetOp-ASCAT and Sentinel-1 Soil Moisture Observations

    NASA Astrophysics Data System (ADS)

    Bauer-Marschallinger, Bernhard; Mistelbauer, Thomas; Hochstöger, Simon; Paulik, Christoph; Wagner, Wolfgang

    2016-04-01

    Earth observation (EO), and more specifically, spaceborne radar remote sensing had made much progress toward its high potential to retrieve Soil Moisture (SM) at different scales. Yet, for a single sensing system there always exists a trade-off between spatial and temporal resolution of the observations: While scatterometer-derived SM products can well describe temporal soil moisture dynamics, they lack of spatial details. They do not facilitate analysis of local hydrological patterns, such as effects from convectional rains and topography and thus miss the requirements of many users. Contrary, SM products from Synthetic Aperture Radar (SAR) sensors can resolve dynamics at this level. However, they observe individual locations less frequently and are thus not suitable for acquisition of short-term variations. To overcome these spatial and temporal scale gaps, data fusion of C-Band scatterometer and SAR radar observations is the method of choice, yielding a high-resolution, high-frequency soil profile wetness product called SCAT-SAR Soil Water Index (SWI). Benefiting from the input's either high temporal or spatial resolution, respectively, this 500m-sampling product bears great potential for operational use, even at local scale. In this study, different approaches to fuse MetOp ASCAT scatterometer data (12.5km and almost-daily sampling) with SAR data from the new Sentinel-1 (10m and 3-6-day sampling) are examined. Methods entailed in the fusion process comprise spatial resampling, spatial correlation analysis, data matching, temporal matching and filtering as well as signal-to-noise estimation. Different sets of methods for data fusion are employed for SM derivation. The results are evaluated against alone-standing ASCAT and Sentinel-1 SM data, as well as against in-situ measurements at the Hydrological Open Air Laboratory (HOAL) in Petzenkirchen, Lower Austria.

  5. Glacier surface melt characterization and trend analysis (1992-2011) in the Russian High Arctic from combined resolution-enhanced scatterometer and passive microwave data

    NASA Astrophysics Data System (ADS)

    Zhao, M.; Ramage, J. M.; Semmens, K. A.

    2012-12-01

    Global warming has been pronounced in the remote glacierized archipelagoes (Severnaya Zemlya, Novaya Zemlya and Franz Josef Land) of the Russian High Arctic (RHA) and its effect on the low altitude, high latitude small ice caps needs examination. The timing and spatial variability of snow melt onset, duration and intensity are key factors influencing mass balance and the ice marginal hydrological system as well as important indicators of glacial response to anthropogenic and natural forcings. Characterization and trend analysis of RHA glacier melt behaviors provide insight about assessing the mass loss rate under recent Arctic climate change. However, due to the harsh environment, long term records of glaciological data for RHA are limited, necessitating the application of remotely sensed data to accomplish the research. The high sensitivity to liquid water and the ability to penetrate non-precipitating clouds enables microwave remote sensing to detect glacier surface melt. The appearance of melt water in snow dramatically decreases the returned scatterometer radar signal from active microwave sensors and sharply augments passive microwave emission. Based on this feature, we combined resolution-enhanced ERS-1/2 C-band (1992-2000), QuickSCAT Ku-band (2000-2009), ASCAT C-band (2009-2011) scatterometer data and SSMI 37 GHz (1995-2007) vertically polarized passive microwave products from Brigham Young University and analyzed glacier surface melt trends from 1992 to 2011 with a spatial resolution downscaled to 4.45km. We concatenated scatterometer derived melt behaviors by overlapping years and refined the results based on passive microwave data. Cross-validation shows that melt timing to be consistent between the active and passive sensors. Trend analysis (α < 0.005) reveals that the average glacier surface melt onset date occurs earlier by approximately 0.85 days/year in Severnaya Zemlya which outpaced the mean advancing rate in the pan-Arctic. Surrounded by ocean

  6. Satellite soil moisture for advancing our understanding of earth system processes and climate change

    NASA Astrophysics Data System (ADS)

    Dorigo, Wouter; de Jeu, Richard

    2016-06-01

    Soil moisture products obtained from active and passive microwave satellites have reached maturity during the last decade (De Jeu and Dorigo, 2016): On the one hand, research algorithms that were initially applied to sensors designed for other purposes, e.g., for measuring wind speed (e.g. the Advanced Scatterometer (ASCAT)), sea ice, or atmospheric parameters (e.g. the TRMM Microwave Imager (TMI) and the Advanced Microwave Scanning Radiometer - Earth Observing System AMSR-E), have developed into fully operational products. On the other hand, dedicated soil moisture satellite missions were designed and launched by ESA (the Soil Moisture Ocean Salinity (SMOS) mission) and NASA (the Soil Moisture Active Passive (SMAP) mission).

  7. Medium Earth Orbit Scatterometer (MEOScat) Concept Phase Study

    NASA Technical Reports Server (NTRS)

    Spencer, Michael W.

    2004-01-01

    In this report, advanced scatterometer concept options to operate in the post-SeaWinds era are examined. In order to meet the future requirements of scientific and operational users, a variety of scatterometer systems capable of producing improved wind vector products are evaluated. Special emphasis is placed on addressing concept options that operate at higher altitudes in order to improve the temporal revisit time. A preliminary set of generalized wind measurement goals designed to meet the future needs of both scientific and operational communities is put forth. Geophysically based measurement constraints (such as allowable carrier frequencies and measurement incidence angles) are identified. It was found that a potential key constraint at higher satellite altitudes is the longer time required to make all of the azimuth measurements. The revisit and coverage characteristics of a variety of platform orbits throughout the MEO range is studied in detail, and a discussion of the associated increase in radiation is presented. The "trade space" of scatterometer architectures and design options, along with associated advantages and disadvantages, is described for mission options in the MEO range. Finally, key technology studies that will enable further development of a MEO scatterometer mission are identified.

  8. Designing Scatterometer Constellations for Sampling Global Ocean Vector Winds

    NASA Astrophysics Data System (ADS)

    Rodriguez, E.; Chelton, D. B.; Stoffelen, A.; Schlax, M.

    2012-12-01

    The rapid temporal variations in ocean vector winds make it impossible to obtain synoptic global snapshots of winds and wind stress from a single spaceborne sensor. Even when multiple sensors are present, the peculiarities of the resulting space-time sampling pattern require that significant smoothing in space and time be performed to limit spatially and temporally inhomogeneous error characteristics in the merged data. Based on the collected common experience in its member states, the World Meteorological Organization collects requirements for spatio-temporal sampling in meteorological applications such as global and regional Numerical Weather Prediction, nowcasting, and climate. An additional concern, when constructing data sets from sun-synchronous missions, is that undersampling of diurnal and sub-diurnal variability may result in aliasing of the climate data record. Indeed, examination of climatologies constructed from different satellite missions, such as NASA's QuikSCAT and EUMETSAT's ASCAT scatterometers, show systematic differences that cannot be explained as being due solely to unresolved incoherent diurnal and sub-diurnal variability. Some of these differences, especially in the tropics, are probably explained by systematic diurnal and sub-diurnal variations. Other differences may be due to the difficulty of cross-calibrating sun-synchronous satellites with different local times. Forthcoming satellite missions may offer the possibility of overcoming or mitigating the space-time sampling and calibration challenges using multiple coordinated platforms. In the next decade, there is an expectation that ocean vector winds will be measured simultaneously by multiple satellites from the European community, India, China, and the United States. The coordination and suitable merging of the data from these satellites to produce a climate data record will be a challenge to the ocean vector winds community. In this presentation, we use climatologies constructed from

  9. Polarimetric Ku-Band Scatterometer for High Accuracy, Large Swath Global Wind Vector Measurements

    NASA Technical Reports Server (NTRS)

    Tsai, Wu-Yang; Nghiem, Son V.; Huddleston, James; Spencer, Michael; Stiles, Bryan; West, Richard

    2000-01-01

    In the past, wind measurements from space using fan-beam antennas, such as Seasat Scatterometer (SASS-1), ERS-1 &2, and NASA scatterometer (NSCAT), required up to six large stick-like antennas and suffered a nadir gap of up to 400 km. In the near future, a spinning pencil-beam scatterometer system is to be used for the SeaWinds scatterometer on QuikSCAT (QSCAT) and on ADEOS-2 (SeaWinds). This scatterometer, though offering wind measurements in the nadir region, still suffers from degraded performance in the nadir and outer swath. The purpose of this paper is to present an advanced polarimetric spinning pencil-beam scatterometer system, which can significantly improve the wind performance across the entire swath. The polarimetric scatterometer simultaneously measures co-polarized backscatter and the polarimetric correlation of co- and cross-polarized radar returns from the ocean surface. The advantage over the conventional scatterometer system is that, while the co-polarization radar returns are even function of the wind direction, the polarimetric correlation is an odd function of wind direction due to the reflection symmetry of the wind roughened surface. Therefore, this polarimetric scatterometer system can provide additional, equivalent measurements at azimuth angle 45degree away from the corresponding co-polarization measurements. The combined co-polarization and correlation measurements enable good wind performance across the whole swath to be obtained. In this paper, we will first present the theoretical formulation of all of the key components required for designing a polarimetric scatterometer. Then, we show that good wind performance can be achieved by a slight improvement in the signal-to-noise ratio of the current QSCAT/SeaWinds design. We then present the predicated wind performance using computer simulation based on a model function for the co-polarized backscatter obtained from actual spaceborne scatterometer data and an estimated model function for

  10. Objective Interpolation of Scatterometer Winds

    NASA Technical Reports Server (NTRS)

    Tang, Wenquing; Liu, W. Timothy

    1996-01-01

    Global wind fields are produced by successive corrections that use measurements by the European Remote Sensing Satellite (ERS-1) scatterometer. The methodology is described. The wind fields at 10-meter height provided by the European Center for Medium-Range Weather Forecasting (ECMWF) are used to initialize the interpolation process. The interpolated wind field product ERSI is evaluated in terms of its improvement over the initial guess field (ECMWF) and the bin-averaged ERS-1 wind field (ERSB). Spatial and temporal differences between ERSI, ECMWF and ERSB are presented and discussed.

  11. A Practical Total Integrated Scatterometer

    NASA Astrophysics Data System (ADS)

    Guerra, John M.

    1989-03-01

    Universal acceptance of a proposed standard measurement method can depend not only upon how soundly it is based in scientific theory but on its cost and technical implementation as well. A total integrated scatterometer for the optical shop is described with emphasis on economy, rapid measurement, repeatability, and ergonomic packaging as controlling design criteria. The advent of low-cost microvolt resolution in digital multimeters allows the use of large-area silicon photovoltaic cells for detection of the scatter and specular light from the sample. The thin cell profile permits placement of the scatter detector closer to the sample port for minimal scatter obscuration. The large cell area accepts the blur circle from an inexpensive molded acrylic dome for scatter collection. A dedicated pocket computer and printer calculates, displays and prints sample RMS roughness, average, and standard de-viation for multiple measurements; it also controls laser user-access, prints a tutorial, and identifies sample, operator and date/time. The laser is a 2mW HeNe (633 nm); safety issues are addressed. The specular beam reflects off the specular detector and onto an alignment target screen, ensuring sample alignment and measurement repeatability. The inverted design provides a gravity-loading sample stage that is completely accessible; custom sample mounts are readily added. Component sources are provided. Performance and correlation to other scatterometer and roughness measurement techniques such as optical and mechanical profilers are presented.

  12. The SeaWinds Scatterometer Instrument

    NASA Technical Reports Server (NTRS)

    Wu, C.; Graf, J.; Freilich, M.; Long, D.; Spencer, M.; Tsai, W.; Lisman, D.; Winn, C.

    1994-01-01

    The SeaWinds scatterometer instrument is currently being developed by NASA/JPL, as part of the NASA EOS Program, for flight on the Hapanese ADEOS II mission in 1999. This Ku-band radar scatterometer will infer surface wind speed and direction by measuring the radar normalized backscatter cross-section over several different azimuth angles. This paper presents the design characteristics of and operational approach to the instrument itself.

  13. Spacewire on Earth orbiting scatterometers

    NASA Technical Reports Server (NTRS)

    Bachmann, Alex; Lang, Minh; Lux, James; Steffke, Richard

    2002-01-01

    The need for a high speed, reliable and easy to implement communication link has led to the development of a space flight oriented version of IEEE 1355 called SpaceWire. SpaceWire is based on high-speed (200 Mbps) serial point-to-point links using Low Voltage Differential Signaling (LVDS). SpaceWIre has provisions for routing messages between a large network of processors, using wormhole routing for low overhead and latency. {additionally, there are available space qualified hybrids, which provide the Link layer to the user's bus}. A test bed of multiple digital signal processor breadboards, demonstrating the ability to meet signal processing requirements for an orbiting scatterometer has been implemented using three Astrium MCM-DSPs, each breadboard consists of a Multi Chip Module (MCM) that combines a space qualified Digital Signal Processor and peripherals, including IEEE-1355 links. With the addition of appropriate physical layer interfaces and software on the DSP, the SpaceWire link is used to communicate between processors on the test bed, e.g. sending timing references, commands, status, and science data among the processors. Results are presented on development issues surrounding the use of SpaceWire in this environment, from physical layer implementation (cables, connectors, LVDS drivers) to diagnostic tools, driver firmware, and development methodology. The tools, methods, and hardware, software challenges and preliminary performance are investigated and discussed.

  14. Evaluation of offshore wind energy resources for power generation based on scatterometer and SAR data along the Indian coast

    NASA Astrophysics Data System (ADS)

    Arun Kumar, S. V. V.; Prajapati, Jagdish; Kumar, Raj

    2016-05-01

    India has the fifth largest installed wind power capacity in the world, mainly from onshore wind farms. As on today, there are no offshore wind power farms installed in the country. However, with the utilization of onshore and the proposed offshore wind farms, it is expected to reach 60,000 MW generation capacities by 2022. A large amount of data is necessary to assess the wind potential for these future wind farms. Offshore buoys and meteorological masts are both scarce and expensive. In the present study, we have utilized QuikSCAT (2000-2009), OSCAT (2010-2014), ASCAT (2012-2015) scatterometer and RISAT-1 SAR (2012-2014) data to evaluate the possible wind energy resources along the Indian coast. Orbit wise scatterometer wind products have been processed to generate long-term synoptic monthly means along the entire coast. The monthly average wind energy density (in W/m2) has been computed and extended up to 80 m height (standard wind turbine height) using power law. As scatterometer data are relatively coarser and unavailable near the coast, high resolution winds have been retrieved using RISAT-1 SAR data. However, due to inherent limitations of having lesser swath and data availability of SAR, presently the study has been conducted along Gujarat coast. Then, unit capacity of wind power was computed and potential sites are identified for the wind farms. The data is very useful in identifying potential sites of wind energy in the coastal and offshore regions. We are planning to extend this study for the entire Indian coast in the near future.

  15. Scanning-Pencil-Beam Radar Scatterometer

    NASA Technical Reports Server (NTRS)

    Long, David G.; Freilich, Michael H.; Leotta, Daniel F.; Noon, Don E.

    1992-01-01

    SCANSCAT conceptual scanning radar scatterometer placed in nearly polar orbit around Earth at altitude of 705 km aboard Spacecraft B of NASA's Earth Observing System. Measures radar backscattering from surface of ocean. Data processed on ground into normalized radar-backscattering cross sections, then processed into velocities of winds near surface of ocean by use of empirical mathematical model of relationship between normalized backscattering cross section, wind vector at scanned spot, and angle of incidence and azimuth angle of radar beam. Accuracy and coverage exceeds those of fan-beam scatterometer. Modified versions of scanning plan useful in laser inspection of surface finishes on machined parts.

  16. ascatNgs: Identifying Somatically Acquired Copy-Number Alterations from Whole-Genome Sequencing Data.

    PubMed

    Raine, Keiran M; Van Loo, Peter; Wedge, David C; Jones, David; Menzies, Andrew; Butler, Adam P; Teague, Jon W; Tarpey, Patrick; Nik-Zainal, Serena; Campbell, Peter J

    2016-12-08

    We have developed ascatNgs to aid researchers in carrying out Allele-Specific Copy number Analysis of Tumours (ASCAT). ASCAT is capable of detecting DNA copy number changes affecting a tumor genome when comparing to a matched normal sample. Additionally, the algorithm estimates the amount of tumor DNA in the sample, known as Aberrant Cell Fraction (ACF). ASCAT itself is an R-package which requires the generation of many file types. Here, we present a suite of tools to help handle this for the user. Our code is available on our GitHub site (https://github.com/cancerit). This unit describes both 'one-shot' execution and approaches more suitable for large-scale compute farms. © 2016 by John Wiley & Sons, Inc.

  17. Resolution enhancement of spaceborne scatterometer data

    NASA Technical Reports Server (NTRS)

    Long, David G.; Hardin, Perry J.; Whiting, Peter T.

    1993-01-01

    Spaceborne wind scatterometers are designed principally to measure radar backscatter from the ocean's surface for the determination of the near-surface wind direction and speed. Although measurements of the radar backscatter are made over land, application of these measurements has been limited primarily to the calibration of the instrument. In this paper we present a method for generating enhanced resolution radar images of the earth's surface using spaceborne scatterometry. The technique is based on a new image reconstruction technique which takes advantage of the spatial overlap in scatterometer measurements made at different times to provide enhanced imaging resolution. We describe the reconstruction algorithm and demonstrate the technique using both simulated and actual Seasat-A Scatterometer (SASS) measurements. The SASS-derived images, which have approximately 4 km resolution, dramatically illustrate the resolution enhancement capability of the new technique. The technique permits utilization of both historic and contemporary scatterometer data for medium-scale monitoring of vegetation and polar ice. We discuss the tradeoff between imaging noise and resolution inherent in the technique.

  18. Ground registration of data from an airborne scatterometer

    NASA Technical Reports Server (NTRS)

    Richter, J. C.

    1981-01-01

    A portion of the data for the agricultural soil moisture experiment, conducted near Colby, Kansas, was collected from four scatterometers mounted on an aircraft. A method is outlined for locating the scatterometer footprints with respect to a ground-based coordinate system. The method requires the airplane's flight parameters along with aerial photography acquired simultaneously with the scatterometer data. Listings of the programs used in the registration process are included.

  19. Wind measurement accuracy for the NASA scatterometer

    NASA Astrophysics Data System (ADS)

    Long, David G.; Oliphant, Travis

    1997-09-01

    The NASA Scatterometer (NSCAT) is designed to make measurements of the normalized radar backscatter coefficient ((sigma) o) of the ocean's surface. The measured (sigma) o is a function of the viewing geometry and the surface roughness due to wind-generated waves. By making multiple measurements of the same location from different azimuth angles it is possible to retrieve the near-surface wind speed and direction with the aid of a Geophysical Model Function (GMF) which relates wind and (sigma) o. The wind is estimated from the noisy (sigma) o measurements using maximum likelihood techniques. The probability density of the measured (sigma) o is assumed to be Gaussian with a variance that depends on the true (sigma) o and therefore the wind through the GMF and the measurements from different azimuth angles are assumed independent in estimating the wind. In order to estimate the accuracy of the retrieved wind, we derive the Cramer-Reo (CR) bound for wind estimation from scatterometer measurements. We show that the CR bound can be used as an error bar on the estimated wind. The role of geophysical modeling error in the GMF is considered and shown to play a significant role in the wind accuracy. Estimates of the accuracy of NSCAT measurements are given along with other scatterometer geometries and types.

  20. Scatterometer-Calibrated Stability Verification Method

    NASA Technical Reports Server (NTRS)

    McWatters, Dalia A.; Cheetham, Craig M.; Huang, Shouhua; Fischman, Mark A.; CHu, Anhua J.; Freedman, Adam P.

    2011-01-01

    The requirement for scatterometer-combined transmit-receive gain variation knowledge is typically addressed by sampling a portion of the transmit signal, attenuating it with a known-stable attenuation, and coupling it into the receiver chain. This way, the gain variations of the transmit and receive chains are represented by this loop-back calibration signal, and can be subtracted from the received remote radar echo. Certain challenges are presented by this process, such as transmit and receive components that are outside of this loop-back path and are not included in this calibration, as well as the impracticality for measuring the transmit and receive chains stability and post fabrication separately, without the resulting measurement errors from the test set up exceeding the requirement for the flight instrument. To cover the RF stability design challenge, the portions of the scatterometer that are not calibrated by the loop-back, (e.g., attenuators, switches, diplexers, couplers, and coaxial cables) are tightly thermally controlled, and have been characterized over temperature to contribute less than 0.05 dB of calibration error over worst-case thermal variation. To address the verification challenge, including the components that are not calibrated by the loop-back, a stable fiber optic delay line (FODL) was used to delay the transmitted pulse, and to route it into the receiver. In this way, the internal loopback signal amplitude variations can be compared to the full transmit/receive external path, while the flight hardware is in the worst-case thermal environment. The practical delay for implementing the FODL is 100 s. The scatterometer pulse width is 1 ms so a test mode was incorporated early in the design phase to scale the 1 ms pulse at 100-Hz pulse repetition interval (PRI), by a factor of 18, to be a 55 s pulse with 556 s PRI. This scaling maintains the duty cycle, thus maintaining a representative thermal state for the RF components. The FODL consists

  1. Ocean wind field measurement performance of the ERS-1 scatterometer

    NASA Technical Reports Server (NTRS)

    Hans, P.; Schuessler, H.

    1984-01-01

    The Active Microwave Instrumentation (AMI), which will be implemented on the ERS-1, is a 5.3 GHz multipurpose radar for land surface imaging, ocean wave spectrum measurement and wind observations over oceans. The imaging and wave measurements apply Synthetic Aperture Radar (SAR) techniques, while wind field detection is performed by the Scatterometer as part of the AMI. The Scatterometer system design was developed and optimized with the aid of a performance simulator. This paper, aimed at giving an overview, is presented about the: (1) ERS-1 Scatterometer system design; (2) Error budget; and the (3) Overall calibration concept.

  2. Errors in scatterometer-radiometer wind measurement due to rain

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Chaudhry, A. H.; Birrer, I. J.

    1983-01-01

    The behavior of radiometer corrections for the scatterometer is investigated by simulating simple situations using footprint sizes comparable with those used in the SEASAT-1 experiment and also actual footprints and rain rates from a hurricane observed by the SEASAT-1 system. The effects on correction due to attenuation and wind speed gradients are examined independently and jointly. It is shown that the error in the wind-speed estimate can be as large as 200% at higher wind speeds. The worst error occurs when the scatterometer footprint overlaps two or more radiometer footprints and the attenuation in the scatterometer footprint differs greatly from those in parts of the radiometer footprints. This problem could be overcome by using a true radiometer-scatterometer system having identical coincident footprints comparable in size with typical rain cells.

  3. The influence of atmospheric stratification on scatterometer data

    NASA Technical Reports Server (NTRS)

    Louis, Jean-Francois; Hoffman, Ross N.

    1989-01-01

    The effects of atmospheric stratification and the stability of the atmospheric stratification on the scatterometer data measuring surface winds over the ocean were investigated using the boundary layer model developed by Louis (1979). A variational analysis method is proposed, which allows direct assimilation of scatterometer data. It is shown that the effect of the stability of atmospheric stratification on the wind increment is relatively small. However, it is a systematic effect, and neglecting it would consistently underestimate the winds in stable regions.

  4. Assimilation of ASCAT near-surface soil moisture into the French SIM hydrological model

    NASA Astrophysics Data System (ADS)

    Draper, C.; Mahfouf, J.-F.; Calvet, J.-C.; Martin, E.; Wagner, W.

    2011-06-01

    The impact of assimilating near-surface soil moisture into the SAFRAN-ISBA-MODCOU (SIM) hydrological model over France is examined. Specifically, the root-zone soil moisture in the ISBA land surface model is constrained over three and a half years, by assimilating the ASCAT-derived surface degree of saturation product, using a Simplified Extended Kalman Filter. In this experiment ISBA is forced with the near-real time SAFRAN analysis, which analyses the variables required to force ISBA from relevant observations available before the real time data cut-off. The assimilation results are tested against ISBA forecasts generated with a higher quality delayed cut-off SAFRAN analysis. Ideally, assimilating the ASCAT data will constrain the ISBA surface state to correct for errors in the near-real time SAFRAN forcing, the most significant of which was a substantial dry bias caused by a dry precipitation bias. The assimilation successfully reduced the mean root-zone soil moisture bias, relative to the delayed cut-off forecasts, by close to 50 % of the open-loop value. The improved soil moisture in the model then led to significant improvements in the forecast hydrological cycle, reducing the drainage, runoff, and evapotranspiration biases (by 17 %, 11 %, and 70 %, respectively). When coupled to the MODCOU hydrogeological model, the ASCAT assimilation also led to improved streamflow forecasts, increasing the mean discharge ratio, relative to the delayed cut off forecasts, from 0.68 to 0.76. These results demonstrate that assimilating near-surface soil moisture observations can effectively constrain the SIM model hydrology, while also confirming the accuracy of the ASCAT surface degree of saturation product. This latter point highlights how assimilation experiments can contribute towards the difficult issue of validating remotely sensed land surface observations over large spatial scales.

  5. Circumpolar freeze/thaw surface status and surface soil moisture from Metop ASCAT

    NASA Astrophysics Data System (ADS)

    Bartsch, Annett; Paulik, Christoph; Melzer, Thomas; Hahn, Sebastian; Wagner, Wolfgang

    2013-04-01

    Circumpolar surface soil moisture and freeze/thaw surface status has been derived from Metop ASCAT within the framework of the ESA DUE Permafrost and STSE ALANIS-Methane projects. The dataset is available via Pangaea (doi:10.1594/PANGAEA.775959) and can be vizualized with the WebGIS of the DUE Permafrost data portal (www.ipf.tuwien.ac.at/permafrost). MetOp ASCAT data have been used for both the near surface soil moisture (SSM) product and determination of freeze/thaw status at panboreal/ arctic scale. Metop-A, launched in October 2006 by the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT), is the first of three satellites within EUMETSAT's Polar System (EPS). The ASCAT SSM DUE Permafrost product is the result of an improved SSM retrieval algorithm developed at the Institute for Photogrammetry and Remote Sensing (IPF) of the Vienna University of Technology. The SSM Product is delivered with a weekly temporal resolution and 25 km spatial resolution. The soil moisture product also includes a quality flag which contains the number of used measurements. Data are masked for frozen ground conditions also based on MetOp ASCAT. The daily SSF is available as separate flag. The SSM product is provided as weekly averaged images north of 50°N in GeoTIFF/NetCDF format and EASE Grid projection Further, complementary regional scale (1km) freeze/thaw information is available at selected sites based on ENVISAT ASAR GM (PANGAEA http://doi.pangaea.de/10.1594/PANGAEA.779658).

  6. Extreme-Wind Observation Capability for a Next Generation Satellite Wind Scatterometer Instrument

    NASA Astrophysics Data System (ADS)

    Stoffelen, Ad; van Zadelhoff, Gerd Jan; Belmonte, Maria; Chang, Paul; Vachon, Paris; Lin, Chung-Chi; Accadia, Christophe

    2013-04-01

    consists of making use of the wind field information from global ECMWF NWP re-analysis data collocated with Radarsat-2 observations. The result is however affected by inherent NWP model errors and systematic underestimation of peak extreme winds due to limitations in the model spatial resolution. For obtaining independent verification from in-situ wind field information, data from the stepped frequency microwave radiometers (SFMR) instrument flown on board NOAA's Orion P3 'Hurricane Hunter' aircraft were collocated with the available Radarsat-2 observations. A high level of correlation has been confirmed between both the NWP model and the in-situ wind speed and the measured cross-polar radar backscatter up to the extreme wind regime. Further collocated P3 flights are still continuing with the aim of consolidating the GMF and extending its upper limit. In parallel to the above-described scientific effort for establishing the new GMF and a corresponding wind vector retrieval, an engineering design of a new generation of wind scatterometer instrument was elaborated in the frame of the MetOp Second Generation preparatory programme, jointly undertaken by the ESA and EUMETSAT. These platforms are expected to continue and enhance the services provided by the current EUMETSAT Polar System in the 2020 timeframe and contribute to the Joint Polar System to be set up together with NOAA. The new design features a higher spatial resolution product than the one provided by the ASCAT instrument on board the MetOp series of satellites in orbit, and an additional channel for measuring cross-polarised radar backscatter in order to extend the wind speed dynamic range of the next generation system. This paper will first present the result of the scientific effort to establish the new GMF for the cross-polarised backscatter. The design of the next generation scatterometer instrument is then described, together with a preliminary assessment of the wind retrieval performance for extreme winds.

  7. Measuring wind and stress under tropical cyclones with scatterometer

    NASA Astrophysics Data System (ADS)

    Liu, W. Timothy

    2016-07-01

    Ocean surface stress, the turbulent transport of momentum, is largely derived from wind through a drag coefficient. In tropical cyclones (TC), scatterometers have difficulty in measuring strong wind and there is large uncertainty in the drag coefficient. We postulate that the microwave backscatter from ocean surface roughness, which is in equilibrium with local stress, does not distinguish weather systems. The reduced sensitivity of scatterometer wind retrieval algorithm under the strong wind is an air-sea interaction problem that is caused by a change in the behavior of the drag coefficient and not a sensor problem. Under this assumption, we applied a stress retrieval algorithm developed over a moderate wind range to retrieve stress under the strong winds of TCs. Over a moderate wind range, the abundant wind measurements and more established drag coefficient value allow sufficient stress data to be computed from wind to develop a stress retrieval algorithm for the scatterometer. Using unprecedented large amount of stress retrieved from the scatterometer coincident with strong winds in TC, we showed that the drag coefficient decreases with wind speed at a much steeper rate than previously revealed, for wind speeds over 25 m/s. The result implies that the ocean applies less drag to inhibit TC intensification and the TC causes less ocean mixing and surface cooling than previous studies indicated. With continuous and extensive coverage from constellations of scatterometers for several decades, the impact of tropical cyclones on the ocean and the feedback from the ocean are examined.

  8. A comparison of ASCAT and SMOS soil moisture retrievals over Europe and Northern Africa from 2010 to 2013

    NASA Astrophysics Data System (ADS)

    Fascetti, Fabio; Pierdicca, Nazzareno; Pulvirenti, Luca; Crapolicchio, Raffaele; Muñoz-Sabater, J.

    2016-03-01

    A comparison between ASCAT/H-SAF and SMOS soil moisture products was performed in the frame of the EUMETSAT H-SAF project. The analysis was extended to the whole H-SAF region of interest, including Europe and North Africa, and the period between January 2010 and November 2013 was considered. Since SMOS and ASCAT soil moisture data are expressed in terms of absolute and relative values, respectively, different approaches were adopted to scale ASCAT data to use the same volumetric soil moisture unit. Effects of land cover, quality index filtering, season and geographical area on the matching between the two products were also analyzed. The two satellite retrievals were also compared with other independent datasets, namely the NCEP/NCAR volumetric soil moisture content reanalysis developed by NOAA and the ERA-Interim/Land soil moisture produced by ECMWF. In situ data, available through the International Soil Moisture Network, were also considered as benchmark. The results turned out to be influenced by the way ASCAT data was scaled. Correlation between the two products exceeded 0.6, while the root mean square difference did not decrease below 8%. ASCAT generally showed a fairly good degree of correlation with ERA, while, as expected considering the different kinds of measurement, the discrepancies with respect to local in situ data were large for both satellite products.

  9. Analysis of Skylab 2 S193 scatterometer data

    NASA Technical Reports Server (NTRS)

    Jordan, A. K.; Purves, C. G.; Diggs, J. F.

    1975-01-01

    SKYLAB II S193 Scatterometer data for the passes of June 5, 1973, over the Gulf of Mexico and June 6, 1973, over Pacific Hurricane AVA were analyzed. The S193 scatterometer measured the radar cross section of the ocean at 13.9 GHz (Ku-band) as a function of incidence angle. The fields-of-view of the scatterometer were known. In the absence of a large body of Ku-band ocean radar data, the results of the NRL experiments at X-band (8.9 GHz) were used for comparison. The S193 data of June 5, 1973, when a practically uniform wind field was present, show reasonable agreement with the NRL empirical and theoretical models.

  10. Probability distribution of wind retrieval error for the NASA scatterometer

    NASA Technical Reports Server (NTRS)

    Leotta, Daniel F.; Long, David G.

    1989-01-01

    The NASA scatterometer (NSCAT) is a spaceborne scatterometer scheduled to be deployed in the mid-1990s. An analysis of the wind retrieval error distribution for wind estimates based on backscatter measurements made by the NSCAT instrument is presented. The results are based on an end-to-end simulation of the scatterometer instrument and data processing. In general, the distribution of the wind speed error, when normalized, is independent of the true wind speed and direction. The wind speed error can be characterized by a normal distribution. The wind direction error is independent of the true wind speed, but depends on the true wind direction. Details for wind vectors with true wind speeds from 3 m/s to 33 m/s and true wind directions from 0 to 360 deg are presented.

  11. C-band polarimetric scatterometer for soil studies

    NASA Astrophysics Data System (ADS)

    D'Alessio, Angelo C.; Mongelli, Antonio; Notarnicola, Claudia; Paparella, Giuseppina; Posa, Francesco; Sabatelli, Vincenzo

    2003-03-01

    The aim of this study is to evaluate the performances of a polarimetric scatterometer. This sensor can measure the module of the electromagnetic backscattering matrix elements. The knowledge of this matrix permits the computation of all the possible polarisation combinations of transmitted and received signals through a Polarisation Synthesis approach. Scatterometer data are useful for monitoring a large number of soil physical parameters. In particular, the sensitivity of a C-band radar to different growing conditions of vegetation depends on the wave polarisation. As consequences, the possibility of acquiringi both polarisation components presents a great advantage in the vegetarian studies. In addition, this type of ground sensor can permit a fast coverage of the areas of interest. A first test of the polarimetric scatterometer has been performed over an asphalt surface, which has a well-known electromagnetic response. Moreover, a calibration procedure has been tested using both passive (Trihedral Corner Reflector, TCR) and active (Active Radar Calibrator, ARC) radar calibrator.

  12. The impact of scatterometer wind data on global weather forecasting

    NASA Technical Reports Server (NTRS)

    Atlas, D.; Baker, W. E.; Kalnay, E.; Halem, M.; Woiceshyn, P. M.; Peteherych, S.

    1984-01-01

    The impact of SEASAT-A scatterometer (SASS) winds on coarse resolution atmospheric model forecasts was assessed. The scatterometer provides high resolution winds, but each wind can have up to four possible directions. One wind direction is correct; the remainder are ambiguous or "aliases'. In general, the effect of objectively dealiased-SASS data was found to be negligible in the Northern Hemisphere. In the Southern Hemisphere, the impact was larger and primarily beneficial when vertical temperature profile radiometer (VTPR) data was excluded. However, the inclusion of VTPR data eliminates the positive impact, indicating some redundancy between the two data sets.

  13. Agricultural terrain scatterometer observations with emphasis on soil moisture variations

    NASA Technical Reports Server (NTRS)

    King, C.

    1973-01-01

    Airborne scatterometer observations were made for agricultural terrain in May and June, 1970 at a NASA test site near Garden City, Kansas. Data from 13.3 GHz and 400 MHz scatterometer were analyzed. It was observed that for incidence angle less than 40 degrees, the 13.3 GHz data showed a difference in backscatter from wet and dry fields of the order of 7 db. The averages of the various crop types were within a spread of only 5 db. Other ground parameters such as cultivation pattern and vegetation row effects showed even less distinguishing characteristics on the backscatter. The 400 MHz data also showed a slight moisture dependency.

  14. Feasibility Study Of Sea Surface Currents Measurements With Doppler Scatterometers

    NASA Astrophysics Data System (ADS)

    Fabry, P.; Recchia, A.; de Kloe, J.; Stoffelen, A.; Husson, R.; Collard, F.; Chapron, B.; Mouche, A.; Enjolras, V.; Johannessen, J.; Lin, C. C.; Fois, F.

    2013-12-01

    We present the activity carried out in the framework of the ESA GSP study called "Feasibility Investigation of Global Ocean Surface Current Mapping using ERS, MetOp and QuikScat Wind Scatterometer” (DOPSCAT). The study was aimed at assessing the potential of scatterometer instruments for sea surface current vector retrieval under the strong requirements of preserving both the swath and the surface wind vector estimation performances offered by the existing scatterometers. The paper describes the main results obtained during the DOPSCAT study and provides some recommendations for this new instrument concept.

  15. Assimilation of ASCAT near-surface soil moisture into the SIM hydrological model over France

    NASA Astrophysics Data System (ADS)

    Draper, C.; Mahfouf, J.-F.; Calvet, J.-C.; Martin, E.; Wagner, W.

    2011-12-01

    This study examines whether the assimilation of remotely sensed near-surface soil moisture observations might benefit an operational hydrological model, specifically Météo-France's SAFRAN-ISBA-MODCOU (SIM) model. Soil moisture data derived from ASCAT backscatter observations are assimilated into SIM using a Simplified Extended Kalman Filter (SEKF) over 3.5 years. The benefit of the assimilation is tested by comparison to a delayed cut-off version of SIM, in which the land surface is forced with more accurate atmospheric analyses, due to the availability of additional atmospheric observations after the near-real time data cut-off. However, comparing the near-real time and delayed cut-off SIM models revealed that the main difference between them is a dry bias in the near-real time precipitation forcing, which resulted in a dry bias in the root-zone soil moisture and associated surface moisture flux forecasts. While assimilating the ASCAT data did reduce the root-zone soil moisture dry bias (by nearly 50%), this was more likely due to a bias within the SEKF, than due to the assimilation having accurately responded to the precipitation errors. Several improvements to the assimilation are identified to address this, and a bias-aware strategy is suggested for explicitly correcting the model bias. However, in this experiment the moisture added by the SEKF was quickly lost from the model surface due to the enhanced surface fluxes (particularly drainage) induced by the wetter soil moisture states. Consequently, by the end of each winter, during which frozen conditions prevent the ASCAT data from being assimilated, the model land surface had returned to its original (dry-biased) climate. This highlights that it would be more effective to address the precipitation bias directly, than to correct it by constraining the model soil moisture through data assimilation.

  16. Topographic Signatures in Aquarius Radiometer/Scatterometer Response: Initial Results

    NASA Technical Reports Server (NTRS)

    Utku, C.; LeVine, D. M.

    2012-01-01

    The effect of topography on remote sensing at L-band is examined using the co-located Aquarius radiometer and scatterometer observations over land. A correlation with slope standard deviation is demonstrated for both the radiometer and scatterometer at topographic scales. Although the goal of Aquarius is remote sensing of sea surface salinity, the radiometer and scatterometer are on continuously and collect data for remote sensing research over land. Research is reported here using the data over land to determine if topography could have impact on the passive remote sensing at L-band. In this study, we report observations from two study regions: North Africa between 15 deg and 30 deg Northern latitudes and Australia less the Tasmania Island. Common to these two regions are the semi-arid climate and low population density; both favorable conditions to isolate the effect of topography from other sources of scatter and emission such as vegetation and urban areas. Over these study regions, topographic scale slopes within each Aquarius pixel are computed and their standard deviations are compared with Aquarius scatterometer and radiometer observations over a 36 day period between days 275 and 311 of 2011.

  17. The importance of altimeter and scatterometer data for ocean prediction

    NASA Technical Reports Server (NTRS)

    Hurlburt, H. E.

    1984-01-01

    The prediction of ocean circulation using satellite altimeter data is discussed. Three classes of oceanic response to atmospheric forcing are outlined and examined. Storms, surface waves, eddies, and ocean currents were evaluated in terms of forecasting time requirements. Scatterometer and radiometer applications to ocean prediction are briefly reviewed.

  18. SMOS, ASCAT, SMAP and ERA soil moisture comparison through the triple and quadruple collocation technique

    NASA Astrophysics Data System (ADS)

    Fascetti, F.; Pierdicca, N.; Pulvirenti, L.; Crapolicchio, R.

    2016-10-01

    In this work, a comparison between soil moisture products derived from satellite and land model data was performed; in particular, the soil moisture retrievals of SMOS and ASCAT were compared with those of the ERA-Interim/Land model, produced by the ECMWF in a timeframe of 3 years. Subsequently, for a limited period of time, the product from the SMAP radiometer was joined to SMOS, ASCAT and ERA-Interim model data as a fourth dataset. In both cases, the whole H-SAF region of interest, which includes Northern Africa and Europe, was analysed. In order to validate the products, the Triple Collocation technique was applied to estimate the independent error standard deviation of three systems that observe the same target parameter. When more than three datasets were available, the Quadruple Collocation technique was used to jointly estimate the error standard deviation of four sources. Moreover, when the SMOS and SMAP radiometer products were considered, the Extended Collocation was adopted in order to evaluate the error variances of the systems, taking into account the possible presence of an error cross-correlation between the radiometer retrievals.

  19. Clarifications on the "Comparison Between SMOS, VUA, ASCAT, and ECMWF Soil Moisture Products Over Four Watersheds in U.S."

    NASA Technical Reports Server (NTRS)

    Wagner, Wolfgang; Luca, Brocca; Naeimi, Vahid; Reichle, Rolf; Draper, Clara; de Jeu, Richard; Ryu, Dongryeol; Su, Chun-Hsu; Western, Andrew; Calvet, Jean-Christophe; Kerr, Yann H.; Leroux, Delphine J.; Drusch, Matthias; Jackson, Thomas J.; Hahn, Sebastian; Dorigo, Wouter; Paulik, Christoph

    2013-01-01

    In a recent paper, Leroux et al. compared three satellite soil moisture data sets (SMOS, AMSR-E, and ASCAT) and ECMWF forecast soil moisture data to in situ measurements over four watersheds located in the United States. Their conclusions stated that SMOS soil moisture retrievals represent "an improvement [in RMSE] by a factor of 2-3 compared with the other products" and that the ASCAT soil moisture data are "very noisy and unstable." In this clarification, the analysis of Leroux et al. is repeated using a newer version of the ASCAT data and additional metrics are provided. It is shown that the ASCAT retrievals are skillful, although they show some unexpected behavior during summer for two of the watersheds. It is also noted that the improvement of SMOS by a factor of 2-3 mentioned by Leroux et al. is driven by differences in bias and only applies relative to AMSR-E and the ECWMF data in the now obsolete version investigated by Leroux et al.

  20. The influence of atmospheric stratification on scatterometer winds

    NASA Technical Reports Server (NTRS)

    Hoffman, Ross N.; Louis, Jean-Francois

    1990-01-01

    Scatterometers measure surface roughness which is empirically related either to surface stress or to the equivalent neutral stability wind. The importance of atmospheric stability effects for the analysis of these data is studied. For low wind speeds and neutral to slightly stable conditions, neutral stability wind is quite sensitive to stability. A variational analysis procedure for the scatterometer data, which adjusts both the near-surface velocity and temperature, is developed. In simulation tests, temperature analysis increments are found to be small. Also, the differences in the wind analyses due to differences in the temperature background field are small. However, if stability effects are not accounted for, there will be small systematic errors in the wind analysis.

  1. Comparison Study of SEASAT Scatterometer and Conventional Wind Fields

    DTIC Science & Technology

    1988-10-01

    Support was provided by the United States Navy through the Massachusetts Institute of Technology. I Reproduction in whole or in part is permitted for any...remotely sensing surface wind information, developed in response to this requirement for a surface wind field with global coverage and improved spatial...winds provide a unique set of scatterometer wind information for a global comparison with winds from conventional sources. A one-month (12 August to 9

  2. A not pointwise approach to the wind field retrieval from scatterometer data

    SciTech Connect

    Bartoloni, A.; D`Amelio, C.; Olivieri Pennesi, C.

    1995-12-31

    In this paper the authors propose a different approach to the wind field retrieval over the sea surface from the scatterometer data. This approach is based on the exploitation of different properties of the wind field which allow the coupling of the wind field reconstruction in nearest neighbor points of the scatterometer measure grid (not pointwise method). The results obtained by the reconstruction procedure on ERS-1 scatterometer data over the Mediterranean Sea are shown.

  3. Application of SeaWinds Scatterometer Data to the Study of Antarctic Icebergs

    NASA Astrophysics Data System (ADS)

    Stuart, Keith M.

    Knowledge of iceberg location and size is important for safety reasons as well as for understanding many geophysical and biological processes. This dissertation analyzes large tabular icebergs in the Southern Ocean using the SeaWinds scatterometer. SeaWinds is a spaceborne radar designed to measure the microwave backscatter from the Earth's surface. Using resolution-enhancement techniques, backscatter measurements are processed into backscatter images in which icebergs can be observed. An iceberg detection methodology is formalized using daily scatterometer images. Radar profiles from common Antarctic scatterers are quantified and an iceberg detection methodology is formalized using daily scatterometer images. Iceberg positions are determined in real-time and a time-series of iceberg positions is maintained in an Antarctic iceberg database. Using the Antarctic iceberg database, characteristic iceberg motion trends are identified. Iceberg detection and tracking is demonstrated through real-time operational support of the 2005, 2008, and 2009 National Science Foundation Antarctic cruises. To supplement iceberg position reports, I develop multiple algorithms to estimate iceberg size and rotational orientation from backscatter images and from raw backscatter measurements. Estimates derived from SeaWinds images are found to be more accurate. Using iceberg size parameters in conjunction with Newton's equations of motion and forcing profiles (e.g., ocean and air currents), I also develop an iceberg motion model to predict the translational and rotational motion of large tabular icebergs. To improve model results, a Kalman filter is used to incorporate actual iceberg measurements into the motion model, and statistics from the Kalman filter are used to evaluate model performance. Simulated iceberg motion is found to best coincide with observed iceberg motion in regions where slower iceberg drift speeds are observed. The model is less accurate at high speeds. The iceberg

  4. Simulation of the mineral dust emission over Northern Africa and Middle East using an aerodynamic roughness length map derived from the ASCAT/PARASOL

    NASA Astrophysics Data System (ADS)

    Basart, Sara; Jorba, Oriol; Pérez García-Pando, Carlos; Prigent, Catherine; Baldasano, Jose M.

    2014-05-01

    Aeolian aerodynamic roughness length in arid regions is a key parameter to predict the vulnerability of the surface to wind erosion, and, as a consequence, the related production of mineral aerosol (e.g. Laurent et al., 2008). Recently, satellite-derived roughness length at the global scale have emerged and provide the opportunity to use them in advanced emission schemes in global and regional models (i.e. Menut et al., 2013). A global map of the aeolian aerodynamic roughness length at high resolution (6 km) is derived, for arid and semi-arid regions merging PARASOL and ASCAT data to estimate aeolian roughness length. It shows very good consistency with the existing information on the properties of these surfaces. The dataset is available to the community, for use in atmospheric dust transport models. The present contribution analyses the behaviour of the NMMB/BSC-Dust model (Pérez et al., 2011) when the ASCAT/PARASOL satellite-derived global roughness length (Prigent et al, 2012) and the State Soil Geographic database Food and Agriculture Organization of the United Nations (STATSGO-FAO) soil texture data set (based on wet techniques) is used. We explore the sensitivity of the drag partition scheme (a critical component of the dust emission scheme) and the dust vertical fluxes (intensity and spatial patterns) to the roughness length. An annual evaluation of NMMB/BSC-Dust (for the year 2011) over Northern Africa and the Middle East using observed aerosol optical depths (AODs) from Aerosol Robotic Network sites and aerosol satellite products (MODIS and MISR) will be discussed. Laurent, B., Marticorena, B., Bergametti, G., Leon, J. F., and Mahowald, N. M.: Modeling mineral dust emissions from the Sahara desert using new surface properties and soil database, J. Geophys. Res., 113, D14218, doi:10.1029/2007JD009484, 2008. Menut, L., C. Pérez, K. Haustein, B. Bessagnet, C. Prigent, and S. Alfaro, Impact of surface roughness and soil texture on mineral dust emission

  5. Objective scatterometer wind ambiguity removal using smoothness and dynamical constraints

    NASA Technical Reports Server (NTRS)

    Hoffman, R. N.

    1984-01-01

    In the present investigation, a variational analysis method (VAM) is used to remove the ambiguity of the Seasat-A Satellite Scatterometer (SASS) winds. At each SASS data point, two, three, or four wind vectors (termed ambiguities) are retrieved. It is pointed out that the VAM is basically a least squares method for fitting data. The problem may be nonlinear. The best fit to the data and constraints is obtained on the basis of a minimization of the objective function. The VAM was tested and tuned at 12 h GMT Sept. 10, 1978. Attention is given to a case study involving an intense cyclone centered south of Japan at 138 deg E.

  6. Description and calibration of a fully automated infrared scatterometer

    NASA Astrophysics Data System (ADS)

    Mainguy, Stephane; Olivier, Michel; Josse, Michel A.; Guidon, Michel

    1991-12-01

    A fully automated scatterometer, designed for BRDF measurements in the IR at about 10 micrometers , is described. Basically, it works around a reflecting parabola (464 mm diameter, F/0.25) and permits measurements in and out of the plane of incidence. Optical properties of the parabolic mirror are emphasized by a ray-tracing technique which permits determination of the correct illumination on the sample and detection conditions of scattered light. Advantages and drawbacks of such an instrument are discussed, as well as calibration procedures. As a conclusion, we present experimental results to illustrate the instrument capabilities.

  7. Science opportunities using the NASA scatterometer on N-ROSS

    NASA Technical Reports Server (NTRS)

    Freilich, M. H.

    1985-01-01

    The National Aeronautics and Space Administration scatterometer (NSCAT) is to be flown as part of the Navy Remote Ocean Sensing System (N-ROSS) scheduled for launch in 1989. The NSCAT will provide frequent accurate and high-resolution measurements of vector winds over the global oceans. NSCAT data will be applicable to a wide range of studies in oceanography, meteorology, and instrument science. The N-ROSS mission, is outlined, are described. The capabilities of the NSCAT flight instrument and an associated NASA research ground data-processing and distribution system, and representative oceanographic meteorological, and instrument science studies that may benefit from NSCAT data are surveyed.

  8. Construction of Marine Surface Pressure Fields From Scatterometer Winds Alone

    NASA Technical Reports Server (NTRS)

    Hsu, Carol S.; Wurtele, Morton G.; Cunningham, Glenn F.; Woiceshyn, Peter M.

    1997-01-01

    A series of six-hourly, synoptic, gridded, global surface wind fields with a resolution of 100 km has been generated using the data set of dealiased Seasat satellite scatterometer (SASS) winds produced as described by peteherych et al. (1984). This paper is an account of the construction of surface pressure fields from these SASS synoptic wind fields only, as carried out by differnt methods, and the comparison of these pressure fields with U.S. National Centers for Environmental Prediction (NCEP) analyses, with the pressure fields of the European Center for Medium Range Weather Forecasting (ECMWF) and with the special analyses of the Gulf of Alaska Experiment (GOASEX).

  9. The wavenumber spectra of scatterometer-derived winds

    NASA Technical Reports Server (NTRS)

    Long, D. G.; Luke, D. D.

    1992-01-01

    The accuracy of scatterometer-derived winds using a frequency-domain analysis and simulation is studied. The wavenumber spectra of the Seasat-A-scatterometer (SASS)-derived wind fields have been observed to be accentuated relative to the input wind field. The results of extensive simulations designed to test this observation are reported. Actual SASS measurements of the normalized radar backscatter (NRB) over an orbit (rev) are used as a template to generate simulated NRB measurements. Pointwise estimation of winds from the simulated NRB measurements is accomplished with the ambiguity closest to the true wind selected as the unique wind vector estimate. For comparison, winds are also estimated using a new model-based approach. After wind retrieval, the spectra of the estimated wind fields are computed and compared to the input wind field. The high wavenumber portion of the spectra of the pointwise estimated winds was higher than the spectra of the true winds by an amount which depends on the wind speed variance.

  10. Wind field model-based estimation of Seasat scatterometer winds

    NASA Technical Reports Server (NTRS)

    Long, David G.

    1993-01-01

    A model-based approach to estimating near-surface wind fields over the ocean from Seasat scatterometer (SASS) measurements is presented. The approach is a direct assimilation technique in which wind field model parameters are estimated directly from the scatterometer measurements of the radar backscatter of the ocean's surface using maximum likelihood principles. The wind field estimate is then computed from the estimated model parameters. The wind field model used in this approach is based on geostrophic approximation and on simplistic assumptions about the wind field vorticity and divergence but includes ageostrophic winds. Nine days of SASS data were processed to obtain unique wind estimates. Comparisons in performance to the traditional two-step (point-wise wind retrieval followed by ambiguity removal) wind estimate method and the model-based method are provided using both simulated radar backscatter measurements and actual SASS measurements. In the latter case the results are compared to wind fields determined using subjective ambiguity removal. While the traditional approach results in missing measurements and reduced effective swath width due to fore/aft beam cell coregistration problems, the model-based approach uses all available measurements to increase the effective swath width and to reduce data gaps. The results reveal that the model-based wind estimates have accuracy comparable to traditionally estimated winds with less 'noise' in the directional estimates, particularly at low wind speeds.

  11. Retrieval of the Near-Surface Wind Velocity and Direction: Scat-3 Orbit-Borne Scatterometer

    NASA Astrophysics Data System (ADS)

    Karaev, V. Yu.; Panfilova, M. A.; Titchenko, Yu. A.; Meshkov, E. M.; Balandina, G. N.; Kuznetsov, Yu. V.; Shlaferov, A. L.

    2016-09-01

    The new concept proposed during the development of the first Russian orbit-borne scatterometer SCAT-3 requires an additional study for estimating its efficiency and comparison with the current scatterometer concepts. Using the fan antenna pattern (with angular dimensions 1° × 6°), we have reduced the antenna rotation speed by about a factor of three compared with the prototype (the "SeaWinds" scatterometer) and measured the backscattering cross section for each wind cell at the horizontal and vertical polarizations. The numerical model of the scatterometer was developed with allowance for the technical characteristics of the radar, orbital parameters, and observation scheme. The scatterometer operation is simulated with the subsequent swath formation and partitioning into the wind cells. It is shown that using the fan pattern in the scatterometer, one can improve the accuracy of the wind-direction r5etrieval in a wind cell due to employing the radiometric resolution in the processing algorithm. The main error in determining the wind direction is related to the ambiguity ±180°, which is caused by the type of the azimuthal dependence of the backscattering cross section. With the help of the two-dimensional median filtering, we can significantly reduce the wind-direction retrieval error. This error can probably be smaller than that for the current scatterometers.

  12. Processes for fabricating and load testing NASA scatterometer antenna assemblies

    NASA Technical Reports Server (NTRS)

    Barth, James R.

    1988-01-01

    The purpose of this paper is to present the processes used to fabricate and load test the NASA Scatterometer Antenna Assemblies. The fabrication processes include layup, curing and machining of antenna components, and the bonding and assembly of the components into the final antenna configuration. The design of each antenna consists of an aluminum waveguide bonded to a sandwich structure of Nomex honeycomb core with graphite/epoxy skins. A titanium end fitting with fiberglass/epoxy transitions is bonded into one end of each antenna. Several antenna components are fabricated using a process where aluminum foil is co-cured to a composite surface. The antenna assemblies are radiographically inspected, thermally cycled, and load tested prior to shipment.

  13. Polarimetric Analysis of Scatterometer Data for Ocean Surface Wind Measurement

    NASA Technical Reports Server (NTRS)

    Lee, J. S.; Yueh, S. H.; Schuler, D. L.

    2004-01-01

    An experiment using a polarimetric scatterometer (POLSCAT) has been conducted by JPL for ocean surface wind measurement. It shows that (sigma) (subscript)0 values for HH, W, HV, and VH have the property of even symmetry with respect to the upwind direction, and correlation coefficients between co- and cross-polarizations have the odd symmetry property. In this paper, the symmetry properties will be further examined using polarimetric analysis to investigate the depolarization effect, the scattering mechanism, and the polarization orientation angle. Theoretical results based on a two scale model are used to verify the derived experiment results. The newly derived symmetry property has the potential to solve the 180(deg) ambiguity in wind direction, and to enhance the accuracy of wind vector measurements.

  14. AgRISTARS. Supporting research: MARS x-band scatterometer

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T. (Principal Investigator); Gabel, P. F., Jr.; Brunfeldt, D. R.

    1981-01-01

    The design, construction, and data collection procedures of the mobile agricultural radar sensor (MARS) x band scatterometer are described. This system is an inexpensive, highly mobile, truck mounted FM-CW radar operating at a center frequency of 10.2 GHz. The antennas, which allow for VV and VH polarizations, are configured in a side looking mode that allows for drive by data collection. This configuration shortens fieldwork time considerably while increasing statistical confidence in the data. Both internal calibration, via a delay line, and external calibration with a Luneberg lens are used to calibrate the instrument in terms of sigma(o). The radar scattering cross section per unit area, sigma(o), is found using the radar equation.

  15. Measurement of soil moisture trends with airborne scatterometers

    NASA Technical Reports Server (NTRS)

    Blanchard, B. J. (Principal Investigator)

    1978-01-01

    The author had identified the following significant results. Repeated looks at surfaces that maintain constant roughness can provide an estimate of soil moisture in the surface, when appropriate radar look angles are used. Significant influence due to differences in soil moisture can be detected in the 13.3 GHz and 1.6 GHz scatterometer returns. Effects of normal crop densities have little influence on the surface soil moisture estimate, when appropriate look angles are used. It appears that different look angles are optimum for different frequencies to avoid effects from vegetation. Considering the frequency and look angles used on the Seasat-A imaging radar, differences in soil moisture should produce as much as 9 db difference in return on that system.

  16. Drought, Wetland, and Flood Monitoring with Satellite Scatterometer

    NASA Astrophysics Data System (ADS)

    Nghiem, S. V.; Brakenridge, G. R.; Neumann, G.

    2007-05-01

    Monitoring droughts, wetlands, and floods demands large scale and frequent coverage by satellite observations. Launched in 1999, the National Aeronautics and Space Administration (NASA) SeaWinds scatterometer aboard the QuikSCAT (QSCAT) satellite can collect backscatter data over 90% of the world in a day. The satellite scatterometer has acquired about 8 years of data and is currently measuring the Earth in 14 orbits per day. For drought monitoring, QSCAT data can detect surface soil moisture change and corresponding vegetation change. QSCAT identified drought conditions in the Midwest region of the United States in 2003 as the precipitation frequency observed by QSCAT decreases significantly. In Nairobi, Kenya, long-term QSCAT monitoring shows the severe droughts of 2000 and 2005. QSCAT data will be used together with other data types to enhance the U.S. Drought Monitor (USDM) to be transitioned into the National Integrated Drought Information System (NIDIS). At the other extreme, QSCAT data reveal the timing and patterns of surface soil moisture changes associated with winter storms in California in 2005 and with extreme hurricanes such as Ivan in 2004, Katrina, and Rita in 2005. Flood inundated areas are delineated by QSCAT along the Lena River, and such flooding is related to the snowmelt duration. QSCAT observations show that the Flood of Century along the Lena River in 2001 occurred after an excessively rapid spring melt period. QSCAT data are appropriate for wetland monitoring. The dynamics of wetlands in the Mississippi River basin observed by QSCAT include river discharge lagging the wetland change: first excess surface water is measured, and then streamflow increases. QSCAT data also capture the extreme seasonal wetland dynamics over the region of the Sudd swamps along the upper reaches of the White Nile River in southern Sudan. With the QSCAT capability in monitoring drought, wetland, and flood frequently over the world, QSCAT results will be crucial for

  17. Seasat over-land scatterometer data. II - Selection of extended area land-target sites for the calibration of spaceborne scatterometers

    NASA Technical Reports Server (NTRS)

    Kennett, Rosemary G.; Li, Fuk K.

    1989-01-01

    The post-launch performance verification for future scatterometers can use extended area land targets to calibrate antenna gain patterns and to verify and monitor deployment configurations. For the Ku-band Seasat scatterometer, a region of tropical rain forest in the Amazon basin was used as a homogeneous extended-area land target. As this region is continuously being deforested, other regions are investigated for calibrating scatterometers. The global backscatter coefficients (sigma0) are compared to classifications of natural vegetation and cultivation intensity and the variability with time during the three-month mission is studied. The statistical variability of sigma0 is compared with prior estimates resulting from the known variability of the instrument parameters and communication noise. Data from selected forested regions with relatively homogeneous sigma0 and little time-dependence are presented.

  18. SeaSat-A Satellite Scatterometer Mission Summary and Engineering Assessment Report

    NASA Technical Reports Server (NTRS)

    Johnson, J. W.; Lee, W. H.; Williams, L. A., Jr.

    1979-01-01

    The SeaSat-A satellite was launched on June 26, 1978 and operated in orbit through October 9, 1978. The SeaSat-A satellite scatterometer ocean surface wind field sensor began taking data on July 10, 1978 with virtually continuous operation for 95-1/2 days. A review of mission events significant to the scatterometer and a report on the hardware and software engineering assessment are presented.

  19. Microwave radiometer and scatterometer design for the aquarius sea surface Salinity Mission

    NASA Technical Reports Server (NTRS)

    Wilson, William J.; Yueh, Simon H.; Pellerano, Fernando

    2004-01-01

    The measurement of sea surface salinity with L-band microwave radiometers is a very challenging task. Since the L-band brightness temperature variations associated with salinity changes are small, it is necessary to have a very sensitive and stable radiometer. In addition, the corrections for the ocean surface roughness require real time scatterometer measurements. The designs of the Aquarius radiometer and scatterometer are described in this paper.

  20. Testbed for development of a DSP-based signal processing subsystem for an Earth-orbiting radar scatterometer

    NASA Technical Reports Server (NTRS)

    Clark, Douglas J.; Lux, James P.; Shirbacheh, Mike

    2002-01-01

    A testbed for evaluation of general-purpose digital signal processors in earth-orbiting radar scatterometers is discussed. Because general purpose DSP represents a departure from previous radar signal processing techniques used on scatterometers, there was a need to demonstrate key elements of the system to verify feasibility for potential future scatterometer instruments. Construction of the testbed also facilitated identification of an appropriate software development environment and the skills mix necessary to perform the work.

  1. Round Robin evaluation of soil moisture retrieval models for the MetOp-A ASCAT Instrument

    NASA Astrophysics Data System (ADS)

    Gruber, Alexander; Paloscia, Simonetta; Santi, Emanuele; Notarnicola, Claudia; Pasolli, Luca; Smolander, Tuomo; Pulliainen, Jouni; Mittelbach, Heidi; Dorigo, Wouter; Wagner, Wolfgang

    2014-05-01

    Global soil moisture observations are crucial to understand hydrologic processes, earth-atmosphere interactions and climate variability. ESA's Climate Change Initiative (CCI) project aims to create a global consistent long-term soil moisture data set based on the merging of the best available active and passive satellite-based microwave sensors and retrieval algorithms. Within the CCI, a Round Robin evaluation of existing retrieval algorithms for both active and passive instruments was carried out. In this study we present the comparison of five different retrieval algorithms covering three different modelling principles applied to active MetOp-A ASCAT L1 backscatter data. These models include statistical models (Bayesian Regression and Support Vector Regression, provided by the Institute for Applied Remote Sensing, Eurac Research Viale Druso, Italy, and an Artificial Neural Network, provided by the Institute of Applied Physics, CNR-IFAC, Italy), a semi-empirical model (provided by the Finnish Meteorological Institute), and a change detection model (provided by the Vienna University of Technology). The algorithms were applied on L1 backscatter data within the period of 2007-2011, resampled to a 12.5 km grid. The evaluation was performed over 75 globally distributed, quality controlled in situ stations drawn from the International Soil Moisture Network (ISMN) using surface soil moisture data from the Global Land Data Assimilation System (GLDAS-) Noah land surface model as second independent reference. The temporal correlation between the data sets was analyzed and random errors of the the different algorithms were estimated using the triple collocation method. Absolute soil moisture values as well as soil moisture anomalies were considered including both long-term anomalies from the mean seasonal cycle and short-term anomalies from a five weeks moving average window. Results show a very high agreement between all five algorithms for most stations. A slight

  2. Seasat A Satellite Scatterometer measurements of equatorial surface winds

    SciTech Connect

    Halpern, D. )

    1989-04-15

    Seasat A Satellite Scatterometer measurements of surface wind components were made under normal weather conditions with unsurpassed space and time resolutions during August and September 1978. Longitudinal distributions of the monthly mean zonal component were markedly different in each ocean: in the Pacific the zonal profile resembled a semicircle; a linear change occurred in the Atlantic, and quasi-uniform values prevailed in the Indian Ocean. Only in the Atlantic and Pacific was the prevailing direction of the zonal component westward. In the Pacific the monthly mean standard deviations increased towards the west. This indicated that the larger day-to-day wind variability observed at the western islands compared to moored buoy measurements in the eastern region was a natural phenomenon and not caused by islands. The average monthly mean slope of the wave number spectra throughout the 550- to 2,200-km wavelength band was {minus}1.7, which was approximately equal to the {minus}5/3 power law associated with turbulent motions. That the spectra levels of the zonal wind, but not the meridional component, were substantially different in each equatorial ocean represents an enigma. Largest spectral values occurred in the Atlantic where variances were nearly 10 times greater than in the Pacific, which contained the smallest values.

  3. Enhancement of Directional Ambiguity Removal Skill in Scatterometer Data Processing Using Planetary Boundary Layer Models

    NASA Technical Reports Server (NTRS)

    Kim, Young-Joon; Pak, Kyung S.; Dunbar, R. Scott; Hsiao, S. Vincent; Callahan, Philip S.

    2000-01-01

    Planetary boundary layer (PBL) models are utilized to enhance directional ambiguity removal skill in scatterometer data processing. The ambiguity in wind direction retrieved from scatterometer measurements is removed with the aid of physical directional information obtained from PBL models. This technique is based on the observation that sea level pressure is scalar and its field is more coherent than the corresponding wind. An initial wind field obtained from the scatterometer measurements is used to derive a pressure field with a PBL model. After filtering small-scale noise in the derived pressure field, a wind field is generated with an inverted PBL model. This derived wind information is then used to remove wind vector ambiguities in the scatterometer data. It is found that the ambiguity removal skill can be improved when the new technique is used properly in conjunction with the median filter being used for scatterometer wind dealiasing at JPL. The new technique is applied to regions of cyclone systems which are important for accurate weather prediction but where the errors of ambiguity removal are often large.

  4. Impact of SeaWinds Scatterometer Data on Numerical Weather Prediction

    NASA Technical Reports Server (NTRS)

    Atlas, Robert

    2003-01-01

    Scatterometer observations of the ocean surface wind speed and direction improve the depiction and prediction of storms at sea. These data are especially valuable where observations are otherwise sparse - mostly in the Southern Hemisphere and tropics, but also on occasion in the North Atlantic and North Pacific. The SeaWinds scatterometer on the QuikScat satellite was launched in June 1999 and it represents a dramatic departure in design from the other scatterometer instruments launched during the past decade (ERS-1,2 and NSCAT). More details on the SeaWinds instrument can be found in Atlas et a1 (2001) and Bloom et al. (1999). At the time of this writing, SeaWinds scatterometer data from the ADEOS 2 satellite are not yet available . Therefore this paper will be limited to results from the SeaWinds scatterometer on Quikscat. This presentation shows the influence of QuikScat data in data assimilation systems both from the NASA Data Assimilation Office (GEOS-3) and from NCEP (GDAS).

  5. Probabilities and statistics for backscatter estimates obtained by a scatterometer with applications to new scatterometer design data

    NASA Technical Reports Server (NTRS)

    Pierson, Willard J., Jr.

    1989-01-01

    The values of the Normalized Radar Backscattering Cross Section (NRCS), sigma (o), obtained by a scatterometer are random variables whose variance is a known function of the expected value. The probability density function can be obtained from the normal distribution. Models for the expected value obtain it as a function of the properties of the waves on the ocean and the winds that generated the waves. Point estimates of the expected value were found from various statistics given the parameters that define the probability density function for each value. Random intervals were derived with a preassigned probability of containing that value. A statistical test to determine whether or not successive values of sigma (o) are truly independent was derived. The maximum likelihood estimates for wind speed and direction were found, given a model for backscatter as a function of the properties of the waves on the ocean. These estimates are biased as a result of the terms in the equation that involve natural logarithms, and calculations of the point estimates of the maximum likelihood values are used to show that the contributions of the logarithmic terms are negligible and that the terms can be omitted.

  6. Application of Spaceborne Scatterometer to Study Typhoon, Tropical Hydrologic Balance and El Nino

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy

    1995-01-01

    The high spatial resolution and global coverage of a spaceborne microwave scatterometer make it a power instrument to study phenomena ranging from typhoon to El Nino Southern Oscillation which have regional and short term economic and ecological impacts as well as effects on long term and global climate changes. In this report, the application of scatterometer data, by itself, to study the intensity and the evolution of typhoon is demonstrated. The potential of combining wind vector and precipitable water derived from two spaceborne sensors to study the hydrologic balance in the tropics is discussed. The role of westerly wind bursts as a precursor of anomalous warming in the equatorial Pacific is investigated with coincident data from microwave scatterometer, altimeter and radiometer.

  7. Wind measurements for non-uniform wind fields from spaceborne scatterometers

    NASA Technical Reports Server (NTRS)

    Chi, Chong-Yung; Li, Fuk K.

    1987-01-01

    Radar backscattering coefficient measurements by spaceborne scatterometers are presently simulated for the case of nonuniform wind fields, by means of a detailed numerical integration of the radar equation. The winds thus estimated are then compared with a nominal field which is defined as the average wind vector over the wind cell. The simulation results obtained for the NASA scatterometer are presented for cases of random wind fields whose spectra are consistent with the Seasat scatterometer sea surface wind spectrum. When the nonuniformity is small, system noise dominates the wind error; wind error degradation is therefore small for both perfect and imperfect coregistration cases. When it is relatively large, however, the wind error degradation persistently increases for both perfect and imperfect coregistrations.

  8. Construction of surface pressure field from scatterometer wind field

    NASA Technical Reports Server (NTRS)

    Wurtele, Morton G.; Hsu, Carol H.; Cunningham, Glen F.; Woiceshyn, Peter M.

    1989-01-01

    An account of the construction of surface pressure fields from Seasat-A satellite scatterometer (SASS) winds as carried out by different methods, and the comparison of these pressure fields with those derived from in situ ship observations is presented. On the assumption that the pressure adjusts itself instantaneously to the motion field, it may be computed by various methods. One of these makes use of planetary boundary theory, and of the possible techniques in this category a two-layer iterative scheme admitting of the parametrization of diabatic and baroclinic effects and of secondary flow was chosen. A second method involves the assumption of zero two-dimensional divergence, leading to a Laplace's equation (the balance equation) in pressure, with the wind field serving as a forcing function. This method does not accommodate adiabatic or baroclinic effects, and requires a knowledge of the pressure at all boundary points. Two comparison fields are used for validation: the conventional operational analyses of the US National Meteorological Center (NMC), and the special analyses of the Gulf of Alaska Experiment (GOASEX), which were done by hand. The results of the computations were as follows: (1) The pressure fields, as computed from the SASS winds alone, closely approximated the NMC fields in regions where reasonable in situ coverage was available (typically, one or two mb differences over most of the chart, three to four mb in extreme cases); (2) In some cases the SASS-derived pressure fields displayed high-resolution phenomena not detected by the NMC fields, but evident in the GOASEX data; and, (3) As expected, the pressure fields derived from the balance equation were much smoother and less well resolved than the SASS-derived or NMC fields. The divergence as measured from the SASS winds is smaller than, but of the same order of magnitude as, the vorticity.

  9. Butterfly wing coloration studied with a novel imaging scatterometer

    NASA Astrophysics Data System (ADS)

    Stavenga, Doekele

    2010-03-01

    Animal coloration functions for display or camouflage. Notably insects provide numerous examples of a rich variety of the applied optical mechanisms. For instance, many butterflies feature a distinct dichromatism, that is, the wing coloration of the male and the female differ substantially. The male Brimstone, Gonepteryx rhamni, has yellow wings that are strongly UV iridescent, but the female has white wings with low reflectance in the UV and a high reflectance in the visible wavelength range. In the Small White cabbage butterfly, Pieris rapae crucivora, the wing reflectance of the male is low in the UV and high at visible wavelengths, whereas the wing reflectance of the female is higher in the UV and lower in the visible. Pierid butterflies apply nanosized, strongly scattering beads to achieve their bright coloration. The male Pipevine Swallowtail butterfly, Battus philenor, has dorsal wings with scales functioning as thin film gratings that exhibit polarized iridescence; the dorsal wings of the female are matte black. The polarized iridescence probably functions in intraspecific, sexual signaling, as has been demonstrated in Heliconius butterflies. An example of camouflage is the Green Hairstreak butterfly, Callophrys rubi, where photonic crystal domains exist in the ventral wing scales, resulting in a matte green color that well matches the color of plant leaves. The spectral reflection and polarization characteristics of biological tissues can be rapidly and with unprecedented detail assessed with a novel imaging scatterometer-spectrophotometer, built around an elliptical mirror [1]. Examples of butterfly and damselfly wings, bird feathers, and beetle cuticle will be presented. [4pt] [1] D.G. Stavenga, H.L. Leertouwer, P. Pirih, M.F. Wehling, Optics Express 17, 193-202 (2009)

  10. Biweekly Maps of Wind Stress for the North Pacific from the ERS-1 Scatterometer

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The European Remote-sensing Satellite (ERS-1) was launched in July 1991 and contained several instruments for observing the Earth's ocean including a wind scatterometer. The scatterometer measurements were processed by the European Space Agency (ESA) and the Jet Propulsion Laboratory (JPL). JPL reprocessed (Freilich and Dunbar, 1992) the ERS-1 backscatter measurements to produced a 'value added' data set that contained the ESA wind vector as well as a set of up to four ambiguities. These ambiguities were further processed using a maximum-likelihood estimation (MLE) and a median filter to produce a 'selected vector.' This report describes a technique developed to produce time-averaged wind field estimates with their expected errors using only scatterometer wind vectors. The processing described in this report involved extracting regions of interest from the data tapes, checking the quality and creating the wind field estimate. This analysis also includes the derivation of biweekly average wind vectors over the North Pacific Ocean at a resolution of 0.50 x 0.50. This was done with an optimal average algorithm temporally and an over-determined biharmonic spline spatially. There have been other attempts at creating gridded wind files from ERS-1 winds, e.g., kriging techniques (Bentamy et al., 1996) and successive corrections schemes (Tang and Liu, 1996). There are several inherent problems with the ERS-1 scatterometer. Since this is a multidisciplinary mission, the satellite is flown in different orbits optimized for each phase of the mission. The scatterometer also shares several sub-systems with the Synthetic Aperture Radar (SAR) and cannot be operated while the SAR is in operation. The scatterometer is also a single-sided instrument and only measures backscatter along the right side of the satellite. The processing described here generates biweekly wind maps during the wktwo years analysis period regardless of the satellite orbit or missing data.

  11. The software system development for the TAMU real-time fan beam scatterometer data processors

    NASA Technical Reports Server (NTRS)

    Clark, B. V.; Jean, B. R.

    1980-01-01

    A software package was designed and written to process in real-time any one quadrature channel pair of radar scatterometer signals form the NASA L- or C-Band radar scatterometer systems. The software was successfully tested in the C-Band processor breadboard hardware using recorded radar and NERDAS (NASA Earth Resources Data Annotation System) signals as the input data sources. The processor development program and the overall processor theory of operation and design are described. The real-time processor software system is documented and the results of the laboratory software tests, and recommendations for the efficient application of the data processing capabilities are presented.

  12. A system analysis of the 13.3 GHz scatterometer. [antenna patterns and signal transmission

    NASA Technical Reports Server (NTRS)

    Wang, J. R.

    1977-01-01

    The performance of the 13.3 GHz airborne scatterometer system which is used as a microwave remote sensor to detect moisture content of soil is analyzed with respect to its antenna pattern, the signal flow in the receiver data channels, and the errors in the signal outputs. The operational principle and the sensitivity of the system, as well as data handling are also described. The dielectric property of the terrain surface, as far as the scatterometer is concerned, is contained in the assumed forms of the functional dependence of the backscattering coefficient of the incident angle.

  13. Soil moisture detection by Skylab's microwave sensors. [radiometer/scatterometer measurements of Texas

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Ulaby, F. T. (Principal Investigator); Barr, J. C.; Sobti, A.

    1974-01-01

    The author has identified the following significant results. Terrain microwave backscatter and emission response to soil moisture variations were investigated using Skylab's 13.9 GHz RADSCAT (radiometer/scatterometer) system. Data acquired on June 5, 1973, over a test site in west-central Texas indicated a fair degree of correlation with composite rainfall. The scan made was cross-track contiguous (CTC) with a pitch of 29.4 deg and no roll effect. Vertical polarization was employed with both radiometer and scatterometer. The composite rainfall was computed according to the flood prediction technique using rainfall data supplied by weather reporting stations.

  14. A preliminary C-band scatterometer model function for the ERS-1 AMI instrument

    NASA Technical Reports Server (NTRS)

    Freilich, M. H.; Dunbar, R. S.

    1993-01-01

    Backscatter cross section (sigma(sub 0)) measurements from the ERS-1 scatterometer are collocated with surface wind velocity data from operational Numerical Weather Prediction (NWP) analyses to yield a fully empirical C band model function. The empirical model does not obey a power law at speeds less than 5 m/s, and upwind/crosswind ratios are small for all incidence angles at low wind speeds and for small incidence angles at all wind speeds. Downwind sigma(sub 0) exceeds upwind values for incidence angles below approximately 28 degrees. The full ERS-1 scatterometer data set has been reprocessed using the NWP model function.

  15. A Blended Global Snow Product using Visible, Passive Microwave and Scatterometer Satellite Data

    NASA Technical Reports Server (NTRS)

    Foster, James L.; Hall, Dorothy K.; Eylander, John B.; Riggs, George A.; Nghiem, Son V.; Tedesco, Marco; Kim, Edward; Montesano, Paul M.; Kelly, Richard E. J.; Casey, Kimberly A.; Choudhury, Bhaskar

    2009-01-01

    A joint U.S. Air Force/NASA blended, global snow product that utilizes Earth Observation System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Microwave Scanning Radiometer for EOS (AMSR-E) and QuikSCAT (Quick Scatterometer) (QSCAT) data has been developed. Existing snow products derived from these sensors have been blended into a single, global, daily, user-friendly product by employing a newly-developed Air Force Weather Agency (AFWA)/National Aeronautics and Space Administration (NASA) Snow Algorithm (ANSA). This initial blended-snow product uses minimal modeling to expeditiously yield improved snow products, which include snow cover extent, fractional snow cover, snow water equivalent (SWE), onset of snowmelt, and identification of actively melting snow cover. The blended snow products are currently 25-km resolution. These products are validated with data from the lower Great Lakes region of the U.S., from Colorado during the Cold Lands Processes Experiment (CLPX), and from Finland. The AMSR-E product is especially useful in detecting snow through clouds; however, passive microwave data miss snow in those regions where the snow cover is thin, along the margins of the continental snowline, and on the lee side of the Rocky Mountains, for instance. In these regions, the MODIS product can map shallow snow cover under cloud-free conditions. The confidence for mapping snow cover extent is greater with the MODIS product than with the microwave product when cloud-free MODIS observations are available. Therefore, the MODIS product is used as the default for detecting snow cover. The passive microwave product is used as the default only in those areas where MODIS data are not applicable due to the presence of clouds and darkness. The AMSR-E snow product is used in association with the difference between ascending and descending satellite passes or Diurnal Amplitude Variations (DAV) to detect the onset of melt, and a QSCAT product will be used to

  16. A model of the 1.6 GHz scatterometer. [performance of airborne scatterometer used as microwave remote sensor of soil moisture

    NASA Technical Reports Server (NTRS)

    Wang, J. R.

    1977-01-01

    The performance was studied of the 1.6 GHz airborne scatterometer system which is used as one of several Johnson Space Center (JSC) microwave remote sensors to detect moisture content of soil. The system is analyzed with respect to its antenna pattern and coupling, the signal flow in the receiver data channels, and the errors in the signal outputs. The operational principle and the sensitivity of the system, as well as data handling are also described. The finite cross-polarized gains of all four 1.6 GHz scatterometer antennae are found to have profound influence on the cross-polarized backscattered signal returns. If these signals are not analyzed properly, large errors could result in the estimate of the cross-polarized coefficient. It is also found necessary to make corrections to the variations of the aircraft parameters during data reduction in order to minimize the error in the coefficient estimate. Finally, a few recommendations are made to improve the overall performance of the scatterometer system.

  17. Multiprocessor DSP for real-time data processing on Earth orbiting scatterometers

    NASA Technical Reports Server (NTRS)

    Bachmann, A.; Clark, D.; Lux, J.; Steffke, R.

    2000-01-01

    The implementation of a Multi DSP radar signal processor for a Ku-Band Earth orbiting scatterometer is discussed. A testbed has been assembled using a combination of commercial DSP hardware and spaceflight components to evaluate the proposed multiprocessing approaches. Test results of real-time radar echo processing are presented, as well as proposed designs for future investigation.

  18. Assessment of the biophysical characteristics of rangeland community using scatterometer and optical measurements

    NASA Technical Reports Server (NTRS)

    Kanemasu, E. T.; Asrar, Ghassem; Myneni, Ranga; Martin, Robert, Jr.; Burnett, R. Bruce

    1987-01-01

    Research activities for the following study areas are summarized: single scattering of parallel direct and axially symmetric diffuse solar radiation in vegetative canopies; the use of successive orders of scattering approximations (SOSA) for treating multiple scattering in a plant canopy; reflectance of a soybean canopy using the SOSA method; and C-band scatterometer measurements of the Konza tallgrass prairie.

  19. SeaSat-A Satellite Scatterometer (SASS) Validation and Experiment Plan

    NASA Technical Reports Server (NTRS)

    Schroeder, L. C. (Editor)

    1978-01-01

    This plan was generated by the SeaSat-A satellite scatterometer experiment team to define the pre-and post-launch activities necessary to conduct sensor validation and geophysical evaluation. Details included are an instrument and experiment description/performance requirements, success criteria, constraints, mission requirements, data processing requirement and data analysis responsibilities.

  20. Objective Operational Utilization of Satellite Microwave Scatterometer Observations of Tropical Cyclones

    NASA Technical Reports Server (NTRS)

    Cardone, Vincent J.; Cox, Andrew T.

    2000-01-01

    This study has demonstrated that high-resolution scatterometer measurements in tropical cyclones and other high-marine surface wind regimes may be retrieved accurately for wind speeds up to about 35 mls (1-hour average at 10 m) when the scatterometer data are processed through a revised geophysical model function, and a spatial adaptive algorithm is applied which utilizes the fact that wind direction is so tightly constrained in tile inner core of severe marine storms that wind direction may be prescribed from conventional data. This potential is demonstrated through case studies with NSCAT data in a severe West Pacific Typhoon (Violet, 1996) and an intense North Atlantic hurricane (Lili, 1996). However, operational scatterometer winds from NSCAT and QuickScat in hurricanes and severe winter storms are biased low in winds above 25 m/s. We have developed an inverse model to specify the entire surface wind field about a tropical cyclone from operational QuickScat scatterometer measurements within 150 nm of a storm center with the restriction that only wind speeds up to 20 m/s are used until improved model function are introduced. The inverse model is used to specify the wind field over the entire life-cycle of Hurricane Floyd (1999) for use to drive an ocean wave model. The wind field compares very favorably with wind fields developed from the copious aircraft flight level winds obtained in this storm.

  1. The Scatterometer Instrument Competence Centre (SCIRoCCo): Project's Activities and First Achievements

    NASA Astrophysics Data System (ADS)

    Crapolicchio, R.; Bigazzi, A.; De Chiara, G.; Neyt, X.; Stoffelen, A.; Belmonte, M.; Wagner, W.; Reimer, C.

    2016-08-01

    The Scatterometer Instrument Competence Centre (SCIRoCCo, http://scirocco.sp.serco.eu) is a project established by the European Space Agency (ESA) in 2014 as an interdisciplinary cooperation of international scatterometry experts aimed at promoting the continuing exploitation of ESA's unique 20 years' worth of ERS Scatterometer data (ESCAT) at medium (25Km, 50 Km) spatial resolution, and improving the quality of available and future scatterometry data.SCIRoCCo aims at consolidating current methodologies for Scatterometer data processing and calibration. SCIRoCCo provides ERS-1/ERS-2 sensors inter- calibration, sensor characterization and data validation. Data analysis and processing software, academic and technical publications in support of calibration and many diverse applications and research in Land (e.g. Soil Moisture), Oceanography (Ocean Winds, Sea, Ice), Climatology are also provided through the web portal, which also serves as the entry point to SCIRoCCo's educational network, funded through Grants and aimed at fostering the next-generation scatterometry experts. SCIRoCCo thus targets the needs of meteorological agencies, meteorological operations centers and the broader Researchers' and Users' communities for consistent and high quality Scatterometer data processing.

  2. Using Spaceborne Ku-Band Scatterometer for Global Snow Cover Monitoring

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Tsai, W.-Y.

    1999-01-01

    We demonstrate for the first time the utility of spaceborne Ku-band scatterometer for global snow cover monitoring. Satellite radar data were collected over the globe by the NASA Scatterometer (NSCAT) operated at 14 GHz on board the Japanese ADEOS spacecraft from September 1996 to June 1997, spanning the 1997 seasonal snow season. First, we present backscatter signature of dry and wet snow to facilitate the interpretation of NSCAT backscatter evolution over snow cover regions. Surface field experiments indicated that dry snow backscatter at Ku band is approximately 40 times stronger than that at C band. Thus, Ku-band scatterometer measurements are sensitive to snow cover, which is typically transparent to C-band scatterometer returns. Furthermore, Ku-band backscatter does not saturate for most of natural snow depths as compared to radar responses at 19 GHz and 37 GHz or higher frequencies which have more limited penetration depths into snow. Ku-band backscatter is also sensitive to wetness in snow, which is appropriate to detect early snow melt conditions. Using the snow backscatter characteristics, we investigate NSCAT backscatter evolution over global snow cover regions throughout the 1997 snow season. The results reveal detail delineations between different regional snow areas. We show the correlation of these delineations with the boundaries of different global snow classes defined by the U.S. Army Cold Regions Research and Engineering Laboratory snow classification system. Using in-situ snow depth data from the U.S. National Climatic Data Center, we show that Ku-band backscatter corresponds very well to the trend of snow melt while snow mapping products (U.S. Climate Prediction Center gridded snow charts) from visible sensors does not reflect the fast snow melt trend. To illustrate the practical application of global snow monitoring with spaceborne Ku-band scatterometer, we present NSCAT backscatter response corresponding to the snow event leading to the 1997

  3. Observations of urban and suburban environments with global satellite scatterometer data

    NASA Astrophysics Data System (ADS)

    Nghiem, S. V.; Balk, D.; Rodriguez, E.; Neumann, G.; Sorichetta, A.; Small, C.; Elvidge, C. D.

    A global and consistent characterization of land use and land change in urban and suburban environments is crucial for many fundamental social and natural science studies and applications. Presented here is a dense sampling method (DSM) that uses satellite scatterometer data to delineate urban and intraurban areas at a posting scale of about 1 km. DSM results are analyzed together with information on population and housing censuses, with Landsat Enhanced Thematic Mapper Plus (ETM+) imagery, and with Defense Meteorological Satellite Program (DMSP) night-light data. The analyses include Dallas-Fort Worth and Phoenix in the United States, Bogotá in Colombia, Dhaka in Bangladesh, Guangzhou in China, and Quito in Ecuador. Results show that scatterometer signatures correspond to buildings and infrastructures in urban and suburban environments. City extents detected by scatterometer data are significantly smaller than city light extents, but not all urban areas are detectable by the current SeaWinds scatterometer on the QuikSCAT satellite. Core commercial and industrial areas with high buildings and large factories are identified as high-backscatter centers. Data from DSM backscatter and DMSP nighttime lights have a good correlation with population density. However, the correlation relations from the two satellite datasets are different for different cities indicating that they contain complementary information. Together with night-light and census data, DSM and satellite scatterometer data provide new observations to study global urban and suburban environments and their changes. Furthermore, the capability of DSM to identify hydrological channels on the Greenland ice sheet and ecological biomes in central Africa demonstrates that DSM can be used to observe persistent structures in natural environments at a km scale, providing contemporaneous data to study human impacts beyond urban and suburban areas.

  4. Potential Soil Moisture Products from the Aquarius Radiometer and Scatterometer Using an Observing System Simulation Experiment

    SciTech Connect

    Luo, Yan; Houser, Paul; Anantharaj, Valentine G; Fan, Xingang; De Lannoy, Gabrielle; Zhan, Xiwu

    2013-01-01

    Using an observing system simulation experiment (OSSE), we investigate the potential soil moisture retrieval capability of the National Aeronautics and Space Administration (NASA) Aquarius radiometer (L-band 1.413 GHz) and scatterometer (L-band, 1.260 GHz). We estimate potential errors in soil moisture retrievals and identify the sources that could cause those errors. The OSSE system includes (i) a land surface model in the NASA Land Information System, (ii) a radiative transfer and backscatter model, (iii) a realistic orbital sampling model, and (iv) an inverse soil moisture retrieval model. We execute the OSSE over a 1000 2200 km2 region in the central United States, including the Red and Arkansas river basins. Spatial distributions of soil moisture retrieved from the radiometer and scatterometer are close to the synthetic truth. High root mean square errors (RMSEs) of radiometer retrievals are found over the heavily vegetated regions, while large RMSEs of scatterometer retrievals are scattered over the entire domain. The temporal variations of soil moisture are realistically captured over a sparely vegetated region with correlations 0.98 and 0.63, and RMSEs 1.28% and 8.23% vol/vol for radiometer and scatterometer, respectively. Over the densely vegetated region, soil moisture exhibits larger temporal variation than the truth, leading to correlation 0.70 and 0.67, respectively, and RMSEs 9.49% and 6.09% vol/vol respectively. The domain-averaged correlations and RMSEs suggest that radiometer is more accurate than scatterometer in retrieving soil moisture. The analysis also demonstrates that the accuracy of the retrieved soil moisture is affected by vegetation coverage and spatial aggregation.

  5. Application of the nonlinear time series prediction method of genetic algorithm for forecasting surface wind of point station in the South China Sea with scatterometer observations

    NASA Astrophysics Data System (ADS)

    Zhong, Jian; Dong, Gang; Sun, Yimei; Zhang, Zhaoyang; Wu, Yuqin

    2016-11-01

    The present work reports the development of nonlinear time series prediction method of genetic algorithm (GA) with singular spectrum analysis (SSA) for forecasting the surface wind of a point station in the South China Sea (SCS) with scatterometer observations. Before the nonlinear technique GA is used for forecasting the time series of surface wind, the SSA is applied to reduce the noise. The surface wind speed and surface wind components from scatterometer observations at three locations in the SCS have been used to develop and test the technique. The predictions have been compared with persistence forecasts in terms of root mean square error. The predicted surface wind with GA and SSA made up to four days (longer for some point station) in advance have been found to be significantly superior to those made by persistence model. This method can serve as a cost-effective alternate prediction technique for forecasting surface wind of a point station in the SCS basin. Project supported by the National Natural Science Foundation of China (Grant Nos. 41230421 and 41605075) and the National Basic Research Program of China (Grant No. 2013CB430101).

  6. Detection of oil spills using a 13.3-GHz radar scatterometer.

    NASA Technical Reports Server (NTRS)

    Krishen, K.

    1973-01-01

    This paper describes the results of an analysis of 13.3-GHz single-polarized scatterometer data collected during NASA/MSC mission 135, flown on March 16, 1970. Data were gathered over a crude oil spill on the Gulf of Mexico (test site 128) off the Mississippi delta. With the aid of RC-8 camera photographs the scattering cross section was correlated with the extent of the oil spill. The scattering cross section at higher incidence angles (25 to 50 deg) decreased by 5-10 db in the presence of the oil spill. This was attributed to the damping by oil of small gravity and capillary waves. The composite scattering theory and the scatterometer-acquired data were used to obtain an expression of radar scattering over ocean surfaces with oil spills. The study demonstrates that the presence and extent of oil spills can be detected with high-frequency radar systems.

  7. A simple, objective analysis scheme for scatterometer data. [Seasat A satellite observation of wind over ocean

    NASA Technical Reports Server (NTRS)

    Levy, G.; Brown, R. A.

    1986-01-01

    A simple economical objective analysis scheme is devised and tested on real scatterometer data. It is designed to treat dense data such as those of the Seasat A Satellite Scatterometer (SASS) for individual or multiple passes, and preserves subsynoptic scale features. Errors are evaluated with the aid of sampling ('bootstrap') statistical methods. In addition, sensitivity tests have been performed which establish qualitative confidence in calculated fields of divergence and vorticity. The SASS wind algorithm could be improved; however, the data at this point are limited by instrument errors rather than analysis errors. The analysis error is typically negligible in comparison with the instrument error, but amounts to 30 percent of the instrument error in areas of strong wind shear. The scheme is very economical, and thus suitable for large volumes of dense data such as SASS data.

  8. S-193 scatterometer backscattering cross section precision/accuracy for Skylab 2 and 3 missions

    NASA Technical Reports Server (NTRS)

    Krishen, K.; Pounds, D. J.

    1975-01-01

    Procedures for measuring the precision and accuracy with which the S-193 scatterometer measured the background cross section of ground scenes are described. Homogeneous ground sites were selected, and data from Skylab missions were analyzed. The precision was expressed as the standard deviation of the scatterometer-acquired backscattering cross section. In special cases, inference of the precision of measurement was made by considering the total range from the maximum to minimum of the backscatter measurements within a data segment, rather than the standard deviation. For Skylab 2 and 3 missions a precision better than 1.5 dB is indicated. This procedure indicates an accuracy of better than 3 dB for the Skylab 2 and 3 missions. The estimates of precision and accuracy given in this report are for backscattering cross sections from -28 to 18 dB. Outside this range the precision and accuracy decrease significantly.

  9. Detection of oil spills using 13.3 GHz radar scatterometer

    NASA Technical Reports Server (NTRS)

    Krishen, K.

    1972-01-01

    The results of an analysis of 13.3-GHz single polarized scatterometer data collected during NASA/MSC Mission 135, flown on March 16, 1970 are reported. Data were gathered over a crude oil spill on the Gulf of Mexico off the Mississippi Delta. With the aid of RC-8 camera photographs, the scattering cross section was correlated with the extent of the oil spill. The scattering cross section at higher incidence angles decreased by 5 db to 10 db in the presence of the oil spill. This was attributed to oil's damping of small gravity and capillary waves. The composite scattering theory and the scatterometer acquired data were used to obtain an expression of radar scattering over ocean surfaces with oil spills. The study demonstrates that the presence and extent of oil spills can be detected using high frequency radar systems.

  10. Potential Offshore Wind Energy Applications for Enhanced Resolution Scatterometer Products (Invited)

    NASA Astrophysics Data System (ADS)

    Plagge, A. M.; Epps, B.

    2013-12-01

    The multi-decadal record of ocean surface vector winds provided by scatterometer measurements is a valuable resource that has been underutilized by the wind energy sector. Previously, these data were not considered applicable for offshore wind energy analysis; chiefly, the sensors' low resolution limited their desirability. Now, however, enhanced products provide high quality wind vectors at resolutions between 3 and 5km. Potential energy applications currently under investigation include (1) validation of existing commercial wind resource assessment models, (2) investigations of interactions between large existing wind farms and the atmospheric boundary layer including attempts to identify wakes, and (3) an extension of previous studies comparing SAR and scatterometer wind fields with regard to specific wind energy concerns, including wind spectra and Weibull parameters.

  11. Design data collection with Skylab microwave radiometer-scatterometer S-193, volume 2

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Ulaby, F. T. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Skylab S-193 radiometer/scatterometer produced terrain responses with various polarizations and observation angles for cells of 100 to 400 sq km area. Classification of the observations into natural categories was achieved by K-means and spatial clustering algorithms. Microwave data acquired over the Great Salt Lake Desert area by sensors aboard Skylab and Nimbus 5 indicate that the microwave emission and backscatter were strongly influenced by contributions from subsurface layers of sediment saturated with brine. Correlations were noted between microwave backscatter response at approximately 33 deg from scatterometer (operating at 13.9 GHz) and the configuration of ground targets in Brazil as discerned from coarse scale maps. With limited, available ground truth, these correlations were sufficient to permit the production of image-like displays which bear a marked resemblance to known terrain features in several instances.

  12. The PBL and satellite scatterometer data; a review and current status

    NASA Astrophysics Data System (ADS)

    Brown, R. A.

    2003-04-01

    THE PBL AND SATELLITE SCATTEROMETER DATA; A REVIEW AND CURRENT STATUS R. A. Brown University of Washington Dept. of Atmospheric Sciences Box 351640 Seattle, WA 98105 rabrown@atmos.washington.edu The first scatterometer in space was on SeaSat in 1978. Currently there are two SeaWinds with 1500-km swaths and one radiometer (WindSat) in orbit. The volume and detail of data from these sensors is unprecedented. Their data is dependent on a careful interpretation of the PBL dynamics. We will show how the model functions have evolved from straight empirical correlation through simple surface layer solutions for 10-meter winds to PBL solutions for surface pressure fields. The status of a surface stress model function is also discussed.

  13. Two-frequency /Delta k/ microwave scatterometer measurements of ocean wave spectra from an aircraft

    NASA Technical Reports Server (NTRS)

    Johnson, J. W.; Jones, W. L.; Weissman, D. E.

    1981-01-01

    A technique for remotely sensing the large-scale gravity wave spectrum on the ocean surface using a two frequency (Delta k) microwave scatterometer has been demonstrated from stationary platforms and proposed from moving platforms. This measurement takes advantage of Bragg type resonance matching between the electromagnetic wavelength at the difference frequency and the length of the large-scale surface waves. A prominent resonance appears in the cross product power spectral density (PSD) of the two backscattered signals. Ku-Band aircraft scatterometer measurements were conducted by NASA in the North Sea during the 1979 Maritime Remote Sensing (MARSEN) experiment. Typical examples of cross product PSD's computed from the MARSEN data are presented. They demonstrate strong resonances whose frequency and bandwidth agree with the surface characteristics and the theory. Directional modulation spectra of the surface reflectivity are compared to the gravity wave spectrum derived from surface truth measurements.

  14. Measurements of ocean wave spectra and modulation transfer function with the airborne two frequency scatterometer

    NASA Technical Reports Server (NTRS)

    Weissman, D. E.; Johnson, J. W.

    1984-01-01

    The directional spectrum and the microwave modulation transfer function of ocean waves can be measured with the airborne two frequency scatterometer technique. Similar to tower based observations, the aircraft measurements of the Modulation Transfer Function (MTF) show that it is strongly affected by both wind speed and sea state. Also detected are small differences in the magnitudes of the MTF between downwind and upwind radar look directions, and variations with ocean wavenumber. The MTF inferred from the two frequency radar is larger than that measured using single frequency, wave orbital velocity techniques such as tower based radars or ROWS measurements from low altitude aircraft. Possible reasons for this are discussed. The ability to measure the ocean directional spectrum with the two frequency scatterometer, with supporting MTF data, is demonstrated.

  15. The SeaWinds Scatterometer Antenna Subsystem on the QuikScat Spacecraft

    NASA Technical Reports Server (NTRS)

    Workman, Brian J.; Schwartzbaum, Eric

    2000-01-01

    In today's environment of "Better, Faster, Cheaper", the ability to produce reliable, flight-proven mechanisms for mission critical applications is more important than ever. Such a mechanism was produced for the QuikScat satellite. The Scatterometer Antenna Subsystem (SAS) is a spin mechanism that continuously rotates a scatterometer antenna, and includes the necessary features (rotary interfaces, drives, launch locks, etc) to allow collection of the scatterometry data that will insure mission success. This paper will discuss the evolution of the SAS from its design heritage on the GGS Polar mission to qualification on the ADEOS II satellite to being a key enabler for the rapid development of the QuikScat Satellite.

  16. A model of the 0.4-GHz scatterometer. [used for agriculture soil moisture program

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1978-01-01

    The 0.4 GHz aircraft scatterometer system used for the agricultural soil moisture estimation program is analyzed for the antenna pattern, the signal flow in the receiver data channels, and the errors in the signal outputs. The operational principal, system sensitivity, data handling, and resolution cell length requirements are also described. The backscattering characteristics of the agriculture scenes are contained in the form of the functional dependence of the backscattering coefficient on the incidence angle. The substantial gains of the cross-polarization term of the horizontal and vertical antennas have profound effects on the cross-polarized backscattered signals. If these signals are not corrected properly, large errors could result in the estimate of the cross-polarized backscattering coefficient. It is also necessary to correct the variations of the aircraft parameters during data processing to minimize the error in the 0 degree estimation. Recommendations are made to improve the overall performance of the scatterometer system.

  17. Statistical evaluation of thermal advection and stratification effects in scatterometer observations

    NASA Technical Reports Server (NTRS)

    Levy, Gad; Tiu, F. S.

    1991-01-01

    The effects of thermal advection and atmospheric stratification are statistically evaluated using Seasat scatterometer observations as a data base. The results indicate that, whenever the surface winds or wind stress are related to the atmospheric pressure field, the appropriate stratification and baroclinic corrections should be applied. Without such corrections, errors of 15-25 percent are likely to arise in the surface fluxes computed from model low-level winds or pressure measurements.

  18. A Summary of Scatterometer Returns from Water Surfaces Agitated by Rain

    NASA Technical Reports Server (NTRS)

    Bliven, Larry F.; Giovanangeli, Jean-Paul; Branger, Hubert; Sobieski, Piotr W.

    1997-01-01

    In this paper, we summarize our initial findings from K(a)- and K(u)-band scatterometers which include: a scaling law for backscattered power as a function of rain rate; a linear superposition model for light rains and low wind speeds; evidence of the importance of scattering from rain-generated ring-waves; and progress towards development of a scattering model for computing normalized radar cross sections from wind and rain roughened water surfaces.

  19. Understanding Oceanic Heavy Precipitation Using Scatterometer, Satellite Precipitation, and Reanalysis Products

    NASA Technical Reports Server (NTRS)

    Garg, Piyush; Nesbitt, Stephen W.; Lang, Timothy J.; Chronis, Themis

    2016-01-01

    The primary aim of this study is to understand the heavy precipitation events over Oceanic regions using vector wind retrievals from space based scatterometers in combination with precipitation products from satellite and model reanalysis products. Heavy precipitation over oceans is a less understood phenomenon and this study tries to fill in the gaps which may lead us to a better understanding of heavy precipitation over oceans. Various phenomenon may lead to intense precipitation viz. MJO (Madden-Julian Oscillation), Extratropical cyclones, MCSs (Mesoscale Convective Systems), that occur inside or outside the tropics and if we can decipher the physical mechanisms behind occurrence of heavy precipitation, then it may lead us to a better understanding of such events which further may help us in building more robust weather and climate models. During a heavy precipitation event, scatterometer wind observations may lead us to understand the governing dynamics behind that event near the surface. We hypothesize that scatterometer winds can observe significant changes in the near-surface circulation and that there are global relationships among these quantities. To the degree to which this hypothesis fails, we will learn about the regional behavior of heavy precipitation-producing systems over the ocean. We use a "precipitation feature" (PF) approach to enable statistical analysis of a large database of raining features.

  20. Soil moisture retrieval using ground based bistatic scatterometer data at X-band

    NASA Astrophysics Data System (ADS)

    Gupta, Dileep Kumar; Prasad, Rajendra; Kumar, Pradeep; Vishwakarma, Ajeet Kumar

    2017-02-01

    Several hydrological phenomenon and applications need high quality soil moisture information of the top Earth surface. The advent of technologies like bistatic scatterometer can retrieve soil moisture information with high accuracy and hence used in present study. The radar data is acquired by specially designed ground based bistatic scatterometer system in the specular direction of 20-70° incidence angles at steps of 5° for HH and VV polarizations. This study provides first time comprehensive evaluation of different machine learning algorithms for the retrieval of soil moisture using the X-band bistatic scatterometer measurements. The comparison of different artificial neural network (ANN) models such as back propagation artificial neural network (BPANN), radial basis function artificial neural network (RBFANN), generalized regression artificial neural network (GRANN) along with linear regression model (LRM) are used to estimate the soil moisture. The performance indices such as %Bias, Root Mean Squared Error (RMSE) and Nash-Sutcliffe Efficiency (NSE) are used to evaluate the performances of the machine learning techniques. Among different models employed in this study, the BPANN is found to have marginally higher performance in case of HH polarization while RBFANN is found suitable with VV polarization followed by GRANN and LRM. The results obtained are of considerable scientific and practical value to the wider scientific community for the number of practical applications and research studies in which radar datasets are used.

  1. SeaWinds Scatterometer on QuikSCAT Mission and the Emerging Land and Ocean Applications

    NASA Technical Reports Server (NTRS)

    Tsai, W.-Y.; Nghiem, S. V.; Vanzyl, J. J.

    2000-01-01

    Spaceborne scatterometers are active microwave radar instruments designed to acquire near-simultaneous, spatially collocated measurements of the normalized radar backscattering cross section (sigma0) of the global surface from several azimuth and/or incidence angles. The primary objective of the scatterometer mission is to measure the near-surface wind speed and direction over the global ocean using sigma0 measurements together with a wind geophysical model function. However, since sigma0 measurements are collected globally all the time, sigma0 data can also be used for global land and ice applications. In this paper, we will first present the objectives of the QSCAT mission, the instrument design, and the unique features of the Ku-band scatterometer currently in operation, called SeaWinds on QuikSCAT (QSCAT). We will then present some emerging land and ocean applications of the QSCAT data, which include (1) global snow detection and monitoring, (2) melt region mapping on the Greenland ice sheet, (3) Monsoon flood detection and monitoring, (4) soil wetness application at large scale, and (5) hurricane monitoring and tracking.

  2. ERS-1 Investigations of Southern Ocean Sea Ice Geophysics Using Combined Scatterometer and SAR Images

    NASA Technical Reports Server (NTRS)

    Drinkwater, M.; Early, D.; Long, D.

    1994-01-01

    Coregistered ERS-1 SAR and Scatterometer data are presented for the Weddell Sea, Antarctica. Calibrated image backscatter statistics are extracted from data acquired in regions where surface measurements were made during two extensive international Weddell Sea experiments in 1992. Changes in summer ice-surface conditions, due to temperature and wind, are shown to have a large impact on observed microwave backscatter values. Winter calibrated backscatter distributions are also investigated as a way of describing ice thickness conditions in different location during winter. Coregistered SAR and EScat data over a manned drifting ice station are used to illustrate the seasonal signature changes occurring during the fall freeze-up transition.

  3. Application of SeaWinds Scatterometer Data to Weather Analysis and Forecasting

    NASA Technical Reports Server (NTRS)

    Atlas, Robert

    2003-01-01

    The SeaWinds scatterometer (like NSCAT and ERS) is able to detect unequivocal signatures of meteorological features including cyclones, fronts, anticyclones, easterly waves and other precursors of hurricanes and typhoons. Through collaborative efforts between NASA and NOAA, National Weather Service marine forecasters are using SeaWinds data to improve analyses, forecasts and significant weather warnings for maritime interests. This results in substantial economic savings as well as the reduction of weather related loss of life at sea. The impact of SeaWinds on Numerical Weather Prediction models is on average modest but occasionally results in significant forecast improvements.

  4. The Detection and Mitigation of RFI with the Aquarius L-Band Scatterometer

    NASA Technical Reports Server (NTRS)

    Freedman, A. P.; Piepmeier, J. R.; Fischman, M. A.; McWatters, D. A.; Spencer, M. W.

    2008-01-01

    The Aquarius sea-surface salinity mission includes an L-band scatterometer to sense sea-surface roughness. This radar is subject to radio-frequency interference (RFI) in its passband from 1258 to 1262 MHz, a region also allocated for terrestrial radio location. Due to its received power sensitivity requirements, the expected RFI environment poses significant challenges. We present the results of a study evaluating the severity of terrestrial RFI sources on the operation of the Aquarius scatterometer, and propose a scheme to both detect and remove problematic RFI signals in the ocean backscatter measurements. The detection scheme utilizes the digital sampling of the ambient input power to detect outliers from the receiver noise floor which are statistically significant, and flags nearby radar echoes as potentially contaminated by RFI. This detection strategy, developed to meet tight budget and data downlink requirements, has been implemented and tested in hardware, and shows great promise for the detection and global mapping of L-band RFI sources.

  5. Global composites of surface wind speeds in tropical cyclones based on a 12 year scatterometer database

    NASA Astrophysics Data System (ADS)

    Klotz, Bradley W.; Jiang, Haiyan

    2016-10-01

    A 12 year global database of rain-corrected satellite scatterometer surface winds for tropical cyclones (TCs) is used to produce composites of TC surface wind speed distributions relative to vertical wind shear and storm motion directions in each TC-prone basin and various TC intensity stages. These composites corroborate ideas presented in earlier studies, where maxima are located right of motion in the Earth-relative framework. The entire TC surface wind asymmetry is down motion left for all basins and for lower strength TCs after removing the motion vector. Relative to the shear direction, the motion-removed composites indicate that the surface wind asymmetry is located down shear left for the outer region of all TCs, but for the inner-core region it varies from left of shear to down shear right for different basin and TC intensity groups. Quantification of the surface wind asymmetric structure in further stratifications is a necessary next step for this scatterometer data set.

  6. An analysis of Skylab II S193 scatterometer data. [for oceanographic data acquisitions

    NASA Technical Reports Server (NTRS)

    Jordan, A. K.; Purves, C. G.; Diggs, J. F.

    1976-01-01

    Skylab II S193 scatterometer data for the passes of June 5, 1973, over the Gulf of Mexico and June 6, 1973, over Pacific Hurricane AVA were analyzed. These two passes were chosen since it was possible to correlate the scattering data with simultaneous measurements of the local ocean wind conditions. The S193 scatterometer measured the radar cross section of the ocean at 13.9 GHz (Ku-band) as a function of incidence angle. The S193 data of June 5, 1973, when a practically uniform wind field was present, show reasonable agreement with the Naval Research Laboratory (NRL) empirical and theoretical models. The data of June 6, 1973, are more complex, due to rapid variations in wind speeds and directions around Hurricane AVA. The NRL empirical model was interpolated to account for variation in wind heading relative to the S193 antenna pointing direction; a reasonable comparison could then be made with the corresponding S193 data of June 6, 1973.

  7. Assimilation of scatterometer winds into surface pressure fields using a variational method

    NASA Technical Reports Server (NTRS)

    Harlan, J., Jr.; Obrien, J. J.

    1986-01-01

    A variational formulation was used to assimilate Seasat-A scatterometer (SASS) surface wind measurements near and during a severe storm in the North Atlantic into conventional National Meteorological Center sea level pressure fields. An estimate of the relative vorticity at every point on a grid was calculated using each of these two data sets. A solution to a modified geostrophic stream function is found subject to the constraints that (1) the relative vorticities calculated from the data agree as closely as possible with the relative vorticities from the variational solution, and that (2) the average kinetic energy is a minimum. Results are obtained which support the idea that averaged satellite data can be treated as synoptic data. Direct substitution rather than a time-weighted insertion made from SASS winds generally resulted in more accurate pressure analyses. In addition, this relatively simple model provides surface pressure fields which agree extremely well with surface truth and the results of other investigators who required additional sources of input data into more complex models. It will be possible to obtain improved wind field maps from future scatterometer pressure fields in mid-latitudes.

  8. Seasat over-land scatterometer data. I - Global overview of the Ku-band backscatter coefficients

    NASA Technical Reports Server (NTRS)

    Kennett, Rosemary G.; Li, Fuk K.

    1989-01-01

    Statistics on the backscatter coefficient sigma(0) from the Ku-band Seasat-A Satellite Scatterometer (SASS) collected over the world's land surfaces are presented. This spaceborne scatterometer provided data on sigma(0) between latitudes 80 deg S and 80 deg N at incidence angles up to 70 deg. The global statistics of vertical (V) and horizontal (H) polarization backscatter coefficients for 10 deg bands in latitude are presented for incidence angles between 20 deg and 70 deg and compared with the Skylab and ground spectrometer results. Global images of the time-averaged V polarization sigma(0) at a 45 deg incidence angle and its dependence on the incidence angle are presented and compared to a generalized map of the terrain type. Global images of the differences between the V and H polarization backscatter coefficients are presented and discussed. The most inhomogeneous region, which contains the deserts of North Africa and the Arabian Peninsula, is studied in greater detail and compared with the terrain type.

  9. Design of an Airborne L-Band Cross-Track Scanning Scatterometer

    NASA Technical Reports Server (NTRS)

    Hilliard, Lawrence M. (Technical Monitor)

    2002-01-01

    In this report, we describe the design of an airborne L-band cross-track scanning scatterometer suitable for airborne operation aboard the NASA P-3 aircraft. The scatterometer is being designed for joint operation with existing L-band radiometers developed by NASA for soil moisture and ocean salinity remote sensing. In addition, design tradeoffs for a space-based radar system have been considered, with particular attention given to antenna architectures suitable for sharing the antenna between the radar and radiometer. During this study, we investigated a number of imaging techniques, including the use of real and synthetic aperture processing in both the along track and cross-track dimensions. The architecture selected will permit a variety of beamforming algorithms to be implemented, although real aperture processing, with hardware beamforming, provides better sidelobe suppression than synthetic array processing and superior signal-to-noise performance. In our discussions with the staff of NASA GSFC, we arrived at an architecture that employs complete transmit/receive modules for each subarray. Amplitude and phase control at each of the transmit modules will allow a low-sidelobe transmit pattern to be generated over scan angles of +/- 50 degrees. Each receiver module will include all electronics necessary to downconvert the received signal to an IF offset of 30 MHz where it will be digitized for further processing.

  10. An airborne C-band scatterometer for remote sensing the air-sea interface

    NASA Technical Reports Server (NTRS)

    Mclaughlin, D. J.; Pazmany, A. L.; Boltniew, E.; Hevizi, L. G.; Mcintosh, R. E.

    1989-01-01

    An airborne C-band scatterometer system (C-Scat) has been developed for remote sensing of the air-sea interface. The sensor has been designed to fly on a number of research aircraft, beginning with the NASA Ames Research Center's C-130B, on which test flights were conducted in August of 1988. The scatterometer utilizes a 10-W solid-state power amplifier and a frequency-steered microstrip array antenna which is installed beneath the fuselage of the airplane. The antenna is electrically scanned in elevation from 20 to 50 deg off nadir, and it is mechanically rotated 360 deg in azimuth. The system is fully computer controlled and is capable of accurately measuring ocean-surface normalized radar cross section (NRCS) from altitudes as high as 25,000 feet. It has been developed to study the relationship between NRCS and ocean-surface roughness influences such as wind speed and direction, wave height and slope, and air-sea temperature difference.

  11. A C-band scatterometer for remote sensing the air-sea interface

    NASA Technical Reports Server (NTRS)

    Mclaughlin, David J.; Mcintosh, Robert E.; Pazmany, Andrew; Hevizi, Laszlo; Boltniew, Eugene

    1991-01-01

    An airborne C-band scatterometer system (C-Scat) has been developed to remotely sense ocean surface winds and improve upon the present understanding of the relationship between normalized radar cross section (NRCS) and ocean surface roughness influences such as wind speed and direction, wave height and slope, and the air-sea temperature difference. The scatterometer utilizes a unique frequency-steered microstrip array antenna that is installed beneath the fuselage of an airplane. The antenna is electronically scanned in elevation, from 20 deg to 50 deg off-nadir, and mechanically spins in azimuth. The system is capable of measuring ocean surface NRCS from altitudes as high as 25,000 ft. The transmitter and receiver operate from 4.98 to 5.7 GHz. System parameters such as transmitter pulse width, pulse repetition frequency, output power level, and receiver bandwidth are programmable. Received signals can be averaged and displayed in real time and are stored on a Winchester disk drive for post-flight analysis. Preliminary flight data that demonstrates the instrument's performance is presented.

  12. Global analysis of ocean surface wind and wind stress using a general circulation model and Seasat scatterometer winds

    NASA Technical Reports Server (NTRS)

    Kalnay, E.; Atlas, R.

    1986-01-01

    Instantaneous and 15-day time-averaged fields of surface wind, wind stress, curl of the wind stress, and wind divergence are presented. These fields are derived from the Goddard Laboratory for Atmospheres four-dimensional analysis/forecast cycle, for the period September 6-30, 1978, using conventional data, satellite temperature soundings, cloud-track winds, and subjectively dealiased Seasat scatterometer winds.

  13. Feasibility study of microprocessor systems suitable for use in developing a real-time for the 4.75 GHz scatterometer

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A class of signal processors suitable for the reduction of radar scatterometer data in real time was developed. The systems were applied to the reduction of single polarized 13.3 GHz scatterometer data and provided a real time output of radar scattering coefficient as a function of incident angle. It was proposed that a system for processing of C band radar data be constructed to support scatterometer system currently under development. The establishment of a feasible design approach to the development of this processor system utilizing microprocessor technology was emphasized.

  14. Global Tropical Cyclone Winds from the QuikSCAT and OceanSAT-2 Scatterometers

    NASA Astrophysics Data System (ADS)

    Stiles, B. W.; Danielson, R. E.; Poulsen, W. L.; Fore, A.; Brennan, M. J.; Shen, T. J.; Hristova-Veleva, S. M.

    2012-12-01

    We have produced a comprehensive set of tropical cyclone storm wind retrieval scenes for all ten years of QuikSCAT data and one year of OceanSAT-2 data. The wind speeds were corrected for rain and optimized to avoid saturation at high winds using an artificial neural network method similar to that in [1] and [2]. The QuikSCAT wind imagery and the quantitative speed, direction, and backscatter data can be obtained at http://tropicalcyclone.jpl.nasa.gov. The QuikSCAT wind speeds have been validated against best track intensity (i.e., maximum wind speeds), H*WIND tropical cyclone wind model analysis fields, and wind speeds from aircraft overflights (GPS drop wind sondes and step frequency microwave radiometer (SFMR) wind measurements). Storms from all basins are included for a total of 21600 scenes over the ten years of nominal QuikSCAT operations. Of these, 11435 scenes include the best track center of the cyclone in the retrieved wind field. Among these, 3295 were of tropical storms and 788, 367, 330, 289, and 55 were of category 1, 2, 3, 4 and 5 hurricanes, respectively, on the Saffir-Simpson Hurricane Wind Scale. In addition to the QuikSCAT hurricane winds, we have also processed one year of wind fields from the Indian Space Research organization (ISRO) OceanSAT-2 satellite. OceanSAT-2 employs a scanning pencil beam Ku-band scatterometer with a design similar to QuikSCAT. JPL and NOAA have been working extensively with ISRO to aid in cross calibration between OceanSAT-2 and QuikSCAT. Toward this end the QuikSCAT instrument has been repointed in order to acquire data at the OceanSAT-2 incidence angles, and several meetings in India between the teams have taken place. The neural network that was trained on QuikSCAT data was used to retrieve OceanSAT-2 winds. The backscatter inputs to the network were transformed to match the histograms of the corresponding values in the QuikSCAT data set. We examine the scatterometer winds to investigate the relationship between

  15. SASS wind ambiguity removal by direct minimization. [Seasat-A satellite scatterometer

    NASA Technical Reports Server (NTRS)

    Hoffman, R. N.

    1982-01-01

    An objective analysis procedure is presented which combines Seasat-A satellite scatterometer (SASS) data with other available data on wind speeds by minimizing an objective function of gridded wind speed values. The functions are defined as the loss functions for the SASS velocity data, the forecast, the SASS velocity magnitude data, and conventional wind speed data. Only aliases closest to the analysis were included, and a method for improving the first guess while using a minimization technique and slowly changing the parameters of the problem is introduced. The model is employed to predict the wind field for the North Atlantic on Sept. 10, 1978. Dealiased SASS data is compared with available ship readings, showing good agreement between the SASS dealiased winds and the winds measured at the surface. Expansion of the model to take in low-level cloud measurements, pressure data, and convergence and cloud level data correlations is discussed.

  16. Development and usage of a false color display technique for presenting Seasat-A scatterometer data

    NASA Technical Reports Server (NTRS)

    Jackson, C. B.

    1980-01-01

    A computer generated false color program which creates digital multicolor graphics to display geophysical surface parameters measured by the Seasat-A satellite scatterometer (SASS) is described. The data is incrementally scaled over the range of acceptable values and each increment and its data points are assigned a color. The advantage of the false color display is that it visually infers cool or weak data versus hot or intense data by using the rainbow of colors. For example, with wind speeds, levels of yellow and red could be used to imply high winds while green and blue could imply calmer air. The SASS data is sorted into geographic regions and the final false color images are projected onto various world maps with superimposed land/water boundaries.

  17. The design of an onboard digital Doppler processor for a spaceborne scatterometer

    NASA Technical Reports Server (NTRS)

    Long, David G.; Chi, Chong-Yung; Li, Fuk K.

    1988-01-01

    A digital Doppler processor, which will permit the Doppler center frequency of the measurement cell bandwidths to be adjusted to compensate for the effects of the earth's rotation, will be used in the next NASA spaceborn scatterometer known as NSCAT. The authors describe the design and genesis of the NSCAT digital Doppler processor and discusses the performance tradeoff issues that were evaluated during the design phase. In this FFT (fast Fourier transform)-based technique, computation of the adjustment to the cell center frequencies will be done onboard using an approximate expression for the Doppler shift of the cell center versus orbit time. This technique also permits modification of the parameters used to locate the radar-backscatter-coefficient measurement cells by ground command in response to orbit changes.

  18. SEASAT: A satellite scatterometer illumination times of selected in situ sites

    NASA Technical Reports Server (NTRS)

    Schroeder, L. C.; Goodridge, D. R.; Boberly, J. C.; Hughes, J. K.; Sweet, J. L.

    1982-01-01

    A list of times that the SEASAT A Satellite Scatterometer (SASS) illuminated from directly above or directly abeam, selected surface sites where in situ winds were measured is provided. The list is ordered by the Greenwich Mean Time (GMT) of the midpoint of the illumination period (hit time) for a given surface site. The site identification, the orbit number and the direction from the subtrack in which the truth lies are provided. The accuracy of these times depends in part upon the ascending node times, which are estimated to be within +.1 sec, and on the illumination time relative to the ascending node, which is estimated to be within +6 seconds. The uncertainties in the times provided were judged to be sufficiently small to allow efficient and accurate extraction of SASS and in situ data at the selected surface sites. The list contains approximately six thousand hit times from 61 geographically dispersed sites.

  19. New Scatterometer for Spatial Distribution Measurements of Light Scattering from Materials

    NASA Astrophysics Data System (ADS)

    Kawate, E.; Hain, M.

    2012-01-01

    A new scatterometer is composed of two ellipsoidal mirrors of revolution and an optical detection system. It enables us to absolutely measure diffuse reflectance and transmittance and to measure the spatial distribution of light scattering from almost all materials. The optical detection system has been developed both to measure total photo-intensity using a photodiode and to capture the imaging data using a CCD camera. This results in faster, more complete and often more accurate measurements than can be achieved with traditional goniometric methods and integrated sphere methods. The absolute total integrated reflectance and transmittance of well-known samples were measured and the spatial distribution of light scattering from a diffraction grating was captured and evaluated.

  20. Scatterometer basing on a STAR GEM idea for optical measurements of microlenses

    NASA Astrophysics Data System (ADS)

    Kawate, Etsuo; Hain, Miroslav

    2012-10-01

    It is important to measure both reflectance (R ) and transmittance (T ) with the same accuracy. But many commercial accessories are exchanged by themselves or a sample is replaced on the other position in one accessory, when the reflection measurement is changed from the transmission measurement, so that it is impossible to measure reflectance and transmittance with the same accuracy. Accordingly the absorptance (A=1-R-T ) of the sample is not a sufficient index to evaluate the optical properties. A new scatterometer, which overcomes the defect, has been developed in AIST. It consists mainly of two ellipsoidal mirrors and a new detection system, which is composed of a hemispherical lens, a fiber optic taper and a CCD camera. These mirrors are a belt-shape and a quarter ellipsoidal mirrors with two focal points and are combined such that each focal point is a common focal point, on which the sample is placed. A rotating mirror is set on a remaining focal point of the belt-shape mirror. Each arrangement, where the rotating mirror looks at the upper or lower arm of the belt-shape mirror, is for the transmission or reflection measurement, respectively. The center of the hemispherical lens in the detection system is set on a remaining focal point of the quarter mirror, the incident plane of the fiber optic taper coincides with the image plane of the hemispherical lens and the outgoing plane of the fiber optic taper is in contact with the CCD camera. A clear image can be obtained using this detection system. The absolute values of the reflectance and transmittance and the light distributions of the reflection and transmission of the micro-ball-lenses, whose radii were 0.75, 1, 2.5 and 4.8mm, were measured. The systematic errors of our scatterometer are briefly discussed.

  1. Measurement of the Muller matrix for painted surfaces with a kind of scatterometer

    NASA Astrophysics Data System (ADS)

    Feng, Weiwei; Wei, Qingnong; Chen, Lingxin

    2010-10-01

    The polarized light scattered by the surface of a material contains information that can be used to describe the properties of the surfaces. Polarized Bidirectional Reflectance Distribution Function (BRDF) is one of the most important factors used to represent the property of the surface. It uses a 4×4 matrix (Mueller matrix) to describe the properties of the light scattered from the surface. In order to measure the Mueller matrix of the samples, a new three axis automated scatterometer has been developed to measure the Mueller matrix of painted surfaces. It can do measurement at any illumination and viewing geometric of the hemisphere and it is more convenient for far-field measurement is presented. The design of the instrument is different to the traditional scatterometer. The significant characteristic of the instrument is that the detector and polarization analyzer are fixed, while the source and the incident optical elements rotate on a stage together. All the possible incident and viewing positions can be reached through the rotation of three motors. The rotations of the motors are fed back through photoelectric- encoders, the "closed loop" control mode ensured the precision of the position. Through coordinate transformations, the measurement in three dimensions can be simplified in two dimensional form, the details of the coordinate transformations will be described in detail in this paper. The dualrotating retarders method is used to modulate polarizing and analyzing optics. Two retarders rotate synchronously at angular speed and respectively. For every position, 16 measurements were done, and the Discrete Fourier Transform (DFT) method is used to retrieve the Mueller matrix of the sample. Discrete Fourier Transform (DFT) method is used to retrieve the Mueller matrix of the sample. The results of out-plane polarized bidirectional reflectance distribution function for samples coated with different paints are presented.

  2. Estimates of oceanic surface wind speed and direction using orthogonal beam scatterometer measurements and comparison of recent sea scattering theories

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Fung, A. K.; Dome, G. J.; Birrer, I. J.

    1978-01-01

    The wind direction properties of radar backscatter from the sea were empirically modelled using a cosine Fourier series through the 4th harmonic in wind direction (referenced to upwind). A comparison with 1975 JONSWAP (Joint North Sea Wave Project) scatterometer data, at incidence angles of 40 and 65, indicates that effects to third and fourth harmonics are negligible. Another important result is that the Fourier coefficients through the second harmonic are related to wind speed by a power law expression. A technique is also proposed to estimate the wind speed and direction over the ocean from two orthogonal scattering measurements. A comparison between two different types of sea scatter theories, one type presented by the work of Wright and the other by that of Chan and Fung, was made with recent scatterometer measurements. It demonstrates that a complete scattering model must include some provisions for the anisotropic characteristics of the sea scatter, and use a sea spectrum which depends upon wind speed.

  3. Skylab program earth resouces experiment package. Volume 4: Sensor performance evaluation (S193 R/S). [radiometer/scatterometer

    NASA Technical Reports Server (NTRS)

    Kenney, G. P.

    1975-01-01

    The results of the sensor performance evaluation of the 13.9 GHz radiometer/scatterometer, which was part of the earth resources experiment package on Skylab. Findings are presented in the areas of housekeeping parameters, antenna gain and scanning performance, dynamic range, linearity, precision, resolution, stability, integration time, and transmitter output. Supplementary analyses covering performance anomalies, data stream peculiarities, aircraft sensor data comparisons, scatterometer saturation characteristics, and RF heating effects are reported. Results of the evaluation show that instrument performance was generally as expected, but capability degradations were observed to result from three major anomalies. Conclusions are drawn from the evaluation results, and recommendations for improving the effectiveness of a future program are offered. An addendum describes the special evaluation techniques developed and applied in the sensor performance evaluation tasks.

  4. The development of a power spectral density processor for C and L band airborne radar scatterometer sensor systems

    NASA Technical Reports Server (NTRS)

    Harrison, D. A., III; Chladek, J. T.

    1983-01-01

    A real-time signal processor was developed for the NASA/JSC L-and C-band airborne radar scatterometer sensor systems. The purpose of the effort was to reduce ground data processing costs. Conversion of two quadrature channels of data (like and cross polarized) was made to obtain Power Spectral Density (PSD) values. A chirp-z transform (CZT) approach was used to filter the Doppler return signal and improved high frequency and angular resolution was realized. The processors have been tested with record signals and excellent results were obtained. CZT filtering can be readily applied to scatterometers operating at other wavelengths by altering the sample frequency. The design of the hardware and software and the results of the performance tests are described in detail.

  5. The Aquarius Scatterometer: An Active System for Measuring Surface Roughness for Sea-Surface Brightness Temperature Correction

    NASA Technical Reports Server (NTRS)

    Freedman, Adam; McWatters, Dalia; Spencer, Michael

    2006-01-01

    The Aquarius scatterometer is a total-power L-band radar system for estimating ocean surface roughness. Its measurements will enable the removal of wind effects from the Aquarius radiometer ocean-surface brightness temperature measurements being used to retrieve ocean salinity. The Aquarius scatterometer is a relatively simple, low-spatial resolution power-detecting radar, without ranging capability. But to meet its science requirement, it must be very stable, with repeatability on the order of 0.1 dB over several days, and calibrated accuracy to this level over several months. Data from this instrument over land as well as ocean areas will be available for a variety of geophysical applications.

  6. A day-to-day comparison study of Seasat scatterometer winds with winds observed from islands in the tropical Pacific

    NASA Technical Reports Server (NTRS)

    Davison, Jerry; Harrison, D. E.

    1989-01-01

    The winds derived from the Seasat-A Satellite Scatterometer (SASS) measurements have been the subject of great interest since the 1978 mission, because of the promise of radically improved wind observations over the world ocean. Due to the early end of the mission, only a few of the planned ground truth validation experiments could be made, and the subsequent lack of sufficient high quality independent wind data for comparison has limited the ability to resolve critical issues regarding the scatterometer's performance and the correct interpretation of its signal. Operational weather observations were made of ocean winds independent of Seasat mission plans during the Seasat mission period; the results are reported of a comparison study using such observations. Previous verification with in situ winds has been primarily in middle latitudes (GOASEX, JASIN, and NDBO buoys); winds observed from nine tropical Pacific islands are compared with nearly contemporaneous measurements taken by SASS during overpasses of the islands.

  7. A high-resolution scanning pencil-beam scatterometer: system design challenges

    NASA Astrophysics Data System (ADS)

    Chakraborty, Prantik; Gupta, Priyanka; Misra, Tapan

    2016-05-01

    The scanning pencil-beam Scatterometer configuration is pretty effective in covering a large ground-swath by rotating a moderately sized paraboloid dish at a moderate speed. For example, Oscat (Oceansat-II Scatterometer) did cover a ground-swath of 1550km using a 1m diameter reflector that was rotated at 20.5 rpm. The decade-long service (1999-2009) provided by the Seawinds instrument onboard the Quikscat mission followed by an almost half-a-decade (2009-2014) service of Oscat has made this configuration tremendously popular with the global user community. A major drawback of conventional pencil-beam systems like Seawinds and Oscat is the relatively poor spatial resolution. The ground-resolution is beamwidth-limited azimuthally while, in elevation, the resolution is improved by engaging pulse-compression and range-binning. Oscat's Instantaneous Field of View (IFOV) was 25km wide in azimuth (az) and 50km in elevation (el) at 49° incidence angle. The range-compressed resolution bins had dimensions of 6km (el) x 25km (az). Therefore, qualified wind products could be generated upon square grids no finer than 25km x 25km resolution. According to recommendations of International Ocean Vector Wind Science Team (IOVWST) and Oscat user community, high-resolution scatterometry is the requirement of the day with wind-vector cell-size dimension of 5km or better. One way to improve the resolution is to adopt the SAR principle of Range-Doppler discrimination in the scanning pencil-beam configuration. The footprint can be resolved simultaneously in range as well as in azimuth, thus significantly improving the size of the combined Range-Doppler resolution bin ( 1km). However, the addition of Doppler filtering to conically scanning radar brings with it its own disadvantages e.g. the limitations of dwell time and the constant change in orientation of isodop lines. This paper presents the constraints in system design of high-resolution scanning systems, the design trade-offs, the

  8. Addressing sub-scan variability of tundra snow properties in ground-based Ku- and X-band scatterometer observations

    NASA Astrophysics Data System (ADS)

    King, J. M.; Kasurak, A.; Kelly, R. E.; Duguay, C. R.; Derksen, C.; Rutter, N.; Sandells, M.; Watts, T.

    2012-12-01

    During the winter of 2010-2011 ground-based Ku- (17.2 GHz) and X-band (9.6 GHz) scatterometers were deployed near Churchill, Manitoba, Canada to evaluate the potential for dual-frequency observation of tundra snow properties. Field-based scatterometer observations when combined with in-situ snowpack properties and physically based models, provide the means necessary to develop and evaluate local scale property retrievals. To form meaningful analysis of the observed physical interaction space, potential sources of bias and error in the observed backscatter must be identified and quantified. This paper explores variation in observed Ku- and X-band backscatter in relation to the physical complexities of shallow tundra snow whose properties evolve at scales smaller than the observing instrument. The University of Waterloo scatterometer (UW-Scat) integrates observations over wide azimuth sweeps, several meters in length, to minimize errors resulting from radar fade and poor signal-to-noise ratios. Under ideal conditions, an assumption is made that the observed snow target is homogeneous. Despite an often-outward appearance of homogeneity, topographic elements of the Canadian open tundra produce significant local scale variability in snow properties, including snow water equivalent (SWE). Snow at open tundra sites observed during this campaign was found to vary by as much as 20 cm in depth and 40 mm in SWE within the scatterometer field of view. Previous studies suggest that changes in snow properties on this order will produce significant variation in backscatter, potentially introducing bias into products used for analysis. To assess the influence of sub-scan variability, extensive snow surveys were completed within the scatterometer field of view immediately after each scan at 32 sites. A standardized sampling protocol captured a grid of geo-located measurements, characterizing the horizontal variability of bulk properties including depth, density, and SWE. Based upon

  9. Selection of optimum median-filter-based ambiguity removal algorithm parameters for NSCAT. [NASA scatterometer

    NASA Technical Reports Server (NTRS)

    Shaffer, Scott; Dunbar, R. Scott; Hsiao, S. Vincent; Long, David G.

    1989-01-01

    The NASA Scatterometer, NSCAT, is an active spaceborne radar designed to measure the normalized radar backscatter coefficient (sigma0) of the ocean surface. These measurements can, in turn, be used to infer the surface vector wind over the ocean using a geophysical model function. Several ambiguous wind vectors result because of the nature of the model function. A median-filter-based ambiguity removal algorithm will be used by the NSCAT ground data processor to select the best wind vector from the set of ambiguous wind vectors. This process is commonly known as dealiasing or ambiguity removal. The baseline NSCAT ambiguity removal algorithm and the method used to select the set of optimum parameter values are described. An extensive simulation of the NSCAT instrument and ground data processor provides a means of testing the resulting tuned algorithm. This simulation generates the ambiguous wind-field vectors expected from the instrument as it orbits over a set of realistic meoscale wind fields. The ambiguous wind field is then dealiased using the median-based ambiguity removal algorithm. Performance is measured by comparison of the unambiguous wind fields with the true wind fields. Results have shown that the median-filter-based ambiguity removal algorithm satisfies NSCAT mission requirements.

  10. Design Data Collection with Skylab Microwave Radiometer-Scatterometer S-193, Volume 1

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Ulaby, F. T. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Observations with S-193 have provided radar design information for systems to be flown on spacecraft, but only at 13.9 GHz and for land areas over the United States and Brazil plus a few other areas of the world for which this kind of analysis was not made. Observations only extended out to about 50 deg angle of incidence. The value of a sensor with such a gross resolution for most overland resource and status monitoring systems seems marginal, with the possible exception of monitoring soil moisture and major vegetation variations. The complementary nature of the scatterometer and radiometer systems was demonstrated by the correlation analysis. Although radiometers must have spatial resolutions dictated by antenna size, radars can use synthetic aperture techniques to achieve much finer resolutions. Multiplicity of modes in the S-193 sensors complicated both the system development and its employment. An attempt was made in the design of the S-193 to arrange optimum integration times for each angle and type of measurement. This unnecessarily complicated the design of the instrument, since the gains in precision achieved in this way were marginal. Either a software-controllable integration time or a set of only two or three integration times would have been better.

  11. Extended volume and surface scatterometer for optical characterization of 3D-printed elements

    NASA Astrophysics Data System (ADS)

    Dannenberg, Florian; Uebeler, Denise; Weiß, Jürgen; Pescoller, Lukas; Weyer, Cornelia; Hahlweg, Cornelius

    2015-09-01

    The use of 3d printing technology seems to be a promising way for low cost prototyping, not only of mechanical, but also of optical components or systems. It is especially useful in applications where customized equipment repeatedly is subject to immediate destruction, as in experimental detonics and the like. Due to the nature of the 3D-printing process, there is a certain inner texture and therefore inhomogeneous optical behaviour to be taken into account, which also indicates mechanical anisotropy. Recent investigations are dedicated to quantification of optical properties of such printed bodies and derivation of corresponding optimization strategies for the printing process. Beside mounting, alignment and illumination means, also refractive and reflective elements are subject to investigation. The proposed measurement methods are based on an imaging nearfield scatterometer for combined volume and surface scatter measurements as proposed in previous papers. In continuation of last year's paper on the use of near field imaging, which basically is a reflective shadowgraph method, for characterization of glossy surfaces like printed matter or laminated material, further developments are discussed. The device has been extended for observation of photoelasticity effects and therefore homogeneity of polarization behaviour. A refined experimental set-up is introduced. Variation of plane of focus and incident angle are used for separation of various the images of the layers of the surface under test, cross and parallel polarization techniques are applied. Practical examples from current research studies are included.

  12. Large-scale analysis and forecast experiments with wind data from the Seasat A scatterometer

    NASA Technical Reports Server (NTRS)

    Baker, W. E.; Atlas, R.; Kalnay, E.; Halem, M.; Woiceshyn, P. M.; Peteherych, S.; Edelmann, D.

    1984-01-01

    A series of data assimilation experiments is performed to assess the impact of Seasat A satellite scatterometer (SASS) wind data on Goddard Laboratory for Atmospheric Sciences (GLAS) model forecasts. The SASS data are dealiased as part of an objective analysis system utilizing a three-pass procedure. The impact of the SASS data is evaluated with and without temperature soundings from the NOAA 4 Vertical Temperature Profile Radiometer (VTPR) instrument in order to study possible redundancy between surface wind data and upper air temperature data. In the northern hemisphere the SASS data are generally found to have a negligible effect on the forecasts. In the southern hemisphere the forecast impact from SASS data is somewhat larger and primarily beneficial in the absence of VTPR data. However, the inclusion of VTPR data effectively eliminates the positive impact over Australia and South America. This indicates that SASS data can be beneficial for numerical weather prediction in regions with large data gaps, but in the presence of satellite soundings the usefulness of SASS data is significantly reduced.

  13. Model-based estimation of wind fields over the ocean from wind scatterometer measurements. I - Development of the wind field model. II - Model parameter estimation

    NASA Technical Reports Server (NTRS)

    Long, David G.; Mendel, Jerry M.

    1990-01-01

    Techniques for the determination of near-surface mesoscale ocean wind fields on the basis of satellite scatterometer data are developed and demonstrated. The derivation of normal-boundary and parameterized-boundary-condition (PBC) wind-field models is outlined, and results from a simulation performed to estimate the model errors are presented in tables. It is shown that the PBC model provides accurate results while minimizing the number of unknowns. After a review of the principles of scatterometry and an analysis of scatterometer measurement noise, an objective function for the measurement parameters is developed and optimized on the basis of gradient search with initial values computed from pointwise wind estimates. The model is then applied to data from a simulation of the NASA Scatterometer (Li et al., 1984), and the results are presented in extensive graphs. The feasibility of model-based wind-field estimation and the appropriateness of the PBC model are demonstrated.

  14. Range-Doppler processing of Saturn's Icy Satellites using the Cassini RADAR Scatterometer

    NASA Astrophysics Data System (ADS)

    Wye, L.; Zebker, H.; Ostro, S.; West, R.; Cassini RADAR Team

    2007-12-01

    The Cassini RADAR has obtained disk-integrated 2.2-cm reflectivity measurements for a number of Saturn's major icy satellites (Enceladus, Tethys, Dione, Rhea, Iapetus, Hyperion, Phoebe, and Mimas) [1, 2]. In these observations, the RADAR instrument operates in scatterometer mode, where the low receiver bandwidth of 117 kHz helps to minimize thermal noise. Transmitting a narrow bandwidth pulsed tone further reduces the noise variance [3]. In spite of these precautions to minimize noise, the instrument is often operating at distances as high as 400,000 km, and the signal-to-noise ratio is so low that it is impossible to detect the signal within the individual echoes (which are recorded in time as real 8-bit voltage samples); thus, the echo powers are accumulated in the frequency domain to produce a measurable signal [1, 3]. Yet, in a few observations, the SNR is estimated to be high enough for range compression and a pulsed chirp signal is thus transmitted, allowing us to divide the coarse disk reflectivities into fine annular rings. If the signal is strong enough, we attempt to further discriminate the echo into cells by separating the return into Doppler bins. To date, there are six observations that support higher resolution processing: Rhea (Orbit 18 and 22), Enceladus (Orbit 3), Dione (Orbit 16), Hyperion (Orbit 15), and Iapetus (Orbit B). Here, we present the preliminary results of this processing, obtaining finer resolution radar returns of these bodies than ever before, with the exception of the forthcoming Iapetus SAR imaging flyby, expected to achieve 2-12 km surface resolution [2, 4]. [1] Ostro et al. 2006, Icarus 183, 479-490. [2] Ostro et al. 2007, this conference. [3] West et al. 2007, IEEE TGARS, in preparation. [4] West et al. 2007, this conference.

  15. Improving Ku-band Scatterometer Ocean Surface Wind Direction Retrievals in Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Foster, R. C.; Zhang, J.; Black, P. G.

    2014-12-01

    Tropical cyclones are regions of very strong rain and very high winds, both of which present major challenges to surface wind vector retrieval from Ku-band scatterometers. Wind speed and wind direction retrievals can incur severe errors in regions of high rain rates. One particular signature of rain contamination is wind directions in the across-swath direction, which often leads to displaced circulation centers. Recently, Stiles et al. (2014) developed a method for retrieving QuikSCAT tropical cyclone wind speeds using a neural network approach that was tuned using H*WIND surface wind analyses and passive microwave-estimated rain rates from satellites. We are developing a scene-wide methodology by which a set of dynamically-consistent wind directions can be estimated from these wind speeds. The method is based on an iterative use of a tropical cyclone-specific sea-level pressure retrieval technique that we developed. The sea-level pressure analysis uses a boundary layer model that includes the dynamical shallowing of the tropical cyclone boundary layer toward the storm center, a roll-off in surface drag at high wind speeds, and, storm motion-corrected nonlinear mean flow advection effects. Scene-wide consistency is enforced by the integral nature (with respect to the surface wind vector field) of the derived surface pressure pattern and a constraint that the geostrophic contribution to the total flow is non-divergent. We are currently developing methods to evaluate the retrieved wind directions based on HRD aircraft observations and a limited-domain wind vector partitioning of the retrieved wind vectors into irrotational, non-divergent, and, background flow deformation contributions.

  16. Polarimetric analysis of snow-covered and bare lake ice from Ku and X-band scatterometer data

    NASA Astrophysics Data System (ADS)

    Ben Khadhra, K.; Gunn, G. E.; Duguay, C. R.; Kelly, R. E.

    2011-12-01

    Lake ice plays a key role in regional climate, and has significant physical, biological and socio-economic impacts (e.g. fish overwintering habitat, winter-road transportation, public safety). In the last two decades, there has been growing interest by the international remote sensing community to explore radar polarimetry for glaciological investigations, mainly for glaciers and ice sheet. Polarimetric synthetic aperture radar (SAR) could be a potential tool for lake ice cover mapping and ice thickness estimation. In this paper, we represent results from the first investigation of fully polarimetric Ku and X-band (9.6 and 17.2 GHz, respectively) scatterometer data collected over lake near Churchill, Manitoba. Several controlled and calibrated experimental measurements were carried out during winter 2010-2011, as a contribution to the Cold Regions Hydrology High-resolution Observatory (CoReH2O) candidate mission of the European Space Agency (ESA). Scatterometer scans were made on several occasions at five undisturbed static sites on Ramsey Lake. Measurements characterizing snow and ice properties were also gathered immediately after scatterometer scans. Snow depth and density, snow water equivalent, gain size, ice thickness, ice composition and air inclusion in ice volume were determined at each site. This field data set was very important for the interpretation of the polarimetric parameters, e.g. the copolarization ratio, the copolarization phase and the depolarization ratio. First, the polarimetric parameters have been analysed for the two layers (snow and ice) covariance matrix and where snow subsequently removed. Thus, the influence of the snow layer on the polarimetric data could be quantified. Also, the Pauli and Cloude/Pottier polarimetric decompositions were applied for the two-layer and one-layer scattering mechanisms (removed snow) to quantify the effectiveness of these decompositions. Results show that the polarimetric SAR could explain the different

  17. Archival of Seasat-A satellite scatterometer data merged with in situ data at selected, illuminated sites over the ocean

    NASA Technical Reports Server (NTRS)

    Schroeder, Lyle C.; Sweet, Jon L.

    1987-01-01

    A large data base of Seasat-A Satellite Scatterometer (SASS) measurements merged with high-quality surface-truth wind, wave, and temperature data has been documented. The data base was developed for all times when selected in situ measurement sites were within the SASS footprint. Data were obtained from 42 sites located in the coastal waters of North America, Australia, Western Europe, and Japan and were assembled by correlating the SASS and surface-truth measurements in both time and distance. These data have been archived on a set of nine-track 6250 bpi ASCII coded magnetic tapes, which are available from the National Technical Information Service.

  18. The use of stellite scatterometer winds to drive a primitive equation model of the Indian Ocean: The impact of bandlike sampling

    NASA Technical Reports Server (NTRS)

    Barnier, Bernard; Capella, Jorge; O'Brien, James J.

    1994-01-01

    The aim of this study is to evaluate the impact of the bandlike sampling of spaceborne scatterometers on the ability of scatterometer winds to successfully force the mean flow and seasonal cycle of an ocean model in the context of equatorial and tropical dynamics. The equatorial ocean is simulated with a four-layer, primitive equation, reduced gravity model of the Indian Ocean. The variable wind stress used in this study is derived from one year (1988) of 6-hour analyses of the 10-m wind vector over the Indian Ocean performed at the European Centre for Medium-Range Weather Forecasts (ECMWF). It is applied as a forcing at every grid point of the model to drive a reference circulation. Scatterometer winds are simulated from ECMWF winds, using the nominal configurations and orbital parameters of the European Remote Sensing 1 (ERS-1) and NASA Scatterometer (NSCAT) missions. The model is forced in real time under swaths with the raw scatterometer winds of ERS-1 and NSCAT, with a persistence condition (i.e., the wind is kept constsnt until the next passage of the satellite provides a new value). The circulation obtained for each of the scatterometer experiments is compared with the reference circulation. The seasonal circulation of the Indian Ocean with NSCAT winds is very similar to the reference. The perturbations introduced by the bandlike sampling and the persistance condition have an impact similar to that of a small uncorrelated noise added to the reference forcing. The persistence condition for ERS-1 does not give results which are as good as those obtained for NSCAT.

  19. Analysis of normalized radar cross section (sigma-O) signature of Amazon rain forest using SEASAT scatterometer data

    NASA Technical Reports Server (NTRS)

    Bracalente, E. M.; Sweet, J. L.

    1984-01-01

    The normalized radar cross section (NRCS) signature of the Amazon rain forest was SEASAT scatterometer data. Statistics of the measured (NRCS) values were determined from multiple orbit passes for three local time periods. Plots of mean normalized radar cross section, dB against incidence angle as a function of beam and polarization show that less than 0.3 dB relative bias exists between all beams over a range of incidence angle from 30 deg to 53 deg. The backscattered measurements analyzed show the Amazon rain forest to be relatively homogeneous, azimuthally isotropic and insensitive to polarization. The return from the rain forest target appears relatively consistent and stable, except for the small diurnal variation (0.75 dB) that occurs at sunrise. Because of the relative stability of the rain forest target and the scatterometer instrument, the response of versus incidence angle was able to detect errors in the estimated yaw altitude angle. Also, small instrument gain biases in some of the processing channels were detected. This led to the development of an improved NRCS algorithm, which uses a more accurate method for estimating the system noise power.

  20. SeaWinds Scatterometer Wind Vector Retrievals Within Hurricanes Using AMSR and NEXRAD to Perform Corrections for Precipitation Effects: Comparison of AMSR and NEXRAD Retrievals of Rain

    NASA Technical Reports Server (NTRS)

    Weissman, David E.; Hristova-Veleva, Svetla; Callahan, Philip

    2006-01-01

    The opportunity provided by satellite scatterometers to measure ocean surface winds in strong storms and hurricanes is diminished by the errors in the received backscatter (SIGMA-0) caused by the attenuation, scattering and surface roughening produced by heavy rain. Providing a good rain correction is a very challenging problem, particularly at Ku band (13.4 GHz) where rain effects are strong. Corrections to the scatterometer measurements of ocean surface winds can be pursued with either of two different methods: empirical or physical modeling. The latter method is employed in this study because of the availability of near simultaneous and collocated measurements provided by the MIDORI-II suite of instruments. The AMSR was designed to measure atmospheric water-related parameters on a spatial scale comparable to the SeaWinds scatterometer. These quantities can be converted into volumetric attenuation and scattering at the Ku-band frequency of SeaWinds. Optimal estimates of the volume backscatter and attenuation require a knowledge of the three dimensional distribution of reflectivity on a scale comparable to that of the precipitation. Studies selected near the US coastline enable the much higher resolution NEXRAD reflectivity measurements evaluate the AMSR estimates. We are also conducting research into the effects of different beam geometries and nonuniform beamfilling of precipitation within the field-of-view of the AMSR and the scatterometer. Furthermore, both AMSR and NEXRAD estimates of atmospheric correction can be used to produce corrected SIGMA-0s, which are then input to the JPL wind retrieval algorithm.

  1. Analysis of the impact of Seasat scatterometer data and horizontal resolution on GLA model simulations of the QE II storm

    NASA Technical Reports Server (NTRS)

    Lenzen, Allen J.; Johnson, Donald R.; Atlas, Robert

    1993-01-01

    The impact of the Seasat-A satellite scatterometer wind data and the increased horizontal resolution on the Goddard Laboratory for Atmospheres model predictions of the Queen Elizabeth II (QE II) storm of 9-11 September 1978 was evaluated for four different GLA model simulations of the QE II storm. It is shown that the largest impact on the simulation was caused by doubling the model's horizontal resolution from 4 deg x 5 deg to 2 deg x 2.5 deg. The increased resolution resulted in a storm track which was much closer to the one observed, with a much deeper surface development, a stronger mass circulation, stronger heating, and stronger increase of angular momentum.

  2. Preliminary report on measurements of forest canopies with C-band radar scatterometer at NASA/NSTL

    NASA Technical Reports Server (NTRS)

    Wu, S.-T.

    1986-01-01

    This paper presents preliminary results of C-band radar scatterometer measurements of forest canopies of southeastern forests in the vicinity of NASA/NSTL. The results are as follows: radar backscattering coefficients (BSCs) of deciduous forests are higher than those of coniferous forests at a large incidence angle by ranging measurement, the VV polarization BSCs obtain peak value at the first few meters from the canopy top and decrease rather quickly, while the HH polarization BSCs obtain peak value at longer distances from the canopy top and decrease rather slowly through the canopy; and tree canopies with higher attenuations have higher BSCs for all three polarizations, with VV polarization containing the largest differential (2.2 dB).

  3. Application of SeaWinds Scatterometer and TMI-SSM/I Rain Rates to Hurricane Analysis and Forecasting

    NASA Technical Reports Server (NTRS)

    Atlas, Robert; Hou, Arthur; Reale, Oreste

    2004-01-01

    Results provided by two different assimilation methodologies involving data from passive and active space-borne microwave instruments are presented. The impact of the precipitation estimates produced by the TRMM Microwave Imager (TMI) and Special Sensor Microwave/Imager (SSM/I) in a previously developed 1D variational continuous assimilation algorithm for assimilating tropical rainfall is shown on two hurricane cases. Results on the impact of the SeaWinds scatterometer on the intensity and track forecast of a mid-Atlantic hurricane are also presented. This work is the outcome of a collaborative effort between NASA and NOAA and indicates the substantial improvement in tropical cyclone forecasting that can result from the assimilation of space-based data in global atmospheric models.

  4. A study of the feasibility of using sea and wind information from the ERS-1 satellite. Part 1: Wind scatterometer data

    NASA Technical Reports Server (NTRS)

    Anderson, D.; Hollingsworth, A.; Uppala, S.; Woiceshyn, P.

    1987-01-01

    The use of scatterometer and altimeter data in wind and wave assimilation, and the benefits this offers for quality assurance and validation of ERS-1 data were examined. Real time use of ERS-1 data was simulated through assimilation of Seasat scatterometer data. The potential for quality assurance and validation is demonstrated by documenting a series of substantial problems with the scatterometer data, which are known but took years to establish, or are new. A data impact study, and an analysis of the performance of ambiguity removal algorithms on real and simulated data were conducted. The impact of the data on analyses and forecasts is large in the Southern Hemisphere, generally small in the Northern Hemisphere, and occasionally large in the Tropics. Tests with simulated data give more optimistic results than tests with real data. Errors in ambiguity removal results occur in clusters. The probabilities which can be calculated for the ambiguous wind directions on ERS-1 contain more information than is given by a simple ranking of the directions.

  5. Statistics of Ku-band microwave response of the United States with a satellite borne radiometer/scatterometer. [scattering coefficient and brightness temperature measurements

    NASA Technical Reports Server (NTRS)

    Moore, R. K. (Principal Investigator); Ulaby, F. T.; Sobti, A.; Burton, T.

    1974-01-01

    The author has identified the following significant results. The Skylab S-193 radiometer/scatterometer collected thousands of measurements of scattering coefficient and brightness temperature over various parts of the United States during the summer of 1973 at angles of incidence between vertical and about 45 deg. These measurements have been combined to produce histograms of the response at each of several angles within this range, and to establish average scattering coefficient vs angle curves with 10% and 90% exceedance levels as well. The variation of the radiometric measurements is primarily in the region from 255 K to 285 K, with very few measurements giving higher values, but a significant, though small, number giving values down to and even below 200 K. The scattering coefficient varies, for the mean, from about 0 db at 1 deg off vertical to a low in the neighborhood of -10 db at 45 deg. The variability of the scattering coefficient measurements with this coarse resolution sensor is surprisingly small. The number of distinguishable levels is slightly more for the scatterometer than for the radiometer, but the amount of variation in brightness temperature caused by the physical temperature of the ground is enough so that the scatterometer can be used to distinguish significantly more meaningful levels than the radiometer.

  6. A user's manual for the NASA/JPL synthetic aperture radar and the NASA/JPL L and C band scatterometers

    NASA Technical Reports Server (NTRS)

    Thompson, T. W.

    1983-01-01

    Airborne synthetic aperture radars and scatterometers are operated with the goals of acquiring data to support shuttle imaging radars and support ongoing basic active microwave remote sensing research. The aircraft synthetic aperture radar is an L-band system at the 25-cm wavelength and normally operates on the CV-990 research aircraft. This radar system will be upgraded to operate at both the L-band and C-band. The aircraft scatterometers are two independent radar systems that operate at 6.3-cm and 18.8-cm wavelengths. They are normally flown on the C-130 research aircraft. These radars will be operated on 10 data flights each year to provide data to NASA-approved users. Data flights will be devoted to Shuttle Imaging Radar-B (SIR-B) underflights. Standard data products for the synthetic aperture radars include both optical and digital images. Standard data products for the scatterometers include computer compatible tapes with listings of radar cross sections (sigma-nought) versus angle of incidence. An overview of these radars and their operational procedures is provided by this user's manual.

  7. Urban expansion of major cities in the US Great Plains from 2000 to 2009 using scatterometer data

    NASA Astrophysics Data System (ADS)

    Nguyen, L. H.; Nghiem, S. V.; Henebry, G. M.

    2015-12-01

    A long-term metric of urban landscape changes provide valuable information for many fundamental studies and applications. Here we studied expansion of the nine largest metropolitan statistical areas (MSA) in the Great Plains from 2000 to 2009 period using QuikSCAT backscatter data processed with the Dense Sampling Method (DSM). A 5x5 Gaussian Kernel Smoothing (with sigma=1) was applied to reduce noise in DSM backscatter images, which have a nominal spatial posting of 1 km. The outputs were then converted into vector files and coupled with the percent impervious surface area (ISA) data from the 2001 and 2011 National Land Cover Datasets to show changes in urban extent using two independent sources. The results demonstrate the capability of DSM scatterometer data to delineate urban extent and change. For instance, the Dallas - Fort Worth (DFW) MSA was separated into three sub-regions based on backscatter (cf. figure). The urban core area is identified by large commercial and industrial structures correspond to a high backscatter center greater than -6 dB. The urban built-up area consisting of smaller buildings falls within the -6 dB and -8 dB contours. Backscatter of the urban edge, where residential and other land uses are mixed, falls within the -8 dB and -10 dB contours. From 2000 to 2009, total urban area in DFW increased from 3484 to 5066 square kilometers, according to the filtered scatterometer data. The change in ISA between 2001 and 2011 within the -8 to -10 dB contour was 101 square kilometers, of which 73% occurred in the northern half of the DFW MSA. The Mann-Kendall trend test applied to the area time series indicates expanding spatial trends in every sub-region. Most changes occurred along the northern suburban edge. The distance between the 2000 and 2009 -10 dB contours ranged from 1.5 to 14.6 km with an average of 6 km and a coefficient of variation of 48%. We will present results for the other eight MSA from Houston, TX to Des Moines, IA.

  8. ERS-1 scatterometer calibration and validation activities at ECMWF. B: From radar backscatter characteristics to wind vector solutions

    NASA Technical Reports Server (NTRS)

    Stoffelen, AD; Anderson, David L. T.; Woiceshyn, Peter M.

    1992-01-01

    Calibration and validation activities for the ERS-1 scatterometer were carried out at ECMWF (European Center for Medium range Weather Forecast) complementary to the 'Haltenbanken' field campaign off the coast of Norway. At a Numerical Weather Prediction (NWP) center a wealth of verifying data is available both in time and space. This data is used to redefine the wind retrieval procedure given the instrumental characteristics. It was found that a maximum likelihood estimation procedure to obtain the coefficients of a reformulated sigma deg to wind relationship should use radar measurements in logarithmic rather than physical space, and use winds as the wind components rather than wind speed and direction. Doing this, a much more accurate transfer function than the one currently operated by ESA was derived. Sigma deg measurement space shows no signature of a separation in an upwind solution cone and a downwind solution cone. As such signature was anticipated in ESA's wind direction ambiguity removal algorithm, reconsideration of the procedure is necessary. Despite the fact that revisions have to be made in the process of wind retrieval; a grid potential is shown for scatterometry in meteorology and climatology.

  9. A preliminary report on the measurements of forest canopies with C-band radar scatterometer at NASA/NSTL

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1985-01-01

    This paper presents preliminary results of C-band radar scatterometer measurements of forest canopies of southeastern forests in the vicinity of NASA/NSTL. The results are as follows: (1) the radar backscattering coefficients (BSC) of deciduous forests such as oak, maple, blackgum, and cypress are higher than those of coniferous forests such as slash pine plantation and natural pine; (2) at a large incidence angle, where polarization effect is significant, and by ranging measurement, the VV polarization BSC obtain peak value at the first few meters from the canopy top and decrease rather quickly, while the HH polarization BSC obtain peak value at longer distances from the canopy top and decrease rather slowly through the canopy; and (3) using the active radar calibrator for tree canopy attenuation measurement of a dense and a sparse live oak, it is found that the tree canopies with higher attenuations have higher BSC for all three polarizations, with VV polarization containing the largest differential (2.2 dB).

  10. (abstract) Ekman Pumping/Suction and Wind-Driven Ocean Circulation from ERS-1 Scatterometer Measurements Over the Arabian Sea During October 1994-October 1995

    NASA Technical Reports Server (NTRS)

    Halpern, D.; Freilich, M. H.; Weller, R. A.

    1996-01-01

    Spatial variations of the east-west and north-south components of surface wind stress are critical in studies of ocean circulation and biological-physical interactions because surface wind stress curl produces a vertical velocity in the upper ocean at the bottom of the Ekman Layer.The ERS-1 scatterometer provides reasonable coverage and direct measurements of vector of winds. Three schemes are evaluated relative to high-quality moored-bouy wind observations recorded in the central Arabian Sea, where high surface waves and high atmospheric water content during the southeast monsoon adversely affect the estimation of satellite-derived winds.

  11. Evaluation of satellite soil moisture products over Norway using ground-based observations

    NASA Astrophysics Data System (ADS)

    Griesfeller, A.; Lahoz, W. A.; Jeu, R. A. M. de; Dorigo, W.; Haugen, L. E.; Svendby, T. M.; Wagner, W.

    2016-03-01

    In this study we evaluate satellite soil moisture products from the advanced SCATterometer (ASCAT) and the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) over Norway using ground-based observations from the Norwegian water resources and energy directorate. The ASCAT data are produced using the change detection approach of Wagner et al. (1999), and the AMSR-E data are produced using the VUA-NASA algorithm (Owe et al., 2001, 2008). Although satellite and ground-based soil moisture data for Norway have been available for several years, hitherto, such an evaluation has not been performed. This is partly because satellite measurements of soil moisture over Norway are complicated owing to the presence of snow, ice, water bodies, orography, rocks, and a very high coastline-to-area ratio. This work extends the European areas over which satellite soil moisture is validated to the Nordic regions. Owing to the challenging conditions for soil moisture measurements over Norway, the work described in this paper provides a stringent test of the capabilities of satellite sensors to measure soil moisture remotely. We show that the satellite and in situ data agree well, with averaged correlation (R) values of 0.72 and 0.68 for ASCAT descending and ascending data vs in situ data, and 0.64 and 0.52 for AMSR-E descending and ascending data vs in situ data for the summer/autumn season (1 June-15 October), over a period of 3 years (2009-2011). This level of agreement indicates that, generally, the ASCAT and AMSR-E soil moisture products over Norway have high quality, and would be useful for various applications, including land surface monitoring, weather forecasting, hydrological modelling, and climate studies. The increasing emphasis on coupled approaches to study the earth system, including the interactions between the land surface and the atmosphere, will benefit from the availability of validated and improved soil moisture satellite datasets, including those

  12. The INTEGRAL scatterometer SPI

    NASA Technical Reports Server (NTRS)

    Mandrou, P.; Vedrenne, G.; Jean, P.; Kandel, B.; vonBallmoos, P.; Albernhe, F.; Lichti, G.; Schoenfelder, V.; Diehl, R.; Georgii, R.; Teegarden, B.; Mandrou, P.; Vedrenne, G.; Kirchner, T.; Durouchoux, P.; Cordier, B.; Diallo, N.; Sanchez, F.; Payne, B.; Leleux, P.; Caraveo, P.; Matteson, J.; Slassi-Sennon, S.; Lin, R. P.; Skinner, G.

    1997-01-01

    The INTErnational Gamma Ray Astrophysics Laboratory (INTEGRAL) mission's onboard spectrometer, the INTEGRAL spectrometer (SPI), is described. The SPI constitutes one of the four main mission instruments. It is optimized for detailed measurements of gamma ray lines and for the mapping of diffuse sources. It combines a coded aperture mask with an array of large volume, high purity germanium detectors. The detectors make precise measurements of the gamma ray energies over the 20 keV to 8 MeV range. The instrument's characteristics are described and the Monte Carlo simulation of its performance is outlined. It will be possible to study gamma ray emission from compact objects or line profiles with a high energy resolution and a high angular resolution.

  13. SEASAT A satellite scatterometer

    NASA Technical Reports Server (NTRS)

    Bianchi, R.; Heath, A.; Marsh, S.; Borusiewicz, J.

    1978-01-01

    The analyses performed in the early period of the program which formed the basis of the sensor design is reviewed, along with the sensor design. The test program is outlined, listing all tests performed and the environmental exposure (simulated) for each, as applicable. Ground support equipment designed and built for assembly integration and field testing is described. The software developed during the program and the algorithms/flow diagrams which formed the bases for the software are summarized.

  14. Application of Spaceborne Scatterometer for Mapping Freeze-Thaw State in Northern Landscapes as a Measure of Ecological and Hydrological Processes

    NASA Technical Reports Server (NTRS)

    McDonald, Kyle; Kimball, John; Zimmermann, Reiner; Way, JoBea; Frolking, Steve; Running, Steve

    1999-01-01

    Landscape freeze/thaw transitions coincide with marked shifts in albedo, surface energy and mass exchange, and associated snow dynamics. Monitoring landscape freeze/thaw dynamics would improve our ability to quantify the interannual variability of boreal hydrology and river runoff/flood dynamics. The annual duration of frost-free period also bounds the period of photosynthetic activity in boreal and arctic regions thus affecting the annual carbon budget and the interannual variability of regional carbon fluxes. In this study, we use the NASA scatterometer (NSCAT) to monitor the temporal change in the radar backscatter signature across selected ecoregions of the boreal zone. We have measured vegetation tissue temperatures, soil temperature profiles, and micrometeorological parameters in situ at selected sites along a north-south transect extending across Alaska from Prudhoe Bay to the Kenai Peninsula and in Siberia near the Yenisey River. Data from these stations have been used to quantify the scatterometer's sensitivity to freeze/thaw state under a variety of terrain and landcover conditions. Analysis of the NSCAT temporal response over the 1997 spring thaw cycle shows a 3 to 5 dB change in measured backscatter that is well correlated with the landscape springtime thaw process. Having verified the instrument's capability to monitor freeze/thaw transitions, regional scale mosaicked data are applied to derive temporal series of freeze/thaw transition maps for selected circumpolar high latitude regions. These maps are applied to derive areal extent of frozen and thawed landscape and demonstrate the utility of spaceborne radar for operational monitoring of seasonal freeze-thaw dynamics and associated biophysical processes for the circumpolar high latitudes.

  15. A preliminary study of the impact of the ERS 1 C band scatterometer wind data on the European Centre for Medium-Range Weather Forecasts global data assimilation system

    NASA Technical Reports Server (NTRS)

    Hoffman, Ross N.

    1993-01-01

    A preliminary assessment of the impact of the ERS 1 scatterometer wind data on the current European Centre for Medium-Range Weather Forecasts analysis and forecast system has been carried out. Although the scatterometer data results in changes to the analyses and forecasts, there is no consistent improvement or degradation. Our results are based on comparing analyses and forecasts from assimilation cycles. The two sets of analyses are very similar except for the low level wind fields over the ocean. Impacts on the analyzed wind fields are greater over the southern ocean, where other data are scarce. For the most part the mass field increments are too small to balance the wind increments. The effect of the nonlinear normal mode initialization on the analysis differences is quite small, but we observe that the differences tend to wash out in the subsequent 6-hour forecast. In the Northern Hemisphere, analysis differences are very small, except directly at the scatterometer locations. Forecast comparisons reveal large differences in the Southern Hemisphere after 72 hours. Notable differences in the Northern Hemisphere do not appear until late in the forecast. Overall, however, the Southern Hemisphere impacts are neutral. The experiments described are preliminary in several respects. We expect these data to ultimately prove useful for global data assimilation.

  16. Characterising Volume Scatter in Snow Covered Organic Soils in the Tundra Using Ground-based Scatterometers at Ku- and X-band Frequencies

    NASA Astrophysics Data System (ADS)

    Kasurak, A.; King, J. M.; Kelly, R. E.

    2011-12-01

    Shallow snow is widespread in the tundra and plays an important role in the energy and mass balance of the cryosphere. Its extent and quantity are important to for climate model simulations and hydrological forecasting. Active microwave (MW) remote sensing is an ideal tool for local to regional scale snow water equivalent (SWE) estimation in these cloud dominated regions. SWE retrieval approaches using scatterometers have applied radiative-transfer models, such as the semi-empirical HUT model, with some success. For active remote sensing of snow the state of the background media modifies the observed signal and strongly influences the emission or backscatter from the snow. In the estimation of tundra SWE, peat and highly organic soils, which are found in this region, are often not well represented in the standard soil emission and backscatter models which are parameterized by more mid to low latitude mineral soil types. In its frozen form, peat has proven to have very different MW properties than mineral soils. Continuous variation in the received signal of an active MW system operating at the X-band was observed in Sodankylä, Finland until the soil froze to a depth of 0.5 - 1 m. Similar sub-nivean soil freezing effects have been found in observations made in Churchill, Canada during the 2010-2011 winter season using an active MW system at X (9.6 GHz) and Ku (17.2 GHz). Quantifying or resolving this uncertainty is important for potential future space-borne missions such as the Cold Regions Hydrology High-resolution Observatory (CoReH2O), a candidate European Space Agency Earth Explorer mission. This study presents a modified snow retrieval model, where the standard ground reflection component is replaced with three candidate soil backscatter mechanisms: 1) peat as a homogeneous volume scatterer with a basal reflector to indicate the unfrozen (water table) surface; 2) peat as a layered volume scatterer to reflect the differences between low density living

  17. The eSurge-Venice project: altimeter and scatterometer satellite data to improve the storm surge forecasting in the city of Venice

    NASA Astrophysics Data System (ADS)

    Zecchetto, Stefano; De Biasio, Francesco; Umgiesser, Georg; Bajo, Marco; Vignudelli, Stefano; Papa, Alvise; Donlon, Craig; Bellafiore, Debora

    2013-04-01

    On the framework of the Data User Element (DUE) program, the European Space Agency is funding a project to use altimeter Total Water Level Envelope (TWLE) and scatterometer wind data to improve the storm surge forecasting in the Adriatic Sea and in the city of Venice. The project will: a) Select a number of Storm Surge Events occurred in the Venice lagoon in the period 1999-present day b) Provide the available satellite Earth Observation (EO) data related to the Storm Surge Events, mainly satellite winds and altimeter data, as well as all the available in-situ data and model forecasts c) Provide a demonstration Near Real Time service of EO data products and services in support of operational and experimental forecasting and warning services d) Run a number of re-analysis cases, both for historical and contemporary storm surge events, to demonstrate the usefulness of EO data The re-analysis experiments, based on hindcasts performed by the finite element 2-D oceanographic model SHYFEM (https://sites.google.com/site/shyfem/), will 1. use different forcing wind fields (calibrated and not calibrated with satellite wind data) 2. use Storm Surge Model initial conditions determined from altimeter TWLE data. The experience gained working with scatterometer and Numerical Weather Prediction (NWP) winds in the Adriatic Sea tells us that the bias NWP-Scatt wind is negative and spatially and temporally not uniform. In particular, a well established point is that the bias is higher close to coasts then offshore. Therefore, NWP wind speed calibration will be carried out on each single grid point in the Adriatic Sea domain over the period of a Storm Surge Event, taking into account of existing published methods. Point #2 considers two different methodologies to be used in re-analysis tests. One is based on the use of the TWLE values from altimeter data in the Storm Surge Model (SSM), applying data assimilation methodologies and trying to optimize the initial conditions of the

  18. Weekly gridded Aquarius L-band radiometer/scatterometer observations and salinity retrievals over the polar regions - Part 2: Initial product analysis

    NASA Astrophysics Data System (ADS)

    Brucker, L.; Dinnat, E. P.; Koenig, L. S.

    2014-05-01

    Following the development and availability of Aquarius weekly polar-gridded products, this study presents the spatial and temporal radiometer and scatterometer observations at L band (frequency ~1.4 GHz) over the cryosphere including the Greenland and Antarctic ice sheets, sea ice in both hemispheres, and over sub-Arctic land for monitoring the soil freeze/thaw state. We provide multiple examples of scientific applications for the L-band data over the cryosphere. For example, we show that over the Greenland Ice Sheet, the unusual 2012 melt event lead to an L-band brightness temperature (TB) sustained decrease of ~5 K at horizontal polarization. Over the Antarctic ice sheet, normalized radar cross section (NRCS) observations recorded during ascending and descending orbits are significantly different, highlighting the anisotropy of the ice cover. Over sub-Arctic land, both passive and active observations show distinct values depending on the soil physical state (freeze/thaw). Aquarius sea surface salinity (SSS) retrievals in the polar waters are also presented. SSS variations could serve as an indicator of fresh water input to the ocean from the cryosphere, however the presence of sea ice often contaminates the SSS retrievals, hindering the analysis. The weekly grided Aquarius L-band products used are distributed by the US Snow and Ice Data Center at http://nsidc.org/data/aquarius/index.html , and show potential for cryospheric studies.

  19. Weekly Gridded Aquarius L-band Radiometer-Scatterometer Observations and Salinity Retrievals over the Polar Regions - Part 2: Initial Product Analysis

    NASA Technical Reports Server (NTRS)

    Brucker, L.; Dinnat, E. P.; Koenig, L. S.

    2014-01-01

    Following the development and availability of Aquarius weekly polar-gridded products, this study presents the spatial and temporal radiometer and scatterometer observations at L band (frequency1.4 GHz) over the cryosphere including the Greenland and Antarctic ice sheets, sea ice in both hemispheres, and over sub-Arctic land for monitoring the soil freeze-thaw state. We provide multiple examples of scientific applications for the L-band data over the cryosphere. For example, we show that over the Greenland Ice Sheet, the unusual 2012 melt event lead to an L-band brightness temperature (TB) sustained decrease of 5 K at horizontal polarization. Over the Antarctic ice sheet, normalized radar cross section (NRCS) observations recorded during ascending and descending orbits are significantly different, highlighting the anisotropy of the ice cover. Over sub-Arctic land, both passive and active observations show distinct values depending on the soil physical state (freeze-thaw). Aquarius sea surface salinity (SSS) retrievals in the polar waters are also presented. SSS variations could serve as an indicator of fresh water input to the ocean from the cryosphere, however the presence of sea ice often contaminates the SSS retrievals, hindering the analysis. The weekly grided Aquarius L-band products used a redistributed by the US Snow and Ice Data Center at http:nsidc.orgdataaquariusindex.html, and show potential for cryospheric studies.

  20. Assessing seasonal backscatter variations with respect to uncertainties in soil moisture retrieval in Siberian tundra regions

    NASA Astrophysics Data System (ADS)

    Högström, Elin; Trofaier, Anna Maria; Gouttevin, Isabella; Bartsch, Annett

    2015-04-01

    Data from the Advanced Scatterometer (ASCAT) instrument provide the basis of a near real-time, coarse scale, global soil moisture product. Numerous studies have shown the applicability of this product, including recent operational use for numerical weather forecasts. Soil moisture is a key element in the global cycles of water, energy and carbon. Among many application areas, it is essential for the understanding of permafrost development in a future climate change scenario. Dramatic climate changes are expected in the Arctic, where ca 25% of the land is underlain by permafrost, and it is to a large extent remote and inaccessible. The availability and applicability of satellite derived land-surface data relevant for permafrost studies, such as surface soil moisture, is thus crucial to landscape-scale analyses of climate-induced change. However, there are challenges in the soil moisture retrieval that are specific to the Arctic. This study investigates backscatter variability unrelated to soil moisture variations in order to understand the possible impact on the soil moisture retrieval. The focus is on tundra lakes, which are a common feature in the Arctic and are expected to affect the retrieval. ENVISAT Advanced Synthetic Aperture Radar (ASAR) Wide Swath (120 m) data are used to resolve lakes and later understand and quantify their impacts on Metop ASCAT (25 km) soil moisture retrieval during the snow free period. Sites of interest are chosen according to high or low agreement between output from the land surface model ORCHIDEE and ASCAT derived SSM. The results show that in most cases low model agreement is related to high water fraction. The water fraction correlates with backscatter deviations (relative to a smooth water surface reference image) within the ASCAT footprint areas (R = 0.91-0.97). Backscatter deviations of up to 5 dB can occur in areas with less than 50% water fraction and an assumed soil moisture related range (sensitivity) of 7 dB in the ASCAT

  1. The NASA Cyclone Global Navigation Satellite System (CYGNSS): A Constellation of Bi-static Ocean Scatterometer Microsatellites to Probe the Inner Core of Hurricanes

    NASA Astrophysics Data System (ADS)

    Ruf, C. S.; Clarizia, M. P.; Ridley, A. J.; Gleason, S.; O'Brien, A.

    2014-12-01

    The Cyclone Global Navigation Satellite System (CYGNSS) is the first NASA Earth Ventures spaceborne mission. CYGNSS consists of a constellation of eight small observatories carried into orbit on a single launch vehicle. The eight satellites comprise a constellation that flies closely together to measure the ocean surface wind field with unprecedented temporal resolution and spatial coverage, under all precipitating conditions, and over the full dynamic range of wind speeds experienced in a TC. The 8 CYGNSS observatories will fly in 500 km circular orbits at a common inclination of ~35°. Each observatory includes a Delay Doppler Mapping Instrument (DDMI) consisting of a modified GPS receiver capable of measuring surface scattering, a low gain zenith antenna for measurement of the direct GPS signal, and two high gain nadir antennas for measurement of the weaker scattered signal. Each DDMI is capable of measuring 4 simultaneous bi-static reflections, resulting in a total of 32 wind measurements per second across the globe by the full constellation. Simulation studies will be presented which examine the sampling as functions of various orbit parameters of the constellation. For comparison purposes, a similar analysis is conducted using the sampling of several past and present conventional spaceborne ocean wind scatterometers. Differences in the ability of the sensors to resolve the evolution of the TC inner core will be examined. The CYGNSS observatories are currently in Phase C development. An update on the current status of the mission will be presented, including the expected precision, accuracy and spatial and temporal sampling properties of the retrieved winds.

  2. Weekly Gridded Aquarius L-band Radiometer-scatterometer Observations and Salinity Retrievals over the Polar Regions - Part 1: Product Description

    NASA Technical Reports Server (NTRS)

    Brucker, Ludovic; Dinnat, Emmanuel Phillippe; Koenig, Lora S.

    2014-01-01

    Passive and active observations at L band (frequency (is) approximately 1.4 GHz) from the Aquarius/SAC-D mission offer new capabilities to study the polar regions. Due to the lack of polar-gridded products, however, applications over the cryosphere have been limited. We present three weekly polar-gridded products of Aquarius data to improve our understanding of L-band observations of ice sheets, sea ice, permafrost, and the polar oceans. Additionally, these products intend to facilitate access to L-band data, and can be used to assist in algorithm developments. Aquarius data at latitudes higher than 50 degrees are averaged and gridded into weekly products of brightness temperature (TB), normalized radar cross section (NRCS), and sea surface salinity (SSS). Each grid cell also contains sea ice fraction, the standard deviation of TB, NRCS, and SSS, and the number of footprint observations collected during the seven-day cycle. The largest 3 dB footprint dimensions are 97 km×156 km and 74 km×122 km (along × across track) for the radiometers and scatterometer, respectively. The data is gridded to the Equal-Area Scalable Earth version 2.0 (EASE2.0) grid, with a grid cell resolution of 36 km. The data sets start in August 2011, with the first Aquarius observations and will be updated on a monthly basis following the release schedule of the Aquarius Level 2 data sets. The weekly gridded products are distributed by the US National Snow and Ice Data Center at http://nsidc.org/data/aquarius/index.html

  3. The Use of Sentinel-1 for Monitoring of Soil Moisture within the Copernicus Global Land Service

    NASA Astrophysics Data System (ADS)

    Doubkova, M.; Wagner, W.; Naeimi, V.; Cao, S.; Bauer-Marschallinger, B.; Kidd, R.; Hasenauer, Stefan; Dostalova, A.; Paulik, Christopher

    2016-08-01

    Within the Copernicus Global Land Service (CGLS), a global Soil Water Index (SWI) product is available on an operational basis, derived from the Metop Advanced Scatterometer (ASCAT) with a spatial sampling of 0.1°. The SWI quantifies the moisture condition at various depths in the soil. To match the spatial resolution of the SWI data with the rest of the CGLS data products, the 1 km Sentinel-1 (S-1) surface soil moisture (SSM) product can be used. The S-1 SSM is retrieved by inverting a backscatter model trained using historic SAR observations. Here, the progress made in delivering the 1 km fused SWI as well as the 1 km S-1 SSM products at the Earth Observation Data Centre for Water Resources Monitoring (https://www.eodc.eu/) is reported. The first validation results of the 1 km fused SWI are satisfying demonstrating well the added fine- scale spatial soil moisture signal.

  4. Estimating Root Mean Square Errors in Remotely Sensed Soil Moisture over Continental Scale Domains

    NASA Technical Reports Server (NTRS)

    Draper, Clara S.; Reichle, Rolf; de Jeu, Richard; Naeimi, Vahid; Parinussa, Robert; Wagner, Wolfgang

    2013-01-01

    Root Mean Square Errors (RMSE) in the soil moisture anomaly time series obtained from the Advanced Scatterometer (ASCAT) and the Advanced Microwave Scanning Radiometer (AMSR-E; using the Land Parameter Retrieval Model) are estimated over a continental scale domain centered on North America, using two methods: triple colocation (RMSETC ) and error propagation through the soil moisture retrieval models (RMSEEP ). In the absence of an established consensus for the climatology of soil moisture over large domains, presenting a RMSE in soil moisture units requires that it be specified relative to a selected reference data set. To avoid the complications that arise from the use of a reference, the RMSE is presented as a fraction of the time series standard deviation (fRMSE). For both sensors, the fRMSETC and fRMSEEP show similar spatial patterns of relatively highlow errors, and the mean fRMSE for each land cover class is consistent with expectations. Triple colocation is also shown to be surprisingly robust to representativity differences between the soil moisture data sets used, and it is believed to accurately estimate the fRMSE in the remotely sensed soil moisture anomaly time series. Comparing the ASCAT and AMSR-E fRMSETC shows that both data sets have very similar accuracy across a range of land cover classes, although the AMSR-E accuracy is more directly related to vegetation cover. In general, both data sets have good skill up to moderate vegetation conditions.

  5. Assimilation of Passive and Active Microwave Soil Moisture Retrievals

    NASA Technical Reports Server (NTRS)

    Draper, C. S.; Reichle, R. H.; DeLannoy, G. J. M.; Liu, Q.

    2012-01-01

    Root-zone soil moisture is an important control over the partition of land surface energy and moisture, and the assimilation of remotely sensed near-surface soil moisture has been shown to improve model profile soil moisture [1]. To date, efforts to assimilate remotely sensed near-surface soil moisture at large scales have focused on soil moisture derived from the passive microwave Advanced Microwave Scanning Radiometer (AMSR-E) and the active Advanced Scatterometer (ASCAT; together with its predecessor on the European Remote Sensing satellites (ERS. The assimilation of passive and active microwave soil moisture observations has not yet been directly compared, and so this study compares the impact of assimilating ASCAT and AMSR-E soil moisture data, both separately and together. Since the soil moisture retrieval skill from active and passive microwave data is thought to differ according to surface characteristics [2], the impact of each assimilation on the model soil moisture skill is assessed according to land cover type, by comparison to in situ soil moisture observations.

  6. Combined assimilation of streamflow and satellite soil moisture with the particle filter and geostatistical modeling

    NASA Astrophysics Data System (ADS)

    Yan, Hongxiang; Moradkhani, Hamid

    2016-08-01

    Assimilation of satellite soil moisture and streamflow data into a distributed hydrologic model has received increasing attention over the past few years. This study provides a detailed analysis of the joint and separate assimilation of streamflow and Advanced Scatterometer (ASCAT) surface soil moisture into a distributed Sacramento Soil Moisture Accounting (SAC-SMA) model, with the use of recently developed particle filter-Markov chain Monte Carlo (PF-MCMC) method. Performance is assessed over the Salt River Watershed in Arizona, which is one of the watersheds without anthropogenic effects in Model Parameter Estimation Experiment (MOPEX). A total of five data assimilation (DA) scenarios are designed and the effects of the locations of streamflow gauges and the ASCAT soil moisture on the predictions of soil moisture and streamflow are assessed. In addition, a geostatistical model is introduced to overcome the significantly biased satellite soil moisture and also discontinuity issue. The results indicate that: (1) solely assimilating outlet streamflow can lead to biased soil moisture estimation; (2) when the study area can only be partially covered by the satellite data, the geostatistical approach can estimate the soil moisture for those uncovered grid cells; (3) joint assimilation of streamflow and soil moisture from geostatistical modeling can further improve the surface soil moisture prediction. This study recommends that the geostatistical model is a helpful tool to aid the remote sensing technique and the hydrologic DA study.

  7. Temporal Stability of Soil Moisture and Radar Backscatter Observed by the Advanced Synthetic Aperture Radar (ASAR).

    PubMed

    Wagner, Wolfgang; Pathe, Carsten; Doubkova, Marcela; Sabel, Daniel; Bartsch, Annett; Hasenauer, Stefan; Blöschl, Günter; Scipal, Klaus; Martínez-Fernández, José; Löw, Alexander

    2008-02-21

    The high spatio-temporal variability of soil moisture is the result of atmosphericforcing and redistribution processes related to terrain, soil, and vegetation characteristics.Despite this high variability, many field studies have shown that in the temporal domainsoil moisture measured at specific locations is correlated to the mean soil moisture contentover an area. Since the measurements taken by Synthetic Aperture Radar (SAR)instruments are very sensitive to soil moisture it is hypothesized that the temporally stablesoil moisture patterns are reflected in the radar backscatter measurements. To verify this hypothesis 73 Wide Swath (WS) images have been acquired by the ENVISAT AdvancedSynthetic Aperture Radar (ASAR) over the REMEDHUS soil moisture network located inthe Duero basin, Spain. It is found that a time-invariant linear relationship is well suited forrelating local scale (pixel) and regional scale (50 km) backscatter. The observed linearmodel coefficients can be estimated by considering the scattering properties of the terrainand vegetation and the soil moisture scaling properties. For both linear model coefficients,the relative error between observed and modelled values is less than 5 % and thecoefficient of determination (R²) is 86 %. The results are of relevance for interpreting anddownscaling coarse resolution soil moisture data retrieved from active (METOP ASCAT)and passive (SMOS, AMSR-E) instruments.

  8. Multivariate assimilation of satellite-derived land remote sensing datasets: Advances, gaps and challenges

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Peters-Lidard, C. D.; Mocko, D. M.; Jasinski, M. F.; Reichle, R. H.; Zaitchik, B. F.; Getirana, A.; Rodell, M.; Xia, Y.; Ek, M. B.

    2015-12-01

    Remote sensing advancements in recent years have enabled monitoring of the Earth's land surface with unprecedented scale and frequency. In the past decade, remote sensing observations of the land surface have become available from a number of satellite instruments and platforms including soil moisture (AMSR-E, ASCAT, AMSR2, SMOS, SMAP), snow depth (AMSR-E, AMSR2), snow cover (MODIS, VIIRS), terrestrial water storage (GRACE) and land surface temperature (MODIS, VIIRS, GOES). To support the effective exploitation of the information content of the remote sensing observations, computational tools such as data assimilation are necessary. In this presentation, I will describe the efforts towards the concurrent use of all available remote sensing observations in a multivariate data assimilation configuration in the North American Land Data Assimilation System (NLDAS). Though NLDAS has produced over 34 years (Jan 1979 to present) of hourly land-surface meteorology and surface states using the best-available observations and reanalyses for "off-line" land surface model (LSM) simulations, to-date it has not included the assimilation of relevant hydrological remote sensing datasets. The new phase of NLDAS attempts to bridge this gap by assimilating all land relevant datasets in the NLDAS configuration using the NASA Land Information System (LIS). The results from individually assimilating the soil moisture, snow and terrestrial water storage datasets indicate that improvements can be obtained not only in soil moisture and snow states, but also on evapotranspiration and streamflow estimates. The results from the multivariate, multisensor assimilation of the above-mentioned remote sensing datasets in NLDAS and an evaluation of the resulting improvements and trends in soil moisture, snowpack, evapotranspiration and streamflow will also be presented. Through this talk, I will describe the advances made towards the effective utilization of remote sensing data for hydrologic

  9. Evaluating the utility of satellite soil moisture retrievals over irrigated areas and the ability of land data assimilation methods to correct for unmodeled processes

    NASA Astrophysics Data System (ADS)

    Kumar, S. V.; Peters-Lidard, C. D.; Santanello, J. A.; Reichle, R. H.; Draper, C. S.; Koster, R. D.; Nearing, G.; Jasinski, M. F.

    2015-11-01

    Earth's land surface is characterized by tremendous natural heterogeneity and human-engineered modifications, both of which are challenging to represent in land surface models. Satellite remote sensing is often the most practical and effective method to observe the land surface over large geographical areas. Agricultural irrigation is an important human-induced modification to natural land surface processes, as it is pervasive across the world and because of its significant influence on the regional and global water budgets. In this article, irrigation is used as an example of a human-engineered, often unmodeled land surface process, and the utility of satellite soil moisture retrievals over irrigated areas in the continental US is examined. Such retrievals are based on passive or active microwave observations from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), the Advanced Microwave Scanning Radiometer 2 (AMSR2), the Soil Moisture Ocean Salinity (SMOS) mission, WindSat and the Advanced Scatterometer (ASCAT). The analysis suggests that the skill of these retrievals for representing irrigation effects is mixed, with ASCAT-based products somewhat more skillful than SMOS and AMSR2 products. The article then examines the suitability of typical bias correction strategies in current land data assimilation systems when unmodeled processes dominate the bias between the model and the observations. Using a suite of synthetic experiments that includes bias correction strategies such as quantile mapping and trained forward modeling, it is demonstrated that the bias correction practices lead to the exclusion of the signals from unmodeled processes, if these processes are the major source of the biases. It is further shown that new methods are needed to preserve the observational information about unmodeled processes during data assimilation.

  10. Evaluating the utility of satellite soil moisture retrievals over irrigated areas and the ability of land data assimilation methods to correct for unmodeled processes

    NASA Astrophysics Data System (ADS)

    Kumar, S. V.; Peters-Lidard, C. D.; Santanello, J. A.; Reichle, R. H.; Draper, C. S.; Koster, R. D.; Nearing, G.; Jasinski, M. F.

    2015-06-01

    The Earth's land surface is characterized by tremendous natural heterogeneity and human engineered modifications, both of which are challenging to represent in land surface models. Satellite remote sensing is often the most practical and effective method to observe the land surface over large geographical areas. Agricultural irrigation is an important human induced modifications to natural land surface processes, as it is pervasive across the world and because of its significant influence on the regional and global water budgets. In this article, irrigation is used as an example of a human engineered, unmodeled land surface process, and the utility of satellite soil moisture retrievals over irrigated areas in the continental US is examined. Such retrievals are based on passive or active microwave observations from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), the Advanced Microwave Scanning Radiometer 2 (AMSR2), the Soil Moisture Ocean Salinity (SMOS) mission, WindSat and the Advanced Scatterometer (ASCAT). The analysis suggests that the skill of these retrievals for representing irrigation artifacts is mixed, with ASCAT based products somewhat more skillful than SMOS and AMSR2 products. The article then examines the suitability of typical bias correction strategies in current land data assimilation systems when unmodeled processes dominate the bias between the model and the observations. Using a suite of synthetic experiments that includes bias correction strategies such as quantile mapping and trained forward modeling, it is demonstrated that the bias correction practices lead to the exclusion of the signals from unmodeled processes, if these processes are the major source of the biases. It is further shown that new methods are needed to preserve the observational information about unmodeled processes during data assimilation.

  11. Evaluating the Utility of Satellite Soil Moisture Retrievals over Irrigated Areas and the Ability of Land Data Assimilation Methods to Correct for Unmodeled Processes

    NASA Technical Reports Server (NTRS)

    Kumar, S. V.; Peters-Lidard, C. D.; Santanello, J. A.; Reichle, R. H.; Draper, C. S.; Koster, R. D.; Nearing, G.; Jasinski, M. F.

    2015-01-01

    Earth's land surface is characterized by tremendous natural heterogeneity and human-engineered modifications, both of which are challenging to represent in land surface models. Satellite remote sensing is often the most practical and effective method to observe the land surface over large geographical areas. Agricultural irrigation is an important human-induced modification to natural land surface processes, as it is pervasive across the world and because of its significant influence on the regional and global water budgets. In this article, irrigation is used as an example of a human-engineered, often unmodeled land surface process, and the utility of satellite soil moisture retrievals over irrigated areas in the continental US is examined. Such retrievals are based on passive or active microwave observations from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), the Advanced Microwave Scanning Radiometer 2 (AMSR2), the Soil Moisture Ocean Salinity (SMOS) mission, WindSat and the Advanced Scatterometer (ASCAT). The analysis suggests that the skill of these retrievals for representing irrigation effects is mixed, with ASCAT-based products somewhat more skillful than SMOS and AMSR2 products. The article then examines the suitability of typical bias correction strategies in current land data assimilation systems when unmodeled processes dominate the bias between the model and the observations. Using a suite of synthetic experiments that includes bias correction strategies such as quantile mapping and trained forward modeling, it is demonstrated that the bias correction practices lead to the exclusion of the signals from unmodeled processes, if these processes are the major source of the biases. It is further shown that new methods are needed to preserve the observational information about unmodeled processes during data assimilation.

  12. Impact of SMOS soil moisture data assimilation on NCEP-GFS forecasts

    NASA Astrophysics Data System (ADS)

    Zhan, X.; Zheng, W.; Meng, J.; Dong, J.; Ek, M.

    2012-04-01

    Soil moisture is one of the few critical land surface state variables that have long memory to impact the exchanges of water, energy and carbon between the land surface and atmosphere. Accurate information about soil moisture status is thus required for numerical weather, seasonal climate and hydrological forecast as well as for agricultural production forecasts, water management and many other water related economic or social activities. Since the successful launch of ESA's soil moisture ocean salinity (SMOS) mission in November 2009, about 2 years of soil moisture retrievals has been collected. SMOS is believed to be the currently best satellite sensors for soil moisture remote sensing. Therefore, it becomes interesting to examine how the collected SMOS soil moisture data are compared with other satellite-sensed soil moisture retrievals (such as NASA's Advanced Microwave Scanning Radiometer -AMSR-E and EUMETSAT's Advanced Scatterometer - ASCAT)), in situ soil moisture measurements, and how these data sets impact numerical weather prediction models such as the Global Forecast System of NOAA-NCEP. This study implements the Ensemble Kalman filter in GFS to assimilate the AMSR-E, ASCAT and SMOS soil moisture observations after a quantitative assessment of their error rate based on in situ measurements from ground networks around contiguous United States. in situ soil moisture measurements from ground networks (such as USDA Soil Climate Analysis network - SCAN and NOAA's U.S. Climate Reference Network -USCRN) are used to evaluate the GFS soil moisture simulations (analysis). The benefits and uncertainties of assimilating the satellite data products in GFS are examined by comparing the GFS forecasts of surface temperature and rainfall with and without the assimilations. From these examinations, the advantages of SMOS soil moisture data products over other satellite soil moisture data sets will be evaluated. The next step toward operationally assimilating soil moisture

  13. Advanced Science.

    ERIC Educational Resources Information Center

    Coles, Mike; Nelms, Rick

    1996-01-01

    Describes a study that explores the depth and breadth of scientific facts, principles, and procedures which are required in the Advanced General National Vocational Qualifications (GNVQ) science through comparison with GCE Advanced level. The final report takes account of the updated 1996 version of GNVQ science. (DDR)

  14. Advanced Microsensors

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This video looks at a spinoff application of the technology from advanced microsensors -- those that monitor and determine conditions of spacecraft like the Space Shuttle. The application featured is concerned with the monitoring of the health of premature babies.

  15. Identifying Vulnerability Regions of Dust Outbreaks in East Asian Desert Areas: using SMOS, MODIS, and GLDAS

    NASA Astrophysics Data System (ADS)

    Choi, M.; Kim, H.; Cho, E.

    2015-12-01

    It is now well understood that water, carbon, and energy fluxes at the surface/atmosphere interface are highly dependent on soil moisture (SM). In addition, SM is required to be used as realistic initial states for the SM variables, for climate predictions and weather forecasting. As satellite remote-sensing have developed greatly, global surface SM datasets have been produced based on several satellites. Three satellites-based SM datasets were inter-compared under different land-cover over East Asia to select most reliable satellite for retrieving SM datasets in dust source regions. We estimated satellite sensors with 1) Soil Moisture and Ocean Salinity (SMOS), 2) Advanced Scatterometer (ASCAT), and 3) Advanced Microwave Scanning Radiometer 2 (AMSR2) and Global Land Data Assimilation System (GLDAS) was used as reference datasets. In case of arid areas (desert and semi-desert), SMOS-retrieved SM products showed best accuracy (radiometers have generally exhibited a better performance than scatterometers in dry areas). For this reason, SMOS SM products were utilized to retrieve SM over desert areas. The regions that are susceptible to dust outbreaks were investigated using the dust outbreak probability functions (DOPF). Based on DOPF, about 58% of the total number of dust events occurred in regions with a high level of vulnerability where dust outbreaks were predicted with a probability higher than 60%. The SMOS-based DOPF was calculated to be about 62.4% of the dust outbreak vulnerability (DOV) level of the desert areas. Interestingly, East Asian deserts showed an increasing tendency for a high level of DOV during the study period. Those areas were judged to be sources from which dust could be transported to neighboring countries (e.g., Korea and Japan) which can lead to Asian dust storms. These results may allow us to predict trends of dust outbreaks in order to prepare the corresponding disaster response systems.

  16. Advancing Reflectrometry

    DTIC Science & Technology

    2013-05-21

    transmissions, was first demonstrated using Global Navigation Satellite System ( GNSS ) reflections. Recently, reflectometry has been extended to digital... GNSS +R workshop provided an opportunity for engineers and Earth scientists to assess the state of the art, demonstrate new applications, and discuss...18 Eos, Vol. 94, No. 21, 21 May 2013 MEETING -.~ Advancing Reflectometry Workshop on Renectometry Using GNSS and Other Signals of Opportunity

  17. Technological Advancements

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2010-01-01

    The influx of technology has brought significant improvements to school facilities. Many of those advancements can be found in classrooms, but when students head down the hall to use the washrooms, they are likely to find a host of technological innovations that have improved conditions in that part of the building. This article describes modern…

  18. Research Advances

    ERIC Educational Resources Information Center

    King, Angela G.

    2004-01-01

    Research advances, a new feature in Journal of Chemical Engineering that brings information about innovations in current areas of research to high school and college science faculty with an intent to provide educators with timely descriptions of latest progress in research that can be integrated into existing courses to update course content and…

  19. Advanced Combustion

    SciTech Connect

    Holcomb, Gordon R.

    2013-03-11

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  20. SOURCESCAT - A very fine resolution radar scatterometer

    NASA Astrophysics Data System (ADS)

    Zoughi, R.; Wu, L. K.; Moore, R. K.

    1985-11-01

    A short-range, high resolution FM-CW radar system has been used to investigate the sources of backscatter in various types of crops, trees, surfaces and man-made targets. A transmitted signal bandwidth of 2.0 GHz at 10.0 GHz center frequency provides a range resolution of 11 cm. A focused parabolic antenna, providing narrow effective antenna beamwidths in both the azimuth and the elevation directions, gives a 16 cm illumination area diameter at a target range of 4.0 m. Amplitude weighting of the received signal is implemented to reduce range sidelobe levels due to the internal system reflections and leakage signals from the transmitter into the receiver. Due to this amplitude weighting, the range resolution is 11.0 cm, rather than the 6.6 cm possible with 2 GHz bandwidth. This report discusses the design steps taken in construction of their radar system.

  1. A High-Resolution Merged Wind Dataset for DYNAMO: Progress and Future Plans

    NASA Technical Reports Server (NTRS)

    Lang, Timothy J.; Mecikalski, John; Li, Xuanli; Chronis, Themis; Castillo, Tyler; Hoover, Kacie; Brewer, Alan; Churnside, James; McCarty, Brandi; Hein, Paul; Rutledge, Steve; Dolan, Brenda; Matthews, Alyssa; Thompson, Elizabeth

    2015-01-01

    In order to support research on optimal data assimilation methods for the Cyclone Global Navigation Satellite System (CYGNSS), launching in 2016, work has been ongoing to produce a high-resolution merged wind dataset for the Dynamics of the Madden Julian Oscillation (DYNAMO) field campaign, which took place during late 2011/early 2012. The winds are produced by assimilating DYNAMO observations into the Weather Research and Forecasting (WRF) three-dimensional variational (3DVAR) system. Data sources from the DYNAMO campaign include the upper-air sounding network, radial velocities from the radar network, vector winds from the Advanced Scatterometer (ASCAT) and Oceansat-2 Scatterometer (OSCAT) satellite instruments, the NOAA High Resolution Doppler Lidar (HRDL), and several others. In order the prep them for 3DVAR, significant additional quality control work is being done for the currently available TOGA and SMART-R radar datasets, including automatically dealiasing radial velocities and correcting for intermittent TOGA antenna azimuth angle errors. The assimilated winds are being made available as model output fields from WRF on two separate grids with different horizontal resolutions - a 3-km grid focusing on the main DYNAMO quadrilateral (i.e., Gan Island, the R/V Revelle, the R/V Mirai, and Diego Garcia), and a 1-km grid focusing on the Revelle. The wind dataset is focused on three separate approximately 2-week periods during the Madden Julian Oscillation (MJO) onsets that occurred in October, November, and December 2011. Work is ongoing to convert the 10-m surface winds from these model fields to simulated CYGNSS observations using the CYGNSS End-To-End Simulator (E2ES), and these simulated satellite observations are being compared to radar observations of DYNAMO precipitation systems to document the anticipated ability of CYGNSS to provide information on the relationships between surface winds and oceanic precipitation at the mesoscale level. This research will

  2. Satellite-based Tropical Cyclone Monitoring Capabilities

    NASA Astrophysics Data System (ADS)

    Hawkins, J.; Richardson, K.; Surratt, M.; Yang, S.; Lee, T. F.; Sampson, C. R.; Solbrig, J.; Kuciauskas, A. P.; Miller, S. D.; Kent, J.

    2012-12-01

    Satellite remote sensing capabilities to monitor tropical cyclone (TC) location, structure, and intensity have evolved by utilizing a combination of operational and research and development (R&D) sensors. The microwave imagers from the operational Defense Meteorological Satellite Program [Special Sensor Microwave/Imager (SSM/I) and the Special Sensor Microwave Imager Sounder (SSMIS)] form the "base" for structure observations due to their ability to view through upper-level clouds, modest size swaths and ability to capture most storm structure features. The NASA TRMM microwave imager and precipitation radar continue their 15+ yearlong missions in serving the TC warning and research communities. The cessation of NASA's QuikSCAT satellite after more than a decade of service is sorely missed, but India's OceanSat-2 scatterometer is now providing crucial ocean surface wind vectors in addition to the Navy's WindSat ocean surface wind vector retrievals. Another Advanced Scatterometer (ASCAT) onboard EUMETSAT's MetOp-2 satellite is slated for launch soon. Passive microwave imagery has received a much needed boost with the launch of the French/Indian Megha Tropiques imager in September 2011, basically greatly supplementing the very successful NASA TRMM pathfinder with a larger swath and more frequent temporal sampling. While initial data issues have delayed data utilization, current news indicates this data will be available in 2013. Future NASA Global Precipitation Mission (GPM) sensors starting in 2014 will provide enhanced capabilities. Also, the inclusion of the new microwave sounder data from the NPP ATMS (Oct 2011) will assist in mapping TC convective structures. The National Polar orbiting Partnership (NPP) program's VIIRS sensor includes a day night band (DNB) with the capability to view TC cloud structure at night when sufficient lunar illumination exits. Examples highlighting this new capability will be discussed in concert with additional data fusion efforts.

  3. Advanced LIGO

    NASA Astrophysics Data System (ADS)

    LIGO Scientific Collaboration; Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V.; Affeldt, C.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J. S.; Ashton, G.; Ast, S.; Aston, S. M.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barclay, S.; Barish, B. C.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Batch, J. C.; Baune, C.; Behnke, B.; Bell, A. S.; Bell, C.; Benacquista, M.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Biwer, C.; Blackburn, J. K.; Blackburn, L.; Blair, C. D.; Blair, D.; Bock, O.; Bodiya, T. P.; Bojtos, P.; Bond, C.; Bork, R.; Born, M.; Bose, Sukanta; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Bridges, D. O.; Brinkmann, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchman, S.; Buikema, A.; Buonanno, A.; Cadonati, L.; Calderón Bustillo, J.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Caride, S.; Caudill, S.; Cavaglià, M.; Cepeda, C.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chen, Y.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Collette, C.; Cominsky, L.; Constancio, M., Jr.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cutler, C.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; Danzmann, K.; Dartez, L.; Dave, I.; Daveloza, H.; Davies, G. S.; Daw, E. J.; DeBra, D.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; D´ıaz, M.; Di Palma, I.; Dojcinoski, G.; Dominguez, E.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Driggers, J. C.; Du, Z.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Edwards, M.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fairhurst, S.; Fan, X.; Fang, Q.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferreira, E. C.; Fisher, R. P.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fuentes-Tapia, S.; Fulda, P.; Fyffe, M.; Gair, J. R.; Gaonkar, S.; Gehrels, N.; Gergely, L. Á.; Giaime, J. A.; Giardina, K. D.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gräf, C.; Graff, P. B.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Grote, H.; Grunewald, S.; Guido, C. J.; Guo, X.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hacker, J.; Hall, E. D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harry, G. M.; Harry, I. W.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Hee, S.; Heintze, M.; Heinzel, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hollitt, S. E.; Holt, K.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E.; Howell, E. J.; Hu, Y. M.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Islas, G.; Isler, J. C.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacobson, M.; Jang, H.; Jawahar, S.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Ju, L.; Haris, K.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N. G.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Korobko, M.; Korth, W. Z.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Krueger, C.; Kuehn, G.; Kumar, A.; Kumar, P.; Kuo, L.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Le, J.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leong, J. R.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Lockerbie, N. A.; Lockett, V.; Logue, J.; Lombardi, A. L.; Lormand, M.; Lough, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macarthur, J.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R.; Mageswaran, M.; Maglione, C.; Mailand, K.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Martin, I. W.; Martin, R. M.; Martynov, D.; Marx, J. N.; Mason, K.; Massinger, T. J.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McLin, K.; McWilliams, S.; Meadors, G. D.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyers, P. M.; Miao, H.; Middleton, H.; Mikhailov, E. E.; Miller, A.; Miller, J.; Millhouse, M.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohanty, S. D.; Mohapatra, S. R. P.; Moore, B.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Nayak, R. K.; Necula, V.; Nedkova, K.; Newton, G.; Nguyen, T.; Nielsen, A. B.; Nissanke, S.; Nitz, A. H.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; Oram, R.; O'Reilly, B.; Ortega, W.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Pai, S.; Palashov, O.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Papa, M. A.; Paris, H.; Patrick, Z.; Pedraza, M.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Post, A.; Poteomkin, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S.; Prestegard, T.; Price, L. R.; Principe, M.; Privitera, S.; Prix, R.; Prokhorov, L.; Puncken, O.; Pürrer, M.; Qin, J.; Quetschke, V.; Quintero, E.; Quiroga, G.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramirez, K.; Raymond, V.; Reed, C. M.; Reid, S.; Reitze, D. H.; Reula, O.; Riles, K.; Robertson, N. A.; Robie, R.; Rollins, J. G.; Roma, V.; Romano, J. D.; Romanov, G.; Romie, J. H.; Rowan, S.; Rüdiger, A.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Saleem, M.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J. R.; Sannibale, V.; Santiago-Prieto, I.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Sawadsky, A.; Scheuer, J.; Schilling, R.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sergeev, A.; Serna, G.; Sevigny, A.; Shaddock, D. A.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Staley, A.; Stebbins, J.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Steplewski, S.; Stevenson, S.; Stone, R.; Strain, K. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sutton, P. J.; Szczepanczyk, M.; Szeifert, G.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Tellez, G.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tomlinson, C.; Torres, C. V.; Torrie, C. I.; Traylor, G.; Tse, M.; Tshilumba, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vecchio, A.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Vincent-Finley, R.; Vitale, S.; Vo, T.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, H.; Wang, M.; Wang, X.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wilkinson, C.; Williams, L.; Williams, R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Xie, S.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yang, Q.; Zanolin, M.; Zhang, Fan; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhu, X. J.; Zucker, M. E.; Zuraw, S.; Zweizig, J.

    2015-04-01

    The Advanced LIGO gravitational wave detectors are second-generation instruments designed and built for the two LIGO observatories in Hanford, WA and Livingston, LA, USA. The two instruments are identical in design, and are specialized versions of a Michelson interferometer with 4 km long arms. As in Initial LIGO, Fabry-Perot cavities are used in the arms to increase the interaction time with a gravitational wave, and power recycling is used to increase the effective laser power. Signal recycling has been added in Advanced LIGO to improve the frequency response. In the most sensitive frequency region around 100 Hz, the design strain sensitivity is a factor of 10 better than Initial LIGO. In addition, the low frequency end of the sensitivity band is moved from 40 Hz down to 10 Hz. All interferometer components have been replaced with improved technologies to achieve this sensitivity gain. Much better seismic isolation and test mass suspensions are responsible for the gains at lower frequencies. Higher laser power, larger test masses and improved mirror coatings lead to the improved sensitivity at mid and high frequencies. Data collecting runs with these new instruments are planned to begin in mid-2015.

  4. Advanced Pacemaker

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Synchrony, developed by St. Jude Medical's Cardiac Rhythm Management Division (formerly known as Pacesetter Systems, Inc.) is an advanced state-of-the-art implantable pacemaker that closely matches the natural rhythm of the heart. The companion element of the Synchrony Pacemaker System is the Programmer Analyzer APS-II which allows a doctor to reprogram and fine tune the pacemaker to each user's special requirements without surgery. The two-way communications capability that allows the physician to instruct and query the pacemaker is accomplished by bidirectional telemetry. APS-II features 28 pacing functions and thousands of programming combinations to accommodate diverse lifestyles. Microprocessor unit also records and stores pertinent patient data up to a year.

  5. Assimilation of Global Radar Backscatter and Radiometer Brightness Temperature Observations to Improve Soil Moisture and Land Evaporation Estimates

    NASA Technical Reports Server (NTRS)

    Lievens, H.; Martens, B.; Verhoest, N. E. C.; Hahn, S.; Reichle, R. H.; Miralles, D. G.

    2017-01-01

    Active radar backscatter (s?) observations from the Advanced Scatterometer (ASCAT) and passive radiometer brightness temperature (TB) observations from the Soil Moisture Ocean Salinity (SMOS) mission are assimilated either individually or jointly into the Global Land Evaporation Amsterdam Model (GLEAM) to improve its simulations of soil moisture and land evaporation. To enable s? and TB assimilation, GLEAM is coupled to the Water Cloud Model and the L-band Microwave Emission from the Biosphere (L-MEB) model. The innovations, i.e. differences between observations and simulations, are mapped onto the model soil moisture states through an Ensemble Kalman Filter. The validation of surface (0-10 cm) soil moisture simulations over the period 2010-2014 against in situ measurements from the International Soil Moisture Network (ISMN) shows that assimilating s? or TB alone improves the average correlation of seasonal anomalies (Ran) from 0.514 to 0.547 and 0.548, respectively. The joint assimilation further improves Ran to 0.559. Associated enhancements in daily evaporative flux simulations by GLEAM are validated based on measurements from 22 FLUXNET stations. Again, the singular assimilation improves Ran from 0.502 to 0.536 and 0.533, respectively for s? and TB, whereas the best performance is observed for the joint assimilation (Ran = 0.546). These results demonstrate the complementary value of assimilating radar backscatter observations together with brightness temperatures for improving estimates of hydrological variables, as their joint assimilation outperforms the assimilation of each observation type separately.

  6. Spaceborne GNSS reflectometry for ocean winds: First results from the UK TechDemoSat-1 mission

    NASA Astrophysics Data System (ADS)

    Foti, Giuseppe; Gommenginger, Christine; Jales, Philip; Unwin, Martin; Shaw, Andrew; Robertson, Colette; Roselló, Josep

    2015-07-01

    First results are presented for ocean surface wind speed retrieval from reflected GPS signals measured by the low Earth orbiting UK TechDemoSat-1 satellite (TDS-1). Launched in July 2014, TDS-1 provides the first new spaceborne Global Navigation Satellite System-Reflectometry (GNSS-R) data since the pioneering UK-Disaster Monitoring Mission (UK-DMC) experiment in 2003. Examples of onboard-processed delay-Doppler maps reveal excellent data quality for winds up to 27.9 m/s. Collocated Advanced Scatterometer (ASCAT) winds are used to develop and evaluate a wind speed algorithm based on signal-to-noise ratio (SNR) and the bistatic radar equation. For SNRs greater than 3 dB, wind speed is retrieved without bias and a precision around 2.2 m/s between 3 and 18 m/s even without calibration. Exploiting lower SNR signals, however, requires good knowledge of the antenna beam, platform attitude, and instrument gain setting. This study demonstrates the capabilities of low-cost, low-mass, and low-power GNSS-R receivers ahead of their launch on the NASA Cyclone GNSS (CYGNSS) constellation in 2016.

  7. Precipitation estimation using L-band and C-band soil moisture retrievals

    NASA Astrophysics Data System (ADS)

    Koster, Randal D.; Brocca, Luca; Crow, Wade T.; Burgin, Mariko S.; De Lannoy, Gabrielle J. M.

    2016-09-01

    An established methodology for estimating precipitation amounts from satellite-based soil moisture retrievals is applied to L-band products from the Soil Moisture Active Passive (SMAP) and Soil Moisture and Ocean Salinity (SMOS) satellite missions and to a C-band product from the Advanced Scatterometer (ASCAT) mission. The precipitation estimates so obtained are evaluated against in situ (gauge-based) precipitation observations from across the globe. The precipitation estimation skill achieved using the L-band SMAP and SMOS data sets is higher than that obtained with the C-band product, as might be expected given that L-band is sensitive to a thicker layer of soil and thereby provides more information on the response of soil moisture to precipitation. The square of the correlation coefficient between the SMAP-based precipitation estimates and the observations (for aggregations to ˜100 km and 5 days) is on average about 0.6 in areas of high rain gauge density. Satellite missions specifically designed to monitor soil moisture thus do provide significant information on precipitation variability, information that could contribute to efforts in global precipitation estimation.

  8. Improving Hydrologic Data Assimilation by a Multivariate Particle Filter-Markov Chain Monte Carlo

    NASA Astrophysics Data System (ADS)

    Yan, H.; DeChant, C. M.; Moradkhani, H.

    2014-12-01

    Data assimilation (DA) is a popular method for merging information from multiple sources (i.e. models and remotely sensing), leading to improved hydrologic prediction. With the increasing availability of satellite observations (such as soil moisture) in recent years, DA is emerging in operational forecast systems. Although these techniques have seen widespread application, developmental research has continued to further refine their effectiveness. This presentation will examine potential improvements to the Particle Filter (PF) through the inclusion of multivariate correlation structures. Applications of the PF typically rely on univariate DA schemes (such as assimilating the outlet observed discharge), and multivariate schemes generally ignore the spatial correlation of the observations. In this study, a multivariate DA scheme is proposed by introducing geostatistics into the newly developed particle filter with Markov chain Monte Carlo (PF-MCMC) method. This new method is assessed by a case study over one of the basin with natural hydrologic process in Model Parameter Estimation Experiment (MOPEX), located in Arizona. The multivariate PF-MCMC method is used to assimilate the Advanced Scatterometer (ASCAT) grid (12.5 km) soil moisture retrievals and the observed streamflow in five gages (four inlet and one outlet gages) into the Sacramento Soil Moisture Accounting (SAC-SMA) model for the same scale (12.5 km), leading to greater skill in hydrologic predictions.

  9. Assimilation of Satellite Soil Moisture observation with the Particle Filter-Markov Chain Monte Carlo and Geostatistical Modeling

    NASA Astrophysics Data System (ADS)

    Moradkhani, Hamid; Yan, Hongxiang

    2016-04-01

    Soil moisture simulation and prediction are increasingly used to characterize agricultural droughts but the process suffers from data scarcity and quality. The satellite soil moisture observations could be used to improve model predictions with data assimilation. Remote sensing products, however, are typically discontinuous in spatial-temporal coverages; while simulated soil moisture products are potentially biased due to the errors in forcing data, parameters, and deficiencies of model physics. This study attempts to provide a detailed analysis of the joint and separate assimilation of streamflow and Advanced Scatterometer (ASCAT) surface soil moisture into a fully distributed hydrologic model, with the use of recently developed particle filter-Markov chain Monte Carlo (PF-MCMC) method. A geostatistical model is introduced to overcome the satellite soil moisture discontinuity issue where satellite data does not cover the whole study region or is significantly biased, and the dominant land cover is dense vegetation. The results indicate that joint assimilation of soil moisture and streamflow has minimal effect in improving the streamflow prediction, however, the surface soil moisture field is significantly improved. The combination of DA and geostatistical approach can further improve the surface soil moisture prediction.

  10. Satellite Constellation for Ocean Wind and Stress

    NASA Astrophysics Data System (ADS)

    Liu, W.; Xie, X.

    2009-12-01

    A scatterometer sends microwave pulses to the earth's surface and measure the power backscattered from the surface roughness. The roughness is believed to be in equilibrium with the stress (turbulent transport of momentum). The backscatter depends not only on the magnitude of the stress but also the stress direction relative to the direction of the radar beam. Measuring both stress magnitude and direction is the major unique capability of the scatterometer. Although stress drives ocean circulation, we do not have any large-scale stress measurement except from the scatterometer; our concept of stress distribution is largely derived from our knowledge on wind. Stress is closely related to wind. The geophysical product of the scatterometer is the equivalent neutral wind. It is a fictitious quantity, which has an unambiguous relation with surface stress by definition, while the relation between actual wind and surface stress depends on atmospheric vertical density stratification. Over most of the ocean, the atmosphere is near neutral and the current is much smaller than wind and it is generally assumed that the equivalent neutral wind is the actual wind. QuikSCAT, a Ku-band scatterometer, was launched in 1999. The scientific contributions to natural disaster, energy, weather, climate, water, ecosystem, and agriculture from one decade of QuikSCAT measurements will be presented. A C-band scatterometer, ASCAT, was launched by European Space Agency in 2006. Ku-band scatterometers, similar in design with QuikSCAT, will be launched by India and China in 2010 and 2011. One polar orbiting scatterometer could only sample the earth at most two times a day. If the future scatterometers will produce similarly high quality data, the future constellation of scatterometers, with different overhead crossing time, will meet the six hourly revisit frequency required by the operational weather forecast community and the inertial frequency required by research oceanographers. The coverage

  11. Advanced stellarators

    NASA Astrophysics Data System (ADS)

    Schlüter, Arnulf

    1983-03-01

    Toroidal confinement of a plasma by an external magnetic field is not compatible with axisymmetry, in contrast to confinement by the pinch effect of induced electric currents as in a tokomak or by the reversed field pinch configuration. The existence of magnetic surfaces throughout the region in which grad p ≠ 0 is therefore not guaranteed in such configurations, though it is necessary for MHD-equilibrium when the lines of force possess a finite twist (or "rotational transform"). These twisted equilibria are called stellarators. The other type of external confinement requires all lines of force to be closed upon themselves and p to be function of the well defined quantity Q = φ d l/ B only. The resulting "bumpy" tori are sometimes also referred to as being M + S like. By discussing specific examples it is shown that stellarator configurations exist which retain as much as possible the properties of M + S like configurations, combine these with the magnetic well, and with an approximation to the isodynamic requirement of D. Palumbo. These so-called Advanced Stellarators shown an improvement in predicted particle confinement and beta-limit compared to the classical stellarators. They can also be viewed as forming a system of linked stabilized mirrors of small mirror ratio. These fields can be produced by modular coils. A prototype of such a configuration is being designed by the stellarator division of IPP under the name of Wendelstein VII-AS. Expected physical data and technical details of W VII-AS are given.

  12. SCIENCE BRIEF: ADVANCED CONCEPTS

    EPA Science Inventory

    Research on advanced concepts will evaluate and demonstrate the application of innovative infrastructure designs, management procedures and operational approaches. Advanced concepts go beyond simple asset management. The infusion of these advanced concepts into established wastew...

  13. Soil as a natural rain gauge: Estimating global rainfall from satellite soil moisture data

    NASA Astrophysics Data System (ADS)

    Brocca, Luca; Ciabatta, Luca; Massari, Christian; Moramarco, Tommaso; Hahn, Sebastian; Hasenauer, Stefan; Kidd, Richard; Dorigo, Wouter; Wagner, Wolfgang; Levizzani, Vincenzo

    2014-05-01

    Measuring precipitation intensity is not straightforward; and over many areas, ground observations are lacking and satellite observations are used to fill this gap. The most common way of retrieving rainfall is by addressing the problem "top-down" by inverting the atmospheric signals reflected or radiated by atmospheric hydrometeors. However, most applications are interested in how much water reaches the ground, a problem that is notoriously difficult to solve from a top-down perspective. In this study, a novel "bottom-up" approach is proposed that, by doing "hydrology backward," uses variations in soil moisture (SM) sensed by microwave satellite sensors to infer preceding rainfall amounts. In other words, the soil is used as a natural rain gauge. Three different satellite SM data sets from the Advanced SCATterometer (ASCAT), the Advanced Microwave Scanning Radiometer (AMSR-E), and the Microwave Imaging Radiometer with Aperture Synthesis are used to obtain three new daily global rainfall products. The "First Guess Daily" product of the Global Precipitation Climatology Centre (GPCC) is employed as main benchmark in the validation period 2010-2011 for determining the continuous and categorical performance of the SM-derived rainfall products by considering the 5 day accumulated values. The real-time version of the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis product, i.e., the TRMM-3B42RT, is adopted as a state-of-the-art satellite rainfall product. The SM-derived rainfall products show good Pearson correlation values (R) with the GPCC data set, mainly in areas where SM retrievals are found to be accurate. The global median R values (in the latitude band ±50°) are equal to 0.54, 0.28, and 0.31 for ASCAT-, AMSR-E-, and SMOS-derived products, respectively. For comparison, the median R for the TRMM-3B42RT product is equal to 0.53. Interestingly, the SM-derived products are found to outperform TRMM-3B42RT in terms of average global

  14. Advanced planetary studies

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Results of planetary advanced studies and planning support are summarized. The scope of analyses includes cost estimation research, planetary mission performance, penetrator advanced studies, Mercury mission transport requirements, definition of super solar electric propulsion/solar sail mission discriminators, and advanced planning activities.

  15. Advances in forefoot trauma.

    PubMed

    Clements, J Randolph; Schopf, Robert

    2013-07-01

    Forefoot traumas, particularly involving the metatarsals, are commonly occurring injuries. There have been several advances in management of these injuries. These advances include updates in operative technique, internal fixation options, plating constructs, and external fixation. In addition, the advances of soft tissue management have improved outcomes. This article outlines these injuries and provides an update on techniques, principles, and understanding of managing forefoot trauma.

  16. Session: CSP Advanced Systems -- Advanced Overview (Presentation)

    SciTech Connect

    Mehos, M.

    2008-04-01

    The project description is: (1) it supports crosscutting activities, e.g. advanced optical materials, that aren't tied to a single CSP technology and (2) it supports the 'incubation' of new concepts in preliminary stages of investigation.

  17. Relating C-band Microwave and Optical Satellite Observations as A Function of Snow Thickness on First-Year Sea Ice during the Winter to Summer Transition

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Yackel, J.

    2015-12-01

    The Arctic sea ice and its snow cover have a direct impact on both the Arctic and global climate system through their ability to moderate heat exchange across the ocean-sea ice-atmosphere (OSA) interface. Snow cover plays a key role in the OSA interface radiation and energy exchange, as it controls the growth and decay of first-year sea ice (FYI). However, meteoric accumulation and redistribution of snow on FYI is highly stochastic over space and time, which makes it poorly understood. Previous studies have estimated local-scale snow thickness distributions using in-situ technique and modelling but it is spatially limited and challenging due to logistic difficulties. Moreover, snow albedo is also critical for determining the surface energy balance of the OSA during the critical summer ablation season. Even then, due to persistent and widespread cloud cover in the Arctic at various spatio-temporal scales, it is difficult and unreliable to remotely measure albedo of snow cover on FYI in the optical spectrum. Previous studies demonstrate that only large-scale sea ice albedo was successfully estimated using optical-satellite sensors. However, space-borne microwave sensors, with their capability of all-weather and 24-hour imaging, can provide enhanced information about snow cover on FYI. Daily spaceborne C-band scatterometer data (ASCAT) and MODIS data are used to investigate the the seasonal co-evolution of the microwave backscatter coefficient and optical albedo as a function of snow thickness on smooth FYI. The research focuses on snow-covered FYI near Cambridge Bay, Nunavut (Fig.1) during the winter to advanced-melt period (April-June, 2014). The ACSAT time series (Fig.2) show distinct increase in scattering at melt onset indicating the first occurrence of melt water in the snow cover. The corresponding albedo exhibits no decrease at this stage. We show how the standard deviation of ASCAT backscatter on FYI during winter can be used as a proxy for surface roughness

  18. Advance Care Planning.

    PubMed

    Stallworthy, Elizabeth J

    2013-04-16

    Advance care planning should be available to all patients with chronic kidney disease, including end-stage kidney disease on renal replacement therapy. Advance care planning is a process of patient-centred discussion, ideally involving family/significant others, to assist the patient to understand how their illness might affect them, identify their goals and establish how medical treatment might help them to achieve these. An Advance Care Plan is only one useful outcome from the Advance Care Planning process, the education of patient and family around prognosis and treatment options is likely to be beneficial whether or not a plan is written or the individual loses decision making capacity at the end of life. Facilitating Advance Care Planning discussions requires an understanding of their purpose and communication skills which need to be taught. Advance Care Planning needs to be supported by effective systems to enable the discussions and any resulting Plans to be used to aid subsequent decision making.

  19. Advancing Ethical Neuroscience Research.

    PubMed

    Borah, B Rashmi; Strand, Nicolle K; Chillag, Kata L

    2016-12-01

    As neuroscience research advances, researchers, clinicians, and other stakeholders will face a host of ethical challenges. The Presidential Commission for the Study of Bioethical Issues (Bioethics Commission) has published two reports that provide recommendations on how to advance research endeavors ethically. The commission addressed, among other issues, how to prioritize different types of neuroscience research and how to include research participants who have impaired consent capacity. The Bioethics Commission's recommendations provide a foundation for ethical guidelines as neuroscience research advances and progresses.

  20. Hydromechanical Advanced Coal Excavator

    NASA Technical Reports Server (NTRS)

    Estus, Jay M.; Summers, David

    1990-01-01

    Water-jet cutting reduces coal dust and its hazards. Advanced mining system utilizes full-face, hydromechanical, continuous miner. Coal excavator uses high-pressure water-jet lances, one in each of cutting heads and one in movable lance, to make cuts across top, bottom and middle height, respectively, of coal face. Wedge-shaped cutting heads advance into lower and upper cuts in turn, thereby breaking coal toward middle cut. Thrust cylinders and walking pads advance excavator toward coal face.

  1. Advanced echocardiographic techniques

    PubMed Central

    Perry, Rebecca

    2015-01-01

    Abstract Echocardiography has advanced significantly since its first clinical use. The move towards more accurate imaging and quantification has driven this advancement. In this review, we will briefly focus on three distinct but important recent advances, three‐dimensional (3D) echocardiography, contrast echocardiography and myocardial tissue imaging. The basic principles of these techniques will be discussed as well as current and future clinical applications. PMID:28191159

  2. Advancing the educational agenda.

    PubMed

    Baker, Cynthia

    2010-12-01

    This timely paper provides a thought-provoking analysis of current advanced practice nursing education in Canada. It comes at a critical juncture in the evolution of Canadian healthcare services and the redefinition of nursing roles. Increasingly, multiple sectors of society are calling for more nurses with advanced practice preparation and for a wider range of advanced practice nursing specialties. Advanced practice nurses (APNs) are being proposed as a solution to a financially overburdened national healthcare system, the increasing complexity of healthcare services, and a crisis in access to primary healthcare. Thus, governments seeking greater fiscal efficiency, medical specialists needing sophisticated collaborative support, and healthcare consumers see APNs as the way forward.

  3. Kansas Advanced Semiconductor Project

    SciTech Connect

    Baringer, P.; Bean, A.; Bolton, T.; Horton-Smith, G.; Maravin, Y.; Ratra, B.; Stanton, N.; von Toerne, E.; Wilson, G.

    2007-09-21

    KASP (Kansas Advanced Semiconductor Project) completed the new Layer 0 upgrade for D0, assumed key electronics projects for the US CMS project, finished important new physics measurements with the D0 experiment at Fermilab, made substantial contributions to detector studies for the proposed e+e- international linear collider (ILC), and advanced key initiatives in non-accelerator-based neutrino physics.

  4. Drilling at Advanced Levels

    ERIC Educational Resources Information Center

    Case, Doug

    1977-01-01

    Instances where drilling is useful for advanced language are discussed. Several types of drills are recommended, with the philosophy that advanced level drills should have a lighter style and be regarded as a useful, occasional means of practicing individual new items. (CHK)

  5. Advanced Engineering Fibers.

    ERIC Educational Resources Information Center

    Edie, Dan D.; Dunham, Michael G.

    1987-01-01

    Describes Clemson University's Advanced Engineered Fibers Laboratory, which was established to provide national leadership and expertise in developing the processing equipment and advance fibers necessary for the chemical, fiber, and textile industries to enter the composite materials market. Discusses some of the laboratory's activities in…

  6. Advanced Ceramic Armor Materials

    DTIC Science & Technology

    1990-05-11

    materials, toughened alumina, fiber -reinforced glass matrix composites, and multilayer-gradient materials for ballistic testing. Fabrication and...material systems: Multilayer advanced armor materials consisting of a hard ceramic faceplate bonded to a graphite fiber -reinforced glass matrix...toughened alumina, and fiber - applied studies of advanced reinforced ceramic matrix glass and glass -ceramic composites for ballistic testing. technologies

  7. Advances in Tissue Engineering

    PubMed Central

    Vacanti, Joseph

    2016-01-01

    Nearly 30 years ago, we reported on a concept now known as Tissue Engineering. Here, we report on some of the advances in this now thriving area of research. In particular, significant advances in tissue engineering of skin, liver, spinal cord, blood vessels, and other areas are discussed. PMID:26711689

  8. Advanced Manufacturing Technologies

    NASA Technical Reports Server (NTRS)

    Fikes, John

    2016-01-01

    Advanced Manufacturing Technologies (AMT) is developing and maturing innovative and advanced manufacturing technologies that will enable more capable and lower-cost spacecraft, launch vehicles and infrastructure to enable exploration missions. The technologies will utilize cutting edge materials and emerging capabilities including metallic processes, additive manufacturing, composites, and digital manufacturing. The AMT project supports the National Manufacturing Initiative involving collaboration with other government agencies.

  9. Advanced Network Security Project

    DTIC Science & Technology

    2005-12-01

    network. The network observed was the Abilene network of the University Consortium for Advanced Internet Development (UCAID), often known as “ Internet2 ...for Advanced Internet Development (UCAID), often known as “ Internet2 .” This contract was heavily operational in nature, as opposed to a contract

  10. Advances in dental materials.

    PubMed

    Fleming, Garry J P

    2014-05-01

    The dental market is replete with new resorative materials marketed on the basis of novel technological advances in materials chemistry, bonding capability or reduced operator time and/or technique sensitivity. This paper aims to consider advances in current materials, with an emphasis on their role in supporting contemporary clinical practice.

  11. Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe

    2004-01-01

    Viewgraphs on Advanced Life Support (ALS) Systems are presented. The topics include: 1) Fundamental Need for Advanced Life Support; 2) ALS organization; 3) Requirements and Rationale; 4) Past Integrated tests; 5) The need for improvements in life support systems; 6) ALS approach to meet exploration goals; 7) ALS Projects showing promise to meet exploration goals; and 9) GRC involvement in ALS.

  12. Advanced Chemical Propulsion Study

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon; Byers, Dave; Alexander, Leslie A.; Krebsbach, Al

    2004-01-01

    A study was performed of advanced chemical propulsion technology application to space science (Code S) missions. The purpose was to begin the process of selecting chemical propulsion technology advancement activities that would provide greatest benefits to Code S missions. Several missions were selected from Code S planning data, and a range of advanced chemical propulsion options was analyzed to assess capabilities and benefits re these missions. Selected beneficial applications were found for higher-performing bipropellants, gelled propellants, and cryogenic propellants. Technology advancement recommendations included cryocoolers and small turbopump engines for cryogenic propellants; space storable propellants such as LOX-hydrazine; and advanced monopropellants. It was noted that fluorine-bearing oxidizers offer performance gains over more benign oxidizers. Potential benefits were observed for gelled propellants that could be allowed to freeze, then thawed for use.

  13. Advanced Sensors and Applications Study (ASAS)

    NASA Technical Reports Server (NTRS)

    Chism, S. B.; Hughes, C. L.

    1976-01-01

    The present EOD requirements for sensors in the space shuttle era are reported with emphasis on those applications which were deemed important enough to warrant separate sections. The application areas developed are: (1) agriculture; (2) atmospheric corrections; (3) cartography; (4) coastal studies; (5) forestry; (6) geology; (7) hydrology; (8) land use; (9) oceanography; and (10) soil moisture. For each application area. The following aspects were covered: (1) specific goals and techniques, (2) individual sensor requirements including types, bands, resolution, etc.; (3) definition of mission requirements, type orbits, coverages, etc.; and (4) discussion of anticipated problem areas and solutions. The remote sensors required for these application areas include; (1) camera systems; (2) multispectral scanners; (3) microwave scatterometers; (4) synthetic aperture radars; (5) microwave radiometers; and (6) vidicons. The emphasis in the remote sensor area was on the evaluation of present technology implications about future systems.

  14. Advanced electron microscopy for advanced materials.

    PubMed

    Van Tendeloo, Gustaaf; Bals, Sara; Van Aert, Sandra; Verbeeck, Jo; Van Dyck, Dirk

    2012-11-08

    The idea of this Review is to introduce newly developed possibilities of advanced electron microscopy to the materials science community. Over the last decade, electron microscopy has evolved into a full analytical tool, able to provide atomic scale information on the position, nature, and even the valency atoms. This information is classically obtained in two dimensions (2D), but can now also be obtained in 3D. We show examples of applications in the field of nanoparticles and interfaces.

  15. Advanced biostack experiment

    NASA Technical Reports Server (NTRS)

    Buecker, H.

    1981-01-01

    The Advanced Biostack Experiment is described. The objectives are: (1) to confirm, complement, and enlarge the information obtained from the previous experiments by applying improved and advanced methods of localization and physical and biological evaluation, performing advanced experiments based on these data, and including additional biological specimens and additional radiation detectors; (2) to determine the biological importance of nuclear disintegration stars; (3) to determine the interference of HZE particle induced effects with those of other space flight factors (e.g., weightlessness); and (4) to determine the distribution of HZE particles and of disintegration stars at different locations inside the module and on the pallet.

  16. Advanced Computer Typography.

    DTIC Science & Technology

    1981-12-01

    ADVANCED COMPUTER TYPOGRAPHY .(U) DEC 81 A V HERSHEY UNCLASSIFIED NPS012-81-005 M MEEEIEEEII IIUJIL15I.4 MICROCQP RE SO.JjI ON ft R NPS012-81-005...NAVAL POSTGRADUATE SCHOOL 0Monterey, California DTIC SELECTEWA APR 5 1982 B ADVANCED COMPUTER TYPOGRAPHY by A. V. HERSHEY December 1981 OApproved for...Subtitle) S. TYPE Or REPORT & PERIOD COVERED Final ADVANCED COMPUTER TYPOGRAPHY Dec 1979 - Dec 1981 S. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(s) S CONTRACT

  17. Advanced Electronic Technology.

    DTIC Science & Technology

    1978-11-15

    It AD AObS 062 MASSACHUSETTS INST OF TECH LEXINGTON LINCOLN LAB F/S 9/S ADVANCED ELECTRONIC TECHNOLOGY .(U) NOV 78 A J MCLAUGHLIN. A L MCWHORTER...T I T U T E OF T E C H N O L O G Y L I N C O L N L A B O R A T O R Y ADVANCED ELECTRONIC TECHNOLOGY QUARTERLY TECKNICAL SUMMAR Y REPORT TO THE AIR...Division 8 (Solid State) on the Advanced Electronic Technology Program. Hi

  18. Advanced information society(7)

    NASA Astrophysics Data System (ADS)

    Chiba, Toshihiro

    Various threats are hiding in advanced informationalized society. As we see car accident problems in motorization society light aspects necessarily accompy shady ones. Under the changing circumstances of advanced informationalization added values of information has become much higher. It causes computer crime, hacker, computer virus to come to the surface. In addition it can be said that infringement of intellectual property and privacy are threats brought by advanced information. Against these threats legal, institutional and insurance measures have been progressed, and newly security industry has been established. However, they are not adequate individually or totally. The future vision should be clarified, and countermeasures according to the visions have to be considered.

  19. The ADvanced SEParation (ADSEP)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The ADvanced SEParation (ADSEP) commercial payload is making use of major advances in separation technology: The Phase Partitioning Experiment (PPE); the Micorencapsulation experiment; and the Hemoglobin Separation Experiment (HSE). Using ADSEP, commercial researchers will attempt to determine the partition coefficients for model particles in a two-phase system. With this information, researchers can develop a higher resolution, more effective cell isolation procedure that can be used for many different types of research and for improved health care. The advanced separation technology is already being made available for use in ground-based laboratories.

  20. Advances in cell culture

    SciTech Connect

    Maramorosch, K. )

    1987-01-01

    This book presents papers on advances in cell culture. Topics covered include: Genetic changes in the influenza viruses during growth in cultured cells; The biochemistry and genetics of mosquito cells in culture; and Tree tissue culture applications.

  1. Advanced information society(2)

    NASA Astrophysics Data System (ADS)

    Masuyama, Keiichi

    Our modern life is full of information and information infiltrates into our daily life. Networking of the telecommunication is extended to society, company, and individual level. Although we have just entered the advanced information society, business world and our daily life have been steadily transformed by the advancement of information network. This advancement of information brings a big influence on economy, and will play they the main role in the expansion of domestic demands. This paper tries to view the image of coming advanced information society, focusing on the transforming businessman's life and the situation of our daily life, which became wealthy by the spread of daily life information and the visual information by satellite system, in the development of the intelligent city.

  2. Advanced Electrochemical Waste Forms

    SciTech Connect

    Riley, Brian J.; Crum, Jarrod V.; McCloy, John S.; Matyas, Josef

    2011-12-01

    This is a brief description of PNNL's efforts in FY2011 towards developing advanced electrochemical waste forms. This is a short section that will become part of a larger document being put together by INL.

  3. Advanced care directives

    MedlinePlus

    ... you want no matter how ill you are. Writing an advance care directive may be hard. You ... wishes usually replace those you made previously in writing. Additional Information Write your living will or health ...

  4. Advance Control Measures & Programs

    EPA Pesticide Factsheets

    As areas develop their path forward or action plan, they should consider a variety of voluntary and mandatory measures and programs. The resources on this page can help, and participants are also encouraged to talk with their EPA Advance contact

  5. Living with Advanced MS

    MedlinePlus

    ... more progressive disease course. Taking these factors into account can help you and your family plan more effectively for the future. Identifying options The key message to anyone living with advanced MS is ...

  6. Advanced Welding Concepts

    NASA Technical Reports Server (NTRS)

    Ding, Robert J.

    2010-01-01

    Four advanced welding techniques and their use in NASA are briefly reviewed in this poster presentation. The welding techniques reviewed are: Solid State Welding, Friction Stir Welding (FSW), Thermal Stir Welding (TSW) and Ultrasonic Stir Welding.

  7. Advances in Process Control.

    ERIC Educational Resources Information Center

    Morrison, David L.; And Others

    1982-01-01

    Advances in electronics and computer science have enabled industries (pulp/paper, iron/steel, petroleum/chemical) to attain better control of their processes with resulting increases in quality, productivity, profitability, and compliance with government regulations. (JN)

  8. Advanced urology nursing practice.

    PubMed

    Crowe, Helen

    2014-03-01

    Urology nursing has developed as a specialty over the past few decades in response to several factors, workload demands being a prime reason. Nurses are taking on additional roles and activities including procedures such as cystoscopy and prostate biopsy, and running nurse-led clinics for a variety of urological conditions. Audits of advanced urological nursing practice have shown this care to be of a high standard and investigative procedures performed by these nurses match the diagnostic quality of existing services. Professional urological nursing organizations support the professional needs of these nurses, but the provision of education and training for advanced practice activities remains an unaddressed need. A range of confusing advanced urology nursing titles exists, and uncertainty regarding the roles and scope of practice for these nurses remains a concern. Acceptance and support from medical colleagues is required for the success of advanced urological nursing practice, but opinions on these roles remain divided.

  9. Advanced Welding Applications

    NASA Technical Reports Server (NTRS)

    Ding, Robert J.

    2010-01-01

    Some of the applications of advanced welding techniques are shown in this poster presentation. Included are brief explanations of the use on the Ares I and Ares V launch vehicle and on the Space Shuttle Launch vehicle. Also included are microstructural views from four advanced welding techniques: Variable Polarity Plasma Arc (VPPA) weld (fusion), self-reacting friction stir welding (SR-FSW), conventional FSW, and Tube Socket Weld (TSW) on aluminum.

  10. Advanced planetary studies

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Results of planetary advanced studies and planning support provided by Science Applications, Inc. staff members to Earth and Planetary Exploration Division, OSSA/NASA, for the period 1 February 1981 to 30 April 1982 are summarized. The scope of analyses includes cost estimation, planetary missions performance, solar system exploration committee support, Mars program planning, Galilean satellite mission concepts, and advanced propulsion data base. The work covers 80 man-months of research. Study reports and related publications are included in a bibliography section.

  11. Advanced Usability Evaluation Methods

    DTIC Science & Technology

    2007-04-01

    tracking in usability evaluation : A practitioner’s guide. In J. Hyönä, R. Radach, & H. Deubel. (Eds.), The mind’s eye: Cognitive and applied...Advanced Usability Evaluation Methods Terence S. Andre, Lt Col, USAF Margaret Schurig, Human Factors Design Specialist, The Boeing Co...TITLE AND SUBTITLE Advanced Usability Evaluation Methods 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT

  12. Psychiatric Advance Directives: Getting Started

    MedlinePlus

    ... More... Home Getting Started National Resource Center on Psychiatric Advance Directives - Getting Started Getting Started Psychiatric advance directives (PADs) are relatively new legal instruments ...

  13. Long-Term Observations of Dust Storms in Sandy Desert Environments

    NASA Astrophysics Data System (ADS)

    Yun, Hye-Won; Kim, Jung-Rack; Choi, Yun-Soo

    2015-04-01

    Mineral dust occupies the largest portion of atmospheric aerosol. Considering the numerous risks that dust poses for socioeconomic and anthropogenic activities, it is crucial to understand sandy desert environments, which frequently generate dust storms and act as a primary source of atmospheric aerosol. To identify mineral aerosol mechanisms, it is essential to monitor desert environmental factors involving dust storm generation in the long term. In this study, we focused on two major environmental factors: local surface roughness and soil moisture. Since installments of ground observation networks in sandy deserts are unfeasible, remote sensing techniques for mining desert environmental factors were employed. The test area was established within the Badain Jaran and Kubuqi Deserts in Inner Mongolia, China, where significant seasonal aeolian processes emit mineral dust that influences all of East Asia. To trace local surface roughness, we employed a multi-angle imaging spectroradiometer (MISR) image sequence to extract multi-angle viewing (MAV) topographic parameters such as normalized difference angular index, which represents characteristics of the target desert topography. The backscattering coefficient from various space-borne SAR and stereotopography were compared with MAV observations to determine calibrated local surface roughness. Soil moisture extraction techniques from InSAR-phase coherence stacks were developed and compiled with advanced scatterometer (ASCAT) soil moisture data. Combined with metrological information such as the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA interim, correlations between intensity of sand dune activity as a proxy of aeolian processes in desert environments, surface wind conditions, and surface soil moisture were traced. Overall, we have confirmed that tracking sandy desert aeolian environments for long-term observations is feasible with space-borne, multi-sensor observations when combined with

  14. Rainfall-runoff modelling by using SM2RAIN-derived and state-of-the-art satellite rainfall products over Italy

    NASA Astrophysics Data System (ADS)

    Ciabatta, Luca; Brocca, Luca; Massari, Christian; Moramarco, Tommaso; Gabellani, Simone; Puca, Silvia; Wagner, Wolfgang

    2016-06-01

    Satellite rainfall products (SRPs) are becoming more accurate with ever increasing spatial and temporal resolution. This evolution can be beneficial for hydrological applications, providing new sources of information and allowing to drive models in ungauged areas. Despite the large availability of rainfall satellite data, their use in rainfall-runoff modelling is still very scarce, most likely due to measurement issues (bias, accuracy) and the hydrological community acceptability of satellite products. In this study, the real-time version (3B42-RT) of Tropical Rainfall Measurement Mission Multi-satellite Precipitation Analysis, TMPA, and a new SRP based on the application of SM2RAIN algorithm (Brocca et al., 2014) to the ASCAT (Advanced SCATterometer) soil moisture product, SM2RASC, are used to drive a lumped hydrologic model over four basins in Italy during the 4-year period 2010-2013. The need of the recalibration of model parameter values for each SRP is highlighted, being an important precondition for their suitable use in flood modelling. Results shows that SRPs provided, in most of the cases, performance scores only slightly lower than those obtained by using observed data with a reduction of Nash-Sutcliffe efficiency (NS) less than 30% when using SM2RASC product while TMPA is characterized by a significant deterioration during the validation period 2012-2013. Moreover, the integration between observed and satellite rainfall data is investigated as well. Interestingly, the simple integration procedure here applied allows obtaining more accurate rainfall input datasets with respect to the use of ground observations only, for 3 out 4 basins. Indeed, discharge simulations improve when ground rainfall observations and SM2RASC product are integrated, with an increase of NS between 2 and 42% for the 3 basins in Central and Northern Italy. Overall, the study highlights the feasibility of using SRPs in hydrological applications over the Mediterranean region with

  15. Reducing the uncertainty in wind speed estimations near the coast

    NASA Astrophysics Data System (ADS)

    Floors, Rogier; Hahmann, Andrea N.; Karagali, Ioanna; Vasiljevic, Nikola; Lea, Guillaume; Simon, Elliot; Courtney, Michael; Ahsbahs, Tobias; Bay Hasager, Charlotte; Badger, Merete; Peña, Alfredo

    2016-04-01

    Many countries plan to meet renewable energy targets by installing near-shore wind farms, because of the high offshore wind speeds and good grid connectivity. Because of the strong relation between mean wind speed and the annual energy production, there is an interest in reducing uncertainty of the estimation of the wind speed in these coastal areas. The RUNE project aims to provide recommendations on the use of lidar systems and mesoscale models results to find the most effective (cost vs. accuracy) solution of estimating near-shore wind resources. Here we show some first results of the RUNE measuring campaign at the west coast of Jutland that started in December 2015. In this campaign, a long-range WindScanner system (a multi-lidar instrumentation) was used simultaneously with measurements from several vertical profiling lidars, a meteorological mast and an offshore buoy. These measurements result in a detailed picture of the flow in a transect across the coastline from approximately 5 km offshore up to 3 km inland. The wind speed obtained from a lidar in a sector-scanning mode and from two time-synchronized lidars that were separated horizontally but focused in the same point, will be compared. Furthermore it will be shown how the resulting horizontal wind speed transects compare with the wind speed measurements from the vertical profiling lidars and the meteorological mast. The behaviour of the coastal gradient in wind speed in this area is discussed. Satellite data for the wind over the RUNE measurement area were also collected. Synthetic Aperture Radar (SAR) winds from Sentinel-1 and TerraSAR-X were retrieved at different spatial resolutions. Advanced Scatterometer (ASCAT) swath winds were obtained from both METOP-A and B platforms. These were used for direct comparisons with the lidar in sector scanning mode.

  16. Recruit and ADVANCE

    NASA Astrophysics Data System (ADS)

    Rosser, Sue V.

    2007-04-01

    Beginning in 2001, the National Science Foundation launched the ADVANCE Initiative, which has now awarded more than 70 million to some thirty institutions for transformations to advance women. Results of studies on how to attract and retain women students and faculty underpinned our ADVANCE Institutional Transformation grant funded by the NSF for 3.7 million for five years, beginning in 2001. As co-principal investigator on this grant, I insured that this research informed the five major threads of the grant: 1) Four termed ADVANCE professors to mentor junior women faculty in each college; 2) Collection of MIT-Report-like data indicators to assess whether advancement of women really occurs during and after the institutional transformation undertaken through ADVANCE; 3) Family-friendly policies and practices to stop the tenure clock and provide active service, modified duties, lactation stations and day care; 4) Mini-retreats to facilitate access for tenure-track women faculty to male decision-makers and administrators for informal conversations and discussion on topics important to women faculty; 5) Removal of subtle gender, racial, and other biases in promotion and tenure. The dynamic changes resulting from the grant in quality of mentoring, new understanding of promotion and tenure, numbers of women retained and given endowed chairs, and emergence of new family friendly policies gave me hope for genuine diversification of leadership in science and technology. As the grant funding ends, the absence of NSF prestige and monitoring, coupled with a change in academic leadership at the top, provide new challenges for institutionalization, recruitment, and advancement of women into leadership positions in science and engineering.

  17. Do Advance Directives Direct?

    PubMed

    Shapiro, Susan P

    2015-06-01

    Resolution of long-standing debates about the role and impact of advance directives - living wills and powers of attorney for health care - has been hampered by a dearth of appropriate data, in particular data that compare the process and outcomes of end-of-life decision making on behalf of patients with and without advance directives. Drawing on a large ethnographic study of patients in two intensive care units in a large urban teaching hospital, this article compares aspects of the medical decision-making process and outcomes by advance-directive status. Controlling for demographic characteristics and severity of illness, the study finds few significant differences between patients without advance directives and those who claim to have them. Surprisingly, these few differences hold only for those whose directives are in their hospital chart. There are no significant differences between those with no directive and those claiming to have a copy at home or elsewhere. The article considers the implications if directives seemingly must be in hand to show even modest effects. Do advance directives direct? The intensive care unit data provide far more support for the growing body of literature that casts doubt on their impact than studies that promote the use of them.

  18. Advanced transmission studies

    NASA Technical Reports Server (NTRS)

    Coy, John J.; Bill, Robert C.

    1988-01-01

    The NASA Lewis Research Center and the U.S. Army Aviation Systems Command share an interest in advancing the technology for helicopter propulsion systems. In particular, this paper presents highlights from that portion of the program in drive train technology and the related mechanical components. The major goals of the program are to increase the life, reliability, and maintainability; reduce the weight, noise, and vibration; and maintain the relatively high mechanical efficiency of the gear train. The current activity emphasizes noise reduction technology and analytical code development followed by experimental verification. Selected significant advances in technology for transmissions are reviewed, including advanced configurations and new analytical tools. Finally, the plan for future transmission research is presented.

  19. Advanced servomanipulator development

    SciTech Connect

    Kuban, D.P.

    1985-01-01

    The Advanced Servomanipulator (ASM) System consists of three major components: the ASM slave, the dual arm master controller (DAMC) or master, and the control system. The ASM is remotely maintainable force-reflecting servomanipulator developed at the Oak Ridge National Laboratory (ORNL) as part of the Consolidated Fuel Reprocessing Program. This new manipulator addresses requirements of advanced nuclear fuel reprocessing with emphasis on force reflection, remote maintainability, reliability, radiation tolerance, and corrosion resistance. The advanced servomanipulator is uniquely subdivided into remotely replaceable modules which will permit in situ manipulator repair by spare module replacement. Manipulator modularization and increased reliability are accomplished through a force transmission system that uses gears and torque tubes. Digital control algorithms and mechanical precision are used to offset the increased backlash, friction, and inertia resulting from the gear drives. This results in the first remotely maintainable force-reflecting servomanipulator in the world.

  20. Advanced thermionic energy conversion

    NASA Technical Reports Server (NTRS)

    Britt, E. J.; Fitzpatrick, G. D.; Hansen, L. K.; Rasor, N. S.

    1974-01-01

    Basic analytical and experimental exploration was conducted on several types of advanced thermionic energy converters, and preliminary analysis was performed on systems utilizing advanced converter performance. The Pt--Nb cylindrical diode which exhibited a suppressed arc drop, as described in the preceding report, was reassembled and the existence of the postulated hydrid mode of operation was tentatively confirmed. Initial data obtained on ignited and unignited triode operation in the demountable cesium vapor system essentially confirmed the design principles developed in earlier work, with a few exceptions. Three specific advanced converter concepts were selected as candidates for concentrated basic study and for practical evaluation in fixed-configuration converters. Test vehicles and test stands for these converters and a unique controlled-atmosphere station for converter assembly and processing were designed, and procurement was initiated.

  1. Advanced Aerodynamic Control Effectors

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.

    1999-01-01

    A 1990 research program that focused on the development of advanced aerodynamic control effectors (AACE) for military aircraft has been reviewed and summarized. Data are presented for advanced planform, flow control, and surface contouring technologies. The data show significant increases in lift, reductions in drag, and increased control power, compared to typical aerodynamic designs. The results presented also highlighted the importance of planform selection in the design of a control effector suite. Planform data showed that dramatic increases in lift (greater than 25%) can be achieved with multiple wings and a sawtooth forebody. Passive porosity and micro drag generator control effector data showed control power levels exceeding that available from typical effectors (moving surfaces). Application of an advanced planform to a tailless concept showed benefits of similar magnitude as those observed in the generic studies.

  2. [Advanced Composites Technology Initiatives

    NASA Technical Reports Server (NTRS)

    Julian, Mark R.

    2002-01-01

    This final report closes out the W02 NASA Grant #NCC5-646. The FY02 grant for advanced technology initiatives through the Advanced Composites Technology Institute in Bridgeport, WV, at the Robert C. Byrd Institute (RCBI) Bridgeport Manufacturing Technology Center, is complete; all funding has been expended. RCBI continued to expand access to technology; develop and implement a workforce-training curriculum; improve material development; and provide prototyping and demonstrations of new and advanced composites technologies for West Virginia composites firms. The FY 02 efforts supported workforce development, technical training and the HST development effort of a super-lightweight composite carrier prototype and expanded the existing technical capabilities of the growing aerospace industry across West Virginia to provide additional support for NASA missions. Additionally, the Composites Technology and Training Center was awarded IS0 9001 - 2000 certification and Cleanroom Class 1000 certification during this report period.

  3. Advanced ramjet concepts program

    NASA Technical Reports Server (NTRS)

    Leingang, J. L.

    1992-01-01

    Uniquely advantageous features, on both the performance and weight sides of the ledger, can be achieved through synergistic design integration of airbreathing and rocket technologies in the development of advanced orbital space transport propulsion systems of the combined cycle type. In the context of well understood advanced airbreathing and liquid rocket propulsion principles and practices, this precept of synergism is advanced mainly through six rather specific examples. These range from the detailed component level to the overall vehicle system level as follows: using jet compression; achieving a high area ratio rocket nozzle; ameliorating gas generator cycle rocket system deficiencies; using the in-duct special rocket thrust chamber assembly as the principal scramjet fuel injection operation; using the unstowed, covered fan as a duct closure for effecting high area ratio rocket mode operation; and creating a unique airbreathing rocket system via the onboard, cryogenic hydrogen induced air liquefaction process.

  4. Advances in diagnostic radiology.

    PubMed

    Runge, Val M

    2010-12-01

    Recent advances in diagnostic radiology are discussed on the basis of current publications in Investigative Radiology. Publications in the journal during 2009 and 2010 are reviewed, evaluating developments by modality and anatomic region. Technological advances continue to play a major role in the evolution and clinical practice of diagnostic radiology, and as such constitute a major publication focus. In the past 2 years, this includes advances in both magnetic resonance and computed tomography (in particular, the advent of dual energy computed tomography). An additional major focus of publications concerns contrast media, and in particular continuing research involving nephrogenic systemic fibrosis, its etiology, and differentiation of the gadolinium chelates on the basis of in vivo stability.

  5. Advanced rocket propulsion

    NASA Technical Reports Server (NTRS)

    Obrien, Charles J.

    1993-01-01

    Existing NASA research contracts are supporting development of advanced reinforced polymer and metal matrix composites for use in liquid rocket engines of the future. Advanced rocket propulsion concepts, such as modular platelet engines, dual-fuel dual-expander engines, and variable mixture ratio engines, require advanced materials and structures to reduce overall vehicle weight as well as address specific propulsion system problems related to elevated operating temperatures, new engine components, and unique operating processes. High performance propulsion systems with improved manufacturability and maintainability are needed for single stage to orbit vehicles and other high performance mission applications. One way to satisfy these needs is to develop a small engine which can be clustered in modules to provide required levels of total thrust. This approach should reduce development schedule and cost requirements by lowering hardware lead times and permitting the use of existing test facilities. Modular engines should also reduce operational costs associated with maintenance and parts inventories.

  6. Advanced Hydrogen Turbine Development

    SciTech Connect

    Marra, John

    2015-09-30

    Under the sponsorship of the U.S. Department of Energy (DOE) National Energy Technology Laboratories, Siemens has completed the Advanced Hydrogen Turbine Development Program to develop an advanced gas turbine for incorporation into future coal-based Integrated Gasification Combined Cycle (IGCC) plants. All the scheduled DOE Milestones were completed and significant technical progress was made in the development of new technologies and concepts. Advanced computer simulations and modeling, as well as subscale, full scale laboratory, rig and engine testing were utilized to evaluate and select concepts for further development. Program Requirements of: A 3 to 5 percentage point improvement in overall plant combined cycle efficiency when compared to the reference baseline plant; 20 to 30 percent reduction in overall plant capital cost when compared to the reference baseline plant; and NOx emissions of 2 PPM out of the stack. were all met. The program was completed on schedule and within the allotted budget

  7. Advanced fuel chemistry for advanced engines.

    SciTech Connect

    Taatjes, Craig A.; Jusinski, Leonard E.; Zador, Judit; Fernandes, Ravi X.; Miller, James A.

    2009-09-01

    Autoignition chemistry is central to predictive modeling of many advanced engine designs that combine high efficiency and low inherent pollutant emissions. This chemistry, and especially its pressure dependence, is poorly known for fuels derived from heavy petroleum and for biofuels, both of which are becoming increasingly prominent in the nation's fuel stream. We have investigated the pressure dependence of key ignition reactions for a series of molecules representative of non-traditional and alternative fuels. These investigations combined experimental characterization of hydroxyl radical production in well-controlled photolytically initiated oxidation and a hybrid modeling strategy that linked detailed quantum chemistry and computational kinetics of critical reactions with rate-equation models of the global chemical system. Comprehensive mechanisms for autoignition generally ignore the pressure dependence of branching fractions in the important alkyl + O{sub 2} reaction systems; however we have demonstrated that pressure-dependent 'formally direct' pathways persist at in-cylinder pressures.

  8. Advanced solar dynamic technology program

    NASA Technical Reports Server (NTRS)

    Calogeras, James

    1990-01-01

    Viewgraphs and discussion on Advanced Solar Dynamic Technology Program are presented. Topics covered include: advanced solar dynamic technology program; advanced concentrators; advanced heat receivers; power conversion systems; dished all metal honeycomb sandwich panels; Stirling cavity heat pipe receiver; Brayton solar receiver; and thermal energy storage technology.

  9. Advancing cardiovascular tissue engineering

    PubMed Central

    Truskey, George A.

    2016-01-01

    Cardiovascular tissue engineering offers the promise of biologically based repair of injured and damaged blood vessels, valves, and cardiac tissue. Major advances in cardiovascular tissue engineering over the past few years involve improved methods to promote the establishment and differentiation of induced pluripotent stem cells (iPSCs), scaffolds from decellularized tissue that may produce more highly differentiated tissues and advance clinical translation, improved methods to promote vascularization, and novel in vitro microphysiological systems to model normal and diseased tissue function. iPSC technology holds great promise, but robust methods are needed to further promote differentiation. Differentiation can be further enhanced with chemical, electrical, or mechanical stimuli. PMID:27303643

  10. Advances in periodontology.

    PubMed

    Tonetti, M S

    2000-10-01

    Advances in periodontal science and practice over the last decade have radically changed the understanding of periodontal diseases and have opened new, exciting prospects for both medical and surgical therapy of periodontal diseases. Establishment of the aetiology and pathogenesis of periodontitis, understanding of the unique genetic and environmental susceptibility profile of affected subjects, and recognition of the systemic implications of periodontal infections are the key research findings. The use of randomised, controlled, clinical trials has allowed the development of evidence-based periodontology. Adjunctive antimicrobial therapy, regenerative periodontal surgery, periodontal plastic surgery, bone regeneration surgery in the light of implant treatment, and advanced soft tissue management at implant sites have radically changed practice.

  11. Advancing cytometry for immunology.

    PubMed

    Cossarizza, Andrea; Nolan, John; Radbruch, Andreas; Tárnok, Attila

    2012-12-01

    Cytometry is a key technology for immunology. It allows researchers to scrutinize the cells of the immune system in molecular detail, and to assess phenotype and function at the level of individual cells, no matter how rare these cells may be. The International Society for the Advancement of Cytometry, ISAC, by way of its meetings, online resources and publications (e.g. Cytometry Part A and Current Protocols in Cytometry, which are all published by Wiley) track the ever advancing developments regarding cytometry instrumentation and reagents, and the analysis of complex data sets. In June this year in Leipzig, Germany, ISAC held its annual conference "CYTO 2012", a marketplace of innovation in cytometry.

  12. Advanced sensors technology survey

    NASA Technical Reports Server (NTRS)

    Cooper, Tommy G.; Costello, David J.; Davis, Jerry G.; Horst, Richard L.; Lessard, Charles S.; Peel, H. Herbert; Tolliver, Robert

    1992-01-01

    This project assesses the state-of-the-art in advanced or 'smart' sensors technology for NASA Life Sciences research applications with an emphasis on those sensors with potential applications on the space station freedom (SSF). The objectives are: (1) to conduct literature reviews on relevant advanced sensor technology; (2) to interview various scientists and engineers in industry, academia, and government who are knowledgeable on this topic; (3) to provide viewpoints and opinions regarding the potential applications of this technology on the SSF; and (4) to provide summary charts of relevant technologies and centers where these technologies are being developed.

  13. Advanced concepts for acceleration

    SciTech Connect

    Keefe, D.

    1986-07-01

    Selected examples of advanced accelerator concepts are reviewed. Such plasma accelerators as plasma beat wave accelerator, plasma wake field accelerator, and plasma grating accelerator are discussed particularly as examples of concepts for accelerating relativistic electrons or positrons. Also covered are the pulsed electron-beam, pulsed laser accelerator, inverse Cherenkov accelerator, inverse free-electron laser, switched radial-line accelerators, and two-beam accelerator. Advanced concepts for ion acceleration discussed include the electron ring accelerator, excitation of waves on intense electron beams, and two-wave combinations. (LEW)

  14. Advanced engine study program

    NASA Technical Reports Server (NTRS)

    Masters, A. I.; Galler, D. E.; Denman, T. F.; Shied, R. A.; Black, J. R.; Fierstein, A. R.; Clark, G. L.; Branstrom, B. R.

    1993-01-01

    A design and analysis study was conducted to provide advanced engine descriptions and parametric data for space transfer vehicles. The study was based on an advanced oxygen/hydrogen engine in the 7,500 to 50,000 lbf thrust range. Emphasis was placed on defining requirements for high-performance engines capable of achieving reliable and versatile operation in a space environment. Four variations on the expander cycle were compared, and the advantages and disadvantages of each were assessed. Parametric weight, envelope, and performance data were generated over a range of 7,500 to 50,000 lb thrust and a wide range of chamber pressure and nozzle expansion ratio.

  15. Advanced Solar Power Systems

    NASA Technical Reports Server (NTRS)

    Atkinson, J. H.; Hobgood, J. M.

    1984-01-01

    The Advanced Solar Power System (ASPS) concentrator uses a technically sophisticated design and extensive tooling to produce very efficient (80 to 90%) and versatile energy supply equipment which is inexpensive to manufacture and requires little maintenance. The advanced optical design has two 10th order, generalized aspheric surfaces in a Cassegrainian configuration which gives outstanding performance and is relatively insensitive to temperature changes and wind loading. Manufacturing tolerances also have been achieved. The key to the ASPS is the direct absorption of concentrated sunlight in the working fluid by radiative transfers in a black body cavity. The basic ASPS design concepts, efficiency, optical system, and tracking and focusing controls are described.

  16. Advanced Monitoring systems initiative

    SciTech Connect

    R.J. Venedam; E.O. Hohman; C.F. Lohrstorfer; S.J. Weeks; J.B. Jones; W.J. Haas

    2004-09-30

    The Advanced Monitoring Systems Initiative (AMSI) actively searches for promising technologies and aggressively moves them from the research bench into DOE/NNSA end-user applications. There is a large unfulfilled need for an active element that reaches out to identify and recruit emerging sensor technologies into the test and evaluation function. Sensor research is ubiquitous, with the seeds of many novel concepts originating in the university systems, but at present these novel concepts do not move quickly and efficiently into real test environments. AMSI is a widely recognized, self-sustaining ''business'' accelerating the selection, development, testing, evaluation, and deployment of advanced monitoring systems and components.

  17. Advanced flight software reconfiguraton

    NASA Technical Reports Server (NTRS)

    Porcher, Bryan

    1991-01-01

    Information is given in viewgraph form on advanced flight software reconfiguration. Reconfiguration is defined as identifying mission and configuration specific requirements, controlling mission and configuration specific data, binding this information to the flight software code to perform specific missions, and the release and distribution of the flight software. The objectives are to develop, demonstrate, and validate advanced software reconfiguration tools and techniques; to demonstrate reconfiguration approaches on Space Station Freedom (SSF) onboard systems displays; and to interactively test onboard systems displays, flight software, and flight data.

  18. MR Neurography: Advances

    PubMed Central

    Chhabra, Avneesh; Zhao, Lianxin; Carrino, John A.; Trueblood, Eo; Koceski, Saso; Shteriev, Filip; Lenkinski, Lionel; Sinclair, Christopher D. J.; Andreisek, Gustav

    2013-01-01

    High resolution and high field magnetic resonance neurography (MR neurography, MRN) is shown to have excellent anatomic capability. There have been considerable advances in the technology in the last few years leading to various feasibility studies using different structural and functional imaging approaches in both clinical and research settings. This paper is intended to be a useful seminar for readers who want to gain knowledge of the advancements in the MRN pulse sequences currently used in clinical practice as well as learn about the other techniques on the horizon aimed at better depiction of nerve anatomy, pathology, and potential noninvasive evaluation of nerve degeneration or regeneration. PMID:23589774

  19. Advanced Neuroimaging of Tinnitus.

    PubMed

    Raghavan, Prashant; Steven, Andrew; Rath, Tanya; Gandhi, Dheeraj

    2016-05-01

    Although tinnitus may originate in damage to the peripheral auditory apparatus, its perception and distressing symptomatology are consequences of alterations to auditory, sensory, and limbic neural networks. This has been described in several studies, some using advanced structural MR imaging techniques such as diffusion tensor imaging. An understanding of these complex changes could enable development of targeted treatment. New MR imaging techniques enabling detailed depiction of the labyrinth may be useful when diagnosis of Meniere disease is equivocal. Advances in computed tomography and MR imaging have enabled noninvasive diagnosis of dural arteriovenous fistulae.

  20. Advanced Containment System

    DOEpatents

    Kostelnik, Kevin M.; Kawamura, Hideki; Richardson, John G.; Noda, Masaru

    2005-02-08

    An advanced containment system for containing buried waste and associated leachate. The advanced containment system comprises a plurality of casing sections with each casing section interlocked to an adjacent casing section. Each casing section includes a complementary interlocking structure that interlocks with the complementary interlocking structure on an adjacent casing section. A barrier filler substantially fills the casing sections and may substantially fill the spaces of the complementary interlocking structure to form a substantially impermeable barrier. Some of the casing sections may include sensors so that the casing sections and the zone of interest may be remotely monitored after the casing sections are emplaced in the ground.

  1. Advanced Imaging Tracker

    DTIC Science & Technology

    1982-06-01

    document requires that it 1e returncd: ADVANCED IMACINGC TRACKER Dr . L. E. Schmutz Contractor: Adaptive Optics Associates, Inc. Contt-ict Number: F30602-80...Code Number: IE20 Period of Worl: Covered: jun 80 - D’:c 81 Principal Investigator: Dr . Larry Schmut~z Phone: 617 547-2786 Project Engineer: Captaia...yaJPODCVR~ ADVANCED IMAGING TRACKER 10Jun 80 - ’,’ Dec 81 𔄃 PiRFORMiNO7 01G. REPORT NUMBER 7 ATII~(. ONTPA OR GRANTY NUMDERf.) Dr . 1L. E. Schiiut

  2. Leveraging simultaneous SMOS and ASCAT soil moisture products for enhanced hydrologic prediction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Runoff predictions obtained from rainfall runoff model are typically degraded for a wide variety of error sources including the inaccurate specification of pre-storm soil moisture conditions (determining infiltration capacity) and random error in rainfall inputs (especially in areas of a world lacki...

  3. Advanced Distribution Management System

    NASA Astrophysics Data System (ADS)

    Avazov, Artur R.; Sobinova, Liubov A.

    2016-02-01

    This article describes the advisability of using advanced distribution management systems in the electricity distribution networks area and considers premises of implementing ADMS within the Smart Grid era. Also, it gives the big picture of ADMS and discusses the ADMS advantages and functionalities.

  4. Rewriting in Advanced Composition.

    ERIC Educational Resources Information Center

    Stone, William B.

    A college English instructor made an informal comparison of rewriting habits of students in a freshman composition course and two advanced composition courses. Notes kept on student rewriting focused on this central question: given peer and instructor response to their papers and a choice as to what and how to rewrite, what will students decide to…

  5. Advanced Learning Environments.

    ERIC Educational Resources Information Center

    Hubal, Robert C.; Helms, Robert F.; Triplett, Suzanne E.

    Leading-edge technologies, integrated with emerging educational methodologies, make the Advanced Learning Environment (ALE) model cost effective and efficient for learning. The ALE integrates virtual reality and other enabling technologies such as natural language processing, animation, video, courseware, sound, projection, CD-ROM, and distance…

  6. Advanced Chemical Propulsion

    NASA Technical Reports Server (NTRS)

    Alexander, Leslie, Jr.

    2006-01-01

    Advanced Chemical Propulsion (ACP) provides near-term incremental improvements in propulsion system performance and/or cost. It is an evolutionary approach to technology development that produces useful products along the way to meet increasingly more demanding mission requirements while focusing on improving payload mass fraction to yield greater science capability. Current activities are focused on two areas: chemical propulsion component, subsystem, and manufacturing technologies that offer measurable system level benefits; and the evaluation of high-energy storable propellants with enhanced performance for in-space application. To prioritize candidate propulsion technology alternatives, a variety of propulsion/mission analyses and trades have been conducted for SMD missions to yield sufficient data for investment planning. They include: the Advanced Chemical Propulsion Assessment; an Advanced Chemical Propulsion System Model; a LOx-LH2 small pumps conceptual design; a space storables propellant study; a spacecraft cryogenic propulsion study; an advanced pressurization and mixture ratio control study; and a pump-fed vs. pressure-fed study.

  7. Advanced Gas Turbine (AGT)

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The development and progress of the Advanced Gas Turbine engine program is examined. An analysis of the role of ceramics in the design and major engine components is included. Projected fuel economy, emissions and performance standards, and versatility in fuel use are also discussed.

  8. Cartoons as Advance Organizers

    ERIC Educational Resources Information Center

    Kovalik, Cindy L.; Williams, Matthew A.

    2011-01-01

    This exploratory study investigated student reaction to the use of cartoons as advance organizers for online discussions in an online course. A convenience sample of 15 students participated in the study by contributing cartoons, participating in online discussions, and completing a survey. Overall, survey results indicated student reaction to the…

  9. Advanced turbine systems program

    SciTech Connect

    Wilkes, C.; Mukavetz, D.W.; Knickerbocker, T.K.; Ali, S.A.

    1992-12-31

    In accordance with the goals of the DOE program, improvements in the gas turbine are the primary focus of Allison activity during Phase I. To this end Allison conducted a survey of potentially applicable gas turbine cycles and selected the advanced combined cycle as reference system. Extensive analysis of two versions of the advanced combined cycle was performed against the requirement for a 60% thermal efficiency (LHV) utility-sized, natural gas fired system. This analysis resulted in technology requirements for this system. Additional analysis determined emissions potential for the system, established a coal-fueled derivative system and a commercialization plan. This report deals with the technical requirements for a system that meets the thermal efficiency goal. Allison initially investigated four basic thermodynamic cycles: Humid air turbine, intercalate-recuperated systems, advanced combined cycle, chemically recuperated cycle. Our survey and cycle analysis indicated that au had the potential of reaching 60% thermal efficiency. We also concluded that engine hot section technology would be a critical technology regardless of which cycle was chosen. Based on this result Allison chose to concentrate on the advanced combined cycle. This cycle is well known and understood by the utility turbine user community and is therefore likely to be acceptable to users.

  10. Advanced turbine systems program

    SciTech Connect

    Wilkes, C.; Mukavetz, D.W.; Knickerbocker, T.K.; Ali, S.A.

    1992-01-01

    In accordance with the goals of the DOE program, improvements in the gas turbine are the primary focus of Allison activity during Phase I. To this end Allison conducted a survey of potentially applicable gas turbine cycles and selected the advanced combined cycle as reference system. Extensive analysis of two versions of the advanced combined cycle was performed against the requirement for a 60% thermal efficiency (LHV) utility-sized, natural gas fired system. This analysis resulted in technology requirements for this system. Additional analysis determined emissions potential for the system, established a coal-fueled derivative system and a commercialization plan. This report deals with the technical requirements for a system that meets the thermal efficiency goal. Allison initially investigated four basic thermodynamic cycles: Humid air turbine, intercalate-recuperated systems, advanced combined cycle, chemically recuperated cycle. Our survey and cycle analysis indicated that au had the potential of reaching 60% thermal efficiency. We also concluded that engine hot section technology would be a critical technology regardless of which cycle was chosen. Based on this result Allison chose to concentrate on the advanced combined cycle. This cycle is well known and understood by the utility turbine user community and is therefore likely to be acceptable to users.

  11. Oklahoma's Advanced School Funding.

    ERIC Educational Resources Information Center

    Green, Gary

    A new means of funding school operations known as advanced school funding allows Oklahoma schools financing during the temporary cash shortfalls. The program consists of the Oklahoma Development Authority issuing revenue bonds purchased by E. F. Hutton and Company, Inc., which then sells the tax free bonds to investors throughout the country. A…

  12. Advanced Polymer Network Structures

    DTIC Science & Technology

    2016-02-01

    13. SUPPLEMENTARY NOTES 14. ABSTRACT Polymer networks and gels are important classes of materials for defense applications . In an effort to......it is no longer needed. Do not return it to the originator. ARL-TR-7612 ● FEB 2016 US Army Research Laboratory Advanced Polymer

  13. ISE advanced technology

    NASA Technical Reports Server (NTRS)

    Fox, Barry R.

    1991-01-01

    Information on Space Station Freedom scheduling problems and techniques are presented in viewgraph form. Topics covered include automated scheduling systems, user interface standards, benefits of interactive scheduling systems, incremental scheduling, software engineering, computer graphics interface, distributed resource management, and advanced applications.

  14. Advances in Distance Learning.

    ERIC Educational Resources Information Center

    1999

    This document contains three symposium papers on advances in distance learning. "The Adoption of Computer Technology and Telecommunications: A Case Study" (Larry M. Dooley, Teri Metcalf, Ann Martinez) reports on a study of the possible applications of two theoretical models (Rogers' Diffusion of Innovations model and the Concerns-Based…

  15. Advances in fetal surgery

    PubMed Central

    Pedreira, Denise Araujo Lapa

    2016-01-01

    ABSTRACT This paper discusses the main advances in fetal surgical therapy aiming to inform health care professionals about the state-of-the-art techniques and future challenges in this field. We discuss the necessary steps of technical evolution from the initial open fetal surgery approach until the development of minimally invasive techniques of fetal endoscopic surgery (fetoscopy). PMID:27074241

  16. Technological Advances in Joining

    DTIC Science & Technology

    1981-08-01

    time required for hardfacing was reduced 50 percent and material costs were reduced as well. Microplasma-Arc Welding. Advances in equipment development...548-555 (1962). (14) Anonymous, "Plasma Arc Saves Hardfacing Time and Dollars", Welding Journal, 59 (2), 51-52 (1980). (15) Liebisch, M

  17. Advances in Qualitative Research.

    ERIC Educational Resources Information Center

    1998

    This document contains five papers from a symposium on advances in qualitative research in human resource development (HRD). "Case Study and Its Virtuoso Possibilities" (Verna J. Willis) asserts that the case study method is particularly well suited for research in HRD because its creative and investigative possibilities have not yet…

  18. Advanced fossil energy utilization

    SciTech Connect

    Shekhawat, D.; Berry, D.; Spivey, J.; Pennline, H.; Granite, E.

    2010-01-01

    This special issue of Fuel is a selection of papers presented at the symposium ‘Advanced Fossil Energy Utilization’ co-sponsored by the Fuels and Petrochemicals Division and Research and New Technology Committee in the 2009 American Institute of Chemical Engineers (AIChE) Spring National Meeting Tampa, FL, on April 26–30, 2009.

  19. Advanced Concept Modeling

    NASA Technical Reports Server (NTRS)

    Chaput, Armand; Johns, Zachary; Hodges, Todd; Selfridge, Justin; Bevirt, Joeben; Ahuja, Vivek

    2015-01-01

    Advanced Concepts Modeling software validation, analysis, and design. This was a National Institute of Aerospace contract with a lot of pieces. Efforts ranged from software development and validation for structures and aerodynamics, through flight control development, and aeropropulsive analysis, to UAV piloting services.

  20. Advanced proteomic liquid chromatography

    SciTech Connect

    Xie, Fang; Smith, Richard D.; Shen, Yufeng

    2012-10-26

    Liquid chromatography coupled with mass spectrometry is the predominant platform used to analyze proteomics samples consisting of large numbers of proteins and their proteolytic products (e.g., truncated polypeptides) and spanning a wide range of relative concentrations. This review provides an overview of advanced capillary liquid chromatography techniques and methodologies that greatly improve separation resolving power and proteomics analysis coverage, sensitivity, and throughput.

  1. Advances in Planetary Geology

    NASA Technical Reports Server (NTRS)

    Woronow, A. (Editor)

    1982-01-01

    Advances in Planetary Geology is a new series intended to serve the planetary geology community with a form for quick and thorough communications. There are no set lists of acceptable topics or formats, and submitted manuscripts will not undergo a formal review. All submissions should be in a camera ready form, preferably spaced, and submitted to the editor.

  2. Advanced Test Reactor Tour

    SciTech Connect

    Miley, Don

    2011-01-01

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  3. Advanced Cardiac Life Support.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document contains materials for an advanced college course in cardiac life support developed for the State of Iowa. The course syllabus lists the course title, hours, number, description, prerequisites, learning activities, instructional units, required text, six references, evaluation criteria, course objectives by units, course…

  4. Advancing beyond AP Courses

    ERIC Educational Resources Information Center

    Hammond, Bruce G.

    2009-01-01

    A quiet revolution is picking up steam in the nation's private secondary schools, with broad implications for college admissions and for teaching and learning on both sides of the transition from high school to college. About 50 of the nation's leading college-preparatory schools have opted out of the College Board's Advanced Placement (AP)…

  5. Advanced Plant Habitat (APH)

    NASA Technical Reports Server (NTRS)

    Richards, Stephanie E. (Compiler); Levine, Howard G.; Reed, David W.

    2016-01-01

    The Advanced Plant Habitat (APH) hardware will be a large growth volume plant habitat, capable of hosting multigenerational studies, in which environmental variables (e.g., temperature, relative humidity, carbon dioxide level light intensity and spectral quality) can be tracked and controlled in support of whole plant physiological testing and Bio-regenerative Life Support System investigations.

  6. Advanced Civilian Aeronautical Concepts

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.

    1996-01-01

    Paper discusses alternatives to currently deployed systems which could provide revolutionary improvements in metrics applicable to civilian aeronautics. Specific missions addressed include subsonic transports, supersonic transports and personal aircraft. These alternative systems and concepts are enabled by recent and envisaged advancements in electronics, communications, computing and Designer Fluid Mechanics in conjunction with a design approach employing extensive synergistic interactions between propulsion, aerodynamics and structures.

  7. Advanced Test Reactor Tour

    ScienceCinema

    Miley, Don

    2016-07-12

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  8. Advancing Student Achievement

    ERIC Educational Resources Information Center

    Walberg, Herbert J.

    2010-01-01

    For the last half century, higher spending and many modern reforms have failed to raise the achievement of students in the United States to the levels of other economically advanced countries. A possible explanation, says Herbert Walberg, is that much current education theory is ill informed about scientific psychology, often drawing on fads and…

  9. Advanced geometries and regimes

    SciTech Connect

    Bulanov, S. S.; Bulanov, S. V.; Turchetti, G.; Limpouch, J.; Klimo, O.; Psikal, J.; Margarone, D.; Korn, G.

    2013-07-26

    We review and discuss different schemes of laser ion acceleration as well as advanced target geometries in connection with the development of the laser-driven proton source for hadron therapy of oncological diseases, which is a part of the ELIMED project.

  10. Advanced Heart Failure

    MedlinePlus

    ... Artery Disease Venous Thromboembolism Aortic Aneurysm More Advanced Heart Failure Updated:Feb 9,2017 When heart failure (HF) ... content was last reviewed on 04/06/2015. Heart Failure • Home • About Heart Failure • Causes and Risks for ...

  11. Infant Development: Recent Advances.

    ERIC Educational Resources Information Center

    Bremner, Gavin, Ed.; Slater, Alan, Ed.; Butterworth, George, Ed.

    Noting that the last 30 years have seen enormous increases in the understanding of infancy, this book examines the current state of knowledge regarding infant development. The book's contents stem from meetings of the British Infancy Research Group. Although the book was intended for advanced undergraduates, it would also be useful for advanced…

  12. Advancement's Sticky Issues

    ERIC Educational Resources Information Center

    Jackson, Patricia

    2011-01-01

    The author did not expect to be surprised or disturbed by the data from the latest Council for Advancement and Support of Education (CASE) salary survey; however, she was. CASE has been conducting the survey since 1982, so she assumed the findings would mirror her own salary history and those of her peers. While she suspected that older women…

  13. Labour analgesia: Recent advances.

    PubMed

    Pandya, Sunil T

    2010-09-01

    Advances in the field of labour analgesia have tread a long journey from the days of ether and chloroform in 1847 to the present day practice of comprehensive programme of labour pain management using evidence-based medicine. Newer advances include introduction of newer techniques like combined spinal epidurals, low-dose epidurals facilitating ambulation, pharmacological advances like introduction of remifentanil for patient-controlled intravenous analgesia, introduction of newer local anaesthetics and adjuvants like ropivacaine, levobupivacaine, sufentanil, clonidine and neostigmine, use of inhalational agents like sevoflourane for patient-controlled inhalational analgesia using special vaporizers, all have revolutionized the practice of pain management in labouring parturients. Technological advances like use of ultrasound to localize epidural space in difficult cases minimizes failed epidurals and introduction of novel drug delivery modalities like patient-controlled epidural analgesia (PCEA) pumps and computer-integrated drug delivery pumps have improved the overall maternal satisfaction rate and have enabled us to customize a suitable analgesic regimen for each parturient. Recent randomized controlled trials and Cochrane studies have concluded that the association of epidurals with increased caesarean section and long-term backache remains only a myth. Studies have also shown that the newer, low-dose regimes do not have a statistically significant impact on the duration of labour and breast feeding and also that these reduce the instrumental delivery rates thus improving maternal and foetal safety. Advances in medical technology like use of ultrasound for localizing epidural space have helped the clinicians to minimize the failure rates, and many novel drug delivery modalities like PCEA and computer-integrated PCEA have contributed to the overall maternal satisfaction and safety.

  14. Laboratory calibration of AAFE radiometer/scatterometer (RADSCAT)

    NASA Technical Reports Server (NTRS)

    Schroeder, L. C.; Jones, W. L., Jr.; Mitchell, J. L.

    1976-01-01

    A brief description of the electrical and mechanical instrument configuration, followed by an extensive discussion of laboratory tests and results are contained herein. This information is required to provide parameters for data reduction, and a basis for analysis of the measurement errors in data taken with this instrument.

  15. Wind Forcing of the Pacific Ocean Using Scatterometer Wind Data

    NASA Technical Reports Server (NTRS)

    Kelly, Kathryn A.

    1999-01-01

    The long-term objective of this research was an understanding of the wind-forced ocean circulation, particularly for the Pacific Ocean. To determine the ocean's response to the winds, we first needed to generate accurate maps of wind stress. For the ocean's response to wind stress we examined the sea surface height (SSH) both from altimeters and from numerical models for the Pacific Ocean.

  16. Definition and fabrication of an airborne scatterometer radar signal processor

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A hardware/software system which incorporates a microprocessor design and software for the calculation of normalized radar cross section in real time was developed. Interface is provided to decommutate the NASA ADAS data stream for aircraft parameters used in processing and to provide output in the form of strip chart and pcm compatible data recording.

  17. The Importance of Altimeter and Scatterometer Data for Ocean Prediction,

    DTIC Science & Technology

    1984-01-01

    of water vapour , wind speed and wave height. Nature, 294, 529-532. Cheney, R. E. and J. G. Marsh, 1981: SEASAT altimeter observations of dynamic...E. and J. D. Thompson, 1980: A numerical study of Loop Current intrusions and eddy shedding. J. Phys. Oceanogr., 10, 1611-1651. ’Hurlburt, H. E. and J

  18. Monitoring rice (oryza sativa L.) growth using multifrequency microwave scatterometers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microwave remote sensing can help monitor the land surface water cycle and crop growth. This type of remote sensing has great potential over conventional remote sensing using the visible and infrared regions due to its all-weather day-and-night imaging capabilities. In this investigation, a ground-b...

  19. Advanced Space Propulsion

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    1996-01-01

    This presentation describes a number of advanced space propulsion technologies with the potential for meeting the need for dramatic reductions in the cost of access to space, and the need for new propulsion capabilities to enable bold new space exploration (and, ultimately, space exploitation) missions of the 21st century. For example, current Earth-to-orbit (e.g., low Earth orbit, LEO) launch costs are extremely high (ca. $10,000/kg); a factor 25 reduction (to ca. $400/kg) will be needed to produce the dramatic increases in space activities in both the civilian and government sectors identified in the Commercial Space Transportation Study (CSTS). Similarly, in the area of space exploration, all of the relatively 'easy' missions (e.g., robotic flybys, inner solar system orbiters and landers; and piloted short-duration Lunar missions) have been done. Ambitious missions of the next century (e.g., robotic outer-planet orbiters/probes, landers, rovers, sample returns; and piloted long-duration Lunar and Mars missions) will require major improvements in propulsion capability. In some cases, advanced propulsion can enable a mission by making it faster or more affordable, and in some cases, by directly enabling the mission (e.g., interstellar missions). As a general rule, advanced propulsion systems are attractive because of their low operating costs (e.g., higher specific impulse, ISD) and typically show the most benefit for relatively 'big' missions (i.e., missions with large payloads or AV, or a large overall mission model). In part, this is due to the intrinsic size of the advanced systems as compared to state-of-the-art (SOTA) chemical propulsion systems. Also, advanced systems often have a large 'infrastructure' cost, either in the form of initial R&D costs or in facilities hardware costs (e.g., laser or microwave transmission ground stations for beamed energy propulsion). These costs must then be amortized over a large mission to be cost-competitive with a SOTA

  20. Advanced life support study

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Summary reports on each of the eight tasks undertaken by this contract are given. Discussed here is an evaluation of a Closed Ecological Life Support System (CELSS), including modeling and analysis of Physical/Chemical Closed Loop Life Support (P/C CLLS); the Environmental Control and Life Support Systems (ECLSS) evolution - Intermodule Ventilation study; advanced technologies interface requirements relative to ECLSS; an ECLSS resupply analysis; the ECLSS module addition relocation systems engineering analysis; an ECLSS cost/benefit analysis to identify rack-level interface requirements of the alternate technologies evaluated in the ventilation study, with a comparison of these with the rack level interface requirements for the baseline technologies; advanced instrumentation - technology database enhancement; and a clean room survey and assessment of various ECLSS evaluation options for different growth scenarios.

  1. Advances in Norovirus Biology

    PubMed Central

    Karst, Stephanie M.; Wobus, Christiane E.; Goodfellow, Ian G.; Green, Kim Y.

    2014-01-01

    Human noroviruses are a major cause of epidemic and sporadic gastroenteritis worldwide, and can chronically infect immunocompromised patients. Efforts to develop effective vaccines and antivirals have been hindered by the uncultivable nature and extreme genetic diversity of human noroviruses. Although they remain a particularly challenging pathogen to study, recent advances in norovirus animal models and in vitro cultivation systems have led to an increased understanding of norovirus molecular biology and replication, pathogenesis, cell tropism, and innate and adaptive immunity. Furthermore, clinical trials of vaccines consisting of nonreplicating virus-like particles have shown promise. In this review, we summarize these recent advances and discuss controversies in the field, which is rapidly progressing towards generation of antiviral agents and increasingly effective vaccines. PMID:24922570

  2. Advanced CCD camera developments

    SciTech Connect

    Condor, A.

    1994-11-15

    Two charge coupled device (CCD) camera systems are introduced and discussed, describing briefly the hardware involved, and the data obtained in their various applications. The Advanced Development Group Defense Sciences Engineering Division has been actively designing, manufacturing, fielding state-of-the-art CCD camera systems for over a decade. These systems were originally developed for the nuclear test program to record data from underground nuclear tests. Today, new and interesting application for these systems have surfaced and development is continuing in the area of advanced CCD camera systems, with the new CCD camera that will allow experimenters to replace film for x-ray imaging at the JANUS, USP, and NOVA laser facilities.

  3. CADC Advanced Search

    NASA Astrophysics Data System (ADS)

    Jenkins, D. N.

    2012-09-01

    The Canadian Astronomy Data Centre's (CADC) Advanced Search web application is a modern search tool to access data across the CADC archives. It allows searching in different units, and is well averse in wild card characters and numeric operations. Search results are displayed in a sortable and filterable manner allowing quick and accurate access to downloadable data. The Advanced Search interface makes extremely good use of the Astronomical Data Query Language (ADQL) to scour the Common Archive Observation Model (CAOM) Table Access Protocol (TAP) query service and the vast CADC Archive Data (AD) storage system. A new tabular view of the query form and the results data makes it easy to view the query, then return to the query form to make further changes, or, alternatively, filter the data from the paginated table. Results are displayed using a rich, open-source, JavaScript-based VOTable viewer called voview.

  4. Advanced Separation Consortium

    SciTech Connect

    2006-01-01

    The Center for Advanced Separation Technologies (CAST) was formed in 2001 under the sponsorship of the US Department of Energy to conduct fundamental research in advanced separation and to develop technologies that can be used to produce coal and minerals in an efficient and environmentally acceptable manner. The CAST consortium consists of seven universities - Virginia Tech, West Virginia University, University of Kentucky, Montana Tech, University of Utah, University of Nevada-Reno, and New Mexico Tech. The consortium brings together a broad range of expertise to solve problems facing the US coal industry and the mining sector in general. At present, a total of 60 research projects are under way. The article outlines some of these, on topics including innovative dewatering technologies, removal of mercury and other impurities, and modelling of the flotation process. 1 photo.

  5. Advanced far infrared detectors

    SciTech Connect

    Haller, E.E.

    1993-05-01

    Recent advances in photoconductive and bolometric semiconductor detectors for wavelength 1 mm > {lambda} > 50 {mu}m are reviewed. Progress in detector performance in this photon energy range has been stimulated by new and stringent requirements for ground based, high altitude and space-borne telescopes for astronomical and astrophysical observations. The paper consists of chapters dealing with the various types of detectors: Be and Ga doped Ge photoconductors, stressed Ge:Ga devices and neutron transmutation doped Ge thermistors. Advances in the understanding of basic detector physics and the introduction of modern semiconductor device technology have led to predictable and reliable fabrication techniques. Integration of detectors into functional arrays has become feasible and is vigorously pursued by groups worldwide.

  6. Advanced light source

    NASA Astrophysics Data System (ADS)

    Sah, R. C.

    1983-03-01

    The Advanced Light Source (ALS) is a new synchrotron radiation source which was proposed by Lawrence Berkeley Laboratory. The ALS will be a key component in a major new research facility, the National Center for Advanced Materials. The ALS will consist of an electron linear accelerator, a booster synchrotron, a 1.3-GeV electron storage ring, and a number of photon beam lines. Most of all photon beam lines will originate from wiggler and undulator magnets placed in the 12 long straight sections of the ALS. A very low electron beam emittance will provide photon beams of unsurpassed spectral brilliance from specially-designed undulators, and a high radiofrequency will produce very short pulse lengths.

  7. Advanced information society(5)

    NASA Astrophysics Data System (ADS)

    Tanizawa, Ippei

    Based on the advancement of information network technology information communication forms informationalized society giving significant impact on business activities and life style in it. The information network has been backed up technologically by development of computer technology and has got great contribution by enhanced computer technology and communication equipments. Information is transferred by digital and analog methods. Technical development which has brought out multifunctioned modems of communication equipments in analog mode, and construction of advanced information communication network which has come out by joint work of computer and communication under digital technique, are described. The trend in institutional matter and standardization of electrical communication is also described showing some examples of value-added network (VAN).

  8. Advanced ground station architecture

    NASA Technical Reports Server (NTRS)

    Zillig, David; Benjamin, Ted

    1994-01-01

    This paper describes a new station architecture for NASA's Ground Network (GN). The architecture makes efficient use of emerging technologies to provide dramatic reductions in size, operational complexity, and operational and maintenance costs. The architecture, which is based on recent receiver work sponsored by the Office of Space Communications Advanced Systems Program, allows integration of both GN and Space Network (SN) modes of operation in the same electronics system. It is highly configurable through software and the use of charged coupled device (CCD) technology to provide a wide range of operating modes. Moreover, it affords modularity of features which are optional depending on the application. The resulting system incorporates advanced RF, digital, and remote control technology capable of introducing significant operational, performance, and cost benefits to a variety of NASA communications and tracking applications.

  9. Recent Advances in Voltammetry

    PubMed Central

    Batchelor-McAuley, Christopher; Kätelhön, Enno; Barnes, Edward O; Compton, Richard G; Laborda, Eduardo; Molina, Angela

    2015-01-01

    Recent progress in the theory and practice of voltammetry is surveyed and evaluated. The transformation over the last decade of the level of modelling and simulation of experiments has realised major advances such that electrochemical techniques can be fully developed and applied to real chemical problems of distinct complexity. This review focuses on the topic areas of: multistep electrochemical processes, voltammetry in ionic liquids, the development and interpretation of theories of electron transfer (Butler–Volmer and Marcus–Hush), advances in voltammetric pulse techniques, stochastic random walk models of diffusion, the influence of migration under conditions of low support, voltammetry at rough and porous electrodes, and nanoparticle electrochemistry. The review of the latter field encompasses both the study of nanoparticle-modified electrodes, including stripping voltammetry and the new technique of ‘nano-impacts’. PMID:26246984

  10. Recent Advances in Voltammetry.

    PubMed

    Batchelor-McAuley, Christopher; Kätelhön, Enno; Barnes, Edward O; Compton, Richard G; Laborda, Eduardo; Molina, Angela

    2015-06-01

    Recent progress in the theory and practice of voltammetry is surveyed and evaluated. The transformation over the last decade of the level of modelling and simulation of experiments has realised major advances such that electrochemical techniques can be fully developed and applied to real chemical problems of distinct complexity. This review focuses on the topic areas of: multistep electrochemical processes, voltammetry in ionic liquids, the development and interpretation of theories of electron transfer (Butler-Volmer and Marcus-Hush), advances in voltammetric pulse techniques, stochastic random walk models of diffusion, the influence of migration under conditions of low support, voltammetry at rough and porous electrodes, and nanoparticle electrochemistry. The review of the latter field encompasses both the study of nanoparticle-modified electrodes, including stripping voltammetry and the new technique of 'nano-impacts'.

  11. Advanced Clothing System

    NASA Technical Reports Server (NTRS)

    Broyan, James; Orndoff, Evelyne

    2014-01-01

    The goal of the Advanced Clothing System (ACS) is to use advanced commercial off-the-shelf fibers and antimicrobial treatments with the goal of directly reducing the mass and volume of a logistics item. The current clothing state-of-the-art on the International Space Station (ISS) is disposable, mostly cotton-based, clothing with no laundry provisions. Each clothing article has varying use periods and will become trash. The goal is to increase the length of wear of the clothing to reduce the logistical mass and volume. The initial focus has been exercise clothing since the use period is lower. Various ground studies and an ISS technology demonstration have been conducted to evaluate clothing preference and length of wear. The analysis indicates that use of ACS selected garments (e.g. wool, modacrylic, polyester) can increase the breakeven point for laundry to 300 days.

  12. Advanced Clothing System

    NASA Technical Reports Server (NTRS)

    Schlesinger, Thilini; Broyan, James; Orndoff, Evelyne

    2014-01-01

    The goal of the Advanced Clothing System (ACS) is to use advanced commercial off-theshelf fibers and antimicrobial treatments with the goal of directly reducing the mass and volume of a logistics item. The current clothing state-of-the-art on the International Space Station (ISS) is disposable, mostly cotton-based, clothing with no laundry provisions. Each clothing article has varying use periods and will become trash. The goal is to increase the length of wear of the clothing to reduce the logistical mass and volume. The initial focus has been exercise clothing since the use period is lower. Various ground studies and an ISS technology demonstration have been conducted to evaluate clothing preference and length of wear. The analysis indicates that use of ACS selected garments (e.g. wool, modacrylic, polyester) can increase the breakeven point for laundry to 300 days.

  13. [Research advances in dendrochronology].

    PubMed

    Fang, Ke-Yan; Chen, Qiu-Yan; Liu, Chang-Zhi; Cao, Chun-Fu; Chen, Ya-Jun; Zhou, Fei-Fei

    2014-07-01

    Tree-ring studies in China have achieved great advances since the 1990s, particularly for the dendroclimatological studies which have made some influence around the world. However, because of the uneven development, limited attention has been currently paid on the other branches of dendrochronology. We herein briefly compared the advances of dendrochronology in China and of the world and presented suggestions on future dendrochronological studies. Large-scale tree-ring based climate reconstructions in China are highly needed by employing mathematical methods and a high quality tree-ring network of the ring-width, density, stable isotope and wood anatomy. Tree-ring based field climate reconstructions provide potentials on explorations of climate forcings during the reconstructed periods via climate diagnosis and process simulation.

  14. Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.

    2004-01-01

    This presentation is planned to be a 10-15 minute "catalytic" focused presentation to be scheduled during one of the working sessions at the TIM. This presentation will focus on Advanced Life Support technologies key to future human Space Exploration as outlined in the Vision, and will include basic requirements, assessment of the state-of-the-art and gaps, and include specific technology metrics. The presentation will be technical in character, lean heavily on data in published ALS documents (such as the Baseline Values and Assumptions Document) but not provide specific technical details or build to information on any technology mentioned (thus the presentation will be benign from an export control and a new technology perspective). The topics presented will be focused on the following elements of Advanced Life Support: air revitalization, water recovery, waste management, thermal control, habitation systems, food systems and bioregenerative life support.

  15. Technical advances power neuroscience

    SciTech Connect

    Barinaga, M.

    1991-01-01

    New techniques are helping researchers study the development of nerve cells in cell cultures and in vivo. These new methods are offering insights into the brain that were not available even a couple of years ago. Among the new advances discussed are imaging technology for evaluating the thinking human brain. One area in which researchers have made recent progress is the quest for ways to create immortal cell lines from specific types of nerve cells. Other projects using genetically engineered retroviruses and tumor-inducing genes, as well as gene regulation are discussed. Recent advances in neuroscience techniques apply not only to neurons, but also to whole brains as well. One example is a high-resulution electroencephalogram (EEG). Although the EEG cannot pin down the actual sites of activity as precisely as static brain imaging methods, it complements them with real-time recording that can keep up with the very rapid pace of brain activity.

  16. G4 Advanced Education.

    DTIC Science & Technology

    1987-06-29

    Advanced Finance and Economy Edu- cation/Zhao Dongya// Finance and Economy Science(Journal of Sichuan Finance and Economy College)(Chengdu), 1986. 2. 63...67 Preliminary Thoughts on the Reform of Industrial, Enterprising Finance Management Curriculums/Gu Xingsu//Journal of Beijing Foreign Trade College...1985. 4. 71-76 Humble Opinions on Offering Classes in "Construction of Chinese Social- ism"/Zhao Luxin//Theory and Implementation of Finance and

  17. Advances in Strapdown Sensors

    DTIC Science & Technology

    1984-04-01

    axis laser gyro sensor assembly (1, 24) in a single Zerodur structure using interleaved laser paths to reduce net size/weight. If advances in mirror ...laser gyros, special design considerations - associated with mechanically dithered laaer gyros, the state-of-the-art in magnetic mirror and...from the lasing action of a helium-noon gas discharge within the optical cavity. The reflecting surfaces are die- lectric mirrors designed to

  18. Advanced Environmental Monitoring Technologies

    NASA Technical Reports Server (NTRS)

    Jan, Darrell

    2004-01-01

    Viewgraphs on Advanced Environmental Monitoring Technologies are presented. The topics include: 1) Monitoring & Controlling the Environment; 2) Illustrative Example: Canary 3) Ground-based Commercial Technology; 4) High Capability & Low Mass/Power + Autonomy = Key to Future SpaceFlight; 5) Current Practice: in Flight; 6) Current Practice: Post Flight; 7) Miniature Mass Spectrometer for Planetary Exploration and Long Duration Human Flight; 8) Hardware and Data Acquisition System; 9) 16S rDNA Phylogenetic Tree; and 10) Preview of Porter.

  19. Advances in Doppler OCT

    PubMed Central

    Liu, Gangjun; Chen, Zhongping

    2014-01-01

    We review the principle and some recent applications of Doppler optical coherence tomography (OCT). The advances of the phase-resolved Doppler OCT method are described. Functional OCT algorithms which are based on an extension of the phase-resolved scheme are also introduced. Recent applications of Doppler OCT for quantification of flow, imaging of microvasculature and vocal fold vibration, and optical coherence elastography are briefly discussed. PMID:24443649

  20. Advanced geothermal technologies

    SciTech Connect

    Whetten, J.T.; Murphy, H.D.; Hanold, R.J.; Myers, C.W.; Dunn, J.C.

    1988-01-01

    Research and development in advanced technologies for geothermal energy production continue to increase the energy production options for the Nation. The high-risk investment over the past few years by the US Department of Energy in geopressured, hot dry rock, and magma energy resources is producing new means to lower production costs and to take advantage of these resources. The Nation has far larger and more regionally extensive geothermal resources than heretofore realized. At the end of a short 30-day closed-loop flow test, the manmade hot dry rock reservoir at Fenton Hill, New Mexico, was producing 10 MW thermal - and still climbing - proving the technical feasibility of this new technology. The scientific feasibility of magma energy extraction has been demonstrated, and new field tests to evaluate this technology are planned. Analysis and field tests confirm the viability of geopressured-geothermal energy and the prospect that many dry-hole or depleted petroleum wells can be turned into producing geopressured-geothermal wells. Technological advances achieved through hot dry rock, magma, geopressured, and other geothermal research are making these resources and conventional hydrothermal resources more competitive. Noteworthy among these technological advances are techniques in computer simulation of geothermal reservoirs, new means for well stimulation, new high-temperature logging tools and packers, new hard-rock penetration techniques, and new methods for mapping fracture flow paths across large underground areas in reservoirs. In addition, many of these same technological advances can be applied by the petroleum industry to help lower production costs in domestic oil and gas fields. 5 refs., 4 figs.

  1. Polarized advanced fuel reactors

    SciTech Connect

    Kulsrud, R.M.

    1987-07-01

    The d-/sup 3/He reaction has the same spin dependence as the d-t reaction. It produces no neutrons, so that if the d-d reactivity could be reduced, it would lead to a neutron-lean reactor. The current understanding of the possible suppression of the d-d reactivity by spin polarization is discussed. The question as to whether a suppression is possible is still unresolved. Other advanced fuel reactions are briefly discussed. 11 refs.

  2. Advanced worker protection system

    SciTech Connect

    Caldwell, B.; Duncan, P.; Myers, J.

    1995-12-01

    The Department of Energy (DOE) is in the process of defining the magnitude and diversity of Decontamination and Decommissioning (D&D) obligations at its numerous sites. The DOE believes that existing technologies are inadequate to solve many challenging problems such as how to decontaminate structures and equipment cost effectively, what to do with materials and wastes generated, and how to adequately protect workers and the environment. Preliminary estimates show a tremendous need for effective use of resources over a relatively long period (over 30 years). Several technologies are being investigated which can potentially reduce D&D costs while providing appropriate protection to DOE workers. The DOE recognizes that traditional methods used by the EPA in hazardous waste site clean up activities are insufficient to provide the needed protection and worker productivity demanded by DOE D&D programs. As a consequence, new clothing and equipment which can adequately protect workers while providing increases in worker productivity are being sought for implementation at DOE sites. This project will result in the development of an Advanced Worker Protection System (AWPS). The AWPS will be built around a life support backpack that uses liquid air to provide cooling as well as breathing gas to the worker. The backpack will be combined with advanced protective garments, advanced liquid cooling garment, respirator, communications, and support equipment to provide improved worker protection, simplified system maintenance, and dramatically improve worker productivity through longer duration work cycles. Phase I of the project has resulted in a full scale prototype Advanced Worker Protection Ensemble (AWPE, everything the worker will wear), with sub-scale support equipment, suitable for integrated testing and preliminary evaluation. Phase II will culminate in a full scale, certified, pre-production AWPS and a site demonstration.

  3. Advances in epilepsy surgery

    PubMed Central

    Nowell, Mark; Miserocchi, Anna; McEvoy, Andrew W; Duncan, John S

    2014-01-01

    This review summarises exciting recent and forthcoming advances that will impact on the surgical management of epilepsy in the near future. This does not cover the current accepted diagnostic methodologies or surgical treatments that are routinely practiced today. The content of this review was derived from a PubMed literature search, using the key words ‘Epilepsy Surgery’, ‘Neuromodulation’, ‘Neuroablation’, ‘Advances’, between 2010 and November 2013. PMID:24719180

  4. Advanced nuclear propulsion technologies

    SciTech Connect

    Cassenti, B.N. )

    1991-01-01

    Advanced nuclear propulsion can take on several forms. Radioactive thrust sheets directly use the decay of radioactive nuclei to provide propulsion. The fissioning of nuclei has been extensively studied for propulsion both analytically and experimentally. Fusion has been analytically examined as a means of providing propulsion during the last few decades. In the last decade, serious attention has been given to the direct annihilation of matter. Each of these technologies is discussed in this paper with the greatest emphasis on antiproton annihilation propulsion.

  5. STIR: Advanced Quantum Sensing

    DTIC Science & Technology

    2014-07-18

    STIR: Advanced Quantum Sensing Recycling unmeasured photons in a system utilizing weak measurements can substantially improve the signal-to- noise...Quantum Sensing Report Title Recycling unmeasured photons in a system utilizing weak measurements can substantially improve the signal-to-noise ratio. We...Kevin Lyons, Andrew N. Jordan, Trent M. Graham, Paul G. Kwiat. Strengthening weak- value amplification with recycled photons , Physical Review A, (08

  6. Advanced turboprop vibratory characteristics

    NASA Technical Reports Server (NTRS)

    Srinivasan, A. V.; Fulton, G. B.

    1984-01-01

    The assembly of SR5 advanced turboprop blades to develop a structural dynamic data base for swept props is reported. Steady state blade deformation under centrifugal loading and vibratory characteristics of the rotor assembly were measured. Vibration was induced through a system of piezoelectric crystals attached to the blades. Data reduction procedures are used to provide deformation, mode shape, and frequencies of the assembly at predetermined speeds.

  7. The advanced neutron source

    SciTech Connect

    Raman, S.; Hayter, J.B.

    1990-01-01

    The Advanced Neutron Source (ANS) is a new user experimental facility planned to be operational at Oak Ridge in the late 1990's. The centerpiece of the ANS will be a steady-state research reactor of unprecedented thermal neutron flux ({phi}{sub th} {approx} 8 {times} 10{sup 19} m{sup {minus}2} {center dot}s{sup {minus}1}) accompanied by extensive and comprehensive equipment and facilities for neutron-based research.

  8. The Advanced Neutron Source

    SciTech Connect

    Hayter, J.B.

    1989-01-01

    The Advanced Neutron Source (ANS) is a new user experimental facility planned to be operational at Oak Ridge in the late 1990's. The centerpiece of the ANS will be a steady-state research reactor of unprecedented thermal neutron flux ({phi}{sub th} {approx} 9{center dot}10{sup 19} m{sup -2}{center dot}s{sup -1}) accompanied by extensive and comprehensive equipment and facilities for neutron-based research. 5 refs., 5 figs.

  9. Advanced Polymer Processing Facility

    SciTech Connect

    Muenchausen, Ross E.

    2012-07-25

    Some conclusions of this presentation are: (1) Radiation-assisted nanotechnology applications will continue to grow; (2) The APPF will provide a unique focus for radiolytic processing of nanomaterials in support of DOE-DP, other DOE and advanced manufacturing initiatives; (3) {gamma}, X-ray, e-beam and ion beam processing will increasingly be applied for 'green' manufacturing of nanomaterials and nanocomposites; and (4) Biomedical science and engineering may ultimately be the biggest application area for radiation-assisted nanotechnology development.

  10. Advanced Triangulation Displacement Sensors

    NASA Technical Reports Server (NTRS)

    Poteet, Wade M.; Cauthen, Harold K.

    1996-01-01

    Advanced optoelectronic triangulation displacement sensors undergoing development. Highly miniaturized, more stable, more accurate, and relatively easy to use. Incorporate wideband electronic circuits suitable for real-time monitoring and control of displacements. Measurements expected to be accurate to within nanometers. In principle, sensors mass-produced at relatively low unit cost. Potential applications numerous. Possible industrial application in measuring runout of rotating shaft or other moving part during fabrication in "zero-defect" manufacturing system, in which measured runout automatically corrected.

  11. Recent advances in dermoscopy

    PubMed Central

    Russo, Teresa; Piccolo, Vincenzo; Lallas, Aimilios; Argenziano, Giuseppe

    2016-01-01

    The use of dermoscopy has offered a new morphological dimension of skin lesions and has provided an effective diagnostic tool to differentiate melanoma from other benign or malignant skin tumors but also to support the clinical diagnosis in general dermatology. The aim of this article is to provide an overview of the most recent and important advances in the rising world of dermoscopy. PMID:26949523

  12. Advanced Doppler tracking experiments

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.

    1989-01-01

    The Doppler tracking method is currently the only technique available for broadband gravitational wave searches in the approx. 10(exp -4) to 10(exp -1) Hz low frequency band. A brief review is given of the Doppler method, a discussion of the main noise sources, and a review of experience with current spacecraft and the prospects for sensitivity improvements in an advanced Doppler tracking experiment.

  13. Advanced Subsonic Combustion Rig

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming

    1998-01-01

    Researchers from the NASA Lewis Research Center have obtained the first combustion/emissions data under extreme future engine operating conditions. In Lewis' new world-class 60-atm combustor research facility--the Advanced Subsonic Combustion Rig (ASCR)--a flametube was used to conduct combustion experiments in environments as extreme as 900 psia and 3400 F. The greatest challenge for combustion researchers is the uncertainty of the effects of pressure on the formation of nitrogen oxides (NOx). Consequently, U.S. engine manufacturers are using these data to guide their future combustor designs. The flametube's metal housing has an inside diameter of 12 in. and a length of 10.5 in. The flametube can be used with a variety of different flow paths. Each flow path is lined with a high-temperature, castable refractory material (alumina) to minimize heat loss. Upstream of the flametube is the injector section, which has an inside diameter of 13 in. and a length of 0.5-in. It was designed to provide for quick changeovers. This flametube is being used to provide all U.S. engine manufacturers early assessments of advanced combustion concepts at full power conditions prior to engine production. To date, seven concepts from engine manufacturers have been evaluated and improved. This collaborated development can potentially give U.S. engine manufacturers the competitive advantage of being first in the market with advanced low-emission technologies.

  14. Advances in thermal engineering

    SciTech Connect

    Kitto, J.B.; Fiveland, W.A.; Latham, C.E.; Peterson, G.P.

    1995-03-01

    Heat transfer--more broadly, thermal engineering--is playing an increasingly critical role in the development and successful application of advanced technology in virtually all fields. From space stations to hazardous-waste destruction to high-speed transport, from ozone-protecting refrigerants to ``night vision`` goggles, a vast range of technologies depend on energy management, heat-flow control, and temperature control to successfully meet their design objectives and attain commercial success. Meeting the continually escalating demand for electricity and ``cheap`` process that will remain a challenge. Environmental protection can depend not only on using energy more efficiently, but on changing the energy conversion process to reduce initial pollutant formation. Further advances in electronics, materials processing, and manufacturing will depend in part on more precise energy management and temperature control. The scale of thermal engineering is quite broad, extending from the very large to the near-molecular level, and from very high temperatures of thousands of degrees to very low ones approaching absolute zero. This breadth of application is illustrated by a review of three specific areas: application of advanced numerical modeling to large boiler furnaces (approaching 100 m in height) in order to improve environmental performance; application of microscale ({approximately}100 {micro}) heat pipes to cool high-performance electronic circuits; and a look at some of the manufacturing processes where heat transfer and thermal analysis improve quality, performance and cost.

  15. Are Advanced Potentials Anomalous?

    NASA Astrophysics Data System (ADS)

    Ibison, Michael

    2006-10-01

    Advanced electromagnetic potentials are indigenous to the classical Maxwell theory. Generally however they are deemed undesirable and are forcibly excluded, destroying the theory's inherent time-symmetry. We investigate the reason for this, pointing out that it is not necessary and in some cases is counter-productive. We then focus on the direct-action theory in which the advanced and retarded contributions are present symmetrically, with no opportunity supplement the particular integral solution of the wave equation with an arbitrary complementary function. One then requires a plausible explanation for the observed broken symmetry that, commonly, is understood cannot be met by the Wheeler-Feynman mechanism because the necessary boundary condition cannot be satisfied in acceptable cosmologies. We take this opportunity to argue that the boundary condition is already met by all expanding cosmologies simply as a result of cosmological red-shift. A consequence is that the cosmological and thermodynamic arrows of time can be equated, the direct action version of EM is preferred, and that advanced potentials are ubiquitous.

  16. Advanced gearbox technology

    NASA Technical Reports Server (NTRS)

    Anderson, N. E.; Cedoz, R. W.; Salama, E. E.; Wagner, D. A.

    1987-01-01

    An advanced 13,000 HP, counterrotating (CR) gearbox was designed and successfully tested to provide a technology base for future designs of geared propfan propulsion systems for both commercial and military aircraft. The advanced technology CR gearbox was designed for high efficiency, low weight, long life, and improved maintainability. The differential planetary CR gearbox features double helical gears, double row cylindrical roller bearings integral with planet gears, tapered roller prop support bearings, and a flexible ring gear and diaphragm to provide load sharing. A new Allison propfan back-to-back gearbox test facility was constructed. Extensive rotating and stationary instrumentation was used to measure temperature, strain, vibration, deflection and efficiency under representative flight operating conditions. The tests verified smooth, efficient gearbox operation. The highly-instrumented advanced CR gearbox was successfully tested to design speed and power (13,000 HP), and to a 115 percent overspeed condition. Measured CR gearbox efficiency was 99.3 percent at the design point based on heat loss to the oil. Tests demonstrated low vibration characteristics of double helical gearing, proper gear tooth load sharing, low stress levels, and the high load capacity of the prop tapered roller bearings. Applied external prop loads did not significantly affect gearbox temperature, vibration, or stress levels. Gearbox hardware was in excellent condition after the tests with no indication of distress.

  17. Advanced scale conditioning agents

    SciTech Connect

    Davis, Jeff; Battaglia, Philip J.

    2004-06-01

    A technical description of Advanced Scale Conditioning Agents (ASCA) technology was published in the May-June 2003 edition of the Nuclear Plant Journal. That article described the development of programs of advanced scale conditioning agents and specific types to maintain the secondary side of steam generators within a pressurized water reactor free of deposited corrosion products and corrosion-inducing contaminants to ensure their long-term operation. This article describes the first two plant applications of advanced scale conditioning agents implemented at Southern Nuclear Operating Company's Vogtle Units 1 and 2 during their 2002 scheduled outages to minimize tube degradation and maintain full power operation using the most effective techniques while minimizing outage costs. The goal was to remove three to four fuel cycles of deposits from each steam generator so that after future chemical cleaning activities, ASCAs could be used to maintain the cleanliness of the steam generators without the need for additional chemical cleaning efforts. The goal was achieved as well as several other benefits that resulted in cost savings to the plant.

  18. Advances in Irrigation

    NASA Astrophysics Data System (ADS)

    Gardner, W. R.

    This is the first volume of Advances in Irrigation, a new serial publication by the publishers of Advances in Agronomy and Advances in Hydroscience and designed to follow the same format. The editor is a well-known researcher and writer on irrigation and related subjects and has assembled a collection of highly regarded and respected authors for the initial volume. The readership for this volume will probably be mainly specialists and students interested in irrigation and an occasional design engineer.The seven contributions in this volume fall roughly into two classes: research and practice. Three papers (“Conjunctive Use of Rainfall and Irrigation in Semi-arid Regions,” by Stewart and Musik, “Irrigation Scheduling Using Soil Moisture Measurements: Theory and Practice,” by G. S. and M. D. Campbell, and “Use of Solute Transport Models to Estimate Salt Balance Below Irrigated Cropland,” by Jury) cover topics that have been the subject of a number of reviews. The contributions here provide brief, well-written, and authoritative summaries of the chosen topics and serve as good introductions or reviews. They should lend themselves well to classroom use in various ways. They also should be helpful to the nonspecialist interested in getting a sense of the subject without going into great detail.

  19. Advanced Technology Vehicle Testing

    SciTech Connect

    James Francfort

    2003-11-01

    The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energy’s Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

  20. Accelerating advanced-materials commercialization

    NASA Astrophysics Data System (ADS)

    Maine, Elicia; Seegopaul, Purnesh

    2016-05-01

    Long commercialization times, high capital costs and sustained uncertainty deter investment in innovation for advanced materials. With appropriate strategies, technology and market uncertainties can be reduced, and the commercialization of advanced materials accelerated.

  1. Advances in ice mechanics - 1987

    SciTech Connect

    Chung, J.S.; Hallam, S.D.; Maatanen, M.; Sinha, N.K.; Sodhi, D.S.

    1987-01-01

    This book presents the papers given at a symposium on the interaction of icebergs with offshore platforms. Topics considered at the symposium included advances in ice mechanics in the United Kingdom, ice mechanics in Finland, recent advances in ice mechanics in Canada, advances in sea ice mechanics in the USA, foundations, monitoring, hazards, risk assessment, and deformation.

  2. TIMSS Advanced 2015 Assessment Frameworks

    ERIC Educational Resources Information Center

    Mullis, Ina V. S., Ed.; Martin, Michael O., Ed.

    2014-01-01

    The "TIMSS Advanced 2015 Assessment Frameworks" provides the foundation for the two international assessments to take place as part of the International Association for the Evaluation of Educational Achievement's TIMSS (Trends in International Mathematics and Science Study) Advanced 2015--Advanced Mathematics and Physics. Chapter 1 (Liv…

  3. TIMSS Advanced 2008 Assessment Frameworks

    ERIC Educational Resources Information Center

    Garden, Robert A.; Lie, Svein; Robitaille, David F.; Angell, Carl; Martin, Michael O.; Mullis, Ina V.S.; Foy, Pierre; Arora, Alka

    2006-01-01

    Developing the Trends in International Mathematics and Science Study (TIMSS) Advanced 2008 Assessment Frameworks was a collaborative venture involving mathematics and physics experts from around the world. The document contains two frameworks for implementing TIMSS Advanced 2008--one for advanced mathematics and one for physics. It also contains…

  4. Advanced Optical Fiber Communication Systems

    DTIC Science & Technology

    1992-08-01

    Optical Network with Physical Star Topology," Advanced Fiber Communications Technologies , Leonid G. Kazovsky... advances in the performance and capabilities of optical fiber communication systems. While some of these technologies are interrelated (for example...multi gigabit per second hybrid circuit/packet switched lightwave network ," Proc. SPIE Advanced Fiber Communications Technologies , Boston 󈨟, Sept.

  5. Advanced education in prosthodontics.

    PubMed

    McGivney, G P

    1990-09-01

    1. The ADA Council on Dental Education Commission on Accreditation, using the Standards for undergraduate education and current National Board scores, does not believe there has been a deemphasis in prosthodontic knowledge and skill. This opinion is not shared by program Directors or representatives of the laboratory industry. The Council on Dental Education has a mechanism for periodic review in place. State Boards of Dental Examiners did not respond. 2. Teaching experience for residents or graduate students should be encouraged in advanced education programs in prosthodontics as an elective or be limited to no more than 10% of the curriculum time. 3. The American Board of Prosthodontics would not comment on any changes regarding the clinical or didactic knowledge of candidates. 4. Meaningful research is not possible within the current minimum 22-month program duration. 5. Accredited advanced education programs in prosthodontics are currently meeting the standard guidelines for clinical and didactic experiences. 6. Accredited advanced education programs in prosthodontics are currently satisfying the requirements on supervision and faculty; however, the data from the annual reports suggest a marked decrease in staff support and amount of time that program directors are devoting to the program. 7. Expanding the curriculum to include implant prosthodontics will require lengthening the curriculum time. 8. TMJ therapy and geriatric dentistry need to be better defined in the educational guidelines. 9. The criterion-based examination currently given by the American Board of Prosthodontics clearly delineates acceptable, marginal, and unacceptable levels of performance. 10. Program directors desire more "feedback" from the American Board of Prosthodontics on the performance of candidates.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. ADVANCED SULFUR CONTROL CONCEPTS

    SciTech Connect

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  7. Advanced rotorcraft transmission program

    NASA Technical Reports Server (NTRS)

    Bill, Robert C.

    1990-01-01

    The Advanced Rotorcraft Transmission (ART) program is an Army-funded, joint Army/NASA program to develop and demonstrate lightweight, quiet, durable drivetrain systems for next generation rotorcraft. ART addresses the drivetrain requirements of two distinct next generation aircraft classes: Future Air Attack Vehicle, a 10,000 to 20,000 lb. aircraft capable of undertaking tactical support and air-to-air missions; and Advanced Cargo Aircraft, a 60,000 to 80,000 lb. aircraft capable of heavy life field support operations. Both tiltrotor and more conventional helicopter configurations are included in the ART program. Specific objectives of ART include reduction of drivetrain weight by 25 percent compared to baseline state-of-the-art drive systems configured and sized for the next generation aircraft, reduction of noise level at the transmission source by 10 dB relative to a suitably sized and configured baseline, and attainment of at least a 5000 hr mean-time-between-removal. The technical approach for achieving the ART goals includes application of the latest available component, material, and lubrication technology to advanced concept drivetrains that utilize new ideas in gear configuration, transmission layout, and airframe/drivetrain integration. To date, candidate drivetrain systems were carried to a conceptual design stage, and tradeoff studies were conducted resulting in selection of an ART transmission configuration for each of the four contractors. The final selection was based on comparative weight, noise, and reliability studies. A description of each of the selected ART designs is included. Preliminary design of each of the four selected ART transmission was completed, as have mission impact studies wherein comparisons of aircraft mission performance and life cycle costs are undertaken for the next generation aircraft with ART and with the baseline transmission.

  8. Advanced satellite communication system

    NASA Astrophysics Data System (ADS)

    Staples, Edward J.; Lie, Sen

    1992-05-01

    The objective of this research program was to develop an innovative advanced satellite receiver/demodulator utilizing surface acoustic wave (SAW) chirp transform processor and coherent BPSK demodulation. The algorithm of this SAW chirp Fourier transformer is of the Convolve - Multiply - Convolve (CMC) type, utilizing off-the-shelf reflective array compressor (RAC) chirp filters. This satellite receiver, if fully developed, was intended to be used as an on-board multichannel communications repeater. The Advanced Communications Receiver consists of four units: (1) CMC processor, (2) single sideband modulator, (3) demodulator, and (4) chirp waveform generator and individual channel processors. The input signal is composed of multiple user transmission frequencies operating independently from remotely located ground terminals. This signal is Fourier transformed by the CMC Processor into a unique time slot for each user frequency. The CMC processor is driven by a waveform generator through a single sideband (SSB) modulator. The output of the coherent demodulator is composed of positive and negative pulses, which are the envelopes of the chirp transform processor output. These pulses correspond to the data symbols. Following the demodulator, a logic circuit reconstructs the pulses into data, which are subsequently differentially decoded to form the transmitted data. The coherent demodulation and detection of BPSK signals derived from a CMC chirp transform processor were experimentally demonstrated and bit error rate (BER) testing was performed. To assess the feasibility of such advanced receiver, the results were compared with the theoretical analysis and plotted for an average BER as a function of signal-to-noise ratio. Another goal of this SBIR program was the development of a commercial product. The commercial product developed was an arbitrary waveform generator. The successful sales have begun with the delivery of the first arbitrary waveform generator.

  9. Advanced satellite communication system

    NASA Technical Reports Server (NTRS)

    Staples, Edward J.; Lie, Sen

    1992-01-01

    The objective of this research program was to develop an innovative advanced satellite receiver/demodulator utilizing surface acoustic wave (SAW) chirp transform processor and coherent BPSK demodulation. The algorithm of this SAW chirp Fourier transformer is of the Convolve - Multiply - Convolve (CMC) type, utilizing off-the-shelf reflective array compressor (RAC) chirp filters. This satellite receiver, if fully developed, was intended to be used as an on-board multichannel communications repeater. The Advanced Communications Receiver consists of four units: (1) CMC processor, (2) single sideband modulator, (3) demodulator, and (4) chirp waveform generator and individual channel processors. The input signal is composed of multiple user transmission frequencies operating independently from remotely located ground terminals. This signal is Fourier transformed by the CMC Processor into a unique time slot for each user frequency. The CMC processor is driven by a waveform generator through a single sideband (SSB) modulator. The output of the coherent demodulator is composed of positive and negative pulses, which are the envelopes of the chirp transform processor output. These pulses correspond to the data symbols. Following the demodulator, a logic circuit reconstructs the pulses into data, which are subsequently differentially decoded to form the transmitted data. The coherent demodulation and detection of BPSK signals derived from a CMC chirp transform processor were experimentally demonstrated and bit error rate (BER) testing was performed. To assess the feasibility of such advanced receiver, the results were compared with the theoretical analysis and plotted for an average BER as a function of signal-to-noise ratio. Another goal of this SBIR program was the development of a commercial product. The commercial product developed was an arbitrary waveform generator. The successful sales have begun with the delivery of the first arbitrary waveform generator.

  10. Advanced composite fuselage technology

    NASA Technical Reports Server (NTRS)

    Ilcewicz, Larry B.; Smith, Peter J.; Horton, Ray E.

    1993-01-01

    Boeing's ATCAS program has completed its third year and continues to progress towards a goal to demonstrate composite fuselage technology with cost and weight advantages over aluminum. Work on this program is performed by an integrated team that includes several groups within The Boeing Company, industrial and university subcontractors, and technical support from NASA. During the course of the program, the ATCAS team has continued to perform a critical review of composite developments by recognizing advances in metal fuselage technology. Despite recent material, structural design, and manufacturing advancements for metals, polymeric matrix composite designs studied in ATCAS still project significant cost and weight advantages for future applications. A critical path to demonstrating technology readiness for composite transport fuselage structures was created to summarize ATCAS tasks for Phases A, B, and C. This includes a global schedule and list of technical issues which will be addressed throughout the course of studies. Work performed in ATCAS since the last ACT conference is also summarized. Most activities relate to crown quadrant manufacturing scaleup and performance verification. The former was highlighted by fabricating a curved, 7 ft. by 10 ft. panel, with cocured hat-stiffeners and cobonded J-frames. In building to this scale, process developments were achieved for tow-placed skins, drape formed stiffeners, braided/RTM frames, and panel cure tooling. Over 700 tests and supporting analyses have been performed for crown material and design evaluation, including structural tests that demonstrated limit load requirements for severed stiffener/skin failsafe damage conditions. Analysis of tests for tow-placed hybrid laminates with large damage indicates a tensile fracture toughness that is higher than that observed for advanced aluminum alloys. Additional recent ATCAS achievements include crown supporting technology, keel quadrant design evaluation, and

  11. Advanced imaging system

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This document describes the Advanced Imaging System CCD based camera. The AIS1 camera system was developed at Photometric Ltd. in Tucson, Arizona as part of a Phase 2 SBIR contract No. NAS5-30171 from the NASA/Goddard Space Flight Center in Greenbelt, Maryland. The camera project was undertaken as a part of the Space Telescope Imaging Spectrograph (STIS) project. This document is intended to serve as a complete manual for the use and maintenance of the camera system. All the different parts of the camera hardware and software are discussed and complete schematics and source code listings are provided.

  12. Advances in colon cancer.

    PubMed

    Levin, Mark

    2003-06-01

    From May 29 to June 5, 2003, the American Society of Clinical Oncology held its 39th Annual Meeting in Chicago, Illinois, U.S.A. The meeting was devoted to the presentation of advances in clinical sciences, diagnosis, prevention and management of malignant disorders, and brings together investigators, clinicians, policy makers and other professionals interested in the science and impact of cancer worldwide. This report will be presented in two parts, the first focusing of colon cancer, and the second on breast cancer will be published in the next issue of Drug News & Perspectives.

  13. Advanced thermionic converter development

    NASA Technical Reports Server (NTRS)

    Huffman, F. N.; Lieb, D.; Briere, T. R.; Sommer, A. H.; Rufeh, F.

    1976-01-01

    Recent progress at Thermo Electron in developing advanced thermionic converters is summarized with particular attention paid to the development of electrodes, diodes, and triodes. It is found that one class of materials (ZnO, BaO and SrO) provides interesting cesiated work functions (1.3-1.4 eV) without additional oxygen. The second class of materials studied (rare earth oxides and hexaborides) gives cesiated/oxygenated work functions of less than 1.2 eV. Five techniques of oxygen addition to thermionic converters are discussed. Vapor deposited tungsten oxide collector diodes and the reflux converter are considered.

  14. Advanced space transportation systems

    NASA Technical Reports Server (NTRS)

    Disher, J. H.; Hethcoat, J. P.; Page, M. A.

    1981-01-01

    Projected growth in space transportation capabilities beyond the initial Space Shuttle is discussed in terms of earth-to-low-orbit launch vehicles as well as transportation beyond low orbit (orbit transfer vehicles). Growth versions of the Shuttle and heavy-lift derivatives of the Shuttle are shown conceptually. More advanced launch vehicle concepts are also shown, based on rocket propulsion or combinations of rocket and air-breathing propulsion. Orbit transfer vehicle concepts for personnel transport and for cargo transport are discussed, including chemical rocket as well as electric propulsion. Finally, target levels of capability and efficiencies for later time periods are discussed and compared with the prospective vehicle concepts mentioned earlier.

  15. Seven decades of "advances".

    PubMed

    Horton, Derek

    2013-01-01

    The field of carbohydrate science, as documented in the 70 volumes of Advances in Carbohydrate Chemistry (and Biochemistry) during the years 1944 through 2014, is surveyed. Subject areas detailed in individual volumes cover a broad range to include fundamental structural studies, synthesis, reactivity, mechanisms, analytical methodology, enzymology, biological and medicinal applications, food technology, and industrial and commercial aspects. The contributions of many prominent research leaders in the carbohydrate field are recorded in biographical memoirs. Stages in the development of internationally accepted systems for naming carbohydrate structures and for their graphical depiction are noted, and indexing questions for retrieval of data are addressed.

  16. Cryptosporidium infections: molecular advances.

    PubMed

    Lendner, Matthias; Daugschies, Arwid

    2014-09-01

    Cryptosporidium host cell interaction remains fairly obscure compared with other apicomplexans such as Plasmodium or Toxoplasma. The reason for this is probably the inability of this parasite to complete its life cycle in vitro and the lack of a system to genetically modify Cryptosporidium. However, there is a substantial set of data about the molecules involved in attachment and invasion and about the host cell pathways involved in actin arrangement that are altered by the parasite. Here we summarize the recent advances in research on host cell infection regarding the excystation process, attachment and invasion, survival in the cell, egress and the available data on omics.

  17. Advances in fetal surgery

    PubMed Central

    Maselli, Kathryn M.

    2016-01-01

    Historically, the gold standard for the treatment of congenital malformations has been planned delivery at tertiary care center with attempted post-natal repair or amelioration of the lesion. Over the last few decades however, rapid advances in imaging and instrumentation technology combined with superior knowledge of fetal pathophysiology has led to the development of novel intrauterine interventions for most common fetal anomalies. Great success has already been seen the treatment of previous devastating anomalies such as myelomeningocele (MMC), congenital cystic malformations of the lung, twin-twin transfusion, and sacrococcygeal teratomas. Although still limited, these innovative techniques have unique potential to improve outcomes in the most devastating fetal anomalies. PMID:27867946

  18. Advanced Resistive Exercise Device

    NASA Technical Reports Server (NTRS)

    Raboin, Jasen; Niebuhr, Jason; Cruz, Santana; Lamoreaux, chris

    2007-01-01

    The advanced resistive exercise device (ARED), now at the prototype stage of development, is a versatile machine that can be used to perform different customized exercises for which, heretofore, it has been necessary to use different machines. Conceived as a means of helping astronauts and others to maintain muscle and bone strength and endurance in low-gravity environments, the ARED could also prove advantageous in terrestrial settings (e.g., health clubs and military training facilities) in which many users are exercising simultaneously and there is heavy demand for use of exercise machines.

  19. Horizontal Advanced Tensiometer

    DOEpatents

    Hubbell, Joel M.; Sisson, James B.

    2004-06-22

    An horizontal advanced tensiometer is described that allows the monitoring of the water pressure of soil positions, particularly beneath objects or materials that inhibit the use of previous monitoring wells. The tensiometer includes a porous cup, a pressure transducer (with an attached gasket device), an adaptive chamber, at least one outer guide tube which allows access to the desired horizontal position, a transducer wire, a data logger and preferably an inner guide tube and a specialized joint which provides pressure on the inner guide tube to maintain the seal between the gasket of the transducer and the adaptive chamber.

  20. Advanced Turboprop Project

    NASA Technical Reports Server (NTRS)

    Hager, Roy D.; Vrabel, Deborah

    1988-01-01

    At the direction of Congress, a task force headed by NASA was organized in 1975 to identify potential fuel saving concepts for aviation. The result was the Aircraft Energy Efficiency (ACEE) Program implemented in 1976. An important part of the program was the development of advanced turboprop technology for Mach 0.65 to 0.85 applications having the potential fuel saving of 30 to 50 percent relative to existing turbofan engines. A historical perspective is presented of the development and the accomplishments that brought the turboprop to successful flight tests in 1986 and 1987.

  1. Advances in aptamers.

    PubMed

    Syed, Muhammad Ali; Pervaiz, Saima

    2010-10-01

    Aptamers are nucleic acid sequences synthesized through in vitro selection and amplification technique, possessing a broader range of applications in therapeutics, biosensing, diagnostics, and research. Aptamers offer a number of advantages over their antibodies counterpart, one of them is their ability to undergo chemical derivatization to increase their life in the body fluids and bioavailability in animals. Although aptamers were discovered in 1990s, they have become one of the most widely investigated molecules, with a huge number of publications in the last decade. This article presents an overview of the advancements that have been made in aptamers. We mainly focused on articles published since 2005.

  2. Advances in viral oncology

    SciTech Connect

    Klein, G.

    1987-01-01

    Volume 6 of Advances in Viral Oncology presents experimental approaches to multifactorial interactions in tumor development. Included are in-depth analyses of malignant phenotypes by oncogene complementation, as well as studies of complementary interactions among DNA viral oncogenes; multiple cell-derived sequences in single retroviral genomes; and sequences that influence the transforming activity and expression of the mos oncogene. The genetic regulation of tumorigenic expression in somatic cell hybrids, the inhibition of oncogenes by cellular genes, and the interaction of genes that favor and genes that suppress tumorigenesis are examined in detail. The book concludes with a study of the relationship of oncogenes to the evolution of the metastatic phenotype.

  3. Advanced Electrophysiologic Mapping Systems

    PubMed Central

    2006-01-01

    Executive Summary Objective To assess the effectiveness, cost-effectiveness, and demand in Ontario for catheter ablation of complex arrhythmias guided by advanced nonfluoroscopy mapping systems. Particular attention was paid to ablation for atrial fibrillation (AF). Clinical Need Tachycardia Tachycardia refers to a diverse group of arrhythmias characterized by heart rates that are greater than 100 beats per minute. It results from abnormal firing of electrical impulses from heart tissues or abnormal electrical pathways in the heart because of scars. Tachycardia may be asymptomatic, or it may adversely affect quality of life owing to symptoms such as palpitations, headaches, shortness of breath, weakness, dizziness, and syncope. Atrial fibrillation, the most common sustained arrhythmia, affects about 99,000 people in Ontario. It is associated with higher morbidity and mortality because of increased risk of stroke, embolism, and congestive heart failure. In atrial fibrillation, most of the abnormal arrhythmogenic foci are located inside the pulmonary veins, although the atrium may also be responsible for triggering or perpetuating atrial fibrillation. Ventricular tachycardia, often found in patients with ischemic heart disease and a history of myocardial infarction, is often life-threatening; it accounts for about 50% of sudden deaths. Treatment of Tachycardia The first line of treatment for tachycardia is antiarrhythmic drugs; for atrial fibrillation, anticoagulation drugs are also used to prevent stroke. For patients refractory to or unable to tolerate antiarrhythmic drugs, ablation of the arrhythmogenic heart tissues is the only option. Surgical ablation such as the Cox-Maze procedure is more invasive. Catheter ablation, involving the delivery of energy (most commonly radiofrequency) via a percutaneous catheter system guided by X-ray fluoroscopy, has been used in place of surgical ablation for many patients. However, this conventional approach in catheter ablation

  4. Advanced geothermal technologies

    NASA Astrophysics Data System (ADS)

    Whetten, J. T.; Murphy, H. D.; Hanold, R. J.; Myers, C. W.; Dunn, J. C.

    Research and development in advanced technologies for geothermal energy production continue to increase the energy production options for the Nation. The high-risk investment over the past few years by the U.S. Department of Energy in geopressured, hot dry rock, and magma energy resources is producing new means to lower production costs and to take advantage of these resources. The Nation has far larger and more regionally extensive geothermal resources than heretofore realized. At the end of a short 30-day closed-loop flow test, the manmade hot dry rock reservoir at Fenton Hill, New Mexico was producing 10 MW thermal, and still climbing, proving the technical feasibility of this new technology. The scientific feasibility of magma energy extraction was demonstrated, and new field tests to evaluate this technology are planned. Analysis and field tests confirm the viability of geopressured-geothermal energy and the prospect that many dry-hole or depleted petroleum wells can be turned into producing geopressured-geothermal wells. Technological advances achieved through hot dry rock, magma, geopressured, and other geothermal research are making these resources and conventional hydrothermal resources more competitive.

  5. Advances in Capsule Endoscopy.

    PubMed

    Scott, Ryan; Enns, Robert

    2015-09-01

    Wireless video capsule endoscopy (VCE) is a minimally invasive technology that has revolutionized the approach to small intestinal disease investigation and management. Designed primarily to provide diagnostic imaging of the small intestine, VCE is used predominantly for obscure gastrointestinal bleeding and suspected Crohn's disease; however, numerous other indications have been established, including the assessment of celiac disease, investigation of small bowel tumors, and surveillance of hereditary polyposis syndromes. Since the introduction of small bowel VCE in 2000, more than 1600 articles have been published describing the evolution of this technology. The main adverse outcome is capsule retention, which can potentially be avoided by careful patient selection or by using a patency capsule. Despite the numerous advances in the past 15 years, limitations such as incomplete VCE studies, missed lesions, and time-consuming reporting remain. The inability to control capsule movement for the application of targeted therapy or the acquisition of tissue for histologic analysis remains among the greatest challenges in the further development of capsule technology. This article outlines the recent technological and clinical advances in VCE and the future directions of research in this field.

  6. Aeroacoustics of advanced propellers

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.

    1990-01-01

    The aeroacoustics of advanced, high speed propellers (propfans) are reviewed from the perspective of NASA research conducted in support of the Advanced Turboprop Program. Aerodynamic and acoustic components of prediction methods for near and far field noise are summarized for both single and counterrotation propellers in uninstalled and configurations. Experimental results from tests at both takeoff/approach and cruise conditions are reviewed with emphasis on: (1) single and counterrotation model tests in the NASA Lewis 9 by 15 (low speed) and 8 by 6 (high speed) wind tunnels, and (2) full scale flight tests of a 9 ft (2.74 m) diameter single rotation wing mounted tractor and a 11.7 ft (3.57 m) diameter counterrotation aft mounted pusher propeller. Comparisons of model data projected to flight with full scale flight data show good agreement validating the scale model wind tunnel approach. Likewise, comparisons of measured and predicted noise level show excellent agreement for both single and counterrotation propellers. Progress in describing angle of attack and installation effects is also summarized. Finally, the aeroacoustic issues associated with ducted propellers (very high bypass fans) are discussed.

  7. NASA Advanced Propeller Research

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Bober, Lawrence J.

    1988-01-01

    Acoustic and aerodynamic research at NASA Lewis Research Center on advanced propellers is reviewed including analytical and experimental results on both single and counterrotation. Computational tools used to calculate the detailed flow and acoustic i e l d s a r e described along with wind tunnel tests to obtain data for code verification . Results from two kinds of experiments are reviewed: ( 1 ) performance and near field noise at cruise conditions as measured in the NASA Lewis 8-by 6-Foot Wind Tunnel and ( 2 ) farfield noise and performance for takeoff/approach conditions as measured in the NASA Lewis 9-by 15-Font Anechoic Wind Tunnel. Detailed measurements of steady blade surface pressures are described along with vortex flow phenomena at off design conditions . Near field noise at cruise is shown to level out or decrease as tip relative Mach number is increased beyond 1.15. Counterrotation interaction noise is shown to be a dominant source at take off but a secondary source at cruise. Effects of unequal rotor diameters and rotor-to-rotor spacing on interaction noise a real so illustrated. Comparisons of wind tunnel acoustic measurements to flight results are made. Finally, some future directions in advanced propeller research such as swirl recovery vanes, higher sweep, forward sweep, and ducted propellers are discussed.

  8. NASA advanced propeller research

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Bober, Lawrence J.

    1988-01-01

    Acoustic and aerodynamic research at NASA Lewis Research Center on advanced propellers is reviewed including analytical and experimental results on both single and counterrotation. Computational tools used to calculate the detailed flow and acoustic fields are described along with wind tunnel tests to obtain data for code verification. Results from two kinds of experiments are reviewed: (1) performance and near field noise at cruise conditions as measured in the NASA Lewis 8- by 6-foot Wind Tunnel; and (2) far field noise and performance for takeoff/approach conditions as measured in the NASA Lewis 9- by 15-foot Anechoic Wind Tunnel. Detailed measurements of steady blade surface pressures are described along with vortex flow phenomena at off-design conditions. Near field noise at cruise is shown to level out or decrease as tip relative Mach number is increased beyond 1.15. Counterrotation interaction noise is shown to be a dominant source at takeoff but a secondary source at cruise. Effects of unequal rotor diameters and rotor-to-rotor spacing on interaction noise are also illustrated. Comparisons of wind tunnel acoustic measurements to flight results are made. Finally, some future directions in advanced propeller research such as swirl recovery vanes, higher sweep, forward sweep, and ducted propellers are discussed.

  9. Advances in Capsule Endoscopy

    PubMed Central

    Scott, Ryan

    2015-01-01

    Wireless video capsule endoscopy (VCE) is a minimally invasive technology that has revolutionized the approach to small intestinal disease investigation and management. Designed primarily to provide diagnostic imaging of the small intestine, VCE is used predominantly for obscure gastrointestinal bleeding and suspected Crohn’s disease; however, numerous other indications have been established, including the assessment of celiac disease, investigation of small bowel tumors, and surveillance of hereditary polyposis syndromes. Since the introduction of small bowel VCE in 2000, more than 1600 articles have been published describing the evolution of this technology. The main adverse outcome is capsule retention, which can potentially be avoided by careful patient selection or by using a patency capsule. Despite the numerous advances in the past 15 years, limitations such as incomplete VCE studies, missed lesions, and time-consuming reporting remain. The inability to control capsule movement for the application of targeted therapy or the acquisition of tissue for histologic analysis remains among the greatest challenges in the further development of capsule technology. This article outlines the recent technological and clinical advances in VCE and the future directions of research in this field. PMID:27482183

  10. Advanced Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    Blair, D. G.; Howell, E. J.; Ju, L.; Zhao, C.

    2012-02-01

    Part I. An Introduction to Gravitational Wave Astronomy and Detectors: 1. Gravitational waves D. G. Blair, L. Ju, C. Zhao and E. J. Howell; 2. Sources of gravitational waves D. G. Blair and E. J. Howell; 3. Gravitational wave detectors D. G. Blair, L. Ju, C. Zhao, H. Miao, E. J. Howell, and P. Barriga; 4. Gravitational wave data analysis B. S. Sathyaprakash and B. F. Schutz; 5. Network analysis L. Wen and B. F. Schutz; Part II. Current Laser Interferometer Detectors: Three Case Studies: 6. The Laser Interferometer Gravitational-Wave Observatory P. Fritschel; 7. The VIRGO detector S. Braccini; 8. GEO 600 H. Lück and H. Grote; Part III. Technology for Advanced Gravitational Wave Detectors: 9. Lasers for high optical power interferometers B. Willke and M. Frede; 10. Thermal noise, suspensions and test masses L. Ju, G. Harry and B. Lee; 11. Vibration isolation: Part 1. Seismic isolation for advanced LIGO B. Lantz; Part 2. Passive isolation J-C. Dumas; 12. Interferometer sensing and control P. Barriga; 13. Stabilizing interferometers against high optical power effects C. Zhao, L. Ju, S. Gras and D. G. Blair; Part IV. Technology for Third Generation Gravitational Wave Detectors: 14. Cryogenic interferometers J. Degallaix; 15. Quantum theory of laser-interferometer GW detectors H. Miao and Y. Chen; 16. ET. A third generation observatory M. Punturo and H. Lück; Index.

  11. Advanced Virgo phase cameras

    NASA Astrophysics Data System (ADS)

    van der Schaaf, L.; Agatsuma, K.; van Beuzekom, M.; Gebyehu, M.; van den Brand, J.

    2016-05-01

    A century after the prediction of gravitational waves, detectors have reached the sensitivity needed to proof their existence. One of them, the Virgo interferometer in Pisa, is presently being upgraded to Advanced Virgo (AdV) and will come into operation in 2016. The power stored in the interferometer arms raises from 20 to 700 kW. This increase is expected to introduce higher order modes in the beam, which could reduce the circulating power in the interferometer, limiting the sensitivity of the instrument. To suppress these higher-order modes, the core optics of Advanced Virgo is equipped with a thermal compensation system. Phase cameras, monitoring the real-time status of the beam constitute a critical component of this compensation system. These cameras measure the phases and amplitudes of the laser-light fields at the frequencies selected to control the interferometer. The measurement combines heterodyne detection with a scan of the wave front over a photodetector with pin-hole aperture. Three cameras observe the phase front of these laser sidebands. Two of them monitor the in-and output of the interferometer arms and the third one is used in the control of the aberrations introduced by the power recycling cavity. In this paper the working principle of the phase cameras is explained and some characteristic parameters are described.

  12. Advanced composites technology

    SciTech Connect

    DeTeresa, S J; Groves, S E; Sanchez, R J

    1998-10-01

    The development of fiber composite components in next-generation munitions, such as sabots for kinetic energy penetrators and lightweight cases for advanced artillery projectiles, relies on design trade-off studies using validated computer code simulations. We are developing capabilities to determine the failure of advanced fiber composites under multiaxial stresses to critically evaluate three-dimensional failure models and develop new ones if necessary. The effects of superimposed hydrostatic pressure on failure of composites are being investigated using a high-pressure testing system that incorporates several unique features. Several improvements were made to the system this year, and we report on the first tests of both isotropic and fiber composite materials. The preliminary results indicate that pressure has little effect on longitudinal compression strength of unidirectional composites, but issues with obtaining reliable failures in these materials still remain to be resolved. The transverse compression strength was found to be significantly enhanced by pressure, and the trends observed for this property and the longitudinal strength are in agreement with recent models for failure of fiber composites.

  13. Navy Enlisted Advancement Planning and the Advancement Interface System (ADIN)

    DTIC Science & Technology

    1987-02-01

    still using 11-month-old data, from October of the previous year. The use of old data resulted in avoidable errors, which were reflected in the...Vacancies are therefore 100 minus 90, or 10. Because there are no higher paygrades, the number of advancements required for E-9 equals the number of...vacancies. The number of personnel who have passed the test (15) exceeds the advancements required (10); so the number of advancements made equals the

  14. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect

    Gregory Gaul

    2004-04-21

    Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing

  15. NASA Advanced Fuels Program

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    1998-01-01

    NASA with the USAF Research Laboratory and it's industry partners, has been conducting planning and research into advanced fuels. This work is sponsored under the NASA Advanced Space Transportation Program (ASTP). The current research focus is on Alternative Hydrocarbon fuels, Monopropellants, and Solid Cryogens for storing atoms of Hydrogen, Boron, Carbon, and Aluminum. Alternative hydrocarbons that are under consideration are bi cyclo propylidene, spiro pentane, and tri propargyl amine. These three fuels have been identified as initial candidates to increase the specific impulse of hydrocarbon fueled rockets by 10-15 seconds over 02/RP-1. Formulation of these propellants is proceeding this year, and rocket engine testing is planned for the near future. Monopropellant investigations are focused on dinitramine based fuels, and potential collaborations with the US Navy. The dinitramine fuel work is being conducted under an Small Business Innovation research (SBIR) contract with the team of Orbital Technologies Corp. (Madison, WI) and SRI (Menlo Park, CA). This work may lead to a high density, high specific impulse monopropellants that can simplify the operations for launch vehicles and spacecraft. Solid Cryogens are being considered to store atoms of Hydrogen, Boron, Carbon, and Aluminum. Stored atom propellants are potentially the highest specific impulse chemical rockets that may be practical. These fuels are composed of atoms, stored in solid cryogenic particles, suspended in a cryogenic liquid or gel. The fuel would be fed to a rocket engine as a slurry or gelled cryogenic liquid with the suspended particles with the trapped atoms. Testing is planned to demonstrate the formation of the particles, and then characterize the slurry flows. Rocket propellant and propulsion technology improvements can be used to reduce the development time and operational costs of new space vehicle programs. Advanced propellant technologies can make the space vehicles safer, more

  16. Advances in Bioconjugation

    PubMed Central

    Kalia, Jeet; Raines, Ronald T.

    2010-01-01

    Bioconjugation is a burgeoning field of research. Novel methods for the mild and site-specific derivatization of proteins, DNA, RNA, and carbohydrates have been developed for applications such as ligand discovery, disease diagnosis, and high-throughput screening. These powerful methods owe their existence to the discovery of chemoselective reactions that enable bioconjugation under physiological conditions—a tremendous achievement of modern organic chemistry. Here, we review recent advances in bioconjugation chemistry. Additionally, we discuss the stability of bioconjugation linkages—an important but often overlooked aspect of the field. We anticipate that this information will help investigators choose optimal linkages for their applications. Moreover, we hope that the noted limitations of existing bioconjugation methods will provide inspiration to modern organic chemists. PMID:20622973

  17. Advancing Residential Energy Retrofits

    SciTech Connect

    Jackson, Roderick K; Boudreaux, Philip R; Kim, Eyu-Jin; Roberts, Sydney

    2012-01-01

    To advance the market penetration of residential retrofits, Oak Ridge National Laboratory (ORNL) and Southface Energy Institute (Southface) partnered to provide technical assistance on nine home energy retrofits in metropolitan Atlanta with simulated source energy savings of 30% to 50%. Retrofit measures included duct sealing, air infiltration reductions, attic sealing and roofline insulation, crawlspace sealing, HVAC and water heating equipment replacement, and lighting and appliance upgrades. This paper will present a summary of these measures and their associated impacts on important home performance metrics, such as air infiltration and duct leakage. The average estimated source energy savings for the homes is 33%, and the actual heating season average savings is 32%. Additionally, a case study describing expected and realized energy savings of completed retrofit measures of one of the homes is described in this paper.

  18. Advanced subsystems development

    NASA Technical Reports Server (NTRS)

    Livingston, F. R.

    1978-01-01

    The concept design for a small (less than 10 MWe) solar thermal electric generating plant was completed using projected 1985 technology. The systems requirements were defined and specified. The components, including an engineering prototype for one 15 kWe module of the generating plant, were conceptually designed. Significant features of the small solar thermal power plant were identified as the following: (1) 15 kWe Stirling-cycle engine/alternator with constant power output; (2) 10 meter point-focusing paraboloidal concentrator with cantilevered cellular glass reflecting panels; (3) primary heat pipe with 800 C output solar cavity receiver; (4) secondary heat pipe with molten salt thermal energy storage unit; (5) electric energy transport system; and (6) advanced battery energy storage capability.

  19. ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Stanley Miller; Rich Gebert; William Swanson

    1999-11-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the US Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a manner that has not been done before. The AHPC concept consists of a combination of fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emission with conventional ESPs, and it solves the problem of reentrainment and collection of dust in conventional baghouses. The AHPC is currently being tested at the 2.7-MW scale at the Big Stone power station.

  20. Advances in analytical chemistry

    NASA Technical Reports Server (NTRS)

    Arendale, W. F.; Congo, Richard T.; Nielsen, Bruce J.

    1991-01-01

    Implementation of computer programs based on multivariate statistical algorithms makes possible obtaining reliable information from long data vectors that contain large amounts of extraneous information, for example, noise and/or analytes that we do not wish to control. Three examples are described. Each of these applications requires the use of techniques characteristic of modern analytical chemistry. The first example, using a quantitative or analytical model, describes the determination of the acid dissociation constant for 2,2'-pyridyl thiophene using archived data. The second example describes an investigation to determine the active biocidal species of iodine in aqueous solutions. The third example is taken from a research program directed toward advanced fiber-optic chemical sensors. The second and third examples require heuristic or empirical models.

  1. Advanced Containment System

    DOEpatents

    Kostelnik, Kevin M.; Kawamura, Hideki; Richardson, John G.; Noda, Masaru

    2004-10-12

    An advanced containment system for containing buried waste and associated leachate. A trench is dug on either side of the zone of interest containing the buried waste so as to accommodate a micro tunnel boring machine. A series of small diameter tunnels are serially excavated underneath the buried waste. The tunnels are excavated by the micro tunnel boring machine at a consistent depth and are substantially parallel to each other. As tunneling progresses, steel casing sections are connected end to end in the excavated portion of the tunnel so that a steel tube is formed. Each casing section has complementary interlocking structure running its length that interlocks with complementary interlocking structure on the adjacent casing section. Thus, once the first tube is emplaced, placement of subsequent tubes is facilitated by the complementary interlocking structure on the adjacent, previously placed, casing sections.

  2. Advanced Containment System

    DOEpatents

    Kostelnik, Kevin M.; Kawamura, Hideki; Richardson, John G.; Noda, Masaru

    2005-05-24

    An advanced containment system for containing buried waste and associated leachate. A trench is dug on either side of the zone of interest containing the buried waste so as to accommodate a micro tunnel boring machine. A series of small diameter tunnels are serially excavated underneath the buried waste. The tunnels are excavated by the micro tunnel boring machine at a consistent depth and are substantially parallel to each other. As tunneling progresses, steel casing sections are connected end to end in the excavated portion of the tunnel so that a steel tube is formed. Each casing section has complementary interlocking structure running its length that interlocks with complementary interlocking structure on the adjacent casing section. Thus, once the first tube is emplaced, placement of subsequent tubes is facilitated by the complementary interlocking structure on the adjacent, previously placed, casing sections.

  3. Advanced Telemetry Data Capturing

    SciTech Connect

    Paschke, G.A.

    2000-05-16

    This project developed a new generation or advanced data capturing process specifically designed for use in future telemetry test systems at the Kansas City Plant (KCP). Although similar data capturing processes are performed both commercially and at other DOE weapon facilities, the equipment used is not specifically designed to perform acceptance testing requirements unique to the KCP. Commercially available equipment, despite very high cost (up to $125,000), is deficient in reliability and long-term maintainability necessary in test systems at this facility. There are no commercial sources for some requirements, specifically Terminal Data Analyzer (TDA) data processing. Although other custom processes have been developed to satisfy these test requirements, these designs have become difficult to maintain and upgrade.

  4. Advanced strategic missile development

    NASA Astrophysics Data System (ADS)

    Strickler, R. L.

    1981-05-01

    The M-X program is taking two paths: (1) the current development and projected deployment of a survivable land based ICBM (the M-X) in a multiple protective structure system, and (2) a building block development of readiness posture and strategic futures technology that could be used for a wide range of projected needs in the event of major changes in the threat or the political climate. The blend of aerospace and civil engineering technologies which has resulted in the systems concept necessary to assure the continued survivability of the land based strategic missile force is summarized. Recent advanced technology development activities, which have been focused on systems upgrade options to the current ICBM force, basing options which may be required for special force elements, small missile options for airborne applications, penetration technology to counter SAM and ABM threats, and systems concepts for unique targeting requirements are reviewed.

  5. Advanced glycation end products

    PubMed Central

    Gkogkolou, Paraskevi; Böhm, Markus

    2012-01-01

    Aging is the progressive accumulation of damage to an organism over time leading to disease and death. Aging research has been very intensive in the last years aiming at characterizing the pathophysiology of aging and finding possibilities to fight age-related diseases. Various theories of aging have been proposed. In the last years advanced glycation end products (AGEs) have received particular attention in this context. AGEs are formed in high amounts in diabetes but also in the physiological organism during aging. They have been etiologically implicated in numerous diabetes- and age-related diseases. Strategies inhibiting AGE accumulation and signaling seem to possess a therapeutic potential in these pathologies. However, still little is known on the precise role of AGEs during skin aging. In this review the existing literature on AGEs and skin aging will be reviewed. In addition, existing and potential anti-AGE strategies that may be beneficial on skin aging will be discussed. PMID:23467327

  6. Advances in Alcoholism Treatment

    PubMed Central

    Huebner, Robert B.; Kantor, Lori Wolfgang

    2011-01-01

    Researchers are working on numerous and varied approaches to improving the accessibility, quality, effectiveness, and cost-effectiveness of treatment for alcohol use disorders (AUDs). This overview article summarizes the approaches reviewed in this issue, including potential future developments for alcoholism treatment, such as medications development, behavioral therapy, advances in technology that are being used to improve treatment, integrated care of patients with AUDs and co-occurring disorders, the role of 12-step programs in the broader realm of treatment, treating patients with recurring and chronic alcohol dependence, strategies to close the gap between treatment need and treatment utilization, and how changes in the health care system may affect the delivery of treatment. This research will not only reveal new medications and behavioral therapies but also will contribute to new ways of approaching current treatment problems. PMID:23580014

  7. Advancing family psychology.

    PubMed

    Fiese, Barbara H

    2016-02-01

    To realize the broad and complex nature of the field of family psychology, I have slightly revised the mission statement of the Journal of Family Psychology (JFP) to capture contemporary scholarship in family psychology and to advance systems perspectives in this top-tier scientific journal. Over the next 6 years, I hope that authors will consider JFP as an outlet for their best work in the following areas: (1) JFP addresses societal challenges faced by families today; (2) JFP publishes important studies on what makes couple and family relationships work; (3) JFP is a leader in publishing reports that use cutting-edge sophisticated approaches to research design and data analysis; and (4) JFP imparts knowledge about effective therapy and prevention programs relevant to couples and families. The journal is also expanding its publication rate to eight issues per year.

  8. Manifestations of advanced civilizations

    NASA Astrophysics Data System (ADS)

    Bracewell, R. N.

    A list of possible modes of detecting advanced civilizations elsewhere in the universe is provided, including EM Alfven, and gravity waves, matter transfer, and exotica such as tachyons, black hole tunneling, and telepathy. Further study is indicated for low frequency radio wave propagation, which may travel along magnetic fields to reach the earth while laser beams are not favored because of the power needed for transmitting quanta instead of waves. IR, X ray, and UV astronomy are noted to be suitable for detecting signals in those ranges, while Alfven wave communication will be best observed by probes outside the orbit of Jupiter, where local anomalies have less effect. Particle propagation communication is viewed as unlikely, except as a trace of an extinct civilization, but panspermia, which involves interstellar spreading of seeds and/or spores, receives serious attention, as does laser probe or pellet propulsion.

  9. Advanced dive monitoring system.

    PubMed

    Sternberger, W I; Goemmer, S A

    1999-01-01

    The US Navy supports deep diving operations with a variety of mixed-gas life support systems. A systems engineering study was conducted for the Naval Experimental Dive Unit (Panama City, FL) to develop a concept design for an advanced dive monitoring system. The monitoring system is intended primarily to enhance diver safety and secondarily to support diving medicine research. Distinct monitoring categories of diver physiology, life support system, and environment are integrated in the monitoring system. A system concept is proposed that accommodates real-time and quantitative measurements, noninvasive physiological monitoring, and a flexible and expandable implementation architecture. Human factors and ergonomic design considerations have been emphasized to assure that there is no impact on the diver's primary mission. The Navy has accepted the resultant system requirements and the basic design concept. A number of monitoring components have been implemented and successfully support deep diving operations.

  10. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect

    Ergun Kuru; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Gerald Kane; Len Volk; Mark Pickell; Evren Ozbayoglu; Barkim Demirdal; Paco Vieira; Affonso Lourenco

    1999-10-15

    This report includes a review of the progress made in ACTF Flow Loop development and research during 90 days pre-award period (May 15-July 14, 1999) and the following three months after the project approval date (July15-October 15, 1999) The report presents information on the following specific subjects; (a) Progress in Advanced Cuttings Transport Facility design and development, (b) Progress report on the research project ''Study of Flow of Synthetic Drilling Fluids Under Elevated Pressure and Temperature Conditions'', (c) Progress report on the research project ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)'', (d) Progress report on the research project ''Study of Cuttings Transport with Aerated Muds Under LPAT Conditions (Joint Project with TUDRP)'', (e) Progress report on the research project ''Study of Foam Flow Behavior Under EPET Conditions'', (f) Progress report on the instrumentation tasks (Tasks 11 and 12) (g) Activities towards technology transfer and developing contacts with oil and service company members.

  11. Advanced powder processing

    SciTech Connect

    Janney, M.A.

    1997-04-01

    Gelcasting is an advanced powder forming process. It is most commonly used to form ceramic or metal powders into complex, near-net shapes. Turbine rotors, gears, nozzles, and crucibles have been successfully gelcast in silicon nitride, alumina, nickel-based superalloy, and several steels. Gelcasting can also be used to make blanks that can be green machined to near-net shape and then high fired. Green machining has been successfully applied to both ceramic and metal gelcast blanks. Recently, the authors have used gelcasting to make tooling for metal casting applications. Most of the work has centered on H13 tool steel. They have demonstrated an ability to gelcast and sinter H13 to near net shape for metal casting tooling. Also, blanks of H13 have been cast, green machined into complex shape, and fired. Issues associated with forming, binder burnout, and sintering are addressed.

  12. Advanced Ceramics Property Measurements

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan; Helfinstine, John; Quinn, George; Gonczy, Stephen

    2013-01-01

    Mechanical and physical properties of ceramic bodies can be difficult to measure correctly unless the proper techniques are used. The Advanced Ceramics Committee of ASTM, C-28, has developed dozens of consensus test standards and practices to measure various properties of a ceramic monolith, composite, or coating. The standards give the "what, how, how not, and why" for measurement of many mechanical, physical, thermal, and performance properties. Using these standards will provide accurate, reliable, and complete data for rigorous comparisons with other test results from your test lab, or another. The C-28 Committee has involved academics, producers, and users of ceramics to write and continually update more than 45 standards since the committee's inception in 1986. Included in this poster is a pictogram of the C-28 standards and information on how to obtain individual copies with full details or the complete collection of standards in one volume.

  13. SAC: Sheffield Advanced Code

    NASA Astrophysics Data System (ADS)

    Griffiths, Mike; Fedun, Viktor; Mumford, Stuart; Gent, Frederick

    2013-06-01

    The Sheffield Advanced Code (SAC) is a fully non-linear MHD code designed for simulations of linear and non-linear wave propagation in gravitationally strongly stratified magnetized plasma. It was developed primarily for the forward modelling of helioseismological processes and for the coupling processes in the solar interior, photosphere, and corona; it is built on the well-known VAC platform that allows robust simulation of the macroscopic processes in gravitationally stratified (non-)magnetized plasmas. The code has no limitations of simulation length in time imposed by complications originating from the upper boundary, nor does it require implementation of special procedures to treat the upper boundaries. SAC inherited its modular structure from VAC, thereby allowing modification to easily add new physics.

  14. Advances in artificial lungs.

    PubMed

    Ota, Kei

    2010-04-01

    Artificial lungs have already been developed as complete artificial organs, and results of many investigations based on innovative concepts have been reported continuously. In open-heart surgery, artificial lungs are used for extracorporeal circulation to maintain gas exchange, and the commercial products currently available perform adequately, including providing for antithrombogenicity. However, patients after cardiopulmonary arrest or severe respiratory/circulatory failure have required long-term assist with extracorporeal membrane oxygenation (ECMO). The number of artificial lungs used for ECMO in those cases has shown significant growth in recent years. Therefore, it is expected that durability and antithrombogenicity will ensure the prolonged use of an artificial lung for several weeks or months. Furthermore, interests in research are shifting to use of oxygenators as a bridge to lung transplantation and an implantable artificial lung. This paper discusses recent advances in artificial lungs, focusing on the current state and on trends in research and development.

  15. Technologic advances in endodontics.

    PubMed

    Mortman, Rory E

    2011-07-01

    This article addresses technologic advances in endodontics pertaining to new and emerging technology. Cone-beam computed tomography and optical occurrence tomography are 2 new imaging technologies that can assist the practitioner in the diagnosis of pulpal disease. The self-adjusting file and the Apexum device can be used for instrumentation and bulk debridement of an apical lesion, respectively. Neodymium:yttrium-aluminum-garnet laser, erbium:chromium:yttrium-scandium-gallium-garnet laser, EndoActivator, EndoVac, and light-activated disinfection may assist the practitioner in cleaning the root canal system. Computed tomography-guided surgery shows promise in making endodontic surgery easier, as does mineral trioxide aggregate cement for regenerative endodontic procedures.

  16. Advances in hereditary deafness.

    PubMed

    Tekin, M; Arnos, K S; Pandya, A

    2001-09-29

    Progress in the Human Genome Project, availability of cochlea-specific cDNA libraries, and development of murine models of deafness have resulted in rapid discovery of many loci and corresponding genes for deafness. Up to now, the chromosomal locations of about 70 genes for non-syndromic deafness have been mapped, and the genes of more than 20 loci have been identified and characterised. Mutations in one gene, connexin 26 (CX26GJB2), are responsible for most cases of recessive non-syndromic deafness, accounting for 30-40% of all childhood genetic deafness in some populations (eg, white people of western European descent). We summarise advances in identification of genes for deafness and provide a guide to the clinical approach to diagnosis of patients with hearing loss.

  17. Recent advances in VECSELs

    NASA Astrophysics Data System (ADS)

    Rahimi-Iman, Arash

    2016-09-01

    Within the last two decades, vertical-external-cavity surface-emitting lasers (VECSELs) have attracted rising interest from both industry and science. They have proven to be versatile lasers which can be specifically designed for research and applications that require a particular regime of operation. Various emission schemes ranging from narrow-linewidth emission, pulsed light or multimode emission to a frequency-converted output are feasible owing to remarkable device features. Being composed of a semiconductor gain mirror and an external cavity, not only is a unique access to high-brightness output and a high-beam quality is provided, but also wavelength flexibility. Moreover, the exploitation of intra-cavity frequency conversion further extends the accessible spectral range from the ultraviolet (UV) to the terahertz (THz). In this work, recent advances in the field of VECSELs are highlighted.

  18. Advanced Motor Drives Studies

    NASA Technical Reports Server (NTRS)

    Ehsani, M.; Tchamdjou, A.

    1997-01-01

    This report presents an evaluation of advanced motor drive systems as a replacement for the hydrazine fueled APU units. The replacement technology must meet several requirements which are particular to the space applications and the Orbiter in general. Some of these requirements are high efficiency, small size, high power density. In the first part of the study several motors are compared, based on their characteristics and in light of the Orbiter requirements. The best candidate, the brushless DC is chosen because of its particularly good performance with regards to efficiency. Several power electronics drive technologies including the conventional three-phase hard switched and several soft-switched inverters are then presented. In the last part of the study, a soft-switched inverter is analyzed and compared to its conventional hard-switched counterpart. Optimal efficiency is a basic requirement for space applications and the soft-switched technology represents an unavoidable trend for the future.

  19. Advanced turbine study

    NASA Technical Reports Server (NTRS)

    Castro, J. H.

    1985-01-01

    The feasibility of an advanced convective cooling concept applied to rocket turbine airfoils which operate in a high pressure hydrogen and methane environment was investigated. The concept consists of a central structural member in which grooves are machined. The grooves are temporarily filled with a removable filler and the entire airfoil is covered with a layer of electroformed nickel, or nickel base alloy. After removal of the filler, the low thermal resistance of the nickel closure causes the wall temperature to be reduced by heat transfer to the coolant. The program is divided in the following tasks: (1) turbine performance appraisal; (2) coolant geometry evaluation; (3) test hardware design and analysis; and (4) test airfoil fabrication.

  20. Advanced servo manipulator

    DOEpatents

    Holt, W.E.; Kuban, D.P.; Martin, H.L.

    1988-10-25

    An advanced servo manipulator has modular parts. Modular motor members drive individual input gears to control shoulder roll, shoulder pitch, elbow pitch, wrist yaw, wrist pitch, wrist roll, and tong spacing. The modules include a support member, a shoulder module for controlling shoulder roll, and a sleeve module attached to the shoulder module in fixed relation thereto. The shoulder roll sleeve module has an inner cylindrical member rotatable relative to the outer cylindrical member, and upon which a gear pod assembly is mounted. A plurality of shafts are driven by the gears, which are in turn driven by individual motor modules to transmit rotary power to control elbow pitch as well as to provide four different rotary shafts across the bendable elbow joint to supply rotary motive power to a wrist member and tong member. 41 figs.

  1. Advanced servo manipulator

    DOEpatents

    Holt, William E.; Kuban, Daniel P.; Martin, H. Lee

    1988-01-01

    An advanced servo manipulator has modular parts. Modular motor members drive individual input gears to control shoulder roll, shoulder pitch, elbow pitch, wrist yaw, wrist pitch, wrist roll, and tong spacing. The modules include a support member, a shoulder module for controlling shoulder roll, and a sleeve module attached to the shoulder module in fixed relation thereto. The shoulder roll sleeve module has an inner cylindrical member rotatable relative to the outer cylindrical member, and upon which a gear pod assembly is mounted. A plurality of shafts are driven by the gears, which are in turn driven by individual motor modules to transmit rotary power to control elbow pitch as well as to provide four different rotary shafts across the bendable elbow joint to supply rotary motive power to a wrist member and tong member.

  2. Advanced alkaline water electrolysis

    NASA Astrophysics Data System (ADS)

    Wakabayashi, N.; Torikai, E.; Kawami, Y.; Takenaka, H.

    Results are presented of experimental studies of possible separators and electrodes for use in advanced, high-temperature, high-pressure alkaline water electrolyzers. Material evaluations in alkaline water electrolyzers at temperatures from 100 to 120 C have shown a new type polytetrafluoroethylene membrane impregnated with potassium titanate to be the most promising when the separator is prepared by the hydrothermal treatment of a porous PFTE membrane impregnated with hydrated titanium oxide. Measurements of cell voltages in 30% KOH at current densities from 5 to 100 A/sq dm at temperatures up to 120 C with nickel electrodes of various structures have shown the foamed nickel electrode, with an average pore size of 1-1.5 mm, to have the best performance. When the foamed nickel is coated by fine powdered nickel, carbonyl nickel or Raney nickel to increase electrode surface areas, even lower cell voltages were found, indicating better performance.

  3. The Advanced Photon Source

    SciTech Connect

    Galayda, John N.

    1996-01-01

    The Advanced Photon Source (APS) is a 7-GeV third-generation synchrotron radiation storage ring and full-energy positron injector. Construction project funding began in 1989, and ground breaking took place on 5 May 1990. Construction of all accelerator facilities was completed in January 1995 and storage ring commissioning is underway. First observation of x-rays from a bending magnet source took place on 26 March 1995. Nearly all performance specifications of the injector have been reached, and first observations indicate that the reliability, dynamic aperture, emittance, and orbit stability in the storage ring are satisfactory. Observation of radiation from the first of 20 insertion device beamlines is scheduled for October 1995. Start of regular operations is expected to take place well before the APS Project target date of December 1996.

  4. The advanced photon source

    SciTech Connect

    Galayda, J.N.

    1995-07-01

    The Advanced Photon Source (APS) is a 7-GeV third-generation synchrotron radiation storage ring and full-energy positron injector. Construction project funding began in 1989, and ground breaking took place on 5 May 1990. Construction of all accelerator facilities was completed in January 1995 and storage ring commissioning is underway. First observation of x-rays from a bending magnet source took place on 26 March 1995. Nearly all performance specifications of the injector have been reached, and first observations indicate that the reliability, dynamic aperture, emittance, and orbit stability in the storage ring are satisfactory. Observation of radiation from the first of 20 insertion device beamlines is scheduled for October 1995. Start of regular operations is expected to take place well before the APS Project target date of December 1996.

  5. Advanced night vision goggles

    NASA Astrophysics Data System (ADS)

    Thacker, Clinton

    2003-02-01

    The Advanced Night Vision Goggle (ANVG) program is developing integrated wide field of view (WFOV) helmet-mounted image intensifier night vision goggle systems. ANVG will provide a FOV of approximately 40° (vertical) × 100° (horizontal) and an integrated heads-up display for overlay of flight symbology and/or FLIR imagery. The added FLIR complements the I2 imagery in out of the window or ground applications. ANVG will significantly improve safety, situational awareness, and mission capabilities in differing environments. ANVG achieves the ultra wide FOV using four image intensifier tubes in a head-mounted configuration. Additional features include a miniature flat panel display and a lightweight uncooled FLIR. The integrated design will demonstrate the capability of helmet-mounted I2 and FLIR image fusion. Fusion will be accomplished optically and will offer significant opportunities for ground applications. This paper summarizes the basic technologies, lessons learned, and program status.

  6. The Advanced Helical Generator

    SciTech Connect

    Reisman, D B; Javedani, J B; Ellsworth, G F; Kuklo, R M; Goerz, D A; White, A D; Tallerico, L J; Gidding, D A; Murphy, M J; Chase, J B

    2009-10-26

    A high explosive pulsed power (HEPP) generator called the Advanced Helical Generator (AHG) has been designed, built, and successfully tested. The AHG incorporates design principles of voltage and current management to obtain a high current and energy gain. Its design was facilitated by the use of modern modeling tools as well as high precision manufacture. The result was a first-shot success. The AHG delivered 16 Mega-Amperes of current and 11 Mega-Joules of energy to a quasi-static 80 nH inductive load. A current gain of 154 times was obtained with a peak exponential rise time of 20 {micro}s. We will describe in detail the design and testing of the AHG.

  7. Advanced drilling systems study.

    SciTech Connect

    Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis

    1996-05-01

    This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

  8. Sheehan's syndrome: Newer advances.

    PubMed

    Shivaprasad, C

    2011-09-01

    Sheehan's syndrome (SS) is postpartum hypopituitarism caused by necrosis of the pituitary gland. It is usually the result of severe hypotension or shock caused by massive hemorrhage during or after delivery. Patients with SS have varying degrees of anterior pituitary hormone deficiency. Its frequency is decreasing worldwide and it is a rare cause of hypopituitarism in developed countries owing to advances in obstetric care. However, it is still frequent in underdeveloped and developing countries. SS often evolves slowly and hence is diagnosed late. History of postpartum hemorrhage, failure to lactate and cessation of menses are important clues to the diagnosis. Early diagnosis and appropriate treatment are important to reduce morbidity and mortality of the patients.

  9. Advanced Prosthetic Gait Training Tool

    DTIC Science & Technology

    2011-09-01

    AD_________________ Award Number: W81XWH-10-1-0870 TITLE: Advanced Prosthetic Gait Training Tool...Advanced Prosthetic Gait Training Tool 5b. GRANT NUMBER W81XWH-10-1-0870 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Rajankumar...produce a computer-based Advanced Prosthetic Gait Training Tool to aid in the training of clinicians at military treatment facilities providing care for

  10. Advanced turbocharger design study program

    NASA Technical Reports Server (NTRS)

    Culy, D. G.; Heldenbrand, R. W.; Richardson, N. R.

    1984-01-01

    The advanced Turbocharger Design Study consisted of: (1) the evaluation of three advanced engine designs to determine their turbocharging requirements, and of technologies applicable to advanced turbocharger designs; (2) trade-off studies to define a turbocharger conceptual design and select the engine with the most representative requirements for turbocharging; (3) the preparation of a turbocharger conceptual design for the Curtiss Wright RC2-32 engine selected in the trade-off studies; and (4) the assessment of market impact and the preparation of a technology demonstration plan for the advanced turbocharger.

  11. The Career Advancement Portfolio. Advancement for Low-Wage Workers

    ERIC Educational Resources Information Center

    Jobs for the Future, 2006

    2006-01-01

    Jobs for the Future created the "Career Advancement Portfolio" as central to its commitment to developing, implementing, and advocating for models, strategies, and policies that enable adults to advance toward economic self-sufficiency for themselves and their families. The "Portfolio" brings together the most innovative workforce development…

  12. Advanced Coats' disease.

    PubMed Central

    Haik, B G

    1991-01-01

    Advanced Coats' disease and retinoblastoma can both present with the triad of a retinal detachment, the appearance of a subretinal mass, and dilated retinal vessels. Thus, even the most experienced observer may not be able to differentiate these entities on ophthalmoscopic findings alone. Coats' disease is the most common reason for which eyes are enucleated with the misdiagnosis of retinoblastoma. Ultrasonography is the auxiliary diagnostic test most easily incorporated into the clinical examination, and can be utilized repeatedly without biologic tissue hazard. Ultrasonically identifiable features allowing differentiation between Coats' disease and retinoblastoma include the topography and character of retinal detachment and presence or absence of subretinal calcifications. Ultrasonography is of lesser use in poorly calcified retinoblastoma and in detecting optic nerve or extraocular extension in heavily calcified retinoblastoma. CT is perhaps the single most valuable test because of its ability to: (a) delineate intraocular morphology, (b) quantify subretinal densities, (c) identify vascularities within the subretinal space through the use of contrast enhancement, and (d) detected associated orbital or intracranial abnormalities. Optimal computed tomographic studies, however, require multiple thin slices both before and after contrast introduction and expose the child to low levels of radiation if studies are repeated periodically. MR imaging is valuable for its multiplanar imaging capabilities, its superior contrast resolution, and its ability to provide insights into the biochemical structure and composition of tissues. It is limited in its ability to detect calcium, which is the mainstay of ultrasonic and CT differentiation. Aqueous LDH and isoenzyme levels were not valuable in distinguishing between Coats' disease and retinoblastoma. The value of aqueous NSE levels in the differentiation of advanced Coats' disease and exophytic retinoblastoma deserves

  13. Advanced Concepts. Chapter 21

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Mulqueen, Jack

    2013-01-01

    Before there is a funded space mission, there must be a present need for the mission. Space science and exploration are expensive, and without a well-defined and justifiable need, no one is going to commit significant funding for any space endeavor. However, as discussed in Chapter 1, applications of space technology and many and broad, hence there are many ways to determine and establish a mission need. Robotic science missions are justified by their science return. To be selected for flight, questions like these must be addressed: What is the science question that needs answering, and will the proposed mission be the most cost-effective way to answer it? Why does answering the question require an expensive space flight, instead of some ground-based alternative? If the question can only be answered by flying in space, then why is this approach better than other potential approaches? How much will it cost? And is the technology required to answer the question in hand and ready to use? If not, then how much will it cost and how long will it take to mature the technology to a usable level? There are also many ways to justify human exploration missions, including science return, technology advancement, as well as intangible reasons, such as national pride. Nonetheless, many of the questions that need answering, are similar to those for robotic science missions: Where are the people going, why, and will the proposed mission be the most cost-effective way to get there? What is the safest method to achieve the goal? How much will it cost? And is the technology required to get there and keep the crew alive in hand and ready to use? If not, then how much will it cost and how long will it take to mature the technology to a usable level? Another reason for some groups sending spacecraft into space is for profit. Telecommunications, geospatial imaging, and tourism are examples of proven, market-driven space missions and applications. For this specific set of users, the

  14. Advanced Power Electronics Components

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.

    2004-01-01

    This paper will give a description and status of the Advanced Power Electronics Materials and Components Technology program being conducted by the NASA Glenn Research Center for future aerospace power applications. The focus of this research program is on the following: 1) New and/or significantly improved dielectric materials for the development of power capacitors with increased volumetric efficiency, energy density, and operating temperature. Materials being investigated include nanocrystalline and composite ceramic dielectrics and diamond-like carbon films; 2) New and/or significantly improved high frequency, high temperature, low loss soft magnetic materials for the development of transformers/inductors with increased power/energy density, electrical efficiency, and operating temperature. Materials being investigated include nanocrystalline and nanocomposite soft magnetic materials; 3) Packaged high temperature, high power density, high voltage, and low loss SiC diodes and switches. Development of high quality 4H- and 6H- SiC atomically smooth substrates to significantly improve device performance is a major emphasis of the SiC materials program; 4) Demonstration of high temperature (> 200 C) circuits using the components developed above.

  15. Advanced hydrologic prediction system

    NASA Astrophysics Data System (ADS)

    Connelly, Brian A.; Braatz, Dean T.; Halquist, John B.; Deweese, Michael M.; Larson, Lee; Ingram, John J.

    1999-08-01

    As our Nation's population and infrastructure grow, natural disasters are becoming a greater threat to our society's stability. In an average year, inland flooding claims 133 lives and resulting property losses exceed 4.0 billion. Last year, 1997, these losses totaled 8.7 billion. Because of this blossoming threat, the National Weather Service (NWS) has requested funding within its 2000 budget to begin national implementation of the Advanced Hydrologic Prediction System (AHPS). With this system in place the NWS will be able to utilize precipitation and climate predictions to provide extended probabilistic river forecasts for risk-based decisions. In addition to flood and drought mitigation benefits, extended river forecasts will benefit water resource managers in decision making regarding water supply, agriculture, navigation, hydropower, and ecosystems. It's estimated that AHPS, if implemented nationwide, would save lives and provide $677 million per year in economic benefits. AHPS is used currently on the Des Moines River basin in Iowa and will be implemented soon on the Minnesota River basin in Minnesota. Experience gained from user interaction is leading to refined and enhanced product formats and displays. This discussion will elaborate on the technical requirements associated with AHPS implementation, its enhanced products and informational displays, and further refinements based on customer feedback.

  16. Advanced Chemistry Basins Model

    SciTech Connect

    William Goddard; Mario Blanco; Lawrence Cathles; Paul Manhardt; Peter Meulbroek; Yongchun Tang

    2002-11-10

    The DOE-funded Advanced Chemistry Basin model project is intended to develop a public domain, user-friendly basin modeling software under PC or low end workstation environment that predicts hydrocarbon generation, expulsion, migration and chemistry. The main features of the software are that it will: (1) afford users the most flexible way to choose or enter kinetic parameters for different maturity indicators; (2) afford users the most flexible way to choose or enter compositional kinetic parameters to predict hydrocarbon composition (e.g., gas/oil ratio (GOR), wax content, API gravity, etc.) at different kerogen maturities; (3) calculate the chemistry, fluxes and physical properties of all hydrocarbon phases (gas, liquid and solid) along the primary and secondary migration pathways of the basin and predict the location and intensity of phase fractionation, mixing, gas washing, etc.; and (4) predict the location and intensity of de-asphaltene processes. The project has be operative for 36 months, and is on schedule for a successful completion at the end of FY 2003.

  17. Advanced optical instruments technology

    NASA Technical Reports Server (NTRS)

    Shao, Mike; Chrisp, Michael; Cheng, Li-Jen; Eng, Sverre; Glavich, Thomas; Goad, Larry; Jones, Bill; Kaarat, Philip; Nein, Max; Robinson, William

    1992-01-01

    The science objectives for proposed NASA missions for the next decades push the state of the art in sensitivity and spatial resolution over a wide range of wavelengths, including the x-ray to the submillimeter. While some of the proposed missions are larger and more sensitive versions of familiar concepts, such as the next generation space telescope, others use concepts, common on the Earth, but new to space, such as optical interferometry, in order to provide spatial resolutions impossible with other concepts. However, despite their architecture, the performance of all of the proposed missions depends critically on the back-end instruments that process the collected energy to produce scientifically interesting outputs. The Advanced Optical Instruments Technology panel was chartered with defining technology development plans that would best improve optical instrument performance for future astrophysics missions. At this workshop the optical instrument was defined as the set of optical components that reimage the light from the telescope onto the detectors to provide information about the spatial, spectral, and polarization properties of the light. This definition was used to distinguish the optical instrument technology issues from those associated with the telescope, which were covered by a separate panel. The panel identified several areas for optical component technology development: diffraction gratings; tunable filters; interferometric beam combiners; optical materials; and fiber optics. The panel also determined that stray light suppression instruments, such as coronagraphs and nulling interferometers, were in need of general development to support future astrophysics needs.

  18. Advanced propeller research

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Bober, Lawrence J.

    1987-01-01

    Resent results of aerodynamic and acoustic research on both single and counter-rotation propellers are reviewed. Data and analytical results are presented for three propellers: SR-7A, the single rotation design used in the NASA Propfan Test Assessment (PTA); and F7-A7, the 8+8 counterrotating design used in the proof-of-concept Unducted Fan (UDF) engine. In addition to propeller efficiencies, cruise and takeoff noise, and blade pressure data, off-design phenomena involving formation of leading edge vortices are described. Aerodynamic and acoustic computational results derived from three-dimensional Euler and acoustic radiation codes are presented. Research on unsteady flows, which are particularly important for understanding counterrotation interaction noise, unsteady loading effects on acoustics, and flutter or forced response is described. The first results of three-dimensional unsteady Euler solutions are illustrated for a single rotation propeller at an angle of attack and for a counterrotation propeller. Basic experimental and theoretical results from studies of the unsteady aerodynamics of oscillating cascades are outlined. Finally, advanced concepts involving swirl recovery vanes and ultra bypass ducted propellers are discussed.

  19. Space station advanced automation

    NASA Technical Reports Server (NTRS)

    Woods, Donald

    1990-01-01

    In the development of a safe, productive and maintainable space station, Automation and Robotics (A and R) has been identified as an enabling technology which will allow efficient operation at a reasonable cost. The Space Station Freedom's (SSF) systems are very complex, and interdependent. The usage of Advanced Automation (AA) will help restructure, and integrate system status so that station and ground personnel can operate more efficiently. To use AA technology for the augmentation of system management functions requires a development model which consists of well defined phases of: evaluation, development, integration, and maintenance. The evaluation phase will consider system management functions against traditional solutions, implementation techniques and requirements; the end result of this phase should be a well developed concept along with a feasibility analysis. In the development phase the AA system will be developed in accordance with a traditional Life Cycle Model (LCM) modified for Knowledge Based System (KBS) applications. A way by which both knowledge bases and reasoning techniques can be reused to control costs is explained. During the integration phase the KBS software must be integrated with conventional software, and verified and validated. The Verification and Validation (V and V) techniques applicable to these KBS are based on the ideas of consistency, minimal competency, and graph theory. The maintenance phase will be aided by having well designed and documented KBS software.

  20. Advanced composites in Japan

    NASA Technical Reports Server (NTRS)

    Diefendorf, R. Judd; Hillig, William G.; Grisaffe, Salvatore J.; Pipes, R. Byron; Perepezko, John H.; Sheehan, James E.

    1994-01-01

    The JTEC Panel on Advanced Composites surveyed the status and future directions of Japanese high-performance ceramic and carbon fibers and their composites in metal, intermetallic, ceramic, and carbon matrices. Because of a strong carbon and fiber industry, Japan is the leader in carbon fiber technology. Japan has initiated an oxidation-resistant carbon/carbon composite program. With its outstanding technical base in carbon technology, Japan should be able to match present technology in the U.S. and introduce lower-cost manufacturing methods. However, the panel did not see any innovative approaches to oxidation protection. Ceramic and especially intermetallic matrix composites were not yet receiving much attention at the time of the panel's visit. There was a high level of monolithic ceramic research and development activity. High temperature monolithic intermetallic research was just starting, but notable products in titanium aluminides had already appeared. Matrixless ceramic composites was one novel approach noted. Technologies for high temperature composites fabrication existed, but large numbers of panels or parts had not been produced. The Japanese have selected aerospace as an important future industry. Because materials are an enabling technology for a strong aerospace industry, Japan initiated an ambitious long-term program to develop high temperature composites. Although just starting, its progress should be closely monitored in the U.S.

  1. Advanced Hydrogen Turbine Development

    SciTech Connect

    Joesph Fadok

    2008-01-01

    advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to

  2. Advanced manufacturing: Technology diffusion

    SciTech Connect

    Tesar, A.

    1995-12-01

    In this paper we examine how manufacturing technology diffuses rom the developers of technology across national borders to those who do not have the capability or resources to develop advanced technology on their own. None of the wide variety of technology diffusion mechanisms discussed in this paper are new, yet the opportunities to apply these mechanisms are growing. A dramatic increase in technology diffusion occurred over the last decade. The two major trends which probably drive this increase are a worldwide inclination towards ``freer`` markets and diminishing isolation. Technology is most rapidly diffusing from the US In fact, the US is supplying technology for the rest of the world. The value of the technology supplied by the US more than doubled from 1985 to 1992 (see the Introduction for details). History shows us that technology diffusion is inevitable. It is the rates at which technologies diffuse to other countries which can vary considerably. Manufacturers in these countries are increasingly able to absorb technology. Their manufacturing efficiency is expected to progress as technology becomes increasingly available and utilized.

  3. Recent advances in sarcoidosis.

    PubMed

    Morgenthau, Adam S; Iannuzzi, Michael C

    2011-01-01

    Sarcoidosis, a systemic granulomatous disease of undetermined etiology, is characterized by a variable clinical presentation and course. During the past decade, advances have been made in the study of sarcoidosis. The multicenter ACCESS (A Case Control Etiologic Study of Sarcoidosis) trial recruited > 700 subjects with newly diagnosed sarcoidosis and matched control subjects. Investigators were unable to identify a single cause of sarcoidosis, but ACCESS paved the way for subsequent etiologic studies. The Mycobacterium tuberculosis catalase-peroxidase protein has been identified as a potential sarcoidosis antigen. Genetic aspects of the disease have been elucidated further. Genome-wide scans have identified candidate genes. Gene expression analyses have defined cytokine dysregulation in sarcoidosis more clearly. Although the criteria for diagnosis have not changed, sarcoidosis remains a diagnosis of exclusion best supported by a tissue biopsy specimen that demonstrates noncaseating granulomas in a patient with compatible clinical and radiologic features of the disease. Endobronchial ultrasound-guided transbronchial needle aspiration of mediastinal lymph nodes has facilitated diagnosis, often eliminating the need for more invasive procedures, such as mediastinoscopy. PET scanning has proven valuable in locating occult sites of active disease. Currently, no reliable prognostic biomarkers have been identified. The tumor necrosis factor inhibitors, a relatively new class of agents, have been used in patients with refractory disease. It is unclear whether phosphodiesterase-5 inhibitors, prostaglandin analogs, or endothelin antagonists should be used for the treatment of sarcoidosis-associated pulmonary hypertension.

  4. Advanced microwave processing concepts

    SciTech Connect

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.

    1995-05-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymer composites. The variable frequency microwave furnace, whose initial conception and design was funded by the AIC Materials Program, will allow us, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of thermoset resins will be studied because it hold the potential of in-situ curing of continuous-fiber composites for strong, lightweight components. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  5. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mark Pickell; Len Volk; Mike Volk; Evren Ozbayoglu; Lei Zhou

    2002-04-30

    This is the third quarterly progress report for Year 3 of the ACTS Project. It includes a review of progress made in: (1) Flow Loop construction and development and (2) research tasks during the period of time between Jan. 1, 2002 and Mar. 31, 2002. This report presents a review of progress on the following specific tasks: (a) Design and development of an Advanced Cuttings Transport Facility (Task 3: Addition of a Cuttings Injection/Separation System), (b) Research project (Task 6): ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)'', (c) Research project (Task 9b): ''Study of Foam Flow Behavior Under EPET Conditions'', (d) Research project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions'', (e) Research on three instrumentation tasks to measure: Cuttings concentration and distribution in a flowing slurry (Task 11), Foam texture while transporting cuttings. (Task 12), and Viscosity of Foam under EPET (Task 9b); (f) Development of a Safety program for the ACTS Flow Loop, progress on a comprehensive safety review of all flow-loop components and operational procedures. (Task 1S); and (g) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members.

  6. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mark Pickell; Len Volk; Mike Volk; Lei Zhou; Zhu Chen; Crystal Redden; Aimee Washington

    2003-01-30

    This is the second quarterly progress report for Year-4 of the ACTS Project. It includes a review of progress made in: (1) Flow Loop construction and development and (2) research tasks during the period of time between October 1, 2002 and December 30, 2002. This report presents a review of progress on the following specific tasks. (a) Design and development of an Advanced Cuttings Transport Facility Task 3: Addition of a Cuttings Injection/Separation System, Task 4: Addition of a Pipe Rotation System. (b) New research project (Task 9b): ''Development of a Foam Generator/Viscometer for Elevated Pressure and Elevated Temperature (EPET) Conditions''. (d) Research project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions''. (e) Research on three instrumentation tasks to measure: Cuttings concentration and distribution in a flowing slurry (Task 11), Foam texture while transporting cuttings. (Task 12), and Viscosity of Foam under EPET (Task 9b). (f) New Research project (Task 13): ''Study of Cuttings Transport with Foam under Elevated Pressure and Temperature Conditions''. (g) Development of a Safety program for the ACTS Flow Loop. Progress on a comprehensive safety review of all flow-loop components and operational procedures. (Task 1S). (h) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members.

  7. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Gerald Kane; Mark Pickell; Len Volk; Mike Volk; Affonso Lourenco; Evren Ozbayoglu; Lei Zhou

    2002-01-30

    This is the second quarterly progress report for Year 3 of the ACTS project. It includes a review of progress made in: (1) Flow Loop development and (2) research tasks during the period of time between Oct 1, 2001 and Dec. 31, 2001. This report presents a review of progress on the following specific tasks: (a) Design and development of an Advanced Cuttings Transport Facility (Task 3: Addition of a Cuttings Injection/Collection System), (b) Research project (Task 6): ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)'', (c) Research project (Task 9): ''Study of Foam Flow Behavior Under EPET Conditions'', (d) Research project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions'', (e) Research on instrumentation tasks to measure: Cuttings concentration and distribution in a flowing slurry (Task 11), and Foam properties while transporting cuttings. (Task 12), (f) Development of a Safety program for the ACTS Flow Loop. Progress on a comprehensive safety review of all flow-loop components and operational procedures. (Task 1S). (g) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members.

  8. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Gerald Kane; Mark Pickell; Len Volk; Mike Volk; Barkim Demirdal; Affonso Lourenco; Evren Ozbayoglu; Paco Vieira; Lei Zhou

    2000-01-30

    This is the second quarterly progress report for Year 2 of the ACTS project. It includes a review of progress made in Flow Loop development and research during the period of time between Oct 1, 2000 and December 31, 2000. This report presents a review of progress on the following specific tasks: (a) Design and development of an Advanced Cuttings Transport Facility (Task 2: Addition of a foam generation and breaker system), (b) Research project (Task 6): ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)'', (c) Research project (Task 7): ''Study of Cuttings Transport with Aerated Muds Under LPAT Conditions (Joint Project with TUDRP)'', (d) Research project (Task 8): ''Study of Flow of Synthetic Drilling Fluids Under Elevated Pressure and Temperature Conditions'', (e) Research project (Task 9): ''Study of Foam Flow Behavior Under EPET Conditions'', (f) Research project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions'', (g) Research on instrumentation tasks to measure: Cuttings concentration and distribution in a flowing slurry (Task 11), and Foam properties while transporting cuttings. (Task 12), (h) Development of a Safety program for the ACTS Flow Loop. Progress on a comprehensive safety review of all flow-loop components and operational procedures. (Task 1S). (i) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members. The tasks Completed During This Quarter are Task 7 and Task 8.

  9. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mark Pickell; Len Volk; Mike Volk; Evren Ozbayoglu; Lei Zhou

    2002-07-30

    This is the fourth quarterly progress report for Year-3 of the ACTS Project. It includes a review of progress made in: (1) Flow Loop construction and development and (2) research tasks during the period of time between April 1, 2002 and June 30, 2002. This report presents a review of progress on the following specific tasks: (a) Design and development of an Advanced Cuttings Transport Facility (Task 3: Addition of a Cuttings Injection/Separation System), (b) Research project (Task 6): ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)''; (c) Research project (Task 9b): ''Study of Foam Flow Behavior Under EPET Conditions''; (d) Research project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions''; (e) Research on three instrumentation tasks to measure: Cuttings concentration and distribution in a flowing slurry (Task 11), Foam texture while transporting cuttings. (Task 12), and Viscosity of Foam under EPET (Task 9b); (f) Development of a Safety program for the ACTS Flow Loop. Progress on a comprehensive safety review of all flow-loop components and operational procedures. (Task 1S); (g) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members.

  10. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Gerald Kane; Mark Pickell; Len Volk; Mike Volk; Barkim Demirdal; Affonso Lourenco; Evren Ozbayoglu; Paco Vieira

    2000-10-30

    This is the first quarterly progress report for Year 2 of the ACTS project. It includes a review of progress made in Flow Loop development and research during the period of time between July 14, 2000 and September 30, 2000. This report presents information on the following specific tasks: (a) Progress in Advanced Cuttings Transport Facility design and development (Task 2), (b) Progress on research project (Task 8): ''Study of Flow of Synthetic Drilling Fluids Under Elevated Pressure and Temperature Conditions'', (c) Progress on research project (Task 6): ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)'', (d) Progress on research project (Task 7): ''Study of Cuttings Transport with Aerated Muds Under LPAT Conditions (Joint Project with TUDRP)'', (e) Progress on research project (Task 9): ''Study of Foam Flow Behavior Under EPET Conditions'', (f) Initiate research on project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions'', (g) Progress on instrumentation tasks to measure: Cuttings concentration and distribution (Tasks 11), and Foam properties (Task 12), (h) Initiate a comprehensive safety review of all flow-loop components and operational procedures. Since the previous Task 1 has been completed, we will now designate this new task as: (Task 1S). (i) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members.

  11. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mark Pickell; Len Volk, Mike Volk; Lei Zhou; Zhu Chen; Crystal Redden; Aimee Washington

    2002-10-30

    This is the first quarterly progress report for Year-4 of the ACTS Project. It includes a review of progress made in: (1) Flow Loop construction and development and (2) research tasks during the period of time between July 1, 2002 and Sept. 30, 2002. This report presents a review of progress on the following specific tasks: (a) Design and development of an Advanced Cuttings Transport Facility Task 3: Addition of a Cuttings Injection/Separation System, Task 4: Addition of a Pipe Rotation System, (b) New Research project (Task 9b): ''Development of a Foam Generator/Viscometer for Elevated Pressure and Elevated Temperature (EPET) Conditions'', (d) Research project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions'', (e) Research on three instrumentation tasks to measure: Cuttings concentration and distribution in a flowing slurry (Task 11), Foam texture while transporting cuttings (Task 12), Viscosity of Foam under EPET (Task 9b). (f) Development of a Safety program for the ACTS Flow Loop. Progress on a comprehensive safety review of all flow-loop components and operational procedures. (Task 1S). (g) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members.

  12. Advanced worker protection system

    SciTech Connect

    Caldwell, B.; Duncan, P.; Myers, J.

    1995-10-01

    The Department of Energy (DOE) is in the process of defining the magnitude and diversity of Decontamination and Decommissioning (D&D) obligations at its numerous sites. The DOE believes that existing technologies are inadequate to solve many challenging problems such as how to decontaminate structures and equipment cost effectively, what to do with materials and wastes generated, and how to adequately protect workers and the environment. Preliminary estimates show a tremendous need for effective use of resources over a relatively long period (over 30 years). Several technologies are being investigated which can potentially reduce D&D costs while providing appropriate protection to DOE workers. The DOE recognizes that traditional methods used by the EPA in hazardous waste site clean up activities are insufficient to provide the needed protection and worker productivity demanded by DOE D&D programs. As a consequence, new clothing and equipment which can adequately protect workers while providing increases in worker productivity are being sought for implementation at DOE sites. This project describes the development of an Advanced Worker Protection System (AWPS) which will include a life-support backpack with liquid air for cooling and as a supply of breathing gas, protective clothing, respirators, communications, and support equipment.

  13. Advanced commercial tokamak study

    SciTech Connect

    Thomson, S.L.; Dabiri, A.E.; Keeton, D.C.; Brown, T.G.; Bussell, G.T.

    1985-12-01

    Advanced commercial tokamak studies were performed by the Fusion Engineering Design Center (FEDC) as a participant in the Tokamak Power Systems Studies (TPSS) project coordinated by the Office of Fusion Energy. The FEDC studies addressed the issues of tokamak reactor cost, size, and complexity. A scoping study model was developed to determine the effect of beta on tokamak economics, and it was found that a competitive cost of electricity could be achieved at a beta of 10 to 15%. The implications of operating at a beta of up to 25% were also addressed. It was found that the economics of fusion, like those of fission, improve as unit size increases. However, small units were found to be competitive as elements of a multiplex plant, provided that unit cost and maintenance time reductions are realized for the small units. The modular tokamak configuration combined several new approaches to develop a less complex and lower cost reactor. The modular design combines the toroidal field coil with the reactor structure, locates the primary vacuum boundary at the reactor cell wall, and uses a vertical assembly and maintenance approach. 12 refs., 19 figs.

  14. Advanced robot locomotion.

    SciTech Connect

    Neely, Jason C.; Sturgis, Beverly Rainwater; Byrne, Raymond Harry; Feddema, John Todd; Spletzer, Barry Louis; Rose, Scott E.; Novick, David Keith; Wilson, David Gerald; Buerger, Stephen P.

    2007-01-01

    This report contains the results of a research effort on advanced robot locomotion. The majority of this work focuses on walking robots. Walking robot applications include delivery of special payloads to unique locations that require human locomotion to exo-skeleton human assistance applications. A walking robot could step over obstacles and move through narrow openings that a wheeled or tracked vehicle could not overcome. It could pick up and manipulate objects in ways that a standard robot gripper could not. Most importantly, a walking robot would be able to rapidly perform these tasks through an intuitive user interface that mimics natural human motion. The largest obstacle arises in emulating stability and balance control naturally present in humans but needed for bipedal locomotion in a robot. A tracked robot is bulky and limited, but a wide wheel base assures passive stability. Human bipedal motion is so common that it is taken for granted, but bipedal motion requires active balance and stability control for which the analysis is non-trivial. This report contains an extensive literature study on the state-of-the-art of legged robotics, and it additionally provides the analysis, simulation, and hardware verification of two variants of a proto-type leg design.

  15. Advanced sulfur control concepts

    SciTech Connect

    Gangwal, S.K.; Turk, B.S.; Gupta, R.P.

    1995-11-01

    Regenerable metal oxide sorbents, such as zinc titanate, are being developed to efficiently remove hydrogen sulfide (H{sub 2}S) from coal gas in advanced power systems. Dilute air regeneration of the sorbents produces a tailgas containing a few percent sulfur dioxide (SO{sub 2}). Catalytic reduction of the SO{sub 2} to elemental sulfur with a coal gas slipstream using the Direct Sulfur Recovery Process (DSRP) is a leading first-generation technology. Currently the DSRP is undergoing field testing at gasifier sites. The objective of this study is to develop second-generation processes that produce elemental sulfur without coal gas or with limited use. Novel approaches that were evaluated to produce elemental sulfur from sulfided sorbents include (1) sulfur dioxide (SO{sub 2}) regeneration, (2) substoichiometric (partial) oxidation, (3) steam regeneration followed by H{sub 2}S oxidation, and (4) steam-air regeneration. Preliminary assessment of these approaches indicated that developing SO{sub 2} regeneration faced the fewest technical and economic problems among the four process options. Elemental sulfur is the only likely product of SO{sub 2} regeneration and the SO{sub 2} required for the regeneration can be obtained by burning a portion of the sulfur produced. Experimental efforts have thus been concentrated on SO{sub 2}-based regeneration processes. Results from laboratory investigations are presented and discussed.

  16. Advanced stitching technology

    NASA Technical Reports Server (NTRS)

    Scardino, Frank L.

    1992-01-01

    In the design of textile composites, the selection of materials and constructional techniques must be matched with product performance, productivity, and cost requirements. Constructional techniques vary. A classification of various textile composite systems is given. In general, the chopped fiber system is not suitable for structural composite applications because of fiber discontinuity, uncontrolled fiber orientation and a lack of fiber integration or entanglement. Linear filament yarn systems are acceptable for structural components which are exposed to simple tension in their applications. To qualify for more general use as structural components, filament yarn systems must be multi-directionally positioned. With the most sophisticated filament winding and laying techniques, however, the Type 2 systems have limited potential for general load-bearing applications because of a lack of filament integration or entanglement, which means vulnerability to splitting and delamination among filament layers. The laminar systems (Type 3) represented by a variety of simple fabrics (woven, knitted, braided and nonwoven) are especially suitable for load-bearing panels in flat form and for beams in a roled up to wound form. The totally integrated, advanced fabric system (Type 4) are thought to be the most reliable for general load-bearing applications because of fiber continuity and because of controlled multiaxial fiber orientation and entanglement. Consequently, the risk of splitting and delamination is minimized and practically omitted. Type 4 systems can be woven, knitted, braided or stitched through with very special equipment. Multiaxial fabric technologies are discussed.

  17. Advanced microwave processing concepts

    SciTech Connect

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.

    1997-04-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymeric materials. The variable frequency microwave furnace, whose initial conception and design was funded by the AIM Materials Program, allows the authors, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of various thermoset resins will be studied because it holds the potential of in-situ curing of continuous-fiber composites for strong, lightweight components or in-situ curing of adhesives, including metal-to-metal. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  18. Advanced Manufacture of Reflectors

    SciTech Connect

    Angel, Roger

    2014-12-17

    The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors less than 1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants.

  19. Advances in rapid prototyping

    NASA Astrophysics Data System (ADS)

    Atwood, C. L.; McCarty, G. D.; Pardo, B. T.; Bryce, E. A.

    Recent advances in stereolithography and selective laser sintering have had a significant impact on the overall quality of parts produced using these rapid prototyping processes. The development and implementation of 3D System's QuickCast(trademark) resin and software for building investment casting patterns have proven to be major steps toward fabricating highly accurate patterns with very good surface finishes. Sandia uses patterns generated from rapid prototyping processes to reduce the cycle time and cost of fabricating prototype parts in support of a Sandia National Laboratories managed program called FASTCAST. As participants in the Beta test program for QuickCast(trademark) resin and software, they experienced a steep learning curve and were able to build accurate parts in a short period of time. It is now possible, using this technology, to produce highly accurate prototype parts as well as acceptable first article and small lot size production parts. They use the selective laser sintering (SLS) process to fabricate prototype wax patterns for investment casting. DTM Corporation recently introduced the use of their polycarbonate material for fabricating investment casting patterns. The polycarbonate material is processed significantly faster, with improved strength, dimensional stability, and without a support structure during the build process. Sandia is currently changing from investment casting wax to polycarbonate for the fabrication of investment casting patterns using the SLS process. This presentation will focus on the successes with these new materials from the standpoints of application, accuracy, surface finish, and post processing. Also presented will be examples of parts manufactured by these processes.

  20. The Advanced Composition Explorer

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Burlaga, L. F.; Cummings, A. C.; Feldman, W. C.; Frain, W. E.; Geiss, J.; Gloeckler, G.; Gold, R. E.; Hovestadt, D.; Krimigis, S. M.

    1989-01-01

    The Advanced Composition Explorer (ACE) was recently selected as one of two new Explorer-class missions to be developed for launch during the mid-1990's. ACE will observe particles of solar, interplanetary, interstellar, and galactic origins, spanning the energy range from that of the solar wind (approx. 1 keV/nucleon) to galactic cosmic ray energies (several hundred MeV/nucleon). Definitive studies will be made of the abundance of nearly all isotopes from H to Zn (1 less than or = Z less than or = 30), with exploratory isotope studies extending to Zr (Z = 40). To accomplish this, the ACE payload includes six high-resolution spectrometers, each designed to provide the optimum charge, mass, or charge-state resolution in its particular energy range, and each having a geometry factor optimized for the expected flux levels, so as to provide a collecting power a factor of 10 to 1000 times greater than previous or planned experiments. The payload also includes several instruments of standard design that will monitor solar wind and magnetic field conditions and energetic H, He, and electron fluxes. The scientific objectives, instrumentation, spacecraft, and mission approach that were defined for ACE during the Phase-A study period are summarized.

  1. Advanced Nail Surgery

    PubMed Central

    Haneke, Eckart

    2011-01-01

    Six techniques not yet widely known or used in the dermatologic surgery of the nails are briefly described. Small-to-medium-sized tumours of the proximal nail fold (PNF) can be excised and the defect repaired with advancement or rotation flaps. A superficial biopsy technique of the matrix for the diagnosis of longitudinal brown streaks in the nail, which allows rapid histological diagnosis of the melanocyte focus to be performed, is described here. Because the excision is very shallow and leaves the morphogenetic connective tissue of the matrix intact, the defect heals without scarring. Laterally positioned nail tumours can be excised in the manner of a wide lateral longitudinal nail biopsy. The defect repair is performed with a bipedicled flap from the lateral aspect of the distal phalanx. Malignant tumours of the nail organ often require its complete ablation. These defects can be covered by a full-thickness skin graft, reversed dermal graft, or cross-finger flap. The surgical correction of a split nail is often difficult. The cicatricial tissue of the matrix and PNF have to be excised and the re-attachment of these wounds prevented. The matrix defect has to be excised and sutured or covered with a free matrix graft taken either from the neighbouring area or from the big toe nail. PMID:22279381

  2. An Advanced Chemistry Laboratory Program.

    ERIC Educational Resources Information Center

    Wise, John H.

    The Advanced Chemistry Laboratory Program is a project designed to devise experiments to coordinate the use of instruments in the laboratory programs of physical chemistry, instrumental analysis, and inorganic chemistry at the advanced undergraduate level. It is intended that such experiments would incorporate an introduction to the instrument…

  3. ADVANCED CHINESE. YALE LINGUISTIC SERIES.

    ERIC Educational Resources Information Center

    DE FRANCIS, JOHN; AND OTHERS

    THE THIRD IN A SERIES OF TEXTS PREPARED AT SETON HALL UNIVERSITY, THIS ADVANCED TEXT PRESUPPOSES MASTERY OF "BEGINNING CHINESE,""BEGINNING CHINESE READER," AND LESSONS 1 TO 6 OF "INTERMEDIATE CHINESE READER." A COMPANION VOLUME TO THIS ONE, "CHARACTER TEXT FOR ADVANCED CHINESE," PROVIDES READING PRACTICE AND…

  4. Technology advances for magnetic bearings

    NASA Astrophysics Data System (ADS)

    Nolan, Steve; Hung, John Y.

    1996-03-01

    This paper describes the state-of-the-art in magnetic bearing technology and applications, and some of advances under development through the joint efforts of Rocketdyne Division of Rockwell International and Auburn University. Advances in the areas of nonlinear control systems design, digital controller implementation, and power electronics are discussed.

  5. Advanced LBB methodology and considerations

    SciTech Connect

    Olson, R.; Rahman, S.; Scott, P.

    1997-04-01

    LBB applications have existed in many industries and more recently have been applied in the nuclear industry under limited circumstances. Research over the past 10 years has evolved the technology so that more advanced consideration of LBB can now be given. Some of the advanced considerations for nuclear plants subjected to seismic loading evaluations are summarized in this paper.

  6. Curriculum Guide for Advanced Band.

    ERIC Educational Resources Information Center

    Bazar, W. Gayre

    The advanced band of the Vermilion Parish School System is a selective organization comprised of school instrumental students who have successfully completed all phases of the beginning and intermediate band programs. It functions largely as a performing group for varied school and community activities. This guide describes the advanced band…

  7. Content Selection in Advanced Courses

    ERIC Educational Resources Information Center

    Parker, Walter C.; Lo, Jane C.

    2016-01-01

    Advanced high-school courses, such as Advanced Placement (AP) courses in the United States, present a content selection conundrum of major proportions. Judicious content selection is necessary if students are to learn subject matter meaningfully, but the sheer breadth of tested material in these courses promotes nearly the opposite:…

  8. Adult Education and Community Advancement.

    ERIC Educational Resources Information Center

    Australian Association of Adult Education.

    The seventeen papers following the Introductory Address by P. H. Sheats are: Literacy in Territory of Papua and New Guinea by A. Tavai; The Role of the Teacher in Community Advancement by W. Hatton; Financial Education and Community Advancement in Papua and New Guinea by E. V. Fleming; Army Education in Papua and New Guinea by R. T. Jones;…

  9. Accelerating development of advanced inverters :

    SciTech Connect

    Neely, Jason C.; Gonzalez, Sigifredo; Ropp, Michael; Schutz, Dustin

    2013-11-01

    The high penetration of utility interconnected photovoltaic (PV) systems is causing heightened concern over the effect that variable renewable generation will have on the electrical power system (EPS). These concerns have initiated the need to amend the utility interconnection standard to allow advanced inverter control functionalities that provide: (1) reactive power control for voltage support, (2) real power control for frequency support and (3) better tolerance of grid disturbances. These capabilities are aimed at minimizing the negative impact distributed PV systems may have on EPS voltage and frequency. Unfortunately, these advanced control functions may interfere with island detection schemes, and further development of advanced inverter functions requires a study of the effect of advanced functions on the efficacy of antiislanding schemes employed in industry. This report summarizes the analytical, simulation and experimental work to study interactions between advanced inverter functions and anti-islanding schemes being employed in distributed PV systems.

  10. Predicting Epileptic Seizures in Advance

    PubMed Central

    Moghim, Negin; Corne, David W.

    2014-01-01

    Epilepsy is the second most common neurological disorder, affecting 0.6–0.8% of the world's population. In this neurological disorder, abnormal activity of the brain causes seizures, the nature of which tend to be sudden. Antiepileptic Drugs (AEDs) are used as long-term therapeutic solutions that control the condition. Of those treated with AEDs, 35% become resistant to medication. The unpredictable nature of seizures poses risks for the individual with epilepsy. It is clearly desirable to find more effective ways of preventing seizures for such patients. The automatic detection of oncoming seizures, before their actual onset, can facilitate timely intervention and hence minimize these risks. In addition, advance prediction of seizures can enrich our understanding of the epileptic brain. In this study, drawing on the body of work behind automatic seizure detection and prediction from digitised Invasive Electroencephalography (EEG) data, a prediction algorithm, ASPPR (Advance Seizure Prediction via Pre-ictal Relabeling), is described. ASPPR facilitates the learning of predictive models targeted at recognizing patterns in EEG activity that are in a specific time window in advance of a seizure. It then exploits advanced machine learning coupled with the design and selection of appropriate features from EEG signals. Results, from evaluating ASPPR independently on 21 different patients, suggest that seizures for many patients can be predicted up to 20 minutes in advance of their onset. Compared to benchmark performance represented by a mean S1-Score (harmonic mean of Sensitivity and Specificity) of 90.6% for predicting seizure onset between 0 and 5 minutes in advance, ASPPR achieves mean S1-Scores of: 96.30% for prediction between 1 and 6 minutes in advance, 96.13% for prediction between 8 and 13 minutes in advance, 94.5% for prediction between 14 and 19 minutes in advance, and 94.2% for prediction between 20 and 25 minutes in advance. PMID:24911316

  11. Advanced Geothermal Turbodrill

    SciTech Connect

    W. C. Maurer

    2000-05-01

    Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.

  12. State Technologies Advancement Collaborative

    SciTech Connect

    David S. Terry

    2012-01-30

    The U. S. Department of Energy (DOE), National Association of State Energy Officials (NASEO), and Association of State Energy Research and Technology Transfer Institutions (ASERTTI) signed an intergovernmental agreement on November 14, 2002, that allowed states and territories and the Federal Government to better collaborate on energy research, development, demonstration and deployment (RDD&D) projects. The agreement established the State Technologies Advancement Collaborative (STAC) which allowed the states and DOE to move RDD&D forward using an innovative competitive project selection and funding process. A cooperative agreement between DOE and NASEO served as the contracting instrument for this innovative federal-state partnership obligating funds from DOE's Office of Energy Efficiency and Renewable Energy and Office of Fossil Energy to plan, fund, and implement RDD&D projects that were consistent with the common priorities of the states and DOE. DOE's Golden Field Office provided Federal oversight and guidance for the STAC cooperative agreement. The STAC program was built on the foundation of prior Federal-State efforts to collaborate on and engage in joint planning for RDD&D. Although STAC builds on existing, successful programs, it is important to note that it was not intended to replace other successful joint DOE/State initiatives such as the State Energy Program or EERE Special Projects. Overall the STAC process was used to fund, through three competitive solicitations, 35 successful multi-state research, development, deployment, and demonstration projects with an overall average non-federal cost share of 43%. Twenty-two states were awarded at least one prime contract, and organizations in all 50 states and some territories were involved as subcontractors in at least one STAC project. Projects were funded in seven program areas: (1) Building Technologies, (2) Industrial Technologies, (3) Transportation Technologies, (4) Distributed Energy Resources, (5

  13. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect

    Sy Ali

    2002-03-01

    The market for power generation equipment is undergoing a tremendous transformation. The traditional electric utility industry is restructuring, promising new opportunities and challenges for all facilities to meet their demands for electric and thermal energy. Now more than ever, facilities have a host of options to choose from, including new distributed generation (DG) technologies that are entering the market as well as existing DG options that are improving in cost and performance. The market is beginning to recognize that some of these users have needs beyond traditional grid-based power. Together, these changes are motivating commercial and industrial facilities to re-evaluate their current mix of energy services. One of the emerging generating options is a new breed of advanced fuel cells. While there are a variety of fuel cell technologies being developed, the solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are especially promising, with their electric efficiency expected around 50-60 percent and their ability to generate either hot water or high quality steam. In addition, they both have the attractive characteristics of all fuel cells--relatively small siting footprint, rapid response to changing loads, very low emissions, quiet operation, and an inherently modular design lending itself to capacity expansion at predictable unit cost with reasonably short lead times. The objectives of this project are to:(1) Estimate the market potential for high efficiency fuel cell hybrids in the U.S.;(2) Segment market size by commercial, industrial, and other key markets;(3) Identify and evaluate potential early adopters; and(4) Develop results that will help prioritize and target future R&D investments. The study focuses on high efficiency MCFC- and SOFC-based hybrids and competing systems such as gas turbines, reciprocating engines, fuel cells and traditional grid service. Specific regions in the country have been identified where these

  14. Advances in rapid prototyping

    SciTech Connect

    Atwood, C.L.; McCarty, G.D.; Pardo, B.T.; Bryce, E.A.

    1993-12-31

    Recent advances in stereolithography and selective laser sintering have had a significant impact on the overall quality of parts produced using these rapid prototyping processes. The development and implementation of 3D System`s QuickCast{trademark} resin and software for building investment casting patterns have proven to be major steps toward fabricating highly accurate patterns with very good surface finishes. Sandia uses patterns generated from rapid prototyping processes to reduce the cycle time and cost of fabricating prototype parts in support of a Sandia National Laboratories managed program called FASTCAST. As participants in the Beta test program for QuickCast{trademark} resin and software, they experienced a steep learning curve and were able to build accurate parts in a short period of time. It is now possible, using this technology, to produce highly accurate prototype parts as well as acceptable firs article and small lots size production parts. They use the Selective Laser Sintering (SLS) process to fabricate prototype wax patterns for investment casting. DTM Corporation recently introduced the use of their polycarbonate material for fabricating investment casting patterns. The polycarbonate material is processed significantly faster, with improved strength, dimensional stability, and without a support structure during the build process. Sandia is currently changing from investment casting wax to polycarbonate for the fabrication of investment casting patterns using the SLS process. This presentation will focus on the successes with these new materials from the standpoints of application, accuracy, surface finish, and post processing. Also presented will be examples of parts manufactured by these processes.

  15. Advanced solar panel designs

    NASA Technical Reports Server (NTRS)

    Ralph, E. L.; Linder, E.

    1995-01-01

    This paper describes solar cell panel designs that utilize new hgih efficiency solar cells along with lightweight rigid panel technology. The resulting designs push the W/kg and W/sq m parameters to new high levels. These new designs are well suited to meet the demand for higher performance small satellites. This paper reports on progress made on two SBIR Phase 1 contracts. One panel design involved the use of large area (5.5 cm x 6.5 cm) GaAs/Ge solar cells of 19% efficiency combined with a lightweight rigid graphite fiber epoxy isogrid substrate configuration. A coupon (38 cm x 38 cm) was fabricated and tested which demonstrated an array specific power level of 60 W/kg with a potential of reaching 80 W/kg. The second panel design involved the use of newly developed high efficiency (22%) dual junction GaInP2/GaAs/Ge solar cells combined with an advanced lightweight rigid substrate using aluminum honeycomb core with high strength graphite fiber mesh facesheets. A coupon (38 cm x 38 cm) was fabricated and tested which demonstrated an array specific power of 105 W/kg and 230 W/sq m. This paper will address the construction details of the panels and an a analysis of the component weights. A strawman array design suitable for a typical small-sat mission is described for each of the two panel design technologies being studied. Benefits in respect to weight reduction, area reduction, and system cost reduction are analyzed and compared to conventional arrays.

  16. Advanced space transportation technologies

    NASA Technical Reports Server (NTRS)

    Raj, Rishi S.

    1989-01-01

    A wide range of propulsion technologies for space transportation are discussed in the literature. It is clear from the literature review that a single propulsion technology cannot satisfy the many mission needs in space. Many of the technologies tested, proposed, or in experimental stages relate to: chemical and nuclear fuel; radiative and corpuscular external energy source; tethers; cannons; and electromagnetic acceleration. The scope and limitation of these technologies is well tabulated in the literature. Prior experience has shown that an extensive amount of fuel needs to be carried along for the return mission. This requirement puts additional constraints on the lift off rocket technology and limits the payload capacity. Consider the possibility of refueling in space. If the return fuel supply is guaranteed, it will not only be possible to lift off more payload but also to provide security and safety of the mission. Exploration to deep space where solar sails and thermal effects fade would also be possible. Refueling would also facilitate travel on the planet of exploration. This aspect of space transportation prompts the present investigation. The particle emissions from the Sun's corona will be collected under three different conditions: in space closer to the Sun, in the Van Allen Belts; and on the Moon. It is proposed to convert the particle state into gaseous, liquid, or solid state and store it for refueling space vehicles. These facilities may be called space pump stations and the fuel collected as space fuel. Preliminary estimates of fuel collection at all three sites will be made. Future work will continue towards advancing the art of collection rate and design schemes for pumping stations.

  17. Advanced Beamline Design for Fermilab's Advanced Superconducting Test Accelerator

    SciTech Connect

    Prokop, Christopher

    2014-01-01

    The Advanced Superconducting Test Accelerator (ASTA) at Fermilab is a new electron accelerator currently in the commissioning stage. In addition to testing superconducting accelerating cavities for future accelerators, it is foreseen to support a variety of Advanced Accelerator R&D (AARD) experiments. Producing the required electron bunches with the expected flexibility is challenging. The goal of this dissertation is to explore via numerical simulations new accelerator beamlines that can enable the advanced manipulation of electron bunches. The work especially includes the design of a low-energy bunch compressor and a study of transverse-to-longitudinal phase space exchangers.

  18. De-noising of microwave satellite soil moisture time series

    NASA Astrophysics Data System (ADS)

    Su, Chun-Hsu; Ryu, Dongryeol; Western, Andrew; Wagner, Wolfgang

    2013-04-01

    The use of satellite soil moisture data for scientific and operational hydrologic, meteorological and climatological applications is advancing rapidly due to increasing capability and temporal coverage of current and future missions. However evaluation studies of various existing remotely-sensed soil moisture products from these space-borne microwave sensors, which include AMSR-E (Advanced Microwave Scanning Radiometer) on Aqua satellite, SMOS (Soil Moisture and Ocean Salinity) mission and ASCAT (Advanced Scatterometer) on MetOp-A satellite, found them to be significantly different from in-situ observations, showing large biases and different dynamic ranges and temporal patterns (e.g., Albergel et al., 2012; Su et al., 2012). Moreover they can have different error profiles in terms of bias, variance and correlations and their performance varies with land surface characteristics (Su et al., 2012). These severely impede the effort to use soil moisture retrievals from multiple sensors concurrently in land surface modelling, cross-validation and multi-satellite blending. The issue of systematic errors present in data sets should be addressed prior to renormalisation of the data for blending and data assimilation. Triple collocation estimation technique has successfully yielded realistic error estimates (Scipal et al., 2008), but this method relies on availability of large number of coincident data from multiple independent satellite data sets. In this work, we propose, i) a conceptual framework for distinguishing systematic periodic errors in the form of false spectral resonances from non-systematic errors (stochastic noise) in remotely-sensed soil moisture data in the frequency domain; and ii) the use of digital filters to reduce the variance- and correlation-related errors in satellite data. In this work, we focus on the VUA-NASA (Vrije Universiteit Amsterdam with NASA) AMSR-E, CATDS (Centre National d'Etudes Spatiales, CNES) SMOS and TUWIEN (Vienna University of

  19. Advances in lung ultrasound.

    PubMed

    Francisco, Miguel José; Rahal, Antonio; Vieira, Fabio Augusto Cardillo; Silva, Paulo Savoia Dias da; Funari, Marcelo Buarque de Gusmão

    2016-01-01

    Ultrasound examination of the chest has advanced in recent decades. This imaging modality is currently used to diagnose several pathological conditions and provides qualitative and quantitative information. Acoustic barriers represented by the aerated lungs and the bony framework of the chest generate well-described sonographic artifacts that can be used as diagnostic aids. The normal pleural line and A, B, C, E and Z lines (also known as false B lines) are artifacts with specific characteristics. Lung consolidation and pneumothorax sonographic patterns are also well established. Some scanning protocols have been used in patient management. The Blue, FALLS and C.A.U.S.E. protocols are examples of algorithms using artifact combinations to achieve accurate diagnoses. Combined chest ultrasonography and radiography are often sufficient to diagnose and manage lung and chest wall conditions. Chest ultrasonography is a highly valuable diagnostic tool for radiologists, emergency and intensive care physicians. RESUMO O exame ultrassonográfico do tórax avançou nas últimas décadas, sendo utilizado para o diagnóstico de inúmeras condições patológicas, e fornecendo informações qualitativas e quantitativas. Os pulmões aerados e o arcabouço ósseo do tórax representam barreira sonora para o estudo ultrassonográfico, gerando artefatos que, bem conhecidos, são utilizados como ferramentas diagnósticas. Eco pleural normal, linhas A, linhas B, linhas C, linhas E e Z (conhecidas como falsas linhas B) são artefatos com características peculiares. Os padrões de consolidação e de pneumotórax também são bem estabelecidos. Alguns protocolos têm sido utilizados no manuseio dos pacientes: Blue Protocol, Protocolo FALLS e Protocolo C.A.U.S.E são exemplos de três propostas que, por meio da associação entre os artefatos, permitem sugerir diagnósticos precisos. A ultrassonografia de tórax, aliada à radiografia de tórax, muitas vezes é suficiente para o diagn

  20. Advanced Wavefront Control Techniques

    SciTech Connect

    Olivier, S S; Brase, J M; Avicola, K; Thompson, C A; Kartz, M W; Winters, S; Hartley, R; Wihelmsen, J; Dowla, F V; Carrano, C J; Bauman, B J; Pennington, D M; Lande, D; Sawvel, R M; Silva, D A; Cooke, J B; Brown, C G

    2001-02-21

    this project, work was performed in four areas (1) advanced modeling tools for deformable mirrors (2) low-order wavefront correctors with Alvarez lenses, (3) a direct phase measuring heterdyne wavefront sensor, and (4) high-spatial-frequency wavefront control using spatial light modulators.

  1. Advanced Aerogel Technology

    NASA Technical Reports Server (NTRS)

    Jones, Steven

    2013-01-01

    The JPL Aerogel Laboratory has made aerogels for NASA flight missions, e.g., Stardust, 2003 Mars Exploration Rovers and the 2011 Mars Science Laboratory, as well as NASA research projects for the past 14 years. During that time it has produced aerogels of a range of shapes, sizes, densities and compositions. Research is ongoing in the development of aerogels for future sample capture and return missions and for thermal insulation for both spacecraft and scientific instruments. For the past several years, the JPL Aerogel Laboratory has been developing, producing and testing a new composite material for use as the high temperature thermal insulation in the Advanced Sterling Radioisotope Generator (ASRG) being developed by Lockheed Martin and NASA. The composite is made up of a glass fiber felt, silica aerogel, Titania powder, and silica powder. The oxide powders are included to reduce irradiative heat transport at elevated temperatures. These materials have thermal conductivity values that are the same as the best commercially produced high temperature insulation materials, and yet are 40% lighter. By greatly reducing the amount of oxide powder in the composite, the density, and therefore for the value of the thermal conductivity, would be reduced. The JPL Aerogel Laboratory has experimented with using glass fiber felt, expanded glass fiber felt and loose fibers to add structural integrity to silica aerogels. However, this work has been directed toward high temperature applications. By conducting a brief investigation of the optimal combination of fiber reinforcement and aerogel density, a durable, extremely efficient thermal insulation material for ambient temperature applications would be produced. If a transparent thermal insulation is desired, then aerogel is an excellent candidate material. At typical ambient temperatures, silica aerogel prevents the transport of heat via convection and conduction due to its highly porous nature. To prevent irradiative thermal

  2. The PRESSCA operational early warning system for landslide forecasting: the 11-12 November 2013 rainfall event in Central Italy.

    NASA Astrophysics Data System (ADS)

    Ciabatta, Luca; Brocca, Luca; Ponziani, Francesco; Berni, Nicola; Stelluti, Marco; Moramarco, Tommaso

    2014-05-01

    The Umbria Region, located in Central Italy, is one of the most landslide risk prone area in Italy, almost yearly affected by landslides events at different spatial scales. For early warning procedures aimed at the assessment of the hydrogeological risk, the rainfall thresholds represent the main tool for the Italian Civil Protection System. As shown in previous studies, soil moisture plays a key-role in landslides triggering. In fact, acting on the pore water pressure, soil moisture influences the rainfall amount needed for activating a landslide. In this work, an operational physically-based early warning system, named PRESSCA, that takes into account soil moisture for the definition of rainfall thresholds is presented. Specifically, the soil moisture conditions are evaluated in PRESSCA by using a distributed soil water balance model that is recently coupled with near real-time satellite soil moisture product obtained from ASCAT (Advanced SCATterometer) and from in-situ monitoring data. The integration of three different sources of soil moisture information allows to estimate the most accurate possible soil moisture condition. Then, both observed and forecasted rainfall data are compared with the soil moisture-based thresholds in order to obtain risk indicators over a grid of ~ 5 km. These indicators are then used for the daily hydrogeological risk evaluation and management by the Civil Protection regional service, through the sharing/delivering of near real-time landslide risk scenarios (also through an open source web platform: www.cfumbria.it). On the 11th-12th November, 2013, Umbria Region was hit by an exceptional rainfall event with up to 430mm/72hours that resulted in significant economic damages, but fortunately no casualties among the population. In this study, the results during the rainfall event of PRESSCA system are described, by underlining the model capability to reproduce, two days in advance, landslide risk scenarios in good spatial and temporal

  3. Advanced composite materials and processes

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.

    1991-01-01

    Composites are generally defined as two or more individual materials, which, when combined into a single material system, results in improved physical and/or mechanical properties. The freedom of choice of the starting components for composites allows the generation of materials that can be specifically tailored to meet a variety of applications. Advanced composites are described as a combination of high strength fibers and high performance polymer matrix materials. These advanced materials are required to permit future aircraft and spacecraft to perform in extended environments. Advanced composite precursor materials, processes for conversion of these materials to structures, and selected applications for composites are reviewed.

  4. Recent Advances in Endometrial Cancer

    PubMed Central

    Tran, Arthur-Quan; Gehrig, Paola

    2017-01-01

    Endometrial cancer is the most common gynecologic malignancy in the United States, with yearly rates continuing to increase. Most women present with early stage disease; however, advanced disease carries a grave prognosis. As a result, novel therapies are currently under investigation for the treatment of endometrial cancer. These advances include a better understanding of the genetic basis surrounding the development of endometrial cancer, novel surgical therapies, and new molecular targets for the treatment of this disease. This review explores the literature regarding these advancements in endometrial cancer. PMID:28184290

  5. Performance metrics for advanced access.

    PubMed

    Gupta, Diwakar; Potthoff, Sandra; Blowers, Donald; Corlett, John

    2006-01-01

    Advanced access is an outpatient scheduling technique that aims to provide sameday appointment access. It is designed to reduce the time patients must wait for a scheduled appointment and to improve continuity of care by matching daily appointment supply and demand. Factors that make it difficult to sustain initial success in achieving supply-demand balance include different practice styles of doctors, differences in panel compositions and patient preferences, and time-varying demand patterns. This article proposes several performance measures that can help clinic directors monitor and evaluate their advanced access implementation. We also discuss strategies for sustaining advanced access in the long run.

  6. Advanced expander test bed engine

    NASA Technical Reports Server (NTRS)

    Mitchell, J. P.

    1992-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high pressure expander cycle concept, study system interactions, and conduct studies of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.

  7. Training for advanced endoscopic procedures.

    PubMed

    Feurer, Matthew E; Draganov, Peter V

    2016-06-01

    Advanced endoscopy has evolved from diagnostic ERCP to an ever-increasing array of therapeutic procedures including EUS with FNA, ablative therapies, deep enteroscopy, luminal stenting, endoscopic suturing and endoscopic mucosal resection among others. As these procedures have become increasingly more complex, the risk of potential complications has also risen. Training in advanced endoscopy involves more than obtaining a minimum number of therapeutic procedures. The means of assessing a trainee's competence level and ability to practice independently continues to be a matter of debate. The use of quality indicators to measure performance levels may be beneficial as more advanced techniques and procedures become available.

  8. SERI advanced wind turbine blades

    SciTech Connect

    Tangler, J.; Smith, B.; Jager, D.

    1992-02-01

    The primary goal of the Solar Energy Research Institute`s (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10% to 30% more energy than conventional blades. 6 refs.

  9. SERI advanced wind turbine blades

    SciTech Connect

    Tangler, J.; Smith, B.; Jager, D.

    1992-02-01

    The primary goal of the Solar Energy Research Institute's (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10% to 30% more energy than conventional blades. 6 refs.

  10. Advanced extravehicular mobility unit study

    NASA Technical Reports Server (NTRS)

    Elkins, W.

    1982-01-01

    Components of the advanced extravehicular mobility unit (suit) are described. Design considerations for radiation protection, extravehicular operational pressure, mobility effects, tool/glove/effector, anthropometric definition, lighting, and equipment turnaround are addressed.

  11. Advancement Planning: An Objectives View.

    ERIC Educational Resources Information Center

    Druck, Kalman B.

    1986-01-01

    Planning must revolve around objectives related to students, faculty, money, and political support. When it is understood that all of the institution's advancement activity should help produce these four things, planning is easy. (MLW)

  12. Advanced propulsion - Cleaner and quieter.

    NASA Technical Reports Server (NTRS)

    Beheim, M. A.; Antl, R. J.; Povolny, J. H.

    1972-01-01

    Studies were conducted to determine the factors which are significant in advancing propulsion technology. The studies surveyed a wide distribution of variables including aircraft configuration, payload, range, and speed. System studies placed major emphasis on reducing noise and exhaust emissions while attaining good economies and performance. An engine for an advanced transport will probably superficially resemble the presently emerging generation of modern high-bypass and high-temperature turbofan engines, but would incorporate the advances in component and system technology identified by the propulsion system studies. These advances could be used to improve aircraft economics significantly with no increase in noise, or to significantly reduce noise and pollution with few or no economic penalties.

  13. Ohio Advanced Energy Manufacturing Center

    SciTech Connect

    Kimberly Gibson; Mark Norfolk

    2012-07-30

    The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry

  14. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect

    Stefan Miska; Troy Reed; Ergun Kuru

    2004-09-30

    The Advanced Cuttings Transport Study (ACTS) was a 5-year JIP project undertaken at the University of Tulsa (TU). The project was sponsored by the U.S. Department of Energy (DOE) and JIP member companies. The objectives of the project were: (1) to develop and construct a new research facility that would allow three-phase (gas, liquid and cuttings) flow experiments under ambient and EPET (elevated pressure and temperature) conditions, and at different angle of inclinations and drill pipe rotation speeds; (2) to conduct experiments and develop a data base for the industry and academia; and (3) to develop mechanistic models for optimization of drilling hydraulics and cuttings transport. This project consisted of research studies, flow loop construction and instrumentation development. Following a one-year period for basic flow loop construction, a proposal was submitted by TU to the DOE for a five-year project that was organized in such a manner as to provide a logical progression of research experiments as well as additions to the basic flow loop. The flow loop additions and improvements included: (1) elevated temperature capability; (2) two-phase (gas and liquid, foam etc.) capability; (3) cuttings injection and removal system; (4) drill pipe rotation system; and (5) drilling section elevation system. In parallel with the flow loop construction, hydraulics and cuttings transport studies were preformed using drilling foams and aerated muds. In addition, hydraulics and rheology of synthetic drilling fluids were investigated. The studies were performed under ambient and EPET conditions. The effects of temperature and pressure on the hydraulics and cuttings transport were investigated. Mechanistic models were developed to predict frictional pressure loss and cuttings transport in horizontal and near-horizontal configurations. Model predictions were compared with the measured data. Predominantly, model predictions show satisfactory agreements with the measured data. As a

  15. Advanced Integrated Traction System

    SciTech Connect

    Greg Smith; Charles Gough

    2011-08-31

    The United States Department of Energy elaborates the compelling need for a commercialized competitively priced electric traction drive system to proliferate the acceptance of HEVs, PHEVs, and FCVs in the market. The desired end result is a technically and commercially verified integrated ETS (Electric Traction System) product design that can be manufactured and distributed through a broad network of competitive suppliers to all auto manufacturers. The objectives of this FCVT program are to develop advanced technologies for an integrated ETS capable of 55kW peak power for 18 seconds and 30kW of continuous power. Additionally, to accommodate a variety of automotive platforms the ETS design should be scalable to 120kW peak power for 18 seconds and 65kW of continuous power. The ETS (exclusive of the DC/DC Converter) is to cost no more than $660 (55kW at $12/kW) to produce in quantities of 100,000 units per year, should have a total weight less than 46kg, and have a volume less than 16 liters. The cost target for the optional Bi-Directional DC/DC Converter is $375. The goal is to achieve these targets with the use of engine coolant at a nominal temperature of 105C. The system efficiency should exceed 90% at 20% of rated torque over 10% to 100% of maximum speed. The nominal operating system voltage is to be 325V, with consideration for higher voltages. This project investigated a wide range of technologies, including ETS topologies, components, and interconnects. Each technology and its validity for automotive use were verified and then these technologies were integrated into a high temperature ETS design that would support a wide variety of applications (fuel cell, hybrids, electrics, and plug-ins). This ETS met all the DOE 2010 objectives of cost, weight, volume and efficiency, and the specific power and power density 2015 objectives. Additionally a bi-directional converter was developed that provides charging and electric power take-off which is the first step

  16. Advanced Microturbine Systems

    SciTech Connect

    Rosfjord, T; Tredway, W; Chen, A; Mulugeta, J; Bhatia, T

    2008-12-31

    In July 2000, the United Technologies Research Center (UTRC) was one of five recipients of a US Department of Energy contract under the Advanced Microturbine System (AMS) program managed by the Office of Distributed Energy (DE). The AMS program resulted from several government-industry workshops that recognized that microturbine systems could play an important role in improving customer choice and value for electrical power. That is, the group believed that electrical power could be delivered to customers more efficiently and reliably than the grid if an effective distributed energy strategy was followed. Further, the production of this distributed power would be accomplished with less undesirable pollutants of nitric oxides (NOx) unburned hydrocarbons (UHC), and carbon monoxide (CO). In 2000, the electrical grid delivered energy to US customers at a national average of approximately 32% efficiency. This value reflects a wide range of powerplants, but is dominated by older, coal burning stations that provide approximately 50% of US electrical power. The grid efficiency is also affected by transmission and distribution (T&D) line losses that can be significant during peak power usage. In some locations this loss is estimated to be 15%. Load pockets can also be so constrained that sufficient power cannot be transmitted without requiring the installation of new wires. New T&D can be very expensive and challenging as it is often required in populated regions that do not want above ground wires. While historically grid reliability has satisfied most customers, increasing electronic transactions and the computer-controlled processes of the 'digital economy' demand higher reliability. For them, power outages can be very costly because of transaction, work-in-progress, or perishable commodity losses. Powerplants that produce the grid electrical power emit significant levels of undesirable NOx, UHC, and CO pollutants. The level of emission is quoted as either a technology

  17. Advanced Distillation Final Report

    SciTech Connect

    Maddalena Fanelli; Ravi Arora; Annalee Tonkovich; Jennifer Marco; Ed Rode

    2010-03-24

    The Advanced Distillation project was concluded on December 31, 2009. This U.S. Department of Energy (DOE) funded project was completed successfully and within budget during a timeline approved by DOE project managers, which included a one year extension to the initial ending date. The subject technology, Microchannel Process Technology (MPT) distillation, was expected to provide both capital and operating cost savings compared to conventional distillation technology. With efforts from Velocys and its project partners, MPT distillation was successfully demonstrated at a laboratory scale and its energy savings potential was calculated. While many objectives established at the beginning of the project were met, the project was only partially successful. At the conclusion, it appears that MPT distillation is not a good fit for the targeted separation of ethane and ethylene in large-scale ethylene production facilities, as greater advantages were seen for smaller scale distillations. Early in the project, work involved flowsheet analyses to discern the economic viability of ethane-ethylene MPT distillation and develop strategies for maximizing its impact on the economics of the process. This study confirmed that through modification to standard operating processes, MPT can enable net energy savings in excess of 20%. This advantage was used by ABB Lumus to determine the potential impact of MPT distillation on the ethane-ethylene market. The study indicated that a substantial market exists if the energy saving could be realized and if installed capital cost of MPT distillation was on par or less than conventional technology. Unfortunately, it was determined that the large number of MPT distillation units needed to perform ethane-ethylene separation for world-scale ethylene facilities, makes the targeted separation a poor fit for the technology in this application at the current state of manufacturing costs. Over the course of the project, distillation experiments were

  18. ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Ye Zhuang; Stanley J. Miller; Michelle R. Olderbak; Rich Gebert

    2001-12-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the U.S. Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and re-collection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m{sup 3}/min (200-acfm) working AHPC model. Results from both 8-hr parametric tests and 100-hr proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency. Since all of the developmental goals of Phase I were met, the approach was scaled up in Phase II to a size of 255 m{sup 3}/min (9000 acfm) (equivalent in size to 2.5 MW) and was installed on a slipstream at the Big Stone Power Plant. For Phase II, the AHPC at Big Stone Power Plant was operated continuously from late July 1999 until mid-December 1999. The Phase II results were highly successful in that ultrahigh particle collection efficiency was achieved, pressure drop was well controlled, and system operability was excellent. For Phase III, the AHPC was modified into a more compact configuration, and components were installed that were closer to what would be used in a full-scale commercial design. The modified AHPC was operated from April to July 2000. While operational results were acceptable during this time, inspection of bags in the summer of 2000 revealed some membrane damage to the fabric that appeared to be

  19. ADVANCED WORKER PROTECTION SYSTEM

    SciTech Connect

    Judson Hedgehock

    2001-03-16

    From 1993 to 2000, OSS worked under a cost share contract from the Department of Energy (DOE) to develop an Advanced Worker Protection System (AWPS). The AWPS is a protective ensemble that provides the user with both breathing air and cooling for a NIOSH-rated duration of two hours. The ensemble consists of a liquid air based backpack, a Liquid Cooling Garment (LCG), and an outer protective garment. The AWPS project was divided into two phases. During Phase 1, OSS developed and tested a full-scale prototype AWPS. The testing showed that workers using the AWPS could work twice as long as workers using a standard SCBA. The testing also provided performance data on the AWPS in different environments that was used during Phase 2 to optimize the design. During Phase 1, OSS also performed a life-cycle cost analysis on a representative clean up effort. The analysis indicated that the AWPS could save the DOE millions of dollars on D and D activities and improve the health and safety of their workers. During Phase 2, OSS worked to optimize the AWPS design to increase system reliability, to improve system performance and comfort, and to reduce the backpack weight and manufacturing costs. To support this design effort, OSS developed and tested several different generations of prototype units. Two separate successful evaluations of the ensemble were performed by the International Union of Operation Engineers (IUOE). The results of these evaluations were used to drive the design. During Phase 2, OSS also pursued certifying the AWPS with the applicable government agencies. The initial intent during Phase 2 was to finalize the design and then to certify the system. OSS and Scott Health and Safety Products teamed to optimize the AWPS design and then certify the system with the National Institute of Occupational Health and Safety (NIOSH). Unfortunately, technical and programmatic difficulties prevented us from obtaining NIOSH certification. Despite the inability of NIOSH to certify

  20. Advanced program weight control system

    NASA Technical Reports Server (NTRS)

    Derwa, G. T.

    1978-01-01

    The design and implementation of the Advanced Program Weight Control System (APWCS) are reported. The APWCS system allows the coordination of vehicle weight reduction programs well in advance so as to meet mandated requirements of fuel economy imposed by government and to achieve corporate targets of vehicle weights. The system is being used by multiple engineering offices to track weight reduction from inception to eventual production. The projected annualized savings due to the APWCS system is over $2.5 million.