The ARL 2030 Scenarios: A User's Guide for Research Libraries
ERIC Educational Resources Information Center
Association of Research Libraries, 2010
2010-01-01
This user's guide was developed to advance local planning at ARL member libraries. It is written for library leaders writ large and for anyone leading or contributing to research library planning processes. Users do not need advanced facilitation skills to benefit from this guide, but facilitators charged with supporting scenario planning will…
Advanced protein crystal growth programmatic sensitivity study
NASA Technical Reports Server (NTRS)
1992-01-01
The purpose of this study is to define the costs of various APCG (Advanced Protein Crystal Growth) program options and to determine the parameters which, if changed, impact the costs and goals of the programs and to what extent. This was accomplished by developing and evaluating several alternate programmatic scenarios for the microgravity Advanced Protein Crystal Growth program transitioning from the present shuttle activity to the man tended Space Station to the permanently manned Space Station. These scenarios include selected variations in such sensitivity parameters as development and operational costs, schedules, technology issues, and crystal growth methods. This final report provides information that will aid in planning the Advanced Protein Crystal Growth Program.
Design and Effects of Scenario Educational Software.
ERIC Educational Resources Information Center
Keegan, Mark
1993-01-01
Describes the development of educational computer software called scenario software that was designed to incorporate advances in cognitive, affective, and physiological research. Instructional methods are outlined; the need to change from didactic methods to discovery learning is explained; and scenario software design features are discussed. (24…
Applications of advanced transport aircraft in developing countries
NASA Technical Reports Server (NTRS)
Gobetz, F. W.; Assarabowski, R. J.; Leshane, A. A.
1978-01-01
Four representative market scenarios were studied to evaluate the relative performance of air-and surface-based transportation systems in meeting the needs of two developing contries, Brazil and Indonesia, which were selected for detailed case studies. The market scenarios were: remote mining, low-density transport, tropical forestry, and large cargo aircraft serving processing centers in resource-rich, remote areas. The long-term potential of various aircraft types, together with fleet requirements and necessary technology advances, is determined for each application.
Elliott, Lydia; DeCristofaro, Claire; Carpenter, Alesia
2012-09-01
This article describes the development and implementation of integrated use of personal handheld devices (personal digital assistants, PDAs) and high-fidelity simulation in an advanced health assessment course in a graduate family nurse practitioner (NP) program. A teaching tool was developed that can be utilized as a template for clinical case scenarios blending these separate technologies. Review of the evidence-based literature, including peer-reviewed articles and reviews. Blending the technologies of high-fidelity simulation and handheld devices (PDAs) provided a positive learning experience for graduate NP students in a teaching laboratory setting. Combining both technologies in clinical case scenarios offered a more real-world learning experience, with a focus on point-of-care service and integration of interview and physical assessment skills with existing standards of care and external clinical resources. Faculty modeling and advance training with PDA technology was crucial to success. Faculty developed a general template tool and systems-based clinical scenarios integrating PDA and high-fidelity simulation. Faculty observations, the general template tool, and one scenario example are included in this article. ©2012 The Author(s) Journal compilation ©2012 American Academy of Nurse Practitioners.
Hypothetical Scenario Generator for Fault-Tolerant Diagnosis
NASA Technical Reports Server (NTRS)
James, Mark
2007-01-01
The Hypothetical Scenario Generator for Fault-tolerant Diagnostics (HSG) is an algorithm being developed in conjunction with other components of artificial- intelligence systems for automated diagnosis and prognosis of faults in spacecraft, aircraft, and other complex engineering systems. By incorporating prognostic capabilities along with advanced diagnostic capabilities, these developments hold promise to increase the safety and affordability of the affected engineering systems by making it possible to obtain timely and accurate information on the statuses of the systems and predicting impending failures well in advance. The HSG is a specific instance of a hypothetical- scenario generator that implements an innovative approach for performing diagnostic reasoning when data are missing. The special purpose served by the HSG is to (1) look for all possible ways in which the present state of the engineering system can be mapped with respect to a given model and (2) generate a prioritized set of future possible states and the scenarios of which they are parts.
Smart-DS: Synthetic Models for Advanced, Realistic Testing: Distribution Systems and Scenarios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnan, Venkat K; Palmintier, Bryan S; Hodge, Brian S
The National Renewable Energy Laboratory (NREL) in collaboration with Massachusetts Institute of Technology (MIT), Universidad Pontificia Comillas (Comillas-IIT, Spain) and GE Grid Solutions, is working on an ARPA-E GRID DATA project, titled Smart-DS, to create: 1) High-quality, realistic, synthetic distribution network models, and 2) Advanced tools for automated scenario generation based on high-resolution weather data and generation growth projections. Through these advancements, the Smart-DS project is envisioned to accelerate the development, testing, and adoption of advanced algorithms, approaches, and technologies for sustainable and resilient electric power systems, especially in the realm of U.S. distribution systems. This talk will present themore » goals and overall approach of the Smart-DS project, including the process of creating the synthetic distribution datasets using reference network model (RNM) and the comprehensive validation process to ensure network realism, feasibility, and applicability to advanced use cases. The talk will provide demonstrations of early versions of synthetic models, along with the lessons learnt from expert engagements to enhance future iterations. Finally, the scenario generation framework, its development plans, and co-ordination with GRID DATA repository teams to house these datasets for public access will also be discussed.« less
Advanced vehicles: Costs, energy use, and macroeconomic impacts
NASA Astrophysics Data System (ADS)
Wang, Guihua
Advanced vehicles and alternative fuels could play an important role in reducing oil use and changing the economy structure. We developed the Costs for Advanced Vehicles and Energy (CAVE) model to investigate a vehicle portfolio scenario in California during 2010-2030. Then we employed a computable general equilibrium model to estimate macroeconomic impacts of the advanced vehicle scenario on the economy of California. Results indicate that, due to slow fleet turnover, conventional vehicles are expected to continue to dominate the on-road fleet and gasoline is the major transportation fuel over the next two decades. However, alternative fuels could play an increasingly important role in gasoline displacement. Advanced vehicle costs are expected to decrease dramatically with production volume and technological progress; e.g., incremental costs for fuel cell vehicles and hydrogen could break even with gasoline savings in 2028. Overall, the vehicle portfolio scenario is estimated to have a slightly negative influence on California's economy, because advanced vehicles are very costly and, therefore, the resulting gasoline savings generally cannot offset the high incremental expenditure on vehicles and alternative fuels. Sensitivity analysis shows that an increase in gasoline price or a drop in alternative fuel prices could offset a portion of the negative impact.
Saturated internal instabilities in advanced-tokamak plasmas
NASA Astrophysics Data System (ADS)
Hua, M.-D.; Chapman, I. T.; Pinches, S. D.; Hastie, R. J.; MAST Team
2010-06-01
"Advanced tokamak" (AT) scenarios were developed with the aim of reaching steady-state operation in future potential tokamak fusion power plants. AT scenarios exhibit non-monotonic to flat safety factor profiles (q, a measure of the magnetic field line pitch), with the minimum q (qmin) slightly above an integer value (qs). However, it has been predicted that these q profiles are unstable to ideal magnetohydrodynamic instabilities as qmin approaches qs. These ideal instabilities, observed and diagnosed as such for the first time in MAST plasmas with AT-like q profiles, have far-reaching consequences like confinement degradation, flattening of the toroidal core rotation or enhanced fast ion losses. These observations motivate the stability analysis of advanced-tokamak plasmas, with a view to provide guidance for stability thresholds in AT scenarios. Additionally, the measured rotation damping is compared to the self-consistently calculated predictions from neoclassical toroidal viscosity theory.
NASA Astrophysics Data System (ADS)
Donnelly, William J., III
2012-06-01
PURPOSE: To present a commercially available optical modeling software tool to assist the development of optical instrumentation and systems that utilize and/or integrate with the human eye. METHODS: A commercially available flexible eye modeling system is presented, the Advanced Human Eye Model (AHEM). AHEM is a module that the engineer can use to perform rapid development and test scenarios on systems that integrate with the eye. Methods include merging modeled systems initially developed outside of AHEM and performing a series of wizard-type operations that relieve the user from requiring an optometric or ophthalmic background to produce a complete eye inclusive system. Scenarios consist of retinal imaging of targets and sources through integrated systems. Uses include, but are not limited to, optimization, telescopes, microscopes, spectacles, contact and intraocular lenses, ocular aberrations, cataract simulation and scattering, and twin eye model (binocular) systems. RESULTS: Metrics, graphical data, and exportable CAD geometry are generated from the various modeling scenarios.
Leveling the Playing Field: China’s Development of Advanced Energy Weapons
2012-05-02
02-05-2012 2. REPORT TYPE Master of Military Studies Research Paper 3. DATES COVERED (From - To) September 2011 - April 2012 5a. CONTRACT NUMBER...weapons in a surprise attack scenario to counter superior U.S. capabilities and technology. This paper will update and review current and developing...utilizing these weapons in a surprise attack scenario to counter superior U.S. capabilities and technology. This paper will update and review current
Alternative futures of proactive tools for a citizen's own wellbeing.
Meristö, Tarja; Tuohimaa, Hanna; Leppimäki, Sami; Laitinen, Jukka
2009-01-01
The aim of this paper is to create the basis for a vision of an empowered citizen who can control his/her life, especially in relation to health and personal wellbeing with the use of new ICT-tools. The methods used in the study are based on futures studies, especially on scenario methodology. Alternative future paths, i.e. scenarios are constructed using the scenario filter model that we have developed, with market, technology and society perspectives. Scenarios not resulting in the vision are described in what if - analysis as well. The scenarios are combined with Viherä's model on citizen's skills, access and motivation to use new ICT-tools. The concept COPER is targeted to different user groups with an adaptable user interface and its development is user centered. We will consider the effects and the appropriate elements of COPER in every scenario, as well as the possibilities and challenges nursing will confront. As a result we will gain information of the characteristic of COPER that advance the vision. For the future development of COPER the alternative scenarios give the basis for flexibility planning, too.
Protocol Architecture Model Report
NASA Technical Reports Server (NTRS)
Dhas, Chris
2000-01-01
NASA's Glenn Research Center (GRC) defines and develops advanced technology for high priority national needs in communications technologies for application to aeronautics and space. GRC tasked Computer Networks and Software Inc. (CNS) to examine protocols and architectures for an In-Space Internet Node. CNS has developed a methodology for network reference models to support NASA's four mission areas: Earth Science, Space Science, Human Exploration and Development of Space (REDS), Aerospace Technology. This report applies the methodology to three space Internet-based communications scenarios for future missions. CNS has conceptualized, designed, and developed space Internet-based communications protocols and architectures for each of the independent scenarios. The scenarios are: Scenario 1: Unicast communications between a Low-Earth-Orbit (LEO) spacecraft inspace Internet node and a ground terminal Internet node via a Tracking and Data Rela Satellite (TDRS) transfer; Scenario 2: Unicast communications between a Low-Earth-Orbit (LEO) International Space Station and a ground terminal Internet node via a TDRS transfer; Scenario 3: Multicast Communications (or "Multicasting"), 1 Spacecraft to N Ground Receivers, N Ground Transmitters to 1 Ground Receiver via a Spacecraft.
Examining Advanced Technologies for Benefits to Persons with Sensory Impairments. Final Report.
ERIC Educational Resources Information Center
Hinton, Daniel E., Sr.
This final report describes activities and products of an 18-month study on improving access of persons with sensory impairments to media, telecommunications, electronic correspondence, and other communications devices by means of technological advancements. Ten scenarios were developed which describe potential applications of: (1) Braille devices…
NASA Technical Reports Server (NTRS)
Neal, Valerie; Shields, Nicholas, Jr.; Carr, Gerald P.; Pogue, William; Schmitt, Harrison H.; Schulze, Arthur E.
1988-01-01
The focus is on Extravehicular Activity (EVA) systems requirements definition for an advanced space mission: remote-from-main base EVA on the Moon. The lunar environment, biomedical considerations, appropriate hardware design criteria, hardware and interface requirements, and key technical issues for advanced lunar EVA were examined. Six remote EVA scenarios (three nominal operations and three contingency situations) were developed in considerable detail.
Nuclear power systems for lunar and Mars exploration
NASA Technical Reports Server (NTRS)
Sovie, R. J.; Bozek, J. M.
1990-01-01
Initial studies of a variety of mission scenarios for the new Space Exploration Initiative, and the technologies necessary to enable or significantly enhance them, have identified the development of advanced space power systems whether solar, chemical or nuclear to be of prime importance. Lightweight, compact, reliable power systems for planetary rovers and a variety of surface vehicles, utility surface power, and power for advanced propulsion systems have been identified as critical needs for these missions. These mission scenarios, the concomitant power system requirements, and power system options considered are discussed. The significant potential benefits of nuclear power are identified for meeting the power needs of the above applications.
Critical technology areas of an SPS development and the applicability of European technology
NASA Technical Reports Server (NTRS)
Kassing, D.; Ruth, J.
1980-01-01
Possible system development and implementation scenarios for the hypothetical European part of a cooperative Satellite Power System effort are discussed, and the technology and systems requirements which could be used as an initial guideline for further evaluation studies are characterized. Examples of advanced European space technologies are described including high power microwave amplifiers, antennas, advanced structures, multi-kilowatt solar arrays, attitude and orbit control systems, and electric propulsion.
Advanced Tokamak Investigations in Full-Tungsten ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Bock, Alexander
2017-10-01
The tailoring of the q-profile is the foundation of Advanced Tokamak (AT) scenarios. It depends on low collisionality ν* which permits efficient external current drive and high amounts of intrinsic bootstrap current. At constant pressure, lowering ne leads to a strong decrease of ν* Te - 3 . After the conversion of ASDEX Upgrade to fully W-coated plasma facing components, radiative collapses of H-modes with little gas puffing due to central W accumulation could only be avoided partially with central ECRH. Also, operation at high β with low ne presented a challenge for the divertor. Together, these issues prevented meaningful AT investigations. To overcome this, several major feats have been accomplished: Access to lower ne was achieved through a better understanding of the changes to recycling and pumping, and optionally the density pump-out phenomenon due to RMPs. ECRH capacities were substantially expanded for both heating and current drive, and a solid W divertor capable of withstanding the power loads was installed. A major overhaul improved the reliability of the current profile diagnostics. This contribution will detail the efforts needed to re-access AT scenarios and report on the development of candidate steady state scenarios for ITER/DEMO. Starting from the `hybrid scenario,' a non-inductive scenario (q95 = 5.3 , βN = 2.7 , fbs > 40 %) was developed. It can be sustained for many τE, limited only by technical boundaries, and is also independent of the ramp-up scenario. The β-limit is set by ideal modes that convert into NTMs. The Ti-profiles are steeper than predicted by TGLF, but nonlinear electromagnetic gyro-kinetic analyses with GENE including fast particle effects matched the experimental heat fluxes. We will also report on scenarios at higher q95, similar to the EAST/DIII-D steady state scenario. The extrapolation of these scenarios to ITER/DEMO will be discussed.
Optimizing Decision Preparedness by Adapting Scenario Complexity and Automating Scenario Generation
NASA Technical Reports Server (NTRS)
Dunne, Rob; Schatz, Sae; Flore, Stephen M.; Nicholson, Denise
2011-01-01
Klein's recognition-primed decision (RPD) framework proposes that experts make decisions by recognizing similarities between current decision situations and previous decision experiences. Unfortunately, military personnel arQ often presented with situations that they have not experienced before. Scenario-based training (S8T) can help mitigate this gap. However, SBT remains a challenging and inefficient training approach. To address these limitations, the authors present an innovative formulation of scenario complexity that contributes to the larger research goal of developing an automated scenario generation system. This system will enable trainees to effectively advance through a variety of increasingly complex decision situations and experiences. By adapting scenario complexities and automating generation, trainees will be provided with a greater variety of appropriately calibrated training events, thus broadening their repositories of experience. Preliminary results from empirical testing (N=24) of the proof-of-concept formula are presented, and future avenues of scenario complexity research are also discussed.
NASA Technical Reports Server (NTRS)
Dhas, Chris
2000-01-01
NASAs Glenn Research Center (GRC) defines and develops advanced technology for high priority national needs in communications technologies for application to aeronautics and space. GRC tasked Computer Networks and Software Inc. (CNS) to examine protocols and architectures for an In-Space Internet Node. CNS has developed a methodology for network reference models to support NASAs four mission areas: Earth Science, Space Science, Human Exploration and Development of Space (REDS), Aerospace Technology. CNS previously developed a report which applied the methodology, to three space Internet-based communications scenarios for future missions. CNS conceptualized, designed, and developed space Internet-based communications protocols and architectures for each of the independent scenarios. GRC selected for further analysis the scenario that involved unicast communications between a Low-Earth-Orbit (LEO) International Space Station (ISS) and a ground terminal Internet node via a Tracking and Data Relay Satellite (TDRS) transfer. This report contains a tradeoff analysis on the selected scenario. The analysis examines the performance characteristics of the various protocols and architectures. The tradeoff analysis incorporates the results of a CNS developed analytical model that examined performance parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasanbeigi, Ali; Khanna, Nina; Price, Lynn
China’s cement and steel industry accounts for approximately half of the world’s total cement and steel production. These two industries are two of the most energy-intensive and highest carbon dioxide (CO 2)-emitting industries and two of the key industrial contributors to air pollution in China. For example, the cement industry is the largest source of particulate matter (PM) emissions in China, accounting for 40 percent of its industrial PM emissions and 27 percent of its total national PM emissions. The Chinese steel industry contributed to approximately 20 percent of sulfur dioxide (SO 2) emissions and 27 percent of PM emissionsmore » for all key manufacturing industries in China in 2013. In this study, we analyzed and projected the total PM and SO2 emissions from the Chinese cement and steel industry from 2010–2050 under three different scenarios: a Base Case scenario, an Advanced scenario, and an Advanced EOP (end-of-pipe) scenario. We used bottom-up emissions control technologies data and assumptions to project the emissions. In addition, we conducted an economic analysis to estimate the cost for PM emissions reductions in the Chinese cement industry using EOP control technologies, energy efficiency measures, and product change measures. The results of the emissions projection showed that there is not a substantial difference in PM emissions between the Base Case and Advanced scenarios, for both the cement and steel industries. This is mainly because PM emissions in the cement industry caused mainly by production process and not the fuel use. Since our forecast for the cement production in the Base Case and Advanced scenarios are not too different from each other, this results in only a slight difference in PM emissions forecast for these two scenarios. Also, we assumed a similar share and penetration rate of control technologies from 2010 up to 2050 for these two scenarios for the cement and steel industry. However, the Advanced EOP scenario showed significantly lower PM emissions for the cement industry, reaching to 1.7 million tons of PM in 2050, which is less than half of that in the other two scenarios. The Advanced EOP scenario also has the lowest SO2 emissions for the cement industry in China, reaching to 212,000 tons of SO2 in 2050, which is equal to 40 percent of the SO2 emissions in the Advanced scenario and 30 percent of the emissions in the Base Case scenario. The SO2 emission is mainly caused by fuel (coal) burning in cement kiln or steel processes. For the steel industry, the SO2 emissions of the Advanced EOP scenario are significantly lower than the other scenarios, with emissions declining to 323,000 tons in 2050, which is equal to 21 percent and 17 percent of the emissions of Advanced and Base Case scenarios in 2050, respectively. Results of the economic analysis show that for the Chinese cement industry, end-of-pipe PM control technologies have the lowest abatement cost per ton of PM reduced, followed by product change measures and energy efficiency measures, respectively. In summary, in order to meet Chinese national and regional air quality standards, best practice end-of-pipe emissions control technologies must be installed in both cement and steel industry and it must be supplemented by implementation of energy efficiency technologies and reduction of cement and steel production through structural change in industry.« less
Scenarios for Evolving Seismic Crises: Possible Communication Strategies
NASA Astrophysics Data System (ADS)
Steacy, S.
2015-12-01
Recent advances in operational earthquake forecasting mean that we are very close to being able to confidently compute changes in earthquake probability as seismic crises develop. For instance, we now have statistical models such as ETAS and STEP which demonstrate considerable skill in forecasting earthquake rates and recent advances in Coulomb based models are also showing much promise. Communicating changes in earthquake probability is likely be very difficult, however, as the absolute probability of a damaging event is likely to remain quite small despite a significant increase in the relative value. Here, we use a hybrid Coulomb/statistical model to compute probability changes for a series of earthquake scenarios in New Zealand. We discuss the strengths and limitations of the forecasts and suggest a number of possible mechanisms that might be used to communicate results in an actual developing seismic crisis.
Gregório, João; Cavaco, Afonso; Velez Lapão, Luís
2014-10-13
Health workforce planning is especially important in a setting of political, social, and economic uncertainty. Portuguese community pharmacists are experiencing such conditions as well as increasing patient empowerment, shortage of primary care physicians, and primary health care reforms. This study aims to design three future scenarios for Portuguese community pharmacists, recognizing the changing environment as an opportunity to develop the role that community pharmacists may play in the Portuguese health system. The community pharmacist scenario design followed a three-stage approach. The first stage comprised thinking of relevant questions to be addressed and definition of the scenarios horizon. The second stage comprised two face-to-face, scenario-building workshops, for which 10 experts from practice and academic settings were invited. Academic and professional experience was the main selection criteria. The first workshop was meant for context analysis and design of draft scenarios, while the second was aimed at scenario analysis and validation. The final scenarios were built merging workshops' information with data collected from scientific literature followed by team consensus. The final stage involved scenario development carried by the authors alone, developing the narratives behind each scenario. Analysis allowed the identification of critical factors expected to have particular influence in 2020 for Portuguese community pharmacists, leading to two critical uncertainties: the "Legislative environment" and "Ability to innovate and develop services". Three final scenarios were built, namely "Pharmacy-Mall", "e-Pharmacist", and "Reorganize or Die". These scenarios provide possible trends for market needs, pharmacist workforce numbers, and expected qualifications to be developed by future professionals. In all scenarios it is clear that the future advance of Portuguese community pharmacists will depend on pharmaceutical services provision beyond medicine dispensing. This innovative professional role will require the acquisition or development of competencies in the fields of management, leadership, marketing, information technologies, teamwork abilities, and behavioural and communication skills. To accomplish a sustainable evolution, legislative changes and adequate financial incentives will be beneficial. The scenario development proves to be valuable as a strategic planning tool, not only for understanding future community pharmacist needs in a complex and uncertain environment, but also for other health care professionals.
Decision making in trauma settings: simulation to improve diagnostic skills.
Murray, David J; Freeman, Brad D; Boulet, John R; Woodhouse, Julie; Fehr, James J; Klingensmith, Mary E
2015-06-01
In the setting of acute injury, a wrong, missed, or delayed diagnosis can impact survival. Clinicians rely on pattern recognition and heuristics to rapidly assess injuries, but an overreliance on these approaches can result in a diagnostic error. Simulation has been advocated as a method for practitioners to learn how to recognize the limitations of heuristics and develop better diagnostic skills. The objective of this study was to determine whether simulation could be used to provide teams the experiences in managing scenarios that require the use of heuristic as well as analytic diagnostic skills to effectively recognize and treat potentially life-threatening injuries. Ten scenarios were developed to assess the ability of trauma teams to provide initial care to a severely injured patient. Seven standard scenarios simulated severe injuries that once diagnosed could be effectively treated using standard Advanced Trauma Life Support algorithms. Because diagnostic error occurs more commonly in complex clinical settings, 3 complex scenarios required teams to use more advanced diagnostic skills to uncover a coexisting condition and treat the patient. Teams composed of 3 to 5 practitioners were evaluated in the performance of 7 (of 10) randomly selected scenarios (5 standard, 2 complex). Expert rates scored teams using standardized checklists and global scores. Eighty-three surgery, emergency medicine, and anesthesia residents constituted 21 teams. Expert raters were able to reliably score the scenarios. Teams accomplished fewer checklist actions and received lower global scores on the 3 analytic scenarios (73.8% [12.3%] and 5.9 [1.6], respectively) compared with the 7 heuristic scenarios (83.2% [11.7%] and 6.6 [1.3], respectively; P < 0.05 for both). Teams led by more junior residents received higher global scores on the analytic scenarios (6.4 [1.3]) than the more senior team leaders (5.3 [1.7]). This preliminary study indicates that teams led by more senior residents received higher scores when managing heuristic scenarios but were less effective when managing the scenarios that require a more analytic approach. Simulation can be used to provide teams with decision-making experiences in trauma settings and could be used to improve diagnostic skills as well as study the decision-making process.
Risk-Based Prioritization of Research for Aviation Security Using Logic-Evolved Decision Analysis
NASA Technical Reports Server (NTRS)
Eisenhawer, S. W.; Bott, T. F.; Sorokach, M. R.; Jones, F. P.; Foggia, J. R.
2004-01-01
The National Aeronautics and Space Administration is developing advanced technologies to reduce terrorist risk for the air transportation system. Decision support tools are needed to help allocate assets to the most promising research. An approach to rank ordering technologies (using logic-evolved decision analysis), with risk reduction as the metric, is presented. The development of a spanning set of scenarios using a logic-gate tree is described. Baseline risk for these scenarios is evaluated with an approximate reasoning model. Illustrative risk and risk reduction results are presented.
NASA Technical Reports Server (NTRS)
Valdivia, Roberto O.; Antle, John M.; Rosenzweig, Cynthia; Ruane, Alexander C.; Vervoort, Joost; Ashfaq, Muhammad; Hathie, Ibrahima; Tui, Sabine Homann-Kee; Mulwa, Richard; Nhemachena, Charles;
2015-01-01
The global change research community has recognized that new pathway and scenario concepts are needed to implement impact and vulnerability assessment where precise prediction is not possible, and also that these scenarios need to be logically consistent across local, regional, and global scales. For global climate models, representative concentration pathways (RCPs) have been developed that provide a range of time-series of atmospheric greenhouse-gas concentrations into the future. For impact and vulnerability assessment, new socio-economic pathway and scenario concepts have also been developed, with leadership from the Integrated Assessment Modeling Consortium (IAMC).This chapter presents concepts and methods for development of regional representative agricultural pathways (RAOs) and scenarios that can be used for agricultural model intercomparison, improvement, and impact assessment in a manner consistent with the new global pathways and scenarios. The development of agriculture-specific pathways and scenarios is motivated by the need for a protocol-based approach to climate impact, vulnerability, and adaptation assessment. Until now, the various global and regional models used for agricultural-impact assessment have been implemented with individualized scenarios using various data and model structures, often without transparent documentation, public availability, and consistency across disciplines. These practices have reduced the credibility of assessments, and also hampered the advancement of the science through model intercomparison, improvement, and synthesis of model results across studies. The recognition of the need for better coordination among the agricultural modeling community, including the development of standard reference scenarios with adequate agriculture-specific detail led to the creation of the Agricultural Model Intercomparison and Improvement Project (AgMIP) in 2010. The development of RAPs is one of the cross-cutting themes in AgMIP's work plan, and has been the subject of ongoing work by AgMIP since its creation.
Medical Scenarios Relevant to Spaceflight
NASA Technical Reports Server (NTRS)
Bacal, Kira; Hurs, Victor; Doerr, Harold
2004-01-01
The Medical Operational Support Team (MOST) was tasked by the JSC Space Medicine and Life Sciences Directorate (SLSD) to incorporate medical simulation into 1) medical training for astronaut-crew medical officers (CMO) and medical flight control teams and 2) evaluations of procedures and resources required for medical care aboard the International Space Station (ISS). Development of evidence-based medical scenarios that mimic the physiology observed during spaceflight will be needed for the MOST to complete these two tasks. The MOST used a human patient simulator, the ISS-like resources in the Medical Simulation Laboratory (MSL), and evidence from space operations, military operations and medical literature to develop space relevant medical scenarios. These scenarios include conditions concerning airway management, Advanced Cardiac Life Support (ACLS) and mitigating anaphylactic symptoms. The MOST has used these space relevant medical scenarios to develop a preliminary space medical training regimen for NASA flight surgeons, Biomedical Flight Controllers (Biomedical Engineers; BME) and CMO-analogs. This regimen is conducted by the MOST in the MSL. The MOST has the capability to develop evidence-based space-relevant medical scenarios that can help SLSD I) demonstrate the proficiency of medical flight control teams to mitigate space-relevant medical events and 2) validate nextgeneration medical equipment and procedures for space medicine applications.
SMART-DS: Synthetic Models for Advanced, Realistic Testing: Distribution
statistical summary of the U.S. distribution systems World-class, high spatial/temporal resolution of solar Systems and Scenarios | Grid Modernization | NREL SMART-DS: Synthetic Models for Advanced , Realistic Testing: Distribution Systems and Scenarios SMART-DS: Synthetic Models for Advanced, Realistic
Russ, Alissa L; Saleem, Jason J
2018-02-01
The quality of usability testing is highly dependent upon the associated usability scenarios. To promote usability testing as part of electronic health record (EHR) certification, the Office of the National Coordinator (ONC) for Health Information Technology requires that vendors test specific capabilities of EHRs with clinical end-users and report their usability testing process - including the test scenarios used - along with the results. The ONC outlines basic expectations for usability testing, but there is little guidance in usability texts or scientific literature on how to develop usability scenarios for healthcare applications. The objective of this article is to outline key factors to consider when developing usability scenarios and tasks to evaluate computer-interface based health information technologies. To achieve this goal, we draw upon a decade of our experience conducting usability tests with a variety of healthcare applications and a wide range of end-users, to include healthcare professionals as well as patients. We discuss 10 key factors that influence scenario development: objectives of usability testing; roles of end-user(s); target performance goals; evaluation time constraints; clinical focus; fidelity; scenario-related bias and confounders; embedded probes; minimize risks to end-users; and healthcare related outcome measures. For each factor, we present an illustrative example. This article is intended to aid usability researchers and practitioners in their efforts to advance health information technologies. The article provides broad guidance on usability scenario development and can be applied to a wide range of clinical information systems and applications. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levine, Aaron L; Young, Katherine R
Developers have identified many non-technical barriers to geothermal power development, including access to land. Activities required for accessing land, such as environmental review and private and public leasing can take a considerable amount of time and can delay or prevent project development. This paper discusses the impacts to available geothermal resources and deployment caused by land access challenges, including tribal and cultural resources, environmentally sensitive areas, biological resources, land ownership, federal and state lease queues, and proximity to military installations. In this analysis, we identified challenges that have the potential to prevent development of identified and undiscovered hydrothermal geothermal resources.more » We found that an estimated 400 MW of identified geothermal resource potential and 4,000 MW of undiscovered geothermal resource potential were either unallowed for development or contained one or more significant barriers that could prevent development at the site. Potential improvement scenarios that could be employed to overcome these barriers include (1) providing continuous funding to the U.S. Forest Service (USFS) for processing geothermal leases and permit applications and (2) the creation of advanced environmental mitigation measures. The model results forecast that continuous funding to the USFS could result in deployment of an additional 80 MW of geothermal capacity by 2030 and 124 MW of geothermal capacity by 2050 when compared to the business-as-usual scenario. The creation of advanced environmental mitigation measures coupled with continuous funding to the USFS could result in deployment of an additional 97 MW of geothermal capacity by 2030 and 152 MW of geothermal capacity by 2050 when compared to the business-as-usual scenario. The small impact on potential deployment in these improvement scenarios suggests that these 4,400 MW have other barriers to development in addition to land access. In other words, simply making more resources available for development does not increase deployment; however, impacts to deployment could increase when coupled with other improvements (e.g., permitting, market and/or technology improvements).« less
Memex Meets Madonna: Multimedia at the Intersection of Information and Entertainment.
ERIC Educational Resources Information Center
Kinney, Thomas
1992-01-01
Proposes a personal information management technology called Memex-TV that might develop from advances in entertainment technology. Topics addressed include capabilities of the new system, system design, the scenario for development of Memex-TV as an entertainment technology spin-off, current entertainment technology trends, a typical evening with…
Europa Explorer Operational Scenarios Development
NASA Technical Reports Server (NTRS)
Lock, Robert E.; Pappalardo, Robert T.; Clark, Karla B.
2008-01-01
In 2007, NASA conducted four advanced mission concept studies for outer planets targets: Europa, Ganymede, Titan and Enceladus. The studies were conducted in close cooperation with the planetary science community. Of the four, the Europa Explorer Concept Study focused on refining mission options, science trades and implementation details for a potential flagship mission to Europa in the 2015 timeframe. A science definition team (SDT) was appointed by NASA to guide the study. A JPL-led engineering team worked closely with the science team to address 3 major focus areas: 1) credible cost estimates, 2) rationale and logical discussion of radiation risk and mitigation approaches, and 3) better definition and exploration of science operational scenario trade space. This paper will address the methods and results of the collaborative process used to develop Europa Explorer operations scenarios. Working in concert with the SDT, and in parallel with the SDT's development of a science value matrix, key mission capabilities and constraints were challenged by the science and engineering members of the team. Science goals were advanced and options were considered for observation scenarios. Data collection and return strategies were tested via simulation, and mission performance was estimated and balanced with flight and ground system resources and science priorities. The key to this successful collaboration was a concurrent development environment in which all stakeholders could rapidly assess the feasibility of strategies for their success in the full system context. Issues of science and instrument compatibility, system constraints, and mission opportunities were treated analytically and objectively leading to complementary strategies for observation and data return. Current plans are that this approach, as part of the system engineering process, will continue as the Europa Explorer Concept Study moves toward becoming a development project.
Numerical Analyses for Low Reynolds Flow in a Ventricular Assist Device.
Lopes, Guilherme; Bock, Eduardo; Gómez, Luben
2017-06-01
Scientific and technological advances in blood pump developments have been driven by their importance in cardiac patient treatments and in the expansion of life quality in assisted people. To improve and optimize the design and development, numerical tools were incorporated into the analyses of these mechanisms and have become indispensable in their advances. This study analyzes the flow behavior with low impeller Reynolds number, for which there is no consensus on the full development of turbulence in ventricular assist devices (VAD). For supporting analyses, computational numerical simulations were carried out in different scenarios with the same rotation speed. Two modeling approaches were applied: laminar flow and turbulent flow with the standard, RNG and realizable κ - ε; the standard and SST κ - ω models; and Spalart-Allmaras models. The results agree with the literature for VAD and the range for transient flows in stirred tanks with an impeller Reynolds number around 2800 for the tested scenarios. The turbulent models were compared, and it is suggested, based on the expected physical behavior, the use of κ-ε RNG, standard and SST κ-ω, and Spalart-Allmaras models to numerical analyses for low impeller Reynolds numbers according to the tested flow scenarios. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Harmonisation of Global Land-Use Scenarios for the Period 1500-2100 for IPCC-AR5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurtt, George; Chini, Louise Parsons; Frolking, Steve
2009-06-01
In preparation for the fifth Intergovernmental Panel on Climate Change climate change assessment (IPCC-AR5), the international community is developing new advanced computer models (CMs) to address the combined effects of human activities (e.g. land-use and fossil fuel emissions) on the carbon-climate system. In addition, four Representative Concentration Pathway (RCP) scenarios of the future (2005-2100) are being developed by four Integrated Assessment Modeling teams (IAMs) to be used as input to the CMs for future climate projections. The diversity of requirements and approaches among CMs and IAMs for tracking land-use changes (past, present, and future), presents major challenges for treating land-usemore » comprehensively and consistently between these communities. As part of an international working group, we have been working to meet these challenges by developing a "harmonized" set of land-use change scenarios that smoothly connects gridded historical reconstructions of land-use with future projections, in a format required by CMs. This approach to harmonizing the treatment of land-use between two key modeling communities, CMs and IAMs, represents a major advance that will facilitate more consistent and fuller treatments of land-use/land-use change effects including both CO2 emissions and corresponding land-surface changes.« less
Griffith, J.A.; Trettin, C.C.; O'Neill, R. V.
2002-01-01
Geographic information systems (GIS) are increasingly being used in environmental impact assessments (EIA) because GIS is useful for analysing spatial impacts of various development scenarios. Spatially representing these impacts provides another tool for landscape ecology in environmental and geographical investigations by facilitating analysis of the effects of landscape patterns on ecological processes and examining change over time. Landscape ecological principles are applied in this study to a hypothetical geothermal development project on the Island of Hawaii. Some common landscape pattern metrics were used to analyse dispersed versus condensed development scenarios and their effect on landscape pattern. Indices of fragmentation and patch shape did not appreciably change with additional development. The amount of forest to open edge, however, greatly increased with the dispersed development scenario. In addition, landscape metrics showed that a human disturbance had a greater simplifying effect on patch shape and also increased fragmentation than a natural disturbance. The use of these landscape pattern metrics can advance the methodology of applying GIS to EIA.
NASA Technical Reports Server (NTRS)
Wolfe, M. G.
1978-01-01
The objectives of this study were to: (1) develop projections of the NASA, DoD, and civil space power requirements for the 1980-1995 time period; (2) identify specific areas of application and space power subsystem type needs for each prospective user; (3) document the supporting and historical base, including relevant cost related measures of performance; and (4) quantify the benefits of specific technology projection advancements. The initial scope of the study included: (1) construction of likely models for NASA, DoD, and civil space systems; (2) generation of a number of future scenarios; (3) extraction of time phased technology requirements based on the scenarios; and (4) cost/benefit analyses of some of the technologies identified.
Security Analysis of Selected AMI Failure Scenarios Using Agent Based Game Theoretic Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abercrombie, Robert K; Schlicher, Bob G; Sheldon, Frederick T
Information security analysis can be performed using game theory implemented in dynamic Agent Based Game Theoretic (ABGT) simulations. Such simulations can be verified with the results from game theory analysis and further used to explore larger scale, real world scenarios involving multiple attackers, defenders, and information assets. We concentrated our analysis on the Advanced Metering Infrastructure (AMI) functional domain which the National Electric Sector Cyber security Organization Resource (NESCOR) working group has currently documented 29 failure scenarios. The strategy for the game was developed by analyzing five electric sector representative failure scenarios contained in the AMI functional domain. From thesemore » five selected scenarios, we characterize them into three specific threat categories affecting confidentiality, integrity and availability (CIA). The analysis using our ABGT simulation demonstrates how to model the AMI functional domain using a set of rationalized game theoretic rules decomposed from the failure scenarios in terms of how those scenarios might impact the AMI network with respect to CIA.« less
Prototype Tool and Focus Group Evaluation for an Advanced Trajectory-Based Operations Concept
NASA Technical Reports Server (NTRS)
Guerreiro, Nelson M.; Jones, Denise R.; Barmore, Bryan E.; Butler, Ricky W.; Hagen, George E.; Maddalon, Jeffrey M.; Ahmad, Nash'at N.
2017-01-01
Trajectory-based operations (TBO) is a key concept in the Next Generation Air Transportation System transformation of the National Airspace System (NAS) that will increase the predictability and stability of traffic flows, support a common operational picture through the use of digital data sharing, facilitate more effective collaborative decision making between airspace users and air navigation service providers, and enable increased levels of integrated automation across the NAS. NASA has been developing trajectory-based systems to improve the efficiency of the NAS during specific phases of flight and is now also exploring Advanced 4-Dimensional Trajectory (4DT) operational concepts that will integrate these technologies and incorporate new technology where needed to create both automation and procedures to support gate-to-gate TBO. A TBO Prototype simulation toolkit has been developed that demonstrates initial functionality of an Advanced 4DT TBO concept. Pilot and controller subject matter experts (SMEs) were brought to the Air Traffic Operations Laboratory at NASA Langley Research Center for discussions on an Advanced 4DT operational concept and were provided an interactive demonstration of the TBO Prototype using four example scenarios. The SMEs provided feedback on potential operational, technological, and procedural opportunities and concerns. This paper describes an Advanced 4DT operational concept, the TBO Prototype, the demonstration scenarios and methods used, and the feedback obtained from the pilot and controller SMEs in this focus group activity.
NASA Astrophysics Data System (ADS)
Horneck, G.; Humex Team
ESA has recently initiated a study of the human responses, limits and needs with regard to the stress environments of interplanetary and planetary missions. Emphasis was laid on human health and performance care as well as Advanced Life Support Developments including Bioregenerative Life Support Systems and environmental monitoring. The overall study goals were as follows: (i) to define reference scenarios for a European participation in human exploration and to estimate their influence on the Life Sciences and Life Support requirements; (ii) for selected mission scenarios, to critically assess the limiting factors for human health, wellbeing, and performance and to recommend relevant countermeasures; (iii) for selected mission scenarios, to critically assess the potential of Advanced Life Support Developments and to pro-pose a European strategy including terrestrial applications; (iv) to critically assess the feasibility of existing facilities and technologies on ground and in space as test-beds in preparation for human exploratory missions and to develop a test plan for ground and ISS campaigns; (v) to develop a roadmap for a future European strategy towards human exploratory missions, including preparatory activities and terrestrial applications and benefits. Two scenarios for a Mars mission were selected: (i) with a 30 days stay on Mars, and (ii) with about 500 days stay on Mars. The impact on human health, perform-ance and well being has been investigated from the view point of (i) the effects of microgravity (during space travel), reduced gravity (on Mars) and abrupt gravity changes (during launch and landing), (ii) the effects of cosmic radiation including solar particle events, (iii) psychological issues as well as general health care. Coun-termeasures as well as necessary research using ground-based testbeds and/or the ISS have been defined. The need for highly intelligent autonomous diagnostic and therapy systems was emphasized. Advanced life support systems with a high degree of autonomy and regenerative capacity and synergy effects were considered where bioregenerative life support systems and biodiagnostic systems become essential especially for the long-term Mars scenario. The considerations have been incorpo-rated into a roadmap for a future European strategy in human health issues for a potential European participation in a cooperative international exploration of our solar system by humans. Ref. Horneck et al, 2003, HUMEX, study on the Survivability and Adaptation of Humans to Long-Duration Exploratory Missions, ESA SP 1264
HUMEX, a study on the survivability and adaptation of humans to long- duration exploratory missions
NASA Astrophysics Data System (ADS)
Horneck, G.
ESA has recently initiated a study of the human responses, limits and needs with regard to the stress environments of interplanetary and planetary missions. Emphasis was laid on human health and performance care as well as Advanced Life Support Developments including Bioregenerative Life Support Systems and environmental monitoring. The overall study goals were as follows: (i) to define reference scenarios for a European participation in human exploration and to estimate their influence on the Life Sciences and Life Support requirements; (ii) for selected mission scenarios, to critically assess the limiting factors for human health, wellbeing, and performance and to recommend relevant countermeasures; (iii) for selected mission scenarios, to critically assess the potential of Advanced Life Support Developments and to propose a European strategy including terrestrial applications; (iv) to critically assess the feasibility of existing facilities and technologies on ground and in space as testbeds in preparation for human exploratory missions and to develop a test plan for ground and ISS campaigns; (v) to develop a roadmap for a future European strategy towards human exploratory missions, including preparatory activities and terrestrial applications and benefits. A lunar base at the south pole where constant sunlight and potential water ice deposits could be assumed was selected as the moon scenario. the impact on human health, performance and well being has been investigated from the view point of the effects of microgravity (during space travel), reduced gravity (on the Moon) and abrupt gravity changes (during launch and landing), of the effects of cosmic radiation including solar particle events, of psychological issues as well as general health care. Countermeasures as well as necessary research using ground- based testbeds and/or the ISS have been defined. The need for highly intelligent autonomous diagnostic and therapy systems was considered as a driver also for terrestrial applications. Likewise advanced life support systems with a high degree of autonomy and regenerative capacity and synergy effects were considered where bioregenerative life support systems and biodiagnistic systems become essential especially for the long-term Mars scenario. A roadmap for a future European strategy leading to a potential European participation in a cooperative human exploratory mission, either to the Moon or to Mars, was produced. Ref. Horneck et al. HUMEX, study on the Survivability and Adaptation of Humans to Long-Duration Exploratory Missions, ESA SP (in press)
Creative advances in exposure science are needed to support efficient and effective evaluation and management of chemical risks, particularly for chemicals in consumer products. This presentation will describe the development of EPA’s screening-level, probabilistic SHEDS-Li...
Current Scenario of Ceramic Engineering Education in India
ERIC Educational Resources Information Center
Srivastava, Aaditya Ranjan; Bajpai, Shrish; Khare, Sushant
2018-01-01
Historical overview of ceramic development has been provided in the paper. It has been stated that the trail of ceramics has been rooted in Indus valley civilization. Advancement of materials leads to afflux of development in the fields of science and technology. Present paper deals with the realm of Ceramic Engineering, mainly focuses on…
Sadideen, Hazim; Wilson, David; Moiemen, Naiem; Kneebone, Roger
2014-01-01
Educational theory highlights the importance of contextualized simulation for effective learning. We explored this concept in a burns scenario in a novel, low-cost, high-fidelity, portable, immersive simulation environment (referred to as distributed simulation). This contextualized simulation/distributed simulation combination was named "The Burns Suite" (TBS). A pediatric burn resuscitation scenario was selected after high trainee demand. It was designed on Advanced Trauma and Life Support and Emergency Management of Severe Burns principles and refined using expert opinion through cognitive task analysis. TBS contained "realism" props, briefed nurses, and a simulated patient. Novices and experts were recruited. Five-point Likert-type questionnaires were developed for face and content validity. Cronbach's α was calculated for scale reliability. Semistructured interviews captured responses for qualitative thematic analysis allowing for data triangulation. Twelve participants completed TBS scenario. Mean face and content validity ratings were high (4.6 and 4.5, respectively; range, 4-5). The internal consistency of questions was high. Qualitative data analysis revealed that participants felt 1) the experience was "real" and they were "able to behave as if in a real resuscitation environment," and 2) TBS "addressed what Advanced Trauma and Life Support and Emergency Management of Severe Burns didn't" (including the efficacy of incorporating nontechnical skills). TBS provides a novel, effective simulation tool to significantly advance the delivery of burns education. Recreating clinical challenge is crucial to optimize simulation training. This low-cost approach also has major implications for surgical education, particularly during increasing financial austerity. Alternative scenarios and/or procedures can be recreated within TBS, providing a diverse educational immersive simulation experience.
ERIC Educational Resources Information Center
Groff, Warren H.
Career development for the next wave of competent leaders and technically trained workers during e-globalization is one of the most difficult challenges advanced nations face. Career development programs that begin in elementary education and have e-paradigms as a logical choice as the preferred scenario are needed by e-commerce in all its…
SamePage: Development of a Team Training Tool to Promote Shared Understanding
2007-07-01
1. Each stage of learning—from novice to advanced beginner to competent to proficient to expert—can be characterized by further acquisition of...Stage 2 Stage 3 Stage 4 Stage 5 Novice Advanced Beginner Competent Proficient Expert Engages in conscious deliberate planning Sees situation...entire scenario events in an overview story form; (2) an overview flowchart that shows the major frame events and actions required from each team member
Donnelly, William
2008-11-01
To present a commercially available software tool for creating eye models to assist the development of ophthalmic optics and instrumentation, simulate ailments or surgery-induced changes, explore vision research questions, and provide assistance to clinicians in planning treatment or analyzing clinical outcomes. A commercially available eye modeling system was developed, the Advanced Human Eye Model (AHEM). Two mainstream optical software engines, ZEMAX (ZEMAX Development Corp) and ASAP (Breault Research Organization), were used to construct a similar software eye model and compared. The method of using the AHEM is described and various eye modeling scenarios are created. These scenarios consist of retinal imaging of targets and sources; optimization capability; spectacles, contact lens, and intraocular lens insertion and correction; Zernike surface deformation on the cornea; cataract simulation and scattering; a gradient index lens; a binocular mode; a retinal implant; system import/export; and ray path exploration. Similarity of the two different optical software engines showed validity to the mechanism of the AHEM. Metrics and graphical data are generated from the various modeling scenarios particular to their input specifications. The AHEM is a user-friendly commercially available software tool from Breault Research Organization, which can assist the design of ophthalmic optics and instrumentation, simulate ailments or refractive surgery-induced changes, answer vision research questions, or assist clinicians in planning treatment or analyzing clinical outcomes.
Hise, Adam M; Characklis, Gregory W; Kern, Jordan; Gerlach, Robin; Viamajala, Sridhar; Gardner, Robert D; Vadlamani, Agasteswar
2016-11-01
Algal biofuels are becoming more economically competitive due to technological advances and government subsidies offering tax benefits and lower cost financing. These factors are linked, however, as the value of technical advances is affected by modeling assumptions regarding the growth conditions, process design, and financing of the production facility into which novel techniques are incorporated. Two such techniques, related to algal growth and dewatering, are evaluated in representative operating and financing scenarios using an integrated techno-economic model. Results suggest that these techniques can be valuable under specified conditions, but also that investment subsidies influence cost competitive facility design by incentivizing development of more capital intensive facilities (e.g., favoring hydrothermal liquefaction over transesterification-based facilities). Evaluating novel techniques under a variety of operational and financial scenarios highlights the set of site-specific conditions in which technical advances are most valuable, while also demonstrating the influence of subsidies linked to capital intensity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Development of steady-state scenarios compatible with ITER-like wall conditions
NASA Astrophysics Data System (ADS)
Litaudon, X.; Arnoux, G.; Beurskens, M.; Brezinsek, S.; Challis, C. D.; Crisanti, F.; DeVries, P. C.; Giroud, C.; Pitts, R. A.; Rimini, F. G.; Andrew, Y.; Ariola, M.; Baranov, Yu F.; Brix, M.; Buratti, P.; Cesario, R.; Corre, Y.; DeLa Luna, E.; Fundamenski, W.; Giovannozzi, E.; Gryaznevich, M. P.; Hawkes, N. C.; Hobirk, J.; Huber, A.; Jachmich, S.; Joffrin, E.; Koslowski, H. R.; Liang, Y.; Loarer, Th; Lomas, P.; Luce, T.; Mailloux, J.; Matthews, G. F.; Mazon, D.; McCormick, K.; Moreau, D.; Pericoli, V.; Philipps, V.; Rachlew, E.; Reyes-Cortes, S. D. A.; Saibene, G.; Sharapov, S. E.; Voitsekovitch, I.; Zabeo, L.; Zimmermann, O.; Zastrow, K. D.; JET-EFDA Contributors, the
2007-12-01
A key issue for steady-state tokamak operation is to determine the edge conditions that are compatible both with good core confinement and with the power handling and plasma exhaust capabilities of the plasma facing components (PFCs) and divertor systems. A quantitative response to this open question will provide a robust scientific basis for reliable extrapolation of present regimes to an ITER compatible steady-state scenario. In this context, the JET programme addressing steady-state operation is focused on the development of non-inductive, high confinement plasmas with the constraints imposed by the PFCs. A new beryllium main chamber wall and tungsten divertor together with an upgrade of the heating/fuelling capability are currently in preparation at JET. Operation at higher power with this ITER-like wall will impose new constraints on non-inductive scenarios. Recent experiments have focused on the preparation for this new phase of JET operation. In this paper, progress in the development of advanced tokamak (AT) scenarios at JET is reviewed keeping this long-term objective in mind. The approach has consisted of addressing various critical issues separately during the 2006-2007 campaigns with a view to full scenario integration when the JET upgrades are complete. Regimes with internal transport barriers (ITBs) have been developed at q95 ~ 5 and high triangularity, δ (relevant to the ITER steady-state demonstration) by applying more than 30 MW of additional heating power reaching βN ~ 2 at Bo ~ 3.1 T. Operating at higher δ has allowed the edge pedestal and core densities to be increased pushing the ion temperature closer to that of the electrons. Although not yet fully integrated into a performance enhancing ITB scenario, Neon seeding has been successfully explored to increase the radiated power fraction (up to 60%), providing significant reduction of target tile power fluxes (and hence temperatures) and mitigation of edge localized mode (ELM) activity. At reduced toroidal magnetic field strength, high βN regimes have been achieved and q-profile optimization investigated for use in steady-state scenarios. Values of βN above the 'no-wall magnetohydrodynamic limit' (βN ~ 3.0) have been sustained for a resistive current diffusion time in high-δ configurations (at 1.2 MA/1.8 T). In this scenario, ELM activity has been mitigated by applying magnetic perturbations using error field correction coils to provide ergodization of the magnetic field at the plasma edge. In a highly shaped, quasi-double null X-point configuration, ITBs have been generated on the ion heat transport channel and combined with 'grassy' ELMs with ~30 MW of applied heating power (at 1.2 MA/2.7 T, q95 ~ 7). Advanced algorithms and system identification procedures have been developed with a view to developing simultaneously temperature and q-profile control in real-time. These techniques have so far been applied to the control of the q-profile evolution in JET AT scenarios.
Spacesuit Portable Life Support System Breadboard (PLSS 1.0) Development and Test Results
NASA Technical Reports Server (NTRS)
Vogel, Matt R.; Watts, Carly
2011-01-01
A multi-year effort has been carried out at NASA-JSC to develop an advanced Extravehicular Activity (EVA) PLSS design intended to further the current state of the art by increasing operational flexibility, reducing consumables, and increasing robustness. Previous efforts have focused on modeling and analyzing the advanced PLSS architecture, as well as developing key enabling technologies. Like the current International Space Station (ISS) Extravehicular Mobility Unit (EMU) PLSS, the advanced PLSS comprises of three subsystems required to sustain the crew during EVA including the Thermal, Ventilation, and Oxygen Subsystems. This multi-year effort has culminated in the construction and operation of PLSS 1.0, a test rig that simulates full functionality of the advanced PLSS design. PLSS 1.0 integrates commercial off the shelf hardware with prototype technology development components, including the primary and secondary oxygen regulators, ventilation loop fan, Rapid Cycle Amine (RCA) swingbed, and Spacesuit Water Membrane Evaporator (SWME). Testing accumulated 239 hours over 45 days, while executing 172 test points. Specific PLSS 1.0 test objectives assessed during this testing include: confirming key individual components perform in a system level test as they have performed during component level testing; identifying unexpected system-level interactions; operating PLSS 1.0 in nominal steady-state EVA modes to baseline subsystem performance with respect to metabolic rate, ventilation loop pressure and flow rate, and environmental conditions; simulating nominal transient EVA operational scenarios; simulating contingency EVA operational scenarios; and further evaluating individual technology development components. Successful testing of the PLSS 1.0 provided a large database of test results that characterize system level and component performance. With the exception of several minor anomalies, the PLSS 1.0 test rig performed as expected; furthermore, many system responses trended in accordance with pre-test predictions.
High-beta, steady-state hybrid scenario on DIII-D
Petty, C. C.; Kinsey, J. E.; Holcomb, C. T.; ...
2015-12-17
Here, the potential of the hybrid scenario (first developed as an advanced inductive scenario for high fluence) as a regime for high-beta, steady-state plasmas is demonstrated on the DIII-D tokamak. These experiments show that the beneficial characteristics of hybrids, namely safety factor ≥1 with low central magnetic shear, high stability limits and excellent confinement, are maintained when strong central current drive (electron cyclotron and neutral beam) is applied to increase the calculated non-inductive fraction to ≈100% (≈50% bootstrap current). The best discharges achieve normalized beta of 3.4, IPB98(y,2) confinement factor of 1.4, surface loop voltage of 0.01 V, and nearlymore » equal electron and ion temperatures at low collisionality. A zero-dimensional physics model shows that steady-state hybrid operation with Q fus ~ 5 is feasible in FDF and ITER. The advantage of the hybrid scenario as an Advanced Tokamak regime is that the external current drive can be deposited near the plasma axis where the efficiency is high; additionally, good alignment between the current drive and plasma current profiles is not necessary as the poloidal magnetic flux pumping self-organizes the current density profile in hybrids with an m/n=3/2 tearing mode.« less
Human Factors Evaluation of Advanced Electric Power Grid Visualization Tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greitzer, Frank L.; Dauenhauer, Peter M.; Wierks, Tamara G.
This report describes initial human factors evaluation of four visualization tools (Graphical Contingency Analysis, Force Directed Graphs, Phasor State Estimator and Mode Meter/ Mode Shapes) developed by PNNL, and proposed test plans that may be implemented to evaluate their utility in scenario-based experiments.
Ontology for E-Learning: A Case Study
ERIC Educational Resources Information Center
Colace, Francesco; De Santo, Massimo; Gaeta, Matteo
2009-01-01
Purpose: The development of adaptable and intelligent educational systems is widely considered one of the great challenges in scientific research. Among key elements for building advanced training systems, an important role is played by methodologies chosen for knowledge representation. In this scenario, the introduction of ontology formalism can…
Battaglia, D. J.; Boyer, M. D.; Gerhardt, S.; ...
2018-02-20
The National Spherical Torus Experiment Upgrade (NSTX-U) will advance the physics basis required for achieving steady-state, high-beta, and high-confinement conditions in a tokamak by accessing high toroidal field (1 T) and plasma current (1.0 - 2.0 MA) in a low aspect ratio geometry (A = 1.6 - 1.8) with flexible auxiliary heating systems (12 MW NBI, 6 MW HHFW). This paper describes progress in the development of L- and Hmode discharge scenarios and the commissioning of operational tools in the first ten weeks of operation that enable the scientific mission of NSTX-U. Vacuum field calculations completed prior to operations supportedmore » the rapid development and optimization of inductive breakdown at different values of ohmic solenoid current. The toroidal magnetic field (BT0 = 0.65 T) exceeded the maximum values achieved on NSTX and novel long-pulse L-mode discharges with regular sawtooth activity exceeded the longest pulses produced on NSTX (tpulse > 1.8s). The increased flux of the central solenoid facilitated the development of stationary L-mode discharges over a range of density and plasma current (Ip). H-mode discharges achieved similar levels of stored energy, confinement (H98y,2 > 1) and stability (βN/βN-nowall > 1) compared to NSTX discharges for Ip ≤ 1 MA. High-performance H-mode scenarios require an L-H transition early in the Ip ramp-up phase in order to obtain low internal inductance (li) throughout the discharge, which is conducive to maintaining vertical stability at high elongation (κ > 2.2) and achieving long periods of MHD quiescent operations. The rapid progress in developing L- and H-mode scenarios in support of the scientific program was enabled by advances in real-time plasma control, efficient error field identification and correction, effective conditioning of the graphite wall and excellent diagnostic availability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battaglia, D. J.; Boyer, M. D.; Gerhardt, S.
The National Spherical Torus Experiment Upgrade (NSTX-U) will advance the physics basis required for achieving steady-state, high-beta, and high-confinement conditions in a tokamak by accessing high toroidal field (1 T) and plasma current (1.0 - 2.0 MA) in a low aspect ratio geometry (A = 1.6 - 1.8) with flexible auxiliary heating systems (12 MW NBI, 6 MW HHFW). This paper describes progress in the development of L- and Hmode discharge scenarios and the commissioning of operational tools in the first ten weeks of operation that enable the scientific mission of NSTX-U. Vacuum field calculations completed prior to operations supportedmore » the rapid development and optimization of inductive breakdown at different values of ohmic solenoid current. The toroidal magnetic field (BT0 = 0.65 T) exceeded the maximum values achieved on NSTX and novel long-pulse L-mode discharges with regular sawtooth activity exceeded the longest pulses produced on NSTX (tpulse > 1.8s). The increased flux of the central solenoid facilitated the development of stationary L-mode discharges over a range of density and plasma current (Ip). H-mode discharges achieved similar levels of stored energy, confinement (H98y,2 > 1) and stability (βN/βN-nowall > 1) compared to NSTX discharges for Ip ≤ 1 MA. High-performance H-mode scenarios require an L-H transition early in the Ip ramp-up phase in order to obtain low internal inductance (li) throughout the discharge, which is conducive to maintaining vertical stability at high elongation (κ > 2.2) and achieving long periods of MHD quiescent operations. The rapid progress in developing L- and H-mode scenarios in support of the scientific program was enabled by advances in real-time plasma control, efficient error field identification and correction, effective conditioning of the graphite wall and excellent diagnostic availability.« less
Lunar and Mars missions - Challenges for advanced life support
NASA Technical Reports Server (NTRS)
Duke, Michael B.
1988-01-01
The development of a suite of scenarios is a prerequisite to the studies that will enable an informed decision by the United States on a program to meet the recently announced space policy goal to expand human presence beyond earth orbit. NASA's Office of Exploration is currently studying a range of initiative options that would extend the sphere of human activity in space to Mars and include permanent bases or outposts on the moon and on Mars. This paper describes the evolutionary lunar base and the Mars expedition scenarios in some detail so that an evaluation can be made from the point of view of human support and opportunities. Alternative approaches in the development of lunar outposts are outlined along with Mars expeditionary scenarios. Human environmental issues are discussed, including: closed loop life support systems; EVA systems; mobility systems; and medical support, physiological deconditioning, and psychological effects associated with long-duration missions.
Pax: A permanent base for human habitation of Mars
NASA Technical Reports Server (NTRS)
Moore, Gary T.; Rebholz, Patrick J.; Fieber, Joseph P.; Huebner-Moths, Janis; Paruleski, Kerry L.
1992-01-01
The Advanced Design Program in Space Architecture at the University of Wisconsin-Milwaukee supported the synthesis report and two of its scenarios - 'Architecture 1' and 'Architecture 4' - and the Weaver ExPO report on near-term extraterrestrial explorations during the spring of 1992. The project investigated the implications of different mission scenarios, the Martian environment, supporting technologies, and especially human factors and environment-behavior considerations for the design of the first permanent Martian base. This paper presents the results of that investigation. The paper summarizes site selection, development of habitability design requirements based on environment-behavior research, construction sequencing, and a full concept design and design development for a first permanent Martian base and habitat. The proposed design is presented in terms of an integrative mission scenario and master plan phased through initial operational configuration, base site plan, and design development details of a complete Martian habitat for 18 crew members including all laboratory, mission control, and crew support spaces.
The Systems Autonomy Demonstration Project - Catalyst for Space Station advanced automation
NASA Technical Reports Server (NTRS)
Healey, Kathleen J.
1988-01-01
The Systems Autonomy Demonstration Project (SADP) was initiated by NASA to address the advanced automation needs for the Space Station program. The application of advanced automation to the Space Station's operations management system (OMS) is discussed. The SADP's future goals and objectives are discussed with respect to OMS functional requirements, design, and desired evolutionary capabilities. Major technical challenges facing the designers, developers, and users of the OMS are identified in order to guide the definition of objectives, plans, and scenarios for future SADP demonstrations, and to focus the efforts on the supporting research.
Anticipatory Water Management in Phoenix using Advanced Scenario Planning and Analyses: WaterSim 5
NASA Astrophysics Data System (ADS)
Sampson, D. A.; Quay, R.; White, D. D.; Gober, P.; Kirkwood, C.
2013-12-01
Complexity, uncertainty, and variability are inherent properties of linked social and natural processes; sustainable resource management must somehow consider all three. Typically, a decision support tool (using scenario analyses) is used to examine management alternatives under suspected trajectories in driver variables (i.e., climate forcing's, growth or economic projections, etc.). This traditional planning focuses on a small set of envisioned scenarios whose outputs are compared against one-another in order to evaluate their differing impacts on desired metrics. Human cognition typically limits this to three to five scenarios. However, complex and highly uncertain issues may require more, often much more, than five scenarios. In this case advanced scenario analysis provides quantitative or qualitative methods that can reveal patterns and associations among scenario metrics for a large ensemble of scenarios. From this analysis, then, a smaller set of heuristics that describe the complexity and uncertainty revealed provides a basis to guide planning in an anticipatory fashion. Our water policy and management model, termed WaterSim, permits advanced scenario planning and analysis for the Phoenix Metropolitan Area. In this contribution we examine the concepts of advanced scenario analysis on a large scale ensemble of scenarios using our work with WaterSim as a case study. For this case study we created a range of possible water futures by creating scenarios that encompasses differences in water supplies (our surrogates for climate change, drought, and inherent variability in riverine flows), population growth, and per capital water consumption. We used IPCC estimates of plausible, future, alterations in riverine runoff, locally produced and vetted estimates of population growth projections, and empirical trends in per capita water consumption for metropolitan cities. This ensemble consisted of ~ 30, 700 scenarios (~575 k observations). We compared and contrasted two metropolitan communities that exhibit differing growth projections and water portfolios; moderate growth with a diverse portfolio versus high growth for a more restrictive portfolio. Results illustrate that both communities exhibited an expanding envelope of possible, future water outcomes with rational water management trajectories. However, a more diverse portfolio resulted in a broad, time-insensitive decision space for management interventions. The reverse was true for the more restrictive water portfolio with high growth projections.
He, Yong; Wang, Hong; Qian, Budong; McConkey, Brian; DePauw, Ron
2012-01-01
Shorter growing season and water stress near wheat maturity are the main factors that presumably limit the yield potential of spring wheat due to late seeding in Saskatchewan, Canada. Advancing seeding dates can be a strategy to help producers mitigate the impact of climate change on spring wheat. It is unknown, however, how early farmers can seed while minimizing the risk of spring frost damage and the soil and machinery constraints. This paper explores early seeding dates of spring wheat on the Canadian Prairies under current and projected future climate. To achieve this, (i) weather records from 1961 to 1990 were gathered at three sites with different soil and climate conditions in Saskatchewan, Canada; (ii) four climate databases that included a baseline (treated as historic weather climate during the period of 1961-1990) and three climate change scenarios (2040-2069) developed by the Canadian global climate model (GCM) with the forcing of three greenhouse gas (GHG) emission scenarios (A2, A1B and B1); (iii) seeding dates of spring wheat (Triticum aestivum L.) under baseline and projected future climate were predicted. Compared with the historical record of seeding dates, the predicted seeding dates were advanced under baseline climate for all sites using our seeding date model. Driven by the predicted temperature increase of the scenarios compared with baseline climate, all climate change scenarios projected significantly earlier seeding dates than those currently used. Compared to the baseline conditions, there is no reduction in grain yield because precipitation increases during sensitive growth stages of wheat, suggesting that there is potential to shift seeding to an earlier date. The average advancement of seeding dates varied among sites and chosen scenarios. The Swift Current (south-west) site has the highest potential for earlier seeding (7 to 11 days) whereas such advancement was small in the Melfort (north-east, 2 to 4 days) region. The extent of projected climate change in Saskatchewan indicates that growers in this region have the potential of earlier seeding. The results obtained in this study may be used for adaptation assessments of seeding dates under possible climate change to mitigate the impact of potential warming.
Advancing Adventure Education Using Digital Motion-Sensing Games
ERIC Educational Resources Information Center
Shih, Ju-Ling; Hsu, Yu-Jen
2016-01-01
This study used the Xbox Kinect and Unity 3D game engine to develop two motion-sensing games in which the participants, in simulated scenarios, could experience activities that are unattainable in real life, become immersed in collaborative activities, and explore the value of adventure education. Adventure Education involves courses that…
The W7-X ECRH Plant: Recent Achievements
NASA Astrophysics Data System (ADS)
Erckmann, V.; Brand, P.; Braune, H.; Dammertz, G.; Gantenbein, G.; Kasparek, W.; Laqua, H. P.; Michel, G.; Schmid, M.; Thumm, M.; Weissgerber, M.
2007-09-01
The 10 MW, 140 GHz, CW ECRH-plant for W7-X is in an advanced state of commissioning and the installation was used to investigate advanced applications for extended heating- and current drive scenarios. The operation of the TED gyrotrons was recently extended to a 2nd frequency of 103.6 GHz at reduced output power and first results are presented. An improved collector sweep system for the W7-X gyrotrons with enhanced power capability and smooth power distribution was developed, results are reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristine Barrett; Shannon Bragg-Sitton
The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Research and Development (R&D) Pathway encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. To achieve significant operating improvements while remaining within safety boundaries, significant steps beyond incremental improvements in the current generation of nuclear fuel are required. Fundamental improvements are required in the areas of nuclear fuel composition, cladding integrity, and the fuel/cladding interaction to allow power uprates and increased fuel burn-up allowance while potentially improving safety margin through the adoption of an “accident tolerant” fuel system thatmore » would offer improved coping time under accident scenarios. With a development time of about 20 – 25 years, advanced fuel designs must be started today and proven in current reactors if future reactor designs are to be able to use them with confidence.« less
NASA Astrophysics Data System (ADS)
Cooper, J.; Loomis, G.; Kalen, D.; Boving, T. B.; Morales, I.; Amador, J.
2015-12-01
The effects of climate change are expected to reduce the ability of soil-based onsite wastewater treatment systems (OWTS), to treat domestic wastewater. In the northeastern U.S., the projected increase in atmospheric temperature, elevation of water tables from rising sea levels, and heightened precipitation will reduce the volume of unsaturated soil and oxygen available for treatment. Incomplete removal of contaminants may lead to transport of pathogens, nutrients, and biochemical oxygen demand (BOD) to groundwater, increasing the risk to public health and likelihood of eutrophying aquatic ecosystems. Advanced OWTS, which include pre-treatment steps and provide unsaturated drainfields of greater volume relative to conventional OWTS, are expected to be more resilient to climate change. We used intact soil mesocosms to quantify water quality functions for two advanced shallow narrow drainfield types and a conventional drainfield under a current climate scenario and a moderate climate change scenario of 30 cm rise in water table and 5°C increase in soil temperature. While no fecal coliform bacteria (FCB) was released under the current climate scenario, up to 109 CFU FCB/mL (conventional) and up to 20 CFU FCB/mL (shallow narrow) were released under the climate change scenario. Total P removal rates dropped from 100% to 54% (conventional) and 71% (shallow narrow) under the climate change scenario. Total N removal averaged 17% under both climate scenarios in the conventional, but dropped from 5.4% to 0% in the shallow narrow under the climate change scenario, with additional leaching of N in excess of inputs indicating release of previously held N. No significant difference was observed between scenarios for BOD removal. The initial data indicate that while advanced OWTS retain more function under the climate change scenario, all three drainfield types experience some diminished treatment capacity.
SimCenter Hawaii: Virtual Reality Applications for Health Care Education and Training
2008-12-01
systems can provide realistic, procedural skills training,(12) the scenarios developed for triage would primarily develop and assess cognitive skill...Education and Training Conclusions Simulator-based training has been shown to improve outcomes for both cognitive as well as motor-skills...training.(7) Cognitive modules can be distributed through advanced learning networks.(4) This has significant implications, because enterprise wide
Horneck, G; Facius, R; Reichert, M; Rettberg, P; Seboldt, W; Manzey, D; Comet, B; Maillet, A; Preiss, H; Schauer, L; Dussap, C G; Poughon, L; Belyavin, A; Reitz, G; Baumstark-Khan, C; Gerzer, R
2003-01-01
The European Space Agency has recently initiated a study of the human responses, limits and needs with regard to the stress environments of interplanetary and planetary missions. Emphasis has been laid on human health and performance care as well as advanced life support developments including bioregenerative life support systems and environmental monitoring. The overall study goals were as follows: (i) to define reference scenarios for a European participation in human exploration and to estimate their influence on the life sciences and life support requirements; (ii) for selected mission scenarios, to critically assess the limiting factors for human health, wellbeing, and performance and to recommend relevant countermeasures; (iii) for selected mission scenarios, to critically assess the potential of advanced life support developments and to propose a European strategy including terrestrial applications; (iv) to critically assess the feasibility of existing facilities and technologies on ground and in space as testbeds in preparation for human exploratory missions and to develop a test plan for ground and space campaigns; (v) to develop a roadmap for a future European strategy towards human exploratory missions, including preparatory activities and terrestrial applications and benefits. This paper covers the part of the HUMEX study dealing with lunar missions. A lunar base at the south pole where long-time sunlight and potential water ice deposits could be assumed was selected as the Moon reference scenario. The impact on human health, performance and well being has been investigated from the view point of the effects of microgravity (during space travel), reduced gravity (on the Moon) and abrupt gravity changes (during launch and landing), of the effects of cosmic radiation including solar particle events, of psychological issues as well as general health care. Countermeasures as well as necessary research using ground-based test beds and/or the International Space Station have been defined. Likewise advanced life support systems with a high degree of autonomy and regenerative capacity and synergy effects were considered where bioregenerative life support systems and biodiagnostic systems become essential. Finally, a European strategy leading to a potential European participation in future human exploratory missions has been recommended. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Horneck, G.; Facius, R.; Reichert, M.; Rettberg, P.; Seboldt, W.; Manzey, D.; Comet, B.; Maillet, A.; Preiss, H.; Schauer, L.;
2003-01-01
The European Space Agency has recently initiated a study of the human responses, limits and needs with regard to the stress environments of interplanetary and planetary missions. Emphasis has been laid on human health and performance care as well as advanced life support developments including bioregenerative life support systems and environmental monitoring. The overall study goals were as follows: (i) to define reference scenarios for a European participation in human exploration and to estimate their influence on the life sciences and life support requirements; (ii) for selected mission scenarios, to critically assess the limiting factors for human health, wellbeing, and performance and to recommend relevant countermeasures; (iii) for selected mission scenarios, to critically assess the potential of advanced life support developments and to propose a European strategy including terrestrial applications; (iv) to critically assess the feasibility of existing facilities and technologies on ground and in space as testbeds in preparation for human exploratory missions and to develop a test plan for ground and space campaigns; (v) to develop a roadmap for a future European strategy towards human exploratory missions, including preparatory activities and terrestrial applications and benefits. This paper covers the part of the HUMEX study dealing with lunar missions. A lunar base at the south pole where long-time sunlight and potential water ice deposits could be assumed was selected as the Moon reference scenario. The impact on human health, performance and well being has been investigated from the view point of the effects of microgravity (during space travel), reduced gravity (on the Moon) and abrupt gravity changes (during launch and landing), of the effects of cosmic radiation including solar particle events, of psychological issues as well as general health care. Countermeasures as well as necessary research using ground-based test beds and/or the International Space Station have been defined. Likewise advanced life support systems with a high degree of autonomy and regenerative capacity and synergy effects were considered where bioregenerative life support systems and biodiagnostic systems become essential. Finally, a European strategy leading to a potential European participation in future human exploratory missions has been recommended. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.
Nilsson, Daniel; Lindman, Magdalena; Victor, Trent; Dozza, Marco
2018-04-01
Single-vehicle run-off-road crashes are a major traffic safety concern, as they are associated with a high proportion of fatal outcomes. In addressing run-off-road crashes, the development and evaluation of advanced driver assistance systems requires test scenarios that are representative of the variability found in real-world crashes. We apply hierarchical agglomerative cluster analysis to define similarities in a set of crash data variables, these clusters can then be used as the basis in test scenario development. Out of 13 clusters, nine test scenarios are derived, corresponding to crashes characterised by: drivers drifting off the road in daytime and night-time, high speed departures, high-angle departures on narrow roads, highways, snowy roads, loss-of-control on wet roadways, sharp curves, and high speeds on roads with severe road surface conditions. In addition, each cluster was analysed with respect to crash variables related to the crash cause and reason for the unintended lane departure. The study shows that cluster analysis of representative data provides a statistically based method to identify relevant properties for run-off-road test scenarios. This was done to support development of vehicle-based run-off-road countermeasures and driver behaviour models used in virtual testing. Future studies should use driver behaviour from naturalistic driving data to further define how test-scenarios and behavioural causation mechanisms should be included. Copyright © 2018 Elsevier Ltd. All rights reserved.
Comparison of a Traditional Probabilistic Risk Assessment Approach with Advanced Safety Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Curtis L; Mandelli, Diego; Zhegang Ma
2014-11-01
As part of the Light Water Sustainability Program (LWRS) [1], the purpose of the Risk Informed Safety Margin Characterization (RISMC) [2] Pathway research and development (R&D) is to support plant decisions for risk-informed margin management with the aim to improve economics, reliability, and sustain safety of current NPPs. In this paper, we describe the RISMC analysis process illustrating how mechanistic and probabilistic approaches are combined in order to estimate a safety margin. We use the scenario of a “station blackout” (SBO) wherein offsite power and onsite power is lost, thereby causing a challenge to plant safety systems. We describe themore » RISMC approach, illustrate the station blackout modeling, and contrast this with traditional risk analysis modeling for this type of accident scenario. We also describe our approach we are using to represent advanced flooding analysis.« less
NASA Technical Reports Server (NTRS)
Dias, William S.; Matijevic, Jacob R.; Venkataraman, Subramani T.; Smith, Jeffrey H.; Lindemann, Randel A.; Levin, Richard R.
1992-01-01
This paper provides an initial trade-off study among several lunar construction options available to the Space Exploration Initiative. The relative time effectiveness of Extra-Vehicular Activity (EVA), Intra-Vehicular Activity (IVA), and Earth-based remote control assembly and construction methods are studied. Also considered is whether there is any construction time savings to building roads in advance, or surveying the construction sites with orbiters or rovers in advance. The study was conducted by adding detail to a potentially real scenario - a nuclear power plant - and applying time multipliers for the various control options and terrain alternatives, provided by roboticists among the authors. The authors conclude that IVA is a faster construction method than either EVA or construction conducted remotely from Earth. Surveying proposed sites in advance, with orbiters and rovers, provides a significant time savings through adding to certainty, and therefore may be cost effective. Developing a heavy-lift launch capability and minimizing assembly and construction processes by landing large payloads is probably worthwhile to the degree possible, as construction activities would use a large amount of surface operations time.
Neo-deterministic definition of earthquake hazard scenarios: a multiscale application to India
NASA Astrophysics Data System (ADS)
Peresan, Antonella; Magrin, Andrea; Parvez, Imtiyaz A.; Rastogi, Bal K.; Vaccari, Franco; Cozzini, Stefano; Bisignano, Davide; Romanelli, Fabio; Panza, Giuliano F.; Ashish, Mr; Mir, Ramees R.
2014-05-01
The development of effective mitigation strategies requires scientifically consistent estimates of seismic ground motion; recent analysis, however, showed that the performances of the classical probabilistic approach to seismic hazard assessment (PSHA) are very unsatisfactory in anticipating ground shaking from future large earthquakes. Moreover, due to their basic heuristic limitations, the standard PSHA estimates are by far unsuitable when dealing with the protection of critical structures (e.g. nuclear power plants) and cultural heritage, where it is necessary to consider extremely long time intervals. Nonetheless, the persistence in resorting to PSHA is often explained by the need to deal with uncertainties related with ground shaking and earthquakes recurrence. We show that current computational resources and physical knowledge of the seismic waves generation and propagation processes, along with the improving quantity and quality of geophysical data, allow nowadays for viable numerical and analytical alternatives to the use of PSHA. The advanced approach considered in this study, namely the NDSHA (neo-deterministic seismic hazard assessment), is based on the physically sound definition of a wide set of credible scenario events and accounts for uncertainties and earthquakes recurrence in a substantially different way. The expected ground shaking due to a wide set of potential earthquakes is defined by means of full waveforms modelling, based on the possibility to efficiently compute synthetic seismograms in complex laterally heterogeneous anelastic media. In this way a set of scenarios of ground motion can be defined, either at national and local scale, the latter considering the 2D and 3D heterogeneities of the medium travelled by the seismic waves. The efficiency of the NDSHA computational codes allows for the fast generation of hazard maps at the regional scale even on a modern laptop computer. At the scenario scale, quick parametric studies can be easily performed to understand the influence of the model characteristics on the computed ground shaking scenarios. For massive parametric tests, or for the repeated generation of large scale hazard maps, the methodology can take advantage of more advanced computational platforms, ranging from GRID computing infrastructures to HPC dedicated clusters up to Cloud computing. In such a way, scientists can deal efficiently with the variety and complexity of the potential earthquake sources, and perform parametric studies to characterize the related uncertainties. NDSHA provides realistic time series of expected ground motion readily applicable for seismic engineering analysis and other mitigation actions. The methodology has been successfully applied to strategic buildings, lifelines and cultural heritage sites, and for the purpose of seismic microzoning in several urban areas worldwide. A web application is currently being developed that facilitates the access to the NDSHA methodology and the related outputs by end-users, who are interested in reliable territorial planning and in the design and construction of buildings and infrastructures in seismic areas. At the same, the web application is also shaping up as an advanced educational tool to explore interactively how seismic waves are generated at the source, propagate inside structural models, and build up ground shaking scenarios. We illustrate the preliminary results obtained from a multiscale application of NDSHA approach to the territory of India, zooming from large scale hazard maps of ground shaking at bedrock, to the definition of local scale earthquake scenarios for selected sites in the Gujarat state (NW India). The study aims to provide the community (e.g. authorities and engineers) with advanced information for earthquake risk mitigation, which is particularly relevant to Gujarat in view of the rapid development and urbanization of the region.
NASA Technical Reports Server (NTRS)
Pepin, Gerard R.
1992-01-01
The simulation development associated with the network models of both the Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) and the Full Service ISDN Satellite (FSIS) architectures is documented. The ISIS Network Model design represents satellite systems like the Advanced Communications Technology Satellite (ACTS) orbiting switch. The FSIS architecture, the ultimate aim of this element of the Satellite Communications Applications Research (SCAR) Program, moves all control and switching functions on-board the next generation ISDN communications satellite. The technical and operational parameters for the advanced ISDN communications satellite design will be obtained from the simulation of ISIS and FSIS engineering software models for their major subsystems. Discrete event simulation experiments will be performed with these models using various traffic scenarios, design parameters, and operational procedures. The data from these simulations will be used to determine the engineering parameters for the advanced ISDN communications satellite.
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Flores, Luis; Fleming, Land; Throop, Daiv
2002-01-01
A hybrid discrete/continuous simulation tool, CONFIG, has been developed to support evaluation of the operability life support systems. CON FIG simulates operations scenarios in which flows and pressures change continuously while system reconfigurations occur as discrete events. In simulations, intelligent control software can interact dynamically with hardware system models. CONFIG simulations have been used to evaluate control software and intelligent agents for automating life support systems operations. A CON FIG model of an advanced biological water recovery system has been developed to interact with intelligent control software that is being used in a water system test at NASA Johnson Space Center
International Conference on Advances in Radiation Oncology (ICARO): outcomes of an IAEA meeting.
Salminen, Eeva K; Kiel, Krystyna; Ibbott, Geoffrey S; Joiner, Michael C; Rosenblatt, Eduardo; Zubizarreta, Eduardo; Wondergem, Jan; Meghzifene, Ahmed
2011-02-04
The IAEA held the International Conference on Advances in Radiation Oncology (ICARO) in Vienna on 27-29 April 2009. The Conference dealt with the issues and requirements posed by the transition from conventional radiotherapy to advanced modern technologies, including staffing, training, treatment planning and delivery, quality assurance (QA) and the optimal use of available resources. The current role of advanced technologies (defined as 3-dimensional and/or image guided treatment with photons or particles) in current clinical practice and future scenarios were discussed.ICARO was organized by the IAEA at the request of the Member States and co-sponsored and supported by other international organizations to assess advances in technologies in radiation oncology in the face of economic challenges that most countries confront. Participants submitted research contributions, which were reviewed by a scientific committee and presented via 46 lectures and 103 posters. There were 327 participants from 70 Member States as well as participants from industry and government. The ICARO meeting provided an independent forum for the interaction of participants from developed and developing countries on current and developing issues related to radiation oncology.
Optimisation of Critical Infrastructure Protection: The SiVe Project on Airport Security
NASA Astrophysics Data System (ADS)
Breiing, Marcus; Cole, Mara; D'Avanzo, John; Geiger, Gebhard; Goldner, Sascha; Kuhlmann, Andreas; Lorenz, Claudia; Papproth, Alf; Petzel, Erhard; Schwetje, Oliver
This paper outlines the scientific goals, ongoing work and first results of the SiVe research project on critical infrastructure security. The methodology is generic while pilot studies are chosen from airport security. The outline proceeds in three major steps, (1) building a threat scenario, (2) development of simulation models as scenario refinements, and (3) assessment of alternatives. Advanced techniques of systems analysis and simulation are employed to model relevant airport structures and processes as well as offences. Computer experiments are carried out to compare and optimise alternative solutions. The optimality analyses draw on approaches to quantitative risk assessment recently developed in the operational sciences. To exploit the advantages of the various techniques, an integrated simulation workbench is build up in the project.
NASA Astrophysics Data System (ADS)
Santoro, M.; Dubois, G.; Schulz, M.; Skøien, J. O.; Nativi, S.; Peedell, S.; Boldrini, E.
2012-04-01
The number of interoperable research infrastructures has increased significantly with the growing awareness of the efforts made by the Global Earth Observation System of Systems (GEOSS). One of the Social Benefit Areas (SBA) that is benefiting most from GEOSS is biodiversity, given the costs of monitoring the environment and managing complex information, from space observations to species records including their genetic characteristics. But GEOSS goes beyond the simple sharing of the data as it encourages the connectivity of models (the GEOSS Model Web), an approach easing the handling of often complex multi-disciplinary questions such as understanding the impact of environmental and climatological factors on ecosystems and habitats. In the context of GEOSS Architecture Implementation Pilot - Phase 3 (AIP-3), the EC-funded EuroGEOSS and GENESIS projects have developed and successfully demonstrated the "eHabitat" use scenario dealing with Climate Change and Biodiversity domains. Based on the EuroGEOSS multidisciplinary brokering infrastructure and on the DOPA (Digital Observatory for Protected Areas, see http://dopa.jrc.ec.europa.eu/), this scenario demonstrated how a GEOSS-based interoperability infrastructure can aid decision makers to assess and possibly forecast the irreplaceability of a given protected area, an essential indicator for assessing the criticality of threats this protected area is exposed to. The "eHabitat" use scenario was advanced in the GEOSS Sprint to Plenary activity; the advanced scenario will include the "EuroGEOSS Data Access Broker" and a new version of the eHabitat model in order to support the use of uncertain data. The multidisciplinary interoperability infrastructure which is used to demonstrate the "eHabitat" use scenario is composed of the following main components: a) A Discovery Broker: this component is able to discover resources from a plethora of different and heterogeneous geospatial services, presenting them on a single and standard discovery service; b) A Discovery Augmentation Component (DAC): this component builds on existing discovery and semantic services in order to provide the infrastructure with semantics enabled queries; c) A Data Access Broker: this component provides a seamless access of heterogeneous remote resources via a unique and standard service; d) Environmental Modeling Components (i.e. OGC WPS): these implement algorithms to predict evolution of protected areas This presentation introduces the advanced infrastructure developed to enhance the "eHabitat" use scenario. The presented infrastructure will be accessible through the GEO Portal and was used for demonstrating the "eHabitat" model at the last GEO Plenary Meeting - Istanbul, November 2011.
Pax permanent Martian base: Space architecture for the first human habitation on Mars, volume 5
NASA Technical Reports Server (NTRS)
Huebner-Moths, Janis; Fieber, Joseph P.; Rebholz, Patrick J.; Paruleski, Kerry L.; Moore, Gary T. (Editor)
1992-01-01
America at the Threshold: Report of the Synthesis Group on America's Space Exploration Initiative (the 'Synthesis Report,' sometimes called the Stafford Report after its astronaut chair, published in 1991) recommended that NASA explore what it called four 'architectures,' i.e., four different scenarios for habitation on Mars. The Advanced Design Program in Space Architecture at the University of Wisconsin-Milwaukee supported this report and two of its scenarios--'Architecture 1' and 'Architecture 4'--during the spring of 1992. This report investigates the implications of different mission scenarios, the Martian environment, supporting technologies, and especially human factors and environment-behavior considerations for the design of the first permanent Martian base. The report is comprised of sections on mission analysis, implications of the Martian atmosphere and geologic environment, development of habitability design requirements based on environment-behavior and human factors research, and a full design proposed (concept design and design development) for the first permanent Martian base and habitat. The design is presented in terms of a base site plan, master plan based on a Mars direct scenario phased through IOC, and design development details of a complete Martian habitat for 18 crew members including all laboratory, mission control, and crew support spaces.
Solar power satellite system definition study, volume 4, phase 2
NASA Technical Reports Server (NTRS)
1979-01-01
Results of an overall evaluation of the solar power satellite concept are reported. Specific topics covered include: solid state sandwich configuration; parametric development of reliability design; power distribution system for solid state solar power satellites; multibeam transmission; GEO base system configuration; suppression of the heavy lift launch vehicle trajectory; conceptual design of an offshore space center facility; solar power satellite development and operations scenario; and microwave power transmission technology, advancement, development, and facility requirements.
NASA Astrophysics Data System (ADS)
Wang, Y.; Tobias, B.; Chang, Y.-T.; Yu, J.-H.; Li, M.; Hu, F.; Chen, M.; Mamidanna, M.; Phan, T.; Pham, A.-V.; Gu, J.; Liu, X.; Zhu, Y.; Domier, C. W.; Shi, L.; Valeo, E.; Kramer, G. J.; Kuwahara, D.; Nagayama, Y.; Mase, A.; Luhmann, N. C., Jr.
2017-07-01
Electron cyclotron emission (ECE) imaging is a passive radiometric technique that measures electron temperature fluctuations; and microwave imaging reflectometry (MIR) is an active radar imaging technique that measures electron density fluctuations. Microwave imaging diagnostic instruments employing these techniques have made important contributions to fusion science and have been adopted at major fusion facilities worldwide including DIII-D, EAST, ASDEX Upgrade, HL-2A, KSTAR, LHD, and J-TEXT. In this paper, we describe the development status of three major technological advancements: custom mm-wave integrated circuits (ICs), digital beamforming (DBF), and synthetic diagnostic modeling (SDM). These have the potential to greatly advance microwave fusion plasma imaging, enabling compact and low-noise transceiver systems with real-time, fast tracking ability to address critical fusion physics issues, including ELM suppression and disruptions in the ITER baseline scenario, naturally ELM-free states such as QH-mode, and energetic particle confinement (i.e. Alfvén eigenmode stability) in high-performance regimes that include steady-state and advanced tokamak scenarios. Furthermore, these systems are fully compatible with today’s most challenging non-inductive heating and current drive systems and capable of operating in harsh environments, making them the ideal approach for diagnosing long-pulse and steady-state tokamaks.
Wang, Y.; Tobias, B.; Chang, Y. -T.; ...
2017-03-14
Electron cyclotron emission (ECE) imaging is a passive radiometric technique that measures electron temperature fluctuations; and microwave imaging reflectometry (MIR) is an active radar imaging technique that measures electron density fluctuations. The microwave imaging diagnostic instruments employing these techniques have made important contributions to fusion science and have been adopted at major fusion facilities worldwide including DIII-D, EAST, ASDEX Upgrade, HL-2A, KSTAR, LHD, and J-TEXT. In this paper, we describe the development status of three major technological advancements: custom mm-wave integrated circuits (ICs), digital beamforming (DBF), and synthetic diagnostic modeling (SDM). These also have the potential to greatly advance microwavemore » fusion plasma imaging, enabling compact and low-noise transceiver systems with real-time, fast tracking ability to address critical fusion physics issues, including ELM suppression and disruptions in the ITER baseline scenario, naturally ELM-free states such as QH-mode, and energetic particle confinement (i.e. Alfven eigenmode stability) in high-performance regimes that include steady-state and advanced tokamak scenarios. Furthermore, these systems are fully compatible with today's most challenging non-inductive heating and current drive systems and capable of operating in harsh environments, making them the ideal approach for diagnosing long-pulse and steady-state tokamaks.« less
OECD/NEA Ongoing activities related to the nuclear fuel cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cornet, S.M.; McCarthy, K.; Chauvin, N.
2013-07-01
As part of its role in encouraging international collaboration, the OECD Nuclear Energy Agency is coordinating a series of projects related to the Nuclear Fuel Cycle. The Nuclear Science Committee (NSC) Working Party on Scientific Issues of the Nuclear Fuel Cycle (WPFC) comprises five different expert groups covering all aspects of the fuel cycle from front to back-end. Activities related to fuels, materials, physics, separation chemistry, and fuel cycles scenarios are being undertaken. By publishing state-of-the-art reports and organizing workshops, the groups are able to disseminate recent research advancements to the international community. Current activities mainly focus on advanced nuclearmore » systems, and experts are working on analyzing results and establishing challenges associated to the adoption of new materials and fuels. By comparing different codes, the Expert Group on Advanced Fuel Cycle Scenarios is aiming at gaining further understanding of the scientific issues and specific national needs associated with the implementation of advanced fuel cycles. At the back end of the fuel cycle, separation technologies (aqueous and pyrochemical processing) are being assessed. Current and future activities comprise studies on minor actinides separation and post Fukushima studies. Regular workshops are also organized to discuss recent developments on Partitioning and Transmutation. In addition, the Nuclear Development Committee (NDC) focuses on the analysis of the economics of nuclear power across the fuel cycle in the context of changes of electricity markets, social acceptance and technological advances and assesses the availability of the nuclear fuel and infrastructure required for the deployment of existing and future nuclear power. The Expert Group on the Economics of the Back End of the Nuclear Fuel Cycle (EBENFC), in particular, is looking at assessing economic and financial issues related to the long term management of spent nuclear fuel. (authors)« less
A tool for the consensual analysis of decision-making scenarios.
Hunt, Geoffrey; Merzeder, Christine; Bischofberger, Iren
2018-05-01
The authors believe there is a need for novel ways of enhancing professional judgment and discretion in the contemporary healthcare environment. The objective is to provide a framework to guide a discursive analysis of an ongoing clinical scenario by a small group of healthcare professionals (4-12) to achieve consensual understanding in the decision-making necessary to resolve specific healthcare inadequacies and promote organisational learning. REPVAD is an acronym for the framework's five decision-making dimensions of reasoning, evidence, procedures, values, attitudes and defences. The design is set out in terms of well-defined definitions of the dimensions, a rationale for using REPVAD, and explications of dimensions one at a time. Furthermore, the REPVAD process of application to a scenario is set out, and a didactic scenario is given to show how REPVAD works together with a sample case. A discussion is fleshed out in four real life student cases, and a conclusion indicates strengths and weaknesses and the possibility of further development and transferability. In terms of findings, the model has been tried, tested and refined over a number of years in the development of advanced practitioners at university healthcare faculties in two European countries. Consent was obtained from the four participating students.
NASA Astrophysics Data System (ADS)
Battaglia, D. J.; Boyer, M. D.; Gerhardt, S.; Mueller, D.; Myers, C. E.; Guttenfelder, W.; Menard, J. E.; Sabbagh, S. A.; Scotti, F.; Bedoya, F.; Bell, R. E.; Berkery, J. W.; Diallo, A.; Ferraro, N.; Kaye, S. M.; Jaworski, M. A.; LeBlanc, B. P.; Ono, M.; Park, J.-K.; Podesta, M.; Raman, R.; Soukhanovskii, V.; NSTX-U Research, the; Operations; Engineering Team
2018-04-01
The National Spherical Torus Experiment Upgrade (NSTX-U) will advance the physics basis required for achieving steady-state, high-beta, and high-confinement conditions in a tokamak by accessing high toroidal fields (1 T) and plasma currents (1.0-2.0 MA) in a low aspect ratio geometry (A = 1.6-1.8) with flexible auxiliary heating systems (12 MW NBI, 6 MW HHFW). This paper describes the progress in the development of L- and H-mode discharge scenarios and the commissioning of operational tools in the first ten weeks of operation that enable the scientific mission of NSTX-U. Vacuum field calculations completed prior to operations supported the rapid development and optimization of inductive breakdown at different values of ohmic solenoid current. The toroidal magnetic field (B T0 = 0.65 T) exceeded the maximum values achieved on NSTX and novel long-pulse L-mode discharges with regular sawtooth activity exceeded the longest pulses produced on NSTX (t pulse > 1.8 s). The increased flux of the central solenoid facilitated the development of stationary L-mode discharges over a range of density and plasma current (I p). H-mode discharges achieved similar levels of stored energy, confinement (H98y,2 > 1) and stability (β N/β N-nowall > 1) compared to NSTX discharges for I p ⩽ 1 MA. High-performance H-mode scenarios require an L-H transition early in the I p ramp-up phase in order to obtain low internal inductance (l i) throughout the discharge, which is conducive to maintaining vertical stability at high elongation (κ > 2.2) and achieving long periods of MHD quiescent operations. The rapid progress in developing L- and H-mode scenarios in support of the scientific program was enabled by advances in real-time plasma control, efficient error field identification and correction, effective conditioning of the graphite wall and excellent diagnostic availability.
Satellite services system analysis study. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1981-01-01
Service requirements are considered. Topics include development of on-orbit operations scenarios, service equipment summary, crew interaction, and satellite features facilitating servicing. Service equipment concepts are considered. Topics include payload deployment, close proximity retrieval, on-orbit servicing, backup/contingency, delivery/retrieval of high energy payloads, Earth return, optional service, and advanced capabilities. Program requirements are assessed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moss, Richard H.; Engle, Nathan L.; Hall, John
This whitepaper is intended to provide a starting point for discussion at a workshop for the National Climate Assessment (NCA) that focuses on the use and development of scenarios. The paper will provide background needed by participants in the workshop in order to review options for developing and using scenarios in NCA. The paper briefly defines key terms and establishes a conceptual framework for developing consistent scenarios across different end uses and spatial scales. It reviews uses of scenarios in past U.S. national assessments and identifies potential users of and needs for scenarios for both the report scheduled for releasemore » in June 2013 and to support an ongoing distributed assessment process in sectors and regions around the country. Because scenarios prepared for the NCA will need to leverage existing research, the paper takes account of recent scientific advances and activities that could provide needed inputs. Finally, it considers potential approaches for providing methods, data, and other tools for assessment participants. We note that the term 'scenarios' has many meanings. An important goal of the whitepaper (and portions of the workshop agenda) is pedagogical (i.e., to compare different meanings and uses of the term and make assessment participants aware of the need to be explicit about types and uses of scenarios). In climate change research, scenarios have been used to establish bounds for future climate conditions and resulting effects on human and natural systems, given a defined level of greenhouse gas emissions. This quasi-predictive use contrasts with the way decision analysts typically use scenarios (i.e., to consider how robust alternative decisions or strategies may be to variation in key aspects of the future that are uncertain). As will be discussed, in climate change research and assessment, scenarios describe a range of aspects of the future, including major driving forces (both human activities and natural processes), changes in climate and related environmental conditions (e.g., sea level), and evolution of societal capability to respond to climate change. This wide range of scenarios is needed because the implications of climate change for the environment and society depend not only on changes in climate themselves, but also on human responses. This degree of breadth introduces and number of challenges for communication and research.« less
Scenarios and performance measures for advanced ISDN satellite design and experiments
NASA Technical Reports Server (NTRS)
Pepin, Gerard R.
1991-01-01
Described here are the contemplated input and expected output for the Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) and Full Service ISDN Satellite (FSIS) Models. The discrete event simulations of these models are presented with specific scenarios that stress ISDN satellite parameters. Performance measure criteria are presented for evaluating the advanced ISDN communication satellite designs of the NASA Satellite Communications Research (SCAR) Program.
Advancing Development and Greenhouse Gas Reductions in Vietnam's Wind Sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bilello, D.; Katz, J.; Esterly, S.
2014-09-01
Clean energy development is a key component of Vietnam's Green Growth Strategy, which establishes a target to reduce greenhouse gas (GHG) emissions from domestic energy activities by 20-30 percent by 2030 relative to a business-as-usual scenario. Vietnam has significant wind energy resources, which, if developed, could help the country reach this target while providing ancillary economic, social, and environmental benefits. Given Vietnam's ambitious clean energy goals and the relatively nascent state of wind energy development in the country, this paper seeks to fulfill two primary objectives: to distill timely and useful information to provincial-level planners, analysts, and project developers asmore » they evaluate opportunities to develop local wind resources; and, to provide insights to policymakers on how coordinated efforts may help advance large-scale wind development, deliver near-term GHG emission reductions, and promote national objectives in the context of a low emission development framework.« less
Advances in the physics basis for the European DEMO design
NASA Astrophysics Data System (ADS)
Wenninger, R.; Arbeiter, F.; Aubert, J.; Aho-Mantila, L.; Albanese, R.; Ambrosino, R.; Angioni, C.; Artaud, J.-F.; Bernert, M.; Fable, E.; Fasoli, A.; Federici, G.; Garcia, J.; Giruzzi, G.; Jenko, F.; Maget, P.; Mattei, M.; Maviglia, F.; Poli, E.; Ramogida, G.; Reux, C.; Schneider, M.; Sieglin, B.; Villone, F.; Wischmeier, M.; Zohm, H.
2015-06-01
In the European fusion roadmap, ITER is followed by a demonstration fusion power reactor (DEMO), for which a conceptual design is under development. This paper reports the first results of a coherent effort to develop the relevant physics knowledge for that (DEMO Physics Basis), carried out by European experts. The program currently includes investigations in the areas of scenario modeling, transport, MHD, heating & current drive, fast particles, plasma wall interaction and disruptions.
NASA Technical Reports Server (NTRS)
Laurini, Kathleen C.; Hufenbach, Bernhard; Satoh, Maoki; Piedboeuf, Jean-Claude; Neumann, Benjamin
2010-01-01
Advancing critical and enhancing technologies is considered essential to enabling sustainable and affordable human space exploration. Critical technologies are those that enable a certain class of mission, such as technologies necessary for safe landing on the Martian surface, advanced propulsion, and closed loop life support. Others enhance the mission by leading to a greater satisfaction of mission objectives or increased probability of mission success. Advanced technologies are needed to reduce mass and cost. Many space agencies have studied exploration mission architectures and scenarios with the resulting lists of critical and enhancing technologies being very similar. With this in mind, and with the recognition that human space exploration will only be enabled by agencies working together to address these challenges, interested agencies participating in the International Space Exploration Coordination Group (ISECG) have agreed to perform a technology assessment as an important step in exploring cooperation opportunities for future exploration mission scenarios. "The Global Exploration Strategy: The Framework for Coordination" was developed by fourteen space agencies and released in May 2007. Since the fall of 2008, several International Space Exploration Coordination Group (ISECG) participating space agencies have been studying concepts for human exploration of the moon. They have identified technologies considered critical and enhancing of sustainable space exploration. Technologies such as in-situ resource utilization, advanced power generation/energy storage systems, reliable dust resistant mobility systems, and closed loop life support systems are important examples. Similarly, agencies such as NASA, ESA, and Russia have studied Mars exploration missions and identified critical technologies. They recognize that human and robotic precursor missions to destinations such as LEO, moon, and near earth objects provide opportunities to demonstrate the technologies needed for Mars mission. Agencies see the importance of assessing gaps and overlaps in their plans to advance technologies in order to leverage their investments and enable exciting missions as soon as practical. They see the importance of respecting the ability of any agency to invest in any technologies considered interesting or strategic. This paper will describe the importance of developing an appropriate international strategy for technology development and ideas for effective mechanisms for advancing an international strategy. This work will both inform and be informed by the development of an ISECG Global Exploration Roadmap and serve as a concrete step forward in advancing the Global Exploration Strategy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y.; Tobias, B.; Chang, Y. -T.
Electron cyclotron emission (ECE) imaging is a passive radiometric technique that measures electron temperature fluctuations; and microwave imaging reflectometry (MIR) is an active radar imaging technique that measures electron density fluctuations. The microwave imaging diagnostic instruments employing these techniques have made important contributions to fusion science and have been adopted at major fusion facilities worldwide including DIII-D, EAST, ASDEX Upgrade, HL-2A, KSTAR, LHD, and J-TEXT. In this paper, we describe the development status of three major technological advancements: custom mm-wave integrated circuits (ICs), digital beamforming (DBF), and synthetic diagnostic modeling (SDM). These also have the potential to greatly advance microwavemore » fusion plasma imaging, enabling compact and low-noise transceiver systems with real-time, fast tracking ability to address critical fusion physics issues, including ELM suppression and disruptions in the ITER baseline scenario, naturally ELM-free states such as QH-mode, and energetic particle confinement (i.e. Alfven eigenmode stability) in high-performance regimes that include steady-state and advanced tokamak scenarios. Furthermore, these systems are fully compatible with today's most challenging non-inductive heating and current drive systems and capable of operating in harsh environments, making them the ideal approach for diagnosing long-pulse and steady-state tokamaks.« less
Lansdowne, Krystal; Scully, Christopher G; Galeotti, Loriano; Schwartz, Suzanne; Marcozzi, David; Strauss, David G
2015-06-01
In 2010, the US Food and Drug Administration (Silver Spring, Maryland USA) created the Medical Countermeasures Initiative with the mission of development and promoting medical countermeasures that would be needed to protect the nation from identified, high-priority chemical, biological, radiological, or nuclear (CBRN) threats and emerging infectious diseases. The aim of this review was to promote regulatory science research of medical devices and to analyze how the devices can be employed in different CBRN scenarios. Triage in CBRN scenarios presents unique challenges for first responders because the effects of CBRN agents and the clinical presentations of casualties at each triage stage can vary. The uniqueness of a CBRN event can render standard patient monitoring medical device and conventional triage algorithms ineffective. Despite the challenges, there have been recent advances in CBRN triage technology that include: novel technologies; mobile medical applications ("medical apps") for CBRN disasters; electronic triage tags, such as eTriage; diagnostic field devices, such as the Joint Biological Agent Identification System; and decision support systems, such as the Chemical Hazards Emergency Medical Management Intelligent Syndromes Tool (CHEMM-IST). Further research and medical device validation can help to advance prehospital triage technology for CBRN events.
Interreality in the management of psychological stress: a clinical scenario.
Riva, Giuseppe; Raspelli, Simona; Pallavicini, Federica; Grassi, Alessandra; Algeri, Davide; Wiederhold, Brenda K; Gaggioli, Andrea
2010-01-01
The term "psychological stress" describes a situation in which a subject perceives that environmental demands tax or exceed his or her adaptive capacity. According to the Cochrane Database of Systematic Reviews, the best validated approach covering both stress management and stress treatment is the Cognitive Behavioral (CBT) approach. We aim to design, develop and test an advanced ICT based solution for the assessment and treatment of psychological stress that is able to improve the actual CBT approach. To reach this goal we will use the "interreality" paradigm integrating assessment and treatment within a hybrid environment, that creates a bridge between the physical and virtual worlds. Our claim is that bridging virtual experiences (fully controlled by the therapist, used to learn coping skills and emotional regulation) with real experiences (allowing both the identification of any critical stressors and the assessment of what has been learned) using advanced technologies (virtual worlds, advanced sensors and PDA/mobile phones) is the best way to address the above limitations. To illustrate the proposed concept, a clinical scenario is also presented and discussed: Paola, a 45 years old nurse, with a mother affected by progressive senile dementia.
Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario
NASA Astrophysics Data System (ADS)
Chen, Junjie; Li, Guoqiang; Qian, Jinping; Liu, Zixi
2012-11-01
The Experimental Advanced Superconducting Tokamak (EAST) is the first fully superconducting tokamak with a D-shaped cross-sectional plasma presently in operation. The ideal magnetohydrodynamic (MHD) stability and required power for the EAST advanced tokamak (AT) scenario with negative central shear and double transport barrier (DTB) are investigated. With the equilibrium code TOQ and stability code GATO, the ideal MHD stability is analyzed. It is shown that a moderate ratio of edge transport barriers' (ETB) height to internal transport barriers' (ITBs) height is beneficial to ideal MHD stability. The normalized beta βN limit is about 2.20 (without wall) and 3.70 (with ideal wall). With the scaling law of energy confinement time, the required heating power for EAST AT scenario is calculated. The total heating power Pt increases as the toroidal magnetic field BT or the normalized beta βN is increased.
Correlated Attack Modeling (CAM)
2003-10-01
describing attack models to a scenario recognition engine, a prototype of such an engine was developed, using components of the EMERALD intrusion...content. Results – The attacker gains information enabling remote access to database (i.e., privileged login information, database layout to allow...engine that uses attack specifications written in CAML. The implementation integrates two advanced technologies devel- oped in the EMERALD program [27, 31
Advanced technology requirements for large space structures. Part 5: Atlas program requirements
NASA Technical Reports Server (NTRS)
Katz, E.; Lillenas, A. N.; Broddy, J. A.
1977-01-01
The results of a special study which identifies and assigns priorities to technology requirements needed to accomplish a particular scenario of future large area space systems are described. Proposed future systems analyzed for technology requirements included large Electronic Mail, Microwave Radiometer, and Radar Surveillance Satellites. Twenty technology areas were identified as requirements to develop the proposed space systems.
Using Video-Based Instruction to Integrate Ethics into the Curriculum
ERIC Educational Resources Information Center
Sedaghat, Ali M.; Mintz, Steven M.; Wright, George M.
2011-01-01
This paper describes a video case discussion project based on the IMA's Statement of Ethical Professional Practice that was administered in a cost accounting class to assess the extent to which students were able to identify and discuss ethical issues raised by the facts of a case scenario. The case was developed by the IMA to advance the…
Survey of on-road image projection with pixel light systems
NASA Astrophysics Data System (ADS)
Rizvi, Sadiq; Knöchelmann, Marvin; Ley, Peer-Phillip; Lachmayer, Roland
2017-12-01
HID, LED and laser-based high resolution automotive headlamps, as of late known as `pixel light systems', are at the forefront of the developing technologies paving the way for autonomous driving. In addition to light distribution capabilities that outperform Adaptive Front Lighting and Matrix Beam systems, pixel light systems provide the possibility of image projection directly onto the street. The underlying objective is to improve the driving experience, in any given scenario, in terms of safety, comfort and interaction for all road users. The focus of this work is to conduct a short survey on this state-of-the-art image projection functionality. A holistic research regarding the image projection functionality can be divided into three major categories: scenario selection, technological development and evaluation design. Consequently, the work presented in this paper is divided into three short studies. Section 1 provides a brief introduction to pixel light systems and a justification for the approach adopted for this study. Section 2 deals with the selection of scenarios (and driving maneuvers) where image projection can play a critical role. Section 3 discusses high power LED and LED array based prototypes that are currently under development. Section 4 demonstrates results from an experiment conducted to evaluate the illuminance of an image space projected using a pixel light system prototype developed at the Institute of Product Development (IPeG). Findings from this work can help to identify and advance future research work relating to: further development of pixel light systems, scenario planning, examination of optimal light sources, behavioral response studies etc.
Potential economic value of drought information to support early warning in Africa
NASA Astrophysics Data System (ADS)
Quiroga, S.; Iglesias, A.; Diz, A.; Garrote, L.
2012-04-01
We present a methodology to estimate the economic value of advanced climate information for food production in Africa under climate change scenarios. The results aim to facilitate better choices in water resources management. The methodology includes 4 sequential steps. First two contrasting management strategies (with and without early warning) are defined. Second, the associated impacts of the management actions are estimated by calculating the effect of drought in crop productivity under climate change scenarios. Third, the optimal management option is calculated as a function of the drought information and risk aversion of potential information users. Finally we use these optimal management simulations to compute the economic value of enhanced water allocation rules to support stable food production in Africa. Our results show how a timely response to climate variations can help reduce loses in food production. The proposed framework is developed within the Dewfora project (Early warning and forecasting systems to predict climate related drought vulnerability and risk in Africa) that aims to improve the knowledge on drought forecasting, warning and mitigation, and advance the understanding of climate related vulnerability to drought and to develop a prototype operational forecasting.
NASA Technical Reports Server (NTRS)
Bruner, Sam; Baber, Scott; Harris,Chris; Caldwell, Nicholas; Keding, Peter; Rahrig, Kyle; Pho, Luck; Wlezian, Richard
2010-01-01
A conceptual commercial passenger transport study was performed to define a single vehicle for entry into service in the 2030 to 2035 timeframe, meeting customer demands as well as NASA goals for improved fuel economy, NOx emissions, noise, and operability into smaller airports. A study of future market and operational scenarios was used to guide the design of an advanced tube-and-wing configuration that utilized advanced material and structural concepts, an advanced three-shaft high-bypass turbofan engine, natural laminar flow technology, and a suite of other advanced technologies. This configuration was found to meet the goals for NOx emissions, noise, and field length. A 64 percent improvement in fuel economy compared to a current state-of-the-art airliner was achieved, which fell slightly short of the desired 70 percent goal. Technology maturation plans for the technologies used in the design were developed to help guide future research and development activities.
Vlakveld, Willem; Romoser, Matthew R. E.; Mehranian, Hasmik; Diete, Frank; Pollatsek, Alexander; Fisher, Donald L.
2012-01-01
Young drivers (younger than 25 years of age) are overrepresented in crashes. Research suggests that a relevant cause is inadequate visual search for possible hazards that are hidden from view. The objective of this study was to develop and evaluate a low-cost, fixed-base simulator training program that would address this failure. It was hypothesized that elicited crashes in the simulator training would result in better scanning for latent hazards in scenarios that were similar to the training scenarios but situated in a different environment (near transfer), and, to a lesser degree, would result in better scanning in scenarios that had altogether different latent hazards than those contained in the training scenarios (far transfer). To test the hypotheses, 18 trained and 18 untrained young novice drivers were evaluated on an advanced driving simulator (different from the training simulator). The eye movements of both groups were measured. In near transfer scenarios, trained drivers fixated the hazardous region 84% of the time, compared with only 57% of untrained drivers. In far transfer scenarios, trained drivers fixated the hazardous region 71 % of the time, compared with only 53% of untrained drivers. The differences between trained and untrained drivers in both the near transfer scenarios and the far transfer scenarios were significant, with a large effect size in the near transfer scenarios and a medium effect size in the far transfer scenarios [respectively: U = 63.00, p(2-tailed) < .01, r = −.53, and U = 88.00, p(2-tailed)<.05,r = −.39]. PMID:23082041
Management strategies in hospitals: scenario planning.
Ghanem, Mohamed; Schnoor, Jörg; Heyde, Christoph-Eckhard; Kuwatsch, Sandra; Bohn, Marco; Josten, Christoph
2015-01-01
Instead of waiting for challenges to confront hospital management, doctors and managers should act in advance to optimize and sustain value-based health. This work highlights the importance of scenario planning in hospitals, proposes an elaborated definition of the stakeholders of a hospital and defines the influence factors to which hospitals are exposed to. Based on literature analysis as well as on personal interviews with stakeholders we propose an elaborated definition of stakeholders and designed a questionnaire that integrated the following influence factors, which have relevant impact on hospital management: political/legal, economic, social, technological and environmental forces. These influence factors are examined to develop the so-called critical uncertainties. Thorough identification of uncertainties was based on a "Stakeholder Feedback". Two key uncertainties were identified and considered in this study: the development of workload for the medical staff the profit oriented performance of the medical staff. According to the developed scenarios, complementary education of the medical staff as well as of non-medical top executives and managers of hospitals was the recommended core strategy. Complementary scenario-specific strategic options should be considered whenever needed to optimize dealing with a specific future development of the health care environment. Strategic planning in hospitals is essential to ensure sustainable success. It considers multiple situations and integrates internal and external insights and perspectives in addition to identifying weak signals and "blind spots". This flows into a sound planning for multiple strategic options. It is a state of the art tool that allows dealing with the increasing challenges facing hospital management.
NASA Technical Reports Server (NTRS)
Bekey, I.; Mayer, H. L.; Wolfe, M. G.
1976-01-01
The methodology of alternate world future scenarios is utilized for selecting a plausible, though not advocated, set of future scenarios each of which results in a program plan appropriate for the respective environment. Each such program plan gives rise to different building block and technology requirements, which are analyzed for common need between the NASA and the DoD for each of the alternate world scenarios. An essentially invariant set of system, building block, and technology development plans is presented at the conclusion, intended to allow protection of most of the options for system concepts regardless of what the actual future world environment turns out to be. Thus, building block and technology needs are derived which support: (1) each specific world scenario; (2) all the world scenarios identified in this study; or (3) generalized scenarios applicable to almost any future environment. The output included in this volume consists of the building blocks, i.e.: transportation vehicles, orbital support vehicles, and orbital support facilities; the technology required to support the program plans; identification of their features which could support the DoD and NASA in common; and a complete discussion of the planning methodology.
Louridas, M; Bonrath, E M; Sinclair, D A; Dedy, N J; Grantcharov, T P
2015-01-01
Mental practice, the cognitive rehearsal of a task without physical movement, is known to enhance performance in sports and music. Investigation of this technique in surgery has been limited to basic operations. The purpose of this study was to develop mental practice scripts, and to assess their effect on advanced laparoscopic skills and surgeon stress levels in a crisis scenario. Twenty senior surgical trainees were randomized to either conventional training or mental practice groups, the latter being trained by an expert performance psychologist. Participants' skills were assessed while performing a porcine laparoscopic jejunojejunostomy as part of a crisis scenario in a simulated operating room, using the Objective Structured Assessment of Technical Skill (OSATS) and bariatric OSATS (BOSATS) instruments. Objective and subjective stress parameters were measured, as well as non-technical skills using the Non-Technical Skills for Surgeons rating tool. An improvement in OSATS (P = 0.003) and BOSATS (P = 0.003) scores was seen in the mental practice group compared with the conventional training group. Seven of ten trainees improved their technical performance during the crisis scenario, whereas four of the ten conventionally trained participants deteriorated. Mental imagery ability improved significantly following mental practice training (P = 0.011), but not in the conventional group (P = 0.083). No differences in objective or subjective stress levels or non-technical skills were evident. Mental practice improves technical performance for advanced laparoscopic tasks in the simulated operating room, and allows trainees to maintain or improve their performance despite added stress. © 2014 BJS Society Ltd. Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nutt, M.; Nuclear Engineering Division
2010-05-25
The activity of Phase I of the Waste Management Working Group under the United States - Japan Joint Nuclear Energy Action Plan started in 2007. The US-Japan JNEAP is a bilateral collaborative framework to support the global implementation of safe, secure, and sustainable, nuclear fuel cycles (referred to in this document as fuel cycles). The Waste Management Working Group was established by strong interest of both parties, which arise from the recognition that development and optimization of waste management and disposal system(s) are central issues of the present and future nuclear fuel cycles. This report summarizes the activity of themore » Waste Management Working Group that focused on consolidation of the existing technical basis between the U.S. and Japan and the joint development of a plan for future collaborative activities. Firstly, the political/regulatory frameworks related to nuclear fuel cycles in both countries were reviewed. The various advanced fuel cycle scenarios that have been considered in both countries were then surveyed and summarized. The working group established the working reference scenario for the future cooperative activity that corresponds to a fuel cycle scenario being considered both in Japan and the U.S. This working scenario involves transitioning from a once-through fuel cycle utilizing light water reactors to a one-pass uranium-plutonium fuel recycle in light water reactors to a combination of light water reactors and fast reactors with plutonium, uranium, and minor actinide recycle, ultimately concluding with multiple recycle passes primarily using fast reactors. Considering the scenario, current and future expected waste streams, treatment and inventory were discussed, and the relevant information was summarized. Second, the waste management/disposal system optimization was discussed. Repository system concepts were reviewed, repository design concepts for the various classifications of nuclear waste were summarized, and the factors to consider in repository design and optimization were then discussed. Japan is considering various alternatives and options for the geologic disposal facility and the framework for future analysis of repository concepts was discussed. Regarding the advanced waste and storage form development, waste form technologies developed in both countries were surveyed and compared. Potential collaboration areas and activities were next identified. Disposal system optimization processes and techniques were reviewed, and factors to consider in future repository design optimization activities were also discussed. Then the potential collaboration areas and activities related to the optimization problem were extracted.« less
Tyrer, Jonathan P; Guo, Qi; Easton, Douglas F; Pharoah, Paul D P
2013-06-06
The development of genotyping arrays containing hundreds of thousands of rare variants across the genome and advances in high-throughput sequencing technologies have made feasible empirical genetic association studies to search for rare disease susceptibility alleles. As single variant testing is underpowered to detect associations, the development of statistical methods to combine analysis across variants - so-called "burden tests" - is an area of active research interest. We previously developed a method, the admixture maximum likelihood test, to test multiple, common variants for association with a trait of interest. We have extended this method, called the rare admixture maximum likelihood test (RAML), for the analysis of rare variants. In this paper we compare the performance of RAML with six other burden tests designed to test for association of rare variants. We used simulation testing over a range of scenarios to test the power of RAML compared to the other rare variant association testing methods. These scenarios modelled differences in effect variability, the average direction of effect and the proportion of associated variants. We evaluated the power for all the different scenarios. RAML tended to have the greatest power for most scenarios where the proportion of associated variants was small, whereas SKAT-O performed a little better for the scenarios with a higher proportion of associated variants. The RAML method makes no assumptions about the proportion of variants that are associated with the phenotype of interest or the magnitude and direction of their effect. The method is flexible and can be applied to both dichotomous and quantitative traits and allows for the inclusion of covariates in the underlying regression model. The RAML method performed well compared to the other methods over a wide range of scenarios. Generally power was moderate in most of the scenarios, underlying the need for large sample sizes in any form of association testing.
New generation of elastic network models.
López-Blanco, José Ramón; Chacón, Pablo
2016-04-01
The intrinsic flexibility of proteins and nucleic acids can be grasped from remarkably simple mechanical models of particles connected by springs. In recent decades, Elastic Network Models (ENMs) combined with Normal Model Analysis widely confirmed their ability to predict biologically relevant motions of biomolecules and soon became a popular methodology to reveal large-scale dynamics in multiple structural biology scenarios. The simplicity, robustness, low computational cost, and relatively high accuracy are the reasons behind the success of ENMs. This review focuses on recent advances in the development and application of ENMs, paying particular attention to combinations with experimental data. Successful application scenarios include large macromolecular machines, structural refinement, docking, and evolutionary conservation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mosedale, Jonathan R; Wilson, Robert J; Maclean, Ilya M D
2015-01-01
The cultivation of grapevines in the UK and many other cool climate regions is expected to benefit from the higher growing season temperatures predicted under future climate scenarios. Yet the effects of climate change on the risk of adverse weather conditions or events at key stages of crop development are not always captured by aggregated measures of seasonal or yearly climates, or by downscaling techniques that assume climate variability will remain unchanged under future scenarios. Using fine resolution projections of future climate scenarios for south-west England and grapevine phenology models we explore how risks to cool-climate vineyard harvests vary under future climate conditions. Results indicate that the risk of adverse conditions during flowering declines under all future climate scenarios. In contrast, the risk of late spring frosts increases under many future climate projections due to advancement in the timing of budbreak. Estimates of frost risk, however, were highly sensitive to the choice of phenology model, and future frost exposure declined when budbreak was calculated using models that included a winter chill requirement for dormancy break. The lack of robust phenological models is a major source of uncertainty concerning the impacts of future climate change on the development of cool-climate viticulture in historically marginal climatic regions.
Mosedale, Jonathan R.; Wilson, Robert J.; Maclean, Ilya M. D.
2015-01-01
The cultivation of grapevines in the UK and many other cool climate regions is expected to benefit from the higher growing season temperatures predicted under future climate scenarios. Yet the effects of climate change on the risk of adverse weather conditions or events at key stages of crop development are not always captured by aggregated measures of seasonal or yearly climates, or by downscaling techniques that assume climate variability will remain unchanged under future scenarios. Using fine resolution projections of future climate scenarios for south-west England and grapevine phenology models we explore how risks to cool-climate vineyard harvests vary under future climate conditions. Results indicate that the risk of adverse conditions during flowering declines under all future climate scenarios. In contrast, the risk of late spring frosts increases under many future climate projections due to advancement in the timing of budbreak. Estimates of frost risk, however, were highly sensitive to the choice of phenology model, and future frost exposure declined when budbreak was calculated using models that included a winter chill requirement for dormancy break. The lack of robust phenological models is a major source of uncertainty concerning the impacts of future climate change on the development of cool-climate viticulture in historically marginal climatic regions. PMID:26496127
Strengthening the evidence base for health programming in humanitarian crises.
Ager, A; Burnham, G; Checchi, F; Gayer, M; Grais, R F; Henkens, M; Massaquoi, M B F; Nandy, R; Navarro-Colorado, C; Spiegel, P
2014-09-12
Given the growing scale and complexity of responses to humanitarian crises, it is important to develop a stronger evidence base for health interventions in such contexts. Humanitarian crises present unique challenges to rigorous and effective research, but there are substantial opportunities for scientific advance. Studies need to focus where the translation of evidence from noncrisis scenarios is not viable and on ethical ways of determining what happens in the absence of an intervention. Robust methodologies suited to crisis settings have to be developed and used to assess interventions with potential for delivery at scale. Strengthening research capacity in the low- to middle-income countries that are vulnerable to crises is also crucial. Copyright © 2014, American Association for the Advancement of Science.
Advancing the understanding of plasma transport in mid-size stellarators
NASA Astrophysics Data System (ADS)
Hidalgo, Carlos; Talmadge, Joseph; Ramisch, Mirko; TJ-II, the; HXS; TJ-K Teams
2017-01-01
The tokamak and the stellarator are the two main candidate concepts for magnetically confining fusion plasmas. The flexibility of the mid-size stellarator devices together with their unique diagnostic capabilities make them ideally suited to study the relation between magnetic topology, electric fields and transport. This paper addresses advances in the understanding of plasma transport in mid-size stellarators with an emphasis on the physics of flows, transport control, impurity and particle transport and fast particles. The results described here emphasize an improved physics understanding of phenomena in stellarators that complements the empirical approach. Experiments in mid-size stellarators support the development of advanced plasma scenarios in Wendelstein 7-X (W7-X) and, in concert with better physics understanding in tokamaks, may ultimately lead to an advance in the prediction of burning plasma behaviour.
2011-01-01
Background No systematic process has previously been described for a needs assessment that identifies the operating room (OR) management decisions made by the anesthesiologists and nurse managers at a facility that do not maximize the efficiency of use of OR time. We evaluated whether event-based knowledge elicitation can be used practically for rapid assessment of OR management decision-making at facilities, whether scenarios can be adapted automatically from information systems data, and the usefulness of the approach. Methods A process of event-based knowledge elicitation was developed to assess OR management decision-making that may reduce the efficiency of use of OR time. Hypothetical scenarios addressing every OR management decision influencing OR efficiency were created from published examples. Scenarios are adapted, so that cues about conditions are accurate and appropriate for each facility (e.g., if OR 1 is used as an example in a scenario, the listed procedure is a type of procedure performed at the facility in OR 1). Adaptation is performed automatically using the facility's OR information system or anesthesia information management system (AIMS) data for most scenarios (43 of 45). Performing the needs assessment takes approximately 1 hour of local managers' time while they decide if their decisions are consistent with the described scenarios. A table of contents of the indexed scenarios is created automatically, providing a simple version of problem solving using case-based reasoning. For example, a new OR manager wanting to know the best way to decide whether to move a case can look in the chapter on "Moving Cases on the Day of Surgery" to find a scenario that describes the situation being encountered. Results Scenarios have been adapted and used at 22 hospitals. Few changes in decisions were needed to increase the efficiency of use of OR time. The few changes were heterogeneous among hospitals, showing the usefulness of individualized assessments. Conclusions Our technical advance is the development and use of automated event-based knowledge elicitation to identify suboptimal OR management decisions that decrease the efficiency of use of OR time. The adapted scenarios can be used in future decision-making. PMID:21214905
Dexter, Franklin; Wachtel, Ruth E; Epstein, Richard H
2011-01-07
No systematic process has previously been described for a needs assessment that identifies the operating room (OR) management decisions made by the anesthesiologists and nurse managers at a facility that do not maximize the efficiency of use of OR time. We evaluated whether event-based knowledge elicitation can be used practically for rapid assessment of OR management decision-making at facilities, whether scenarios can be adapted automatically from information systems data, and the usefulness of the approach. A process of event-based knowledge elicitation was developed to assess OR management decision-making that may reduce the efficiency of use of OR time. Hypothetical scenarios addressing every OR management decision influencing OR efficiency were created from published examples. Scenarios are adapted, so that cues about conditions are accurate and appropriate for each facility (e.g., if OR 1 is used as an example in a scenario, the listed procedure is a type of procedure performed at the facility in OR 1). Adaptation is performed automatically using the facility's OR information system or anesthesia information management system (AIMS) data for most scenarios (43 of 45). Performing the needs assessment takes approximately 1 hour of local managers' time while they decide if their decisions are consistent with the described scenarios. A table of contents of the indexed scenarios is created automatically, providing a simple version of problem solving using case-based reasoning. For example, a new OR manager wanting to know the best way to decide whether to move a case can look in the chapter on "Moving Cases on the Day of Surgery" to find a scenario that describes the situation being encountered. Scenarios have been adapted and used at 22 hospitals. Few changes in decisions were needed to increase the efficiency of use of OR time. The few changes were heterogeneous among hospitals, showing the usefulness of individualized assessments. Our technical advance is the development and use of automated event-based knowledge elicitation to identify suboptimal OR management decisions that decrease the efficiency of use of OR time. The adapted scenarios can be used in future decision-making.
RF Technologies for Advancing Space Communication Infrastructure
NASA Technical Reports Server (NTRS)
Romanofsky, Robert R.; Bibyk, Irene K.; Wintucky, Edwin G.
2006-01-01
This paper will address key technologies under development at the NASA Glenn Research Center designed to provide architecture-level impacts. Specifically, we will describe deployable antennas, a new type of phased array antenna and novel power amplifiers. The evaluation of architectural influence can be conducted from two perspectives where said architecture can be analyzed from either the top-down to determine the areas where technology improvements will be most beneficial or from the bottom-up where each technology s performance advancement can affect the overall architecture s performance. This paper will take the latter approach with focus on some technology improvement challenges and address architecture impacts. For example, using data rate as a performance metric, future exploration scenarios are expected to demand data rates possibly exceeding 1 Gbps. To support these advancements in a Mars scenario, as an example, Ka-band and antenna aperture sizes on the order of 10 meters will be required from Mars areostationary platforms. Key technical challenges for a large deployable antenna include maximizing the ratio of deployed-to-packaged volume, minimizing aerial density, maintaining RMS surface accuracy to within 1/20 of a wavelength or better, and developing reflector rigidization techniques. Moreover, the high frequencies and large apertures manifest a new problem for microwave engineers that are familiar to optical communications specialists: pointing. The fine beam widths and long ranges dictate the need for electronic or mechanical feed articulation to compensate for spacecraft attitude control limitations.
An economic evaluation of alternative biofuel deployment scenarios in the USA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oladosu, Gbadebo
Energy market conditions have shifted dramatically since the USA renewable fuel standards (RFS1 in 2005; RFS2 in 2007) were enacted. The USA has transitioned from an increasing dependence on oil imports to abundant domestic oil production. In addition, increases in the use of ethanol, the main biofuel currently produced in the USA, is now limited by the blend wall constraint. Given this, the current study evaluates alternative biofuel deployment scenarios in the USA, accounting for changes in market conditions. The analysis is performed with a general equilibrium model that reflects the structure of the USA biofuel market as the transitionmore » to advanced biofuel begins. Results suggest that ethanol consumption would increase, albeit slowly, if current biofuel deployment rates of about 10% are maintained as persistently lower oil prices lead to a gradual increase in the consumption of liquid transportation fuels. Without the blend wall constraint, this study finds that the overall economic impact of a full implementation of the USA RFS2 policy is largely neutral before 2022. However, the economic impacts become slightly negative under the blend wall constraint since more expensive bio-hydrocarbons are needed to meet the RFS2 mandates. Results for a scenario with reduced advanced biofuel deployment based on current policy plans show near neutral economic impacts up to 2027. This scenario is also consistent with another scenario where the volume of bio-hydrocarbons deployed is reduced to adjust for its higher cost and energy content relative to deploying the mandated RFS2 advanced biofuel volumes as ethanol. The important role of technological change is demonstrated under pioneer and accelerated technology scenarios, with the latter leading to neutral or positive economic effects up to 2023 under most blend wall scenarios. Here, all scenarios evaluated in this study are found to have positive long-term economic benefits for the USA economy.« less
An economic evaluation of alternative biofuel deployment scenarios in the USA
Oladosu, Gbadebo
2017-05-03
Energy market conditions have shifted dramatically since the USA renewable fuel standards (RFS1 in 2005; RFS2 in 2007) were enacted. The USA has transitioned from an increasing dependence on oil imports to abundant domestic oil production. In addition, increases in the use of ethanol, the main biofuel currently produced in the USA, is now limited by the blend wall constraint. Given this, the current study evaluates alternative biofuel deployment scenarios in the USA, accounting for changes in market conditions. The analysis is performed with a general equilibrium model that reflects the structure of the USA biofuel market as the transitionmore » to advanced biofuel begins. Results suggest that ethanol consumption would increase, albeit slowly, if current biofuel deployment rates of about 10% are maintained as persistently lower oil prices lead to a gradual increase in the consumption of liquid transportation fuels. Without the blend wall constraint, this study finds that the overall economic impact of a full implementation of the USA RFS2 policy is largely neutral before 2022. However, the economic impacts become slightly negative under the blend wall constraint since more expensive bio-hydrocarbons are needed to meet the RFS2 mandates. Results for a scenario with reduced advanced biofuel deployment based on current policy plans show near neutral economic impacts up to 2027. This scenario is also consistent with another scenario where the volume of bio-hydrocarbons deployed is reduced to adjust for its higher cost and energy content relative to deploying the mandated RFS2 advanced biofuel volumes as ethanol. The important role of technological change is demonstrated under pioneer and accelerated technology scenarios, with the latter leading to neutral or positive economic effects up to 2023 under most blend wall scenarios. Here, all scenarios evaluated in this study are found to have positive long-term economic benefits for the USA economy.« less
Global scenarios of urban density and its impacts on building energy use through 2050.
Güneralp, Burak; Zhou, Yuyu; Ürge-Vorsatz, Diana; Gupta, Mukesh; Yu, Sha; Patel, Pralit L; Fragkias, Michail; Li, Xiaoma; Seto, Karen C
2017-08-22
Although the scale of impending urbanization is well-acknowledged, we have a limited understanding of how urban forms will change and what their impact will be on building energy use. Using both top-down and bottom-up approaches and scenarios, we examine building energy use for heating and cooling. Globally, the energy use for heating and cooling by the middle of the century will be between 45 and 59 exajoules per year (corresponding to an increase of 7-40% since 2010). Most of this variability is due to the uncertainty in future urban densities of rapidly growing cities in Asia and particularly China. Dense urban development leads to less urban energy use overall. Waiting to retrofit the existing built environment until markets are ready in about 5 years to widely deploy the most advanced renovation technologies leads to more savings in building energy use. Potential for savings in energy use is greatest in China when coupled with efficiency gains. Advanced efficiency makes the least difference compared with the business-as-usual scenario in South Asia and Sub-Saharan Africa but significantly contributes to energy savings in North America and Europe. Systemic efforts that focus on both urban form, of which urban density is an indicator, and energy-efficient technologies, but that also account for potential co-benefits and trade-offs with human well-being can contribute to both local and global sustainability. Particularly in growing cities in the developing world, such efforts can improve the well-being of billions of urban residents and contribute to mitigating climate change by reducing energy use in urban areas.
Overview of EAST experiments on the development of high-performance steady-state scenario
NASA Astrophysics Data System (ADS)
Wan, B. N.; Liang, Y. F.; Gong, X. Z.; Li, J. G.; Xiang, N.; Xu, G. S.; Sun, Y. W.; Wang, L.; Qian, J. P.; Liu, H. Q.; Zhang, X. D.; Hu, L. Q.; Hu, J. S.; Liu, F. K.; Hu, C. D.; Zhao, Y. P.; Zeng, L.; Wang, M.; Xu, H. D.; Luo, G. N.; Garofalo, A. M.; Ekedahl, A.; Zhang, L.; Zhang, X. J.; Huang, J.; Ding, B. J.; Zang, Q.; Li, M. H.; Ding, F.; Ding, S. Y.; Lyu, B.; Yu, Y. W.; Zhang, T.; Zhang, Y.; Li, G. Q.; Xia, T. Y.; the EAST Team; Collaborators
2017-10-01
The EAST research program aims to demonstrate steady-state long-pulse advanced high-performance H-mode operations with ITER-like poloidal configuration and RF-dominated heating schemes. Since the 2014 IAEA FEC, EAST has been upgraded with all ITER-relevant auxiliary heating and current drive systems, enabling the investigation of plasma profile control by the coupling/integration of various auxiliary heating combinations. Fully non-inductive steady-state H-mode plasma (H 98,y2 > 1.1) was extended over 60 s for the first time with sole RF heating plus good power coupling and impurity and particle control. By means of the 4.6 GHz and 2.45 GHz LHCD systems, H-mode can be obtained and maintained at relatively high density, even up to n e ~ 4.5 × 1019 m-3, where a current drive effect is still observed. Significant progress has been achieved on EAST, including: (i) demonstration of a steady-state scenario (fully non-inductive with V loop ~ 0.0 V at high β P ~ 1.8 and high-performance in upper single-null (ɛ ~ 1.6) configuration with the tungsten divertor; (ii) discovery of a stationary H-mode regime with no/small ELM using 4.6 GHz LHCD, and; (iii) achievement of ELM suppression in slowly rotating H-mode plasma with n = 1 and 2 RMP compatible with long-pulse operations. The new advances in scenario development provide an integrated solution in achieving long-pulse steady-state operations on EAST.
SMART-DS: Synthetic Models for Advanced, Realistic Testing: Distribution Systems and Scenarios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmintier, Bryan: Hodge, Bri-Mathias
This presentation provides a Smart-DS project overview and status update for the ARPA-e GRID DATA program meeting 2017, including distribution systems, models, and scenarios, as well as opportunities for GRID DATA collaborations.
Deployment Effects of Marine Renewable Energy Technologies: Wave Energy Scenarios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirko Previsic
2010-06-17
Given proper care in siting, design, deployment, operation and maintenance, wave energy conversion could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that, due to a lack of technical certainty, many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood,. Inmore » September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based assessment to the emerging hydrokinetic technology sector in order to evaluate the potential impact of these technologies on the marine environment and navigation constraints. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios capture variations in technical approaches and deployment scales to properly identify and characterize environmental effects and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential range of technical attributes and potential effects of these emerging technologies and focus all stakeholders on the critical issues that need to be addressed. By identifying and addressing navigational and environmental concerns in the early stages of the industry’s development, serious mistakes that could potentially derail industry-wide development can be avoided. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory issues (Pacific Energy Ventures) and navigational issues (PCCI). The results of this study are structured into three reports: (1) Wave power scenario description (2) Tidal power scenario description (3) Framework for Identifying Key Environmental Concerns This is the first report in the sequence and describes the results of conceptual feasibility studies of wave power plants deployed in Humboldt County, California and Oahu, Hawaii. These two sites contain many of the same competing stakeholder interactions identified at other wave power sites in the U.S. and serve as representative case studies. Wave power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize potential effects, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informed the process of selecting representative wave power devices. The selection criteria requires that devices are at an advanced stage of development to reduce technical uncertainties, and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. Table 1 summarizes the selected wave power technologies. A number of other developers are also at an advanced stage of development, but are not directly mentioned here. Many environmental effects will largely scale with the size of the wave power plant. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nominally represent (1) a small pilot deployment, (2) a small commercial deployment, and (3) a large commercial scale plant. It is important to understand that the purpose of this study was to establish baseline scenarios based on basic device data that was provided to use by the manufacturer for illustrative purposes only.« less
ISECG Global Exploration Roadmap: A Stepwise Approach to Deep Space Exploration
NASA Technical Reports Server (NTRS)
Martinez, Roland; Goodliff, Kandyce; Whitley, Ryan
2013-01-01
In 2011, ISECG released the Global Exploration Roadmap (GER), advancing the "Global Exploration Strategy: The Framework for Coordination" by articulating the perspectives of participating agencies on exploration goals and objectives, mission scenarios, and coordination of exploration preparatory activities. The GER featured a stepwise development and demonstration of capabilities ultimately required for human exploration of Mars. In 2013 the GER was updated to reflect the ongoing evolution of agency's exploration policies and plans, informed by individual agency and coordinated analysis activities that are relevant to various elements of the GER framework as well as coordinated stakeholder engagement activities. For this release of version 2 of the GER in the mid 2013 timeframe, a modified mission scenario is presented, more firmly reflecting the importance of a stepwise evolution of critical capabilities provided by multiple partners necessary for executing increasingly complex missions to multiple destinations and leading to human exploration of Mars. This paper will describe the updated mission scenario, the changes since the release of version 1, the mission themes incorporated into the scenario, and risk reduction for Mars missions provided by exploration at various destinations.
Automated Work Package: Conceptual Design and Data Architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al Rashdan, Ahmad; Oxstrand, Johanna; Agarwal, Vivek
The automated work package (AWP) is one of the U.S. Department of Energy’s (DOE) Light Water Reactor Sustainability Program efforts to enhance the safety and economics of the nuclear power industry. An AWP is an adaptive and interactive work package that intelligently drives the work process according to the plant condition, resources status, and users progress. The AWP aims to automate several manual tasks of the work process to enhance human performance and reduce human errors. Electronic work packages (eWPs), studied by the Electric Power Research Institute (EPRI), are work packages that rely to various extent on electronic data processingmore » and presentation. AWPs are the future of eWPs. They are envisioned to incorporate the advanced technologies of the future, and thus address the unresolved deficiencies associated with the eWPs in a nuclear power plant. In order to define the AWP, it is necessary to develop an ideal envisioned scenario of the future work process without any current technology restriction. The approach followed to develop this scenario is specific to every stage of the work process execution. The scenario development resulted in fifty advanced functionalities that can be part of the AWP. To rank the importance of these functionalities, a survey was conducted involving several U.S. nuclear utilities. The survey aimed at determining the current need of the nuclear industry with respect to the current work process, i.e. what the industry is satisfied with, and where the industry envisions potential for improvement. The survey evaluated the most promising functionalities resulting from the scenario development. The results demonstrated a significant desire to adopt the majority of these functionalities. The results of the survey are expected to drive the Idaho National Laboratory (INL) AWP research and development (R&D). In order to facilitate this mission, a prototype AWP is needed. Since the vast majority of earlier efforts focused on the frontend aspects of the AWP, the backend data architecture was researched and developed in this effort. The backend design involved data architecture aspects. It was realized through this effort that the key aspects of this design are hierarchy, data configuration and live information, data templates and instances, the flow of work package execution, the introduction of properties, and the means to interface the backend to the frontend. After the backend design was developed, a data structure was built to reflect the developed data architecture. The data structure was developed to accommodate the fifty functionalities identified by the envisioned scenario development. The data structure was evaluated by incorporating an example work order from the nuclear power industry. The implementation resulted in several optimization iterations of the data structure. In addition, the rearrangement of the work order information to fit the data structure highlighted several possibilities for improvement in the current work order design, and significantly reduced the size of the work order.« less
A decision support tool for synchronizing technology advances with strategic mission objectives
NASA Technical Reports Server (NTRS)
Hornstein, Rhoda S.; Willoughby, John K.
1992-01-01
Successful accomplishment of the objectives of many long-range future missions in areas such as space systems, land-use planning, and natural resource management requires significant technology developments. This paper describes the development of a decision-support data-derived tool called MisTec for helping strategic planners to determine technology development alternatives and to synchronize the technology development schedules with the performance schedules of future long-term missions. Special attention is given to the operations, concept, design, and functional capabilities of the MisTec. The MisTec was initially designed for manned Mars mission, but can be adapted to support other high-technology long-range strategic planning situations, making it possible for a mission analyst, planner, or manager to describe a mission scenario, determine the technology alternatives for making the mission achievable, and to plan the R&D activity necessary to achieve the required technology advances.
Management strategies in hospitals: scenario planning
Ghanem, Mohamed; Schnoor, Jörg; Heyde, Christoph-Eckhard; Kuwatsch, Sandra; Bohn, Marco; Josten, Christoph
2015-01-01
Background: Instead of waiting for challenges to confront hospital management, doctors and managers should act in advance to optimize and sustain value-based health. This work highlights the importance of scenario planning in hospitals, proposes an elaborated definition of the stakeholders of a hospital and defines the influence factors to which hospitals are exposed to. Methodology: Based on literature analysis as well as on personal interviews with stakeholders we propose an elaborated definition of stakeholders and designed a questionnaire that integrated the following influence factors, which have relevant impact on hospital management: political/legal, economic, social, technological and environmental forces. These influence factors are examined to develop the so-called critical uncertainties. Thorough identification of uncertainties was based on a “Stakeholder Feedback”. Results: Two key uncertainties were identified and considered in this study: the development of workload for the medical staff the profit oriented performance of the medical staff. According to the developed scenarios, complementary education of the medical staff as well as of non-medical top executives and managers of hospitals was the recommended core strategy. Complementary scenario-specific strategic options should be considered whenever needed to optimize dealing with a specific future development of the health care environment. Conclusion: Strategic planning in hospitals is essential to ensure sustainable success. It considers multiple situations and integrates internal and external insights and perspectives in addition to identifying weak signals and “blind spots”. This flows into a sound planning for multiple strategic options. It is a state of the art tool that allows dealing with the increasing challenges facing hospital management. PMID:26504735
Future Sulfur Dioxide Emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Steven J.; Pitcher, Hugh M.; Wigley, Tom M.
2005-12-01
The importance of sulfur dioxide emissions for climate change is now established, although substantial uncertainties remain. This paper presents projections for future sulfur dioxide emissions using the MiniCAM integrated assessment model. A new income-based parameterization for future sulfur dioxide emissions controls is developed based on purchasing power parity (PPP) income estimates and historical trends related to the implementation of sulfur emissions limitations. This parameterization is then used to produce sulfur dioxide emissions trajectories for the set of scenarios developed for the Special Report on Emission Scenarios (SRES). We use the SRES methodology to produce harmonized SRES scenarios using the latestmore » version of the MiniCAM model. The implications, and requirements, for IA modeling of sulfur dioxide emissions are discussed. We find that sulfur emissions eventually decline over the next century under a wide set of assumptions. These emission reductions result from a combination of emission controls, the adoption of advanced electric technologies, and a shift away from the direct end use of coal with increasing income levels. Only under a scenario where incomes in developing regions increase slowly do global emission levels remain at close to present levels over the next century. Under a climate policy that limits emissions of carbon dioxide, sulfur dioxide emissions fall in a relatively narrow range. In all cases, the relative climatic effect of sulfur dioxide emissions decreases dramatically to a point where sulfur dioxide is only a minor component of climate forcing by the end of the century. Ecological effects of sulfur dioxide, however, could be significant in some developing regions for many decades to come.« less
Biomechanical behavior of a cemented ceramic knee replacement under worst case scenarios
NASA Astrophysics Data System (ADS)
Kluess, D.; Mittelmeier, W.; Bader, R.
2009-12-01
In connection with technological advances in the manufacturing of medical ceramics, a newly developed ceramic femoral component was introduced in total knee arthroplasty (TKA). The motivation to consider ceramics in TKA is based on the allergological and tribological benefits as proven in total hip arthroplasty. Owing to the brittleness and reduced fracture toughness of ceramic materials, the biomechanical performance has to be examined intensely. Apart from standard testing, we calculated the implant performance under different worst case scenarios including malposition, bone defects and stumbling. A finite-element-model was developed to calculate the implant performance in situ. The worst case conditions revealed principal stresses 12.6 times higher during stumbling than during normal gait. Nevertheless, none of the calculated principal stress amounts were above the critical strength of the ceramic material used. The analysis of malposition showed the necessity of exact alignment of the implant components.
Biomechanical behavior of a cemented ceramic knee replacement under worst case scenarios
NASA Astrophysics Data System (ADS)
Kluess, D.; Mittelmeier, W.; Bader, R.
2010-03-01
In connection with technological advances in the manufacturing of medical ceramics, a newly developed ceramic femoral component was introduced in total knee arthroplasty (TKA). The motivation to consider ceramics in TKA is based on the allergological and tribological benefits as proven in total hip arthroplasty. Owing to the brittleness and reduced fracture toughness of ceramic materials, the biomechanical performance has to be examined intensely. Apart from standard testing, we calculated the implant performance under different worst case scenarios including malposition, bone defects and stumbling. A finite-element-model was developed to calculate the implant performance in situ. The worst case conditions revealed principal stresses 12.6 times higher during stumbling than during normal gait. Nevertheless, none of the calculated principal stress amounts were above the critical strength of the ceramic material used. The analysis of malposition showed the necessity of exact alignment of the implant components.
Long-term prospects for the environmental profile of advanced sugar cane ethanol.
da Silva, Cinthia R U; Franco, Henrique Coutinho Junqueira; Junqueira, Tassia Lopes; van Oers, Lauran; van der Voet, Ester; Seabra, Joaquim E A
2014-10-21
This work assessed the environmental impacts of the production and use of 1 MJ of hydrous ethanol (E100) in Brazil in prospective scenarios (2020-2030), considering the deployment of technologies currently under development and better agricultural practices. The life cycle assessment technique was employed using the CML method for the life cycle impact assessment and the Monte Carlo method for the uncertainty analysis. Abiotic depletion, global warming, human toxicity, ecotoxicity, photochemical oxidation, acidification, and eutrophication were the environmental impacts categories analyzed. Results indicate that the proposed improvements (especially no-til farming-scenarios s2 and s4) would lead to environmental benefits in prospective scenarios compared to the current ethanol production (scenario s0). Combined first and second generation ethanol production (scenarios s3 and s4) would require less agricultural land but would not perform better than the projected first generation ethanol, although the uncertainties are relatively high. The best use of 1 ha of sugar cane was also assessed, considering the displacement of the conventional products by ethanol and electricity. No-til practices combined with the production of first generation ethanol and electricity (scenario s2) would lead to the largest mitigation effects for global warming and abiotic depletion. For the remaining categories, emissions would not be mitigated with the utilization of the sugar cane products. However, this conclusion is sensitive to the displaced electricity sources.
NASA Technical Reports Server (NTRS)
Mccann, Robert S.; Spirkovska, Lilly; Smith, Irene
2013-01-01
Integrated System Health Management (ISHM) technologies have advanced to the point where they can provide significant automated assistance with real-time fault detection, diagnosis, guided troubleshooting, and failure consequence assessment. To exploit these capabilities in actual operational environments, however, ISHM information must be integrated into operational concepts and associated information displays in ways that enable human operators to process and understand the ISHM system information rapidly and effectively. In this paper, we explore these design issues in the context of an advanced caution and warning system (ACAWS) for next-generation crewed spacecraft missions. User interface concepts for depicting failure diagnoses, failure effects, redundancy loss, "what-if" failure analysis scenarios, and resolution of ambiguity groups are discussed and illustrated.
Cascading biomethane energy systems for sustainable green gas production in a circular economy.
Wall, David M; McDonagh, Shane; Murphy, Jerry D
2017-11-01
Biomethane is a flexible energy vector that can be used as a renewable fuel for both the heat and transport sectors. Recent EU legislation encourages the production and use of advanced, third generation biofuels with improved sustainability for future energy systems. The integration of technologies such as anaerobic digestion, gasification, and power to gas, along with advanced feedstocks such as algae will be at the forefront in meeting future sustainability criteria and achieving a green gas supply for the gas grid. This paper explores the relevant pathways in which an integrated biomethane industry could potentially materialise and identifies and discusses the latest biotechnological advances in the production of renewable gas. Three scenarios of cascading biomethane systems are developed. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Career in Test and Evaluation: Reflections and Observations
1998-01-01
can also evaluate a wide variety of flares and see how effective they are as countermeasures. Much of the develop- ment of the Stinger reprogrammable ...and advanced polymers. Modern materials coming out of DoD research are found in diesel and gasoline powered automobiles , sporting goods, medical...scenario issue. One of the functions of and stinger reprogrammable microprocessor developmental testing is to expand and missile or over-the-horizon
NASA Astrophysics Data System (ADS)
Finney, B.
1986-10-01
Scenarios of the impact on human society of radio contact with an extraterrestrial civilization are presented. Some believe that contact with advanced extraterrestrials would quickly devastate the human spirit, while others believe that these super-intelligent beings would show the inhabitants of the earth how to live in peace. It is proposed that the possible existence of extraterrestrial civilizations and the development of means of studying and communicating with them need to be considered.
Subsurface microbial habitats on Mars
NASA Technical Reports Server (NTRS)
Boston, P. J.; Mckay, C. P.
1991-01-01
We developed scenarios for shallow and deep subsurface cryptic niches for microbial life on Mars. Such habitats could have considerably prolonged the persistence of life on Mars as surface conditions became increasingly inhospitable. The scenarios rely on geothermal hot spots existing below the near or deep subsurface of Mars. Recent advances in the comparatively new field of deep subsurface microbiology have revealed previously unsuspected rich aerobic and anaerobic microbal communities far below the surface of the Earth. Such habitats, protected from the grim surface conditions on Mars, could receive warmth from below and maintain water in its liquid state. In addition, geothermally or volcanically reduced gases percolating from below through a microbiologically active zone could provide the reducing power needed for a closed or semi-closed microbial ecosystem to thrive.
The astronaut and the banana peel: An EVA retriever scenario
NASA Technical Reports Server (NTRS)
Shapiro, Daniel G.
1989-01-01
To prepare for the problem of accidents in Space Station activities, the Extravehicular Activity Retriever (EVAR) robot is being constructed, whose purpose is to retrieve astronauts and tools that float free of the Space Station. Advanced Decision Systems is at the beginning of a project to develop research software capable of guiding EVAR through the retrieval process. This involves addressing problems in machine vision, dexterous manipulation, real time construction of programs via speech input, and reactive execution of plans despite the mishaps and unexpected conditions that arise in uncontrolled domains. The problem analysis phase of this work is presented. An EVAR scenario is used to elucidate major domain and technical problems. An overview of the technical approach to prototyping an EVAR system is also presented.
ADX - Advanced Divertor and RF Tokamak Experiment
NASA Astrophysics Data System (ADS)
Greenwald, Martin; Labombard, Brian; Bonoli, Paul; Irby, Jim; Terry, Jim; Wallace, Greg; Vieira, Rui; Whyte, Dennis; Wolfe, Steve; Wukitch, Steve; Marmar, Earl
2015-11-01
The Advanced Divertor and RF Tokamak Experiment (ADX) is a design concept for a compact high-field tokamak that would address boundary plasma and plasma-material interaction physics challenges whose solution is critical for the viability of magnetic fusion energy. This device would have two crucial missions. First, it would serve as a Divertor Test Tokamak, developing divertor geometries, materials and operational scenarios that could meet the stringent requirements imposed in a fusion power plant. By operating at high field, ADX would address this problem at a level of power loading and other plasma conditions that are essentially identical to those expected in a future reactor. Secondly, ADX would investigate the physics and engineering of high-field-side launch of RF waves for current drive and heating. Efficient current drive is an essential element for achieving steady-state in a practical, power producing fusion device and high-field launch offers the prospect of higher efficiency, better control of the current profile and survivability of the launching structures. ADX would carry out this research in integrated scenarios that simultaneously demonstrate the required boundary regimes consistent with efficient current drive and core performance.
A multi-sensor scenario for coastal surveillance
NASA Astrophysics Data System (ADS)
van den Broek, A. C.; van den Broek, S. P.; van den Heuvel, J. C.; Schwering, P. B. W.; van Heijningen, A. W. P.
2007-10-01
Maritime borders and coastal zones are susceptible to threats such as drug trafficking, piracy, undermining economical activities. At TNO Defence, Security and Safety various studies aim at improving situational awareness in a coastal zone. In this study we focus on multi-sensor surveillance of the coastal environment. We present a study on improving classification results for small sea surface targets using an advanced sensor suite and a scenario in which a small boat is approaching the coast. A next generation sensor suite mounted on a tower has been defined consisting of a maritime surveillance and tracking radar system, capable of producing range profiles and ISAR imagery of ships, an advanced infrared camera and a laser range profiler. For this suite we have developed a multi-sensor classification procedure, which is used to evaluate the capabilities for recognizing and identifying non-cooperative ships in coastal waters. We have found that the different sensors give complementary information. Each sensor has its own specific distance range in which it contributes most. A multi-sensor approach reduces the number of misclassifications and reliable classification results are obtained earlier compared to a single sensor approach.
A Framework for Human Performance Criteria for Advanced Reactor Operational Concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacques V Hugo; David I Gertman; Jeffrey C Joe
2014-08-01
This report supports the determination of new Operational Concept models needed in support of the operational design of new reactors. The objective of this research is to establish the technical bases for human performance and human performance criteria frameworks, models, and guidance for operational concepts for advanced reactor designs. The report includes a discussion of operating principles for advanced reactors, the human performance issues and requirements for human performance based upon work domain analysis and current regulatory requirements, and a description of general human performance criteria. The major findings and key observations to date are that there is some operatingmore » experience that informs operational concepts for baseline designs for SFR and HGTRs, with the Experimental Breeder Reactor-II (EBR-II) as a best-case predecessor design. This report summarizes the theoretical and operational foundations for the development of a framework and model for human performance criteria that will influence the development of future Operational Concepts. The report also highlights issues associated with advanced reactor design and clarifies and codifies the identified aspects of technology and operating scenarios.« less
Mathematical models of cell motility.
Flaherty, Brendan; McGarry, J P; McHugh, P E
2007-01-01
Cell motility is an essential biological action in the creation, operation and maintenance of our bodies. Developing mathematical models elucidating cell motility will greatly advance our understanding of this fundamental biological process. With accurate models it is possible to explore many permutations of the same event and concisely investigate their outcome. While great advancements have been made in experimental studies of cell motility, it now has somewhat fallen on mathematical models to taking a leading role in future developments. The obvious reason for this is the complexity of cell motility. Employing the processing power of today's computers will give researches the ability to run complex biophysical and biochemical scenarios, without the inherent difficulty and time associated with in vitro investigations. Before any great advancement can be made, the basics of cell motility will have to be well-defined. Without this, complicated mathematical models will be hindered by their inherent conjecture. This review will look at current mathematical investigations of cell motility, explore the reasoning behind such work and conclude with how best to advance this interesting and challenging research area.
Optimized ISRU Propellants for Propulsion and Power Needs for Future Mars Colonization
NASA Astrophysics Data System (ADS)
Rice, Eric E.; Gustafson, Robert J.; Gramer, Daniel J.; Chiaverini, Martin J.; Teeter, Ronald R.; White, Brant C.
2003-01-01
In recent studies (Rice, 2000, 2002) conducted by ORBITEC for the NASA Institute for Advanced Concepts (NIAC), we conceptualized systems and an evolving optimized architecture for producing and utilizing Mars-based in-situ space resources utilization (ISRU) propellant combinations for future Mars colonization. The propellants are to be used to support the propulsion and power systems for ground and flight vehicles. The key aspect of the study was to show the benefits of ISRU, develop an analysis methodology, as well as provide guidance to propellant system choices in the future based upon what is known today about Mars. The study time frame included an early unmanned and manned exploration period (through 2040) and two colonization scenarios that are postulated to occur from 2040 to 2090. As part of this feasibility study, ORBITEC developed two different Mars colonization scenarios: a low case that ends with a 100-person colony (an Antarctica analogy) and a high case that ends with a 10,000-person colony (a Mars terraforming scenario). A population growth model, mission traffic model, and infrastructure model were developed for each scenario to better understand the requirements of future Mars colonies. Additionally, propellant and propulsion systems design concepts were developed. Cost models were also developed to allow comparison of the different ISRU propellant approaches. This paper summarizes the overall results of the study. ISRU proved to be a key enabler for these colonization missions. Carbon monoxide and oxygen, proved to be the most cost-effective ISRU propellant combination. The entire final reports Phase I and II) and all the details can be found at the NIAC website www.niac.usra.edu.
Evolution of systems concepts for a 100 kWe class Space Nuclear Power System
NASA Technical Reports Server (NTRS)
Katucki, R.; Josloff, A.; Kirpich, A.; Florio, F.
1985-01-01
Conceptual designs for the SP-100 Space Nuclear Power System have been prepared that meet baseline, backup and growth program scenarios. Near-term advancement in technology was considered in the design of the Baseline Concept. An improved silicon-germanium thermoelectric technique is used to convert the heat from a fast-spectrum, liquid lithium cooled reactor. This system produces a net power of 100 kWe with a 10-year end of life, under the specific constraints of area and volume. Output of the Backup Concept is estimated to be 60 kWe for a 10-year end of life. This system differs from the Baseline Concept because currently available thermoelectric conversion is used from energy supplied by a liquid sodium cooled reactor. The Growth Concept uses Stirling engine conversion to produce 100 kWe within the constraints of mass and volume. The Growth Concept can be scaled up to produce a 1 MWe output that uses the same type reactor developed for the Baseline Concept. Assessments made for each of the program scenarios indicate the key development efforts needed to initiate detailed design and hardware program phases. Development plans were prepared for each scenario that detail the work elements and show the program activities leading to a state of flight readiness.
Freight advanced traveler information system : concept of operations.
DOT National Transportation Integrated Search
2012-08-01
This report describes a Concept of Operations (ConOps) for a Freight Advanced Traveler Information System (FRATIS). The ConOps describes the goals, functions, key concepts, user classes, high-level architecture, operational scenarios, operational pol...
Báez, Amado Alejandro; Hanudel, Priscilla; Perez, Maria Teresa; Giraldez, Ediza M; Wilcox, Susan R
2013-04-01
Severe sepsis and septic shock are common and often fatal medical problems. The Prehospital Sepsis Project is a multifaceted study that aims to improve the out-of-hospital care of patients with sepsis by means of education and enhancement of skills. The objective of this Project was to assess the knowledge and attitudes in the principles of diagnosis and management of sepsis in a cohort of United States out-of-hospital care providers. This was cross-sectional study. A 15-item survey was administered via the Web and e-mailed to multiple emergency medical services list-servers. The evaluation consisted of four clinical scenarios as well as questions on the basics of sepsis. For intra-rater reliability, the first and the fourth scenarios were identical. Chi-square and Fisher's Exact testing were used to assess associations. Relative risk (RR) was used for strength of association. Statistical significance was set at .05. A total of 226 advanced EMS providers participated with a 85.4% (n = 193) completion rate, consisting of a 30.7% rural, 32.3% urban, and 37.0% suburban mix; 82.4% were paramedics and 72.5% had worked in EMS >10 years. Only 57 (29.5%) participants scored both of the duplicate scenarios correctly, and only 19 of the 193 (9.8%) responded to all scenarios correctly. Level of training was not a predictor of correctly scoring scenarios (P = .71, RR = 1.25, 95% CI = 0.39-4.01), nor was years of service (P = .11, RR = 1.64, 95% CI = 0.16-1.21). Poor understanding of the principles of diagnosis and management of sepsis was observed in this cohort, suggesting the need for enhancement of education. Survey items will be used to develop a focused, interactive Web-based learning program. Limitations include potential for self-selection and data accuracy.
An Advanced Trajectory-Based Operations Prototype Tool and Focus Group Evaluation
NASA Technical Reports Server (NTRS)
Guerreiro, Nelson M.; Jones, Denise R.; Barmore, Bryan E.; Butler, Ricky W.; Hagen, George E.; Maddalon, Jeffrey M.; Ahmad, Nash'at N.; Rogers, Laura J.; Underwood, Matthew C.; Johnson, Sally C.
2017-01-01
Trajectory-based operations (TBO) is a key concept in the Next Generation Air Transportation System transformation of the National Airspace System (NAS) that will increase the predictability and stability of traffic flows, support a common operational picture through the use of digital data sharing, facilitate more effective collaborative decision making between airspace users and air navigation service providers, and enable increased levels of integrated automation across the NAS. The National Aeronautics and Space Administration (NASA) has been developing trajectory-based systems to improve the efficiency of the NAS during specific phases of flight and is now also exploring Advanced 4-Dimensional Trajectory (4DT) operational concepts that will integrate these technologies and incorporate new technology where needed to create both automation and procedures to support gate-to-gate TBO. A TBO Prototype simulation toolkit has been developed that demonstrates initial functionality that may reside in an Advanced 4DT TBO concept. Pilot and controller subject matter experts (SMEs) were brought to the Air Traffic Operations Laboratory at NASA Langley Research Center for discussions on an Advanced 4DT operational concept and were provided an interactive demonstration of the TBO Prototype using four example scenarios. The SMEs provided feedback on potential operational, technological, and procedural opportunities and concerns. After viewing the interactive demonstration scenarios, the SMEs felt the operational capabilities demonstrated would be useful for performing TBO while maintaining situation awareness and low mental workload. The TBO concept demonstrated produced defined routings around weather which resulted in a more organized, consistent flow of traffic where it was clear to both the controller and pilot what route the aircraft was to follow. In general, the controller SMEs felt that traffic flow management should be responsible for generating and negotiating the operational constraints demonstrated, in cooperation with the Air Traffic Control System Command Center, while air traffic control should be responsible for the implementation of those constraints. The SMEs also indicated that digital data communications would be very beneficial for TBO operations and would result in less workload due to reduced communications, would eliminate issues due to language barriers and frequency problems, and would make receiving, loading, accepting, and executing clearances easier, less ambiguous, and more expeditious. This paper describes an Advanced 4DT operational concept, the TBO Prototype, the demonstration scenarios and methods used, and the feedback obtained from the pilot and controller SMEs in this focus group evaluation.
Decision Support Systems for Research and Management in Advanced Life Support
NASA Technical Reports Server (NTRS)
Rodriquez, Luis F.
2004-01-01
Decision support systems have been implemented in many applications including strategic planning for battlefield scenarios, corporate decision making for business planning, production planning and control systems, and recommendation generators like those on Amazon.com(Registered TradeMark). Such tools are reviewed for developing a similar tool for NASA's ALS Program. DSS are considered concurrently with the development of the OPIS system, a database designed for chronicling of research and development in ALS. By utilizing the OPIS database, it is anticipated that decision support can be provided to increase the quality of decisions by ALS managers and researchers.
Of possible cheminformatics futures.
Oprea, Tudor I; Taboureau, Olivier; Bologa, Cristian G
2012-01-01
For over a decade, cheminformatics has contributed to a wide array of scientific tasks from analytical chemistry and biochemistry to pharmacology and drug discovery; and although its contributions to decision making are recognized, the challenge is how it would contribute to faster development of novel, better products. Here we address the future of cheminformatics with primary focus on innovation. Cheminformatics developers often need to choose between "mainstream" (i.e., accepted, expected) and novel, leading-edge tools, with an increasing trend for open science. Possible futures for cheminformatics include the worst case scenario (lack of funding, no creative usage), as well as the best case scenario (complete integration, from systems biology to virtual physiology). As "-omics" technologies advance, and computer hardware improves, compounds will no longer be profiled at the molecular level, but also in terms of genetic and clinical effects. Among potentially novel tools, we anticipate machine learning models based on free text processing, an increased performance in environmental cheminformatics, significant decision-making support, as well as the emergence of robot scientists conducting automated drug discovery research. Furthermore, cheminformatics is anticipated to expand the frontiers of knowledge and evolve in an open-ended, extensible manner, allowing us to explore multiple research scenarios in order to avoid epistemological "local information minimum trap".
Advanced Pedestrian Positioning System to Smartphones and Smartwatches.
Correa, Alejandro; Munoz Diaz, Estefania; Bousdar Ahmed, Dina; Morell, Antoni; Lopez Vicario, Jose
2016-11-11
In recent years, there has been an increasing interest in the development of pedestrian navigation systems for satellite-denied scenarios. The popularization of smartphones and smartwatches is an interesting opportunity for reducing the infrastructure cost of the positioning systems. Nowadays, smartphones include inertial sensors that can be used in pedestrian dead-reckoning (PDR) algorithms for the estimation of the user's position. Both smartphones and smartwatches include WiFi capabilities allowing the computation of the received signal strength (RSS). We develop a new method for the combination of RSS measurements from two different receivers using a Gaussian mixture model. We also analyze the implication of using a WiFi network designed for communication purposes in an indoor positioning system when the designer cannot control the network configuration. In this work, we design a hybrid positioning system that combines inertial measurements, from low-cost inertial sensors embedded in a smartphone, with RSS measurements through an extended Kalman filter. The system has been validated in a real scenario, and results show that our system improves the positioning accuracy of the PDR system thanks to the use of two WiFi receivers. The designed system obtains an accuracy up to 1.4 m in a scenario of 6000 m 2 .
Barton, Justin E.; Boyer, Mark D.; Shi, Wenyu; ...
2015-07-30
DIII-D experimental results are reported to demonstrate the potential of physics-model-based safety factor profile control for robust and reproducible sustainment of advanced scenarios. In the absence of feedback control, variability in wall conditions and plasma impurities, as well as drifts due to external disturbances, can limit the reproducibility of discharges with simple pre-programmed scenario trajectories. The control architecture utilized is a feedforward + feedback scheme where the feedforward commands are computed off-line and the feedback commands are computed on-line. In this work, firstly a first-principles-driven (FPD), physics-based model of the q profile and normalized beta (β N) dynamics is embeddedmore » into a numerical optimization algorithm to design feedforward actuator trajectories that sheer the plasma through the tokamak operating space to reach a desired stationary target state that is characterized by the achieved q profile and β N. Good agreement between experimental results and simulations demonstrates the accuracy of the models employed for physics-model-based control design. Secondly, a feedback algorithm for q profile control is designed following a FPD approach, and the ability of the controller to achieve and maintain a target q profile evolution is tested in DIII-D high confinement (H-mode) experiments. The controller is shown to be able to effectively control the q profile when β N is relatively close to the target, indicating the need for integrated q profile and β N control to further enhance the ability to achieve robust scenario execution. Furthermore, the ability of an integrated q profile + β N feedback controller to track a desired target is demonstrated through simulation.« less
Large Gain in Air Quality Compared to an Alternative Anthropogenic Emissions Scenario
NASA Technical Reports Server (NTRS)
Daskalakis, Nikos; Tsigaridis, Kostas; Myriokefalitakis, Stelios; Fanourgakis, George S.; Kanakidou, Maria
2016-01-01
During the last 30 years, significant effort has been made to improve air quality through legislation for emissions reduction. Global three-dimensional chemistrytransport simulations of atmospheric composition over the past 3 decades have been performed to estimate what the air quality levels would have been under a scenario of stagnation of anthropogenic emissions per capita as in 1980, accounting for the population increase (BA1980) or using the standard practice of neglecting it (AE1980), and how they compare to the historical changes in air quality levels. The simulations are based on assimilated meteorology to account for the yearto- year observed climate variability and on different scenarios of anthropogenic emissions of pollutants. The ACCMIP historical emissions dataset is used as the starting point. Our sensitivity simulations provide clear indications that air quality legislation and technology developments have limited the rapid increase of air pollutants. The achieved reductions in concentrations of nitrogen oxides, carbon monoxide, black carbon, and sulfate aerosols are found to be significant when comparing to both BA1980 and AE1980 simulations that neglect any measures applied for the protection of the environment. We also show the potentially large tropospheric air quality benefit from the development of cleaner technology used by the growing global population. These 30-year hindcast sensitivity simulations demonstrate that the actual benefit in air quality due to air pollution legislation and technological advances is higher than the gain calculated by a simple comparison against a constant anthropogenic emissions simulation, as is usually done. Our results also indicate that over China and India the beneficial technological advances for the air quality may have been masked by the explosive increase in local population and the disproportional increase in energy demand partially due to the globalization of the economy.
Global scenarios of urban density and its impacts on building energy use through 2050
Güneralp, Burak; Zhou, Yuyu; Ürge-Vorsatz, Diana; Gupta, Mukesh; Yu, Sha; Patel, Pralit L.; Fragkias, Michail; Li, Xiaoma; Seto, Karen C.
2017-01-01
Although the scale of impending urbanization is well-acknowledged, we have a limited understanding of how urban forms will change and what their impact will be on building energy use. Using both top-down and bottom-up approaches and scenarios, we examine building energy use for heating and cooling. Globally, the energy use for heating and cooling by the middle of the century will be between 45 and 59 exajoules per year (corresponding to an increase of 7–40% since 2010). Most of this variability is due to the uncertainty in future urban densities of rapidly growing cities in Asia and particularly China. Dense urban development leads to less urban energy use overall. Waiting to retrofit the existing built environment until markets are ready in about 5 years to widely deploy the most advanced renovation technologies leads to more savings in building energy use. Potential for savings in energy use is greatest in China when coupled with efficiency gains. Advanced efficiency makes the least difference compared with the business-as-usual scenario in South Asia and Sub-Saharan Africa but significantly contributes to energy savings in North America and Europe. Systemic efforts that focus on both urban form, of which urban density is an indicator, and energy-efficient technologies, but that also account for potential co-benefits and trade-offs with human well-being can contribute to both local and global sustainability. Particularly in growing cities in the developing world, such efforts can improve the well-being of billions of urban residents and contribute to mitigating climate change by reducing energy use in urban areas. PMID:28069957
Srinivas, Rallapalli; Singh, Ajit Pratap
2018-03-01
Assessment of water quality status of a river with respect to its discharge has become prerequisite to sustainable river basin management. The present paper develops an integrated model for simulating and evaluating strategies for water quality management in a river basin management by controlling point source pollutant loadings and operations of multi-purpose projects. Water Quality Analysis and Simulation Program (WASP version 8.0) has been used for modeling the transport of pollutant loadings and their impact on water quality in the river. The study presents a novel approach of integrating fuzzy set theory with an "advanced eutrophication" model to simulate the transmission and distribution of several interrelated water quality variables and their bio-physiochemical processes in an effective manner in the Ganges river basin, India. After calibration, simulated values are compared with the observed values to validate the model's robustness. Fuzzy technique of order preference by similarity to ideal solution (F-TOPSIS) has been used to incorporate the uncertainty associated with the water quality simulation results. The model also simulates five different scenarios for pollution reduction, to determine the maximum pollutant loadings during monsoon and dry periods. The final results clearly indicate how modeled reduction in the rate of wastewater discharge has reduced impacts of pollutants in the downstream. Scenarios suggesting a river discharge rate of 1500 m 3 /s during the lean period, in addition to 25 and 50% reduction in the load rate, are found to be the most effective option to restore quality of river Ganges. Thus, the model serves as an important hydrologic tool to the policy makers by suggesting appropriate remediation action plans.
NASA Astrophysics Data System (ADS)
Zheng, Pai; wang, Honghui; Sang, Zhiqian; Zhong, Ray Y.; Liu, Yongkui; Liu, Chao; Mubarok, Khamdi; Yu, Shiqiang; Xu, Xun
2018-06-01
Information and communication technology is undergoing rapid development, and many disruptive technologies, such as cloud computing, Internet of Things, big data, and artificial intelligence, have emerged. These technologies are permeating the manufacturing industry and enable the fusion of physical and virtual worlds through cyber-physical systems (CPS), which mark the advent of the fourth stage of industrial production (i.e., Industry 4.0). The widespread application of CPS in manufacturing environments renders manufacturing systems increasingly smart. To advance research on the implementation of Industry 4.0, this study examines smart manufacturing systems for Industry 4.0. First, a conceptual framework of smart manufacturing systems for Industry 4.0 is presented. Second, demonstrative scenarios that pertain to smart design, smart machining, smart control, smart monitoring, and smart scheduling, are presented. Key technologies and their possible applications to Industry 4.0 smart manufacturing systems are reviewed based on these demonstrative scenarios. Finally, challenges and future perspectives are identified and discussed.
Explicit Simulation of Networks of Outlet Glaciers to Constrain Greenland's Sea Level Contribution
NASA Astrophysics Data System (ADS)
Ultee, E.; Bassis, J. N.
2017-12-01
Ice from the Greenland Ice Sheet drains to the ocean through hundreds of outlet glaciers, many of which are too small to be accurately resolved in continental-scale ice sheet models. Moreover, despite the fact that dynamic changes in Greenland outlet glaciers are currently responsible for about half of the ice sheet's contribution to global sea level, all but the largest are often excluded from major sea level assessments. We have previously developed and validated a simple model that simulates advance and retreat of networks of marine-terminating glaciers based on the perfect plastic approximation. Here we apply this model to a selection of forcing scenarios, representing both climate persistence and extreme scenarios, to constrain changes in calving flux from the most significant Greenland outlet glaciers. Our model can be implemented in standalone mode or as the calving module in a more sophisticated large-scale model, providing constraints on Greenland's future contribution to global sea level rise under a range of scenarios.
Evolutions Of Diff-Tomo For Sensing Subcanopy Deformations And Height-Varying Temporal Coherence
NASA Astrophysics Data System (ADS)
Lombardini, Fabrizio; Cai, Francesco
2012-01-01
Interest is continuing to grow in advanced interferometric SAR methods for sensing complex scenarios with multiple (layover or volumetric) scatterers mapped in the SAR cell. Multibaseline SAR tomographic (3D) elevation beam forming is a promising technique in this field. Recently, the Tomo concept has been integrated with the differential interferometry concept, producing the advanced “differential tomography” (Diff-Tomo, “4D”) processing mode which furnishes “space-time” signatures of multiple scatterer dynamics in the SAR cell. Advances in the application of this new framework are investigated for complex volume scattering scenarios including temporal signal variations, both from scatterer temporal decorrelation and deformation motions. In particular, new results are reported concerning the potentials of Diff-Tomo for the analysis of forest scenarios, based on the original concept of the space-time signatures of temporal decorrelation. E-SAR P-band data results are expanded of tomography robust to temporal decorrelation, and first trials are reported of separation of different temporal decorrelation mechanisms of canopy and ground, and of sensing possible sub-canopy subsidences.
NASA Astrophysics Data System (ADS)
Aoi, S.; Yamamoto, N.; Suzuki, W.; Hirata, K.; Nakamura, H.; Kunugi, T.; Kubo, T.; Maeda, T.
2015-12-01
In the 2011 Tohoku earthquake, in which huge tsunami claimed a great deal of lives, the initial tsunami forecast based on hypocenter information estimated using seismic data on land were greatly underestimated. From this lesson, NIED is now constructing S-net (Seafloor Observation Network for Earthquakes and Tsunamis along the Japan Trench) which consists of 150 ocean bottom observatories with seismometers and pressure gauges (tsunamimeters) linked by fiber optic cables. To take full advantage of S-net, we develop a new methodology of real-time tsunami inundation forecast using ocean bottom observation data and construct a prototype system that implements the developed forecasting method for the Pacific coast of Chiba prefecture (Sotobo area). We employ a database-based approach because inundation is a strongly non-linear phenomenon and its calculation costs are rather heavy. We prepare tsunami scenario bank in advance, by constructing the possible tsunami sources, and calculating the tsunami waveforms at S-net stations, coastal tsunami heights and tsunami inundation on land. To calculate the inundation for target Sotobo area, we construct the 10-m-mesh precise elevation model with coastal structures. Based on the sensitivities analyses, we construct the tsunami scenario bank that efficiently covers possible tsunami scenarios affecting the Sotobo area. A real-time forecast is carried out by selecting several possible scenarios which can well explain real-time tsunami data observed at S-net from tsunami scenario bank. An advantage of our method is that tsunami inundations are estimated directly from the actual tsunami data without any source information, which may have large estimation errors. In addition to the forecast system, we develop Web services, APIs, and smartphone applications and brush them up through social experiments to provide the real-time tsunami observation and forecast information in easy way to understand toward urging people to evacuate.
Wiki Based Collaborative Learning in Interuniversity Scenarios
ERIC Educational Resources Information Center
Katzlinger, Elisabeth; Herzog, Michael A.
2014-01-01
In business education advanced collaboration skills and media literacy are important for surviving in a globalized business where virtual communication between enterprises is part of the day-by-day business. To transform these global working situations into higher education, a learning scenario between two universities in Germany and Austria was…
Thermoelectric Energy Conversion Technology for High-Altitude Airships
NASA Technical Reports Server (NTRS)
Choi, Sang H.; Elliott, James R.; King, Glen C.; Park, Yeonjoon; Kim, Jae-Woo; Chu, Sang-Hyon
2011-01-01
The High Altitude Airship (HAA) has various application potential and mission scenarios that require onboard energy harvesting and power distribution systems. The power technology for HAA maneuverability and mission-oriented applications must come from its surroundings, e.g. solar power. The energy harvesting system considered for HAA is based on the advanced thermoelectric (ATE) materials being developed at NASA Langley Research Center. The materials selected for ATE are silicon germanium (SiGe) and bismuth telluride (Bi2Te3), in multiple layers. The layered structure of the advanced TE materials is specifically engineered to provide maximum efficiency for the corresponding range of operational temperatures. For three layers of the advanced TE materials that operate at high, medium, and low temperatures, correspondingly in a tandem mode, the cascaded efficiency is estimated to be greater than 60 percent.
Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance
NASA Technical Reports Server (NTRS)
Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.
2014-01-01
This presentation describes the capabilities of three-dimensional thermal power model of advanced stirling radioisotope generator (ASRG). The performance of the ASRG is presented for different scenario, such as Venus flyby with or without the auxiliary cooling system.
Twenty-five years of HIV: lessons for low prevalence scenarios.
Sawires, Sharif; Birnbaum, Nina; Abu-Raddad, Laith; Szekeres, Greg; Gayle, Jacob
2009-07-01
During the initial quarter century since the discovery of HIV, international response has focused on high prevalence scenarios and concentrated epidemics. Until recently, the theoretical underpinnings of HIV prevention were largely based on these responses-the assumption that inadequate responses to concentrated epidemics within low prevalence populations could rapidly lead to generalized epidemics. The limits of these assumptions for HIV prevention in low prevalence scenarios have become evident. While examples of rapid HIV diffusion in once low prevalence scenarios exist, emergence of generalized epidemics are less likely for much of the world. This paper reviews several key issues and advances in biomedical and behavioural HIV prevention to date and highlights relevance to low prevalence scenarios.
Family matters: dyadic agreement in end-of-life medical decision making.
Schmid, Bettina; Allen, Rebecca S; Haley, Philip P; Decoster, Jamie
2010-04-01
We examined race/ethnicity and cultural context within hypothetical end-of-life medical decision scenarios and its influence on patient-proxy agreement. Family dyads consisting of an older adult and 1 family member, typically an adult child, responded to questions regarding the older adult's preferences for cardiopulmonary resuscitation, artificial feeding and fluids, and palliative care in hypothetical illness scenarios. The responses of 34 Caucasian dyads and 30 African American dyads were compared to determine the extent to which family members could accurately predict the treatment preferences of their older relative. We found higher treatment preference agreement among African American dyads compared with Caucasian dyads when considering overall raw difference scores (i.e., overtreatment errors can compensate for undertreatment errors). Prior advance care planning moderated the effect such that lower levels of advance care planning predicted undertreatment errors among African American proxies and overtreatment errors among Caucasian proxies. In contrast, no racial/ethnic differences in treatment preference agreement were found within absolute difference scores (i.e., total error, regardless of the direction of error). This project is one of the first to examine the mediators and moderators of dyadic racial/cultural differences in treatment preference agreement for end-of-life care in hypothetical illness scenarios. Future studies should use mixed method approaches to explore underlying factors for racial differences in patient-proxy agreement as a basis for developing culturally sensitive interventions to reduce racial disparities in end-of-life care options.
Strategic Roadmap for the Development of an Interstellar Space Program
NASA Astrophysics Data System (ADS)
Gifra, M.; Peeters, W.
Recent technological advances and scientific discoveries, particularly in astronomy and space technology, are opening our minds into the deepest realms of the universe, and also they are bringing a new era of space exploration and development. This sense of entering into a new era of space exploration is being boosted by the permanent discovery of new planets - to date, there are 684 confirmed extrasolar planets [1] - outside our solar system. The possibility that astronomers may soon find a habitable extrasolar planet near Earth and the recent advances in space propulsion that could reduce travel times have stimulated the space community to consider the development of an interstellar manned mission. But this scenario of entering into a new era of space development is ultimately contingent on the outcome of the actual world's economic crisis. The current financial crisis, on top of recent national and sovereign debts problems, could have serious consequences for space exploration and development as the national budgets for space activities are to freeze [2].This paper proposes a multi-decade space program for an interstellar manned mission. It designs a roadmap for the achievement of interstellar flight capability within a timeframe of 40 years, and also considers different scenarios where various technological and economical constraints are taken into account in order to know if such a space endeavour could be viable. It combines macro-level scenarios with a strategic roadmap to provide a framework for condensing all information in one map and timeframe, thus linking decision-making with plausible scenarios. The paper also explores the state of the art of space technologies 20 to 40 years in the future and its potential economic impact. It estimates the funding requirements, possible sources of funds, and the potential returns.The Interstellar Space Program proposed in this paper has the potential to help solve the global crisis by bringing a new landscape of opportunities and challenges for the world as a whole. According to the first preliminary estimates, the total funding required would be of the order of US1.2 trillion over a period of 40 years (NASA has spent a total of US800 billion in today's money in its entire 50-year history [3]), or an average of US$30 billion per year (which equals to one third of the current global government space spending [4]). Such an ambitious and long-term space program would create millions of jobs, and thus generate a real impact in the global economy.
Creating pedestrian crash scenarios in a driving simulator environment.
Chrysler, Susan T; Ahmad, Omar; Schwarz, Chris W
2015-01-01
In 2012 in the United States, pedestrian injuries accounted for 3.3% of all traffic injuries but, disproportionately, pedestrian fatalities accounted for roughly 14% of traffic-related deaths (NHTSA 2014 ). In many other countries, pedestrians make up more than 50% of those injured and killed in crashes. This research project examined driver response to crash-imminent situations involving pedestrians in a high-fidelity, full-motion driving simulator. This article presents a scenario development method and discusses experimental design and control issues in conducting pedestrian crash research in a simulation environment. Driving simulators offer a safe environment in which to test driver response and offer the advantage of having virtual pedestrian models that move realistically, unlike test track studies, which by nature must use pedestrian dummies on some moving track. An analysis of pedestrian crash trajectories, speeds, roadside features, and pedestrian behavior was used to create 18 unique crash scenarios representative of the most frequent and most costly crash types. For the study reported here, we only considered scenarios where the car is traveling straight because these represent the majority of fatalities. We manipulated driver expectation of a pedestrian both by presenting intersection and mid-block crossing as well as by using features in the scene to direct the driver's visual attention toward or away from the crossing pedestrian. Three visual environments for the scenarios were used to provide a variety of roadside environments and speed: a 20-30 mph residential area, a 55 mph rural undivided highway, and a 40 mph urban area. Many variables of crash situations were considered in selecting and developing the scenarios, including vehicle and pedestrian movements; roadway and roadside features; environmental conditions; and characteristics of the pedestrian, driver, and vehicle. The driving simulator scenarios were subjected to iterative testing to adjust time to arrival triggers for the pedestrian actions. This article discusses the rationale behind creating the simulator scenarios and some of the procedural considerations for conducting this type of research. Crash analyses can be used to construct test scenarios for driver behavior evaluations using driving simulators. By considering trajectories, roadway, and environmental conditions of real-world crashes, representative virtual scenarios can serve as safe test beds for advanced driver assistance systems. The results of such research can be used to inform pedestrian crash avoidance/mitigation systems by identifying driver error, driver response time, and driver response choice (i.e., steering vs. braking).
The Scenario of Gifted Education in Brazil
ERIC Educational Resources Information Center
Wechsler, Solange Muglia; Fleith, Denise de Souza
2017-01-01
The purpose of this paper is to provide an overview of gifted education in Brazil. A scenario of the education of the gifted is presented, including the official concept of giftedness as well as programs and services available to emphasize important contributions to the area. Although there are considerable advances regarding policies, practices,…
Defining a Simulation Capability Hierarchy for the Modeling of a SeaBase Enabler (SBE)
2010-09-01
ability to maintain the sea lanes of communication. Relief efforts in crisis-stricken countries like India in 2007, Aceh Indonesia and Sri Lanka in...the number of entities that were built into the scenario run for each category. 104 Advanced Scenario Results Speed Cargo Rate Escorts SURF
Overview on the Role of Advance Genomics in Conservation Biology of Endangered Species.
Khan, Suliman; Nabi, Ghulam; Ullah, Muhammad Wajid; Yousaf, Muhammad; Manan, Sehrish; Siddique, Rabeea; Hou, Hongwei
2016-01-01
In the recent era, due to tremendous advancement in industrialization, pollution and other anthropogenic activities have created a serious scenario for biota survival. It has been reported that present biota is entering a "sixth" mass extinction, because of chronic exposure to anthropogenic activities. Various ex situ and in situ measures have been adopted for conservation of threatened and endangered plants and animal species; however, these have been limited due to various discrepancies associated with them. Current advancement in molecular technologies, especially, genomics, is playing a very crucial role in biodiversity conservation. Advance genomics helps in identifying the segments of genome responsible for adaptation. It can also improve our understanding about microevolution through a better understanding of selection, mutation, assertive matting, and recombination. Advance genomics helps in identifying genes that are essential for fitness and ultimately for developing modern and fast monitoring tools for endangered biodiversity. This review article focuses on the applications of advanced genomics mainly demographic, adaptive genetic variations, inbreeding, hybridization and introgression, and disease susceptibilities, in the conservation of threatened biota. In short, it provides the fundamentals for novice readers and advancement in genomics for the experts working for the conservation of endangered plant and animal species.
Overview on the Role of Advance Genomics in Conservation Biology of Endangered Species
Khan, Suliman; Nabi, Ghulam; Ullah, Muhammad Wajid; Yousaf, Muhammad; Manan, Sehrish; Siddique, Rabeea
2016-01-01
In the recent era, due to tremendous advancement in industrialization, pollution and other anthropogenic activities have created a serious scenario for biota survival. It has been reported that present biota is entering a “sixth” mass extinction, because of chronic exposure to anthropogenic activities. Various ex situ and in situ measures have been adopted for conservation of threatened and endangered plants and animal species; however, these have been limited due to various discrepancies associated with them. Current advancement in molecular technologies, especially, genomics, is playing a very crucial role in biodiversity conservation. Advance genomics helps in identifying the segments of genome responsible for adaptation. It can also improve our understanding about microevolution through a better understanding of selection, mutation, assertive matting, and recombination. Advance genomics helps in identifying genes that are essential for fitness and ultimately for developing modern and fast monitoring tools for endangered biodiversity. This review article focuses on the applications of advanced genomics mainly demographic, adaptive genetic variations, inbreeding, hybridization and introgression, and disease susceptibilities, in the conservation of threatened biota. In short, it provides the fundamentals for novice readers and advancement in genomics for the experts working for the conservation of endangered plant and animal species. PMID:28025636
Space Launch System Co-Manifested Payload Options for Habitation
NASA Technical Reports Server (NTRS)
Smitherman, David
2015-01-01
The Space Launch System (SLS) has a co-manifested payload capability that will grow over time as the rocket matures and planned upgrades are implemented. The final configuration is planned to be capable of inserting a payload greater than 10 metric tons (mt) into a trans-lunar injection trajectory along with the crew in the Orion capsule and the service module. The co-manifested payload is located below the Orion and its service module in a 10-meter high fairing similar to the way the Saturn launch vehicle carried the lunar lander below the Apollo command and service modules. A variety of approaches have been explored that utilizes this co-manifested payload capability to build up infrastructure in deep space in support of future asteroid, lunar, and Mars mission scenarios. This paper is a report on the findings from the Advanced Concepts Office study team at the NASA Marshall Space Flight Center, working with the Advanced Exploration Systems Program on the Exploration Augmentation Module Project. It includes some of the possible options for habitation in the co-manifested payload volume on SLS. Findings include module designs that can be developed in 10mt increments to support these missions, including overall conceptual layouts, mass properties, and approaches for integration into various scenarios for near-term support of deep space habitat research and technology development, support to asteroid exploration, and long range support for Mars transfer flights.
de Oliveira, Mario A; Araujo, Nelcileno V S; da Silva, Rodolfo N; da Silva, Tony I; Epaarachchi, Jayantha
2018-01-08
A considerable amount of research has focused on monitoring structural damage using Structural Health Monitoring (SHM) technologies, which has had recent advances. However, it is important to note the challenges and unresolved problems that disqualify currently developed monitoring systems. One of the frontline SHM technologies, the Electromechanical Impedance (EMI) technique, has shown its potential to overcome remaining problems and challenges. Unfortunately, the recently developed neural network algorithms have not shown significant improvements in the accuracy of rate and the required processing time. In order to fill this gap in advanced neural networks used with EMI techniques, this paper proposes an enhanced and reliable strategy for improving the structural damage detection via: (1) Savitzky-Golay (SG) filter, using both first and second derivatives; (2) Probabilistic Neural Network (PNN); and, (3) Simplified Fuzzy ARTMAP Network (SFAN). Those three methods were employed to analyze the EMI data experimentally obtained from an aluminum plate containing three attached PZT (Lead Zirconate Titanate) patches. In this present study, the damage scenarios were simulated by attaching a small metallic nut at three different positions in the aluminum plate. We found that the proposed method achieves a hit rate of more than 83%, which is significantly higher than current state-of-the-art approaches. Furthermore, this approach results in an improvement of 93% when considering the best case scenario.
Araujo, Nelcileno V. S.; da Silva, Rodolfo N.; da Silva, Tony I.; Epaarachchi, Jayantha
2018-01-01
A considerable amount of research has focused on monitoring structural damage using Structural Health Monitoring (SHM) technologies, which has had recent advances. However, it is important to note the challenges and unresolved problems that disqualify currently developed monitoring systems. One of the frontline SHM technologies, the Electromechanical Impedance (EMI) technique, has shown its potential to overcome remaining problems and challenges. Unfortunately, the recently developed neural network algorithms have not shown significant improvements in the accuracy of rate and the required processing time. In order to fill this gap in advanced neural networks used with EMI techniques, this paper proposes an enhanced and reliable strategy for improving the structural damage detection via: (1) Savitzky–Golay (SG) filter, using both first and second derivatives; (2) Probabilistic Neural Network (PNN); and, (3) Simplified Fuzzy ARTMAP Network (SFAN). Those three methods were employed to analyze the EMI data experimentally obtained from an aluminum plate containing three attached PZT (Lead Zirconate Titanate) patches. In this present study, the damage scenarios were simulated by attaching a small metallic nut at three different positions in the aluminum plate. We found that the proposed method achieves a hit rate of more than 83%, which is significantly higher than current state-of-the-art approaches. Furthermore, this approach results in an improvement of 93% when considering the best case scenario. PMID:29316693
Schvimer, Michael; Atias, Dikla; Halperin, Sharon; Buzhor, Ella; Raitses-Gurevich, Maria; Cohen, Keren; Pri-Chen, Sara; Wilson, Julie; Denroche, Robert E.; Lungu, Ilinca; Bartlett, John M.S.; Mbabaali, Faridah; Yarden, Yosef; Nataraj, Nishanth Belugali; Gallinger, Steven; Berger, Raanan
2017-01-01
Pancreatic ductal adenocarcinoma has limited treatment options. There is an urgent need for developing appropriate pre-clinical models recapitulating metastatic disease, the most common clinical scenario at presentation. Ascites accumulation occurs in up to 20–30% of patients with pancreatic cancer; this milieu represents a highly cellular research resource of metastatic peritoneal spread. In this study, we utilized pancreatic ascites/pleural effusion cancer cells to establish patient derived xenografts. Ascites/pleural effusion-patient derived xenografts were established from twelve independent cases. Xenografts were serially passed in nude mice and tissue bio-specimen banking has been established. Histopathology of emergent tumors demonstrates poorly to moderately differentiated, glandular and mucin producing tumors, mirroring morphology of primary pancreatic cancer tumors. Whole genome sequencing of six patient derived xenografts samples demonstrates common mutations and structural variations similar to those reported in primary pancreatic cancer. Xenograft tumors were dissociated to single-cells and in-vitro drug sensitivity screen assays demonstrated chemo-resistance, correlating with patient clinical scenarios, thus serving as a platform for clinically relevant translational research. Therefore, establishment of this novel ascites/pleural effusion patient derived xenograft model, with extensive histopathology and genomic characterization, opens an opportunity for the study of advanced aggressive pancreatic cancer. Characterization of metastatic disease and mechanisms of resistance to therapeutics may lead to the development of novel drug combinations. PMID:28489577
Identifying regions vulnerable to habitat degradation under future irrigation scenarios
NASA Astrophysics Data System (ADS)
Terrado, Marta; Sabater, Sergi; Acuña, Vicenç
2016-11-01
The loss and degradation of natural habitats is a primary cause of biodiversity decline. The increasing impacts of climate and land use change affect water availability, ultimately decreasing agricultural production. Areas devoted to irrigation have been increased to compensate this reduction, causing habitat and biodiversity losses, especially in regions undergoing severe water stress. These effects might intensify under global change, probably contributing to a decrease in habitat quality. We selected four European river basins across a gradient of water scarcity and irrigation agriculture. The habitat quality in the basins was assessed as a function of habitat suitability and threats under current and future global change scenarios of irrigation. Results revealed that the most threatened regions under future scenarios of global change were among those suffering of water scarcity and with bigger areas devoted to irrigation. Loss of habitat quality reached 10% in terrestrial and 25% in aquatic ecosystems under climate change scenarios involving drier conditions. The aquatic habitats were the most degraded in all scenarios, since they were affected by threats from both the terrestrial and the aquatic parts of the basin. By identifying in advance the regions most vulnerable to habitat and biodiversity loss, our approach can assist decision makers in deciding the conservation actions to be prioritized for mitigation and adaptation to the effects of climate change, particularly front the development of irrigation plans.
Kepner, William G.; Semmens, Darius J.; Hernandez, Mariano; Goodrich, David C.
2009-01-01
Envisioning and evaluating future scenarios has emerged as a critical component of both science and social decision-making. The ability to assess, report, map, and forecast the life support functions of ecosystems is absolutely critical to our capacity to make informed decisions to maintain the sustainable nature of our ecosystem services now and into the future. During the past two decades, important advances in the integration of remote imagery, computer processing, and spatial-analysis technologies have been used to develop landscape information that can be integrated with hydrologic models to determine long-term change and make predictive inferences about the future. Two diverse case studies in northwest Oregon (Willamette River basin) and southeastern Arizona (San Pedro River) were examined in regard to future land use scenarios relative to their impact on surface water conditions (e.g., sediment yield and surface runoff) using hydrologic models associated with the Automated Geospatial Watershed Assessment (AGWA) tool. The base reference grid for land cover was modified in both study locations to reflect stakeholder preferences 20 to 60 yrs into the future, and the consequences of landscape change were evaluated relative to the selected future scenarios. The two studies provide examples of integrating hydrologic modeling with a scenario analysis framework to evaluate plausible future forecasts and to understand the potential impact of landscape change on ecosystem services.
PVO / NGO initiatives. The Global Dialogues Trust -- "Scenarios from the Sahel".
1997-01-01
Scenarios from the Sahel is an HIV/AIDS prevention project for adolescents and young adults in Senegal, Mali, Burkina Faso, and Niger, organized by the Global Dialogues Trust and launched in January 1997. The project invites people aged 24 years and younger to engage in a competition in which they write scenarios for a 1-5 minute video on HIV/AIDS. Those 30 scenarios judged to be the most valuable to the HIV/AIDS prevention effort in the Sahel will be developed into video spots by the region's film-makers and screened at cinemas and broadcast on television stations in West Africa. The spots will also be collected upon a compilation video available for use by local nongovernmental organizations in their HIV/AIDS prevention activities in the region. The compilation video will be dubbed from French into local languages and English to facilitate its broad dissemination in the 4 participating countries and their neighbors. The video together with an education pack will also be distributed to local organizations and schools. The project, to be conducted in close partnership with local people and their organizations, will end with its evaluation in June 1998. Global Dialogues Trust is a charitable trust based in the UK dedicated to advance the education of the public throughout the world in all matters concerning the prevention of HIV/AIDS. The organization's main priority is to develop local capacity to fight HIV/AIDS through preventive education.
A Bottom-up Energy Efficiency Improvement Roadmap for China’s Iron and Steel Industry up to 2050
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qi; Hasanbeigi, Ali; Price, Lynn
Iron and steel manufacturing is energy intensive in China and in the world. China is the world largest steel producer accounting for around half of the world steel production. In this study, we use a bottom-up energy consumption model to analyze four steel-production and energy-efficiency scenarios and evaluate the potential for energy savings from energy-efficient technologies in China’s iron and steel industry between 2010 and 2050. The results show that China’s steel production will rise and peak in the year 2020 at 860 million tons (Mt) per year for the base-case scenario and 680 Mt for the advanced energy-efficiency scenario.more » From 2020 on, production will gradually decrease to about 510 Mt and 400 Mt in 2050, for the base-case and advanced scenarios, respectively. Energy intensity will decrease from 21.2 gigajoules per ton (G/t) in 2010 to 12.2 GJ/t and 9.9 GJ/t in 2050 for the base-case and advanced scenarios, respectively. In the near term, decreases in iron and steel industry energy intensity will come from adoption of energy-efficient technologies. In the long term, a shift in the production structure of China’s iron and steel industry, reducing the share of blast furnace/basic oxygen furnace production and increasing the share of electric-arc furnace production while reducing the use of pig iron as a feedstock to electric-arc furnaces will continue to reduce the sector’s energy consumption. We discuss barriers to achieving these energy-efficiency gains and make policy recommendations to support improved energy efficiency and a shift in the nature of iron and steel production in China.« less
Advanced local area network concepts
NASA Technical Reports Server (NTRS)
Grant, Terry
1985-01-01
Development of a good model of the data traffic requirements for Local Area Networks (LANs) onboard the Space Station is the driving problem in this work. A parameterized workload model is under development. An analysis contract has been started specifically to capture the distributed processing requirements for the Space Station and then to develop a top level model to simulate how various processing scenarios can handle the workload and what data communication patterns result. A summary of the Local Area Network Extendsible Simulator 2 Requirements Specification and excerpts from a grant report on the topological design of fiber optic local area networks with application to Expressnet are given.
Long-term/strategic scenario for reusable booster stages
NASA Astrophysics Data System (ADS)
Sippel, Martin; Manfletti, Chiara; Burkhardt, Holger
2006-02-01
This paper describes the final design status of a partially reusable space transportation system which has been under study for five years within the German future launcher technology research program ASTRA. It consists of dual booster stages, which are attached to an advanced expendable core. The design of the reference liquid fly-back boosters (LFBB) is focused on LOX/LH2 propellant and a future advanced gas-generator cycle rocket motor. The preliminary design study was performed in close cooperation between DLR and the German space industry. The paper's first part describes recent progress in the design of this reusable booster stage. The second part of the paper assesses a long-term, strategic scenario of the reusable stage's operation. The general idea is the gradual evolution of the above mentioned basic fly-back booster vehicle into three space transportation systems performing different tasks: Reusable First Stage for a small launcher application, successive development to a fully reusable TSTO, and booster for a super-heavy-lift rocket to support an ambitious space flight program like manned Mars missions. The assessment addresses questions of technical sanity, preliminary sizing and performance issues and, where applicable, examines alternative options.
Analysis of ground-motion simulation big data
NASA Astrophysics Data System (ADS)
Maeda, T.; Fujiwara, H.
2016-12-01
We developed a parallel distributed processing system which applies a big data analysis to the large-scale ground motion simulation data. The system uses ground-motion index values and earthquake scenario parameters as input. We used peak ground velocity value and velocity response spectra as the ground-motion index. The ground-motion index values are calculated from our simulation data. We used simulated long-period ground motion waveforms at about 80,000 meshes calculated by a three dimensional finite difference method based on 369 earthquake scenarios of a great earthquake in the Nankai Trough. These scenarios were constructed by considering the uncertainty of source model parameters such as source area, rupture starting point, asperity location, rupture velocity, fmax and slip function. We used these parameters as the earthquake scenario parameter. The system firstly carries out the clustering of the earthquake scenario in each mesh by the k-means method. The number of clusters is determined in advance using a hierarchical clustering by the Ward's method. The scenario clustering results are converted to the 1-D feature vector. The dimension of the feature vector is the number of scenario combination. If two scenarios belong to the same cluster the component of the feature vector is 1, and otherwise the component is 0. The feature vector shows a `response' of mesh to the assumed earthquake scenario group. Next, the system performs the clustering of the mesh by k-means method using the feature vector of each mesh previously obtained. Here the number of clusters is arbitrarily given. The clustering of scenarios and meshes are performed by parallel distributed processing with Hadoop and Spark, respectively. In this study, we divided the meshes into 20 clusters. The meshes in each cluster are geometrically concentrated. Thus this system can extract regions, in which the meshes have similar `response', as clusters. For each cluster, it is possible to determine particular scenario parameters which characterize the cluster. In other word, by utilizing this system, we can obtain critical scenario parameters of the ground-motion simulation for each evaluation point objectively. This research was supported by CREST, JST.
NASA Astrophysics Data System (ADS)
Sun, Jian; Shen, Zhenxing; Cao, Junji; Zhang, Leiming; Wu, Tingting; Zhang, Qian; Yin, Xiuli; Lei, Yali; Huang, Yu; Huang, R.-J.; Liu, Suixin; Han, Yongming; Xu, Hongmei; Zheng, Chunli; Liu, Pingping
2017-02-01
Maize straw smoldering in "Heated Kang" is the traditional way for heating in winter in rural areas of Guanzhong Plain. This smolder procedure produced large quantities of pollutants and got more and more concern from both public and researchers. In this study, on-site measurements of straw smoldering in a residence with a Chinese 'Heated Kang' (Scenario 1) were done to determine the emissions factors (EFs) for pollutants. Moreover, EFs of pollutants from an advanced stove fired with maize straw (Scenario 2) and maize-straw pellet (Scenario 3) had been conducted in a laboratory to find the new measure to reduce the pollution emissions. The results showed that the EFs of PM2.5 for three scenarios were 38.26 ± 13.94 g·kg- 1, 17.50 ± 8.29 g·kg- 1 and 2.95 ± 0.71 g·kg- 1, respectively. Comparing EFs of pollutants from 3 scenarios indicates that both briquetting of straw and advanced stove with air distribution system could efficiently reduce pollutants emission especially for Scenario 3. In detail, EFs of PM2.5, OC, EC and water soluble ions all have over 90% reduction between Scenarios 1 and 3. All particle-size distributions were unimodal, and all peaked in particle sizes < 0.47 μm. The EFs for K+ and Cl- were the highest of cations and anions for the majority of size groups. Converting to pellets and advanced stoves for residential heating could reduce PM2.5 emission from 48.3 Gg to 3.59 Gg, OC from 19.0 Gg to 0.91 Gg, EC from 1.7 Gg to 0.17 Gg and over 90% reduction on total water soluble ions in the whole region. A box model simulation for the Guanzhong Plain indicated that this conversion would lead to a 7.7% reduction in PM2.5 (from 130 to 120 μg·m- 3) in normal conditions and a 14.2% reduction (from 350 to 300 μg·m- 3) in hazy conditions. The results highlighted that the straw pellets burning in advanced stove can effectively reduce pollutants emitted and improve the energy use efficiency in comparison with maize straw smoldering in "Heated Kang". The study supplies an effective measure to reduce the rural biomass burning emission, and this method can be used in not only Guanzhong Plain but also other undeveloped areas in the future.
Developing and validating advanced divertor solutions on DIII-D for next-step fusion devices
NASA Astrophysics Data System (ADS)
Guo, H. Y.; Hill, D. N.; Leonard, A. W.; Allen, S. L.; Stangeby, P. C.; Thomas, D.; Unterberg, E. A.; Abrams, T.; Boedo, J.; Briesemeister, A. R.; Buchenauer, D.; Bykov, I.; Canik, J. M.; Chrobak, C.; Covele, B.; Ding, R.; Doerner, R.; Donovan, D.; Du, H.; Elder, D.; Eldon, D.; Lasa, A.; Groth, M.; Guterl, J.; Jarvinen, A.; Hinson, E.; Kolemen, E.; Lasnier, C. J.; Lore, J.; Makowski, M. A.; McLean, A.; Meyer, B.; Moser, A. L.; Nygren, R.; Owen, L.; Petrie, T. W.; Porter, G. D.; Rognlien, T. D.; Rudakov, D.; Sang, C. F.; Samuell, C.; Si, H.; Schmitz, O.; Sontag, A.; Soukhanovskii, V.; Wampler, W.; Wang, H.; Watkins, J. G.
2016-12-01
A major challenge facing the design and operation of next-step high-power steady-state fusion devices is to develop a viable divertor solution with order-of-magnitude increases in power handling capability relative to present experience, while having acceptable divertor target plate erosion and being compatible with maintaining good core plasma confinement. A new initiative has been launched on DIII-D to develop the scientific basis for design, installation, and operation of an advanced divertor to evaluate boundary plasma solutions applicable to next step fusion experiments beyond ITER. Developing the scientific basis for fusion reactor divertor solutions must necessarily follow three lines of research, which we plan to pursue in DIII-D: (1) Advance scientific understanding and predictive capability through development and comparison between state-of-the art computational models and enhanced measurements using targeted parametric scans; (2) Develop and validate key divertor design concepts and codes through innovative variations in physical structure and magnetic geometry; (3) Assess candidate materials, determining the implications for core plasma operation and control, and develop mitigation techniques for any deleterious effects, incorporating development of plasma-material interaction models. These efforts will lead to design, installation, and evaluation of an advanced divertor for DIII-D to enable highly dissipative divertor operation at core density (n e/n GW), neutral fueling and impurity influx most compatible with high performance plasma scenarios and reactor relevant plasma facing components (PFCs). This paper highlights the current progress and near-term strategies of boundary/PMI research on DIII-D.
Developing and validating advanced divertor solutions on DIII-D for next-step fusion devices
Guo, H. Y.; Hill, D. N.; Leonard, A. W.; ...
2016-09-14
A major challenge facing the design and operation of next-step high-power steady-state fusion devices is to develop a viable divertor solution with order-of-magnitude increases in power handling capability relative to present experience, while having acceptable divertor target plate erosion and being compatible with maintaining good core plasma confinement. A new initiative has been launched on DIII-D to develop the scientific basis for design, installation, and operation of an advanced divertor to evaluate boundary plasma solutions applicable to next step fusion experiments beyond ITER. Developing the scientific basis for fusion reactor divertor solutions must necessarily follow three lines of research, whichmore » we plan to pursue in DIII-D: (1) Advance scientific understanding and predictive capability through development and comparison between state-of-the art computational models and enhanced measurements using targeted parametric scans; (2) Develop and validate key divertor design concepts and codes through innovative variations in physical structure and magnetic geometry; (3) Assess candidate materials, determining the implications for core plasma operation and control, and develop mitigation techniques for any deleterious effects, incorporating development of plasma-material interaction models. These efforts will lead to design, installation, and evaluation of an advanced divertor for DIII-D to enable highly dissipative divertor operation at core density (n e/n GW), neutral fueling and impurity influx most compatible with high performance plasma scenarios and reactor relevant plasma facing components (PFCs). In conclusion, this paper highlights the current progress and near-term strategies of boundary/PMI research on DIII-D.« less
Analyses of transients for an 800 MW-class accelerator driven transmuter with fertile-free fuels
NASA Astrophysics Data System (ADS)
Maschek, Werner; Suzuki, Tohru; Chen, Xue-Nong; Rineiski, Andrei; Matzerath Boccaccini, Claudia; Mori, Magnus; Morita, Koji
2006-06-01
In the FUTURE Program, the development and application of fertile-free fuels for Accelerator Driven Transmuters (ADTs) has been advanced. To assess the reactor performance and safety behavior of an ADT with so-called dedicated fuels, various transient cases for an 800 MW-class Pb/Bi-cooled ADT were investigated using the SIMMER-III code. The FUTURE ADT also served as vehicle to develop and test ideas on a safety concept for such transmuters. After an extensive ranking procedure, a CERCER fuel with an MgO matrix and a CERMET fuel with a Mo-92 matrix were chosen. The transient scenarios shown here are: spurious beam trip (BT), unprotected loss of flow (ULOF) and unprotected blockage accident (UBA). Since the release of fission gas and helium after cladding failure could induce a significant positive reactivity, the gas-blowdown was investigated for the transient scenarios. The present analyses showed that power excursions could be avoided by the fuel sweep-out from the core under severe accident conditions.
Space transfer vehicle concepts and requirements, volume 2, book 1
NASA Technical Reports Server (NTRS)
1991-01-01
The objective of the systems engineering task was to develop and implement an approach that would generate the required study products as defined by program directives. This product list included a set of system and subsystem requirements, a complete set of optimized trade studies and analyses resulting in a recommended system configuration, and the definition of an integrated system/technology and advanced development growth path. A primary ingredient in the approach was the TQM philosophy stressing job quality from the inception. Included throughout the Systems Engineering, Programmatics, Concepts, Flight Design, and Technology sections are data supporting the original objectives as well as supplemental information resulting from program activities. The primary result of the analyses and studies was the recommendation of a single propulsion stage Lunar Transportation System (LTS) configuration that supports several different operations scenarios with minor element changes. This concept has the potential to support two additional scenarios with complex element changes. The space based LTS concept consists of three primary configurations--Piloted, Reusable Cargo, and Expendable Cargo.
The Prospects of Whole Brain Emulation within the next Half- Century
NASA Astrophysics Data System (ADS)
Eth, Daniel; Foust, Juan-Carlos; Whale, Brandon
2013-12-01
Whole Brain Emulation (WBE), the theoretical technology of modeling a human brain in its entirety on a computer-thoughts, feelings, memories, and skills intact-is a staple of science fiction. Recently, proponents of WBE have suggested that it will be realized in the next few decades. In this paper, we investigate the plausibility of WBE being developed in the next 50 years (by 2063). We identify four essential requisite technologies: scanning the brain, translating the scan into a model, running the model on a computer, and simulating an environment and body. Additionally, we consider the cultural and social effects of WBE. We find the two most uncertain factors for WBE's future to be the development of advanced miniscule probes that can amass neural data in vivo and the degree to which the culture surrounding WBE becomes cooperative or competitive. We identify four plausible scenarios from these uncertainties and suggest the most likely scenario to be one in which WBE is realized, and the technology is used for moderately cooperative ends
Development and Application of an Integrated Approach toward NASA Airspace Systems Research
NASA Technical Reports Server (NTRS)
Barhydt, Richard; Fong, Robert K.; Abramson, Paul D.; Koenke, Ed
2008-01-01
The National Aeronautics and Space Administration's (NASA) Airspace Systems Program is contributing air traffic management research in support of the 2025 Next Generation Air Transportation System (NextGen). Contributions support research and development needs provided by the interagency Joint Planning and Development Office (JPDO). These needs generally call for integrated technical solutions that improve system-level performance and work effectively across multiple domains and planning time horizons. In response, the Airspace Systems Program is pursuing an integrated research approach and has adapted systems engineering best practices for application in a research environment. Systems engineering methods aim to enable researchers to methodically compare different technical approaches, consider system-level performance, and develop compatible solutions. Systems engineering activities are performed iteratively as the research matures. Products of this approach include a demand and needs analysis, system-level descriptions focusing on NASA research contributions, system assessment and design studies, and common systemlevel metrics, scenarios, and assumptions. Results from the first systems engineering iteration include a preliminary demand and needs analysis; a functional modeling tool; and initial system-level metrics, scenario characteristics, and assumptions. Demand and needs analysis results suggest that several advanced concepts can mitigate demand/capacity imbalances for NextGen, but fall short of enabling three-times current-day capacity at the nation s busiest airports and airspace. Current activities are focusing on standardizing metrics, scenarios, and assumptions, conducting system-level performance assessments of integrated research solutions, and exploring key system design interfaces.
Callwood, Alison; Cooke, Debbie; Allan, Helen
2014-12-01
Published research has demonstrated that the multiple mini-interview (MMI) is a reliable assessment instrument in medical and nursing student selection. There is a dearth of evidence specifically relating to the advancement and subsequent evaluation of MMIs in the context of student midwife selection. To develop, pilot and examine the reliability of MMIs in pre-registration student midwife selection in a UK setting. DeVellis' framework for questionnaire development underpinned the generation of MMI scenarios. BSc (Hons) Midwifery Studies students at a Higher Education Institution in the UK volunteered to participate in 'mock' MMI circuits during the first week of their programme. An eight station model was piloted. Communication skills were rated at each station as a generic attribute. Station specific attributes assessed included: compassion and empathy; respect for difference and diversity; honesty and integrity; intellectual curiosity and reflective nature; advocacy; respect for privacy and dignity; team working and initiative; the role of the midwife and motivation to become a midwife. Participants' responses to scenario questions were rated on a 7 point scale. Cronbach's alpha scores measuring internal consistency ranged from 0.91 to 0.97 CONCLUSION: The systematic development of the MMI model and scenarios resulted in 'excellent' reliability across all stations. These findings endorse the MMI technique as a reliable alternative to the personal interview in informing final decisions in pre-registration student midwife selection. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA USRP Internship Final Report
NASA Technical Reports Server (NTRS)
Black, Jesse A.
2010-01-01
The purpose of this report is to describe the body of work I have produced as a NASA USRP intern in the spring 2010. My mentor during this time was Richard Birr and I assisted him with many tasks in the advanced systems group in the engineering design lab at NASA's Kennedy space center. The main priority was and scenario modeling for the FAA's next generation air traffic control system and also developing next generation range systems for implementation at Kennedy space center. Also of importance was the development of wiring diagrams for the portable communications terminal for the desert rats program.
Optimization techniques applied to passive measures for in-orbit spacecraft survivability
NASA Technical Reports Server (NTRS)
Mog, Robert A.; Helba, Michael J.; Hill, Janeil B.
1992-01-01
The purpose of this research is to provide Space Station Freedom protective structures design insight through the coupling of design/material requirements, hypervelocity impact phenomenology, meteoroid and space debris environment sensitivities, optimization techniques and operations research strategies, and mission scenarios. The goals of the research are: (1) to develop a Monte Carlo simulation tool which will provide top level insight for Space Station protective structures designers; (2) to develop advanced shielding concepts relevant to Space Station Freedom using unique multiple bumper approaches; and (3) to investigate projectile shape effects on protective structures design.
NASA Technical Reports Server (NTRS)
1986-01-01
This study projects until 2000 the evolution of long distance fiber optic networks in the U.S. Volume 1 is the executive Summary. Volume 2 focuses on fiber optic components and systems that are directly related to the operation of long-haul networks. Optimistic, pessimistic and most likely scenarios of technology development are presented. The activities of national and regional companies implementing fiber long haul networks are also highlighted, along with an analysis of the market and regulatory forces affecting network evolution. Volume 3 presents advanced fiber optic network concept definitions. Inter-LATA traffic is quantified and forms the basis for the construction of 11-, 15-, 17-, and 23-node networks. Using the technology projections from Volume 2, a financial model identifies cost drivers and determines circuit mile costs between any two LATAs. A comparison of fiber optics with alternative transmission concludes the report.
NASA Astrophysics Data System (ADS)
1986-10-01
This study projects until 2000 the evolution of long distance fiber optic networks in the U.S. Volume 1 is the executive Summary. Volume 2 focuses on fiber optic components and systems that are directly related to the operation of long-haul networks. Optimistic, pessimistic and most likely scenarios of technology development are presented. The activities of national and regional companies implementing fiber long haul networks are also highlighted, along with an analysis of the market and regulatory forces affecting network evolution. Volume 3 presents advanced fiber optic network concept definitions. Inter-LATA traffic is quantified and forms the basis for the construction of 11-, 15-, 17-, and 23-node networks. Using the technology projections from Volume 2, a financial model identifies cost drivers and determines circuit mile costs between any two LATAs. A comparison of fiber optics with alternative transmission concludes the report.
NASA Technical Reports Server (NTRS)
Amonlirdviman, Keith; Farley, Todd C.; Hansman, R. John, Jr.; Ladik, John F.; Sherer, Dana Z.
1998-01-01
A distributed real-time simulation of the civil air traffic environment developed to support human factors research in advanced air transportation technology is presented. The distributed environment is based on a custom simulation architecture designed for simplicity and flexibility in human experiments. Standard Internet protocols are used to create the distributed environment, linking all advanced cockpit simulator, all Air Traffic Control simulator, and a pseudo-aircraft control and simulation management station. The pseudo-aircraft control station also functions as a scenario design tool for coordinating human factors experiments. This station incorporates a pseudo-pilot interface designed to reduce workload for human operators piloting multiple aircraft simultaneously in real time. The application of this distributed simulation facility to support a study of the effect of shared information (via air-ground datalink) on pilot/controller shared situation awareness and re-route negotiation is also presented.
Panda, Sandeep; Akcil, Ata; Pradhan, Nilotpala; Deveci, Haci
2015-11-01
Chalcopyrite is the primary copper mineral used for production of copper metal. Today, as a result of rapid industrialization, there has been enormous demand to profitably process the low grade chalcopyrite and "dirty" concentrates through bioleaching. In the current scenario, heap bioleaching is the most advanced and preferred eco-friendly technology for processing of low grade, uneconomic/difficult-to-enrich ores for copper extraction. This paper reviews the current status of chalcopyrite bioleaching. Advanced information with the attempts made for understanding the diversity of bioleaching microorganisms; role of OMICs based research for future applications to industrial sectors and chemical/microbial aspects of chalcopyrite bioleaching is discussed. Additionally, the current progress made to overcome the problems of passivation as seen in chalcopyrite bioleaching systems have been conversed. Furthermore, advances in the designing of heap bioleaching plant along with microbial and environmental factors of importance have been reviewed with conclusions into the future prospects of chalcopyrite bioleaching. Copyright © 2015 Elsevier Ltd. All rights reserved.
Advanced Pedestrian Positioning System to Smartphones and Smartwatches
Correa, Alejandro; Munoz Diaz, Estefania; Bousdar Ahmed, Dina; Morell, Antoni; Lopez Vicario, Jose
2016-01-01
In recent years, there has been an increasing interest in the development of pedestrian navigation systems for satellite-denied scenarios. The popularization of smartphones and smartwatches is an interesting opportunity for reducing the infrastructure cost of the positioning systems. Nowadays, smartphones include inertial sensors that can be used in pedestrian dead-reckoning (PDR) algorithms for the estimation of the user’s position. Both smartphones and smartwatches include WiFi capabilities allowing the computation of the received signal strength (RSS). We develop a new method for the combination of RSS measurements from two different receivers using a Gaussian mixture model. We also analyze the implication of using a WiFi network designed for communication purposes in an indoor positioning system when the designer cannot control the network configuration. In this work, we design a hybrid positioning system that combines inertial measurements, from low-cost inertial sensors embedded in a smartphone, with RSS measurements through an extended Kalman filter. The system has been validated in a real scenario, and results show that our system improves the positioning accuracy of the PDR system thanks to the use of two WiFi receivers. The designed system obtains an accuracy up to 1.4 m in a scenario of 6000 m2. PMID:27845715
NASA Technical Reports Server (NTRS)
Wiederholt, Bradley J.; Browning, Elica J.; Norton, Jeffrey E.; Johnson, William B.
1991-01-01
MITT Writer is a software system for developing computer based training for complex technical domains. A training system produced by MITT Writer allows a student to learn and practice troubleshooting and diagnostic skills. The MITT (Microcomputer Intelligence for Technical Training) architecture is a reasonable approach to simulation based diagnostic training. MITT delivers training on available computing equipment, delivers challenging training and simulation scenarios, and has economical development and maintenance costs. A 15 month effort was undertaken in which the MITT Writer system was developed. A workshop was also conducted to train instructors in how to use MITT Writer. Earlier versions were used to develop an Intelligent Tutoring System for troubleshooting the Minuteman Missile Message Processing System.
Overview of the present progress and activities on the CFETR
NASA Astrophysics Data System (ADS)
Wan, Yuanxi; Li, Jiangang; Liu, Yong; Wang, Xiaolin; Chan, Vincent; Chen, Changan; Duan, Xuru; Fu, Peng; Gao, Xiang; Feng, Kaiming; Liu, Songlin; Song, Yuntao; Weng, Peide; Wan, Baonian; Wan, Farong; Wang, Heyi; Wu, Songtao; Ye, Minyou; Yang, Qingwei; Zheng, Guoyao; Zhuang, Ge; Li, Qiang; CFETR Team
2017-10-01
The China Fusion Engineering Test Reactor (CFETR) is the next device in the roadmap for the realization of fusion energy in China, which aims to bridge the gaps between the fusion experimental reactor ITER and the demonstration reactor (DEMO). CFETR will be operated in two phases. Steady-state operation and self-sufficiency will be the two key issues for Phase I with a modest fusion power of up to 200 MW. Phase II aims for DEMO validation with a fusion power over 1 GW. Advanced H-mode physics, high magnetic fields up to 7 T, high frequency electron cyclotron resonance heating and lower hybrid current drive together with off-axis negative-ion neutral beam injection will be developed for achieving steady-state advanced operation. The recent detailed design, research and development (R&D) activities including integrated modeling of operation scenarios, high field magnet, material, tritium plant, remote handling and future plans are introduced in this paper.
Nasim, Sajid; Maharaj, Chrisen H; Malik, Muhammad A; O' Donnell, John; Higgins, Brendan D; Laffey, John G
2009-01-01
Background Intubation of the trachea in the pre-hospital setting may be lifesaving in severely ill and injured patients. However, tracheal intubation is frequently difficult to perform in this challenging environment, is associated with a lower success rate, and failed tracheal intubation constitutes an important cause of morbidity. Novel indirect laryngoscopes, such as the Glidescope® and the AWS® laryngoscopes may reduce this risk. Methods We compared the efficacy of these devices to the Macintosh laryngoscope when used by 25 Advanced Paramedics proficient in direct laryngoscopy, in a randomized, controlled, manikin study. Following brief didactic instruction with the Glidescope® and the AWS® laryngoscopes, each participant took turns performing laryngoscopy and intubation with each device, in an easy intubation scenario and following placement of a hard cervical collar, in a SimMan® manikin. Results Both the Glidescope® and the AWS® performed better than the Macintosh, and demonstrate considerable promise in this context. The AWS® had the least number of dental compressions in all three scenarios, and in the cervical spine immobilization scenario it required fewer maneuvers to optimize the view of the glottis. Conclusion The Glidescope® and AWS® devices possess advantages over the conventional Macintosh laryngoscope when used by Advanced Paramedics in normal and simulated difficult intubation scenarios in this manikin study. Further studies are required to extend these findings to the clinical setting. PMID:19445719
Arthroscopic knee surgery using the advanced flat panel high-resolution color head-mounted display
NASA Astrophysics Data System (ADS)
Nelson, Scott A.; Jones, D. E. Casey; St. Pierre, Patrick; Sampson, James B.
1997-06-01
The first ever deployed arthroscopic knee surgeries have been performed using a high resolution color head-mounted display (HMD) developed under the DARPA Advanced Flat Panel HMD program. THese procedures and several fixed hospital procedures have allowed both the system designers and surgeons to gain new insight into the use of a HMD for medical procedures in both community and combat support hospitals scenarios. The surgeons demonstrated and reported improved head-body orientation and awareness while using the HMD and reported several advantages and disadvantages of the HMD as compared to traditional CRT monitor viewing of the arthroscopic video images. The surgeries, the surgeon's comments, and a human factors overview of HMDs for Army surgical applications are discussed here.
Modeling aerosol emissions from the combustion of composite materials
NASA Technical Reports Server (NTRS)
Roop, J. A.; Caldwell, D. J.; Kuhlmann, K. J.
1994-01-01
The use of advanced composite materials (ACM) in the B-2 bomber, composite armored vehicle, and F-22 advanced tactical fighter has rekindled interest concerning the health risk of burned or burning ACM. The objective of this work was to determine smoke production from burning ACM and its toxicity. A commercial version of the UPITT II combustion toxicity method developed at the University of Pittsburgh, and subsequently refined through a US Army-funded basic research project, was used to established controlled combustion conditions which were selected to evaluate real-world exposure scenarios. Production and yield of toxic species varied with the combustion conditions. Previous work with this method showed that the combustion conditions directly influenced the toxicity of the decomposition products from a variety of materials.
NASA Astrophysics Data System (ADS)
Wu, Xushu; Wang, Zhaoli; Guo, Shenglian; Liao, Weilin; Zeng, Zhaoyang; Chen, Xiaohong
2017-04-01
One major threat to cities at present is the increased inundation hazards owing to changes in climate and accelerated human activity. Future evolution of urban inundation is still an unsolved issue, given large uncertainties in future environmental conditions within urbanized areas. Developing model techniques and urban inundation projections are essential for inundation management. In this paper, we proposed a 2D hydrodynamic inundation model by coupling SWMM and LISFLOOD-FP models, and revealed how future urban inundation would evolve for different storms, sea level rise and subsidence scenarios based on the developed model. The Shiqiao Creek District (SCD) in Dongguan City was used as the case study. The model ability was validated against the June 13th, 2008 inundation event, which occurred in SCD, and proved capable of simulating dynamic urban inundation. Scenario analyses revealed a high degree of consistency in the inundation patterns among different storms, with larger magnitudes corresponding to greater return periods. Inundations across SCD generally vary as a function of storm intensity, but for lowlands or regions without drainage facilities inundations tend to aggravate over time. In riverfronts, inundations would exacerbate with sea level rise or subsidence; however, the inland inundations are seemingly insensitive to both factors. For the combined scenario of 100-yr storm, 0.5 m subsidence and 0.7 m sea level rise, the riverside inundations would occur much in advance, whilst catastrophic inundations sweep across SCD. Furthermore, the optimal low-impact development found for this case study includes 0.2 km2 of permeable pavements, 0.1 km2 of rain barrels and 0.7 km2 of green roofs.
Nemesis Autonomous Test System
NASA Technical Reports Server (NTRS)
Barltrop, Kevin J.; Lee, Cin-Young; Horvath, Gregory A,; Clement, Bradley J.
2012-01-01
A generalized framework has been developed for systems validation that can be applied to both traditional and autonomous systems. The framework consists of an automated test case generation and execution system called Nemesis that rapidly and thoroughly identifies flaws or vulnerabilities within a system. By applying genetic optimization and goal-seeking algorithms on the test equipment side, a "war game" is conducted between a system and its complementary nemesis. The end result of the war games is a collection of scenarios that reveals any undesirable behaviors of the system under test. The software provides a reusable framework to evolve test scenarios using genetic algorithms using an operation model of the system under test. It can automatically generate and execute test cases that reveal flaws in behaviorally complex systems. Genetic algorithms focus the exploration of tests on the set of test cases that most effectively reveals the flaws and vulnerabilities of the system under test. It leverages advances in state- and model-based engineering, which are essential in defining the behavior of autonomous systems. It also uses goal networks to describe test scenarios.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, Alberta; Mann, Margaret; Gelman, Rachel
In evaluating next-generation materials and processes, the supply chain can have a large impact on the life cycle energy impacts. The Materials Flow through Industry (MFI) tool was developed for the Department of Energy's Advanced Manufacturing Office to be able to evaluate the energy impacts of the U.S. supply chain. The tool allows users to perform process comparisons, material substitutions, and grid modifications, and to see the effects of implementing sector efficiency potentials (Masanet, et al. 2009). This paper reviews the methodology of the tool and provides results around specific scenarios.
A formal framework for scenario development in support of environmental decision-making
Mahmoud, M.; Liu, Yajing; Hartmann, H.; Stewart, S.; Wagener, T.; Semmens, D.; Stewart, R.; Gupta, H.; Dominguez, D.; Dominguez, F.; Hulse, D.; Letcher, R.; Rashleigh, Brenda; Smith, C.; Street, R.; Ticehurst, J.; Twery, M.; van, Delden H.; Waldick, R.; White, D.; Winter, L.
2009-01-01
Scenarios are possible future states of the world that represent alternative plausible conditions under different assumptions. Often, scenarios are developed in a context relevant to stakeholders involved in their applications since the evaluation of scenario outcomes and implications can enhance decision-making activities. This paper reviews the state-of-the-art of scenario development and proposes a formal approach to scenario development in environmental decision-making. The discussion of current issues in scenario studies includes advantages and obstacles in utilizing a formal scenario development framework, and the different forms of uncertainty inherent in scenario development, as well as how they should be treated. An appendix for common scenario terminology has been attached for clarity. Major recommendations for future research in this area include proper consideration of uncertainty in scenario studies in particular in relation to stakeholder relevant information, construction of scenarios that are more diverse in nature, and sharing of information and resources among the scenario development research community. ?? 2008 Elsevier Ltd.
Minimizing impacts of land use change on ecosystem services using multi-criteria heuristic analysis.
Keller, Arturo A; Fournier, Eric; Fox, Jessica
2015-06-01
Development of natural landscapes to support human activities impacts the capacity of the landscape to provide ecosystem services. Typically, several ecosystem services are impacted at a single development site and various footprint scenarios are possible, thus a multi-criteria analysis is needed. Restoration potential should also be considered for the area surrounding the permanent impact site. The primary objective of this research was to develop a heuristic approach to analyze multiple criteria (e.g. impacts to various ecosystem services) in a spatial configuration with many potential development sites. The approach was to: (1) quantify the magnitude of terrestrial ecosystem service (biodiversity, carbon sequestration, nutrient and sediment retention, and pollination) impacts associated with a suite of land use change scenarios using the InVEST model; (2) normalize results across categories of ecosystem services to allow cross-service comparison; (3) apply the multi-criteria heuristic algorithm to select sites with the least impact to ecosystem services, including a spatial criterion (separation between sites). As a case study, the multi-criteria impact minimization algorithm was applied to InVEST output to select 25 potential development sites out of 204 possible locations (selected by other criteria) within a 24,000 ha property. This study advanced a generally applicable spatial multi-criteria approach for 1) considering many land use footprint scenarios, 2) balancing impact decisions across a suite of ecosystem services, and 3) determining the restoration potential of ecosystem services after impacts. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Curtis L.; Prescott, Steven; Coleman, Justin
This report describes the current progress and status related to the Industry Application #2 focusing on External Hazards. For this industry application within the Light Water Reactor Sustainability (LWRS) Program Risk-Informed Safety Margin Characterization (RISMC) R&D Pathway, we will create the Risk-Informed Margin Management (RIMM) approach to represent meaningful (i.e., realistic facility representation) event scenarios and consequences by using an advanced 3D facility representation that will evaluate external hazards such as flooding and earthquakes in order to identify, model and analyze the appropriate physics that needs to be included to determine plant vulnerabilities related to external events; manage the communicationmore » and interactions between different physics modeling and analysis technologies; and develop the computational infrastructure through tools related to plant representation, scenario depiction, and physics prediction. One of the unique aspects of the RISMC approach is how it couples probabilistic approaches (the scenario) with mechanistic phenomena representation (the physics) through simulation. This simulation-based modeling allows decision makers to focus on a variety of safety, performance, or economic metrics. In this report, we describe the evaluation of various physics toolkits related to flooding representation. Ultimately, we will be coupling the flooding representation with other events such as earthquakes in order to provide coupled physics analysis for scenarios where interactions exist.« less
Clark, Nigel N; Johnson, Derek R; McKain, David L; Wayne, W Scott; Li, Hailin; Rudek, Joseph; Mongold, Ronald A; Sandoval, Cesar; Covington, April N; Hailer, John T
2017-12-01
Today's heavy-duty natural gas-fueled fleet is estimated to represent less than 2% of the total fleet. However, over the next couple of decades, predictions are that the percentage could grow to represent as much as 50%. Although fueling switching to natural gas could provide a climate benefit relative to diesel fuel, the potential for emissions of methane (a potent greenhouse gas) from natural gas-fueled vehicles has been identified as a concern. Since today's heavy-duty natural gas-fueled fleet penetration is low, today's total fleet-wide emissions will be also be low regardless of per vehicle emissions. However, predicted growth could result in a significant quantity of methane emissions. To evaluate this potential and identify effective options for minimizing emissions, future growth scenarios of heavy-duty natural gas-fueled vehicles, and compressed natural gas and liquefied natural gas fueling stations that serve them, have been developed for 2035, when the populations could be significant. The scenarios rely on the most recent measurement campaign of the latest manufactured technology, equipment, and vehicles reported in a companion paper as well as projections of technology and practice advances. These "pump-to-wheels"(PTW) projections do not include methane emissions outside of the bounds of the vehicles and fuel stations themselves and should not be confused with a complete wells-to-wheels analysis. Stasis, high, medium, and low scenario PTW emissions projections for 2035 were 1.32%, 0.67%, 0.33%, and 0.15% of the fuel used. The scenarios highlight that a large emissions reductions could be realized with closed crankcase operation, improved best practices, and implementation of vent mitigation technologies. Recognition of the potential pathways for emissions reductions could further enhance the heavy-duty transportation sectors ability to reduce carbon emissions. Newly collected pump-to-wheels methane emissions data for current natural gas technologies were combined with future market growth scenarios, estimated technology advancements, and best practices to examine the climate benefit of future fuel switching. The analysis indicates the necessary targets of efficiency, methane emissions, market penetration, and best practices necessary to enable a pathway for natural gas to reduce the carbon intensity of the heavy-duty transportation sector.
NASA Astrophysics Data System (ADS)
Ding, S.; Garofalo, A. M.; Qian, J.; Cui, L.; McClenaghan, J. T.; Pan, C.; Chen, J.; Zhai, X.; McKee, G.; Ren, Q.; Gong, X.; Holcomb, C. T.; Guo, W.; Lao, L.; Ferron, J.; Hyatt, A.; Staebler, G.; Solomon, W.; Du, H.; Zang, Q.; Huang, J.; Wan, B.
2017-05-01
Systematic experimental and modeling investigations on DIII-D show attractive transport properties of fully non-inductive high βp plasmas. Experiments on DIII-D show that the large-radius internal transport barrier (ITB), a key feature providing excellent confinement in the high βp regime, is maintained when the scenario is extended from q95 ˜ 12 to 7 and from rapid to near-zero toroidal rotation. The robustness of confinement versus rotation was predicted by gyrofluid modeling showing dominant neoclassical ion energy transport even without the E × B shear effect. The physics mechanism of turbulence suppression, we found, is the Shafranov shift, which is essential and sets a βp threshold for large-radius ITB formation in the high βp scenario on DIII-D. This is confirmed by two different parameter-scan experiments, one for a βN scan and the other for a q95 scan. They both give the same βp threshold at 1.9 in the experiment. The experimental trend of increasing thermal transport with decreasing βp is consistent with transport modeling. The progress toward the high βp scenario on Experimental Advanced Superconducting Tokamak (EAST) is reported. The very first step of extending the high βp scenario on DIII-D to long pulse on EAST is to establish a long pulse H-mode with ITB on EAST. This paper shows the first 61 s fully non-inductive H-mode with stationary ITB feature and actively cooled ITER-like tungsten divertor in the very recent EAST experiment. The successful use of lower hybrid wave as a key tool to optimize the current profile in the EAST experiment is also introduced. Results show that as the electron density is increased, the fully non-inductive current profile broadens on EAST. The improved understanding and modeling capability are also used to develop advanced scenarios for the China Fusion Engineering Test Reactor. Overall, these results provide encouragement that the high βp regime can be extended to a lower safety factor and very low rotation, providing a potential path to high performance steady state operation in future devices.
Advanced ISDN satellite designs and experiments
NASA Technical Reports Server (NTRS)
Pepin, Gerard R.
1992-01-01
The research performed by GTE Government Systems and the University of Colorado in support of the NASA Satellite Communications Applications Research (SCAR) Program is summarized. Two levels of research were undertaken. The first dealt with providing interim services Integrated Services Digital Network (ISDN) satellite (ISIS) capabilities that accented basic rate ISDN with a ground control similar to that of the Advanced Communications Technology Satellite (ACTS). The ISIS Network Model development represents satellite systems like the ACTS orbiting switch. The ultimate aim is to move these ACTS ground control functions on-board the next generation of ISDN communications satellite to provide full-service ISDN satellite (FSIS) capabilities. The technical and operational parameters for the advanced ISDN communications satellite design are obtainable from the simulation of ISIS and FSIS engineering software models of the major subsystems of the ISDN communications satellite architecture. Discrete event simulation experiments would generate data for analysis against NASA SCAR performance measure and the data obtained from the ISDN satellite terminal adapter hardware (ISTA) experiments, also developed in the program. The Basic and Option 1 phases of the program are also described and include the following: literature search, traffic mode, network model, scenario specifications, performance measures definitions, hardware experiment design, hardware experiment development, simulator design, and simulator development.
Application of Energy Integration Techniques to the Design of Advanced Life Support Systems
NASA Technical Reports Server (NTRS)
Levri, Julie; Finn, Cory
2000-01-01
Exchanging heat between hot and cold streams within an advanced life support system can save energy. This savings will reduce the equivalent system mass (ESM) of the system. Different system configurations are examined under steady-state conditions for various percentages of food growth and waste treatment. The scenarios investigated represent possible design options for a Mars reference mission. Reference mission definitions are drawn from the ALSS Modeling and Analysis Reference Missions Document, which includes definitions for space station evolution, Mars landers, and a Mars base. For each scenario, streams requiring heating or cooling are identified and characterized by mass flow, supply and target temperatures and heat capacities. The Pinch Technique is applied to identify good matches for energy exchange between the hot and cold streams and to calculate the minimum external heating and cooling requirements for the system. For each pair of hot and cold streams that are matched, there will be a reduction in the amount of external heating and cooling required, and the original heating and cooling equipment will be replaced with a heat exchanger. The net cost savings can be either positive or negative for each stream pairing, and the priority for implementing each pairing can be ranked according to its potential cost savings. Using the Pinch technique, a complete system heat exchange network is developed and heat exchangers are sized to allow for calculation of ESM. The energy-integrated design typically has a lower total ESM than the original design with no energy integration. A comparison of ESM savings in each of the scenarios is made to direct future Pinch Analysis efforts.
Advanced ST plasma scenario simulations for NSTX
NASA Astrophysics Data System (ADS)
Kessel, C. E.; Synakowski, E. J.; Bell, M. E.; Gates, D. A.; Harvey, R. W.; Kaye, S. M.; Mau, T. K.; Menard, J.; Phillips, C. K.; Taylor, G.; Wilson, R.; NSTX Research Team
2005-08-01
Integrated scenario simulations are done for NSTX that address four primary objectives for developing advanced spherical torus (ST) configurations: high β and high βN inductive discharges to study all aspects of ST physics in the high β regime; non-inductively sustained discharges for flattop times greater than the skin time to study the various current drive techniques; non-inductively sustained discharges at high β for flattop times much greater than a skin time which provides the integrated advanced ST target for NSTX and non-solenoidal startup and plasma current rampup. The simulations done here use the tokamak simulation code and are based on a discharge 109070. TRANSP analysis of the discharge provided the thermal diffusivities for electrons and ions, the neutral beam deposition profile and other characteristics. CURRAY is used to calculate the high harmonic fast wave (HHFW) heating depositions and current drive. GENRAY/CQL3D is used to establish the heating and CD deposition profiles for electron Bernstein waves (EBW). Analysis of the ideal MHD stability is done with JSOLVER, BALMSC and PEST2. The simulations indicate that the integrated advanced ST plasma is reachable, obtaining stable plasmas with βT ap 40% at βN's of 7.7-9, IP = 1.0 MA and BT = 0.35 T. The plasma is 100% non-inductive and has a flattop of four skin times. The resulting global energy confinement corresponds to a multiplier of H98(y),2 = 1.5. The simulations have demonstrated the importance of HHFW heating and CD, EBW off-axis CD, strong plasma shaping, density control and early heating/H-mode transition for producing and optimizing these plasma configurations.
ERIC Educational Resources Information Center
Mann, Dale; Reardon, R. M.; Becker, J. D.; Shakeshaft, C.; Bacon, Nicholas
2011-01-01
This paper describes the use of advanced computer technology in an innovative educational leadership program. This program integrates full-motion video scenarios that simulate the leadership challenges typically faced by principals over the course of a full school year. These scenarios require decisions that are then coupled to consequences and…
NASA Technical Reports Server (NTRS)
Culbert, Christopher J.; Mongrard, Olivier; Satoh, Naoki; Goodliff, Kandyce; Seaman, Calvin H.; Troutman, Patrick; Martin, Eric
2011-01-01
The International Space Exploration Coordination Group (ISECG) was established in response to The Global Exploration Strategy (GES): The Framework for Coordination developed by fourteen space agencies* and released in May 2007. This GES Framework Document recognizes that preparing for human space exploration is a stepwise process, starting with basic knowledge and culminating in a sustained human presence in deep space. ISECG has developed several optional global exploration mission scenarios enabling the phased transition from human operations in Low Earth Orbit (LEO) and utilization of the International Space Station (ISS) to human missions beyond LEO leading ultimately to human missions to cis-lunar space, the Moon, Near Earth Asteroids, Mars and its environs. Mission scenarios provide the opportunity for judging various exploration approaches in a manner consistent with agreed international goals and strategies. Each ISECG notional mission scenario reflects a series of coordinated human and robotic exploration missions over a 25-year horizon. Mission scenarios are intended to provide insights into next steps for agency investments, following on the success of the ISS. They also provide a framework for advancing the definition of Design Reference Missions (DRMs) and the concepts for capabilities contained within. Each of the human missions contained in the scenarios has been characterized by a DRM which is a top level definition of mission sequence and the capabilities needed to execute that mission. While DRMs are generally destination focused, they will comprise capabilities which are reused or evolved from capabilities used at other destinations. In this way, an evolutionary approach to developing a robust set of capabilities to sustainably explore our solar system is defined. Agencies also recognize that jointly planning for our next steps, building on the accomplishments of ISS, is important to ensuring the robustness and sustainability of any human exploration plan. Developing a shared long-term vision is important, but agencies recognize this is an evolutionary process and requires consideration of many strategic factors. Strategic factors such as the implications of an emerging commercial space industry in LEO, the opportunity provided by extending ISS lifetime to at least 2020, and the importance of defining a plan which is sustainable in light of inevitable domestic policy shifts are timely for agency consideration.
Critical issues in medical education and the implications for telemedicine technology.
Mahapatra, Ashok Kumar; Mishra, Saroj Kanta; Kapoor, Lily; Singh, Indra Pratap
2009-01-01
Ensuring quality medical education in all the medical colleges across India based on uniform curriculum prescribed by a regulatory body and maintaining a uniform standard are dependent on availability of an excellent infrastructure. Such infrastructure includes qualified teachers, knowledge resources, learning materials, and advanced education technology, which is a challenge in developing countries due to financial and logistic constraints. Advancement in telecommunication, information science, and technology provides an opportunity to exchange knowledge and skill across geographically dispersed organizations by networking academic medical centers of excellence with medical colleges and institutes to practice distance learning using information and communication technology (ICT)-based tools. These may be as basic as commonly used Web-based tools or may be as advanced as virtual reality, simulation, and telepresence-based collaborative learning environment. The scenario in India is no different from any developing country, but there is considerable progress due to technical advancement in these sectors. Telemedicine and tele-education in health science, is gradually getting adopted into the Indian Health System after decade-long pilot studies across the country. A recent recommendation of the National Knowledge Commission, once implemented, would ensure a gigabyte network across all the educational institutions of the country including medical colleges. Availability of indigenous satellite communication technology and the government policy of free bandwidth provision for societal development sector have added strength to set up infrastructure to pilot several telemedicine educational projects across the country.
Interactive Tools for Measuring Visual Scanning Performance and Reaction Time
Seeanner, Julia; Hennessy, Sarah; Manganelli, Joseph; Crisler, Matthew; Rosopa, Patrick; Jenkins, Casey; Anderson, Michael; Drouin, Nathalie; Belle, Leah; Truesdail, Constance; Tanner, Stephanie
2017-01-01
Occupational therapists are constantly searching for engaging, high-technology interactive tasks that provide immediate feedback to evaluate and train clients with visual scanning deficits. This study examined the relationship between two tools: the VISION COACH™ interactive light board and the Functional Object Detection© (FOD) Advanced driving simulator scenario. Fifty-four healthy drivers, ages 21–66 yr, were divided into three age groups. Participants performed braking response and visual target (E) detection tasks of the FOD Advanced driving scenario, followed by two sets of three trials using the VISION COACH Full Field 60 task. Results showed no significant effect of age on FOD Advanced performance but a significant effect of age on VISION COACH performance. Correlations showed that participants’ performance on both braking and E detection tasks were significantly positively correlated with performance on the VISION COACH (.37 < r < .40, p < .01). These tools provide new options for therapists. PMID:28218598
Sadideen, Hazim; Wilson, David; Moiemen, Naiem; Kneebone, Roger
2016-01-01
Educational theory highlights the importance of contextualized simulation for effective learning. The authors recently published the concept of "The Burns Suite" (TBS) as a novel tool to advance the delivery of burns education for residents/clinicians. Effectively, TBS represents a low-cost, high-fidelity, portable, immersive simulation environment. Recently, simulation-based team training (SBTT) has been advocated as a means to improve interprofessional practice. The authors aimed to explore the role of TBS in SBTT. A realistic pediatric burn resuscitation scenario was designed based on "advanced trauma and life support" and "emergency management of severe burns" principles, refined utilizing expert opinion through cognitive task analysis. The focus of this analysis was on nontechnical and interpersonal skills of clinicians and nurses within the scenario, mirroring what happens in real life. Five-point Likert-type questionnaires were developed for face and content validity. Cronbach's alpha was calculated for scale reliability. Semistructured interviews captured responses for qualitative thematic analysis allowing for data triangulation. Twenty-two participants completed TBS resuscitation scenario. Mean face and content validity ratings were high (4.4 and 4.7 respectively; range 4-5). The internal consistency of questions was high. Qualitative data analysis revealed two new themes. Participants reported that the experience felt particularly authentic because the simulation had high psychological and social fidelity, and there was a demand for such a facility to be made available to improve nontechnical skills and interprofessional relations. TBS provides a realistic, novel tool for SBTT, addressing both nontechnical and interprofessional team skills. Recreating clinical challenge is crucial to optimize SBTT. With a better understanding of the theories underpinning simulation and interprofessional education, future simulation scenarios can be designed to provide unique educational experiences whereby team members will learn with and from other specialties and professions in a safe, controlled environment.
Mantica, P; Angioni, C; Challis, C; Colyer, G; Frassinetti, L; Hawkes, N; Johnson, T; Tsalas, M; deVries, P C; Weiland, J; Baiocchi, B; Beurskens, M N A; Figueiredo, A C A; Giroud, C; Hobirk, J; Joffrin, E; Lerche, E; Naulin, V; Peeters, A G; Salmi, A; Sozzi, C; Strintzi, D; Staebler, G; Tala, T; Van Eester, D; Versloot, T
2011-09-23
New transport experiments on JET indicate that ion stiffness mitigation in the core of a rotating plasma, as described by Mantica et al. [Phys. Rev. Lett. 102, 175002 (2009)] results from the combined effect of high rotational shear and low magnetic shear. The observations have important implications for the understanding of improved ion core confinement in advanced tokamak scenarios. Simulations using quasilinear fluid and gyrofluid models show features of stiffness mitigation, while nonlinear gyrokinetic simulations do not. The JET experiments indicate that advanced tokamak scenarios in future devices will require sufficient rotational shear and the capability of q profile manipulation.
Disalvo, Domenica; Luckett, Tim; Agar, Meera; Bennett, Alexandra; Davidson, Patricia Mary
2016-05-31
Systems for identifying potentially inappropriate medications in older adults are not immediately transferrable to advanced dementia, where the management goal is palliation. The aim of the systematic review was to identify and synthesise published systems and make recommendations for identifying potentially inappropriate prescribing in advanced dementia. Studies were included if published in a peer-reviewed English language journal and concerned with identifying the appropriateness or otherwise of medications in advanced dementia or dementia and palliative care. The quality of each study was rated using the STrengthening the Reporting of OBservational studies in Epidemiology (STROBE) checklist. Synthesis was narrative due to heterogeneity among designs and measures. Medline (OVID), CINAHL, the Cochrane Database of Systematic Reviews (2005 - August 2014) and AMED were searched in October 2014. Reference lists of relevant reviews and included articles were searched manually. Eight studies were included, all of which were scored a high quality using the STROBE checklist. Five studies used the same system developed by the Palliative Excellence in Alzheimer Care Efforts (PEACE) Program. One study used number of medications as an index, and two studies surveyed health professionals' opinions on appropriateness of specific medications in different clinical scenarios. Future research is needed to develop and validate systems with clinical utility for improving safety and quality of prescribing in advanced dementia. Systems should account for individual clinical context and distinguish between deprescribing and initiation of medications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrow, William R.; Shehabi, Arman; Smith, Sarah
The LIGHTEnUP Analysis Tool (Lifecycle Industry GreenHouse gas, Technology and Energy through the Use Phase) has been developed for The United States Department of Energy’s (U.S. DOE) Advanced Manufacturing Office (AMO) to forecast both the manufacturing sector and product life-cycle energy consumption implications of manufactured products across the U.S. economy. The tool architecture incorporates publicly available historic and projection datasets of U.S. economy-wide energy use including manufacturing, buildings operations, electricity generation and transportation. The tool requires minimal inputs to define alternate scenarios to business-as-usual projection data. The tool is not an optimization or equilibrium model and therefore does not selectmore » technologies or deployment scenarios endogenously. Instead, inputs are developed exogenous to the tool by the user to reflect detailed engineering calculations, future targets and goals, or creative insights. The tool projects the scenario’s energy, CO 2 emissions, and energy expenditure (i.e., economic spending to purchase energy) implications and provides documentation to communicate results. The tool provides a transparent and uniform system of comparing manufacturing and use-phase impacts of technologies. The tool allows the user to create multiple scenarios that can reflect a range of possible future outcomes. However, reasonable scenarios require careful attention to assumptions and details about the future. This tool is part of an emerging set of AMO’s life cycle analysis (LCA) tool such as the Material Flows the Industry (MFI) tool, and the Additive Manufacturing LCA tool.« less
NASA Astrophysics Data System (ADS)
Ahn, J. B.; Hur, J.
2014-12-01
The variations in the first-flowering date (FFD) of peach (Prunus persica) and pear (Pyrus pyrifolia) under future climate change in South Korea are investigated using simulations obtained from five models of the fifth Coupled Model Intercomparison Project. For the study, daily temperature simulations with Historical (1986-2005), and RCP (2071-2090) 4.5 and 8.5 scenarios are statistically downscaled to 50 peach and pear FFD (FFDpeach and FFDpear, respectively) observation sites over South Korea. The number of days transformed to standard temperature (DTS) method is selected as the phenological model and applied to simulations for estimating FFDpeach and FFDpear over South Korea, due to its superior performance on the target plants and region compared to the growing degree days (GDD) and chill days (CD) methods. In the analysis, mean temperatures for early spring (February to April) over South Korea in 2090 under RCP4.5 and 8.5 scenarios are expected to have increased by 1.9K and 3.3K, respectively. Among the early spring months of February to April, February shows the largest temperature increase of 2.1K and 3.7K for RCP4.5 and 8.5 scenarios, respectively. The increased temperature during February and March accelerates the plant growth rate and thereby advances FFDpeach by 7.0 and 12.7 days and FFDpear by 6.1 and 10.7 days, respectively. These results imply that the present flowering of peach and pear in the middle of April will have advanced to late March or early April by the end of this century. Acknowledgements This work was carried out with the support of the Rural Development Administration Cooperative Research Program for Agriculture Science and Technology Development under Grant Project No. PJ009953, Republic of Korea.
Projecting High Beta Steady-State Scenarios from DIII-D Advanced Tokamk Discharges
NASA Astrophysics Data System (ADS)
Park, J. M.
2013-10-01
Fusion power plant studies based on steady-state tokamak operation suggest that normalized beta in the range of 4-6 is needed for economic viability. DIII-D is exploring a range of candidate high beta scenarios guided by FASTRAN modeling in a repeated cycle of experiment and modeling validation. FASTRAN is a new iterative numerical procedure coupled to the Integrated Plasma Simulator (IPS) that integrates models of core transport, heating and current drive, equilibrium and stability self-consistently to find steady state (d / dt = 0) solutions, and reproduces most features of DIII-D high beta discharges with a stationary current profile. Separately, modeling components such as core transport (TGLF) and off-axis neutral beam current drive (NUBEAM) show reasonable agreement with experiment. Projecting forward to scenarios possible on DIII-D with future upgrades, two self-consistent noninductive scenarios at βN > 4 are found: high qmin and high internal inductance li. Both have bootstrap current fraction fBS > 0 . 5 and rely on the planned addition of a second off-axis neutral beamline and increased electron cyclotron heating. The high qmin > 2 scenario achieves stable operation at βN as high as 5 by a very broad current density profile to improve the ideal-wall stabilization of low-n instabilities along with confinement enhancement from low magnetic shear. The li near 1 scenario does not depend on ideal-wall stabilization. Improved confinement from strong magnetic shear makes up for the lower pedestal needed to maintain li high. The tradeoff between increasing li and reduced edge pedestal determines the achievable βN (near 4) and fBS (near 0.5). This modeling identifies the necessary upgrades to achieve target scenarios and clarifies the pros and cons of particular scenarios to better inform the development of steady-state fusion. Supported by the US Department of Energy under DE-AC05-00OR22725 & DE-FC02-04ER54698.
Moreno Londoño, Ana Maria; Schulz, Peter J
2014-04-01
Health literacy has been recognized as an important factor influencing health behaviors and health outcomes. However, its definition is still evolving, and the tools available for its measurement are limited in scope. Based on the conceptualization of health literacy within the Health Empowerment Model, the present study developed and validated a tool to assess patient's health knowledge use, within the context of asthma self-management. A review of scientific literature on asthma self-management, and several interviews with pulmonologists and asthma patients were conducted. From these, 19 scenarios with 4 response options each were drafted and assembled in a scenario-based questionnaire. Furthermore, a three round Delphi procedure was carried out, to validate the tool with the participation of 12 specialists in lung diseases. The face and content validity of the tool were achieved by face-to-face interviews with 2 pulmonologists and 5 patients. Consensus among the specialists on the adequacy of the response options was achieved after the three round Delphi procedure. The final tool has a 0.97 intra-class correlation coefficient (ICC), indicating a strong level of agreement among experts on the ratings of the response options. The ICC for single scenarios, range from 0.92 to 0.99. The newly developed tool provides a final score representing patient's health knowledge use, based on the specialist's consensus. This tool contributes to enriching the measurement of a more advanced health literacy dimension.
Enhanced chemical weapon warning via sensor fusion
NASA Astrophysics Data System (ADS)
Flaherty, Michael; Pritchett, Daniel; Cothren, Brian; Schwaiger, James
2011-05-01
Torch Technologies Inc., is actively involved in chemical sensor networking and data fusion via multi-year efforts with Dugway Proving Ground (DPG) and the Defense Threat Reduction Agency (DTRA). The objective of these efforts is to develop innovative concepts and advanced algorithms that enhance our national Chemical Warfare (CW) test and warning capabilities via the fusion of traditional and non-traditional CW sensor data. Under Phase I, II, and III Small Business Innovative Research (SBIR) contracts with DPG, Torch developed the Advanced Chemical Release Evaluation System (ACRES) software to support non real-time CW sensor data fusion. Under Phase I and II SBIRs with DTRA in conjunction with the Edgewood Chemical Biological Center (ECBC), Torch is using the DPG ACRES CW sensor data fuser as a framework from which to develop the Cloud state Estimation in a Networked Sensor Environment (CENSE) data fusion system. Torch is currently developing CENSE to implement and test innovative real-time sensor network based data fusion concepts using CW and non-CW ancillary sensor data to improve CW warning and detection in tactical scenarios.
TRIAD IV: Nationwide Survey of Medical Students' Understanding of Living Wills and DNR Orders.
Mirarchi, Ferdinando L; Ray, Matthew; Cooney, Timothy
2016-12-01
Living wills are a form of advance directives that help to protect patient autonomy. They are frequently encountered in the conduct of medicine. Because of their impact on care, it is important to understand the adequacy of current medical school training in the preparation of physicians to interpret these directives. Between April and August 2011 of third and fourth year medical students participated in an internet survey involving the interpretation of living wills. The survey presented a standard living will as a "stand-alone," a standard living will with the addition an emergent clinical scenario and then variations of the standard living will that included a code status designation ("DNR," "Full Code," or "Comfort Care"). For each version/ scenario, respondents were asked to assign a code status and choose interventions based on the cases presented. Four hundred twenty-five students from medical schools throughout the country responded. The majority indicated they had received some form of advance directive training and understood the concept of code status and the term "DNR." Based on a stand-alone document, 15% of respondents correctly denoted "full code" as the appropriate code status; adding a clinical scenario yielded negligible improvement. When a code designation was added to the living will, correct code status responses ranged from 68% to 93%, whereas correct treatment decisions ranged from 18% to 78%. Previous training in advance directives had no impact on these results. Our data indicate that the majority of students failed to understand the key elements of a living will; adding a code status designations improved correct responses with the exception of the term DNR. Misunderstanding of advance directives is a nationwide problem and jeopardizes patient safety. Medical School ethics curricula need to be improved to ensure competency with respect to understanding advance directives.
Gerard, James M; Scalzo, Anthony J; Borgman, Matthew A; Watson, Christopher M; Byrnes, Chelsie E; Chang, Todd P; Auerbach, Marc; Kessler, David O; Feldman, Brian L; Payne, Brian S; Nibras, Sohail; Chokshi, Riti K; Lopreiato, Joseph O
2018-06-01
We developed a first-person serious game, PediatricSim, to teach and assess performances on seven critical pediatric scenarios (anaphylaxis, bronchiolitis, diabetic ketoacidosis, respiratory failure, seizure, septic shock, and supraventricular tachycardia). In the game, players are placed in the role of a code leader and direct patient management by selecting from various assessment and treatment options. The objective of this study was to obtain supportive validity evidence for the PediatricSim game scores. Game content was developed by 11 subject matter experts and followed the American Heart Association's 2011 Pediatric Advanced Life Support Provider Manual and other authoritative references. Sixty subjects with three different levels of experience were enrolled to play the game. Before game play, subjects completed a 40-item written pretest of knowledge. Game scores were compared between subject groups using scoring rubrics developed for the scenarios. Validity evidence was established and interpreted according to Messick's framework. Content validity was supported by a game development process that involved expert experience, focused literature review, and pilot testing. Subjects rated the game favorably for engagement, realism, and educational value. Interrater agreement on game scoring was excellent (intraclass correlation coefficient = 0.91, 95% confidence interval = 0.89-0.9). Game scores were higher for attendings followed by residents then medical students (Pc < 0.01) with large effect sizes (1.6-4.4) for each comparison. There was a very strong, positive correlation between game and written test scores (r = 0.84, P < 0.01). These findings contribute validity evidence for PediatricSim game scores to assess knowledge of pediatric emergency medicine resuscitation.
Assessment of driving-related performance in chronic whiplash using an advanced driving simulator.
Takasaki, Hiroshi; Treleaven, Julia; Johnston, Venerina; Rakotonirainy, Andry; Haines, Andrew; Jull, Gwendolen
2013-11-01
Driving is often nominated as problematic by individuals with chronic whiplash associated disorders (WAD), yet driving-related performance has not been evaluated objectively. The purpose of this study was to test driving-related performance in persons with chronic WAD against healthy controls of similar age, gender and driving experience to determine if driving-related performance in the WAD group was sufficiently impaired to recommend fitness to drive assessment. Driving-related performance was assessed using an advanced driving simulator during three driving scenarios; freeway, residential and a central business district (CBD). Total driving duration was approximately 15min. Five driving tasks which could cause a collision (critical events) were included in the scenarios. In addition, the effect of divided attention (identify red dots projected onto side or rear view mirrors) was assessed three times in each scenario. Driving performance was measured using the simulator performance index (SPI) which is calculated from 12 measures. z-Scores for all SPI measures were calculated for each WAD subject based on mean values of the control subjects. The z-scores were then averaged for the WAD group. A z-score of ≤-2 indicated a driving failing grade in the simulator. The number of collisions over the five critical events was compared between the WAD and control groups as was reaction time and missed response ratio in identifying the red dots. Seventeen WAD and 26 control subjects commenced the driving assessment. Demographic data were comparable between the groups. All subjects completed the freeway scenario but four withdrew during the residential and eight during the CBD scenario because of motion sickness. All scenarios were completed by 14 WAD and 17 control subjects. Mean z-scores for the SPI over the three scenarios was statistically lower in the WAD group (-0.3±0.3; P<0.05) but the score was not below the cut-off point for safe driving. There were no differences in the reaction time and missed response ratio in divided attention tasks between the groups (All P>0.05). Assessment of driving in an advanced driving simulator for approximately 15min revealed that driving-related performance in chronic WAD was not sufficiently impaired to recommend the need for fitness to drive assessment. Copyright © 2013 Elsevier Ltd. All rights reserved.
Luce, Edward A; Hollier, Larry H; Lin, Samuel J
2013-11-01
The fiftieth anniversary of the death by assassination of President John Kennedy is an opportunity to pay homage to his memory and also reflect on the important role plastic surgeons have played in the management of trauma. That reflection included a hypothetical scenario, a discussion of the surgical treatment of Kennedy (if he survived) and Governor Connally. The scenario describes the management of cranioplasty in the presence of scalp soft-tissue contracture, reconstruction of the proximal trachea, reconstitution of the abdominal wall, and restoration of a combined radius and soft-tissue defect. The development of diagnostic and therapeutic advances over the past 50 years in the care of maxillofacial trauma is described, including the evolution of imaging, timing of surgery, and operative techniques. Finally, contemporary measures of triage in situations involving mass casualties, as in the Boston Marathon bombings, complete the dedication to President Kennedy.
Integrated versus stand-alone second generation ethanol production from sugarcane bagasse and trash.
Dias, Marina O S; Junqueira, Tassia L; Cavalett, Otávio; Cunha, Marcelo P; Jesus, Charles D F; Rossell, Carlos E V; Maciel Filho, Rubens; Bonomi, Antonio
2012-01-01
Ethanol production from lignocellulosic materials is often conceived considering independent, stand-alone production plants; in the Brazilian scenario, where part of the potential feedstock (sugarcane bagasse) for second generation ethanol production is already available at conventional first generation production plants, an integrated first and second generation production process seems to be the most obvious option. In this study stand-alone second generation ethanol production from surplus sugarcane bagasse and trash is compared with conventional first generation ethanol production from sugarcane and with integrated first and second generation; simulations were developed to represent the different technological scenarios, which provided data for economic and environmental analysis. Results show that the integrated first and second generation ethanol production process from sugarcane leads to better economic results when compared with the stand-alone plant, especially when advanced hydrolysis technologies and pentoses fermentation are included. Copyright © 2011 Elsevier Ltd. All rights reserved.
Space transportation nodes assumptions and requirements: Lunar base systems study task 2.1
NASA Technical Reports Server (NTRS)
Kahn, Taher Ali; Simonds, Charles H.; Stump, William R.
1988-01-01
The Space Transportation Nodes Assumptions and Requirements task was performed as part of the Advanced Space Transportation Support Contract, a NASA Johnson Space Center (JSC) study intended to provide planning for a Lunar Base near the year 2000. The original task statement has been revised to satisfy the following queries: (1) What vehicles are to be processed at the transportation node; (2) What is the flow of activities involved in a vehicle passing through the node; and (3) What node support resources are necessary to support a lunar scenario traffic model composed of a mix of vehicles in an active flight schedule. The Lunar Base Systems Study is concentrating on the initial years of the Phase 2 Lunar Base Scenario. The study will develop the first five years of that phase in order to define the transportation and surface systems (including mass, volumes, power requirements, and designs).
NASA Astrophysics Data System (ADS)
Klügel, J.
2006-12-01
Deterministic scenario-based seismic hazard analysis has a long tradition in earthquake engineering for developing the design basis of critical infrastructures like dams, transport infrastructures, chemical plants and nuclear power plants. For many applications besides of the design of infrastructures it is of interest to assess the efficiency of the design measures taken. These applications require a method allowing to perform a meaningful quantitative risk analysis. A new method for a probabilistic scenario-based seismic risk analysis has been developed based on a probabilistic extension of proven deterministic methods like the MCE- methodology. The input data required for the method are entirely based on the information which is necessary to perform any meaningful seismic hazard analysis. The method is based on the probabilistic risk analysis approach common for applications in nuclear technology developed originally by Kaplan & Garrick (1981). It is based (1) on a classification of earthquake events into different size classes (by magnitude), (2) the evaluation of the frequency of occurrence of events, assigned to the different classes (frequency of initiating events, (3) the development of bounding critical scenarios assigned to each class based on the solution of an optimization problem and (4) in the evaluation of the conditional probability of exceedance of critical design parameters (vulnerability analysis). The advantage of the method in comparison with traditional PSHA consists in (1) its flexibility, allowing to use different probabilistic models for earthquake occurrence as well as to incorporate advanced physical models into the analysis, (2) in the mathematically consistent treatment of uncertainties, and (3) in the explicit consideration of the lifetime of the critical structure as a criterion to formulate different risk goals. The method was applied for the evaluation of the risk of production interruption losses of a nuclear power plant during its residual lifetime.
Advanced Vehicle Concepts and Implications for NextGen
NASA Technical Reports Server (NTRS)
Blake, Matt; Smith, Jim; Wright, Ken; Mediavilla Ricky; Kirby, Michelle; Pfaender, Holger; Clarke, John-Paul; Volovoi, Vitali; Dorbian, Christopher; Ashok, Akshay;
2010-01-01
This report presents the results of a major NASA study of advanced vehicle concepts and their implications for the Next Generation Air Transportation System (NextGen). Comprising the efforts of dozens of researchers at multiple institutions, the analyses presented here cover a broad range of topics including business-case development, vehicle design, avionics, procedure design, delay, safety, environmental impacts, and metrics. The study focuses on the following five new vehicle types: Cruise-efficient short takeoff and landing (CESTOL) vehicles Large commercial tiltrotor aircraft (LCTRs) Unmanned aircraft systems (UAS) Very light jets (VLJs) Supersonic transports (SST). The timeframe of the study spans the years 2025-2040, although some analyses are also presented for a 3X scenario that has roughly three times the number of flights as today. Full implementation of NextGen is assumed.
Real-time determination of the worst tsunami scenario based on Earthquake Early Warning
NASA Astrophysics Data System (ADS)
Furuya, Takashi; Koshimura, Shunichi; Hino, Ryota; Ohta, Yusaku; Inoue, Takuya
2016-04-01
In recent years, real-time tsunami inundation forecasting has been developed with the advances of dense seismic monitoring, GPS Earth observation, offshore tsunami observation networks, and high-performance computing infrastructure (Koshimura et al., 2014). Several uncertainties are involved in tsunami inundation modeling and it is believed that tsunami generation model is one of the great uncertain sources. Uncertain tsunami source model has risk to underestimate tsunami height, extent of inundation zone, and damage. Tsunami source inversion using observed seismic, geodetic and tsunami data is the most effective to avoid underestimation of tsunami, but needs to expect more time to acquire the observed data and this limitation makes difficult to terminate real-time tsunami inundation forecasting within sufficient time. Not waiting for the precise tsunami observation information, but from disaster management point of view, we aim to determine the worst tsunami source scenario, for the use of real-time tsunami inundation forecasting and mapping, using the seismic information of Earthquake Early Warning (EEW) that can be obtained immediately after the event triggered. After an earthquake occurs, JMA's EEW estimates magnitude and hypocenter. With the constraints of earthquake magnitude, hypocenter and scaling law, we determine possible multi tsunami source scenarios and start searching the worst one by the superposition of pre-computed tsunami Green's functions, i.e. time series of tsunami height at offshore points corresponding to 2-dimensional Gaussian unit source, e.g. Tsushima et al., 2014. Scenario analysis of our method consists of following 2 steps. (1) Searching the worst scenario range by calculating 90 scenarios with various strike and fault-position. From maximum tsunami height of 90 scenarios, we determine a narrower strike range which causes high tsunami height in the area of concern. (2) Calculating 900 scenarios that have different strike, dip, length, width, depth and fault-position. Note that strike is limited with the range obtained from 90 scenarios calculation. From 900 scenarios, we determine the worst tsunami scenarios from disaster management point of view, such as the one with shortest travel time and the highest water level. The method was applied to a hypothetical-earthquake, and verified if it can effectively search the worst tsunami source scenario in real-time, to be used as an input of real-time tsunami inundation forecasting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ledebuhr, A.G.; Ng, L.C.; Gaughan, R.J.
2000-02-15
During FY99, we have explored and analyzed a combined passive/active sensor concept to support the advanced discrimination requirements for various missile defense scenario. The idea is to combine multiple IR spectral channels with an imaging LIDAR (Light Detection and Ranging) behind a common optical system. The imaging LIDAR would itself consist of at least two channels; one at the fundamental laser wavelength (e.g., the 1.064 {micro}m for Nd:YAG) and one channel at the frequency doubled (at 532 nm for Nd:YAG). two-color laser output would, for example, allow the longer wavelength for a direct detection time of flight ranger and anmore » active imaging channel at the shorter wavelength. The LIDAR can function as a high-resolution 2D spatial image either passively or actively with laser illumination. Advances in laser design also offer three color (frequency tripled) systems, high rep-rate operation, better pumping efficiencies that can provide longer distance acquisition, and ranging for enhanced discrimination phenomenology. New detector developments can enhance the performance and operation of both LIDAR channels. A real time data fusion approach that combines multi-spectral IR phenomenology with LIDAR imagery can improve both discrimination and aim-point selection capability.« less
Mueller, Genevieve R; Moloff, Alan L; Wedmore, Ian S; Schoeff, Jonathan E; Laporta, Anthony J
2012-01-01
A delicate balance exists between a beneficial stress response that enhances memory and recall performance and a detrimental high stress response that impairs memory and learning. Repetitive training in stressful situations enables people to lower their stress levels from the detrimental range to a more beneficial one.1 This is particularly true for physicians in training as they seek to achieve advanced skills and knowledge in the fields of triage, emergency medicine, and surgery prior to graduation. This need is significant for medical students entering military service after graduation. We theorize that military medical students can advance their proficiencies through an Intensive Skills Week (ISW) prior to entering their third and forth year rotations. To test this theory, Rocky Vista University will hold a week long high-intensity first-responder, emergency medicine and surgical training course, facilitated by military medical physicians, to further students? skills and maximize training using the Human Worn Partial Surgical Task Simulator (Cut Suit). We also see the possible benefit to physician and non-physician military personnel, especially Special Operations Forces (SOF) medical personnel, from developing and implementing similar training programs when live tissue or cadaver models are unavailable or not feasible. Stress, cortisol, medical student, enhanced learning, scenario, high intensity. 2012.
N+3 Small Commercial Efficient and Quiet Transportation for Year 2030-2035
NASA Technical Reports Server (NTRS)
DAngelo, Martin M.; Gallman, John; Johnson, Vicki; Garcia, Elena; Tai, Jimmy; Young, Russell
2010-01-01
This study develops a future scenario that enables convenient point-to-point commercial air travel via a large network of community airports and a new class of small airliners. A network demand and capacity study identifies current and future air travel demands and the capacity of this new network to satisfy these demands. A current technology small commercial airliner is defined to meet the needs of the new network, as a baseline for evaluating the improvement brought about by advanced technologies. Impact of this new mode of travel on the infrastructure and surrounding communities of the small airports in this new N+3 network are also evaluated. Year 2030-2035 small commercial airliner technologies are identified and a trade study conducted to evaluate and select those with the greatest potential for enhancing future air travel and the study metrics. The selected advanced air vehicle concept is assessed against the baseline aircraft, and an advanced, but conventional aircraft, and the study metrics. The key technologies of the selected advanced air vehicle are identified, their impact quantified, and risk assessments and roadmaps defined.
Detection of Explosive Devices using X-ray Backscatter Radiation
NASA Astrophysics Data System (ADS)
Faust, Anthony A.
2002-09-01
It is our goal to develop a coded aperture based X-ray backscatter imaging detector that will provide sufficient speed, contrast and spatial resolution to detect Antipersonnel Landmines and Improvised Explosive Devices (IED). While our final objective is to field a hand-held detector, we have currently constrained ourselves to a design that can be fielded on a small robotic platform. Coded aperture imaging has been used by the observational gamma astronomy community for a number of years. However, it has been the recent advances in the field of medical nuclear imaging which has allowed for the application of the technique to a backscatter scenario. In addition, driven by requirements in medical applications, advances in X-ray detection are continually being made, and detectors are now being produced that are faster, cheaper and lighter than those only a decade ago. With these advances, a coded aperture hand-held imaging system has only recently become a possibility. This paper will begin with an introduction to the technique, identify recent advances which have made this approach possible, present a simulated example case, and conclude with a discussion on future work.
An evaluation and comparison of conservation guidelines for an at-risk migratory songbird
McNeil, Darin J.; Aldinger, Kyle R.; Bakermans, Marja H.; Lehman, Justin A.; Tisdale, Anna C.; Jones, John A.; Wood, Petra B.; Buehler, David A.; Smalling, Curtis G.; Siefferman, Lynn; Larkin, Jeffrey L.
2017-01-01
For at-risk wildlife species, it is important to consider conservation within the process of adaptive management. Golden-winged Warblers (Vermivora chrysoptera) are Neotropical migratory songbirds that are experiencing long-term population declines due in part to the loss of early-successional nesting habitat. Recently-developed Golden-winged Warbler habitat management guidelines are being implemented by USDA: Natural Resource Conservation Service (2014) and its partners through the Working Lands For Wildlife (WLFW) program. During 2012–2014, we studied the nesting ecology of Golden-winged Warblers in managed habitats of the eastern US that conformed to WLFW conservation practices. We evaluated five NRCS “management scenarios” with respect to nesting success and attainment of recommended nest site vegetation conditions outlined in the Golden-winged Warbler breeding habitat guidelines. Using estimates of territory density, pairing rate, nest survival, and clutch size, we also estimated fledgling productivity (number of fledglings/ha) for each management scenario. In general, Golden-winged Warbler nest survival declined as each breeding season advanced, but nest survival was similar across management scenarios. Within each management scenario, vegetation variables had little influence on nest survival. Still, percent Rubus cover and density of >2 m tall shrubs were relevant in some management scenarios. All five management scenarios rarely attained recommended levels of nest site vegetation conditions for Golden-winged, yet nest survival was high. Fledgling productivity estimates for each management scenario ranged from 2.1 to 8.6 fledglings/10 hectares. Our results indicate that targeted habitat management for Golden-winged Warblers using a variety of management techniques on private lands has the capability to yield high nest survival and fledgling productivity, and thus have the potential to contribute to the species recovery.
Deployment Effects of Marin Renewable Energy Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brian Polagye; Mirko Previsic
2010-06-17
Given proper care in siting, design, deployment, operation and maintenance, marine and hydrokinetic technologies could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood, due to a lack of technical certainty.more » In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based approach to the emerging wave and tidal technology sectors in order to evaluate the impact of these technologies on the marine environment and potentially conflicting uses. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios will capture variations in technical approaches and deployment scales to properly identify and characterize environmental impacts and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential effects of these emerging technologies and focus all stakeholders onto the critical issues that need to be addressed. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory and navigational issues. The results of this study are structured into three reports: 1. Wave power scenario description 2. Tidal power scenario description 3. Framework for Identifying Key Environmental Concerns This is the second report in the sequence and describes the results of conceptual feasibility studies of tidal power plants deployed in Tacoma Narrows, Washington. The Narrows contain many of the same competing stakeholder interactions identified at other tidal power sites and serves as a representative case study. Tidal power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize impacts, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informs the process of selecting representative tidal power devices. The selection criteria is that such devices are at an advanced stage of development to reduce technical uncertainties and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. A number of other developers are also at an advanced stage of development including Verdant Power, which has demonstrated an array of turbines in the East River of New York, Clean Current, which has demonstrated a device off Race Rocks, BC, and OpenHydro, which has demonstrated a device at the European Marine Energy Test Center and is on the verge of deploying a larger device in the Bay of Fundy. MCT demonstrated their device both at Devon (UK) and Strangford Narrows (Northern Ireland). Furthermore OpenHydro, CleanCurrent, and MCT are the three devices being installed at the Minas Passage (Canada). Environmental effects will largely scale with the size of tidal power development. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nominally represent (1) a small pilot deployment, (2) an early, small commercial deployment, and (3) a large commercial scale plant. For the three technologies and scales at the selected site, this results in a total of nine deployment scenarios outlined in the report.« less
Borgeat Meza, Marjorie; Luengo-Charath, Ximena; Arancibia, Marcelo; Madrid, Eva
2018-04-25
In 2016, the new edition of the Council for International Organizations of Medical Sciences (CIOMS) Ethical Guidelines was released, which are universally acknowledged as ethical standards in biomedical research. In this article, we critically analyze the improvements and shortcomings of the CIOMS Ethical Guidelines 2016. Among the improvements are the relevance assigned to the social value of research and its effects on decision-making and the creation of public policies; the research development in low-resources scenarios; the communities involvement in the research process; the determination of participants vulnerability and changes on informed consent related proceedings. Despite the improved harmonization with scientific, technologic and social changes, and that the guidelines provide a tool for researchers and members of research ethics committees alike, some topics remain unsolved, namely the management of participants minimal risk and conflicts of interest involved in research, and the development of research in low-incomes scenarios. Nonetheless, we recognize that these new guidelines constitute a progress regarding the context and needs of populations in which research will be conducted, with greater community involvement in the different phases of the investigation project, thus allowing them to access the potential benefits. The impact of the CIOMS Ethical Guidelines 2016, should be appraised over time, particularly in socio-sanitary inequities scenarios and in the context of commercial interests of industry on biomedical research.
Not So Rare Earth? New Developments in Understanding the Origin of the Earth and Moon
NASA Technical Reports Server (NTRS)
Righter, Kevin
2007-01-01
A widely accepted model for the origin of the Earth and Moon has been a somewhat specific giant impact scenario involving an impactor to proto-Earth mass ratio of 3:7, occurring 50-60 Ma after T(sub 0), when the Earth was only half accreted, with the majority of Earth's water then accreted after the main stage of growth, perhaps from comets. There have been many changes to this specific scenario, due to advances in isotopic and trace element geochemistry, more detailed, improved, and realistic giant impact and terrestrial planet accretion modeling, and consideration of terrestrial water sources other than high D/H comets. The current scenario is that the Earth accreted faster and differentiated quickly, the Moon-forming impact could have been mid to late in the accretion process, and water may have been present during accretion. These new developments have broadened the range of conditions required to make an Earth-Moon system, and suggests there may be many new fruitful avenues of research. There are also some classic and unresolved problems such as the significance of the identical O isotopic composition of the Earth and Moon, the depletion of volatiles on the lunar mantle relative to Earth's, the relative contribution of the impactor and proto-Earth to the Moon's mass, and the timing of Earth's possible atmospheric loss relative to the giant impact.
Technoeconomic evaluation of urban plant factories: The case of basil (Ocimum basilicum).
Liaros, Stelios; Botsis, Konstantinos; Xydis, George
2016-06-01
Greece is currently in a turmoil, experiencing the effects of more than half a decade of economic crisis. Public health and welfare, jobs and wages, labor market concerning employment as long as employability of the work force, inequality, life satisfaction and housing, tourism and environment, economic and energy poverty are heavily impacted by Greece's disadvantageous economic situation. Real estate market could not have gotten away from the financial commotion, being currently in a halt after years of rapid decline. Fired from the present situation of Greece's real estate market, the present study is concerned with the investigation of alternative ways to support the local real estate market. With respect to sustainable development's ethics, the development, implementation, installation and operation of small, inexpensive plant factories within the urban environment is evaluated. Installations such are those, will encourage the penetration of a new market for the untapped buildings' resource, advancing new investing opportunities, promoting economic growth and productivity while creating a new labor market. The study will rely on the basic principles of Life Cycle Costing Assessment and develop a methodology upon which different scenarios will be evaluated against the "Do Nothing" scenario. Copyright © 2016 Elsevier B.V. All rights reserved.
Analysis of Advanced Respiratory Support Onboard ISS and CCV
NASA Technical Reports Server (NTRS)
Shah, Ronak V.; Kertsman, Eric L.; Alexander, David J.; Duchesne, Ted; Law, Jennifer; Roden, Sean K.
2014-01-01
NASA is collaborating with private entities for the development of commercial space vehicles. The Space and Clinical Operations Division was tasked to review the oxygen and respiratory support system and recommend what capabilities, if any, the vehicle should have to support the return of an ill or injured crewmember. The Integrated Medical Model (IMM) was utilized as a data source for the development of these recommendations. The Integrated Medical Model (IMM) was used to simulate a six month, six crew, International Space Station (ISS) mission. Three medical system scenarios were considered based on the availability of (1) oxygen only, (2) oxygen and a ventilator, or (3) neither oxygen nor ventilator. The IMM analysis provided probability estimates of medical events that would require either oxygen or ventilator support. It also provided estimates of crew health, the probability of evacuation, and the probability of loss of crew life secondary to medical events for each of the three medical system scenarios. These IMM outputs were used as objective data to enable evidence-based decisions regarding oxygen and respiratory support system requirements for commercial crew vehicles. The IMM provides data that may be utilized to support informed decisions regarding the development of medical systems for commercial crew vehicles.
NASA Technical Reports Server (NTRS)
Mortlock, Alan; VanAlstyne, Richard
1998-01-01
The report describes development of databases estimating aircraft engine exhaust emissions for the years 1976 and 1984 from global operations of Military, Charter, historic Soviet and Chinese, Unreported Domestic traffic, and General Aviation (GA). These databases were developed under the National Aeronautics and Space Administration's (NASA) Advanced Subsonic Assessment (AST). McDonnell Douglas Corporation's (MDC), now part of the Boeing Company has previously estimated engine exhaust emissions' databases for the baseline year of 1992 and a 2015 forecast year scenario. Since their original creation, (Ward, 1994 and Metwally, 1995) revised technology algorithms have been developed. Additionally, GA databases have been created and all past NIDC emission inventories have been updated to reflect the new technology algorithms. Revised data (Baughcum, 1996 and Baughcum, 1997) for the scheduled inventories have been used in this report to provide a comparison of the total aviation emission forecasts from various components. Global results of two historic years (1976 and 1984), a baseline year (1992) and a forecast year (2015) are presented. Since engine emissions are directly related to fuel usage, an overview of individual aviation annual global fuel use for each inventory component is also given in this report.
Sadr, S M K; Saroj, D P; Kouchaki, S; Ilemobade, A A; Ouki, S K
2015-06-01
A global challenge of increasing concern is diminishing fresh water resources. A growing practice in many communities to supplement diminishing fresh water availability has been the reuse of water. Novel methods of treating polluted waters, such as membrane assisted technologies, have recently been developed and successfully implemented in many places. Given the diversity of membrane assisted technologies available, the current challenge is how to select a reliable alternative among numerous technologies for appropriate water reuse. In this research, a fuzzy logic based multi-criteria, group decision making tool has been developed. This tool has been employed in the selection of appropriate membrane treatment technologies for several non-potable and potable reuse scenarios. Robust criteria, covering technical, environmental, economic and socio-cultural aspects, were selected, while 10 different membrane assisted technologies were assessed in the tool. The results show this approach capable of facilitating systematic and rigorous analysis in the comparison and selection of membrane assisted technologies for advanced wastewater treatment and reuse. Copyright © 2015 Elsevier Ltd. All rights reserved.
Recent Advances and Perspectives in Cancer Drug Design.
Magalhaes, Luma G; Ferreira, Leonardo L G; Andricopulo, Adriano D
2018-01-01
Cancer is one of the leading causes of death worldwide. With the increase in life expectancy, the number of cancer cases has reached unprecedented levels. In this scenario, the pharmaceutical industry has made significant investments in this therapeutic area. Despite these efforts, cancer drug research remains a remarkably challenging field, and therapeutic innovations have not yet achieved expected clinical results. However, the physiopathology of the disease is now better understood, and the discovery of novel molecular targets has refreshed the expectations of developing improved treatments. Several noteworthy advances have been made, among which the development of targeted therapies is the most significant. Monoclonal antibodies and antibody-small molecule conjugates have emerged as a worthwhile approach to improve drug selectivity and reduce adverse effects, which are the main challenges in cancer drug discovery. This review will examine the current panorama of drug research and development (R&D) with emphasis on some of the major advances brought to clinical trials and to the market in the past five years. Breakthrough discoveries will be highlighted along with the medicinal chemistry strategies used throughout the discovery process. In addition, this review will provide perspectives and updates on the discovery of novel molecular targets as well as drugs with innovative mechanisms of action.
Modified ACES Portable Life Support Integration, Design, and Testing for Exploration Missions
NASA Technical Reports Server (NTRS)
Kelly, Cody
2014-01-01
NASA's next generation of exploration missions provide a unique challenge to designers of EVA life support equipment, especially in a fiscally-constrained environment. In order to take the next steps of manned space exploration, NASA is currently evaluating the use of the Modified ACES (MACES) suit in conjunction with the Advanced Portable Life Support System (PLSS) currently under development. This paper will detail the analysis and integration of the PLSS thermal and ventilation subsystems into the MACES pressure garment, design of prototype hardware, and hardware-in-the-loop testing during the spring 2014 timeframe. Prototype hardware was designed with a minimal impact philosophy in order to mitigate design constraints becoming levied on either the advanced PLSS or MACES subsystems. Among challenges faced by engineers were incorporation of life support thermal water systems into the pressure garment cavity, operational concept definition between vehicle/portable life support system hardware, and structural attachment mechanisms while still enabling maximum EVA efficiency from a crew member's perspective. Analysis was completed in late summer 2013 to 'bound' hardware development, with iterative analysis cycles throughout the hardware development process. The design effort will cumulate in the first ever manned integration of NASA's advanced PLSS system with a pressure garment originally intended primarily for use in a contingency survival scenario.
NASA Technical Reports Server (NTRS)
Chidester, Thomas R.; Kanki, Barbara G.; Helmreich, Robert L.
1989-01-01
The crew-factors research program at NASA Ames has developed a methodology for studying the impact of a variety of variables on the effectiveness of crews flying realistic but high workload simulated trips. The validity of investigations using the methodology is enhanced by careful design of full-mission scenarios, performance assessment using converging sources of data, and recruitment of representative subjects. Recently, portions of this methodology have been adapted for use in assessing the effectiveness of crew coordination among participants in line-oriented flight training.
Overview of nuclear energy: Present and projected use
NASA Astrophysics Data System (ADS)
Stanculescu, Alexander
2012-06-01
Several factors will influence the contribution of nuclear energy to the future energy mix. Among them, the most important are the degree of global commitment to greenhouse gas reduction, continued vigilance in safety and safeguards, technological advances, economic competitiveness and innovative financing arrangements for new nuclear power plant constructions, the implementation of nuclear waste disposal, and, last but not least, public perception, information and education. The paper presents an overview of the current nuclear energy situation, possible development scenarios, of reactor technology, and of non-electric applications of nuclear energy.
Scientific and technological advancements in inertial fusion energy
Hinkel, D. E.
2013-09-26
Scientific advancements in inertial fusion energy (IFE) were reported on at the IAEA Fusion Energy Conference, October 2012. Results presented transect the different ways to assemble the fuel, different scenarios for igniting the fuel, and progress in IFE technologies. The achievements of the National Ignition Campaign within the USA, using the National Ignition Facility (NIF) to indirectly drive laser fusion, have found beneficial the achievements in other IFE arenas such as directly driven laser fusion and target fabrication. Moreover, the successes at NIF have pay-off to alternative scenarios such as fast ignition, shock ignition, and heavy-ion fusion as well asmore » to directly driven laser fusion. As a result, this synergy is summarized here, and future scientific studies are detailed.« less
Palliative management of malignant upper urinary tract obstruction
Sountoulides, P; Mykoniatis, I; Dimasis, N
2014-01-01
Malignancies of the genitourinary tract are diagnosed with increased frequency compared to the past. Currently prostate and bladder cancer account for the majority of urological malignancies. While for prostate cancer recent developments in the management of local and metastatic disease are likely to lead the majority of patients to either cure from the disease or to longer survival time, for bladder cancer advanced disease will unfortunately lead to death within months. However, the common clinical scenario in both prostate and bladder cancer includes, in high incidence, upper urinary tract obstruction in the advanced stages of these malignancies. This coupled with the fact that average life expectancy in the western world is increasing, will result in a significant patient population with either advanced, non-curable disease or with problems related to the received therapeutic surgical or medical interventions. There is no doubt that in both circumstances the room and role of palliation therapy is increasing. The care of patients with advanced urologic malignancies requires a multi-disciplinary effort from physicians of many specialties under the guiding role of the treating urologist. This review focuses on currently available palliative therapeutic options for upper urinary tract obstruction in the setting of patients with advanced malignancies of the urinary tract, as recently significant advancements have been witnessed in this field. PMID:26052193
Palliative management of malignant upper urinary tract obstruction.
Sountoulides, P; Mykoniatis, I; Dimasis, N
2014-01-01
Malignancies of the genitourinary tract are diagnosed with increased frequency compared to the past. Currently prostate and bladder cancer account for the majority of urological malignancies. While for prostate cancer recent developments in the management of local and metastatic disease are likely to lead the majority of patients to either cure from the disease or to longer survival time, for bladder cancer advanced disease will unfortunately lead to death within months. However, the common clinical scenario in both prostate and bladder cancer includes, in high incidence, upper urinary tract obstruction in the advanced stages of these malignancies. This coupled with the fact that average life expectancy in the western world is increasing, will result in a significant patient population with either advanced, non-curable disease or with problems related to the received therapeutic surgical or medical interventions. There is no doubt that in both circumstances the room and role of palliation therapy is increasing. The care of patients with advanced urologic malignancies requires a multi-disciplinary effort from physicians of many specialties under the guiding role of the treating urologist. This review focuses on currently available palliative therapeutic options for upper urinary tract obstruction in the setting of patients with advanced malignancies of the urinary tract, as recently significant advancements have been witnessed in this field.
Sochan, Anne M
2011-07-01
How should nursing knowledge advance? This exploration contextualizes its evolution past and present. In addressing how it evolved in the past, a probable historical evolution of its development draws on the perspectives of Frank & Gills's World System Theory, Kuhn's treatise on Scientific Revolutions, and Foucault's notions of Discontinuities in scientific knowledge development. By describing plausible scenarios of how nursing knowledge evolved, I create a case for why nursing knowledge developers should adopt a post-structural stance in prioritizing their research agenda(s). Further, by adopting a post-structural stance, I create a case on how nurses can advance their disciplinary knowledge using an engaging post-colonial strategy. Given an interrupted history caused by influence(s) constraining nursing's knowledge development by power structures external, and internal, to nursing, knowledge development can evolve in the future by drawing on post-structural interpretation, and post-colonial strategy. The post-structural writings of Deleuze & Guattari's understanding of 'Nomadology' as a subtle means to resist being constrained by existing knowledge development structures, might be a useful stance to understanding the urgency of why nursing knowledge should advance addressing the structural influences on its development. Furthermore, Bhabha's post-colonial elucidation of 'Hybridity' as an equally discreet means to change the culture of those constraining structures is an appropriate strategy to enact how nursing knowledge developers can engage with existing power structures, and simultaneously influence that engagement. Taken together, 'post-structural stance' and 'post-colonial strategy' can refocus nursing scholarship to learn from its past, in order to develop relevant disciplinary knowledge in its future. © 2011 Blackwell Publishing Ltd.
How Expert Pilots Think Cognitive Processes in Expert Decision Making
1993-02-01
Management (CRM) This document is available to the public Advanced Qualification Program (AQP) through the National Technical Information Cognitive Task Analysis (CTA...8217 Selecting realistic EDM scenarios with critical events and performing a cognitive task analysis of novice vs. expert decision making for these events...scenarios with critical events and performing a cognitive task analysis of novice vs. expert decision making for these events is a basic requirement for
Estimation of population-based utility weights for gastric cancer-related health states.
Lee, Hyeon-Jeong; Ock, Minsu; Kim, Kyu-Pyo; Jo, Min-Woo
2018-01-01
This study aimed to generate utility weights of gastric cancer-related health states from the perspective of the Korean general population. The Korean adults (age ≥19 years) included in the study were sampled using multistage quota sampling methods stratified by sex, age, and education level. Nine scenarios for hypothetical gastric cancer-related health states were developed and reviewed. After consenting to participate, the subjects were surveyed by trained interviewers using a computer-assisted personal interview method. Participants were asked to perform standard gamble tasks to measure the utility weights of 5 randomly assigned health states (from among nine scenarios). The mean utility weight was calculated for each health state. Three hundred twenty-six of the 407 adults who completed this study were included in the analysis. The mean utility weights from the standard gamble were 0.857 (no gastric cancer with Helicobacter pylori infection), 0.773 (early gastric cancer [EGC] with endoscopic surgery), 0.779 (EGC with subtotal gastrectomy), 0.767 (EGC with total gastrectomy), 0.602 (advanced gastric cancer with subtotal gastrectomy and adjuvant chemotherapy), 0.643 (advanced gastric cancer with total gastrectomy and adjuvant chemotherapy), 0.522 (advanced gastric cancer with extended gastrectomy and adjuvant chemotherapy), 0.404 (metastatic gastric cancer with palliative chemotherapy), and 0.399 (recurrent gastric cancer with palliative chemotherapy). This study was the first to comprehensively estimate the utility weights of gastric cancer-related health states in a general population. The utility weights derived from this study could be useful for future economic evaluations related to gastric cancer interventions.
Innovations in science and scenarios for assessment.
Kunkel, Kenneth E; Moss, Richard; Parris, Adam
Scenarios for the Third National Climate Assessment (NCA3) were produced for physical climate and sea level rise with substantial input from disciplinary and regional experts. These scenarios underwent extensive review and were published as NOAA Technical Reports. For land use/cover and socioeconomic conditions, scenarios already developed by other agencies were specified for use in the NCA3. Efforts to enhance participatory scenario planning as an assessment activity were pursued, but with limited success. Issues and challenges included the timing of availability of scenarios, the need for guidance in use of scenarios, the need for approaches to nest information within multiple scales and sectors, engagement and collaboration of end users in scenario development, and development of integrated scenarios. Future assessments would benefit from an earlier start to scenarios development, the provision of training in addition to guidance documents, new and flexible approaches for nesting information, ongoing engagement and advice from both scientific and end user communities, and the development of consistent and integrated scenarios.
Innovations in science and scenarios for assessment
Kunkel, Kenneth E.; Moss, Richard; Parris, Adam
2015-08-29
Scenarios for the Third National Climate Assessment (NCA3) were produced for physical climate and sea level rise with substantial input from disciplinary and regional experts. These scenarios underwent extensive review and were published as NOAA Technical Reports. For land use/cover and socioeconomic conditions, scenarios already developed by other agencies were specified for use in the NCA3. Efforts to enhance participatory scenario planning as an assessment activity were pursued, but with limited success. Issues and challenges included the timing of availability of scenarios, the need for guidance in use of scenarios, the need for approaches to nest information within multiple scalesmore » and sectors, engagement and collaboration of end users in scenario development, and development of integrated scenarios. Future assessments would benefit from an earlier start to scenarios development, the provision of training in addition to guidance documents, new and flexible approaches for nesting information, ongoing engagement and advice from both scientific and end user communities, and the development of consistent and integrated scenarios.« less
Shaw, Alison; Lind, Candace; Ewashen, Carol
2017-05-01
Effective communication with patients and families is essential for quality care in the pediatric environment. Despite this, the current structure and content of undergraduate nursing education often contributes to novice RNs feeling unprepared to manage complex pediatric communication situations. By merging the characteristics of the Harlequin persona with the structure of story-based learning, undergraduate students can be introduced to increasingly advanced pediatric communication scenarios in the classroom. Although story-based learning encourages students to identify and address the contextual and emotional elements of a story, the Harlequin encourages educators to challenge assumptions and upset the status quo. Nursing students can develop advanced communication abilities and learn to identify and cope with the emotions and complexities inherent in pediatric practice and communication. Harlequin-inspired story-based learning can enable nurse educators to create interesting, realistic, and challenging pediatric nursing stories designed to push students outside their comfort zones and enhance their advanced pediatric communication abilities. [J Nurs Educ. 2017;56(5):300-303.]. Copyright 2017, SLACK Incorporated.
ASC FY17 Implementation Plan, Rev. 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton, P. G.
The Stockpile Stewardship Program (SSP) is an integrated technical program for maintaining the safety, surety, and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational capabilities to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computationalmore » resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resources, including technical staff, hardware, simulation software, and computer science solutions.« less
NASA Astrophysics Data System (ADS)
Cisneros, Felipe; Veintimilla, Jaime
2013-04-01
The main aim of this research is to create a model of Artificial Neural Networks (ANN) that allows predicting the flow in Tomebamba River both, at real time and in a certain day of year. As inputs we are using information of rainfall and flow of the stations along of the river. This information is organized in scenarios and each scenario is prepared to a specific area. The information is acquired from the hydrological stations placed in the watershed using an electronic system developed at real time and it supports any kind or brands of this type of sensors. The prediction works very good three days in advance This research includes two ANN models: Back propagation and a hybrid model between back propagation and OWO-HWO. These last two models have been tested in a preliminary research. To validate the results we are using some error indicators such as: MSE, RMSE, EF, CD and BIAS. The results of this research reached high levels of reliability and the level of error are minimal. These predictions are useful for flood and water quality control and management at City of Cuenca Ecuador
Stochastic Earthquake Rupture Modeling Using Nonparametric Co-Regionalization
NASA Astrophysics Data System (ADS)
Lee, Kyungbook; Song, Seok Goo
2017-09-01
Accurate predictions of the intensity and variability of ground motions are essential in simulation-based seismic hazard assessment. Advanced simulation-based ground motion prediction methods have been proposed to complement the empirical approach, which suffers from the lack of observed ground motion data, especially in the near-source region for large events. It is important to quantify the variability of the earthquake rupture process for future events and to produce a number of rupture scenario models to capture the variability in simulation-based ground motion predictions. In this study, we improved the previously developed stochastic earthquake rupture modeling method by applying the nonparametric co-regionalization, which was proposed in geostatistics, to the correlation models estimated from dynamically derived earthquake rupture models. The nonparametric approach adopted in this study is computationally efficient and, therefore, enables us to simulate numerous rupture scenarios, including large events ( M > 7.0). It also gives us an opportunity to check the shape of true input correlation models in stochastic modeling after being deformed for permissibility. We expect that this type of modeling will improve our ability to simulate a wide range of rupture scenario models and thereby predict ground motions and perform seismic hazard assessment more accurately.
NASA Astrophysics Data System (ADS)
Wang, Hexiang; Schuster, Eugenio; Rafiq, Tariq; Kritz, Arnold; Ding, Siye
2016-10-01
Extensive research has been conducted to find high-performance operating scenarios characterized by high fusion gain, good confinement, plasma stability and possible steady-state operation. A key plasma property that is related to both the stability and performance of these advanced plasma scenarios is the safety factor profile. A key component of the EAST research program is the exploration of non-inductively driven steady-state plasmas with the recently upgraded heating and current drive capabilities that include lower hybrid current drive and neutral beam injection. Anticipating the need for tight regulation of the safety factor profile in these plasma scenarios, a first-principles-driven (FPD)control-oriented model is proposed to describe the safety factor profile evolution in EAST in response to the different actuators. The TRANSP simulation code is employed to tailor the FPD model to the EAST tokamak geometry and to convert it into a form suitable for control design. The FPD control-oriented model's prediction capabilities are demonstrated by comparing predictions with experimental data from EAST. Supported by the US DOE under DE-SC0010537,DE-FG02-92ER54141 and DE-SC0013977.
Evaluation of a 3D serious game for advanced life support retraining.
Buttussi, Fabio; Pellis, Tommaso; Cabas Vidani, Alberto; Pausler, Daniele; Carchietti, Elio; Chittaro, Luca
2013-09-01
Advanced life support (ALS) knowledge and skills decrease in as little as three months, but only a few ALS providers actually attend retraining courses. We assess the effectiveness of a 3D serious game as a new tool for frequent ALS retraining. We developed a 3D serious game for scenario-based ALS retraining. The serious game, called EMSAVE, was designed to promote self-correction while playing. We organized a retraining course in which 40 ALS providers played two cardiac arrest scenarios with EMSAVE and took a test with 38 multiple-choice questions before and after playing. We administered the same test again 3 months later to evaluate retention. Participants also rated EMSAVE and the overall retraining experience. After using EMSAVE, the number of correct answers per participant increased by 4.8 (95%CI +3.4, +6.2, p<0.001) and all but one participant improved. After 3 months, despite an expected decrease in ALS knowledge and skills (-1.9 correct answers, 95%CI -0.6, -3.3, p<0.01), there was a significant retention benefit (+2.9 correct answers per participant, 95%CI +1.5, +4.2, p<0.001). Moreover, all but one participant regarded EMSAVE as a valuable tool to refresh ALS knowledge and skills, and 85% of participants were also willing to devote 1h/month to retrain with the serious game. A 3D serious game for scenario-based retraining proved effective to retrain in ALS and supported retention of acquired knowledge and skills at 3 months. EMSAVE also positively engaged and motivated participants. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Evaluating Opportunities to Improve Material and Energy Impacts in Commodity Supply Chains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanes, Rebecca J.; Carpenter, Alberta
When evaluated at the process level, next-generation technologies may be more energy and emissions intensive than current technology. However, many advanced technologies have the potential to reduce material and energy consumption in upstream or downstream processing stages. In order to fully understand the benefits and consequences of technology deployment, next-generation technologies should be evaluated in context, as part of a supply chain. This work presents the Material Flows through Industry (MFI) scenario modeling tool. The MFI tool is a cradle-to-gate linear network model of the U.S. industrial sector that can model a wide range of manufacturing scenarios, including changes inmore » production technology, increases in industrial energy efficiency, and substitution between functionally equivalent materials. The MFI tool was developed to perform supply chain scale analyses in order to quantify the impacts and benefits of next-generation technologies and materials at that scale. For the analysis presented in this paper, the MFI tool is utilized to explore a case study comparing a steel supply chain to the supply chains of several functionally equivalent materials. Several of the alternatives to the baseline steel supply chain include next-generation production technologies and materials. Results of the case study show that aluminum production scenarios can out-perform the steel supply chain by using either an advanced smelting technology or an increased aluminum recycling rate. The next-generation material supply chains do not perform as well as either aluminum or steel, but may offer additional use phase reductions in energy and emissions that are outside the scope of the MFI tool. Future work will combine results from the MFI tool with a use phase analysis.« less
NASA Astrophysics Data System (ADS)
Haer, T.; Botzen, W.; Aerts, J.
2016-12-01
In the last four decades the global population living in the 1/100 year-flood zone has doubled from approximately 500 million to a little less than 1 billion people. Urbanization in low lying -flood prone- cities further increases the exposed assets, such as buildings and infrastructure. Moreover, climate change will further exacerbate flood risk in the future. Accurate flood risk assessments are important to inform policy-makers and society on current- and future flood risk levels. However, these assessment suffer from a major flaw in the way they estimate flood vulnerability and adaptive behaviour of individuals and governments. Current flood risk projections commonly assume that either vulnerability remains constant, or try to mimic vulnerability through incorporating an external scenario. Such a static approach leads to a misrepresentation of future flood risk, as humans respond adaptively to flood events, flood risk communication, and incentives to reduce risk. In our study, we integrate adaptive behaviour in a large-scale European flood risk framework through an agent-based modelling approach. This allows for the inclusion of heterogeneous agents, which dynamically respond to each other and a changing environment. We integrate state-of-the-art flood risk maps based on climate scenarios (RCP's), and socio-economic scenarios (SSP's), with government and household agents, which behave autonomously based on (micro-)economic behaviour rules. We show for the first time that excluding adaptive behaviour leads to a major misrepresentation of future flood risk. The methodology is applied to flood risk, but has similar implications for other research in the field of natural hazards. While more research is needed, this multi-disciplinary study advances our understanding of how future flood risk will develop.
Li, Chun-fa; Cao, Ying-ying; Yang, Jian-cho; Yang, Qi-qi
2015-08-01
Dynamic evaluation of sustainable development is one of the key fundamental parts of the success of Sino-Singapore Tianjin Eco-city, which is the first eco-city in China constructed by international cooperation. Based on the analysis of nature and economy, function and structure, planning control indices and so on, we constructed a sustainable development evaluation index system and a system dynamics model of Sino-Singapore Tianjin Eco-city to explore dynamic trends of its population, material and currency by comprehensive utilization of emergy analysis and system dynamics method. Five scenarios were set up and simulated, including inertial scenario, scientific and technological scenario, economic scenario, environmental scenario and harmonious development scenario. Then, the sustainability of the 5 scenarios was evaluated and compared. The results showed that in the economy and environment sustainable development scenario, there was a steady growth trend of GDP, accumulation of both emergy and currency, and relatively lower values in emergy waste ratio, emergy ratio of waste, and emergy loading ratio. Although both sustainable evaluation indices, such as ESI and UEI, were relatively low, the economy and environment sustainable development scenario was still the best development scenario which was more active than others.
The Columbia Debris Loan Program; Examples of Microscopic Analysis
NASA Technical Reports Server (NTRS)
Russell, Rick; Thurston, Scott; Smith, Stephen; Marder, Arnold; Steckel, Gary
2006-01-01
Following the tragic loss of the Space Shuttle Columbia NASA formed The Columbia Recovery Office (CRO). The CRO was initially formed at the Johnson Space Center after the conclusion of recovery operations on May 1,2003 and then transferred .to the Kennedy Space Center on October 6,2003 and renamed The Columbia Recovery Office and Preservation. An integral part of the preservation project was the development of a process to loan Columbia debris to qualified researchers and technical educators. The purposes of this program include aiding in the advancement of advanced spacecraft design and flight safety development, the advancement of the study of hypersonic re-entry to enhance ground safety, to train and instruct accident investigators and to establish an enduring legacy for Space Shuttle Columbia and her crew. Along with a summary of the debris loan process examples of microscopic analysis of Columbia debris items will be presented. The first example will be from the reconstruction following the STS- 107 accident and how the Materials and Proessteesa m used microscopic analysis to confirm the accident scenario. Additionally, three examples of microstructural results from the debris loan process from NASA internal, academia and private industry will be presented.
NASA Astrophysics Data System (ADS)
Schott, John R.; Brown, Scott D.; Raqueno, Rolando V.; Gross, Harry N.; Robinson, Gary
1999-01-01
The need for robust image data sets for algorithm development and testing has prompted the consideration of synthetic imagery as a supplement to real imagery. The unique ability of synthetic image generation (SIG) tools to supply per-pixel truth allows algorithm writers to test difficult scenarios that would require expensive collection and instrumentation efforts. In addition, SIG data products can supply the user with `actual' truth measurements of the entire image area that are not subject to measurement error thereby allowing the user to more accurately evaluate the performance of their algorithm. Advanced algorithms place a high demand on synthetic imagery to reproduce both the spectro-radiometric and spatial character observed in real imagery. This paper describes a synthetic image generation model that strives to include the radiometric processes that affect spectral image formation and capture. In particular, it addresses recent advances in SIG modeling that attempt to capture the spatial/spectral correlation inherent in real images. The model is capable of simultaneously generating imagery from a wide range of sensors allowing it to generate daylight, low-light-level and thermal image inputs for broadband, multi- and hyper-spectral exploitation algorithms.
Integration of advanced technologies to enhance problem-based learning over distance: Project TOUCH.
Jacobs, Joshua; Caudell, Thomas; Wilks, David; Keep, Marcus F; Mitchell, Steven; Buchanan, Holly; Saland, Linda; Rosenheimer, Julie; Lozanoff, Beth K; Lozanoff, Scott; Saiki, Stanley; Alverson, Dale
2003-01-01
Distance education delivery has increased dramatically in recent years as a result of the rapid advancement of communication technology. The National Computational Science Alliance's Access Grid represents a significant advancement in communication technology with potential for distance medical education. The purpose of this study is to provide an overview of the TOUCH project (Telehealth Outreach for Unified Community Health; http://hsc.unm.edu/touch) with special emphasis on the process of problem-based learning case development for distribution over the Access Grid. The objective of the TOUCH project is to use emerging Internet-based technology to overcome geographic barriers for delivery of tutorial sessions to medical students pursuing rotations at remote sites. The TOUCH project also is aimed at developing a patient simulation engine and an immersive virtual reality environment to achieve a realistic health care scenario enhancing the learning experience. A traumatic head injury case is developed and distributed over the Access Grid as a demonstration of the TOUCH system. Project TOUCH serves as an example of a computer-based learning system for developing and implementing problem-based learning cases within the medical curriculum, but this system should be easily applied to other educational environments and disciplines involving functional and clinical anatomy. Future phases will explore PC versions of the TOUCH cases for increased distribution. Copyright 2003 Wiley-Liss, Inc.
Leptospirosis in cattle: a challenging scenario for the understanding of the epidemiology.
Lilenbaum, W; Martins, G
2014-08-01
All over the world, leptospirosis has been reported as one of the major causes of reproductive failure in cattle and other ruminants, determining abortions, stillbirth, weak newborns and decrease in their growth rate and milk production. Nevertheless, despite its importance, it is still a challenging disease, from what scarce information about epidemiology, prophylaxis and control is available nowadays. During the last decades of the last century, many epidemiological studies have been conducted in several countries, mainly based on serology. According to those studies, a seroepidemiological scenario has been stated for different regions, where different serovars were reported for cattle. Nevertheless, a huge problem is that, when efforts are made in order to increase the collection of local strains (isolates), it has been demonstrated that the scenario that emerges from those studies contrasts with those previously determined by serology. Despite the large number of serological studies worldwide, the number of isolates is scarce. Isolation technique is a very delicate procedure that needs no contamination, fast processing and long delay to produce a positive result, what may corroborate to the lack of information for the comparison between serology versus bacteriological data, mainly in developing countries. It is noteworthy that the epidemiological scenario now acknowledged may not represent what really occurs in many parts of the world, particularly on those tropical regions where the disease is endemic. Consequently, the current knowledge about epidemiology and control, as well as the available diagnostic tools and the commercial vaccines, may not be adequate for those regions, what leads to a frustrating scenario of endemicity and difficulties on the control of the disease. Without a huge effort in the culturing of local strains, besides the advances on molecular typing, leptospirosis will not be defeated and will probably remain endemic in the developing countries, leading to important economic hazards in animal production and risks to public health in those regions. © 2014 Blackwell Verlag GmbH.
Advanced Integration Matrix Education Outreach
NASA Technical Reports Server (NTRS)
Paul Heather L.
2004-01-01
The Advanced Integration Matrix (AIM) will design a ground-based test facility for developing revolutionary integrated systems for joint human-robotic missions in order to study and solve systems-level integration issues for exploration missions beyond Low Earth Orbit (LEO). This paper describes development plans for educational outreach activities related to technological and operational integration scenarios similar to the challenges that will be encountered through this project. The education outreach activities will provide hands-on, interactive exercises to allow students of all levels to experience design and operational challenges similar to what NASA deals with everyday in performing the integration of complex missions. These experiences will relate to and impact students everyday lives by demonstrating how their interests in science and engineering can develop into future careers, and reinforcing the concepts of teamwork and conflict resolution. Allowing students to experience and contribute to real-world development, research, and scientific studies of ground-based simulations for complex exploration missions will stimulate interest in the space program, and bring NASA's challenges to the student level. By enhancing existing educational programs and developing innovative activities and presentations, AIM will support NASA s endeavor to "inspire the next generation of explorers.. .as only NASA can."
Human and Robotic Space Mission Use Cases for High-Performance Spaceflight Computing
NASA Technical Reports Server (NTRS)
Some, Raphael; Doyle, Richard; Bergman, Larry; Whitaker, William; Powell, Wesley; Johnson, Michael; Goforth, Montgomery; Lowry, Michael
2013-01-01
Spaceflight computing is a key resource in NASA space missions and a core determining factor of spacecraft capability, with ripple effects throughout the spacecraft, end-to-end system, and mission. Onboard computing can be aptly viewed as a "technology multiplier" in that advances provide direct dramatic improvements in flight functions and capabilities across the NASA mission classes, and enable new flight capabilities and mission scenarios, increasing science and exploration return. Space-qualified computing technology, however, has not advanced significantly in well over ten years and the current state of the practice fails to meet the near- to mid-term needs of NASA missions. Recognizing this gap, the NASA Game Changing Development Program (GCDP), under the auspices of the NASA Space Technology Mission Directorate, commissioned a study on space-based computing needs, looking out 15-20 years. The study resulted in a recommendation to pursue high-performance spaceflight computing (HPSC) for next-generation missions, and a decision to partner with the Air Force Research Lab (AFRL) in this development.
Current Advancements and Strategies in Tissue Engineering for Wound Healing: A Comprehensive Review.
Ho, Jasmine; Walsh, Claire; Yue, Dominic; Dardik, Alan; Cheema, Umber
2017-06-01
Significance: With an aging population leading to an increase in diabetes and associated cutaneous wounds, there is a pressing clinical need to improve wound-healing therapies. Recent Advances: Tissue engineering approaches for wound healing and skin regeneration have been developed over the past few decades. A review of current literature has identified common themes and strategies that are proving successful within the field: The delivery of cells, mainly mesenchymal stem cells, within scaffolds of the native matrix is one such strategy. We overview these approaches and give insights into mechanisms that aid wound healing in different clinical scenarios. Critical Issues: We discuss the importance of the biomimetic niche, and how recapitulating elements of the native microenvironment of cells can help direct cell behavior and fate. Future Directions: It is crucial that during the continued development of tissue engineering in wound repair, there is close collaboration between tissue engineers and clinicians to maintain the translational efficacy of this approach.
Current Advancements and Strategies in Tissue Engineering for Wound Healing: A Comprehensive Review
Ho, Jasmine; Walsh, Claire; Yue, Dominic; Dardik, Alan; Cheema, Umber
2017-01-01
Significance: With an aging population leading to an increase in diabetes and associated cutaneous wounds, there is a pressing clinical need to improve wound-healing therapies. Recent Advances: Tissue engineering approaches for wound healing and skin regeneration have been developed over the past few decades. A review of current literature has identified common themes and strategies that are proving successful within the field: The delivery of cells, mainly mesenchymal stem cells, within scaffolds of the native matrix is one such strategy. We overview these approaches and give insights into mechanisms that aid wound healing in different clinical scenarios. Critical Issues: We discuss the importance of the biomimetic niche, and how recapitulating elements of the native microenvironment of cells can help direct cell behavior and fate. Future Directions: It is crucial that during the continued development of tissue engineering in wound repair, there is close collaboration between tissue engineers and clinicians to maintain the translational efficacy of this approach. PMID:28616360
Miller, Brian W.; Symstad, Amy J.; Frid, Leonardo; Fisichelli, Nicholas A.; Schuurman, Gregor W.
2017-01-01
Simulation models can represent complexities of the real world and serve as virtual laboratories for asking “what if…?” questions about how systems might respond to different scenarios. However, simulation models have limited relevance to real-world applications when designed without input from people who could use the simulated scenarios to inform their decisions. Here, we report on a state-and-transition simulation model of vegetation dynamics that was coupled to a scenario planning process and co-produced by researchers, resource managers, local subject-matter experts, and climate change adaptation specialists to explore potential effects of climate scenarios and management alternatives on key resources in southwest South Dakota. Input from management partners and local experts was critical for representing key vegetation types, bison and cattle grazing, exotic plants, fire, and the effects of climate change and management on rangeland productivity and composition given the paucity of published data on many of these topics. By simulating multiple land management jurisdictions, climate scenarios, and management alternatives, the model highlighted important tradeoffs between grazer density and vegetation composition, as well as between the short- and long-term costs of invasive species management. It also pointed to impactful uncertainties related to the effects of fire and grazing on vegetation. More broadly, a scenario-based approach to model co-production bracketed the uncertainty associated with climate change and ensured that the most important (and impactful) uncertainties related to resource management were addressed. This cooperative study demonstrates six opportunities for scientists to engage users throughout the modeling process to improve model utility and relevance: (1) identifying focal dynamics and variables, (2) developing conceptual model(s), (3) parameterizing the simulation, (4) identifying relevant climate scenarios and management alternatives, (5) evaluating and refining the simulation, and (6) interpreting the results. We also reflect on lessons learned and offer several recommendations for future co-production efforts, with the aim of advancing the pursuit of usable science.
NASA Astrophysics Data System (ADS)
Chaumont, Diane; Huard, David; Logan, Travis; Sottile, Marie-France; Brown, Ross; Gauvin St-Denis, Blaise; Grenier, Patrick; Braun, Marco
2013-04-01
Planning and adapting to a changing climate requires credible information about the magnitude and rate of projected changes. Ouranos, a consortium on regional climatology and adaptation to climate change was launched in the Province of Québec, Canada, ten years ago, with the objective of developing and providing climate information and expertise in support to adaption. Ouranos differs from most other climate service centers by integrating climate modeling activities, impacts and adaptation expertise and climate analysis services under one roof. The Climate Scenarios Group operates at the interface between climate modellers and users and is responsible for developing, producing and communicating climate scenarios to end-users in a consistent manner. This process requires close collaboration with users to define, understand and eventually anticipate their needs. The varied scientific expertise of climate scenarios specialists --who also act as communicators-- has proven to be a key element for successful communication. A large amount of effort is spent on the characterization and communication of the uncertainties involved in scenario construction. Two main activities have been put in place by the experts in climate modeling to address this: (1) a training course on climate models and (2) a fact-sheet summarizing the uncertainty and robustness of the climate change scenario provided for each I&A application. The latter tool ensures the transparency, traceability, and accountability of our products, and at the same time, encourages a sense of shared responsibility for the final choice of climate scenarios. In addition to uncertainty, two other main issues have been identified as essential in communication with users: 1) observed natural variability at relevant scales and 2) reconciliation of the projected trend with the recent observed trend. Our group has devoted substantial resources for the advancement of communication with end-users in these particular areas. This presentation will provide an overview of progress in communicating climate information at the Ouranos Consortium. We will discuss success and failures and future plans, in particular the extent to which Ouranos needs to work with users in decision-making activities.
Developing a comprehensive framework for eutrophication management in off-stream artificial lakes
NASA Astrophysics Data System (ADS)
Khorasani, Hamed; Kerachian, Reza; Malakpour-Estalaki, Siamak
2018-07-01
In this paper, a comprehensive and interdisciplinary framework for management of eutrophication in off-stream artificial lakes in semi-arid and arid regions is proposed. Identification of the lake's water resources system components and stakeholders, simulation of Phosphorus (P) export from upstream watershed, simulation of the lake water quality as well as simulation of water demands and supply, development of management scenarios for the lake and selecting the best scenario using social choice methods (i.e. discrete and fuzzy Borda counts) are the four main parts of the framework. The proposed framework is applied on Chitgar Artificial Lake (ChAL), the largest intra-urban artificial lake in Tehran which has been constructed in 2010-2013 for recreational purposes. The Load Apportionment Model (LAM) is used for the simulation of P loads from the point and non-point (diffusive) sources and the LakeMab model is used for the simulation of P dynamics in the lake. The management scenarios contain optimized rule curves for water intake/outtake blended with P management plans (i.e. removal of point sources of P load in the upstream watershed, construction of a hydroponic bio-filter or an advanced water treatment plant beside the lake for reduction of external loading of P and recycling lake water, alum treatment of lake sediments for controlling the internal loading of P as well as construction of a dry detention basin). The most preferred scenarios selected by the discrete Borda count are the low-cost alum treatment and dry detention basin, while the most preferred scenario according to fuzzy Borda count, which considers the uncertainty of model inputs, is the costly water treatment plant. In all preferred scenarios, water intake is conducted from flood flows in order to avoid conflict with downstream agricultural demands. In addition to decentralized decision making and stakeholders' participation, the proposed framework promotes the integration of the technical aspects such as the role of internal loading in lake eutrophication and separation of flood and non-flood flows in the off-stream lakes' systems.
Fast-ion transport in qmin>2, high- β steady-state scenarios on DIII-D
Holcomb, C. T.; Heidbrink, W. W.; Ferron, J. R.; ...
2015-05-22
The results from experiments on DIII-D [J. L. Luxon, Fusion Sci. Technol. 48, 828 (2005)] aimed at developing high β steady-state operating scenarios with high-qminqmin confirm that fast-ion transport is a critical issue for advanced tokamak development using neutral beam injection current drive. In DIII-D, greater than 11 MW of neutral beam heating power is applied with the intent of maximizing β N and the noninductive current drive. However, in scenarios with q min>2 that target the typical range of q 95= 5–7 used in next-step steady-state reactor models, Alfvén eigenmodes cause greater fast-ion transport than classical models predict. Thismore » enhanced transport reduces the absorbed neutral beam heating power and current drive and limits the achievable β N. Conversely similar plasmas except with q min just above 1 have approximately classical fast-ion transport. Experiments that take q min>3 plasmas to higher β P with q 95= 11–12 for testing long pulse operation exhibit regimes of better than expected thermal confinement. Compared to the standard high-q min scenario, the high β P cases have shorter slowing-down time and lower ∇β fast, and this reduces the drive for Alfvénic modes, yielding nearly classical fast-ion transport, high values of normalized confinement, β N, and noninductive current fraction. These results suggest DIII-D might obtain better performance in lower-q 95, high-q min plasmas using broader neutral beam heating profiles and increased direct electron heating power to lower the drive for Alfvén eigenmodes.« less
Vardi, Amir; Berkenstadt, Haim; Levin, Inbal; Bentencur, Ariel; Ziv, Amitai
2004-06-01
Current treatment protocols for chemical warfare casualties assume no IV access during the early treatment stages. Time constraints in mass casualty scenarios, impaired manual dexterity of medical personnel wearing protective gear, and victims' complex clinical presentations render standard IV access techniques impractical. A newly developed spring-driven, trigger-operated intraosseous infusion device may offer an effective solution. Sophisticated simulators were developed and used to mimic scenarios of chemical warfare casualties for assessing the feasibility of intraosseous infusion delivery. We evaluated the clinical performance of medical teams in full protective gear. The success rate in intraosseous insertion, time to completion of treatment goals, and outcome were measured in a simulated setting. Medical teams from major hospitals in Israel, designated for emergency response in a real chemical warfare mass casualty scenario, were trained in a simulated setting. All 94 participating physicians were supplied with conventional treatment modalities: only the 64 study group physicians received intraosseous devices. The simulated survival rate was 73.4% for the study group and 3.3% for the controls (P < 0.001). Treatment goals were achieved within 3.5 min (range, 1-9 min) in the study group and within >10 min for controls (P < 0.001), and the complication rate for intraosseous use was 13.8%. Personnel satisfaction with the intraosseous device was unanimous and high. New-generation intraosseous infusions have great potential value in the early treatment stages of chemical warfare casualties. In a chemical warfare mass casualty scenario, the protective gear worn by medical personnel, the time constraints, and the casualties' medical condition impose limitations on the establishment of IV access during early treatment of the victims. A spring-driven, trigger-operated intraosseous infusion delivery system may offer an effective solution.
HIGH-FIDELITY SIMULATION-DRIVEN MODEL DEVELOPMENT FOR COARSE-GRAINED COMPUTATIONAL FLUID DYNAMICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanna, Botros N.; Dinh, Nam T.; Bolotnov, Igor A.
Nuclear reactor safety analysis requires identifying various credible accident scenarios and determining their consequences. For a full-scale nuclear power plant system behavior, it is impossible to obtain sufficient experimental data for a broad range of risk-significant accident scenarios. In single-phase flow convective problems, Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) can provide us with high fidelity results when physical data are unavailable. However, these methods are computationally expensive and cannot be afforded for simulation of long transient scenarios in nuclear accidents despite extraordinary advances in high performance scientific computing over the past decades. The major issue is themore » inability to make the transient computation parallel, thus making number of time steps required in high-fidelity methods unaffordable for long transients. In this work, we propose to apply a high fidelity simulation-driven approach to model sub-grid scale (SGS) effect in Coarse Grained Computational Fluid Dynamics CG-CFD. This approach aims to develop a statistical surrogate model instead of the deterministic SGS model. We chose to start with a turbulent natural convection case with volumetric heating in a horizontal fluid layer with a rigid, insulated lower boundary and isothermal (cold) upper boundary. This scenario of unstable stratification is relevant to turbulent natural convection in a molten corium pool during a severe nuclear reactor accident, as well as in containment mixing and passive cooling. The presented approach demonstrates how to create a correction for the CG-CFD solution by modifying the energy balance equation. A global correction for the temperature equation proves to achieve a significant improvement to the prediction of steady state temperature distribution through the fluid layer.« less
Fast-ion transport in q{sub min}>2, high-β steady-state scenarios on DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holcomb, C. T.; Heidbrink, W. W.; Collins, C.
2015-05-15
Results from experiments on DIII-D [J. L. Luxon, Fusion Sci. Technol. 48, 828 (2005)] aimed at developing high β steady-state operating scenarios with high-q{sub min} confirm that fast-ion transport is a critical issue for advanced tokamak development using neutral beam injection current drive. In DIII-D, greater than 11 MW of neutral beam heating power is applied with the intent of maximizing β{sub N} and the noninductive current drive. However, in scenarios with q{sub min}>2 that target the typical range of q{sub 95}= 5–7 used in next-step steady-state reactor models, Alfvén eigenmodes cause greater fast-ion transport than classical models predict. Thismore » enhanced transport reduces the absorbed neutral beam heating power and current drive and limits the achievable β{sub N}. In contrast, similar plasmas except with q{sub min} just above 1 have approximately classical fast-ion transport. Experiments that take q{sub min}>3 plasmas to higher β{sub P} with q{sub 95}= 11–12 for testing long pulse operation exhibit regimes of better than expected thermal confinement. Compared to the standard high-q{sub min} scenario, the high β{sub P} cases have shorter slowing-down time and lower ∇β{sub fast}, and this reduces the drive for Alfvénic modes, yielding nearly classical fast-ion transport, high values of normalized confinement, β{sub N}, and noninductive current fraction. These results suggest DIII-D might obtain better performance in lower-q{sub 95}, high-q{sub min} plasmas using broader neutral beam heating profiles and increased direct electron heating power to lower the drive for Alfvén eigenmodes.« less
Pathfinder radar development at Sandia National Laboratories
NASA Astrophysics Data System (ADS)
Castillo, Steven
2016-05-01
Since the invention of Synthetic Aperture Radar imaging in the 1950's, users or potential users have sought to exploit SAR imagery for a variety of applications including the earth sciences and defense. At Sandia Laboratories, SAR Research and Development and associated defense applications grew out of the nuclear weapons program in the 1980's and over the years has become a highly viable ISR sensor for a variety of tactical applications. Sandia SAR systems excel where real--time, high--resolution, all--weather, day or night surveillance is required for developing situational awareness. This presentation will discuss the various aspects of Sandia's airborne ISR capability with respect to issues related to current operational success as well as the future direction of the capability as Sandia seeks to improve the SAR capability it delivers into multiple mission scenarios. Issues discussed include fundamental radar capabilities, advanced exploitation techniques and human--computer interface (HMI) challenges that are part of the advances required to maintain Sandia's ability to continue to support ever changing and demanding mission challenges.
Advanced Planning and Scheduling Initiative- MrSpock Aims for Xmas
NASA Astrophysics Data System (ADS)
Steel, R.; Niezette, M.; Cesta, A.; Fratini, S.; Oddi, A.; Cortellessa, G.; Rasconi, R.; Verfaillie, G.; Pralet, C.; Lavagna, M.; Brambilla, A.; Castellini, F.; Donati, A.; Policella, N.
2009-09-01
This paper will outline the framework and tools developed under the Advanced Planning and Schedule Initiative (APSI) study performed by VEGA for the European Space Agency in collaboration with three academic institutions, ISTC-CNR, ONERA, and Politecnico di Milano. We will start by illustrating the background history to APSI and why it was needed, giving a brief summary of all the partners within the project and the roles they played within it. We will then take a closer look at what the APSI study actually consisted of, showing the techniques that were used and illustrating the framework that was developed within the scope of the project. This will be followed by an elaboration on the three demonstration test scenarios that have been developed as part of the project to validated the framework and demonstrate in an operational environment its applicability, illustrating the re-use and synergies between the three cases along the way. We will finally conclude with a brief summary and outline future directions to be further investigated and expanded on within the context of the work performed within the project.
Interactive Tools for Measuring Visual Scanning Performance and Reaction Time.
Brooks, Johnell; Seeanner, Julia; Hennessy, Sarah; Manganelli, Joseph; Crisler, Matthew; Rosopa, Patrick; Jenkins, Casey; Anderson, Michael; Drouin, Nathalie; Belle, Leah; Truesdail, Constance; Tanner, Stephanie
Occupational therapists are constantly searching for engaging, high-technology interactive tasks that provide immediate feedback to evaluate and train clients with visual scanning deficits. This study examined the relationship between two tools: the VISION COACH™ interactive light board and the Functional Object Detection © (FOD) Advanced driving simulator scenario. Fifty-four healthy drivers, ages 21-66 yr, were divided into three age groups. Participants performed braking response and visual target (E) detection tasks of the FOD Advanced driving scenario, followed by two sets of three trials using the VISION COACH Full Field 60 task. Results showed no significant effect of age on FOD Advanced performance but a significant effect of age on VISION COACH performance. Correlations showed that participants' performance on both braking and E detection tasks were significantly positively correlated with performance on the VISION COACH (.37 < r < .40, p < .01). These tools provide new options for therapists. Copyright © 2017 by the American Occupational Therapy Association, Inc.
Richards, Elliott G; Sangi-Haghpeykar, Haleh; McGuire, Amy L; Van den Veyver, Ignatia B; Fruhman, Gary
2015-12-01
A common concern of utilizing prenatal advanced genetic testing is that a result of uncertain clinical significance will increase patient anxiety. However, prenatal ultrasound may also yield findings of uncertain significance, such as 'soft markers' for fetal aneuploidy, or findings with variable prognosis, such as mild ventriculomegaly. In this study we compared risk perception following uncertain test results from each modality. A single survey with repeated measures design was administered to 133 pregnant women. It included 'intolerance of uncertainty' questions, two hypothetical scenarios involving prenatal ultrasound or advanced genetic testing, and response questions. The primary outcome was risk perception score. Risk perception did not vary significantly between ultrasound and genetic scenarios (p = 0.17). The genetic scenario scored a higher accuracy (p = 0.04) but lower sense of empowerment (p = 0.01). Furthermore, patients were more likely to seek additional testing after an ultrasound than after genetic testing (p = 0.05). There were no differences in other secondary outcomes including perception of life-altering consequences and hypothetical worry, anxiety, confusion, or medical care decisions. Our data suggest that uncertain findings on prenatal genetic testing do not elicit a higher perception of risk or anxiety when compared to ultrasound findings of comparable uncertainty. © 2015 John Wiley & Sons, Ltd. © 2015 John Wiley & Sons, Ltd.
The first gravitational-wave burst GW150914, as predicted by the scenario machine
NASA Astrophysics Data System (ADS)
Lipunov, V. M.; Kornilov, V.; Gorbovskoy, E.; Tiurina, N.; Balanutsa, P.; Kuznetsov, A.
2017-02-01
The Advanced LIGO observatory recently reported (Abbott et al., 2016a) the first direct detection of gravitational waves predicted by Einstein (1916). The detection of this event was predicted in 1997 on the basis of the Scenario Machine population synthesis calculations (Lipunov et al., 1997b) Now we discuss the parameters of binary black holes and event rates predicted by different scenarios of binary evolution. We give a simple explanation of the big difference between detected black hole masses and the mean black hole masses observed in of X-ray Nova systems. The proximity of the masses of the components of GW150914 is in good agreement with the observed initial mass ratio distribution in massive binary systems, as is used in Scenario Machine calculations for massive binaries.
Advanced Biasing Experiments on the C-2 Field-Reversed Configuration Device
NASA Astrophysics Data System (ADS)
Thompson, Matthew; Korepanov, Sergey; Garate, Eusebio; Yang, Xiaokang; Gota, Hiroshi; Douglass, Jon; Allfrey, Ian; Valentine, Travis; Uchizono, Nolan; TAE Team
2014-10-01
The C-2 experiment seeks to study the evolution, heating and sustainment effects of neutral beam injection on field-reversed configuration (FRC) plasmas. Recently, substantial improvements in plasma performance were achieved through the application of edge biasing with coaxial plasma guns located in the divertors. Edge biasing provides rotation control that reduces instabilities and E × B shear that improves confinement. Typically, the plasma gun arcs are run at ~ 10 MW for the entire shot duration (~ 5 ms), which will become unsustainable as the plasma duration increases. We have conducted several advanced biasing experiments with reduced-average-power plasma gun operating modes and alternative biasing cathodes in an effort to develop an effective biasing scenario applicable to steady state FRC plasmas. Early results show that several techniques can potentially provide effective, long-duration edge biasing.
Hydrogen energy systems technology study
NASA Technical Reports Server (NTRS)
Kelley, J. H.
1975-01-01
The paper discusses the objectives of a hydrogen energy systems technology study directed toward determining future demand for hydrogen based on current trends and anticipated new uses and identifying the critical research and technology advancements required to meet this need with allowance for raw material limitations, economics, and environmental effects. Attention is focused on historic production and use of hydrogen, scenarios used as a basis for projections, projections of energy sources and uses, supply options, and technology requirements and needs. The study found more than a billion dollar annual usage of hydrogen, dominated by chemical-industry needs, supplied mostly from natural gas and petroleum feedstocks. Evaluation of the progress in developing nuclear fusion and solar energy sources relative to hydrogen production will be necessary to direct the pace and character of research and technology work in the advanced water-splitting areas.
NASA Technical Reports Server (NTRS)
Gregorich, Steven E.
1991-01-01
An effort is made to ascertain which combinations of technical demands and crew coordination should be incorporated in training scenarios in order to maximize the effectiveness of training for crew members. Such high-fidelity simulation, which has come to be known as 'line-oriented flight training' or LOFT, involves the practice of both technical and crew coordination skills in a realistic setting, in conjunction with periodic reviews of performance via videotaped feedback. Attention is given to the integration of appropriate information, the measurement of objective task demands, the character of information from LOFT students, and the leeway allowed LOFT instructors.
Alisse : Advanced life support system evaluator
NASA Astrophysics Data System (ADS)
Brunet, Jean; Gerbi, Olivier; André, Philippe; Davin, Elisabeth; Avezuela Rodriguez, Raul; Carbonero, Fernando; Soumalainen, Emilia; Lasseur, Christophe
Long duration missions, such as the establishment of permanent bases on the lunar surface or the travel to Mars, require such an amount of life support consumables (e.g. food, water and oxygen) that direct supply or re-supply from Earth is not an option anymore. Regenerative Life Support Systems are therefore necessary to sustain long-term manned space mission to increase recycling rates and so reduce the launched mass. The architecture of an Environmental Controlled Life Support System widely depends on the mission scenario. Even for a given mission scenario, different architectures could be envisaged which need to be evaluated and compared with appropriate tools. As these evaluation and comparison, based on the single criterion of Equivalent System Mass, was not considered com-prehensive enough, ESA is developing a multi-criteria evaluation tool: ALISSE (Advanced Life Support System Evaluator). The main objective of ALISSE, and of the work presented here, is the definition and implemen-tation of a metrics system, addressing the complexity of any ECLSS along its Life Cycle phases. A multi-dimensional and multi-criteria (i.e. mass, energy, efficiency, risk to human, reliability, crew time, sustainability, life cycle cost) approach is proposed through the development of a computing support platform. Each criterion being interrelated with the others, a model based system approach is used. ALISSE is expected to provide significant inputs to the ESA Concurrent Design Facility and, as a consequence, to be a highly valuable tool for decision process linked to any manned space mission. Full contact detail for the contact author : Jean Brunet Sherpa Engineering General Manager Phone : 0033(0)608097480 j.brunet@sherpa-eng.com
A multi-physics analysis for the actuation of the SSS in opal reactor
NASA Astrophysics Data System (ADS)
Ferraro, Diego; Alberto, Patricio; Villarino, Eduardo; Doval, Alicia
2018-05-01
OPAL is a 20 MWth multi-purpose open-pool type Research Reactor located at Lucas Heights, Australia. It was designed, built and commissioned by INVAP between 2000 and 2006 and it has been operated by the Australia Nuclear Science and Technology Organization (ANSTO) showing a very good overall performance. On November 2016, OPAL reached 10 years of continuous operation, becoming one of the most reliable and available in its kind worldwide, with an unbeaten record of being fully operational 307 days a year. One of the enhanced safety features present in this state-of-art reactor is the availability of an independent, diverse and redundant Second Shutdown System (SSS), which consists in the drainage of the heavy water reflector contained in the Reflector Vessel. As far as high quality experimental data is available from reactor commissioning and operation stages and even from early component design validation stages, several models both regarding neutronic and thermo-hydraulic approaches have been developed during recent years using advanced calculations tools and the novel capabilities to couple them. These advanced models were developed in order to assess the capability of such codes to simulate and predict complex behaviours and develop highly detail analysis. In this framework, INVAP developed a three-dimensional CFD model that represents the detailed hydraulic behaviour of the Second Shutdown System for an actuation scenario, where the heavy water drainage 3D temporal profiles inside the Reflector Vessel can be obtained. This model was validated, comparing the computational results with experimental measurements performed in a real-size physical model built by INVAP during early OPAL design engineering stages. Furthermore, detailed 3D Serpent Monte Carlo models are also available, which have been already validated with experimental data from reactor commissioning and operating cycles. In the present work the neutronic and thermohydraulic models, available for OPAL reactor, are coupled by means of a shared unstructured mesh geometry definition of relevant zones inside the Reflector Vessel. Several scenarios, both regarding coupled and uncoupled neutronic & thermohydraulic behavior, are presented and analyzed, showing the capabilities to develop and manage advanced modelling that allows to predict multi-physics variables observed when an in-depth performance analysis of a Research Reactor like OPAL is carried out.
USSP-IAEA WORKSHOP ON ADVANCED SENSORS FOR SAFEGUARDS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
PEPPER,S.; QUEIROLO, A.; ZENDEL, M.
2007-11-13
The IAEA Medium Term Strategy (2006-2011) defines a number of specific goals in respect to the IAEA's ability to provide assurances to the international community regarding the peaceful use of nuclear energy through States adherences to their respective non-proliferation treaty commitments. The IAEA has long used and still needs the best possible sensors to detect and measure nuclear material. The Department of Safeguards, recognizing the importance of safeguards-oriented R&D, especially targeting improved detection capabilities for undeclared facilities, materials and activities, initiated a number of activities in early 2005. The initiatives included letters to Member State Support Programs (MSSPs), personal contactsmore » with known technology holders, topical meetings, consultant reviews of safeguards technology, and special workshops to identify new and novel technologies and methodologies. In support of this objective, the United States Support Program to IAEA Safeguards hosted a workshop on ''Advanced Sensors for Safeguards'' in Santa Fe, New Mexico, from April 23-27, 2007. The Organizational Analysis Corporation, a U.S.-based management consulting firm, organized and facilitated the workshop. The workshop's goal was to help the IAEA identify and plan for new sensors for safeguards implementation. The workshop, which was attended by representatives of seven member states and international organizations, included presentations by technology holders and developers on new technologies thought to have relevance to international safeguards, but not yet in use by the IAEA. The presentations were followed by facilitated breakout sessions where the participants considered two scenarios typical of what IAEA inspectors might face in the field. One scenario focused on an enrichment plant; the other scenario focused on a research reactor. The participants brainstormed using the technologies presented by the participants and other technologies known to them to propose techniques and methods that could be used by the IAEA to strengthen safeguards. Creative thinking was encouraged during discussion of the proposals. On the final day of the workshop, the OAC facilitators summarized the participant's ideas in a combined briefing. This paper will report on the results of the April 2007 USSP-IAEA Workshop on Advanced Sensors for Safeguards and give an overview of the proposed technologies of greatest promise.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoover, Andrew Scott; Bennett, D. A.; Croce, Mark Philip
In 2005 the LANL/NIST team used a single high-resolution microcalorimeter detector to measure the gamma-ray spectrum of a plutonium sample. After more than a decade of research and development on this topic, both the technology and our general understanding of its capabilities have advanced greatly, such that a progress review is now timely. We examine the scenario of a large-scale reprocessing plant and conclude that current non-destructive analysis (NDA) methods are inadequate to safeguard such a facility to the desired levels, leading to undesirable dependence on massspectrometry (MS) destructive analysis (DA). The development of microcalorimeter detectors is intended to closemore » the performance gap between NDA and DA methods to address the needs of nuclear facilities.« less
Environments for online maritime simulators with cloud computing capabilities
NASA Astrophysics Data System (ADS)
Raicu, Gabriel; Raicu, Alexandra
2016-12-01
This paper presents the cloud computing environments, network principles and methods for graphical development in realistic naval simulation, naval robotics and virtual interactions. The aim of this approach is to achieve a good simulation quality in large networked environments using open source solutions designed for educational purposes. Realistic rendering of maritime environments requires near real-time frameworks with enhanced computing capabilities during distance interactions. E-Navigation concepts coupled with the last achievements in virtual and augmented reality will enhance the overall experience leading to new developments and innovations. We have to deal with a multiprocessing situation using advanced technologies and distributed applications using remote ship scenario and automation of ship operations.
Jahanishakib, Fatemeh; Mirkarimi, Seyed Hamed; Salmanmahiny, Abdolrassoul; Poodat, Fatemeh
2018-05-08
Efficient land use management requires awareness of past changes, present actions, and plans for future developments. Part of these requirements is achieved using scenarios that describe a future situation and the course of changes. This research aims to link scenario results with spatially explicit and quantitative forecasting of land use development. To develop land use scenarios, SMIC PROB-EXPERT and MORPHOL methods were used. It revealed eight scenarios as the most probable. To apply the scenarios, we considered population growth rate and used a cellular automata-Markov chain (CA-MC) model to implement the quantified changes described by each scenario. For each scenario, a set of landscape metrics was used to assess the ecological integrity of land use classes in terms of fragmentation and structural connectivity. The approach enabled us to develop spatial scenarios of land use change and detect their differences for choosing the most integrated landscape pattern in terms of landscape metrics. Finally, the comparison between paired forecasted scenarios based on landscape metrics indicates that scenarios 1-1, 2-2, 3-2, and 4-1 have a more suitable integrity. The proposed methodology for developing spatial scenarios helps executive managers to create scenarios with many repetitions and customize spatial patterns in real world applications and policies.
USGS Multi-Hazards Winter Storm Scenario
NASA Astrophysics Data System (ADS)
Cox, D. A.; Jones, L. M.; Perry, S. C.
2008-12-01
The USGS began an inter-disciplinary effort, the Multi Hazards Demonstration Project (MHDP), in 2007 to demonstrate how hazards science can improve a community's resiliency to natural disasters including earthquakes, tsunamis, wildfires, landslides, floods and coastal erosion. The project engages the user community in setting research goals and directs efforts towards research products that can be applied to loss reduction and improved resiliency. The first public product of the MHDP was the ShakeOut Earthquake Scenario published in May 2008. It detailed the realistic outcomes of a hypothetical, but plausible, magnitude 7.8 earthquake on the San Andreas Fault in southern California. Over 300 scientist and experts contributed to designing the earthquake and understanding the impacts of such a disaster, including the geotechnical, engineering, social, cultural, environmental, and economic consequences. The scenario advanced scientific understanding and exposed numerous vulnerabilities related to emergency response and lifeline continuity management. The ShakeOut Scenario was the centerpiece of the Nation's largest-ever emergency response exercise in November 2008, dubbed "The Great Southern California ShakeOut" (www.shakeout.org). USGS Multi-Hazards is now preparing for its next major public project, a Winter Storm Scenario. Like the earthquake scenario, experts will be brought together to examine in detail the possibility, cost and consequences of a winter storm disaster including floods, landslides, coastal erosion and inundation; debris flows; biologic consequences like extirpation of endangered species; physical damages like bridge scour, road closures, dam failure, property loss, and water system collapse. Consideration will be given to the vulnerabilities associated with a catastrophic disruption to the water supply to southern California; the resulting impacts on ground water pumping, seawater intrusion, water supply degradation, and land subsidence; and a detailed examination on climatic change forces that could exacerbate the problems. Similar to the ShakeOut Scenario, the Winter Storm Scenario is designing a large but scientifically plausible physical event followed by an expert analysis of the secondary hazards, and the physical, social, and economic consequences. Unlike the earthquake scenario, the winter storm event may occur over days, weeks, and possibly months, and the stakeholder community is broadening to include resource managers as well as local governments and the emergency and lifeline management communities. Developing plans for this Scenario will be presented at this session, and feedback will be welcomed.
NASA Astrophysics Data System (ADS)
Rohat, Guillaume; Flacke, Johannes; Dao, Hy
2016-04-01
It is by now widely acknowledged that future social vulnerability to climate change depends on both future climate state and future socio-economic conditions. Nevertheless, while most of the vulnerability assessments are using climate projections, the integration of socio-economic projections into the assessment of vulnerabilities has been very limited. Up to now, the vast majority of vulnerability assessments has been using current socio-economic conditions, hence has failed to consider the influence of socio-economic developments in the construction of vulnerability. To enhance the use of socio-economic projections into climate change impacts, adaptation and vulnerability assessments, the climate change research community has been recently involved in the development of a new model for creating scenarios that integrate future changes in climate as well as in society, known under the name of the new scenario framework for climate change research. This theoretical framework is made of a set of alternative futures of socio-economic developments (known as shared socio-economic pathways - SSPs), a set of hypothesis about future climate policies (known as shared policy assumptions - SPAs) and a set of greenhouse gas concentration trajectories (known as representative concentration pathways - RCPs), which are all combined into a scenario matrix architecture (SMA) whose aim is to facilitate the use of this framework. Despite calls by the climate change research community for the use of this conceptual framework in impacts, adaptation and vulnerability research, its use and its assessment has been very limited. Focusing on case-studies (i.e. specific cities as well as specific climate impacts and their associated human exposures and vulnerabilities), the study presented here will attempt to operationalize this theoretical framework for the assessment of future social vulnerability in large urban areas. A particular attention will be paid to less advanced and more vulnerable countries in the global south. We will discuss how this framework can be implemented for large urban agglomerations. To do so, we will examine: (i) by what means globally-developed SSPs can be extended into sector-specific and location-specific socio-economic development scenarios, (ii) in what manner the quantification of key socio-economic indicators (in accordance with the different SSPs), coupled with regional climate projections under different RCPs, can lead to a quantitative and reliable assessment of the evolution of future social vulnerability, and (iii) to which extent the SMA, i.e. the combination of extended SSPs, regional climate projections (under different RCPs) and various locally-developed SPAs, can answer some of the key questions regarding climate change adaptation policies, from a vulnerability perspective.
Conserving biodiversity and ecosystem function through limited development: an empirical evaluation.
Milder, Jeffrey C; Lassoie, James P; Bedford, Barbara L
2008-02-01
Suburban, exurban, and rural development in the United States consumes nearly 1 million hectares of land per year and is a leading threat to biodiversity. In response to this threat, conservation development has been advanced as a way to combine land development and land conservation while providing functional protection for natural resources. Yet, although conservation development techniques have been in use for decades, there have been few critical evaluations of their conservation effectiveness. We addressed this deficiency by assessing the conservation outcomes of one type of conservation development project: conservation and limited development projects (CLDPs). Conducted by land trusts, landowners, and developers, CLDPs use revenue from limited development to finance the protection of land and natural resources. We compared a sample of 10 CLDPs from the eastern United States with their respective baseline scenarios (conventional development) and with a sample of conservation subdivisions--a different conservation development technique characterized by higher-density development. To measure conservation success, we created an evaluation method containing eight indicators that quantify project impacts to terrestrial and aquatic ecosystems at the site and in the surrounding landscape. The CLDPs protected and managed threatened natural resources including rare species and ecological communities. In terms of conservation benefits, the CLDPs significantly outperformed their respective baseline scenarios and the conservation subdivisions. These results imply that CLDPs can offer a low-impact alternative to conventional development and a low-cost method for protecting land when conventional conservation techniques are too expensive. In addition, our evaluation method demonstrates how planners and developers can incorporate appropriate ecological considerations when designing, reviewing, and evaluating conservation development projects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Efroymson, Rebecca Ann; Langholtz, Matthew H.
With the goal of understanding environmental effects of a growing bioeconomy, the U.S. Department of Energy (DOE), national laboratories, and U.S. Forest Service research laboratories, together with academic and industry collaborators, undertook a study to estimate environmental effects of potential biomass production scenarios in the United States, with an emphasis on agricultural and forest biomass. Potential effects investigated include changes in soil organic carbon (SOC), greenhouse gas (GHG) emissions, water quality and quantity, air emissions, and biodiversity. Effects of altered land-management regimes were analyzed based on select county-level biomass-production scenarios for 2017 and 2040 taken from the 2016 Billion-Ton Report:more » Advancing Domestic Resources for a Thriving Bioeconomy (BT16), volume 1, which assumes that the land bases for agricultural and forestry would not change over time. The scenarios reflect constraints on biomass supply (e.g., excluded areas; implementation of management practices; and consideration of food, feed, forage, and fiber demands and exports) that intend to address sustainability concerns. Nonetheless, both beneficial and adverse environmental effects might be expected. To characterize these potential effects, this research sought to estimate where and under what modeled scenarios or conditions positive and negative environmental effects could occur nationwide. The report also includes a discussion of land-use change (LUC) (i.e., land management change) assumptions associated with the scenario transitions (but not including analysis of indirect LUC [ILUC]), analyses of climate sensitivity of feedstock productivity under a set of potential scenarios, and a qualitative environmental effects analysis of algae production under carbon dioxide (CO2) co-location scenarios. Because BT16 biomass supplies are simulated independent of a defined end use, most analyses do not include benefits from displacing fossil fuels or other products, with the exception of including a few illustrative cases on potential reductions in GHG emissions and fossil energy consumption associated with using biomass supplies for fuel, power, heat, and chemicals.« less
A Ground Testbed to Advance US Capability in Autonomous Rendezvous and Docking Project
NASA Technical Reports Server (NTRS)
D'Souza, Chris
2014-01-01
This project will advance the Autonomous Rendezvous and Docking (AR&D) GNC system by testing it on hardware, particularly in a flight processor, with a goal of testing it in IPAS with the Waypoint L2 AR&D scenario. The entire Agency supports development of a Commodity for Autonomous Rendezvous and Docking (CARD) as outlined in the Agency-wide Community of Practice whitepaper entitled: "A Strategy for the U.S. to Develop and Maintain a Mainstream Capability for Automated/Autonomous Rendezvous and Docking in Low Earth Orbit and Beyond". The whitepaper establishes that 1) the US is in a continual state of AR&D point-designs and therefore there is no US "off-the-shelf" AR&D capability in existence today, 2) the US has fallen behind our foreign counterparts particularly in the autonomy of AR&D systems, 3) development of an AR&D commodity is a national need that would benefit NASA, our commercial partners, and DoD, and 4) an initial estimate indicates that the development of a standardized AR&D capability could save the US approximately $60M for each AR&D project and cut each project's AR&D flight system implementation time in half.
Smith, Richard; Miller, Kirstin
2013-01-01
Assessing neighborhood vitality is important to understanding how to improve quality of life and health outcomes. The ecocity model recognizes that cities are part of natural systems and favors walkable neighborhoods. This article introduces ecocity mapping, an innovative planning method, to the public health literature on community engagement by describing a pilot project with a new affordable housing development in Oakland, California between 2007 and 2009. Although ecocity mapping began as a paper technology, advances in geographic information systems (GIS) moved it forward. This article describes how Ecocity Builders used GIS to conduct ecocity mapping to (1) assess vitality of neighborhoods and urban centers to prioritize community health intervention pilot sites and (2) create scenario maps for use in community health planning. From fall 2007 to summer 2008, Ecocity Builders assessed neighborhood vitality using walking distance from parks, schools, rapid transit stops, grocery stores, and retail outlets. In 2008, ecocity maps were shared with residents to create a neighborhood health and sustainability plan. In 2009, Ecocity Builders developed scenario maps to show how changes to the built environment would improve air quality by reducing greenhouse gas emissions from vehicles, while increasing access to basic services and natural amenities. Community organizing with GIS was more useful than GIS alone for final site selection. GIS was useful in mapping scenarios after residents shared local neighborhood knowledge and ideas for change. Residents were interested in long-term environmental planning, provided they could meet immediate needs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vimmerstedt, Laura; Brown, Austin; Newes, Emily
The transportation sector is changing, influenced by concurrent, ongoing, dynamic trends that could dramatically affect the future energy landscape, including effects on the potential for greenhouse gas emissions reductions. Battery cost reductions and improved performance coupled with a growing number of electric vehicle model offerings are enabling greater battery electric vehicle market penetration, and advances in fuel cell technology and decreases in hydrogen production costs are leading to initial fuel cell vehicle offerings. Radically more efficient vehicles based on both conventional and new drivetrain technologies reduce greenhouse gas emissions per vehicle-mile. Net impacts also depend on the energy sources usedmore » for propulsion, and these are changing with increased use of renewable energy and unconventional fossil fuel resources. Connected and automated vehicles are emerging for personal and freight transportation systems and could increase use of low- or non-emitting technologies and systems; however, the net effects of automation on greenhouse gas emissions are uncertain. The longstanding trend of an annual increase in transportation demand has reversed for personal vehicle miles traveled in recent years, demonstrating the possibility of lower-travel future scenarios. Finally, advanced biofuel pathways have continued to develop, highlighting low-carbon and in some cases carbon-negative fuel pathways. We discuss the potential for transformative reductions in petroleum use and greenhouse gas emissions through these emerging transportation-sector technologies and trends and present a Clean Transportation Sector Initiative scenario for such reductions, which are summarized in Table ES-1.« less
Technology Scenario for the Year 2005. Volume II. Detailed Scenes for Scenarios.
1981-10-01
administrative law judge action. c. Data on case routed to federal district court. 6. Input from Weather Service and EDNI sensors give indications of ai shift...1Of T*4A- FINAL REPORT October, 1981 Document is available to the public through the National Technical Information Service , Springfield, Virginia...volume study forecasts advances in science and technology and ’in deand fo CostGuard services , and expanding opportunities for the Coast Guard. Volme
Advanced tokamak investigations in full-tungsten ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Bock, A.; Doerk, H.; Fischer, R.; Rittich, D.; Stober, J.; Burckhart, A.; Fable, E.; Geiger, B.; Mlynek, A.; Reich, M.; Zohm, H.; ASDEX Upgrade Team
2018-05-01
The appropriate tailoring of the q-profile is the key to accessing Advanced Tokamak (AT) scenarios, which are of great benefit to future all-metal fusion power plants. Such scenarios depend on low collisionality ν* which permits efficient external current drive and high amounts of intrinsic bootstrap current. At constant pressure, lowering of the electron density ne leads to a strong decrease in the collisionality with increasing electron temperature ν* ˜ Te-3 . Simultaneously, the conditions for low ne also benefit impurity accumulation. This paper reports on how radiative collapses due to central W accumulation were overcome by improved understanding of the changes to recycling and pumping, substantially expanded ECRH capacities for both heating and current drive, and a new solid W divertor capable of withstanding the power loads at low ne. Furthermore, it reports on various improvements to the reliability of the q-profile reconstruction. A candidate steady state scenario for ITER/DEMO (q95 = 5.3, βN = 2.7, fbs > 40%) is presented. The ion temperature profiles are steeper than predicted by TGLF, but nonlinear electromagnetic gyro-kinetic analyses with GENE including fast particle effects matched the experimental heat fluxes. A fully non-inductive scenario at higher q95 = 7.1 for current drive model validation is also discussed. The results show that non-inductive operation is principally compatible with full-metal machines.
Future Market Share of Space Solar Electric Power Under Open Competition
NASA Astrophysics Data System (ADS)
Smith, S. J.; Mahasenan, N.; Clarke, J. F.; Edmonds, J. A.
2002-01-01
This paper assesses the value of Space Solar Power deployed under market competition with a full suite of alternative energy technologies over the 21st century. Our approach is to analyze the future energy system under a number of different scenarios that span a wide range of possible future demographic, socio-economic, and technological developments. Scenarios both with, and without, carbon dioxide concentration stabilization policies are considered. We use the comprehensive set of scenarios created for the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (Nakicenovic and Swart 2000). The focus of our analysis will be the cost of electric generation. Cost is particularly important when considering electric generation since the type of generation is, from a practical point of view, largely irrelevant to the end-user. This means that different electricity generation technologies must compete on the basis of price. It is important to note, however, that even a technology that is more expensive than average can contribute to the overall generation mix due to geographical and economic heterogeneity (Clarke and Edmonds 1993). This type of competition is a central assumption of the modeling approach used here. Our analysis suggests that, under conditions of full competition of all available technologies, Space Solar Power at 7 cents per kW-hr could comprise 5-10% of global electric generation by the end of the century, with a global total generation of 10,000 TW-hr. The generation share of Space Solar Power is limited due to competition with lower-cost nuclear, biomass, and terrestrial solar PV and wind. The imposition of a carbon constraint does not significantly increase the total amount of power generated by Space Solar Power in cases where a full range of advanced electric generation technologies are also available. Potential constraints on the availability of these other electric generation options can increase the amount of electricity generated by Space Solar Power. In agreement with previous work on this subject, we note that launch costs are a significant impediment for the widespread implementation of Space Solar Power. KEY WORDS: space satellite power, advanced electric generation, electricity price, climate change
Analysis of JT-60SA operational scenarios
NASA Astrophysics Data System (ADS)
Garzotti, L.; Barbato, E.; Garcia, J.; Hayashi, N.; Voitsekhovitch, I.; Giruzzi, G.; Maget, P.; Romanelli, M.; Saarelma, S.; Stankiewitz, R.; Yoshida, M.; Zagórski, R.
2018-02-01
Reference scenarios for the JT-60SA tokamak have been simulated with one-dimensional transport codes to assess the stationary state of the flat-top phase and provide a profile database for further physics studies (e.g. MHD stability, gyrokinetic analysis) and diagnostics design. The types of scenario considered vary from pulsed standard H-mode to advanced non-inductive steady-state plasmas. In this paper we present the results obtained with the ASTRA, CRONOS, JINTRAC and TOPICS codes equipped with the Bohm/gyro-Bohm, CDBM and GLF23 transport models. The scenarios analysed here are: a standard ELMy H-mode, a hybrid scenario and a non-inductive steady state plasma, with operational parameters from the JT-60SA research plan. Several simulations of the scenarios under consideration have been performed with the above mentioned codes and transport models. The results from the different codes are in broad agreement and the main plasma parameters generally agree well with the zero dimensional estimates reported previously. The sensitivity of the results to different transport models and, in some cases, to the ELM/pedestal model has been investigated.
Simulation-Based Assessment of ECMO Clinical Specialists.
Fehr, James J; Shepard, Mark; McBride, Mary E; Mehegan, Mary; Reddy, Kavya; Murray, David J; Boulet, John R
2016-06-01
The aims of the study were (1) to create multiple scenarios that simulate a range of urgent and emergent extracorporeal membrane oxygenation (ECMO) events and (2) to determine whether these scenarios can provide reliable and valid measures of a specialist's advanced skill in managing ECMO emergencies. Multiscenario simulation-based performance assessment was performed. The study was conducted in the Saigh Pediatric Simulation Center at St. Louis Children's Hospital. ECMO clinical specialists participated in the study. Twenty-five ECMO specialists completed 8 scenarios presenting acute events in simulated ECMO patients. Participants were evaluated by 2 separate reviewers for completion of key actions and for global performance. The scores were highest for the hemodilution scenario, whereas the air entrainment scenario had the lowest scores. Psychometric analysis demonstrated that ECMO specialists with more than 1 year of experience outperformed the specialists with less than 1 year of experience. Participants endorsed these sessions as important and representative of events that might be encountered in practice. The scenarios could serve as a component of an ECMO education curriculum and be used to assess clinical specialists' readiness to manage ECMO emergencies.
System for training and evaluation of security personnel in use of firearms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, H.F.
This patent describes an interactive video display system comprising a laser disc player with a remote large-screen projector to view life-size video scenarios and a control computer. A video disc has at least one basic scenario and one or more branches of the basic scenario with one or more subbranches from any one or more of the branches and further subbranches, if desired, to any level of programming desired. The control computer is programmed for interactive control of the branching, and control of other effects that enhance the scenario, in response to detection of when the trainee has drawn anmore » infrared laser handgun from his holster, fired his laser handgun, taken cover, advanced or retreated from the adversary on the screen, and when the adversary has fired his gun at the trainee.« less
System for training and evaluation of security personnel in use of firearms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, H.F.
An interactive video display system comprising a laser disc player with a remote large-screen projector to view life-size video scenarios and a control computer. A video disc has at least one basic scenario and one or more branches of the basic scenario with one or more subbranches from any one or more of the branches and further subbranches, if desired, to any level of programming desired. The control computer is programmed for interactive control of the branching, and control of other effects that enhance the scenario, in response to detection of when the trainee has drawn an infrared laser handgunmore » from high holster, fired his laser handgun, taken cover, advanced or retreated from the adversary on the screen, and when the adversary has fired his gun at the trainee. 8 figs.« less
System for training and evaluation of security personnel in use of firearms
Hall, Howard F.
1990-01-01
An interactive video display system comprising a laser disc player with a remote large-screen projector to view life-size video scenarios and a control computer. A video disc has at least one basic scenario and one or more branches of the basic scenario with one or more subbranches from any one or more of the branches and further subbranches, if desired, to any level of programming desired. The control computer is programmed for interactive control of the branching, and control of other effects that enhance the scenario, in response to detection of when the trainee has (1) drawn an infrared laser handgun from his holster, (2) fired his laser handgun, (3) taken cover, (4) advanced or retreated from the adversary on the screen, and (5) when the adversary has fired his gun at the trainee.
Overview of Recent Radiation Transport Code Comparisons for Space Applications
NASA Astrophysics Data System (ADS)
Townsend, Lawrence
Recent advances in radiation transport code development for space applications have resulted in various comparisons of code predictions for a variety of scenarios and codes. Comparisons among both Monte Carlo and deterministic codes have been made and published by vari-ous groups and collaborations, including comparisons involving, but not limited to HZETRN, HETC-HEDS, FLUKA, GEANT, PHITS, and MCNPX. In this work, an overview of recent code prediction inter-comparisons, including comparisons to available experimental data, is presented and discussed, with emphases on those areas of agreement and disagreement among the various code predictions and published data.
The role of pharmacists in developing countries: The current scenario in the United Arab Emirates.
Rayes, Ibrahim Khalid; Hassali, Mohamed Azmi; Abduelkarem, Abduelmula R
2015-10-01
Pharmacy practice has passed several rounds of advancements over the past few years. It had changed the traditional positioning criteria of pharmacists as business people into patient-centered healthcare professionals. This worldwide shift is increasingly accumulating pressure on UAE pharmacists to turn up into better level of service providing accompanied with higher demand of inter-personal skills and intellectual capabilities. This can be accomplished through stressing the significance of continuing pharmacy education in basic sciences as well as social and administrative pharmacy techniques and its collaboration in elevating the quality of pharmacy practice in the UAE.
2015-07-14
Development Program SLP - Sea Level Pressure SOI - Southern Oscillation Index SON - Statement of Need SST - Sea Surface Temperature iv SWL - Still Water...Level Pressure ( SLP ) from NCEP/NCAR reanalysis). Midway has known wave setup (Aucan et al., 2012) so we explored to what extent we could find an 12...Guam ONI 0.9 Kwajalein ONI 1.1 Pago Pago ONI 1.0 Honolulu SLP 1.3 Nawiliwili SLP 1.4 Kahului SLP 1.2 Hilo SLP 1.3 Mokuoloe SLP 1.2 Naha PDO 1.0 Kawaihae
Progress toward the Wisconsin Free Electron Laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bisognano, Joseph; Eisert, D; Fisher, M V
2011-03-01
The University of Wisconsin-Madison/Synchrotron Radiation Center is advancing its design for a seeded VUV/soft X-ray Free Electron Laser facility called WiFEL. To support this vision of an ultimate light source, we are pursuing a program of strategic R&D addressing several crucial elements. This includes development of a high repetition rate, VHF superconducting RF electron gun, R&D on photocathode materials by ARPES studies, and evaluation of FEL facility architectures (e.g., recirculation, compressor scenarios, CSR dechirping, undulator technologies) with the specific goal of cost containment. Studies of high harmonic generation for laser seeding are also planned.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sezen, Halil; Aldemir, Tunc; Denning, R.
Probabilistic risk assessment of nuclear power plants initially focused on events initiated by internal faults at the plant, rather than external hazards including earthquakes and flooding. Although the importance of external hazards risk analysis is now well recognized, the methods for analyzing low probability external hazards rely heavily on subjective judgment of specialists, often resulting in substantial conservatism. This research developed a framework to integrate the risk of seismic and flooding events using realistic structural models and simulation of response of nuclear structures. The results of four application case studies are presented.
NASA Astrophysics Data System (ADS)
Lyons, John V.
Scenario planning is a method of organizing and understanding large amounts of quantitative and qualitative data for leaders to make better strategic decisions. There is a lack of academic research about scenario planning with a subsequent shortage of definitions and theories. This study utilized a case study methodology to analyze scenario planning by investor-owned electric utilities in the Pacific Northwest in their integrated resource planning (IRP) process. The cases include Avista Corporation, Idaho Power, PacifiCorp, Portland General Electric, and Puget Sound Energy. This study sought to determine how scenario planning was used, what scenario approach was used, the scenario outcomes, and the similarities and differences in the scenario planning processes. The literature review of this study covered the development of scenario planning, common definitions and theories, approaches to scenario development, and scenario outcomes. A research methodology was developed to classify the scenario development approach into intuitive, hybrid, or quantitative approaches; and scenario outcomes of changed thinking, stories of plausible futures, improved decision making, and enhanced organizational learning. The study found all three forms of scenario planning in the IRPs. All of the cases used a similar approach to IRP development. All of the cases had at least improved decision making as an outcome of scenario planning. Only one case demonstrated all four scenario outcomes. A critical finding was a correlation between the use of the intuitive approach and the use of all scenario outcomes. Another major finding was the unique use of predetermined elements, which are normally consistent across scenarios, but became critical uncertainties in some of the scenarios in the cases for this study. This finding will need to be confirmed by future research as unique to the industry or an aberration. An unusually high number of scenarios were found for cases using the hybrid approach, which was unexpected based on the literature. This work expanded the methods for studying scenario planning, enhanced the body of scholarly works on scenario planning, and provided a starting point for additional research concerning the use of scenario planning by electric utilities.
The Ensemble Space Weather Modeling System (eSWMS): Status, Capabilities and Challenges
NASA Astrophysics Data System (ADS)
Fry, C. D.; Eccles, J. V.; Reich, J. P.
2010-12-01
Marking a milestone in space weather forecasting, the Space Weather Modeling System (SWMS) successfully completed validation testing in advance of operational testing at Air Force Weather Agency’s primary space weather production center. This is the first coupling of stand-alone, physics-based space weather models that are currently in operations at AFWA supporting the warfighter. Significant development effort went into ensuring the component models were portable and scalable while maintaining consistent results across diverse high performance computing platforms. Coupling was accomplished under the Earth System Modeling Framework (ESMF). The coupled space weather models are the Hakamada-Akasofu-Fry version 2 (HAFv2) solar wind model and GAIM1, the ionospheric forecast component of the Global Assimilation of Ionospheric Measurements (GAIM) model. The SWMS was developed by team members from AFWA, Explorations Physics International, Inc. (EXPI) and Space Environment Corporation (SEC). The successful development of the SWMS provides new capabilities beyond enabling extended lead-time, data-driven ionospheric forecasts. These include ingesting diverse data sets at higher resolution, incorporating denser computational grids at finer time steps, and performing probability-based ensemble forecasts. Work of the SWMS development team now focuses on implementing the ensemble-based probability forecast capability by feeding multiple scenarios of 5 days of solar wind forecasts to the GAIM1 model based on the variation of the input fields to the HAFv2 model. The ensemble SWMS (eSWMS) will provide the most-likely space weather scenario with uncertainty estimates for important forecast fields. The eSWMS will allow DoD mission planners to consider the effects of space weather on their systems with more advance warning than is currently possible. The payoff is enhanced, tailored support to the warfighter with improved capabilities, such as point-to-point HF propagation forecasts, single-frequency GPS error corrections, and high cadence, high-resolution Space Situational Awareness (SSA) products. We present the current status of eSWMS, its capabilities, limitations and path of transition to operational use.
USGCRP's Sustained Assessment Process: Progress to date and future plans
NASA Astrophysics Data System (ADS)
DeAngelo, B. J.; Reidmiller, D.; Lipschultz, F.; Cloyd, E. T.
2016-12-01
One of the four main objectives of the U.S. Global Change Research Program's (USGCRP's) Strategic Plan is to "Conduct Sustained Assessments", which seeks to build a process that synthesizes and advances the state of scientific knowledge on global change, develops future scenarios and potential impacts, and evaluates how effectively science is being and can be used to inform and support the Nation's response to climate change. To do so, USGCRP strives to establish a standing capacity to conduct national climate assessments with sectoral and regional information to evaluate climate risks and opportunities, and to inform decision-making, especially with regard to resiliency planning and adaptation measures. Building on the success of the 3rd National Climate Assessment (NCA) (2014), we discuss the range of USGCRP activities that embody the sustained assessment concept. Special reports, such as the recent Climate and Human Health Assessment and upcoming Climate Science Special Report, fill gaps in our understanding and provide crucial building blocks for next NCA report (NCA4). To facilitate the use of consistent assumptions across NCA4, new scenario products for climate, population, and land use will be made available through initiatives such as NOAA's Climate Resilience Toolkit. NCA4 will be informed by user engagement to advance the customization of knowledge. The report will strive to advance our ability to quantify various risks, monetize certain impacts, and communicate the benefits (i.e., avoided impacts) of various mitigation pathways. NCAnet (a national network of climate-interested stakeholders) continues to grow and foster collaborations across levels of governance and within civil society. Finally, USGCRP continues to actively engage with other assessment processes, at international, state, city, and tribal levels, to exchange ideas and to facilitate the potential for "linked" assessments across spatial scales.
Isabelle, Boulangeat; Pauline, Philippe; Sylvain, Abdulhak; Roland, Douzet; Luc, Garraud; Sébastien, Lavergne; Sandra, Lavorel; Jérémie, Van Es; Pascal, Vittoz; Wilfried, Thuiller
2013-01-01
The pace of on-going climate change calls for reliable plant biodiversity scenarios. Traditional dynamic vegetation models use plant functional types that are summarized to such an extent that they become meaningless for biodiversity scenarios. Hybrid dynamic vegetation models of intermediate complexity (hybrid-DVMs) have recently been developed to address this issue. These models, at the crossroads between phenomenological and process-based models, are able to involve an intermediate number of well-chosen plant functional groups (PFGs). The challenge is to build meaningful PFGs that are representative of plant biodiversity, and consistent with the parameters and processes of hybrid-DVMs. Here, we propose and test a framework based on few selected traits to define a limited number of PFGs, which are both representative of the diversity (functional and taxonomic) of the flora in the Ecrins National Park, and adapted to hybrid-DVMs. This new classification scheme, together with recent advances in vegetation modeling, constitutes a step forward for mechanistic biodiversity modeling. PMID:24403847
NASA Astrophysics Data System (ADS)
Zarindast, Atousa; Seyed Hosseini, Seyed Mohamad; Pishvaee, Mir Saman
2017-06-01
Robust supplier selection problem, in a scenario-based approach has been proposed, when the demand and exchange rates are subject to uncertainties. First, a deterministic multi-objective mixed integer linear programming is developed; then, the robust counterpart of the proposed mixed integer linear programming is presented using the recent extension in robust optimization theory. We discuss decision variables, respectively, by a two-stage stochastic planning model, a robust stochastic optimization planning model which integrates worst case scenario in modeling approach and finally by equivalent deterministic planning model. The experimental study is carried out to compare the performances of the three models. Robust model resulted in remarkable cost saving and it illustrated that to cope with such uncertainties, we should consider them in advance in our planning. In our case study different supplier were selected due to this uncertainties and since supplier selection is a strategic decision, it is crucial to consider these uncertainties in planning approach.
Informing the NCA: EPA's Climate Change Impact and Risk Analysis Framework
NASA Astrophysics Data System (ADS)
Sarofim, M. C.; Martinich, J.; Kolian, M.; Crimmins, A. R.
2017-12-01
The Climate Change Impact and Risk Analysis (CIRA) framework is designed to quantify the physical impacts and economic damages in the United States under future climate change scenarios. To date, the framework has been applied to 25 sectors, using scenarios and projections developed for the Fourth National Climate Assessment. The strength of this framework has been in the use of consistent climatic, socioeconomic, and technological assumptions and inputs across the impact sectors to maximize the ease of cross-sector comparison. The results of the underlying CIRA sectoral analyses are informing the sustained assessment process by helping to address key gaps related to economic valuation and risk. Advancing capacity and scientific literature in this area has created opportunity to consider future applications and strengthening of the framework. This presentation will describe the CIRA framework, present results for various sectors such as heat mortality, air & water quality, winter recreation, and sea level rise, and introduce potential enhancements that can improve the utility of the framework for decision analysis.
Control advances for achieving the ITER baseline scenario on KSTAR
NASA Astrophysics Data System (ADS)
Eidietis, N. W.; Barr, J.; Hahn, S. H.; Humphreys, D. A.; in, Y. K.; Jeon, Y. M.; Lanctot, M. J.; Mueller, D.; Walker, M. L.
2017-10-01
Control methodologies developed to enable successful production of ITER baseline scenario (IBS) plasmas on the superconducting KSTAR tokamak are presented: decoupled vertical control (DVC), real-time feedforward (rtFF) calculation, and multi-input multi-output (MIMO) X-point control. DVC provides fast vertical control with the in-vessel control coils (IVCC) while sharing slow vertical control with the poloidal field (PF) coils to avoid IVCC saturation. rtFF compensates for inaccuracies in offline PF current feedforward programming, allowing reduction or removal of integral gain (and its detrimental phase lag) from the shape controller. Finally, MIMO X-point control provides accurate positioning of the X-point despite low controllability due to the large distance between coils and plasma. Combined, these techniques enabled achievement of IBS parameters (q95 = 3.2, βN = 2) with a scaled ITER shape on KSTAR. n =2 RMP response displays a strong dependence upon this shaping. Work supported by the US DOE under Award DE-SC0010685 and the KSTAR project.
A long-term, integrated impact assessment of alternative building energy code scenarios in China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Sha; Eom, Jiyong; Evans, Meredydd
2014-04-01
China is the second largest building energy user in the world, ranking first and third in residential and commercial energy consumption. Beginning in the early 1980s, the Chinese government has developed a variety of building energy codes to improve building energy efficiency and reduce total energy demand. This paper studies the impact of building energy codes on energy use and CO2 emissions by using a detailed building energy model that represents four distinct climate zones each with three building types, nested in a long-term integrated assessment framework GCAM. An advanced building stock module, coupled with the building energy model, ismore » developed to reflect the characteristics of future building stock and its interaction with the development of building energy codes in China. This paper also evaluates the impacts of building codes on building energy demand in the presence of economy-wide carbon policy. We find that building energy codes would reduce Chinese building energy use by 13% - 22% depending on building code scenarios, with a similar effect preserved even under the carbon policy. The impact of building energy codes shows regional and sectoral variation due to regionally differentiated responses of heating and cooling services to shell efficiency improvement.« less
Economic Impact Analyses of Interdisciplinary Multi-hazard Scenarios: ShakeOut and ARkStorm
NASA Astrophysics Data System (ADS)
Wein, A. M.; Rose, A.; Sue Wing, I.; Wei, D.
2011-12-01
U. S. Geological Survey (USGS) scientists are using an interdisciplinary strategy to develop and analyze multi-hazard scenarios to help communities enhance resilience to natural hazard disasters. Two such scenarios are the southern California ShakeOut earthquake and the California ARkStorm winter storm. Both scenarios are multi-hazard: Shakeout ground motions trigger landslides and liquefaction and ARkStorm involves wind, flood, landslide, and coastal hazards. A collaborative scenario-process engages partners and stakeholders throughout the development and use of the scenarios, In doing so, community resilience is enhanced by educating communities about hazards and hazard interdependencies, building networks from scientists to decision makers, exercising emergency management strategies, identifying emergency management issues, and motivating solutions prior to an event. In addition, interdisciplinary scenarios stimulate research on the various steps of analysis (e.g., natural hazard processes, physical damages, societal consequences, and policy connections). In particular, USGS scientists have collaborated with economists to advance methods to estimate the economic impacts (business interruption losses) of disasters. Our economic impact analyses evolved from the economic module in the Federal Emergency Management Agency's loss-estimation tool, HAZUS-MH, to a more encompassing input-output analysis for ShakeOut, to a more sophisticated Computable General Equilibrium model for ARkStorm. The analyses depend on physical damage and restoration time estimates from engineers and geographic analyses of economic assets in hazard zones. Economic resilience strategies are incorporated to represent resourcefulness and ingenuity that avoids potential losses during and after an event. Such strategies operate at three levels of the economy: micro (e.g., ability to catch up on lost production time), meso (e.g., coordination within a sector to share resources), and macro (e.g., price adjustments to redistribute scarce resources). A sensitivity analysis of the ARkStorm economic impact model explores the effects of 1) the magnitude of the shocks (e.g., flood damages to buildings and infrastructure, agricultural productivity, and lifeline service disruptions), 2) the sustainability of the economic resilience strategies, and 3) the amount, timing, and source of reconstruction funds. The inclusion of an economic analysis in ShakeOut and ARkStorm broadens the range of interest in the scenario results. For example, the relative contribution of ShakeOut economic shocks to business interruption losses emphasized the need to reduce the impacts of fire following earthquake and water service disruption. Based on the magnitude and duration of the economic impacts for the ARkStorm scenario, policy experts surmised that business interruption policy time elements would be exceeded and business interruptions would be largely unfunded calling attention to the need for innovative funding solutions. Finally, economic impact analyses inform the question of paying now to mitigate or paying more later to recover.
Wang, Wenyi; Zeng, Weihua; Yao, Bo
2014-01-01
Many rapidly developing regions have begun to draw the attention of the world. Meanwhile, the energy and environmental issues associated with rapid economic growth have aroused widespread critical concern. Therefore, studying energy, economic, and environmental systems is of great importance. This study establishes a system dynamic model that covers multiple aspects of those systems, such as energy, economy, population, water pollution, air pollution, solid waste, and technology. The model designed here attempts to determine the impacts of socioeconomic development on the energy and environment of Tongzhou District in three scenarios: under current, planning, and sustainable conditions. The results reveal that energy shortages and water pollutions are very serious and are the key issues constraining future social and economic development. Solid waste emissions increase with population growth. The prediction results provide valuable insights into social advancement.
Adams, Vanessa M; Pressey, Robert L; Álvarez-Romero, Jorge G
2016-01-01
Development of land resources can contribute to increased economic productivity but can also negatively affect the extent and condition of native vegetation, jeopardize the persistence of native species, reduce water quality, and erode ecosystem services. Spatial planning must therefore balance outcomes for conservation, development, and social goals. One approach to evaluating these trade-offs is scenario planning. In this paper we demonstrate methods for incorporating stakeholder preferences into scenario planning through both defining scenario objectives and evaluating the scenarios that emerge. In this way, we aim to develop spatial plans capable of informing actual land-use decisions. We used a novel approach to scenario planning that couples optimal land-use design and social evaluation of environmental outcomes. Four land-use scenarios combined differences in total clearing levels (10% and 20%) in our study region, the Daly Catchment Australia, with the presence or absence of spatial precincts to concentrate irrigated agriculture. We used the systematic conservation planning tool Marxan with Zones to optimally plan for multiple land-uses that met objectives for both conservation and development. We assessed the performance of the scenarios in terms of the number of objectives met and the degree to which existing land-use policies were compromised (e.g., whether clearing limits in existing guidelines were exceeded or not). We also assessed the land-use scenarios using expected stakeholder satisfaction with changes in the catchment to explore how the scenarios performed against social preferences. There were a small fraction of conservation objectives with high conservation targets (100%) that could not be met due to current land uses; all other conservation and development objectives were met in all scenarios. Most scenarios adhered to the existing clearing guidelines with only marginal exceedances of limits, indicating that the scenario objectives were compatible with existing policy. We found that two key stakeholder groups, agricultural and Indigenous residents, had divergent satisfaction levels with the amount of clearing and agricultural development. Based on the range of benefits and potential adverse impacts of each scenario, we suggest that the 10% clearing scenarios are most aligned with stakeholder preferences and best balance preferences across stakeholder groups. Our approach to scenario planning is applicable generally to exploring the potential conflicts between goals for conservation and development. Our case study is particularly relevant to current discussion about increased agricultural and pastoral development in northern Australia.
Pressey, Robert L.; Álvarez-Romero, Jorge G.
2016-01-01
Development of land resources can contribute to increased economic productivity but can also negatively affect the extent and condition of native vegetation, jeopardize the persistence of native species, reduce water quality, and erode ecosystem services. Spatial planning must therefore balance outcomes for conservation, development, and social goals. One approach to evaluating these trade-offs is scenario planning. In this paper we demonstrate methods for incorporating stakeholder preferences into scenario planning through both defining scenario objectives and evaluating the scenarios that emerge. In this way, we aim to develop spatial plans capable of informing actual land-use decisions. We used a novel approach to scenario planning that couples optimal land-use design and social evaluation of environmental outcomes. Four land-use scenarios combined differences in total clearing levels (10% and 20%) in our study region, the Daly Catchment Australia, with the presence or absence of spatial precincts to concentrate irrigated agriculture. We used the systematic conservation planning tool Marxan with Zones to optimally plan for multiple land-uses that met objectives for both conservation and development. We assessed the performance of the scenarios in terms of the number of objectives met and the degree to which existing land-use policies were compromised (e.g., whether clearing limits in existing guidelines were exceeded or not). We also assessed the land-use scenarios using expected stakeholder satisfaction with changes in the catchment to explore how the scenarios performed against social preferences. There were a small fraction of conservation objectives with high conservation targets (100%) that could not be met due to current land uses; all other conservation and development objectives were met in all scenarios. Most scenarios adhered to the existing clearing guidelines with only marginal exceedances of limits, indicating that the scenario objectives were compatible with existing policy. We found that two key stakeholder groups, agricultural and Indigenous residents, had divergent satisfaction levels with the amount of clearing and agricultural development. Based on the range of benefits and potential adverse impacts of each scenario, we suggest that the 10% clearing scenarios are most aligned with stakeholder preferences and best balance preferences across stakeholder groups. Our approach to scenario planning is applicable generally to exploring the potential conflicts between goals for conservation and development. Our case study is particularly relevant to current discussion about increased agricultural and pastoral development in northern Australia. PMID:27362347
Making Babies: The State of the Art.
ERIC Educational Resources Information Center
Blank, Robert H.
1985-01-01
Advances in technology are not only changing human reproduction but raising perplexing questions of law and ethics. The reproduction-aiding technologies are discussed and possible scenarios for the future are described. (Author/RM)
Schaefer, David R; Adams, Jimi; Haas, Steven A
2013-10-01
Adolescent smoking and friendship networks are related in many ways that can amplify smoking prevalence. Understanding and developing interventions within such a complex system requires new analytic approaches. We draw on recent advances in dynamic network modeling to develop a technique that explores the implications of various intervention strategies targeted toward micro-level processes. Our approach begins by estimating a stochastic actor-based model using data from one school in the National Longitudinal Study of Adolescent Health. The model provides estimates of several factors predicting friendship ties and smoking behavior. We then use estimated model parameters to simulate the coevolution of friendship and smoking behavior under potential intervention scenarios. Namely, we manipulate the strength of peer influence on smoking and the popularity of smokers relative to nonsmokers. We measure how these manipulations affect smoking prevalence, smoking initiation, and smoking cessation. Results indicate that both peer influence and smoking-based popularity affect smoking behavior and that their joint effects are nonlinear. This study demonstrates how a simulation-based approach can be used to explore alternative scenarios that may be achievable through intervention efforts and offers new hypotheses about the association between friendship and smoking.
Schaefer, David R.; adams, jimi; Haas, Steven A.
2015-01-01
Adolescent smoking and friendship networks are related in many ways that can amplify smoking prevalence. Understanding and developing interventions within such a complex system requires new analytic approaches. We draw upon recent advances in dynamic network modeling to develop a technique that explores the implications of various intervention strategies targeted toward micro-level processes. Our approach begins by estimating a stochastic actor-based model using data from one school in the National Longitudinal Study of Adolescent Health. The model provides estimates of several factors predicting friendship ties and smoking behavior. We then use estimated model parameters to simulate the co-evolution of friendship and smoking behavior under potential intervention scenarios. Namely, we manipulate the strength of peer influence on smoking and the popularity of smokers relative to nonsmokers. We measure how these manipulations affect smoking prevalence, smoking initiation, and smoking cessation. Results indicate that both peer influence and smoking-based popularity affect smoking behavior, and that their joint effects are nonlinear. This study demonstrates how a simulation-based approach can be used to explore alternative scenarios that may be achievable through intervention efforts and offers new hypotheses about the association between friendship and smoking. PMID:24084397
Development of Logistics for Building Radiation Storm Shelters and Their Operational Evaluation
NASA Technical Reports Server (NTRS)
Cerro, Jeffrey A.
2015-01-01
Over the past three years NASA has been studying the operational effectiveness and astronaut protection efficacy of numerous radiation protection shelters for use in space exploration activities outside of earth's magnetosphere. The work presented was part of NASA's Advanced Exploration Systems (AES) RadWorks Storm Shelter project. This paper is a summary of the concept development activities of this third year. Fabricated items were integrated into mock up deep space habitat vehicle sections for operational evaluations. Two full scale human-in-loop simulations were designed, fabricated, and implemented through an Institutional Review Board approved solicited participant assessment process. Fabricated items are described, along with usage scenarios of two protection approaches. Existing ISS type logistics along with proposed variations of those logistics were used. Preliminary Discrete Event Simulation (DES) work is noted to be useful in quantifying and documenting operational performance measures for the two primary shelter methods, including some characterization of radiation dose accumulation over a mission timeline. The project also performed correlation analyses between effective radiation dose and the Risk of Exposure Induced Death (REID) to show that concept level work may be able to include such a performance metric in early stages of mission scenario habitat design trade space investigation.
Education and Public Outreach and Engagement at NASA's Analog Missions in 2012
NASA Technical Reports Server (NTRS)
Watkins, Wendy L.; Janoiko, Barbara A.; Mahoney, Erin; Hermann, Nicole B.
2013-01-01
Analog missions are integrated, multi-disciplinary activities that test key features of future human space exploration missions in an integrated fashion to gain a deeper understanding of system-level interactions and operations early in conceptual development. These tests often are conducted in remote and extreme environments that are representative in one or more ways to that of future spaceflight destinations. They may also be conducted at NASA facilities, using advanced modeling and human-in-the-loop scenarios. As NASA develops a capability driven framework to transport crew to a variety of space environments, it will use analog missions to gather requirements and develop the technologies necessary to ensure successful exploration beyond low Earth orbit. NASA s Advanced Exploration Systems (AES) Division conducts these high-fidelity integrated tests, including the coordination and execution of a robust education and public outreach (EPO) and engagement program for each mission. Conducting these mission scenarios in unique environments not only provides an opportunity to test the EPO concepts for the particular future-mission scenario, such as the best methods for conducting events with a communication time delay, but it also provides an avenue to deliver NASA s human space exploration key messages. These analogs are extremely exciting to students and the public, and they are performed in such a way that the public can feel like part of the mission. They also provide an opportunity for crew members to obtain training in education and public outreach activities similar to what they would perform in space. The analog EPO team is responsible for the coordination and execution of the events, the overall social media component for each mission, and public affairs events such as media visits and interviews. They also create new and exciting ways to engage the public, manage and create website content, coordinate video footage for missions, and coordinate and integrate each activity into the mission timeline. In 2012, the AES Analog Missions Project performed three distinct missions - NASA Extreme Environment Mission Operations (NEEMO), which simulated a mission to an asteroid using an undersea laboratory; In-Situ Resource Utilization (ISRU) Field Test, which simulated a robotic mission to the moon searching and drilling for water; and Research and Technology Studies (RATS) integrated tests, which also simulated a mission to an asteroid. This paper will discuss the education and public engagement that occurred during these missions.
NASA Astrophysics Data System (ADS)
Porter, Ian Edward
A nuclear reactor systems code has the ability to model the system response in an accident scenario based on known initial conditions at the onset of the transient. However, there has been a tendency for these codes to lack the detailed thermo-mechanical fuel rod response models needed for accurate prediction of fuel rod failure. This proposed work will couple today's most widely used steady-state (FRAPCON) and transient (FRAPTRAN) fuel rod models with a systems code TRACE for best-estimate modeling of system response in accident scenarios such as a loss of coolant accident (LOCA). In doing so, code modifications will be made to model gamma heating in LWRs during steady-state and accident conditions and to improve fuel rod thermal/mechanical analysis by allowing axial nodalization of burnup-dependent phenomena such as swelling, cladding creep and oxidation. With the ability to model both burnup-dependent parameters and transient fuel rod response, a fuel dispersal study will be conducted using a hypothetical accident scenario under both PWR and BWR conditions to determine the amount of fuel dispersed under varying conditions. Due to the fuel fragmentation size and internal rod pressure both being dependent on burnup, this analysis will be conducted at beginning, middle and end of cycle to examine the effects that cycle time can play on fuel rod failure and dispersal. Current fuel rod and system codes used by the Nuclear Regulatory Commission (NRC) are compilations of legacy codes with only commonly used light water reactor materials, Uranium Dioxide (UO2), Mixed Oxide (U/PuO 2) and zirconium alloys. However, the events at Fukushima Daiichi and Three Mile Island accident have shown the need for exploration into advanced materials possessing improved accident tolerance. This work looks to further modify the NRC codes to include silicon carbide (SiC), an advanced cladding material proposed by current DOE funded research on accident tolerant fuels (ATF). Several additional fuels will also be analyzed, including uranium nitride (UN), uranium carbide (UC) and uranium silicide (U3Si2). Focusing on the system response in an accident scenario, an emphasis is placed on the fracture mechanics of the ceramic cladding by design the fuel rods to eliminate pellet cladding mechanical interaction (PCMI). The time to failure and how much of the fuel in the reactor fails with an advanced fuel design will be analyzed and compared to the current UO2/Zircaloy design using a full scale reactor model.
Managing malignant biliary obstruction in pancreas cancer: Choosing the appropriate strategy
Boulay, Brian R; Parepally, Mayur
2014-01-01
Most patients with pancreatic cancer develop malignant biliary obstruction. Treatment of obstruction is generally indicated to relieve symptoms and improve morbidity and mortality. First-line therapy consists of endoscopic biliary stent placement. Recent data comparing plastic stents to self-expanding metallic stents (SEMS) has shown improved patency with SEMS. The decision of whether to treat obstruction and the means for doing so depends on the clinical scenario. For patients with resectable disease, preoperative biliary decompression is only indicated when surgery will be delayed or complications of jaundice exist. For patients with locally advanced disease, self-expanding metal stents are superior to plastic stents for long-term patency. For patients with advanced disease, the choice of metallic or plastic stent depends on life expectancy. When endoscopic stent placement fails, percutaneous or surgical treatments are appropriate. Endoscopic therapy or surgical approach can be used to treat concomitant duodenal and biliary obstruction. PMID:25071329
NASA Astrophysics Data System (ADS)
1986-10-01
The study projects until 2000 the evolution of long distance fiber optic networks in the U.S. Volume 1 is the Executive Summary. Volume 2 focuses on fiber optic components and systems that are directly related to the operation of long-haul networks. Optimistic, pessimistic and most likely scenarios of technology development are presented. The activities of national and regional companies implementing fiber long haul networks are also highlighted, along with an analysis of the market and regulatory forces affecting network evolution. Volume 3 presents advanced fiber optic network concept definitions. Inter-LATA traffic is quantified and forms the basis for the construction of 11-, 15-, 17-, and 23-node networks. Using the technology projections from Volume 2, a financial model identifies cost drivers and determines circuit mile costs between any two LATAs. A comparison of fiber optics with alternative transmission concludes the report.
Evaluation of advanced cooling therapy's esophageal cooling device for core temperature control.
Naiman, Melissa; Shanley, Patrick; Garrett, Frank; Kulstad, Erik
2016-05-01
Managing core temperature is critical to patient outcomes in a wide range of clinical scenarios. Previous devices designed to perform temperature management required a trade-off between invasiveness and temperature modulation efficiency. The Esophageal Cooling Device, made by Advanced Cooling Therapy (Chicago, IL), was developed to optimize warming and cooling efficiency through an easy and low risk procedure that leverages heat transfer through convection and conduction. Clinical data from cardiac arrest, fever, and critical burn patients indicate that the Esophageal Cooling Device performs very well both in terms of temperature modulation (cooling rates of approximately 1.3°C/hour, warming of up to 0.5°C/hour) and maintaining temperature stability (variation around goal temperature ± 0.3°C). Physicians have reported that device performance is comparable to the performance of intravascular temperature management techniques and superior to the performance of surface devices, while avoiding the downsides associated with both.
NASA Technical Reports Server (NTRS)
1986-01-01
The study projects until 2000 the evolution of long distance fiber optic networks in the U.S. Volume 1 is the Executive Summary. Volume 2 focuses on fiber optic components and systems that are directly related to the operation of long-haul networks. Optimistic, pessimistic and most likely scenarios of technology development are presented. The activities of national and regional companies implementing fiber long haul networks are also highlighted, along with an analysis of the market and regulatory forces affecting network evolution. Volume 3 presents advanced fiber optic network concept definitions. Inter-LATA traffic is quantified and forms the basis for the construction of 11-, 15-, 17-, and 23-node networks. Using the technology projections from Volume 2, a financial model identifies cost drivers and determines circuit mile costs between any two LATAs. A comparison of fiber optics with alternative transmission concludes the report.
Integrated Scenario Modeling of NSTX Advanced Plasma Configurations
NASA Astrophysics Data System (ADS)
Kessel, Charles; Synakowski, Edward
2003-10-01
The Spherical Torus will provide an attractive fusion energy source if it can demonstrate the following major features: high elongation and triangularity, 100% non-inductive current with a credible path to high bootstrap fractions, non-solenoidal startup and current rampup, high beta with stabilization of RWM instabilities, and sufficiently high energy confinement. NSTX has specific experimental milestones to examine these features, and integrated scenario modeling is helping to understand how these configurations might be produced and what tools are needed to access this operating space. Simulations with the Tokamak Simulation Code (TSC), CURRAY, and JSOLVER/BALMSC/PEST2 have identified fully non-inductively sustained, high beta plasmas that rely on strong plasma shaping accomplished with a PF coil modification, off-axis current drive from Electron Bernstein Waves (EBW), flexible on-axis heating and CD from High Harmonic Fast Wave (HHFW) and Neutral Beam Injection (NBI), and density control. Ideal MHD stability shows that with wall stabilization through plasma rotation and/or RWM feedback coils, a beta of 40% is achievable, with 100% non-inductive current sustained for 4 current diffusion times. Experimental data and theory are combined to produce a best extrapolation to these regimes, which is continuously improved as the discharges approach these parameters, and theoretical/computational methods expand. Further investigations and development for integrated scenario modeling on NSTX is discussed.
[Virtual Patients and Medical Teaching].
Gómez-Restrepo, Carlos; Narváez, Yamile Reveiz
2012-01-01
Biomedical advancements have evolved to the point where teaching software may be implemented to represent real-life scenarios. Virtual Patients or VPs are software programs that simulate clinical scenarios allowing students to generate a diagnosis and make treatment decisions. In this article, advantages and disadvantages regarding the use of this state-of-the-art technology are discussed. VP is a useful technique for psychiatry students. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.
Aliabadi, Mohsen; Golmohammadi, Rostam; Khotanlou, Hassan; Mansoorizadeh, Muharram; Salarpour, Amir
2014-01-01
Noise prediction is considered to be the best method for evaluating cost-preventative noise controls in industrial workrooms. One of the most important issues is the development of accurate models for analysis of the complex relationships among acoustic features affecting noise level in workrooms. In this study, advanced fuzzy approaches were employed to develop relatively accurate models for predicting noise in noisy industrial workrooms. The data were collected from 60 industrial embroidery workrooms in the Khorasan Province, East of Iran. The main acoustic and embroidery process features that influence the noise were used to develop prediction models using MATLAB software. Multiple regression technique was also employed and its results were compared with those of fuzzy approaches. Prediction errors of all prediction models based on fuzzy approaches were within the acceptable level (lower than one dB). However, Neuro-fuzzy model (RMSE=0.53dB and R2=0.88) could slightly improve the accuracy of noise prediction compared with generate fuzzy model. Moreover, fuzzy approaches provided more accurate predictions than did regression technique. The developed models based on fuzzy approaches as useful prediction tools give professionals the opportunity to have an optimum decision about the effectiveness of acoustic treatment scenarios in embroidery workrooms.
RiskScape: a new tool for comparing risk from natural hazards (Invited)
NASA Astrophysics Data System (ADS)
Stirling, M. W.; King, A.
2010-12-01
The Regional RiskScape is New Zealand’s joint venture between GNS Science & NIWA, and represents a comprehensive and easy-to-use tool for multi-hazard-based risk and impact analysis. It has basic GIS functionality, in that it has Import/Export functions to use with GIS software. Five natural hazards have been implemented in Riskscape to date: Flood (river), earthquake, volcano (ash), tsunami and wind storm. The software converts hazard exposure information into the likely impacts for a region, for example, damage and replacement costs, casualties, economic losses, disruption, and number of people affected. It therefore can be used to assist with risk management, land use planning, building codes and design, risk identification, prioritization of risk-reduction/mitigation, determination of “best use” risk-reduction investment, evacuation and contingency planning, awareness raising, public information, realistic scenarios for exercises, and hazard event response. Three geographically disparate pilot regions have been used to develop and triall Riskscape in New Zealand, and each region is exposed to a different mix of natural hazards. Future (phase II) development of Riskscape will include the following hazards: Landslides (both rainfall and earthquake triggered), storm surges, pyroclastic flows and lahars, and climate change effects. While Riskscape developments have thus far focussed on scenario-based risk, future developments will advance the software into providing probabilistic-based solutions.
Shaw-Battista, Jenna; Belew, Cynthia; Anderson, Deborah; van Schaik, Sandrijn
2015-01-01
This article describes childbirth simulation design and implementation within the nurse-midwifery education program at the University of California, San Francisco. Nurse-midwife and obstetrician faculty coordinators were supported by faculty from multiple professions and specialties in curriculum review and simulation development and implementation. The primary goal of the resulting technology-enhanced simulations of normal physiologic birth and obstetric emergencies was to assist learners' development of interprofessional competencies related to communication, teamwork, and patient-centered care. Trainees included nurse-midwifery students; residents in obstetrics, pediatrics, and family medicine; medical students; and advanced practice nursing students in pediatrics. The diversity of participant types and learning levels provided benefits and presented challenges to effective scenario-based simulation design among numerous other theoretical and logistical considerations. This project revealed practical solutions informed by emerging health sciences and education research literature, faculty experience, and formal course evaluations by learners. Best practices in simulation development and implementation were incorporated, including curriculum revision grounded in needs assessment, case- and event-based clinical scenarios, optimization of fidelity, and ample time for participant debriefing. Adequate preparation and attention to detail increased the immersive experience and benefits of simulation. Suggestions for fidelity enhancement are provided with examples of simulation scenarios, a timeline for preparations, and discussion topics to facilitate meaningful learning by maternity and newborn care providers and trainees in clinical and academic settings. Pre- and postsimulation measurements of knowledge, skills, and attitudes are ongoing and not reported. This article is part of a special series of articles that address midwifery innovations in clinical practice, education, interprofessional collaboration, health policy, and global health. © 2015 by the American College of Nurse-Midwives.
Impacts of Inverter-Based Advanced Grid Support Functions on Islanding Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Austin; Hoke, Anderson; Miller, Brian
A long-standing requirement for inverters paired with distributed energy resources is that they are required to disconnect from the electrical power system (EPS) when an electrical island is formed. In recent years, advanced grid support controls have been developed for inverters to provide voltage and frequency support by integrating functions such as voltage and frequency ride-through, volt-VAr control, and frequency-Watt control. With these new capabilities integrated into the inverter, additional examination is needed to determine how voltage and frequency support will impact pre-existing inverter functions like island detection. This paper inspects how advanced inverter functions will impact its ability tomore » detect the formation of an electrical island. Results are presented for the unintentional islanding laboratory tests of three common residential-scale photovoltaic inverters performing various combinations of grid support functions. For the inverters tested, grid support functions prolonged island disconnection times slightly; however, it was found that in all scenarios the inverters disconnected well within two seconds, the limit imposed by IEEE Std 1547-2003.« less
NASA Astrophysics Data System (ADS)
Pickard, William F.
2008-04-01
The eighty-one stable chemical elements are examined individually with respect to (i) recent annual demand and (ii) worst case long-term availability in a distant future in which they must be extracted from the background sources of air, seawater, and ordinary rock. It is shown that, if a conventional use scenario is envisioned, the supplies of ruthenium, rhodium, palladium, tellurium, rhenium, osmium, iridium, platinum, gold, and especially phosphorus will be questionable while the supplies of copper, zinc, molybdenum, silver, cadmium, tin, antimony, tungsten, mercury, lead, and bismuth will be inadequate. It is therefore concluded that, in the long run, only the promotion of massive recycling and substitution technologies will suffice to maintain the global industrial society now developing.
NASA Astrophysics Data System (ADS)
Parhad, Ashutosh
Intelligent transportation systems use in-pavement inductive loop sensors to collect real time traffic data. This method is very expensive in terms of installation and maintenance. Our research is focused on developing advanced algorithms capable of generating high amounts of energy that can charge a battery. This electromechanical energy conversion is an optimal way of energy scavenging that makes use of piezoelectric sensors. The power generated is sufficient to run the vehicle detection module that has several sensors embedded together. To achieve these goals, we have developed a simulation module using software's like LabVIEW and Multisim. The simulation module recreates a practical scenario that takes into consideration vehicle weight, speed, wheel width and frequency of the traffic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robb Aldrich; Lois Arena; Dianne Griffiths
2010-12-31
This final report summarizes the work conducted by the Consortium of Advanced Residential Buildings (CARB) (http://www.carb-swa.com/), one of the 'Building America Energy Efficient Housing Partnership' Industry Teams, for the period January 1, 2008 to December 31, 2010. The Building America Program (BAP) is part of the Department of Energy (DOE), Energy Efficiency and Renewable Energy, Building Technologies Program (BTP). The long term goal of the BAP is to develop cost effective, production ready systems in five major climate zones that will result in zero energy homes (ZEH) that produce as much energy as they use on an annual basis bymore » 2020. CARB is led by Steven Winter Associates, Inc. with Davis Energy Group, Inc. (DEG), MaGrann Associates, and Johnson Research, LLC as team members. In partnership with our numerous builders and industry partners, work was performed in three primary areas - advanced systems research, prototype home development, and technical support for communities of high performance homes. Our advanced systems research work focuses on developing a better understanding of the installed performance of advanced technology systems when integrated in a whole-house scenario. Technology systems researched included: - High-R Wall Assemblies - Non-Ducted Air-Source Heat Pumps - Low-Load HVAC Systems - Solar Thermal Water Heating - Ventilation Systems - Cold-Climate Ground and Air Source Heat Pumps - Hot/Dry Climate Air-to-Water Heat Pump - Condensing Boilers - Evaporative condensers - Water Heating CARB continued to support several prototype home projects in the design and specification phase. These projects are located in all five program climate regions and most are targeting greater than 50% source energy savings over the Building America Benchmark home. CARB provided technical support and developed builder project case studies to be included in near-term Joule Milestone reports for the following community scale projects: - SBER Overlook at Clipper Mill (mixed, humid climate) - William Ryan Homes - Tampa (hot, humid climate).« less
SMART-DS: Synthetic Models for Advanced, Realistic Testing: Distribution Systems and Scenarios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodge, Bri-Mathias; Palmintier, Bryan
This presentation provides an overview of full-scale, high-quality, synthetic distribution system data set(s) for testing distribution automation algorithms, distributed control approaches, ADMS capabilities, and other emerging distribution technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melaina, M.
This presentation provides an overview of the Scenario Evaluation and Regionalization Analysis (SERA) model, describes the methodology for developing scenarios for hydrogen infrastructure development, outlines an example "Hydrogen Success" scenario, and discusses detailed scenario metrics for a particular case study region, the Northeast Corridor.
Scenario Development for the Southwestern United States
NASA Astrophysics Data System (ADS)
Mahmoud, M.; Gupta, H.; Stewart, S.; Liu, Y.; Hartmann, H.; Wagener, T.
2006-12-01
The primary goal of employing a scenario development approach for the U.S. southwest is to inform regional policy by examining future possibilities related to regional vegetation change, water-leasing, and riparian restoration. This approach is necessary due to a lack of existing explicit water resources application of scenarios to the entire southwest region. A formal approach for scenario development is adopted and applied towards water resources issues within the arid and semi-arid regions of the U.S. southwest following five progressive and reiterative phases: scenario definition, scenario construction, scenario analysis, scenario assessment, and risk management. In the scenario definition phase, the inputs of scientists, modelers, and stakeholders were collected in order to define and construct relevant scenarios to the southwest and its water sustainability needs. From stakeholder-driven scenario workshops and breakout sessions, the three main axes of principal change were identified to be climate change, population development patterns, and quality of information monitoring technology. Based on the extreme and varying conditions of these three main axes, eight scenario narratives were drafted to describe the state of each scenario's respective future and the events which led to it. Events and situations are described within each scenario narrative with respect to key variables; variables that are both important to regional water resources (as distinguished by scientists and modelers), and are good tracking and monitoring indicators of change. The current phase consists of scenario construction, where the drafted scenarios are re-presented to regional scientists and modelers to verify that proper key variables are included (or excluded) from the eight narratives. The next step is to construct the data sets necessary to implement the eight scenarios on the respective computational models of modelers investigating vegetation change, water-leasing, and riparian restoration in the southwest
NASA Astrophysics Data System (ADS)
Rangwala, I.; Rondeau, R.; Wyborn, C.; Clifford, K. R.; Travis, W.
2015-12-01
Locally relevant projections of climate change provide critical insights for natural resource managers seeking to adapt their management activities to climate change in the context of uncertainty. To provide such information, we developed climate scenarios, in form of narratives and quantitative information, of future climate change and its impacts in southwestern Colorado. This information was intended to provide detailed insights into the range of changes that natural resource managers may face in the future. The scenarios were developed in an iterative process through interactions among the ecologists, social and climate scientists. In our scenario development process, climate uncertainty is acknowledged by having multiple scenarios, where each scenario is regarded as a storyline with equal likelihood as another scenario. We quantified changes in several decision relevant climate and ecological responses based on our best available understanding and provided a tight storyline for each scenario to facilitate (a) a more augmented use of scientific information in a decision-making process, (b) differential responses from stakeholders across the different scenarios, and (c) identification of strategies that could work across these multiple scenarios. Here, we discuss the process of selecting the scenarios, quantifying climate and ecological responses, and the criteria for building the narrative for each scenario. We also discuss the process by which these scenarios get used, and provide an assessment of their effectiveness and users' feedbacks that could inform the future development of these tools and processes. This research involvement and collaboration occurred, in part, as a result of the PACE Fellowship Program that is associated with NOAA Climate Program Office and the U.S. CLIVAR community.
DEVELOPMENT OF IMPACT ORIENTED CLIMATE SCENARIOS
Appropriate scenarios of future climate must be developed prior to any assessment of the impacts of climate change. he information needed by impact assessors was examined in consultation with those having experience in scenario use. ost assessors require regional scenarios with a...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hambrick, J.
2012-01-01
Although implementing Smart Grid projects at the distribution level provides many advantages and opportunities for advanced operation and control, a number of significant challenges must be overcome to maintain the high level of safety and reliability that the modern grid must provide. For example, while distributed generation (DG) promises to provide opportunities to increase reliability and efficiency and may provide grid support services such as volt/var control, the presence of DG can impact distribution operation and protection schemes. Additionally, the intermittent nature of many DG energy sources such as photovoltaics (PV) can present a number of challenges to voltage regulation,more » etc. This presentation provides an overview a number of Smart Grid projects being performed by the National Renewable Energy Laboratory (NREL) along with utility, industry, and academic partners. These projects include modeling and analysis of high penetration PV scenarios (with and without energy storage), development and testing of interconnection and microgrid equipment, as well as the development and implementation of advanced instrumentation and data acquisition used to analyze the impacts of intermittent renewable resources. Additionally, standards development associated with DG interconnection and analysis as well as Smart Grid interoperability will be discussed.« less
Kidd, Elizabeth; Moore, David; Varia, Mahesh A; Gaffney, David K; Elshaikh, Mohamed A; Erickson, Beth; Jhingran, Anuja; Lee, Larissa J; Mayr, Nina A; Puthawala, Ajmel A; Rao, Gautam G; Small, William; Wahl, Andrew O; Wolfson, Aaron H; Yashar, Catheryn M; Yuh, William; Cardenes, Higinia Rosa
2013-08-01
Locoregionally advanced vulvar cancer (LRAVC) is a rare disease that presents many challenging medical decisions. An expert panel was convened to reach consensus on the most appropriate pretreatment assessment and therapeutic interventions in LRAVC patients. The American College of Radiology Appropriateness Criteria are evidenced-based guidelines for specific clinical conditions that are reviewed every 2 years by a multidisciplinary expert panel. The guideline development and review include an extensive analysis of current medical literature from peer-reviewed journal and the application of a well-established consensus methodology (modified Delphi) to rate appropriateness of imaging and treatment procedures by the panel. In those instances where evidence is lacking or not definitive, expert opinion may be used to formulate recommendations. Three clinical variants were developed to address common scenarios in the management of LRAVC. Group members reached consensus on the appropriateness of specific evaluation and treatment approaches, with numerical ratings and descriptive commentary. In combining available medical literature and expert opinion, this manuscript may serve as an aid for other practitioners in the appropriate management of patients with LRAVC.
Design and development of a virtual reality simulator for advanced cardiac life support training.
Vankipuram, Akshay; Khanal, Prabal; Ashby, Aaron; Vankipuram, Mithra; Gupta, Ashish; DrummGurnee, Denise; Josey, Karen; Smith, Marshall
2014-07-01
The use of virtual reality (VR) training tools for medical education could lead to improvements in the skills of clinicians while providing economic incentives for healthcare institutions. The use of VR tools can also mitigate some of the drawbacks currently associated with providing medical training in a traditional clinical environment such as scheduling conflicts and the need for specialized equipment (e.g., high-fidelity manikins). This paper presents the details of the framework and the development methodology associated with a VR-based training simulator for advanced cardiac life support, a time critical, team-based medical scenario. In addition, we also report the key findings of a usability study conducted to assess the efficacy of various features of this VR simulator through a postuse questionnaire administered to various care providers. The usability questionnaires were completed by two groups that used two different versions of the VR simulator. One version consisted of the VR trainer with it all its features and a minified version with certain immersive features disabled. We found an increase in usability scores from the minified group to the full VR group.
NASA Astrophysics Data System (ADS)
Payne, J. F.
2016-12-01
Significant Arctic environmental and socio-economic change has been observed on the North Slope of Alaska, presenting challenges for resident communities and management agencies that need to adapt to future changes that are difficult to model or predict. Continued climate change coupled with new or modified energy development could substantially alter the landscape and ecosystem in the future. The North Slope Science Initiative (NSSI) recognized the value of using a participatory scenarios process to consider plausible future energy and resource development scenarios through the year 2040 to help identify and prioritize research and monitoring needs on the North Slope. The scenarios process engaged diverse stakeholders, including subject matter experts and local knowledge holders. Through identification and ranking of key drivers and uncertainties relevant to the focus of the study, a series of spatially explicit scenarios was developed, analyzed in terms of low, medium and high development activities. Climate change and economic factors were key drivers affecting plausible energy development scenarios. The implications from each of the scenarios were then used to identify important research and monitoring activities and their relevant spatial scales. The scenarios project identified over 40 research and monitoring needs. The top five research needs addressed data gaps and key concerns related to how the scenarios could affect: hunting and trapping on land, health and community well-being, permafrost and hydrology, marine mammal subsistence and potential marine oil spills. The use of a participatory scenarios process was essential for identifying a range of plausible energy and resource development scenarios using a framework that involved a systematic assessment of complex interacting drivers of change, consideration of key uncertainties, and transparency throughout the project.
A Cost Comparison of Alternative Approaches to Distance Education in Developing Countries
NASA Technical Reports Server (NTRS)
Ventre, Gerard G.; Kalu, Alex
1996-01-01
This paper presents a cost comparison of three approaches to two-way interactive distance learning systems for developing countries. Included are costs for distance learning hardware, terrestrial and satellite communication links, and designing instruction for two-way interactive courses. As part of this project, FSEC is developing a 30-hour course in photovoltaic system design that will be used in a variety of experiments using the Advanced Communications Technology Satellite (ACTS). A primary goal of the project is to develop an instructional design and delivery model that can be used for other education and training programs. Over two-thirds of the world photovoltaics market is in developing countries. One of the objectives of this NASA-sponsored project was to develop new and better energy education programs that take advantage of advances in telecommunications and computer technology. The combination of desktop video systems and the sharing of computer applications software is of special interest. Research is being performed to evaluate the effectiveness of some of these technologies as part of this project. The design of the distance learning origination and receive sites discussed in this paper were influenced by the educational community's growing interest in distance education. The following approach was used to develop comparative costs for delivering interactive distance education to developing countries: (1) Representative target locations for receive sites were chosen. The originating site was assumed to be Cocoa, Florida, where FSEC is located; (2) A range of course development costs were determined; (3) The cost of equipment for three alternative two-way interactive distance learning system configurations was determined or estimated. The types of system configurations ranged from a PC-based system that allows instructors to originate instruction from their office using desktop video and shared application software, to a high cost system that uses a electronic classroom; (4) A range of costs for both satellite and terrestrial communications was investigated; (5) The costs of equipment and operation of the alternative configurations for the origination and receive sites were determined; (6) A range of costs for several alternative delivery scenarios (i.e., a mix of live-interactive; asynchronous interactive;use of videotapes) was determined; and (7) A preferred delivery scenario, including cost estimate, was developed.
NASA Astrophysics Data System (ADS)
Foufoula-Georgiou, E.; Tessler, Z. D.; Brondizio, E.; Overeem, I.; Renaud, F.; Sebesvari, Z.; Nicholls, R. J.; Anthony, E.
2016-12-01
Deltas are highly dynamic and productive environments: they are food baskets of the world, home to biodiverse and rich ecosystems, and they play a central role in food and water security. However, they are becoming increasingly vulnerable to risks arising from human activities, land subsidence, regional water management, global sea-level rise, and climate extremes. Our Belmont Forum DELTAS project (BF-DELTAS: Catalyzing actions towards delta sustainability) encompasses an international network of interdisciplinary research collaborators with focal areas in the Mekong, Ganges Brahmaputra, and the Amazon deltas. The project is organized around five main modules: (1) developing an analytical framework for assessing delta vulnerability and scenarios of change (Delta-SRES), (2) developing an open-acess, science-based integrative modeling framework for risk assessment and decision support (Delta-RADS), (3) developing tools to support quantitative mapping of the bio-physical and socio-economic environments of deltas and consolidate bio-physical and social data within shared data repositories (Delta-DAT), (4) developing Global Delta Vulnerability Indices (Delta-GDVI) that capture current and projected scenarios for major deltas around the world , and (5) collaborating with regional stakeholders to put the science, modeling, and data into action (Delta-ACT). In this talk, a research summary will be presented on three research domains around which significant collaborative work was developed: advancing biophysical classification of deltas, understanding deltas as coupled socio-ecological systems, and analyzing and informing social and environmental vulnerabilities in delta regions.
A Story of a Crashed Plane in US-Mexican border
NASA Astrophysics Data System (ADS)
Bermudez, Luis; Hobona, Gobe; Vretanos, Peter; Peterson, Perry
2013-04-01
A plane has crashed on the US-Mexican border. The search and rescue command center planner needs to find information about the crash site, a mountain, nearby mountains for the establishment of a communications tower, as well as ranches for setting up a local incident center. Events like this one occur all over the world and exchanging information seamlessly is key to save lives and prevent further disasters. This abstract describes an interoperability testbed that applied this scenario using technologies based on Open Geospatial Consortium (OGC) standards. The OGC, which has about 500 members, serves as a global forum for the collaboration of developers and users of spatial data products and services, and to advance the development of international standards for geospatial interoperability. The OGC Interoperability Program conducts international interoperability testbeds, such as the OGC Web Services Phase 9 (OWS-9), that encourages rapid development, testing, validation, demonstration and adoption of open, consensus based standards and best practices. The Cross-Community Interoperability (CCI) thread in OWS-9 advanced the Web Feature Service for Gazetteers (WFS-G) by providing a Single Point of Entry Global Gazetteer (SPEGG), where a user can submit a single query and access global geographic names data across multiple Federal names databases. Currently users must make two queries with differing input parameters against two separate databases to obtain authoritative cross border geographic names data. The gazetteers in this scenario included: GNIS and GNS. GNIS or Geographic Names Information System is managed by USGS. It was first developed in 1964 and contains information about domestic and Antarctic names. GNS or GeoNET Names Server provides the Geographic Names Data Base (GNDB) and it is managed by National Geospatial Intelligence Agency (NGA). GNS has been in service since 1994, and serves names for areas outside the United States and its dependent areas, as well as names for undersea features. The following challenges were advanced: Cascaded WFS-G servers (allowing to query multiple WFSs with a "parent" WFS), implemented query names filters (e.g. fuzzy search, text search), implemented dealing with multilingualism and diacritics, implemented advanced spatial constraints (e.g. search by radial search and nearest neighbor) and semantically mediated feature types (e.g. mountain vs. hill). To enable semantic mediation, a series of semantic mappings were defined between the NGA GNS, USGS GNIS and the Alexandria Digital Library (ADL) Gazetteer. The mappings were encoded in the Web Ontology Language (OWL) to enable them to be used by semantic web technologies. The semantic mappings were then published for ingestion into a semantic mediator that used the mappings to associate location types from one gazetteer with location types in another. The semantic mediator was then able to transform requests on the fly, providing a single point of entry WFS-G to multiple gazetteers. The presentation will provide a live presentation of the work performed, highlight main developments, and discuss future development.
NASA Technical Reports Server (NTRS)
Long, Dou; Lee, David; Johnson, Jesse; Gaier, Eric; Kostiuk, Peter
1999-01-01
This report describes an integrated model of air traffic management (ATM) tools under development in two National Aeronautics and Space Administration (NASA) programs -Terminal Area Productivity (TAP) and Advanced Air Transport Technologies (AATT). The model is made by adjusting parameters of LMINET, a queuing network model of the National Airspace System (NAS), which the Logistics Management Institute (LMI) developed for NASA. Operating LMINET with models of various combinations of TAP and AATT will give quantitative information about the effects of the tools on operations of the NAS. The costs of delays under different scenarios are calculated. An extension of Air Carrier Investment Model (ACIM) under ASAC developed by the Institute for NASA maps the technologies' impacts on NASA operations into cross-comparable benefits estimates for technologies and sets of technologies.
The Future of Healthcare–Information Based Medicine
Borangiu, T; Purcărea, V
2008-01-01
The paper discusses how information based medicine has become an increasingly important model of healthcare. Today's patients are better informed and therefore play a more active role in their own healthcare, fuelling the drive towards personalized medicine. Information Based Medicine enables researchers to design targeted therapeutics and rapidly develop best practices guidelines to enable healthcare providers to deliver the most complete individualized healthcare solutions. Information based medicine is realized thanks to growth in four key areas–Clinical Genomics, Medical Imaging, Targeted Pharmaceuticals, and Information Systems. Also discussed, is how technological advances throughout this decade are changing the discovery, development and delivery of new treatments–with healthcare becoming increasingly personalized as a result. A glimpse into the future of personalised healthcare is presented, highlighting scenarios in development today along with the challenges and perspectives which lie ahead. PMID:20108471
Wenzel, H; Larsen, H F; Clauson-Kaas, J; Høibye, L; Jacobsen, B N
2008-01-01
Much research and development effort is directed towards advances in municipal wastewater treatment aiming at reducing the effluent content of micro-pollutants and pathogens. The objective is to further reduce the eco-toxicity, hormone effects and pathogenic effects of the effluent. Such further polishing of the effluent, however, involves an environmental trade-off: the reduction in eco-toxicity, hormone effects, etc. will happen at the expense of increased resource- and energy consumption. Obviously, at some point of further advances, there must be an 'environmental break-even'. This trade-off was investigated using Life Cycle Assessment (LCA) methodology and based on a literature review of advanced treatment performance. The LCA evaluation comprised sand filtration, ozonation and MBRs and assessed the effect of extending existing tertiary treatment with these technologies on a variety of micro-pollutants being: heavy metals (Cd, Pb, Ni), endocrine disruptors (E2 and EE2), PAH, DEHP, and detergents (LAS & NPE). It was found, in some of the studied scenarios, that more environmental impact may be induced than removed by the advanced treatment. The study showed that for the 3 technologies, sand filtration has the best balance between prevented and induced impacts, and sand filtration proved to have a net environmental benefit under the assumptions used in the study. But the outcome of the study suggests that this is not always the case for ozonation and MBR.
NASA Astrophysics Data System (ADS)
Goderniaux, Pascal; Brouyère, Serge; Blenkinsop, Stephen; Burton, Aidan; Fowler, Hayley; Dassargues, Alain
2010-05-01
The evaluation of climate change impact on groundwater reserves represents a difficult task because both hydrological and climatic processes are complex and difficult to model. In this study, we present an innovative methodology that combines the use of integrated surface - subsurface hydrological models with advanced stochastic transient climate change scenarios. This methodology is applied to the Geer basin (480 km²) in Belgium, which is intensively exploited to supply the city of Liège (Belgium) with drinking water. The physically-based, spatially-distributed, surface-subsurface flow model has been developed with the finite element model HydroGeoSphere . The simultaneous solution of surface and subsurface flow equations in HydroGeoSphere, as well as the internal calculation of the actual evapotranspiration as a function of the soil moisture at each node of the evaporative zone, enables a better representation of interconnected processes in all domains of the catchment (fully saturated zone, partially saturated zone, surface). Additionally, the use of both surface and subsurface observed data to calibrate the model better constrains the calibration of the different water balance terms. Crucially, in the context of climate change impacts on groundwater resources, the evaluation of groundwater recharge is improved. . This surface-subsurface flow model is combined with advanced climate change scenarios for the Geer basin. Climate change simulations were obtained from six regional climate model (RCM) scenarios assuming the SRES A2 greenhouse gases emission (medium-high) scenario. These RCM scenarios were statistically downscaled using a transient stochastic weather generator technique, combining 'RainSim' and the 'CRU weather generator' for temperature and evapotranspiration time series. This downscaling technique exhibits three advantages compared with the 'delta change' method usually used in groundwater impact studies. (1) Corrections to climate model output are applied not only to the mean of climatic variables, but also across the statistical distributions of these variables. This is important as these distributions are expected to change in the future, with more extreme rainfall events, separated by longer dry periods. (2) The novel approach used in this study can simulate transient climate change from 2010 to 2085, rather than time series representative of a stationary climate for the period 2071-2100. (3) The weather generator is used to generate a large number of equiprobable climate change scenarios for each RCM, representative of the natural variability of the weather. All of these scenarios are applied as input to the Geer basin model to assess the projected impact of climate change on groundwater levels, the uncertainty arising for different RCM projections and the uncertainty linked to natural climatic variability. Using the output results from all scenarios, 95% confidence intervals are calculated for each year and month between 2010 and 2085. The climate change scenarios for the Geer basin model predict hotter and drier summers and warmer and wetter winters. Considering the results of this study, it is very likely that groundwater levels and surface flow rates in the Geer basin will decrease by the end of the century. This is of concern because it also means that groundwater quantities available for abstraction will also decrease. However, this study also shows that the uncertainty of these projections is relatively large compared to the projected changes so that it remains difficult to confidently determine the magnitude of the decrease. The use and combination of an integrated surface - subsurface model and stochastic climate change scenarios has never been used in previous climate change impact studies on groundwater resources. It constitutes an innovation and is an important tool for helping water managers to take decisions.
NASA Technical Reports Server (NTRS)
Horst, Richard L.; Mahaffey, David L.; Munson, Robert C.
1989-01-01
The present Phase 2 small business innovation research study was designed to address issues related to scalp-recorded event-related potential (ERP) indices of mental workload and to transition this technology from the laboratory to cockpit simulator environments for use as a systems engineering tool. The project involved five main tasks: (1) Two laboratory studies confirmed the generality of the ERP indices of workload obtained in the Phase 1 study and revealed two additional ERP components related to workload. (2) A task analysis' of flight scenarios and pilot tasks in the Advanced Concepts Flight Simulator (ACFS) defined cockpit events (i.e., displays, messages, alarms) that would be expected to elicit ERPs related to workload. (3) Software was developed to support ERP data analysis. An existing ARD-proprietary package of ERP data analysis routines was upgraded, new graphics routines were developed to enhance interactive data analysis, and routines were developed to compare alternative single-trial analysis techniques using simulated ERP data. (4) Working in conjunction with NASA Langley research scientists and simulator engineers, preparations were made for an ACFS validation study of ERP measures of workload. (5) A design specification was developed for a general purpose, computerized, workload assessment system that can function in simulators such as the ACFS.
Yao, Bo
2014-01-01
Many rapidly developing regions have begun to draw the attention of the world. Meanwhile, the energy and environmental issues associated with rapid economic growth have aroused widespread critical concern. Therefore, studying energy, economic, and environmental systems is of great importance. This study establishes a system dynamic model that covers multiple aspects of those systems, such as energy, economy, population, water pollution, air pollution, solid waste, and technology. The model designed here attempts to determine the impacts of socioeconomic development on the energy and environment of Tongzhou District in three scenarios: under current, planning, and sustainable conditions. The results reveal that energy shortages and water pollutions are very serious and are the key issues constraining future social and economic development. Solid waste emissions increase with population growth. The prediction results provide valuable insights into social advancement. PMID:24683332
An analysis of international nuclear fuel supply options
NASA Astrophysics Data System (ADS)
Taylor, J'tia Patrice
As the global demand for energy grows, many nations are considering developing or increasing nuclear capacity as a viable, long-term power source. To assess the possible expansion of nuclear power and the intricate relationships---which cover the range of economics, security, and material supply and demand---between established and aspirant nuclear generating entities requires models and system analysis tools that integrate all aspects of the nuclear enterprise. Computational tools and methods now exist across diverse research areas, such as operations research and nuclear engineering, to develop such a tool. This dissertation aims to develop methodologies and employ and expand on existing sources to develop a multipurpose tool to analyze international nuclear fuel supply options. The dissertation is comprised of two distinct components: the development of the Material, Economics, and Proliferation Assessment Tool (MEPAT), and analysis of fuel cycle scenarios using the tool. Development of MEPAT is aimed for unrestricted distribution and therefore uses publicly available and open-source codes in its development when possible. MEPAT is built using the Powersim Studio platform that is widely used in systems analysis. MEPAT development is divided into three modules focusing on: material movement; nonproliferation; and economics. The material movement module tracks material quantity in each process of the fuel cycle and in each nuclear program with respect to ownership, location and composition. The material movement module builds on techniques employed by fuel cycle models such as the Verifiable Fuel Cycle Simulation (VISION) code developed at the Idaho National Laboratory under the Advanced Fuel Cycle Initiative (AFCI) for the analysis of domestic fuel cycle. Material movement parameters such as lending and reactor preference, as well as fuel cycle parameters such as process times and material factors are user-specified through a Microsoft Excel(c) data spreadsheet. The material movement module is the largest of the three, and the two other modules that assess nonproliferation and economics of the options are dependent on its output. Proliferation resistance measures from literature are modified and incorporated in MEPAT. The module to assess the nonproliferation of the supply options allows the user to specify defining attributes for the fuel cycle processes, and determines significant quantities of materials as well as measures of proliferation resistance. The measure is dependent on user-input and material information. The economics module allows the user to specify costs associated with different processes and other aspects of the fuel cycle. The simulation tool then calculates economic measures that relate the cost of the fuel cycle to electricity production. The second part of this dissertation consists of an examination of four scenarios of fuel supply option using MEPAT. The first is a simple scenario illustrating the modules and basic functions of MEPAT. The second scenario recreates a fuel supply study reported earlier in literature, and compares MEPAT results with those reported earlier for validation. The third, and a rather realistic, scenario includes four nuclear programs with one program entering the nuclear energy market. The fourth scenario assesses the reactor options available to the Hashemite Kingdom of Jordan, which is currently assessing available options to introduce nuclear power in the country. The methodology developed and implemented in MEPAT to analyze the material, proliferation and economics of nuclear fuel supply options is expected to help simplify and assess different reactor and fuel options available to utilities, government agencies and international organizations.
Development of advanced high heat flux and plasma-facing materials
NASA Astrophysics Data System (ADS)
Linsmeier, Ch.; Rieth, M.; Aktaa, J.; Chikada, T.; Hoffmann, A.; Hoffmann, J.; Houben, A.; Kurishita, H.; Jin, X.; Li, M.; Litnovsky, A.; Matsuo, S.; von Müller, A.; Nikolic, V.; Palacios, T.; Pippan, R.; Qu, D.; Reiser, J.; Riesch, J.; Shikama, T.; Stieglitz, R.; Weber, T.; Wurster, S.; You, J.-H.; Zhou, Z.
2017-09-01
Plasma-facing materials and components in a fusion reactor are the interface between the plasma and the material part. The operational conditions in this environment are probably the most challenging parameters for any material: high power loads and large particle and neutron fluxes are simultaneously impinging at their surfaces. To realize fusion in a tokamak or stellarator reactor, given the proven geometries and technological solutions, requires an improvement of the thermo-mechanical capabilities of currently available materials. In its first part this article describes the requirements and needs for new, advanced materials for the plasma-facing components. Starting points are capabilities and limitations of tungsten-based alloys and structurally stabilized materials. Furthermore, material requirements from the fusion-specific loading scenarios of a divertor in a water-cooled configuration are described, defining directions for the material development. Finally, safety requirements for a fusion reactor with its specific accident scenarios and their potential environmental impact lead to the definition of inherently passive materials, avoiding release of radioactive material through intrinsic material properties. The second part of this article demonstrates current material development lines answering the fusion-specific requirements for high heat flux materials. New composite materials, in particular fiber-reinforced and laminated structures, as well as mechanically alloyed tungsten materials, allow the extension of the thermo-mechanical operation space towards regions of extreme steady-state and transient loads. Self-passivating tungsten alloys, demonstrating favorable tungsten-like plasma-wall interaction behavior under normal operation conditions, are an intrinsic solution to otherwise catastrophic consequences of loss-of-coolant and air ingress events in a fusion reactor. Permeation barrier layers avoid the escape of tritium into structural and cooling materials, thereby minimizing the release of tritium under normal operation conditions. Finally, solutions for the unique bonding requirements of dissimilar material used in a fusion reactor are demonstrated by describing the current status and prospects of functionally graded materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bush, B.; Melaina, M.; Penev, M.
This report describes the development and analysis of detailed temporal and spatial scenarios for early market hydrogen fueling infrastructure clustering and fuel cell electric vehicle rollout using the Scenario Evaluation, Regionalization and Analysis (SERA) model. The report provides an overview of the SERA scenario development framework and discusses the approach used to develop the nationwidescenario.
The role of pharmacists in developing countries: The current scenario in the United Arab Emirates
Rayes, Ibrahim Khalid; Hassali, Mohamed Azmi; Abduelkarem, Abduelmula R.
2014-01-01
Pharmacy practice has passed several rounds of advancements over the past few years. It had changed the traditional positioning criteria of pharmacists as business people into patient-centered healthcare professionals. This worldwide shift is increasingly accumulating pressure on UAE pharmacists to turn up into better level of service providing accompanied with higher demand of inter-personal skills and intellectual capabilities. This can be accomplished through stressing the significance of continuing pharmacy education in basic sciences as well as social and administrative pharmacy techniques and its collaboration in elevating the quality of pharmacy practice in the UAE. PMID:26594111
Recent Developments in the External Conjugate-T Matching Project at JET
NASA Astrophysics Data System (ADS)
Monakhov, I.; Walden, A.
2007-09-01
The External Conjugate-T (ECT) matching system is planned for installation on two A2 ICRH antenna arrays at JET in 2007. This will enhance the operational capabilities of the RF plant during ELMy plasma scenarios and create new opportunities for ITER-relevant matching studies. The main features of the project are discussed in the paper focusing on the specific challenges of the ECT automatic matching and arc detection in optimized ELM-tolerant configurations. A `co/counter-clockwise' automatic control mode selection and an Advanced Wave Amplitude Comparison System (AWACS) complementing the existing VSWR monitoring are proposed as simple and viable solutions to the identified problems.
Recent Developments in the External Conjugate-T Matching Project at JET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monakhov, I.; Walden, A.
2007-09-28
The External Conjugate-T (ECT) matching system is planned for installation on two A2 ICRH antenna arrays at JET in 2007. This will enhance the operational capabilities of the RF plant during ELMy plasma scenarios and create new opportunities for ITER-relevant matching studies. The main features of the project are discussed in the paper focusing on the specific challenges of the ECT automatic matching and arc detection in optimized ELM-tolerant configurations. A 'co/counter-clockwise' automatic control mode selection and an Advanced Wave Amplitude Comparison System (AWACS) complementing the existing VSWR monitoring are proposed as simple and viable solutions to the identified problems.
Foundations of anticipatory logic in biology and physics.
Bettinger, Jesse S; Eastman, Timothy E
2017-12-01
Recent advances in modern physics and biology reveal several scenarios in which top-down effects (Ellis, 2016) and anticipatory systems (Rosen, 1980) indicate processes at work enabling active modeling and inference such that anticipated effects project onto potential causes. We extrapolate a broad landscape of anticipatory systems in the natural sciences extending to computational neuroscience of perception in the capacity of Bayesian inferential models of predictive processing. This line of reasoning also comes with philosophical foundations, which we develop in terms of counterfactual reasoning and possibility space, Whitehead's process thought, and correlations with Eastern wisdom traditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Juknys, Romualdas; Kanapickas, Arvydas; Šveikauskaitė, Irma; Sujetovienė, Gintarė
2016-10-01
The analysis of long-term time series of spring phenology for different deciduous trees species has shown that leaf unfolding for all the investigated species is the most sensitive to temperatures in March and April and illustrates that forcing temperature is the main driver of the advancement of leaf unfolding. Available chilling amount has increased by 22.5 % over the last 90 years, indicating that in the investigated geographical region there is no threat of chilling shortage. The projection of climatic parameters for Central Lithuania on the basis of three global circulation models has shown that under the optimistic climate change scenario (RCP 2.6) the mean temperature tends to increase by 1.28 °C and under the pessimistic scenario (RCP 8.5) by 5.03 °C until the end of the current century. Recently, different statistical models are used not only to analyze but also to project the changes in spring phenology. Our study has shown that when the data of long-term phenological observations are available, multiple regression models are suitable for the projection of the advancement of leaf unfolding under the changing climate. According to the RCP 8.5 scenario, the projected advancement in leaf unfolding for early-season species birch consists of almost 15 days as an average of all three used GSMs. Markedly less response to the projected far future (2071-2100), climate change is foreseen for other investigated climax species: -9 days for lime, 10 days for oak, and 11 days for maple.
Juknys, Romualdas; Kanapickas, Arvydas; Šveikauskaitė, Irma; Sujetovienė, Gintarė
2016-10-01
The analysis of long-term time series of spring phenology for different deciduous trees species has shown that leaf unfolding for all the investigated species is the most sensitive to temperatures in March and April and illustrates that forcing temperature is the main driver of the advancement of leaf unfolding. Available chilling amount has increased by 22.5 % over the last 90 years, indicating that in the investigated geographical region there is no threat of chilling shortage. The projection of climatic parameters for Central Lithuania on the basis of three global circulation models has shown that under the optimistic climate change scenario (RCP 2.6) the mean temperature tends to increase by 1.28 °C and under the pessimistic scenario (RCP 8.5) by 5.03 °C until the end of the current century. Recently, different statistical models are used not only to analyze but also to project the changes in spring phenology. Our study has shown that when the data of long-term phenological observations are available, multiple regression models are suitable for the projection of the advancement of leaf unfolding under the changing climate. According to the RCP 8.5 scenario, the projected advancement in leaf unfolding for early-season species birch consists of almost 15 days as an average of all three used GSMs. Markedly less response to the projected far future (2071-2100), climate change is foreseen for other investigated climax species: -9 days for lime, 10 days for oak, and 11 days for maple.
Maier, Andrew; Vincent, Melissa J; Parker, Ann; Gadagbui, Bernard K; Jayjock, Michael
2015-12-01
Asthma is a complex syndrome with significant consequences for those affected. The number of individuals affected is growing, although the reasons for the increase are uncertain. Ensuring the effective management of potential exposures follows from substantial evidence that exposure to some chemicals can increase the likelihood of asthma responses. We have developed a safety assessment approach tailored to the screening of asthma risks from residential consumer product ingredients as a proactive risk management tool. Several key features of the proposed approach advance the assessment resources often used for asthma issues. First, a quantitative health benchmark for asthma or related endpoints (irritation and sensitization) is provided that extends qualitative hazard classification methods. Second, a parallel structure is employed to include dose-response methods for asthma endpoints and methods for scenario specific exposure estimation. The two parallel tracks are integrated in a risk characterization step. Third, a tiered assessment structure is provided to accommodate different amounts of data for both the dose-response assessment (i.e., use of existing benchmarks, hazard banding, or the threshold of toxicological concern) and exposure estimation (i.e., use of empirical data, model estimates, or exposure categories). Tools building from traditional methods and resources have been adapted to address specific issues pertinent to asthma toxicology (e.g., mode-of-action and dose-response features) and the nature of residential consumer product use scenarios (e.g., product use patterns and exposure durations). A case study for acetic acid as used in various sentinel products and residential cleaning scenarios was developed to test the safety assessment methodology. In particular, the results were used to refine and verify relationships among tiered approaches such that each lower data tier in the approach provides a similar or greater margin of safety for a given scenario. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Dynamic Optical Networks for Future Internet Environments
NASA Astrophysics Data System (ADS)
Matera, Francesco
2014-05-01
This article reports an overview on the evolution of the optical network scenario taking into account the exponential growth of connected devices, big data, and cloud computing that is driving a concrete transformation impacting the information and communication technology world. This hyper-connected scenario is deeply affecting relationships between individuals, enterprises, citizens, and public administrations, fostering innovative use cases in practically any environment and market, and introducing new opportunities and new challenges. The successful realization of this hyper-connected scenario depends on different elements of the ecosystem. In particular, it builds on connectivity and functionalities allowed by converged next-generation networks and their capacity to support and integrate with the Internet of Things, machine-to-machine, and cloud computing. This article aims at providing some hints of this scenario to contribute to analyze impacts on optical system and network issues and requirements. In particular, the role of the software-defined network is investigated by taking into account all scenarios regarding data centers, cloud computing, and machine-to-machine and trying to illustrate all the advantages that could be introduced by advanced optical communications.
Empowering citizens with access control mechanisms to their personal health resources.
Calvillo, J; Román, I; Roa, L M
2013-01-01
Advancements in information and communication technologies have allowed the development of new approaches to the management and use of healthcare resources. Nowadays it is possible to address complex issues such as meaningful access to distributed data or communication and understanding among heterogeneous systems. As a consequence, the discussion focuses on the administration of the whole set of resources providing knowledge about a single subject of care (SoC). New trends make the SoC administrator and responsible for all these elements (related to his/her demographic data, health, well-being, social conditions, etc.) and s/he is granted the ability of controlling access to them by third parties. The subject of care exchanges his/her passive role without any decision capacity for an active one allowing to control who accesses what. We study the necessary access control infrastructure to support this approach and develop mechanisms based on semantic tools to assist the subject of care with the specification of access control policies. This infrastructure is a building block of a wider scenario, the Person-Oriented Virtual Organization (POVO), aiming at integrating all the resources related to each citizen's health-related data. The POVO covers the wide range and heterogeneity of available healthcare resources (e.g., information sources, monitoring devices, or software simulation tools) and grants each SoC the access control to them. Several methodological issues are crucial for the design of the targeted infrastructure. The distributed system concept and focus are reviewed from the service oriented architecture (SOA) perspective. The main frameworks for the formalization of distributed system architectures (Reference Model-Open Distributed Processing, RM-ODP; and Model Driven Architecture, MDA) are introduced, as well as how the use of the Unified Modelling Language (UML) is standardized. The specification of access control policies and decision making mechanisms are essential keys for this approach and they are accomplished by using semantic technologies (i.e., ontologies, rule languages, and inference engines). The results are mainly focused on the security and access control of the proposed scenario. An ontology has been designed and developed for the POVO covering the terminology of the scenario and easing the automation of administration tasks. Over that ontology, an access control mechanism based on rule languages allows specifying access control policies, and an inference engine performs the decision making process automatically. The usability of solutions to ease administration tasks to the SoC is improved by the Me-As-An-Admin (M3A) application. This guides the SoC through the specification of personal access control policies to his/her distributed resources by using semantic technologies (e.g., metamodeling, model-to-text transformations, etc.). All results are developed as services and included in an architecture in accordance with standards and principles of openness and interoperability. Current technology can bring health, social and well-being care actually centered on citizens, and granting each person the management of his/her health information. However, the application of technology without adopting methodologies or normalized guidelines will reduce the interoperability of solutions developed, failing in the development of advanced services and improved scenarios for health delivery. Standards and reference architectures can be cornerstones for future-proof and powerful developments. Finally, not only technology must follow citizen-centric approaches, but also the gaps needing legislative efforts that support these new paradigms of healthcare delivery must be identified and addressed. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Neuroscientific Prediction and the Intrusion of Intuitive Metaphysics.
Rose, David; Buckwalter, Wesley; Nichols, Shaun
2017-03-01
How might advanced neuroscience-in which perfect neuro-predictions are possible-interact with ordinary judgments of free will? We propose that peoples' intuitive ideas about indeterminist free will are both imported into and intrude into their representation of neuroscientific scenarios and present six experiments demonstrating intrusion and importing effects in the context of scenarios depicting perfect neuro-prediction. In light of our findings, we suggest that the intuitive commitment to indeterminist free will may be resilient in the face of scientific evidence against such free will. Copyright © 2015 Cognitive Science Society, Inc.
EVA Suit Microbial Leakage Investigation Project
NASA Technical Reports Server (NTRS)
Falker, Jay; Baker, Christopher; Clayton, Ronald; Rucker, Michelle
2016-01-01
The objective of this project is to collect microbial samples from various EVA suits to determine how much microbial contamination is typically released during simulated planetary exploration activities. Data will be released to the planetary protection and science communities, and advanced EVA system designers. In the best case scenario, we will discover that very little microbial contamination leaks from our current or prototype suit designs, in the worst case scenario, we will identify leak paths, learn more about what affects leakage--and we'll have a new, flight-certified swab tool for our EVA toolbox.
Simulation training tools for nonlethal weapons using gaming environments
NASA Astrophysics Data System (ADS)
Donne, Alexsana; Eagan, Justin; Tse, Gabriel; Vanderslice, Tom; Woods, Jerry
2006-05-01
Modern simulation techniques have a growing role for evaluating new technologies and for developing cost-effective training programs. A mission simulator facilitates the productive exchange of ideas by demonstration of concepts through compellingly realistic computer simulation. Revolutionary advances in 3D simulation technology have made it possible for desktop computers to process strikingly realistic and complex interactions with results depicted in real-time. Computer games now allow for multiple real human players and "artificially intelligent" (AI) simulated robots to play together. Advances in computer processing power have compensated for the inherent intensive calculations required for complex simulation scenarios. The main components of the leading game-engines have been released for user modifications, enabling game enthusiasts and amateur programmers to advance the state-of-the-art in AI and computer simulation technologies. It is now possible to simulate sophisticated and realistic conflict situations in order to evaluate the impact of non-lethal devices as well as conflict resolution procedures using such devices. Simulations can reduce training costs as end users: learn what a device does and doesn't do prior to use, understand responses to the device prior to deployment, determine if the device is appropriate for their situational responses, and train with new devices and techniques before purchasing hardware. This paper will present the status of SARA's mission simulation development activities, based on the Half-Life gameengine, for the purpose of evaluating the latest non-lethal weapon devices, and for developing training tools for such devices.
Advanced Energy Systems Design | State, Local, and Tribal Governments |
challenges differently. For example: how much does one city's planning scenario versus another change the investment need? At the same time, how does the economic impact on the local community change? What kind of
A future without health? Health dimension in global scenario studies.
Martens, Pim; Huynen, Maud
2003-01-01
This paper reviews the health dimension and sociocultural, economic, and ecological determinants of health in existing global scenario studies. Not even half of the 31 scenarios reviewed gave a good description of future health developments and the different scenario studies did not handle health in a consistent way. Most of the global driving forces of health are addressed adequately in the selected scenarios, however, and it therefore would have been possible to describe the future developments in health as an outcome of these multiple driving forces. To provide examples on how future health can be incorporated in existing scenarios, we linked the sociocultural, economic, and environmental developments described in three sets of scenarios (special report on emission scenarios (SRES), global environmental outlook-3 (GEO3), and world water scenarios (WWS)) to three potential, but imaginary, health futures ("age of emerging infectious diseases", "age of medical technology", and "age of sustained health"). This paper provides useful insights into how to deal with future health in scenarios and shows that a comprehensive picture of future health evolves when all important driving forces and pressures are taken into account. PMID:14997242
Advance directives and personal identity: what is the problem?
Furberg, Elisabeth
2012-02-01
The personal identity problem expresses the worry that due to disrupted psychological continuity, one person's advance directive could be used to determine the care of a different person. Even ethicists, who strongly question the possibility of the scenario depicted by the proponents of the personal identity problem, often consider it to be a very potent objection to the use of advance directives. Aiming to question this assumption, I, in this paper, discuss the personal identity problem's relevance to the moral force of advance directives. By putting the personal identity argument in relation to two different normative frameworks, I aim to show that whether or not the personal identity problem is relevant to the moral force of advance directives, and further, in what way it is relevant, depends entirely on what normative reasons we have for respecting advance directives in the first place.
Chen, Liang; Yang, Zhifeng; Chen, Bin
2013-01-01
This paper presents a forecast and analysis of population, economic development, energy consumption and CO2 emissions variation in China in the short- and long-term steps before 2020 with 2007 as the base year. The widely applied IPAT model, which is the basis for calculations, projections, and scenarios of greenhouse gases (GHGs) reformulated as the Kaya equation, is extended to analyze and predict the relations between human activities and the environment. Four scenarios of CO2 emissions are used including business as usual (BAU), energy efficiency improvement scenario (EEI), low carbon scenario (LC) and enhanced low carbon scenario (ELC). The results show that carbon intensity will be reduced by 40-45% as scheduled and economic growth rate will be 6% in China under LC scenario by 2020. The LC scenario, as the most appropriate and the most feasible scheme for China's low-carbon development in the future, can maximize the harmonious development of economy, society, energy and environmental systems. Assuming China's development follows the LC scenario, the paper further gives four paths of low-carbon transformation in China: technological innovation, industrial structure optimization, energy structure optimization and policy guidance.
Chen, Liang; Yang, Zhifeng; Chen, Bin
2013-01-01
This paper presents a forecast and analysis of population, economic development, energy consumption and CO2 emissions variation in China in the short- and long-term steps before 2020 with 2007 as the base year. The widely applied IPAT model, which is the basis for calculations, projections, and scenarios of greenhouse gases (GHGs) reformulated as the Kaya equation, is extended to analyze and predict the relations between human activities and the environment. Four scenarios of CO2 emissions are used including business as usual (BAU), energy efficiency improvement scenario (EEI), low carbon scenario (LC) and enhanced low carbon scenario (ELC). The results show that carbon intensity will be reduced by 40–45% as scheduled and economic growth rate will be 6% in China under LC scenario by 2020. The LC scenario, as the most appropriate and the most feasible scheme for China’s low-carbon development in the future, can maximize the harmonious development of economy, society, energy and environmental systems. Assuming China's development follows the LC scenario, the paper further gives four paths of low-carbon transformation in China: technological innovation, industrial structure optimization, energy structure optimization and policy guidance. PMID:24204922
NASA Astrophysics Data System (ADS)
Karabeyoglu, Arif; Tuncer, Onur; Inalhan, Gokhan
2016-07-01
Mankind is relient on chemical propulsion systems for space access. Nevertheless, this has been a stagnant area in terms of technological development and the technology base has not changed much almost for the past forty years. This poses a vicious circle for launch applications such that high launch costs constrain the demand and low launch freqencies drive costs higher. This also has been a key limiting factor for small and micro satellites that are geared towards planetary science. Rather this be because of the launch frequencies or the costs, the access of small and micro satellites to orbit has been limited. With today's technology it is not possible to escape this circle. However the emergence of cost effective and high performance propulsion systems such as advanced hybrid rockets can decrease launch costs by almost an order or magnitude. This paper briefly introduces the timeline and research challenges that were overcome during the development of advanced hybrid LOX/paraffin based rockets. Experimental studies demonstrated effectiveness of these advanced hybrid rockets which incorporate fast burning parafin based fuels, advanced yet simple internal balistic design and carbon composite winding/fuel casting technology that enables the rocket motor to be built from inside out. A feasibility scenario is studied using these rocket motors as building blocks for a modular launch vehicle capable of delivering micro satellites into low earth orbit. In addition, the building block rocket motor can be used further solar system missions providing the ability to do standalone small and micro satellite missions to planets within the solar system. This enabling technology therefore offers a viable alternative in order to escape the viscous that has plagued the space launch industry and that has limited the small and micro satellite delivery for planetary science.
Specification, Design, and Analysis of Advanced HUMS Architectures
NASA Technical Reports Server (NTRS)
Mukkamala, Ravi
2004-01-01
During the two-year project period, we have worked on several aspects of domain-specific architectures for HUMS. In particular, we looked at using scenario-based approach for the design and designed a language for describing such architectures. The language is now being used in all aspects of our HUMS design. In particular, we have made contributions in the following areas. 1) We have employed scenarios in the development of HUMS in three main areas. They are: (a) To improve reusability by using scenarios as a library indexing tool and as a domain analysis tool; (b) To improve maintainability by recording design rationales from two perspectives - problem domain and solution domain; (c) To evaluate the software architecture. 2) We have defined a new architectural language called HADL or HUMS Architectural Definition Language. It is a customized version of xArch/xADL. It is based on XML and, hence, is easily portable from domain to domain, application to application, and machine to machine. Specifications written in HADL can be easily read and parsed using the currently available XML parsers. Thus, there is no need to develop a plethora of software to support HADL. 3) We have developed an automated design process that involves two main techniques: (a) Selection of solutions from a large space of designs; (b) Synthesis of designs. However, the automation process is not an absolute Artificial Intelligence (AI) approach though it uses a knowledge-based system that epitomizes a specific HUMS domain. The process uses a database of solutions as an aid to solve the problems rather than creating a new design in the literal sense. Since searching is adopted as the main technique, the challenges involved are: (a) To minimize the effort in searching the database where a very large number of possibilities exist; (b) To develop representations that could conveniently allow us to depict design knowledge evolved over many years; (c) To capture the required information that aid the automation process.
Discharge start-up and ramp-up development for NSTX-U and MAST-U
NASA Astrophysics Data System (ADS)
Battaglia, D. J.; Boyer, M. D.; Gerhardt, S. P.; Menard, J. E.; Mueller, D.; Cunningham, G.; Kirk, A.; Kogan, L.; McArdle, G.; Pangione, L.; Thornton, A. J.; Ren, E.
2017-10-01
A collaborative modeling effort is underway to develop robust inductive start-up and ramp-up scenarios for NSTX-U and MAST-U. These complementary spherical tokamak devices aim to generate the physics basis for achieving steady-state, high-beta and high-confinement plasma discharges with a self-consistent solution for managing the divertor heat flux. High-performance discharges in these devices require sufficient plasma elongation (κ = 2.4 - 2.8) to maximize the bootstrap and beam-driven current drive, increase MHD stability at high Ip and high βN, and realize advanced divertor geometries such as the snowflake and super-X. Achieving the target elongation on NSTX-U is enabled by an L-H transition in the current ramp-up that slows the current diffusion and maintains a low internal inductance (li <= 0.8). Modeling focuses on developing scenarios that achieve a suitable field null for breakdown and discharge conditions conducive to an early L-H transition while maintaining vertical and MHD stability, with appropriate margin for variation in experimental conditions. The toroidal currents induced in conducting structures and the specifications of the real-time control and power supply systems are unique constraints for the two devices. Work Supported by U.S. DOE Contract No. DE-AC02-09CH11466 and the RCUK Energy Programme [Grant Number EP/P012450/1].
NASA Astrophysics Data System (ADS)
Rotzoll, K.; Izuka, S. K.; Nishikawa, T.; Fienen, M. N.; El-Kadi, A. I.
2016-12-01
Some of the volcanic-rock aquifers of the islands of Hawaii are substantially developed, leading to concerns related to the effects of groundwater withdrawals on saltwater intrusion and stream base-flow reduction. A numerical modeling analysis using recent available information (e.g., recharge, withdrawals, hydrogeologic framework, and conceptual models of groundwater flow) advances current understanding of groundwater flow and provides insight into the effects of human activity and climate change on Hawaii's water resources. Three island-wide groundwater-flow models (Kauai, Oahu, and Maui) were constructed using MODFLOW 2005 coupled with the Seawater-Intrusion Package (SWI2), which simulates the transition between saltwater and freshwater in the aquifer as a sharp interface. This approach allowed coarse vertical discretization (maximum of two layers) without ignoring the freshwater-saltwater system at the regional scale. Model construction (FloPy3), parameter estimation (PEST), and analysis of results were streamlined using Python scripts. Model simulations included pre-development (1870) and recent (average of 2001-10) scenarios for each island. Additionally, scenarios for future withdrawals and climate change were simulated for Oahu. We present our streamlined approach and results showing estimated effects of human activity on the groundwater resource by quantifying decline in water levels, rise of the freshwater-saltwater interface, and reduction in stream base flow. Water-resource managers can use this information to evaluate consequences of groundwater development that can constrain future groundwater availability.
Zuhr, Otto; Rebele, Stephan F; Cheung, Stefani L; Hürzeler, Markus B
2018-06-01
Diverse clinical advancements, together with some relevant technical innovations, have led to an increase in popularity of tunneling flap procedures in plastic periodontal and implant surgery in the recent past. This trend is further promoted by the fact that these techniques have lately been introduced to a considerably expanded range of indications. While originally described for the treatment of gingival recession-type defects, tunneling flap procedures may now be applied successfully in a variety of clinical situations in which augmentation of the soft tissues is indicated in the esthetic zone. Potential clinical scenarios include surgical thickening of thin buccal gingiva or peri-implant mucosa, alveolar ridge/socket preservation and implant second-stage surgery, as well as soft-tissue ridge augmentation or pontic site development. In this way, tunneling flap procedures developed from a technique, originally merely intended for surgical root coverage, into a capacious surgical conception in plastic periodontal and implant surgery. The purpose of this article is to provide a comprehensive overview on tunneling flap procedures, to introduce the successive development of the approach along with underlying ideas on surgical wound healing and to present contemporary clinical scenarios in step-by-step photograph-illustrated sequences, which aim to provide clinicians with guidance to help them integrate tunneling flap procedures into their daily clinical routine. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Li, Chunlin; Liu, Miao; Hu, Yuanman; Han, Rongqing; Shi, Tuo; Qu, Xiuqi; Wu, Yilin
2018-02-05
As urbanization progresses, increasingly impervious surfaces have changed the hydrological processes in cities and resulted in a major challenge for urban stormwater control. This study uses the urban stormwater model to evaluate the performance and costs of low impact development (LID) scenarios in a micro urban catchment. Rainfall-runoff data of three rainfall events were used for model calibration and validation. The pre-developed (PreDev) scenario, post-developed (PostDev) scenario, and three LID scenarios were used to evaluate the hydrologic performance of LID measures. Using reduction in annual runoff as the goal, the best solutions for each LID scenario were selected using cost-effectiveness curves. The simulation results indicated that the three designed LID scenarios could effectively reduce annual runoff volumes and pollutant loads compared with the PostDev scenario. The most effective scenario (MaxPerf) reduced annual runoff by 53.4%, followed by the sponge city (SpoPerf, 51.5%) and economy scenarios (EcoPerf, 43.1%). The runoff control efficiency of the MaxPerf and SpoPerf scenarios increased by 23.9% and 19.5%, respectively, when compared with the EcoPerf scenario; however, the costs increased by 104% and 83.6%. The reduction rates of four pollutants (TSS, TN, TP, and COD) under the MaxPerf scenario were 59.8-61.1%, followed by SpoPerf (53.9-58.3%) and EcoPerf (42.3-45.4%), and the costs of the three scenarios were 3.74, 3.47, and 1.83 million yuan, respectively. These results can provide guidance to urban stormwater managers in future urban planning to improve urban water security.
Evaluating the Hydrologic Performance of Low Impact Development Scenarios in a Micro Urban Catchment
Li, Chunlin; Liu, Miao; Hu, Yuanman; Han, Rongqing; Shi, Tuo; Qu, Xiuqi; Wu, Yilin
2018-01-01
As urbanization progresses, increasingly impervious surfaces have changed the hydrological processes in cities and resulted in a major challenge for urban stormwater control. This study uses the urban stormwater model to evaluate the performance and costs of low impact development (LID) scenarios in a micro urban catchment. Rainfall-runoff data of three rainfall events were used for model calibration and validation. The pre-developed (PreDev) scenario, post-developed (PostDev) scenario, and three LID scenarios were used to evaluate the hydrologic performance of LID measures. Using reduction in annual runoff as the goal, the best solutions for each LID scenario were selected using cost-effectiveness curves. The simulation results indicated that the three designed LID scenarios could effectively reduce annual runoff volumes and pollutant loads compared with the PostDev scenario. The most effective scenario (MaxPerf) reduced annual runoff by 53.4%, followed by the sponge city (SpoPerf, 51.5%) and economy scenarios (EcoPerf, 43.1%). The runoff control efficiency of the MaxPerf and SpoPerf scenarios increased by 23.9% and 19.5%, respectively, when compared with the EcoPerf scenario; however, the costs increased by 104% and 83.6%. The reduction rates of four pollutants (TSS, TN, TP, and COD) under the MaxPerf scenario were 59.8–61.1%, followed by SpoPerf (53.9–58.3%) and EcoPerf (42.3–45.4%), and the costs of the three scenarios were 3.74, 3.47 and 1.83 million yuan, respectively. These results can provide guidance to urban stormwater managers in future urban planning to improve urban water security. PMID:29401747
Development of nonproliferation and assessment scenarios.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finley, Melissa; Barnett, Natalie Beth
2005-10-01
The overall objective of the Nonproliferation and Assessments Scenario Development project is to create and analyze potential and plausible scenarios that would lead to an adversary's ability to acquire and use a biological weapon. The initial three months of funding was intended to be used to develop a scenario to demonstrate the efficacy of this analysis methodology; however, it was determined that a substantial amount of preliminary data collection would be needed before a proof of concept scenario could be developed. We have dedicated substantial effort to determine the acquisition pathways for Foot and Mouth Disease Virus, and similar processesmore » will be applied to all pathogens of interest. We have developed a biosecurity assessments database to capture information on adversary skill locales, available skill sets in specific regions, pathogen sources and regulations involved in pathogen acquisition from legitimate facilities. FY06 funding, once released, will be dedicated to data collection on acquisition, production and dissemination requirements on a pathogen basis. Once pathogen data has been collected, scenarios will be developed and scored.« less
[Vulvovaginal candidiasis: An old disease with new challenges].
Miró, María Soledad; Rodríguez, Emilse; Vigezzi, Cecilia; Icely, Paula Alejandra; Gonzaga de Freitas Araújo, Marcelo; Riera, Fernando Oscar; Vargas, Lara; Abiega, Claudio; Caeiro, Juan Pablo; Sotomayor, Claudia Elena
Vulvovaginal candidiasis is an old disease that, even in a modern world, continues to have a high incidence. Despite the therapeutic advances, treatments are not always effective, and our understanding of the pathogenesis of this fungal infection is still incomplete. A discussion is presented in this article on the most significant developments related to the fungal virulence factors, the role of the immunological mechanisms involved in the vaginal protection, and the genetic alterations that confer susceptibility to the recurrent form of this mycosis. Current treatments, the use of new agents with antifungal activity, as well as the development of strategies, such as vaccination, are approached in the context of the complex scenario that governs the interactions between Candida and its host. Copyright © 2017. Publicado por Elsevier España, S.L.U.
[Results of 2 years of activity].
Panigazzi, M
2010-01-01
Work-related injuries and occupational diseases are a scourge of modern, western societies, which, although technologically advanced, have difficulty in preventing, treating and rehabilitating victims with speed and efficiency. The current hospital neuromotor rehabilitation centres, whether public or accredited private structures, have notable difficulty in meeting the demand, which despite annual fluctuations and variable needs, does not, overall, seem to be decreasing. We present the results of an organization model developed at the "Fondazione Maugeri" Scientific Institute (Pavia, Italy), the criteria used for the activity, the technological innovations employed to determine ability, and the prospects for further development. This model is effective from a health care-rehabilitative point of view, also in the light of the new legislative scenarios, and is sustainable from an economic points of view; overall it is, therefore, efficient.
NASA Astrophysics Data System (ADS)
Cady, Eric; Prada, Camilo Mejia; An, Xin; Balasubramanian, Kunjithapatham; Diaz, Rosemary; Kasdin, N. Jeremy; Kern, Brian; Kuhnert, Andreas; Nemati, Bijan; Poberezhskiy, Ilya; Eldorado Riggs, A. J.; Zimmer, Robert; Zimmerman, Neil
2016-01-01
The coronagraph instrument on the Wide-Field Infrared Survey Telescope-Astrophysics-Focused Telescope Asset (WFIRST-AFTA) mission study has two coronagraphic architectures, shaped pupil and hybrid Lyot, which may be interchanged for use in different observing scenarios. Each architecture relies on newly developed mask components to function in the presence of the AFTA aperture, and so both must be matured to a high technology readiness level in advance of the mission. A series of milestones were set to track the development of the technologies required for the instrument; we report on completion of WFIRST-AFTA coronagraph milestone 2-a narrowband 10-8 contrast test with static aberrations for the shaped pupil-and the plans for the upcoming broadband coronagraph milestone 5.
Advances in knowledge-based software engineering
NASA Technical Reports Server (NTRS)
Truszkowski, Walt
1991-01-01
The underlying hypothesis of this work is that a rigorous and comprehensive software reuse methodology can bring about a more effective and efficient utilization of constrained resources in the development of large-scale software systems by both government and industry. It is also believed that correct use of this type of software engineering methodology can significantly contribute to the higher levels of reliability that will be required of future operational systems. An overview and discussion of current research in the development and application of two systems that support a rigorous reuse paradigm are presented: the Knowledge-Based Software Engineering Environment (KBSEE) and the Knowledge Acquisition fo the Preservation of Tradeoffs and Underlying Rationales (KAPTUR) systems. Emphasis is on a presentation of operational scenarios which highlight the major functional capabilities of the two systems.
NASA Technical Reports Server (NTRS)
Guarro, Sergio B.
2010-01-01
This report validates and documents the detailed features and practical application of the framework for software intensive digital systems risk assessment and risk-informed safety assurance presented in the NASA PRA Procedures Guide for Managers and Practitioner. This framework, called herein the "Context-based Software Risk Model" (CSRM), enables the assessment of the contribution of software and software-intensive digital systems to overall system risk, in a manner which is entirely compatible and integrated with the format of a "standard" Probabilistic Risk Assessment (PRA), as currently documented and applied for NASA missions and applications. The CSRM also provides a risk-informed path and criteria for conducting organized and systematic digital system and software testing so that, within this risk-informed paradigm, the achievement of a quantitatively defined level of safety and mission success assurance may be targeted and demonstrated. The framework is based on the concept of context-dependent software risk scenarios and on the modeling of such scenarios via the use of traditional PRA techniques - i.e., event trees and fault trees - in combination with more advanced modeling devices such as the Dynamic Flowgraph Methodology (DFM) or other dynamic logic-modeling representations. The scenarios can be synthesized and quantified in a conditional logic and probabilistic formulation. The application of the CSRM method documented in this report refers to the MiniAERCam system designed and developed by the NASA Johnson Space Center.
An, Ji-Young
2016-01-01
Objectives This article reviews an evaluation vector model driven from a participatory action research leveraging a collective inquiry system named SMILE (Stanford Mobile Inquiry-based Learning Environment). Methods SMILE has been implemented in a diverse set of collective inquiry generation and analysis scenarios including community health care-specific professional development sessions and community-based participatory action research projects. In each scenario, participants are given opportunities to construct inquiries around physical and emotional health-related phenomena in their own community. Results Participants formulated inquiries as well as potential clinical treatments and hypothetical scenarios to address health concerns or clarify misunderstandings or misdiagnoses often found in their community practices. From medical universities to rural village health promotion organizations, all participatory inquiries and potential solutions can be collected and analyzed. The inquiry and solution sets represent an evaluation vector which helps educators better understand community health issues at a much deeper level. Conclusions SMILE helps collect problems that are most important and central to their community health concerns. The evaluation vector, consisting participatory and collective inquiries and potential solutions, helps the researchers assess the participants' level of understanding on issues around health concerns and practices while helping the community adequately formulate follow-up action plans. The method used in SMILE requires much further enhancement with machine learning and advanced data visualization. PMID:27525157
Productivity improvement using discrete events simulation
NASA Astrophysics Data System (ADS)
Hazza, M. H. F. Al; Elbishari, E. M. Y.; Ismail, M. Y. Bin; Adesta, E. Y. T.; Rahman, Nur Salihah Binti Abdul
2018-01-01
The increasing in complexity of the manufacturing systems has increased the cost of investment in many industries. Furthermore, the theoretical feasibility studies are not enough to take the decision in investing for that particular area. Therefore, the development of the new advanced software is protecting the manufacturer from investing money in production lines that may not be sufficient and effective with their requirement in terms of machine utilization and productivity issue. By conducting a simulation, using accurate model will reduce and eliminate the risk associated with their new investment. The aim of this research is to prove and highlight the importance of simulation in decision-making process. Delmia quest software was used as a simulation program to run a simulation for the production line. A simulation was first done for the existing production line and show that the estimated production rate is 261 units/day. The results have been analysed based on utilization percentage and idle time. Two different scenarios have been proposed based on different objectives. The first scenario is by focusing on low utilization machines and their idle time, this was resulted in minimizing the number of machines used by three with the addition of the works who maintain them without having an effect on the production rate. The second scenario is to increase the production rate by upgrading the curing machine which lead to the increase in the daily productivity by 7% from 261 units to 281 units.
Police officer response to the injured officer: a survey-based analysis of medical care decisions.
Sztajnkrycer, Matthew D; Callaway, David W; Baez, Amado Alejandro
2007-01-01
No widely accepted, specialized medical training exists for police officers confronted with medical emergencies while under conditions of active threat. The purpose of this study was to assess medical decision-making capabilities of law enforcement personnel under these circumstances. Web-based surveys were administered to all sworn officers within the county jurisdiction. Thirty-eight key actions were predetermined for nine injured officer scenarios, with each correct action worth one point. Descriptive statistics and t-tests were used to analyze results. Ninety-seven officers (65.1% response rate) responded to the survey. The majority of officers (68.0%) were trained to the first-responder level. Overall mean score for the scenarios was 15.5 +/- 3.6 (range 7-25). A higher level of medical training (EMT-B/P versus first responder) was associated with a higher mean score (16.6 +/- 3.4, p = 0.05 vs. 15.0 +/- 3.6, p = 0.05). Tactical unit assignment was associated with a lower score compared with non-assigned officers (13.5 +/- 2.9 vs. 16.0 +/- 3.6, p = 0.0085). No difference was noted based upon previous military experience. Ninety-two percent of respondents expressed interest in a law enforcement-oriented advanced first-aid course. Tactical medical decision-making capability, as assessed through the nine scenarios, was sub-optimal. In this post 9/11 era, development of law enforcement-specific medical training appears appropriate.
Probing the scale of new physics by Advanced LIGO/VIRGO
NASA Astrophysics Data System (ADS)
Dev, P. S. Bhupal; Mazumdar, A.
2016-05-01
We show that if the new physics beyond the standard model is associated with a first-order phase transition around 107- 108 GeV , the energy density stored in the resulting stochastic gravitational waves and the corresponding peak frequency are within the projected final sensitivity of the advanced LIGO/VIRGO detectors. We discuss some possible new physics scenarios that could arise at such energies, and in particular, the consequences for Peccei-Quinn and supersymmetry breaking scales.
Gillman, Lawrence M; Brindley, Peter; Paton-Gay, John Damian; Engels, Paul T; Park, Jason; Vergis, Ashley; Widder, Sandy
2016-07-01
We previously reported on a pilot trauma multidisciplinary crisis resource course titled S.T.A.R.T.T. (Simulated Trauma and Resuscitative Team Training). Here, we study the course's evolution. Satisfaction was evaluated by postcourse survey. Trauma teams were evaluated using the Ottawa global rating scale and an Advanced Trauma Life Support primary survey checklist. Eleven "trauma teams," consisting of physicians, nurses, and respiratory therapists, each completed 4 crisis simulations over 3 courses. Satisfaction remained high among participants with overall mean satisfaction being 4.39 on a 5-point Likert scale. As participants progressed through scenarios, improvements in global rating scale scores were seen between the 1st and 4th (29.8 vs 36.1 of 42, P = .022), 2nd and 3rd (28.2 vs 34.6, P = .017), and 2nd and 4th (28.2 vs 36.1, P = .003) scenarios. There were no differences in Advanced Trauma Life Support checklist with mean scores for each scenario ranging 11.3 to 13.2 of 17. The evolved Simulated Trauma and Resuscitative Team Training curriculum has maintained high participant satisfaction and is associated with improvement in team crisis resource management skills over the duration of the course. Copyright © 2015 Elsevier Inc. All rights reserved.
Kron, Frederick W; Fetters, Michael D; Scerbo, Mark W; White, Casey B; Lypson, Monica L; Padilla, Miguel A; Gliva-McConvey, Gayle A; Belfore, Lee A; West, Temple; Wallace, Amelia M; Guetterman, Timothy C; Schleicher, Lauren S; Kennedy, Rebecca A; Mangrulkar, Rajesh S; Cleary, James F; Marsella, Stacy C; Becker, Daniel M
2017-04-01
To assess advanced communication skills among second-year medical students exposed either to a computer simulation (MPathic-VR) featuring virtual humans, or to a multimedia computer-based learning module, and to understand each group's experiences and learning preferences. A single-blinded, mixed methods, randomized, multisite trial compared MPathic-VR (N=210) to computer-based learning (N=211). Primary outcomes: communication scores during repeat interactions with MPathic-VR's intercultural and interprofessional communication scenarios and scores on a subsequent advanced communication skills objective structured clinical examination (OSCE). Multivariate analysis of variance was used to compare outcomes. student attitude surveys and qualitative assessments of their experiences with MPathic-VR or computer-based learning. MPathic-VR-trained students improved their intercultural and interprofessional communication performance between their first and second interactions with each scenario. They also achieved significantly higher composite scores on the OSCE than computer-based learning-trained students. Attitudes and experiences were more positive among students trained with MPathic-VR, who valued its providing immediate feedback, teaching nonverbal communication skills, and preparing them for emotion-charged patient encounters. MPathic-VR was effective in training advanced communication skills and in enabling knowledge transfer into a more realistic clinical situation. MPathic-VR's virtual human simulation offers an effective and engaging means of advanced communication training. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Kron, Frederick W.; Fetters, Michael D.; Scerbo, Mark W.; White, Casey B.; Lypson, Monica L.; Padilla, Miguel A.; Gliva-McConvey, Gayle A.; Belfore, Lee A.; West, Temple; Wallace, Amelia M.; Guetterman, Timothy C.; Schleicher, Lauren S.; Kennedy, Rebecca A.; Mangrulkar, Rajesh S.; Cleary, James F.; Marsella, Stacy C.; Becker, Daniel M.
2016-01-01
Objectives To assess advanced communication skills among second-year medical students exposed either to a computer simulation (MPathic-VR) featuring virtual humans, or to a multimedia computer-based learning module, and to understand each group’s experiences and learning preferences. Methods A single-blinded, mixed methods, randomized, multisite trial compared MPathic-VR (N=210) to computer-based learning (N=211). Primary outcomes: communication scores during repeat interactions with MPathic-VR’s intercultural and interprofessional communication scenarios and scores on a subsequent advanced communication skills objective structured clinical examination (OSCE). Multivariate analysis of variance was used to compare outcomes. Secondary outcomes: student attitude surveys and qualitative assessments of their experiences with MPathic-VR or computer-based learning. Results MPathic-VR-trained students improved their intercultural and interprofessional communication performance between their first and second interactions with each scenario. They also achieved significantly higher composite scores on the OSCE than computer-based learning-trained students. Attitudes and experiences were more positive among students trained with MPathic-VR, who valued its providing immediate feedback, teaching nonverbal communication skills, and preparing them for emotion-charged patient encounters. Conclusions MPathic-VR was effective in training advanced communication skills and in enabling knowledge transfer into a more realistic clinical situation. Practice Implications MPathic-VR’s virtual human simulation offers an effective and engaging means of advanced communication training. PMID:27939846
NASA Astrophysics Data System (ADS)
Ross, S.; Jones, L. M.; Wilson, R. I.; Bahng, B.; Barberopoulou, A.; Borrero, J. C.; Brosnan, D.; Bwarie, J. T.; Geist, E. L.; Johnson, L. A.; Hansen, R. A.; Kirby, S. H.; Knight, E.; Knight, W. R.; Long, K.; Lynett, P. J.; Miller, K. M.; Mortensen, C. E.; Nicolsky, D.; Oglesby, D. D.; Perry, S. C.; Porter, K. A.; Real, C. R.; Ryan, K. J.; Suleimani, E. N.; Thio, H. K.; Titov, V. V.; Wein, A. M.; Whitmore, P.; Wood, N. J.
2012-12-01
The U.S. Geological Survey's Science Application for Risk Reduction (SAFRR) project, in collaboration with the California Geological Survey, the California Emergency Management Agency, the National Oceanic and Atmospheric Administration, and other agencies and institutions are developing a Tsunami Scenario to describe in detail the impacts of a tsunami generated by a hypothetical, but realistic, M9 earthquake near the Alaska Peninsula. The overarching objective of SAFRR and its predecessor, the Multi-Hazards Demonstration Project, is to help communities reduce losses from natural disasters. As requested by emergency managers and other community partners, a primary approach has been comprehensive, scientifically credible scenarios that start with a model of a geologic event and extend through estimates of damage, casualties, and societal consequences. The first product was the ShakeOut scenario, addressing a hypothetical earthquake on the southern San Andreas fault, that spawned the successful Great California ShakeOut, an annual event and the nation's largest emergency preparedness exercise. That was followed by the ARkStorm scenario, which addresses California winter storms that surpass hurricanes in their destructive potential. Some of the Tsunami Scenario's goals include developing advanced models of currents and inundation for the event; spurring research related to Alaskan earthquake sources; engaging the port and harbor decision makers; understanding the economic impacts to local, regional and national economy in both the short and long term; understanding the ecological, environmental, and societal impacts of coastal inundation; and creating enhanced communication products for decision-making before, during, and after a tsunami event. The state of California, through CGS and Cal EMA, is using the Tsunami Scenario as an opportunity to evaluate policies regarding tsunami impact. The scenario will serve as a long-lasting resource to teach preparedness and inform decision makers. The SAFRR Tsunami Scenario is organized by a coordinating committee with several working groups, including Earthquake Source, Paleotsunami/Geology Field Work, Tsunami Modeling, Engineering and Physical Impacts, Ecological Impacts, Emergency Management and Education, Social Vulnerability, Economic and Business Impacts, and Policy. In addition, the tsunami scenario process is being assessed and evaluated by researchers from the Natural Hazards Center at the University of Colorado at Boulder. The source event, defined by the USGS' Tsunami Source Working Group, is an earthquake similar to the 2011 Tohoku event, but set in the Semidi subduction sector, between Kodiak Island and the Shumagin Islands off the Pacific coast of the Alaska Peninsula. The Semidi sector is probably late in its earthquake cycle and comparisons of the geology and tectonic settings between Tohoku and the Semidi sector suggest that this location is appropriate. Tsunami modeling and inundation results have been generated for many areas along the California coast and elsewhere, including current velocity modeling for the ports of Los Angeles, Long Beach, and San Diego, and Ventura Harbor. Work on impacts to Alaska and Hawaii will follow. Note: Costas Synolakis (USC) is also an author of this abstract.
Practical Applications for Earthquake Scenarios Using ShakeMap
NASA Astrophysics Data System (ADS)
Wald, D. J.; Worden, B.; Quitoriano, V.; Goltz, J.
2001-12-01
In planning and coordinating emergency response, utilities, local government, and other organizations are best served by conducting training exercises based on realistic earthquake situations-ones that they are most likely to face. Scenario earthquakes can fill this role; they can be generated for any geologically plausible earthquake or for actual historic earthquakes. ShakeMap Web pages now display selected earthquake scenarios (www.trinet.org/shake/archive/scenario/html) and more events will be added as they are requested and produced. We will discuss the methodology and provide practical examples where these scenarios are used directly for risk reduction. Given a selected event, we have developed tools to make it relatively easy to generate a ShakeMap earthquake scenario using the following steps: 1) Assume a particular fault or fault segment will (or did) rupture over a certain length, 2) Determine the magnitude of the earthquake based on assumed rupture dimensions, 3) Estimate the ground shaking at all locations in the chosen area around the fault, and 4) Represent these motions visually by producing ShakeMaps and generating ground motion input for loss estimation modeling (e.g., FEMA's HAZUS). At present, ground motions are estimated using empirical attenuation relationships to estimate peak ground motions on rock conditions. We then correct the amplitude at that location based on the local site soil (NEHRP) conditions as we do in the general ShakeMap interpolation scheme. Finiteness is included explicitly, but directivity enters only through the empirical relations. Although current ShakeMap earthquake scenarios are empirically based, substantial improvements in numerical ground motion modeling have been made in recent years. However, loss estimation tools, HAZUS for example, typically require relatively high frequency (3 Hz) input for predicting losses, above the range of frequencies successfully modeled to date. Achieving full-synthetic ground motion estimates that will substantially improve over empirical relations at these frequencies will require developing cost-effective numerical tools for proper theoretical inclusion of known complex ground motion effects. Current efforts underway must continue in order to obtain site, basin, and deeper crustal structure, and to characterize and test 3D earth models (including attenuation and nonlinearity). In contrast, longer period synthetics (>2 sec) are currently being generated in a deterministic fashion to include 3D and shallow site effects, an improvement on empirical estimates alone. As progress is made, we will naturally incorporate such advances into the ShakeMap scenario earthquake and processing methodology. Our scenarios are currently used heavily in emergency response planning and loss estimation. Primary users include city, county, state and federal government agencies (e.g., the California Office of Emergency Services, FEMA, the County of Los Angeles) as well as emergency response planners and managers for utilities, businesses, and other large organizations. We have found the scenarios are also of fundamental interest to many in the media and the general community interested in the nature of the ground shaking likely experienced in past earthquakes as well as effects of rupture on known faults in the future.
Kunimatsu-Sanuki, Shiho; Iwase, Aiko; Araie, Makoto; Aoki, Yuki; Hara, Takeshi; Fukuchi, Takeo; Udagawa, Sachiko; Ohkubo, Shinji; Sugiyama, Kazuhisa; Matsumoto, Chota; Nakazawa, Toru; Yamaguchi, Takuhiro; Ono, Hiroshi
2017-01-01
Background/aims To assess the role of specific visual subfields in collisions with oncoming cars during simulated driving in patients with advanced glaucoma. Methods Normal subjects and patients with glaucoma with mean deviation <–12 dB in both eyes (Humphrey Field Analyzer 24-2 SITA-S program) used a driving simulator (DS; Honda Motor, Tokyo). Two scenarios in which oncoming cars turned right crossing the driver's path were chosen. We compared the binocular integrated visual field (IVF) in the patients who were involved in collisions and those who were not. We performed a multivariate logistic regression analysis; the dependent parameter was collision involvement, and the independent parameters were age, visual acuity and mean sensitivity of the IVF subfields. Results The study included 43 normal subjects and 100 patients with advanced glaucoma. And, 5 of the 100 patients with advanced glaucoma experienced simulator sickness during the main test and were thus excluded. In total, 95 patients with advanced glaucoma and 43 normal subjects completed the main test of DS. Advanced glaucoma patients had significantly more collisions than normal patients in one or both DS scenarios (p<0.001). The patients with advanced glaucoma who were involved in collisions were older (p=0.050) and had worse visual acuity in the better eye (p<0.001) and had lower mean IVF sensitivity in the inferior hemifield, both 0°–12° and 13°–24° in comparison with who were not involved in collisions (p=0.012 and p=0.034). A logistic regression analysis revealed that collision involvement was significantly associated with decreased inferior IVF mean sensitivity from 13° to 24° (p=0.041), in addition to older age and lower visual acuity (p=0.018 and p<0.001). Conclusions Our data suggest that the inferior hemifield was associated with the incidence of motor vehicle collisions with oncoming cars in patients with advanced glaucoma. PMID:28400370
Development and validation of an artificial wetlab training system for the lumbar discectomy.
Adermann, Jens; Geissler, Norman; Bernal, Luis E; Kotzsch, Susanne; Korb, Werner
2014-09-01
An initial research indicated that realistic haptic simulators with an adapted training concept are needed to enhance the training for spinal surgery. A cognitive task analysis (CTA) was performed to define a realistic and helpful scenario-based simulation. Based on the results a simulator for lumbar discectomy was developed. Additionally, a realistic training operating room was built for a pilot. The results were validated. The CTA showed a need for realistic scenario-based training in spine surgery. The developed simulator consists of synthetic bone structures, synthetic soft tissue and an advanced bleeding system. Due to the close interdisciplinary cooperation of surgeons between engineers and psychologists, the iterative multicentre validation showed that the simulator is visually and haptically realistic. The simulator offers integrated sensors for the evaluation of the traction being used and the compression during surgery. The participating surgeons in the pilot workshop rated the simulator and the training concept as very useful for the improvement of their surgical skills. In the context of the present work a precise definition for the simulator and training concept was developed. The additional implementation of sensors allows the objective evaluation of the surgical training by the trainer. Compared to other training simulators and concepts, the high degree of objectivity strengthens the acceptance of the feedback. The measured data of the nerve root tension and the compression of the dura can be used for intraoperative control and a detailed postoperative evaluation.
Composite Structure Modeling and Analysis of Advanced Aircraft Fuselage Concepts
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivek; Sorokach, Michael R.
2015-01-01
NASA Environmentally Responsible Aviation (ERA) project and the Boeing Company are collabrating to advance the unitized damage arresting composite airframe technology with application to the Hybrid-Wing-Body (HWB) aircraft. The testing of a HWB fuselage section with Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) construction is presently being conducted at NASA Langley. Based on lessons learned from previous HWB structural design studies, improved finite-element models (FEM) of the HWB multi-bay and bulkhead assembly are developed to evaluate the performance of the PRSEUS construction. In order to assess the comparative weight reduction benefits of the PRSEUS technology, conventional cylindrical skin-stringer-frame models of a cylindrical and a double-bubble section fuselage concepts are developed. Stress analysis with design cabin-pressure load and scenario based case studies are conducted for design improvement in each case. Alternate analysis with stitched composite hat-stringers and C-frames are also presented, in addition to the foam-core sandwich frame and pultruded rod-stringer construction. The FEM structural stress, strain and weights are computed and compared for relative weight/strength benefit assessment. The structural analysis and specific weight comparison of these stitched composite advanced aircraft fuselage concepts demonstrated that the pressurized HWB fuselage section assembly can be structurally as efficient as the conventional cylindrical fuselage section with composite stringer-frame and PRSEUS construction, and significantly better than the conventional aluminum construction and the double-bubble section concept.
Possible impacts of climate change on natural vegetation in Saxony (Germany).
Chmielewski, Frank M; Müller, Antje; Küchler, Wilfried
2005-11-01
Recent climate changes have had distinct impacts on plant development in many parts of the world. Higher air temperatures, mainly since the end of the 1980s, have led to advanced timing of phenological phases and consequently to an extension of the general growing season. For this reason it is interesting to know how plants will respond to future climate change. In this study simple phenological models have been developed to estimate the impact of climate change on the natural vegetation in Saxony. The estimations are based on a regional climate scenario for the state of Saxony. The results indicate that changes in the timing of phenophases could continue in the future. Due to distinct temperature changes in winter and in summer, mainly the spring and summer phases will be advanced. Spring phenophases, such as leafing or flowering, show the strongest trends. Depending on the species, the average timing of these phenophases could be advanced by 3-27 days by 2050. Phenophases in autumn show relatively small changes. Thus, the annual growth period of individual trees will be further extended, mainly because of the shift of spring phases. Frequent droughts in summer and in autumn can compensate for the earlier leafing of trees, because in this case leaf colouring and leaf fall would start some weeks earlier. In such cases, the growing period would not be really extended, but shifted to the beginning of the year.
NASA Astrophysics Data System (ADS)
Rotzoll, K.; Izuka, S. K.; Nishikawa, T.; Fienen, M. N.; El-Kadi, A. I.
2015-12-01
The volcanic-rock aquifers of Kauai, Oahu, and Maui are heavily developed, leading to concerns related to the effects of groundwater withdrawals on saltwater intrusion and streamflow. A numerical modeling analysis using the most recently available data (e.g., information on recharge, withdrawals, hydrogeologic framework, and conceptual models of groundwater flow) will substantially advance current understanding of groundwater flow and provide insight into the effects of human activity and climate change on Hawaii's water resources. Three island-wide groundwater-flow models were constructed using MODFLOW 2005 coupled with the Seawater-Intrusion Package (SWI2), which simulates the transition between saltwater and freshwater in the aquifer as a sharp interface. This approach allowed relatively fast model run times without ignoring the freshwater-saltwater system at the regional scale. Model construction (FloPy3), automated-parameter estimation (PEST), and analysis of results were streamlined using Python scripts. Model simulations included pre-development (1870) and current (average of 2001-10) scenarios for each island. Additionally, scenarios for future withdrawals and climate change were simulated for Oahu. We present our streamlined approach and preliminary results showing estimated effects of human activity on the groundwater resource by quantifying decline in water levels, reduction in stream base flow, and rise of the freshwater-saltwater interface.
Predictive techniques for river channel evolution and maintenance
Nelson, J.M.
1996-01-01
Predicting changes in alluvial channel morphology associated with anthropogenic and natural changes in flow and/or sediment supply is a critical part of the management of riverine systems. Over the past few years, advances in the understanding of the physics of sediment transport in conjunction with rapidly increasing capabilities in computational fluid dynamics have yielded now approaches to problems in river mechanics. Techniques appropriate for length scales ranging from reaches to bars and bedforms are described here. Examples of the use of these computational approaches are discussed for three cases: (1) the design of diversion scenarios that maintain channel morphology in steep cobble-bedded channels in Colorado, (2) determination of channel maintenance flows for the preservation of channel islands in the Snake River in Idaho, and (3) prediction of the temporal evolution of deposits in lateral separation zones for future assessment of the impacts of various dam release scenarios on lateral separation deposits in the Colorado River in Grand Canyon. With continued development of their scientific and technical components, the methodologies described here can provide powerful tools for the management of river environments in the future.
Airborne Evaluation and Demonstration of a Time-Based Airborne Inter-Arrival Spacing Tool
NASA Technical Reports Server (NTRS)
Lohr, Gary W.; Oseguera-Lohr, Rosa M.; Abbott, Terence S.; Capron, William R.; Howell, Charles T.
2005-01-01
An airborne tool has been developed that allows an aircraft to obtain a precise inter-arrival time-based spacing interval from the preceding aircraft. The Advanced Terminal Area Approach Spacing (ATAAS) tool uses Automatic Dependent Surveillance-Broadcast (ADS-B) data to compute speed commands for the ATAAS-equipped aircraft to obtain this inter-arrival spacing behind another aircraft. The tool was evaluated in an operational environment at the Chicago O'Hare International Airport and in the surrounding terminal area with three participating aircraft flying fixed route area navigation (RNAV) paths and vector scenarios. Both manual and autothrottle speed management were included in the scenarios to demonstrate the ability to use ATAAS with either method of speed management. The results on the overall delivery precision of the tool, based on a target spacing of 90 seconds, were a mean of 90.8 seconds with a standard deviation of 7.7 seconds. The results for the RNAV and vector cases were, respectively, M=89.3, SD=4.9 and M=91.7, SD=9.0.
Solid Modeling of Crew Exploration Vehicle Structure Concepts for Mass Optimization
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivek
2006-01-01
Parametric solid and surface models of the crew exploration vehicle (CEV) command module (CM) structure concepts are developed for rapid finite element analyses, structural sizing and estimation of optimal structural mass. The effects of the structural configuration and critical design parameters on the stress distribution are visualized, examined to arrive at an efficient design. The CM structural components consisted of the outer heat shield, inner pressurized crew cabin, ring bulkhead and spars. For this study only the internal cabin pressure load case is considered. Component stress, deflection, margins of safety and mass are used as design goodness criteria. The design scenario is explored by changing the component thickness parameters and materials until an acceptable design is achieved. Aluminum alloy, titanium alloy and an advanced composite material properties are considered for the stress analysis and the results are compared as a part of lessons learned and to build up a structural component sizing knowledge base for the future CEV technology support. This independent structural analysis and the design scenario based optimization process may also facilitate better CM structural definition and rapid prototyping.
Mitigation Policy Scenario of Space Debris Threat Related with National Security
NASA Astrophysics Data System (ADS)
Herdiansyah, Herdis; Frimawaty, Evy; Munir, Ahmad
2016-02-01
The development of air space recently entered a new phase, when the space issues correlated with the future of a country. In past time, the space authorization was related with advancing technology by many space mission and various satellite launchings, or it could be said that who ruled technology will rule the space. Therefore, the numerous satellites in the space could be a threat for the countries which are mainly located in the path of the satellite, especially in the equatorial region including Indonesia. This study aims to create a policy scenario in mitigating the threat of space debris. The results showed that although space debris was not threatened national security for now, but the potential and its impact on the future potentially harmful. The threats of orbit circulation for some experts considered as a threat for national security, because its danger potential which caused by space debris could significantly damage the affected areas. However, until now Indonesia has no comprehensive mitigation strategy for space matters although it has been ratified by the United Nations Convention.
Developing Use Cases for Evaluation of ADMS Applications to Accelerate Technology Adoption: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veda, Santosh; Wu, Hongyu; Martin, Maurice
Grid modernization for the distribution systems comprise of the ability to effectively monitor and manage unplanned events while ensuring reliable operations. Integration of Distributed Energy Resources (DERs) and proliferation of autonomous smart controllers like microgrids and smart inverters in the distribution networks challenge the status quo of distribution system operations. Advanced Distribution Management System (ADMS) technologies are being increasingly deployed to manage the complexities of operating distribution systems. The ability to evaluate the ADMS applications in specific utility environments and for future scenarios will accelerate wider adoption of the ADMS and will lower the risks and costs of their implementation.more » This paper addresses the first step - identify and define the use cases for evaluating these applications. The applications that are selected for this discussion include Volt-VAr Optimization (VVO), Fault Location Isolation and Service Restoration (FLISR), Online Power Flow (OLPF)/Distribution System State Estimation (DSSE) and Market Participation. A technical description and general operational requirements for each of these applications is presented. The test scenarios that are most relevant to the utility challenges are also addressed.« less
Outlooks for Wind Power in the United States: Drivers and Trends under a 2016 Policy Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mai, Trieu; Lantz, Eric; Ho, Jonathan
Over the past decade, wind power has become one of the fastest growing electricity generation sources in the United States. Despite this growth, the U.S. wind industry continues to experience year-to-year fluctuations across the manufacturing and supply chain as a result of dynamic market conditions and changing policy landscapes. Moreover, with advancing wind technologies, ever-changing fossil fuel prices, and evolving energy policies, the long-term future for wind power is highly uncertain. In this report, we present multiple outlooks for wind power in the United States, to explore the possibilities of future wind deployment. The future wind power outlooks presented relymore » on high-resolution wind resource data and advanced electric sector modeling capabilities to evaluate an array of potential scenarios of the U.S. electricity system. Scenario analysis is used to explore drivers, trends, and implications for wind power deployment over multiple periods through 2050. Specifically, we model 16 scenarios of wind deployment in the contiguous United States. These scenarios span a wide range of wind technology costs, natural gas prices, and future transmission expansion. We identify conditions with more consistent wind deployment after the production tax credit expires as well as drivers for more robust wind growth in the long run. Conversely, we highlight challenges to future wind deployment. We find that the degree to which wind technology costs decline can play an important role in future wind deployment, electric sector CO 2 emissions, and lowering allowance prices for the Clean Power Plan.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-08
... Climate and Land Use Scenarios, a project which is described in the 2009 EPA Report, ``Land-Use Scenarios: National-Scale Housing- Density Scenarios Consistent with Climate Change Storylines.'' These scenarios are... economic development, which are used by climate change modelers to develop projections of future climate...
Modeling soil conservation, water conservation and their tradeoffs: a case study in Beijing.
Bai, Yang; Ouyang, Zhiyun; Zheng, Hua; Li, Xiaoma; Zhuang, Changwei; Jiang, Bo
2012-01-01
Natural ecosystems provide society with important goods and services. With the rapid increase in human populations and excessive utilization of natural resources, humans frequently enhance the production of some services at the expense of the others. Although the need for tradeoffs between conservation and development is urgent, the lack of efficient methods to assess such tradeoffs has impeded progress. Three land use strategy scenarios (development scenario, plan trend scenario and conservation scenario) were created to forecast potential changes in ecosystem services from 2007 to 2050 in Beijing, China. GIS-based techniques were used to map spatial and temporal distribution and changes in ecosystem services for each scenario. The provision of ecosystem services differed spatially, with significant changes being associated with different scenarios. Scenario analysis of water yield (as average annual yield) and soil retention (as retention rate per unit area) for the period 2007 to 2050 indicated that the highest values for these parameters were predicted for the forest habitat under all three scenarios. Annual yield/retention of forest, shrub, and grassland ranked the highest in the conservation scenario. Total water yield and soil retention increased in the conservation scenario and declined dramatically in the other two scenarios, especially the development scenario. The conservation scenario was the optimal land use strategy, resulting in the highest soil retention and water yield. Our study suggests that the evaluation and visualization of ecosystem services can effectively assist in understanding the tradeoffs between conservation and development. Results of this study have implications for planning and monitoring future management of natural capital and ecosystem services, which can be integrated into land use decision-making.
The next generation of scenarios for climate change research and assessment.
Moss, Richard H; Edmonds, Jae A; Hibbard, Kathy A; Manning, Martin R; Rose, Steven K; van Vuuren, Detlef P; Carter, Timothy R; Emori, Seita; Kainuma, Mikiko; Kram, Tom; Meehl, Gerald A; Mitchell, John F B; Nakicenovic, Nebojsa; Riahi, Keywan; Smith, Steven J; Stouffer, Ronald J; Thomson, Allison M; Weyant, John P; Wilbanks, Thomas J
2010-02-11
Advances in the science and observation of climate change are providing a clearer understanding of the inherent variability of Earth's climate system and its likely response to human and natural influences. The implications of climate change for the environment and society will depend not only on the response of the Earth system to changes in radiative forcings, but also on how humankind responds through changes in technology, economies, lifestyle and policy. Extensive uncertainties exist in future forcings of and responses to climate change, necessitating the use of scenarios of the future to explore the potential consequences of different response options. To date, such scenarios have not adequately examined crucial possibilities, such as climate change mitigation and adaptation, and have relied on research processes that slowed the exchange of information among physical, biological and social scientists. Here we describe a new process for creating plausible scenarios to investigate some of the most challenging and important questions about climate change confronting the global community.
Vision and Reality for Technology-Based Delivery Systems in Postsecondary Education.
ERIC Educational Resources Information Center
Mingle, James R.
This paper explores the implications of technological advancement and telecommunications services on postsecondary education, especially in relation to educational effectiveness, costs, increasing deregulation, and financing. Four scenarios illustrate different educational delivery modes. Common elements of educational delivery systems of the…
Kelley, Frances J; Klopf, Maria Ignacia
2008-10-01
To describe the Clinical Communication Program developed to integrate second language learning (L2), multimedia, Web-based technologies, and the Internet in an advanced practice nursing education program. Electronic recording devices as well as audio, video editing, Web design, and programming software were used as tools for developing L2 scenarios for practice in clinical settings. The Clinical Communication Program offers opportunities to support both students and faculty members to develop their linguistic and cultural competence skills to serve better their patients, in general, and their students who speak a language other than English, in particular. The program provided 24 h on-demand access for using audio, video, and text exercises via the Internet. L2 education for healthcare providers includes linguistic (listening, speaking, reading, and writing) experiences as well as cultural competence and practices inside and outside the classroom environment as well as online and offline the Internet realm.
TimeBench: a data model and software library for visual analytics of time-oriented data.
Rind, Alexander; Lammarsch, Tim; Aigner, Wolfgang; Alsallakh, Bilal; Miksch, Silvia
2013-12-01
Time-oriented data play an essential role in many Visual Analytics scenarios such as extracting medical insights from collections of electronic health records or identifying emerging problems and vulnerabilities in network traffic. However, many software libraries for Visual Analytics treat time as a flat numerical data type and insufficiently tackle the complexity of the time domain such as calendar granularities and intervals. Therefore, developers of advanced Visual Analytics designs need to implement temporal foundations in their application code over and over again. We present TimeBench, a software library that provides foundational data structures and algorithms for time-oriented data in Visual Analytics. Its expressiveness and developer accessibility have been evaluated through application examples demonstrating a variety of challenges with time-oriented data and long-term developer studies conducted in the scope of research and student projects.
Environmental and forensic applications of field-portable GC-MS: an overview.
Eckenrode, B A
2001-06-01
GC-MS can provide analytical information that is most reliable for many types of organic analyses. As field-portable GC-MS analytical systems evolve, the application scenarios have diversified as well. With the development of rugged fieldable systems, these instruments were demonstrated to be usable in the harsh environment of the jungle and in chemical demilitarization or military reconnaissance situations. Continuous unattended operations of a GC-MS for 12- or 24-hour monitoring applications in the field have been shown to be possible. A real-time algorithm strategy is proposed, which can be developed to aid in the advancement of field-portable mass spectrometry applied to chemical warfare agent analysis in military vehicles and can be used to raise the standard for field data quality. Each of these capabilities is discussed with the intent on reviewing analysis situations that can be expanded because of developments in field GC-MS instrumentation.
NASA Astrophysics Data System (ADS)
Augustin, C. M.
2015-12-01
As the 2015 Paris climate talks near, policy discussions are focused on "intended nationally determined contributions" (INDCs) submitted in advance of the discussions. As the major global emitters - specifically the United States and China - have already submitted their INDCs, we have a point of comparison for evaluating the relative potential impacts of the proposed targets. By applying integrated assessment models to robust, publicly available data sets,we aim to evaluate the interplay between climate change and economic development, comment on emissions reduction scenarios in cooperative and non-cooperative situations, and assess the dynamic risks of multiple regional emissions scenarios. We use both the RICE model and the C-ROADS model to examine alternative regional outcomes for emissions, climate change, and damages,under different reduction scenarios, including a scenario where geo-engineering plays a prominent role. These simulators allow us to vary emissions, population, and economic levels in China and the United States specifically to comment on the international climate risk impact of actors working jointly - or not - toward a global climate goal. In a complementary piece of analysis we seek to understand the value judgments, trade-offs, and regional policies that would lead to favorable climate finance flows. To reach an international sample of industry decision-makers, we propose a novel application of a standard discrete-choice survey methodology. A conjoint analysis requires a participant to chose between combinations of attributes and identify trade-offs while allowing the researcher to determine the relative importance of each individual attribute by mathematically assessing the impact each attribute could have on total item utility. As climate policy negotiations will consist of allocation of scarce resources and rejection of certain attributes, a conjoint analysis is an ideal tool for evaluating policy outcomes. This research program seeks to provide a commentary useful to policy makers on the most desirable outcomes of the negotiations and other international cooperation.
On the future of carbonaceous aerosol emissions
NASA Astrophysics Data System (ADS)
Streets, D. G.; Bond, T. C.; Lee, T.; Jang, C.
2004-12-01
This paper presents the first model-based forecasts of future emissions of the primary carbonaceous aerosols, black carbon (BC) and organic carbon (OC). The forecasts build on a recent 1996 inventory of emissions that contains detailed fuel, technology, sector, and world-region specifications. The forecasts are driven by four IPCC scenarios, A1B, A2, B1, and B2, out to 2030 and 2050, incorporating not only changing patterns of fuel use but also technology development. Emissions from both energy generation and open biomass burning are included. We project that global BC emissions will decline from 8.0 Tg in 1996 to 5.3-7.3 Tg by 2030 and to 4.3-6.1 Tg by 2050, across the range of scenarios. We project that OC emissions will decline from 34 Tg in 1996 to 24-30 Tg by 2030 and to 21-28 Tg by 2050. The introduction of advanced technology with lower emission rates, as well as a shift away from the use of traditional solid fuels in the residential sector, more than offsets the increased combustion of fossil fuels worldwide. Environmental pressures and a diminishing demand for new agricultural land lead to a slow decline in the amount of open biomass burning. Although emissions of BC and OC are generally expected to decline around the world, some regions, particularly South America, northern Africa, the Middle East, South Asia, Southeast Asia, and Oceania, show increasing emissions in several scenarios. Particularly difficult to control are BC emissions from the transport sector, which increase under most scenarios. We expect that the BC/OC emission ratio for energy sources will rise from 0.5 to as much as 0.8, signifying a shift toward net warming of the climate system due to carbonaceous aerosols. When biomass burning is included, however, the BC/OC emission ratios are for the most part invariant across scenarios at about 0.2.
Land-Use Scenarios: National-Scale Housing-Density ...
EPA announced the availability of the final report, Land-Use Scenarios: National-Scale Housing-Density Scenarios Consistent with Climate Change Storylines. This report describes the scenarios and models used to generate national-scale housing density scenarios for the conterminous US to the year 2100 as part of the Integrated Climate and Land Use Scenarios (ICLUS) project. The report was prepared by the Global Change Research Program (GCRP) in the National Center for Environmental Assessment (NCEA) of the Office of Research and Development (ORD) at the U.S. Environmental Protection Agency (EPA). The ICLUS report describes the methods used to develop land-use scenarios by decade from the year 2000 to 2100 that are consistent with these storylines.
Stenberg, Karin; Hanssen, Odd; Edejer, Tessa Tan-Torres; Bertram, Melanie; Brindley, Callum; Meshreky, Andreia; Rosen, James E; Stover, John; Verboom, Paul; Sanders, Rachel; Soucat, Agnès
2017-09-01
The ambitious development agenda of the Sustainable Development Goals (SDGs) requires substantial investments across several sectors, including for SDG 3 (healthy lives and wellbeing). No estimates of the additional resources needed to strengthen comprehensive health service delivery towards the attainment of SDG 3 and universal health coverage in low-income and middle-income countries have been published. We developed a framework for health systems strengthening, within which population-level and individual-level health service coverage is gradually scaled up over time. We developed projections for 67 low-income and middle-income countries from 2016 to 2030, representing 95% of the total population in low-income and middle-income countries. We considered four service delivery platforms, and modelled two scenarios with differing levels of ambition: a progress scenario, in which countries' advancement towards global targets is constrained by their health system's assumed absorptive capacity, and an ambitious scenario, in which most countries attain the global targets. We estimated the associated costs and health effects, including reduced prevalence of illness, lives saved, and increases in life expectancy. We projected available funding by country and year, taking into account economic growth and anticipated allocation towards the health sector, to allow for an analysis of affordability and financial sustainability. We estimate that an additional $274 billion spending on health is needed per year by 2030 to make progress towards the SDG 3 targets (progress scenario), whereas US$371 billion would be needed to reach health system targets in the ambitious scenario-the equivalent of an additional $41 (range 15-102) or $58 (22-167) per person, respectively, by the final years of scale-up. In the ambitious scenario, total health-care spending would increase to a population-weighted mean of $271 per person (range 74-984) across country contexts, and the share of gross domestic product spent on health would increase to a mean of 7·5% (2·1-20·5). Around 75% of costs are for health systems, with health workforce and infrastructure (including medical equipment) as the main cost drivers. Despite projected increases in health spending, a financing gap of $20-54 billion per year is projected. Should funds be made available and used as planned, the ambitious scenario would save 97 million lives and significantly increase life expectancy by 3·1-8·4 years, depending on the country profile. All countries will need to strengthen investments in health systems to expand service provision in order to reach SDG 3 health targets, but even the poorest can reach some level of universality. In view of anticipated resource constraints, each country will need to prioritise equitably, plan strategically, and cost realistically its own path towards SDG 3 and universal health coverage. WHO. Copyright © 2017 World Health Organization; licensee Elsevier. This is an Open Access article published under the CC BY 3.0 IGO license which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In any use of this article, there should be no suggestion that WHO endorses any specific organisation, products or services. The use of the WHO logo is not permitted. This notice should be preserved along with the article's original URL.
NASA Astrophysics Data System (ADS)
Morris, Joseph W.; Lowry, Mac; Boren, Brett; Towers, James B.; Trimble, Darian E.; Bunfield, Dennis H.
2011-06-01
The US Army Aviation and Missile Research, Development and Engineering Center (AMRDEC) and the Redstone Test Center (RTC) has formed the Scene Generation Development Center (SGDC) to support the Department of Defense (DoD) open source EO/IR Scene Generation initiative for real-time hardware-in-the-loop and all-digital simulation. Various branches of the DoD have invested significant resources in the development of advanced scene and target signature generation codes. The SGDC goal is to maintain unlimited government rights and controlled access to government open source scene generation and signature codes. In addition, the SGDC provides development support to a multi-service community of test and evaluation (T&E) users, developers, and integrators in a collaborative environment. The SGDC has leveraged the DoD Defense Information Systems Agency (DISA) ProjectForge (https://Project.Forge.mil) which provides a collaborative development and distribution environment for the DoD community. The SGDC will develop and maintain several codes for tactical and strategic simulation, such as the Joint Signature Image Generator (JSIG), the Multi-spectral Advanced Volumetric Real-time Imaging Compositor (MAVRIC), and Office of the Secretary of Defense (OSD) Test and Evaluation Science and Technology (T&E/S&T) thermal modeling and atmospherics packages, such as EOView, CHARM, and STAR. Other utility packages included are the ContinuumCore for real-time messaging and data management and IGStudio for run-time visualization and scenario generation.
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Housner, Jerrold M.
1993-01-01
Recent advances in computer technology that are likely to impact structural analysis and design of flight vehicles are reviewed. A brief summary is given of the advances in microelectronics, networking technologies, and in the user-interface hardware and software. The major features of new and projected computing systems, including high performance computers, parallel processing machines, and small systems, are described. Advances in programming environments, numerical algorithms, and computational strategies for new computing systems are reviewed. The impact of the advances in computer technology on structural analysis and the design of flight vehicles is described. A scenario for future computing paradigms is presented, and the near-term needs in the computational structures area are outlined.
NASA Astrophysics Data System (ADS)
Hashimoto, S.; Fujita, T.; Nakayama, T.; Xu, K.
2007-12-01
There is an ongoing project on establishing environmental scenarios in Japan to evaluate middle to long-term environmental policy and technology options toward low carbon society. In this project, the time horizon of the scenarios is set for 2050 on the ground that a large part of social infrastructure in Japan is likely to be renovated by that time, and cities are supposed to play important roles in building low carbon society in Japan. This belief is held because cities or local governments could implement various policies and programs, such as land use planning and promotion of new technologies with low GHG emissions, which produce an effect in an ununiform manner, taking local socio-economic conditions into account, while higher governments, either national or prefectural, could impose environmental tax on electricity and gas to alleviate ongoing GHG emissions, which uniformly covers their jurisdictions. In order for local governments to devise and implement concrete administrative actions equipped with rational policies and technologies, referring the environmental scenarios developed for the entire nation, we need to localize the national scenarios, both in terms of spatial and temporal extent, so that they could better reflect local socio-economic and institutional conditions. In localizing the national scenarios, the participation of stakeholders is significant because they play major roles in shaping future society. Stakeholder participation in the localization process would bring both creative and realistic inputs on how future unfolds on a city scale. In this research, 1) we reviewed recent efforts on international and domestic scenario development to set a practical time horizon for a city-scale environmental scenario, which would lead to concrete environmental policies and programs, 2) designed a participatory scenario development/localization process, drawing on the framework of the 'Story-and-Simulation' or SAS approach, which Alcamo(2001) proposed, and 3) started implementing it to the city of Kawasaki, Kanagawa, Japan, in cooperation with municipal officials and stakeholders. The participatory process is to develop city-scale environmental scenarios toward low carbon society, referring international and domestic environmental scenarios. Though the scenario development is still in process, it has already brought practical knowledge about and experience on how to bridge scenarios developed for different temporal and spatial scales.
Advanced Nuclear Fuel Cycle Transitions: Optimization, Modeling Choices, and Disruptions
NASA Astrophysics Data System (ADS)
Carlsen, Robert W.
Many nuclear fuel cycle simulators have evolved over time to help understan the nuclear industry/ecosystem at a macroscopic level. Cyclus is one of th first fuel cycle simulators to accommodate larger-scale analysis with it liberal open-source licensing and first-class Linux support. Cyclus also ha features that uniquely enable investigating the effects of modeling choices o fuel cycle simulators and scenarios. This work is divided into thre experiments focusing on optimization, effects of modeling choices, and fue cycle uncertainty. Effective optimization techniques are developed for automatically determinin desirable facility deployment schedules with Cyclus. A novel method fo mapping optimization variables to deployment schedules is developed. Thi allows relationships between reactor types and scenario constraints to b represented implicitly in the variable definitions enabling the usage o optimizers lacking constraint support. It also prevents wasting computationa resources evaluating infeasible deployment schedules. Deployed power capacit over time and deployment of non-reactor facilities are also included a optimization variables There are many fuel cycle simulators built with different combinations o modeling choices. Comparing results between them is often difficult. Cyclus flexibility allows comparing effects of many such modeling choices. Reacto refueling cycle synchronization and inter-facility competition among othe effects are compared in four cases each using combinations of fleet of individually modeled reactors with 1-month or 3-month time steps. There are noticeable differences in results for the different cases. The larges differences occur during periods of constrained reactor fuel availability This and similar work can help improve the quality of fuel cycle analysi generally There is significant uncertainty associated deploying new nuclear technologie such as time-frames for technology availability and the cost of buildin advanced reactors. Historically, fuel cycle analysis has focused on answerin questions of fuel cycle feasibility and optimality. However, there has no been much work done to address uncertainty in fuel cycle analysis helpin answer questions of fuel cycle robustness. This work develops an demonstrates a methodology for evaluating deployment strategies whil accounting for uncertainty. Techniques are developed for measuring th hedging properties of deployment strategies under uncertainty. Additionally methods for using optimization to automatically find good hedging strategie are demonstrated.
Genetic Fuzzy Trees for Intelligent Control of Unmanned Combat Aerial Vehicles
NASA Astrophysics Data System (ADS)
Ernest, Nicholas D.
Fuzzy Logic Control is a powerful tool that has found great success in a variety of applications. This technique relies less on complex mathematics and more "expert knowledge" of a system to bring about high-performance, resilient, and efficient control through linguistic classification of inputs and outputs and if-then rules. Genetic Fuzzy Systems (GFSs) remove the need of this expert knowledge and instead rely on a Genetic Algorithm (GA) and have similarly found great success. However, the combination of these methods suffer severely from scalability; the number of rules required to control the system increases exponentially with the number of states the inputs and outputs can take. Therefor GFSs have thus far not been applicable to complex, artificial intelligence type problems. The novel Genetic Fuzzy Tree (GFT) method breaks down complex problems hierarchically, makes sub-decisions when possible, and thus greatly reduces the burden on the GA. This development significantly changes the field of possible applications for GFSs. Within this study, this is demonstrated through applying this technique to a difficult air combat problem. Looking forward to an autonomous Unmanned Combat Aerial Vehicle (UCAV) in the 2030 time-frame, it becomes apparent that the mission, flight, and ground controls will utilize the emerging paradigm of Intelligent Systems (IS); namely, the ability to learn, adapt, exhibit robustness in uncertain situations, make sense of the data collected in real-time and extrapolate when faced with scenarios significantly different from those used in training. LETHA (Learning Enhanced Tactical Handling Algorithm) was created to develop intelligent controllers for these advanced unmanned craft as the first GFT. A simulation space referred to as HADES (Hoplological Autonomous Defend and Engage Simulation) was created in which LETHA can train the UCAVs. Equipped with advanced sensors, a limited supply of Self-Defense Missiles (SDMs), and a recharging Laser Weapon System (LWS), these UCAVs can navigate a mission space, counter enemy threats, cope with losses in communications, and destroy mission-critical targets. Monte Carlo simulations of the resulting controllers were tested in mission scenarios that are distinct from the training scenarios to determine the training effectiveness in new environments and the presence of deep learning. Despite an incredibly large solution space, LETHA has demonstrated remarkable effectiveness in training intelligent controllers for the UCAV squadron and shown robustness to drastically changing states, uncertainty, and limited information while maintaining extreme levels of computational efficiency.
Advanced Planning for Tsunamis in California
NASA Astrophysics Data System (ADS)
Miller, K.; Wilson, R. I.; Larkin, D.; Reade, S.; Carnathan, D.; Davis, M.; Nicolini, T.; Johnson, L.; Boldt, E.; Tardy, A.
2013-12-01
The California Tsunami Program is comprised of the California Governor's Office of Emergency Services (CalOES) and the California Geological Survey (CGS) and funded through the National Tsunami Hazard Mitigation Program (NTHMP) and the Federal Emergency Management Agency (FEMA). The program works closely with the 20 coastal counties in California, as well as academic, and industry experts to improve tsunami preparedness and mitigation in shoreline communities. Inundation maps depicting 'worst case' inundation modeled from plausible sources around the Pacific were released in 2009 and have provided a foundation for public evacuation and emergency response planning in California. Experience during recent tsunamis impacting the state (Japan 2011, Chile 2010, Samoa 2009) has brought to light the desire by emergency managers and decision makers for even more detailed information ahead of future tsunamis. A solution to provide enhanced information has been development of 'playbooks' to plan for a variety of expected tsunami scenarios. Elevation 'playbook' lines can be useful for partial tsunami evacuations when enough information about forecast amplitude and arrival times is available to coastal communities and there is sufficient time to make more educated decisions about who to evacuate for a given scenario or actual event. NOAA-issued Tsunami Alert Bulletins received in advance of a distant event will contain an expected wave height (a number) for each given section of coast. Provision of four elevation lines for possible inundation enables planning for different evacuation scenarios based on the above number potentially alleviating the need for an 'all or nothing' decision with regard to evacuation. Additionally an analytical tool called FASTER is being developed to integrate storm, tides, modeling errors, and local tsunami run-up potential with the forecasted tsunami amplitudes in real-time when a tsunami Alert is sent out. Both of these products will help communities better implement evacuations and response activities for minor to moderate (less than maximum) tsunami events. A working group comprised of federal, state, and local governmental scientists, emergency managers, first responders, and community planners has explored details and delivery of the above tools for incorporation into emergency management protocols. The eventual outcome will be inclusion in plans, testing of protocols and methods via drills and exercises and application, as appropriate, during an impending tsunami event.
Recent Advances in Techniques for Hyperspectral Image Processing
NASA Technical Reports Server (NTRS)
Plaza, Antonio; Benediktsson, Jon Atli; Boardman, Joseph W.; Brazile, Jason; Bruzzone, Lorenzo; Camps-Valls, Gustavo; Chanussot, Jocelyn; Fauvel, Mathieu; Gamba, Paolo; Gualtieri, Anthony;
2009-01-01
Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than 30 years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspectral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the highdimensional nature of the data, and to integrate the spatial and spectral information. Performance of the discussed techniques is evaluated in different analysis scenarios. To satisfy time-critical constraints in specific applications, we also develop efficient parallel implementations of some of the discussed algorithms. Combined, these parts provide an excellent snapshot of the state-of-the-art in those areas, and offer a thoughtful perspective on future potentials and emerging challenges in the design of robust hyperspectral imaging algorithms
Performances of the PIPER scalable child human body model in accident reconstruction
Giordano, Chiara; Kleiven, Svein
2017-01-01
Human body models (HBMs) have the potential to provide significant insights into the pediatric response to impact. This study describes a scalable/posable approach to perform child accident reconstructions using the Position and Personalize Advanced Human Body Models for Injury Prediction (PIPER) scalable child HBM of different ages and in different positions obtained by the PIPER tool. Overall, the PIPER scalable child HBM managed reasonably well to predict the injury severity and location of the children involved in real-life crash scenarios documented in the medical records. The developed methodology and workflow is essential for future work to determine child injury tolerances based on the full Child Advanced Safety Project for European Roads (CASPER) accident reconstruction database. With the workflow presented in this study, the open-source PIPER scalable HBM combined with the PIPER tool is also foreseen to have implications for improved safety designs for a better protection of children in traffic accidents. PMID:29135997
Lo Russo, Giuseppe; Imbimbo, Martina; Corrao, Giulia; Proto, Claudia; Signorelli, Diego; Vitali, Milena; Ganzinelli, Monica; Botta, Laura; Zilembo, Nicoletta; de Braud, Filippo; Garassino, Marina Chiara
2017-08-29
The discovery of EGFR mutations and EML4-ALK gene rearrangements has radically changed the therapeutic scenario for patients with advanced non-small cell lung cancer. ALK and EGFR tyrosine-kinase inhibitors showed better activity and efficacy than standard chemotherapy in the first and second line treatment settings, leading to a clear advantage in overall survival of advanced non-small cell lung cancer patients harboring these genetic alterations. Historically the coexistence of EGFR mutations and EML4-ALK rearrangements in the same tumor has been described as virtually impossible. Nevertheless many recent observations seem to show that it is not true in all cases. In this review we will discuss the available literature data regarding this rare group of patients in order to give some suggestions useful for their clinical management. Furthermore we report here two cases of concomitant presence of both alterations that will help us in the development of discussion.
NASA Astrophysics Data System (ADS)
Garofalo, A. M.; Chan, V. S.; Prater, R.; Smith, S. P.; St. John, H. E.; Meneghini, O.
2013-10-01
A Fusion National Science Facility (FNSF) would complement ITER in addressing the community identified science and technology gaps to a commercially attractive DEMO, including breeding tritium and completing the fuel cycle, qualifying nuclear materials for high fluence, developing suitable materials for the plasma-boundary interface, and demonstrating power extraction. Steady-state plasma operation is highly desirable to address the requirements for fusion nuclear technology testing [1]. The Advanced Tokamak (AT) is a strong candidate for an FNSF as a consequence of its mature physics base, capability to address the key issues with a more compact device, and the direct relevance to an attractive target power plant. Key features of AT are fully noninductive current drive, strong plasma cross section shaping, internal profiles consistent with high bootstrap fraction, and operation at high beta, typically above the free boundary limit, βN > 3 . Work supported by GA IR&D funding, DE-FC02-04ER54698, and DE-FG02-95ER43309.
The Effects of a Dynamic Spectrum Access Overlay in LTE-Advanced Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juan D. Deaton; Ryan E. Irwin; Luiz A. DaSilva
As early as 2014, mobile network operators’ spectral capacity will be overwhelmed by the demand brought on by new devices and applications. To augment capacity and meet this demand, operators may choose to deploy a Dynamic Spectrum Access (DSA) overlay. The signaling and functionality required by such an overlay have not yet been fully considered in the architecture of the planned Long Term Evolution Advanced (LTE+) networks. This paper presents a Spectrum Accountability framework to be integrated into LTE+ architectures, defining specific element functionality, protocol interfaces, and signaling flow diagrams required to enforce the rights and responsibilities of primary andmore » secondary users. We also quantify, through integer programs, the benefits of using DSA channels to augment capacity under a scenario in which LTE+ network can opportunistically use TV and GSM spectrum. The framework proposed here may serve as a guide in the development of future LTE+ network standards that account for DSA.« less
[Technical advancements in cochlear implants : State of the art].
Büchner, A; Gärtner, L
2017-04-01
Twenty years ago, cochlear implants (CI) were indicated only in cases of profound hearing loss or complete deafness. While from today's perspective the technology was clumsy and provided patients with only limited speech comprehension in quiet scenarios, successive advances in CI technology and the consequent substantial hearing improvements over time have since then resulted in continuous relaxation of indication criteria toward residual hearing. While achievements in implant and processor electronics have been one key factor for the ever-improving hearing performance, development of electro-acoustic CI systems-together with atraumatic implantation concepts-has led to enormous improvements in patients with low-frequency residual hearing. Manufactures have designed special processors with integrated hearing aid components for this patient group, which are capable of conveying acoustic and electric stimulation. A further milestone in improvement of hearing in challenging listening environments was the adoption of signal enhancement algorithms and assistive listening devices from the hearing aid industry. This article gives an overview of the current state of the art in the abovementioned areas of CI technology.
Avoiding the Achilles heel of network-centric enterprises
NASA Astrophysics Data System (ADS)
McVey, Michelle; Dryer, Jay E.; Randall, Lance
2003-08-01
Corporate, government and military bodies focus significant resources to develop sophisticated and capable information-based systems. The concept of people and resources connected by a robust network capable of extremely high rates of information exchange is very attractive because it allows smaller groups to coordinate together and focus effects from geographically diverse locations. However, there is also a hidden danger that comes with such advanced technology. For example, in the case of the U.S. Military, clearly United States holds a technological advantage over our adversaries and that this advantage is still expanding. This technology gap has resulted in the emergence of potent asymmetrical warfare. All too often in science fiction movies, we see a small group of humans defeat a technologically superior alien race by striking at a hidden weakness that renders all of their advanced weapons as useless, as a result of pervasive connectivity and interdependence. The analogy holds for any large network-centric enterprise, corporate or governmental. This paper focuses on specific technologies and methods that preempt this Achilles Heal scenario.
Hydrological Scenario Using Tools and Applications Available in enviroGRIDS Portal
NASA Astrophysics Data System (ADS)
Bacu, V.; Mihon, D.; Stefanut, T.; Rodila, D.; Cau, P.; Manca, S.; Soru, C.; Gorgan, D.
2012-04-01
Nowadays the decision makers but also citizens are concerning with the sustainability and vulnerability of land management practices on various aspects and in particular on water quality and quantity in complex watersheds. The Black Sea Catchment is an important watershed in the Central and East Europe. In the FP7 project enviroGRIDS [1] was developed a Web Portal that incorporates different tools and applications focused on geospatial data management, hydrologic model calibration, execution and visualization and training activities. This presentation highlights, from the end-user point of view, the scenario related with hydrological models using the tools and applications available in the enviroGRIDS Web Portal [2]. The development of SWAT (Soil Water Assessment Tool) hydrological models is a well known procedure for the hydrological specialists [3]. Starting from the primary data (information related to weather, soil properties, topography, vegetation, and land management practices of the particular watershed) that are used to develop SWAT hydrological models, to specific reports, about the water quality in the studied watershed, the hydrological specialist will use different applications available in the enviroGRIDS portal. The tools and applications available through the enviroGRIDS portal are not dealing with the building up of the SWAT hydrological models. They are mainly focused on: calibration procedure (gSWAT [4]) - uses the GRID computational infrastructure to speed-up the calibration process; development of specific scenarios (BASHYT [5]) - starts from an already calibrated SWAT hydrological model and defines new scenarios; execution of scenarios (gSWATSim [6]) - executes the scenarios exported from BASHYT; visualization (BASHYT) - displays charts, tables and maps. Each application is built-up as a stack of functional layers. We combine different layers of applications by vertical interoperability in order to build the desired complex functionality. On the other hand, the applications can collaborate at the same architectural levels, which represent the horizontal interoperability. Both the horizontal and vertical interoperability is accomplished by services and by exchanging data. The calibration procedure requires huge computational resources, which are provided by the Grid infrastructure. On the other hand the scenario development through BASHYT requires a flexible way of interaction with the SWAT model in order to easily change the input model. The large user community of SWAT from the enviroGRIDS consortium or outside may greatly benefit from tools and applications related with the calibration process, scenario development and execution from the enviroGRIDS portal. [1]. enviroGRIDS project, http://envirogrids.net/ [2]. Gorgan D., Abbaspour K., Cau P., Bacu V., Mihon D., Giuliani G., Ray N., Lehmann A., Grid Based Data Processing Tools and Applications for Black Sea Catchment Basin. IDAACS 2011 - The 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications 15-17 September 2011, Prague. IEEE Computer Press, pp. 223 - 228 (2011). [3]. Soil and Water Assessment Tool, http://www.brc.tamus.edu/swat/index.html [4]. Bacu V., Mihon D., Rodila D., Stefanut T., Gorgan D., Grid Based Architectural Components for SWAT Model Calibration. HPCS 2011 - International Conference on High Performance Computing and Simulation, 4-8 July, Istanbul, Turkey, ISBN 978-1-61284-381-0, doi: 10.1109/HPCSim.2011.5999824, pp. 193-198 (2011). [5]. Manca S., Soru C., Cau P., Meloni G., Fiori M., A multi model and multiscale, GIS oriented Web framework based on the SWAT model to face issues of water and soil resource vulnerability. Presentation at the 5th International SWAT Conference, August 3-7, 2009, http://www.brc.tamus.edu/swat/4thswatconf/docs/rooma/session5/Cau-Bashyt.pdf [6]. Bacu V., Mihon D., Stefanut T., Rodila D., Gorgan D., Cau P., Manca S., Grid Based Services and Tools for Hydrological Model Processing and Visualization. SYNASC 2011 - 13 International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (in press).
Probabilistic Tsunami Hazard Assessment: the Seaside, Oregon Pilot Study
NASA Astrophysics Data System (ADS)
Gonzalez, F. I.; Geist, E. L.; Synolakis, C.; Titov, V. V.
2004-12-01
A pilot study of Seaside, Oregon is underway, to develop methodologies for probabilistic tsunami hazard assessments that can be incorporated into Flood Insurance Rate Maps (FIRMs) developed by FEMA's National Flood Insurance Program (NFIP). Current NFIP guidelines for tsunami hazard assessment rely on the science, technology and methodologies developed in the 1970s; although generally regarded as groundbreaking and state-of-the-art for its time, this approach is now superseded by modern methods that reflect substantial advances in tsunami research achieved in the last two decades. In particular, post-1990 technical advances include: improvements in tsunami source specification; improved tsunami inundation models; better computational grids by virtue of improved bathymetric and topographic databases; a larger database of long-term paleoseismic and paleotsunami records and short-term, historical earthquake and tsunami records that can be exploited to develop improved probabilistic methodologies; better understanding of earthquake recurrence and probability models. The NOAA-led U.S. National Tsunami Hazard Mitigation Program (NTHMP), in partnership with FEMA, USGS, NSF and Emergency Management and Geotechnical agencies of the five Pacific States, incorporates these advances into site-specific tsunami hazard assessments for coastal communities in Alaska, California, Hawaii, Oregon and Washington. NTHMP hazard assessment efforts currently focus on developing deterministic, "credible worst-case" scenarios that provide valuable guidance for hazard mitigation and emergency management. The NFIP focus, on the other hand, is on actuarial needs that require probabilistic hazard assessments such as those that characterize 100- and 500-year flooding events. There are clearly overlaps in NFIP and NTHMP objectives. NTHMP worst-case scenario assessments that include an estimated probability of occurrence could benefit the NFIP; NFIP probabilistic assessments of 100- and 500-yr events could benefit the NTHMP. The joint NFIP/NTHMP pilot study at Seaside, Oregon is organized into three closely related components: Probabilistic, Modeling, and Impact studies. Probabilistic studies (Geist, et al., this session) are led by the USGS and include the specification of near- and far-field seismic tsunami sources and their associated probabilities. Modeling studies (Titov, et al., this session) are led by NOAA and include the development and testing of a Seaside tsunami inundation model and an associated database of computed wave height and flow velocity fields. Impact studies (Synolakis, et al., this session) are led by USC and include the computation and analyses of indices for the categorization of hazard zones. The results of each component study will be integrated to produce a Seaside tsunami hazard map. This presentation will provide a brief overview of the project and an update on progress, while the above-referenced companion presentations will provide details on the methods used and the preliminary results obtained by each project component.
NASA Astrophysics Data System (ADS)
Mourhatch, Ramses
This thesis examines collapse risk of tall steel braced frame buildings using rupture-to-rafters simulations due to suite of San Andreas earthquakes. Two key advancements in this work are the development of (i) a rational methodology for assigning scenario earthquake probabilities and (ii) an artificial correction-free approach to broadband ground motion simulation. The work can be divided into the following sections: earthquake source modeling, earthquake probability calculations, ground motion simulations, building response, and performance analysis. As a first step the kinematic source inversions of past earthquakes in the magnitude range of 6-8 are used to simulate 60 scenario earthquakes on the San Andreas fault. For each scenario earthquake a 30-year occurrence probability is calculated and we present a rational method to redistribute the forecast earthquake probabilities from UCERF to the simulated scenario earthquake. We illustrate the inner workings of the method through an example involving earthquakes on the San Andreas fault in southern California. Next, three-component broadband ground motion histories are computed at 636 sites in the greater Los Angeles metropolitan area by superposing short-period (0.2s-2.0s) empirical Green's function synthetics on top of long-period (> 2.0s) spectral element synthetics. We superimpose these seismograms on low-frequency seismograms, computed from kinematic source models using the spectral element method, to produce broadband seismograms. Using the ground motions at 636 sites for the 60 scenario earthquakes, 3-D nonlinear analysis of several variants of an 18-story steel braced frame building, designed for three soil types using the 1994 and 1997 Uniform Building Code provisions and subjected to these ground motions, are conducted. Model performance is classified into one of five performance levels: Immediate Occupancy, Life Safety, Collapse Prevention, Red-Tagged, and Model Collapse. The results are combined with the 30-year probability of occurrence of the San Andreas scenario earthquakes using the PEER performance based earthquake engineering framework to determine the probability of exceedance of these limit states over the next 30 years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vimmerstedt, Laura; Peterson, Steve; Bush, Brian
This paper (and its supplemental model) presents novel approaches to modeling interactions and related policies among investment, production, and learning in an emerging competitive industry. New biomass-to-biofuels pathways are being developed and commercialized to support goals for U.S. advanced biofuel use, such as those in the Energy Independence and Security Act of 2007. We explore the impact of learning rates and techno-economics in a learning model excerpted from the Biomass Scenario Model (BSM), developed by the U.S. Department of Energy and the National Renewable Energy Laboratory to explore the impact of biofuel policy on the evolution of the biofuels industry.more » The BSM integrates investment, production, and learning among competing biofuel conversion options that are at different stages of industrial development. We explain the novel methods used to simulate the impact of differing assumptions about mature industry techno-economics and about learning rates while accounting for the different maturity levels of various conversion pathways. A sensitivity study shows that the parameters studied (fixed capital investment, process yield, progress ratios, and pre-commercial investment) exhibit highly interactive effects, and the system, as modeled, tends toward market dominance of a single pathway due to competition and learning dynamics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vimmerstedt, Laura J.; Bush, Brian W.; Peterson, Steven O.
This paper (and its supplemental model) presents novel approaches to modeling interactions and related policies among investment, production, and learning in an emerging competitive industry. New biomass-to-biofuels pathways are being developed and commercialized to support goals for U.S. advanced biofuel use, such as those in the Energy Independence and Security Act of 2007. We explore the impact of learning rates and techno-economics in a learning model excerpted from the Biomass Scenario Model (BSM), developed by the U.S. Department of Energy and the National Renewable Energy Laboratory to explore the impact of biofuel policy on the evolution of the biofuels industry.more » The BSM integrates investment, production, and learning among competing biofuel conversion options that are at different stages of industrial development. We explain the novel methods used to simulate the impact of differing assumptions about mature industry techno-economics and about learning rates while accounting for the different maturity levels of various conversion pathways. A sensitivity study shows that the parameters studied (fixed capital investment, process yield, progress ratios, and pre-commercial investment) exhibit highly interactive effects, and the system, as modeled, tends toward market dominance of a single pathway due to competition and learning dynamics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Steve; Bush, Brian; Vimmerstedt, Laura
This paper (and its supplemental model) presents novel approaches to modeling interactions and related policies among investment, production, and learning in an emerging competitive industry. New biomass-to-biofuels pathways are being developed and commercialized to support goals for U.S. advanced biofuel use, such as those in the Energy Independence and Security Act of 2007. We explore the impact of learning rates and techno-economics in a learning model excerpted from the Biomass Scenario Model (BSM), developed by the U.S. Department of Energy and the National Renewable Energy Laboratory to explore the impact of biofuel policy on the evolution of the biofuels industry.more » The BSM integrates investment, production, and learning among competing biofuel conversion options that are at different stages of industrial development. We explain the novel methods used to simulate the impact of differing assumptions about mature industry techno-economics and about learning rates while accounting for the different maturity levels of various conversion pathways. A sensitivity study shows that the parameters studied (fixed capital investment, process yield, progress ratios, and pre-commercial investment) exhibit highly interactive effects, and the system, as modeled, tends toward market dominance of a single pathway due to competition and learning dynamics.« less
NASA Astrophysics Data System (ADS)
Cullipher, Steven Gene
Green chemistry is a philosophy of chemistry that emphasizes a decreasing dependence on limited non-renewable resources and an increasing focus on preventing pollution byproducts of the chemical industry. In short, it is the discipline of chemistry practiced through the lens of environmental stewardship. In an effort to advance the practice of green chemistry, three studies will be described that have ramifications for the practice. The first study examines the atmospheric oxidation of a hydrofluorinated ether, a third-generation CFC replacement compound with primarily unknown atmospheric degradation products. Determination of these products has the potential to impact decisions on refrigerant usage in the future. The second study examines chemistry students' development of understanding benefits-costs-risks analysis when presented with two real-world scenarios: refrigerant choice and fuel choice. By studying how benefits-costs-risks thinking develops, curricular materials and instructional approaches can be designed to better foster the development of an ability that is both necessary for green chemists and important in daily decision-making for non-chemists. The final study uses eye tracking technology to examine students' abilities to interpret molecular properties from structural information in the context of global warming. Such abilities are fundamental if chemists are to appropriately assess risks and hazards of chemistry practice.
Performance of residents and anesthesiologists in a simulation-based skill assessment.
Murray, David J; Boulet, John R; Avidan, Michael; Kras, Joseph F; Henrichs, Bernadette; Woodhouse, Julie; Evers, Alex S
2007-11-01
Anesthesiologists and anesthesia residents are expected to acquire and maintain skills to manage a wide range of acute intraoperative anesthetic events. The purpose of this study was to determine whether an inventory of simulated intraoperative scenarios provided a reliable and valid measure of anesthesia residents' and anesthesiologists' skill. Twelve simulated acute intraoperative scenarios were designed to assess the performance of 64 residents and 35 anesthesiologists. The participants were divided into four groups based on their training and experience. There were 31 new CA-1, 12 advanced CA-1, and 22 CA-2/CA-3 residents as well as a group of 35 experienced anesthesiologists who participated in the assessment. Each participant managed a set of simulated events. The advanced CA-1 residents, CA-2/CA-3 residents, and 35 anesthesiologists managed 8 of 12 intraoperative simulation exercises. The 31 CA-1 residents each managed 3 intraoperative scenarios. The new CA-1 residents received lower scores on the simulated intraoperative events than the other groups of participants. The advanced CA-1 residents, CA-2/CA-3 residents, and anesthesiologists performed similarly on the overall assessment. There was a wide range of scores obtained by individuals in each group. A number of the exercises were difficult for the majority of participants to recognize and treat, but most events effectively discriminated among participants who achieved higher and lower overall scores. This simulation-based assessment provided a valid method to distinguish the skills of more experienced anesthesia residents and anesthesiologists from residents in early training. The overall score provided a reliable measure of a participant's ability to recognize and manage simulated acute intraoperative events. Additional studies are needed to determine whether these simulation-based assessments are valid measures of clinical performance.
Recent advances in research on climate and human conflict
NASA Astrophysics Data System (ADS)
Hsiang, S. M.
2014-12-01
A rapidly growing body of empirical, quantitative research examines whether rates of human conflict can be systematically altered by climatic changes. We discuss recent advances in this field, including Bayesian meta-analyses of the effect of temperature and rainfall on current and future large-scale conflicts, the impact of climate variables on gang violence and suicides in Mexico, and probabilistic projections of personal violence and property crime in the United States under RCP scenarios. Criticisms of this research field will also be explained and addressed.
Comparison of the results of climate change impact assessment between RCP8.5 and SSP2 scenarios
NASA Astrophysics Data System (ADS)
Lee, D. K.; Park, J. H.; Park, C.; Kim, S.
2017-12-01
Climate change scenarios are mainly published by the Intergovernmental Panel on Climate Change (IPCC), and include SRES (Special Report on Emission Scenario) scenarios (IPCC Third Report), RCP (Representative Concentration Pathways) scenarios (IPCC 5th Report), and SSP (Shared Socioeconomic Pathways) scenarios. Currently widely used RCP scenarios are based on how future greenhouse gas concentrations will change. In contrast, SSP scenarios are that predict how climate change will change in response to socio-economic indicators such as population, economy, land use, and energy change. In this study, based on RCP 8.5 climate data, we developed a new Korean scenario using the future social and economic scenarios of SSP2. In the development of the scenario, not only Korea's emissions but also China and Japan's emissions were considered in terms of space. In addition, GHG emissions and air pollutant emissions were taken into consideration. Using the newly developed scenarios, the impacts assessments of the forest were evaluated and the impacts were evaluated using the RCP scenarios. The average precipitation is similar to the SSP2 scenario and the RCP8.5 scenario, but the SSP2 scenario shows the maximum value is lower than RCP8.5 scenario. This is because the SSP2 scenario simulates the summer precipitation weakly. The temperature distribution is similar for both scenarios, and it can be seen that the average temperature in the 2090s is higher than that in the 2050s. At present, forest net primary productivity of Korea is 693 tC/km2, and it is 679 tC/km2 when SSP2 scenario is applied. Also, the damage of forest by ozone is about 4.1-5.1%. On the other hand, when SSP2 scenario is applied, the forest net primary productivity of Korea is 607 tC/km2 and the forest net primary productivity of RCP8.5 scenario is 657 tC/km2. The analysis shows that the damage caused by climate change is reduced by 14.2% for the SSP2 scenario and 6.9% for the RCP8.5 scenario. The damage caused by ozone was about 5.0-5.6% in the SSP2 scenario and 3.8-4.2% in the RCP scenario.
Nguyen, T T H; Doreau, M; Eugène, M; Corson, M S; Garcia-Launay, F; Chesneau, G; van der Werf, H M G
2013-05-01
This study evaluated effects of farming practice scenarios aiming to reduce greenhouse gas (GHG) emissions and subsequent alternative land use on environmental impacts of a beef cattle production system using the life cycle assessment approach. The baseline scenario includes a standard cow-calf herd with finishing heifers based on grazing, and a standard bull-fattening herd using a diet mainly based on maize silage, corresponding to current farm characteristics and management by beef farmers in France. Alternative scenarios were developed with changes in farming practices. Some scenarios modified grassland management (S1: decreasing mineral N fertiliser on permanent grassland; S2: decreasing grass losses during grazing) or herd management (S3: underfeeding of heifers in winter; S4: fattening female calves instead of being reared at a moderate growth rate; S5: increasing longevity of cows from 7 to 9 years; S6: advancing first calving age from 3 to 2 years). Other scenarios replaced protein sources (S7: partially replacing a protein supplement by lucerne hay for the cow-calf herd; S8: replacing soya bean meal with rapeseed meal for the fattening herd) or increased n-3 fatty acid content using extruded linseed (S9). The combination of compatible scenarios S1, S2, S5, S6 and S8 was also studied (S10). The impacts, such as climate change (CC, not including CO2 emissions/sequestration of land use and land-use change, LULUC), CC/LULUC (including CO2 emissions of LULUC), cumulative energy demand, eutrophication (EP), acidification and land occupation (LO) were expressed per kg of carcass mass and per ha of land occupied. Compared with the baseline, the most promising practice to reduce impacts per kg carcass mass was S10 (all reduced by 13% to 28%), followed by S6 (by 8% to 10%). For other scenarios, impact reduction did not exceed 5%, except for EP (up to 11%) and LO (up to 10%). Effects of changes in farming practices (the scenarios) on environmental impacts varied according to impact category and functional unit. For some scenarios (S2, S4, S6 and S10), permanent grassland area and LO per kg of carcass decreased by 12% to 23% and 9% to 19%, respectively. If the 'excess' permanent grassland was converted to fast-growing conifer forest to sequester carbon in tree and soil biomass, CC/LULUC per kg of carcass could be reduced by 20%, 25%, 27% and 48% for scenarios S2, S4, S6 and S10, respectively. These results illustrate the potential of farming practices and forest as an alternative land use to contribute to short- and mid-term GHG mitigation of beef cattle production systems.
Gilfoyle, Elaine; Koot, Deanna A; Annear, John C; Bhanji, Farhan; Cheng, Adam; Duff, Jonathan P; Grant, Vincent J; St George-Hyslop, Cecilia E; Delaloye, Nicole J; Kotsakis, Afrothite; McCoy, Carolyn D; Ramsay, Christa E; Weiss, Matthew J; Gottesman, Ronald D
2017-02-01
To measure the effect of a 1-day team training course for pediatric interprofessional resuscitation team members on adherence to Pediatric Advanced Life Support guidelines, team efficiency, and teamwork in a simulated clinical environment. Multicenter prospective interventional study. Four tertiary-care children's hospitals in Canada from June 2011 to January 2015. Interprofessional pediatric resuscitation teams including resident physicians, ICU nurse practitioners, registered nurses, and registered respiratory therapists (n = 300; 51 teams). A 1-day simulation-based team training course was delivered, involving an interactive lecture, group discussions, and four simulated resuscitation scenarios, each followed by a debriefing. The first scenario of the day (PRE) was conducted prior to any team training. The final scenario of the day (POST) was the same scenario, with a slightly modified patient history. All scenarios included standardized distractors designed to elicit and challenge specific teamwork behaviors. Primary outcome measure was change (before and after training) in adherence to Pediatric Advanced Life Support guidelines, as measured by the Clinical Performance Tool. Secondary outcome measures were as follows: 1) change in times to initiation of chest compressions and defibrillation and 2) teamwork performance, as measured by the Clinical Teamwork Scale. Correlation between Clinical Performance Tool and Clinical Teamwork Scale scores was also analyzed. Teams significantly improved Clinical Performance Tool scores (67.3-79.6%; p < 0.0001), time to initiation of chest compressions (60.8-27.1 s; p < 0.0001), time to defibrillation (164.8-122.0 s; p < 0.0001), and Clinical Teamwork Scale scores (56.0-71.8%; p < 0.0001). A positive correlation was found between Clinical Performance Tool and Clinical Teamwork Scale (R = 0.281; p < 0.0001). Participation in a simulation-based team training educational intervention significantly improved surrogate measures of clinical performance, time to initiation of key clinical tasks, and teamwork during simulated pediatric resuscitation. A positive correlation between clinical and teamwork performance suggests that effective teamwork improves clinical performance of resuscitation teams.
Life Cycle Assessment of Mixed Municipal Solid Waste: Multi-input versus multi-output perspective.
Fiorentino, G; Ripa, M; Protano, G; Hornsby, C; Ulgiati, S
2015-12-01
This paper analyses four strategies for managing the Mixed Municipal Solid Waste (MMSW) in terms of their environmental impacts and potential advantages by means of Life Cycle Assessment (LCA) methodology. To this aim, both a multi-input and a multi-output approach are applied to evaluate the effect of these perspectives on selected impact categories. The analyzed management options include direct landfilling with energy recovery (S-1), Mechanical-Biological Treatment (MBT) followed by Waste-to-Energy (WtE) conversion (S-2), a combination of an innovative MBT/MARSS (Material Advanced Recovery Sustainable Systems) process and landfill disposal (S-3), and finally a combination of the MBT/MARSS process with WtE conversion (S-4). The MARSS technology, developed within an European LIFE PLUS framework and currently implemented at pilot plant scale, is an innovative MBT plant having the main goal to yield a Renewable Refined Biomass Fuel (RRBF) to be used for combined heat and power production (CHP) under the regulations enforced for biomass-based plants instead of Waste-to-Energy systems, for increased environmental performance. The four scenarios are characterized by different resource investment for plant and infrastructure construction and different quantities of matter, heat and electricity recovery and recycling. Results, calculated per unit mass of waste treated and per unit exergy delivered, under both multi-input and multi-output LCA perspectives, point out improved performance for scenarios characterized by increased matter and energy recovery. Although none of the investigated scenarios is capable to provide the best performance in all the analyzed impact categories, the scenario S-4 shows the best LCA results in the human toxicity and freshwater eutrophication categories, i.e. the ones with highest impacts in all waste management processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Impact of irrigations on simulated convective activity over Central Greece: A high resolution study
NASA Astrophysics Data System (ADS)
Kotsopoulos, S.; Tegoulias, I.; Pytharoulis, I.; Kartsios, S.; Bampzelis, D.; Karacostas, T.
2014-12-01
The aim of this research is to investigate the impact of irrigations in the characteristics of convective activity simulated by the non-hydrostatic Weather Research and Forecasting model with the Advanced Research dynamic solver (WRF-ARW, version 3.5.1), under different upper air synoptic conditions in central Greece. To this end, 42 cases equally distributed under the six most frequent upper air synoptic conditions, which are associated with convective activity in the region of interest, were utilized considering two different soil moisture scenarios. In the first scenario, the model was initialized with the surface soil moisture of the ECMWF analysis data that usually does not take into account the modification of soil moisture due to agricultural activity in the area of interest. In the second scenario, the soil moisture in the upper soil layers of the study area was modified to the field capacity for the irrigated cropland. Three model domains, covering Europe, the Mediterranean Sea and northern Africa (d01), the wider area of Greece (d02) and central Greece - Thessaly region (d03) are used at horizontal grid-spacings of 15km, 5km and 1km respectively. The model numerical results indicate a strong dependence of convective spatiotemporal characteristics from the soil moisture difference between the two scenarios. Acknowledgements: This research is co-financed by the European Union (European Regional Development Fund) and Greek national funds, through the action "COOPERATION 2011: Partnerships of Production and Research Institutions in Focused Research and Technology Sectors" (contract number 11SYN_8_1088 - DAPHNE) in the framework of the operational programme "Competitiveness and Entrepreneurship" and Regions in Transition (OPC II, NSRF 2007-2013).
Smith, Michael W; Bentley, Melissa A; Fernandez, Antonio R; Gibson, Gregory; Schweikhart, Sharon B; Woods, David D
2013-10-01
Out-of-hospital care is becoming more complex, thus placing greater reliance on the cognitive abilities of paramedics to manage difficult situations. In adapting to the challenges in their work, paramedics develop expertise. We study the cognitive strategies used by expert paramedics to contribute to understanding how paramedics and the EMS system can adapt to new challenges. We conducted a "staged-world" cognitive task analysis to explore paramedics' handling of cognitive challenges related to sense-making and to resource and task management. A mixed-fidelity simulation was used to present paramedics with 2 challenging scenarios: a pulmonary embolism initially presenting as a myocardial infarction and a 2-person shooting with limited resources available. Participants were 10 paramedics, 6 more experienced and 4 less experienced. Analysis involved comparing the performance of the 2 groups to identify strategies associated with expertise. The more experienced paramedics made more assessments, explored a wider variety of presumptive diagnoses, and identified the pulmonary embolism earlier. They switched attention between the 2 shooting victims more, used their emergency medical technician-basic level partners more, and provided more advanced level care for both patients. Their patients arrived at the emergency department more prepared for specialized emergency care. Our findings correspond to general cognitive attributes of expertise: greater cue gathering and inferential reasoning, and more functional and strategic thinking. These results suggest potential areas and methods to facilitate development of expertise, as well as ways to better support use of expertise. Future studies should expand on these findings through larger sample sizes and more complex scenarios. Copyright © 2013 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.
Developing a Simulation-Based Training Program for Non-Traditional Caregivers
NASA Technical Reports Server (NTRS)
Bacal, Kira; Miller, RObert; Doerr, Harold
2004-01-01
Simulation-based training enables learning in controlled environments which nevertheless mimic real-world scenarios. It has proven effective in the training of medical personnel and affords rapid assimilation and integration of necessary skills. Non-traditional caregivers often operate in austere environments, where resource and personnel limitations preclude more standard provision of care by highly trained and fully equipped health care teams. In these settings, training time for the caregivers may be limited, with long gaps between time of the training and use of the skills, a limited grasp of the underlying physiology, and unfamiliarity with "medical English" which can render it difficult to communicate concepts to more advanced practitioners when such interaction can take place, as for example, when telemedicine can be used to project medical skills further forward . Methods: Simulation-based training can assist in the familiarization of caregivers to the environment, ensure adequate execution of skills at the appropriate time(s), and allow practice of telemedicine communication patterns between the mentor and caregiver. Results: Scenario-based training can and has been used for initial and sustainment training modules, including self-taught modules for use in the field. Strict identification of the critical concepts is vital, as is development and practice of technically simple procedures wherever possible. Medical devices can off-load tasks from caregivers, as well as to minimize the necessary level of caregiver knowledge, while integrated simulations among all members of the mission team can improve communication and efficiency. Discuss ion: Nontraditional caregivers face unique challenges when learning to provide medical care. Scenario-based curricula allow lesson plans to be tailored to each group's individual needs, as well as being suited for the participation of numerous groups, including the caregiver, evacuation/transport staff, decision-makers, and hospital-based physician.
Telestroke ambulances in prehospital stroke management: concept and pilot feasibility study.
Liman, Thomas G; Winter, Benjamin; Waldschmidt, Carolin; Zerbe, Norman; Hufnagl, Peter; Audebert, Heinrich J; Endres, Matthias
2012-08-01
Pre- and intrahospital time delays are major concerns in acute stroke care. Telemedicine-equipped ambulances may improve time management and identify patients with stroke eligible for thrombolysis by an early prehospital stroke diagnosis. The aims of this study were (1) to develop a telestroke ambulance prototype; (2) to test the reliability of stroke severity assessment; and (3) to evaluate its feasibility in the prehospital emergency setting. Mobil, real-time audio-video streaming telemedicine devices were implemented into advanced life support ambulances. Feasibility of telestroke ambulances and reliability of the National Institutes of Health Stroke Scale assessment were tested using current wireless cellular communication technology (third generation) in a prehospital stroke scenario. Two stroke actors were trained in simulation of differing right and left middle cerebral artery stroke syndromes. National Institutes of Health Stroke Scale assessment was performed by a hospital-based stroke physician by telemedicine, by an emergency physician guided by telemedicine, and "a posteriori" on the basis of video documentation. In 18 of 30 scenarios, National Institutes of Health Stroke Scale assessment could not be performed due to absence or loss of audio-video signal. In the remaining 12 completed scenarios, interrater agreement of National Institutes of Health Stroke Scale examination between ambulance and hospital and ambulance and "a posteriori" video evaluation was moderate to good with weighted κ values of 0.69 (95% CI, 0.51-0.87) and 0.79 (95% CI, 0.59-0.98), respectively. Prehospital telestroke examination was not at an acceptable level for clinical use, at least on the basis of the used technology. Further technical development is needed before telestroke is applicable for prehospital stroke management during patient transport.
Crowe, Sonya; Utley, Martin; Walker, Guy; Grove, Peter; Pagel, Christina
2011-07-12
A mathematical model has been developed for the purpose of evaluating vaccination against pneumococcus as a countermeasure against pandemic influenza. As the characteristics of a future pandemic cannot be known in advance, three distinct pandemic scenarios were considered, corresponding to a 1918-like pandemic, a 1957/1968-like pandemic and a 2009-like pandemic. Model estimates for each of these pandemic scenarios are presented for two options of vaccination programme; universal vaccination of the entire UK population and vaccination only of those people considered to be at heightened risk of developing influenza complications. We find that the benefits of each option (in terms of estimated number of deaths and hospital admissions avoided and the courses of antibiotics saved) are high in a 1918-like pandemic and very small in a 2009-like pandemic. Given that the decision regarding deployment of the counter measure would occur prior to knowledge of the flu-strain characteristics being available, we also present the weighted average of the outcomes from the three pandemic scenarios. Based on the historical occurrence of pandemics over the last 100 years, the weighted average of outcomes is an estimated 1400 deaths prevented by the universal vaccination option and 400 deaths saved by the targeted vaccination option (at a cost of approximately 400 million and 50 million courses of vaccine respectively). Finally, the longer term implications of using PPV as a countermeasure against pandemic influenza have been considered by estimating the expected number of courses of vaccine bought and the expected number of deaths and hospital admissions prevented over time under each policy. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Stone, Robert J.
1991-01-01
Space Telerobotics research, performed under contract to the European Space Agency (ESA), concerning the execution of human factors experiments, and ultimately leading to the development of a telerobotics test bed, has been carried out since 1985 by a British Consortium consisting of British Aerospace, the United Kingdom Atomic Energy Authority and, more recently, the UK National Advanced Robotics Research Centre. The principal aim of the first study of the series was to derive preliminary requirements for a teleoperation servicing system, with reference to two mission model scenarios. The first scenario introduced the problem of communications time delays, and their likely effect on the ground-based operator in control of a manipulator system on board an unmanned servicing vehicle in Low Earth Orbit. In the second scenario, the operator was located on the NASA Orbiter aft flight deck, supervising the control of a prototype manipulator in the 'servicing' of an experimental payload in the cargo bay area. Human factors analyses centered on defining the requirements for the teleoperator workstation, such as identifying basic ergonomic requirements for workstation and panel layouts, defining teleoperation strategies, developing alphanumeric and graphic screen formats for the supervision or direct control of the manipulator, and the potential applications of expert system technology. The second study for ESA involved an experimental appraisal of some of the important issues highlighted in the first study, for which relevant human factors data did not exist. Of central importance during the second study was the issue of communications time delays and their effect on the manual control of a teleoperated manipulator from a ground-based command and control station.
Envisioning Cognitive Robots for Future Space Exploration
NASA Technical Reports Server (NTRS)
Huntsberger, Terry; Stoica, Adrian
2010-01-01
Cognitive robots in the context of space exploration are envisioned with advanced capabilities of model building, continuous planning/re-planning, self-diagnosis, as well as the ability to exhibit a level of 'understanding' of new situations. An overview of some JPL components (e.g. CASPER, CAMPOUT) and a description of the architecture CARACaS (Control Architecture for Robotic Agent Command and Sensing) that combines these in the context of a cognitive robotic system operating in a various scenarios are presented. Finally, two examples of typical scenarios of a multi-robot construction mission and a human-robot mission, involving direct collaboration with humans is given.
Bajaj, Preeti S; Veenstra, David L; Goertz, Hans-Peter; Carlson, Josh J
2014-08-01
A recent phase III trial showed that patients with advanced non-small cell lung cancer (NSCLC) whose tumors harbor specific EGFR mutations significantly benefit from first-line treatment with erlotinib compared to chemotherapy. This study sought to estimate the budget impact if coverage for EGFR testing and erlotinib as first-line therapy were provided in a hypothetical 500,000-member managed care plan. The budget impact model was developed from a US health plan perspective to evaluate administration of the EGFR test and treatment with erlotinib for EGFR-positive patients, compared to non-targeted treatment with chemotherapy. The eligible patient population was estimated from age-stratified SEER incidence data. Clinical data were derived from key randomized controlled trials. Costs related to drug, administration, and adverse events were included. Sensitivity analyses were conducted to assess uncertainty. In a plan of 500,000 members, it was estimated there would be 91 newly diagnosed advanced NSCLC patients annually; 11 are expected to be EGFR-positive. Based on the testing and treatment assumptions, it was estimated that 3 patients in Scenario 1 and 6 patients in Scenario 2 receive erlotinib. Overall health plan expenditures would increase by $0.013 per member per month (PMPM). This increase is largely attributable to erlotinib drug costs, in part due to lengthened progression-free survival and treatment periods experienced in erlotinib-treated patients. EGFR testing contributes slightly, whereas adverse event costs mitigate the budget impact. The budget impact did not exceed $0.019 PMPM in sensitivity analyses. Coverage for targeted first-line erlotinib therapy in NSCLC likely results in a small budget impact for US health plans. The estimated impact may vary by plan, or if second-line or maintenance therapy, dose changes/interruptions, or impact on patients' quality-of-life were included.
A novel method for energy harvesting simulation based on scenario generation
NASA Astrophysics Data System (ADS)
Wang, Zhe; Li, Taoshen; Xiao, Nan; Ye, Jin; Wu, Min
2018-06-01
Energy harvesting network (EHN) is a new form of computer networks. It converts ambient energy into usable electric energy and supply the electrical energy as a primary or secondary power source to the communication devices. However, most of the EHN uses the analytical probability distribution function to describe the energy harvesting process, which cannot accurately identify the actual situation for the lack of authenticity. We propose an EHN simulation method based on scenario generation in this paper. Firstly, instead of setting a probability distribution in advance, it uses optimal scenario reduction technology to generate representative scenarios in single period based on the historical data of the harvested energy. Secondly, it uses homogeneous simulated annealing algorithm to generate optimal daily energy harvesting scenario sequences to get a more accurate simulation of the random characteristics of the energy harvesting network. Then taking the actual wind power data as an example, the accuracy and stability of the method are verified by comparing with the real data. Finally, we cite an instance to optimize the network throughput, which indicate the feasibility and effectiveness of the method we proposed from the optimal solution and data analysis in energy harvesting simulation.
Scenario Development Process at the Vertical Motion Simulator
NASA Technical Reports Server (NTRS)
Reardon, Scott E.; Beard, Steven D.; Lewis, Emily
2017-01-01
There has been a significant effort within the simulation community to standardize many aspects of flight simulation. More recently, an effort has begun to develop a formal scenario definition language for aviation. A working group within the AIAA Modeling and Simulation Technical Committee has been created to develop a standard aviation scenario definition language, though much of the initial effort has been tailored to training simulators. Research and development (R&D) simulators, like the Vertical Motion Simulator (VMS), and training simulators have different missions and thus have different scenario requirements. The purpose of this paper is to highlight some of the unique tasks and scenario elements used at the VMS so they may be captured by scenario standardization efforts. The VMS most often performs handling qualities studies and transfer of training studies. Three representative handling qualities simulation studies and two transfer of training simulation studies are described in this paper. Unique scenario elements discussed in this paper included special out-the-window (OTW) targets and environmental conditions, motion system parameters, active inceptor parameters, and configurable vehicle math model parameters.
Ruscio, D; Bos, A J; Ciceri, M R
2017-06-01
The interaction with Advanced Driver Assistance Systems has several positive implications for road safety, but also some potential downsides such as mental workload and automation complacency. Malleable attentional resources allocation theory describes two possible processes that can generate workload in interaction with advanced assisting devices. The purpose of the present study is to determine if specific analysis of the different modalities of autonomic control of nervous system can be used to discriminate different potential workload processes generated during assisted-driving tasks and automation complacency situations. Thirty-five drivers were tested in a virtual scenario while using head-up advanced warning assistance system. Repeated MANOVA were used to examine changes in autonomic activity across a combination of different user interactions generated by the advanced assistance system: (1) expected take-over request without anticipatory warning; (2) expected take-over request with two-second anticipatory warning; (3) unexpected take-over request with misleading warning; (4) unexpected take-over request without warning. Results shows that analysis of autonomic modulations can discriminate two different resources allocation processes, related to different behavioral performances. The user's interaction that required divided attention under expected situations produced performance enhancement and reciprocally-coupled parasympathetic inhibition with sympathetic activity. At the same time, supervising interactions that generated automation complacency were described specifically by uncoupled sympathetic activation. Safety implications for automated assistance systems developments are considered. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Fourth National Climate Assessment: Progress and Next Steps
NASA Astrophysics Data System (ADS)
Reidmiller, D.; Lewis, K.; Reeves, K.
2017-12-01
The Global Change Research Act of 1990 mandates the production of a quadrennial National Climate Assessment (NCA) that integrates, evaluates, and interprets global change science. The NCA analyzes observed and projected trends in global change and evaluates related impacts across a range of sectors and regions in the United States. The fourth assessment, NCA4, is currently under development by nearly 300 Federal and non-Federal experts and is expected to be available for public comment in Fall 2017 and released in late 2018. NCA4 is a key component of the US Global Change Research Program's Sustained Assessment process, which aims to advance the science of global change and provide authoritative, relevant information for decision makers. This talk will highlight the progress of NCA4, including an overview of the current draft of the assessment and advances since the third NCA, released in 2014. It will highlight the Climate Science Special Report, an essential component of NCA4, as well as provide insight into the public engagement process-including opportunities to participate-and identify scientific inputs and tools critical to its development, such as the 2nd State of the Carbon Cycle Report and USGCRP's new scenario products website.
Smart Sensors: Why and when the origin was and why and where the future will be
NASA Astrophysics Data System (ADS)
Corsi, C.
2013-12-01
Smart Sensors is a technique developed in the 70's when the processing capabilities, based on readout integrated with signal processing, was still far from the complexity needed in advanced IR surveillance and warning systems, because of the enormous amount of noise/unwanted signals emitted by operating scenario especially in military applications. The Smart Sensors technology was kept restricted within a close military environment exploding in applications and performances in the 90's years thanks to the impressive improvements in the integrated signal read-out and processing achieved by CCD-CMOS technologies in FPA. In fact the rapid advances of "very large scale integration" (VLSI) processor technology and mosaic EO detector array technology allowed to develop new generations of Smart Sensors with much improved signal processing by integrating microcomputers and other VLSI signal processors. inside the sensor structure achieving some basic functions of living eyes (dynamic stare, non-uniformity compensation, spatial and temporal filtering). New and future technologies (Nanotechnology, Bio-Organic Electronics, Bio-Computing) are lightning a new generation of Smart Sensors extending the Smartness from the Space-Time Domain to Spectroscopic Functional Multi-Domain Signal Processing. History and future forecasting of Smart Sensors will be reported.
Show me the data: advances in multi-model benchmarking, assimilation, and forecasting
NASA Astrophysics Data System (ADS)
Dietze, M.; Raiho, A.; Fer, I.; Cowdery, E.; Kooper, R.; Kelly, R.; Shiklomanov, A. N.; Desai, A. R.; Simkins, J.; Gardella, A.; Serbin, S.
2016-12-01
Researchers want their data to inform carbon cycle predictions, but there are considerable bottlenecks between data collection and the use of data to calibrate and validate earth system models and inform predictions. This talk highlights recent advancements in the PEcAn project aimed at it making it easier for individual researchers to confront models with their own data: (1) The development of an easily extensible site-scale benchmarking system aimed at ensuring that models capture process rather than just reproducing pattern; (2) Efficient emulator-based Bayesian parameter data assimilation to constrain model parameters; (3) A novel, generalized approach to ensemble data assimilation to estimate carbon pools and fluxes and quantify process error; (4) automated processing and downscaling of CMIP climate scenarios to support forecasts that include driver uncertainty; (5) a large expansion in the number of models supported, with new tools for conducting multi-model and multi-site analyses; and (6) a network-based architecture that allows analyses to be shared with model developers and other collaborators. Application of these methods is illustrated with data across a wide range of time scales, from eddy-covariance to forest inventories to tree rings to paleoecological pollen proxies.
Implementation of an open-scenario, long-term space debris simulation approach
NASA Astrophysics Data System (ADS)
Stupl, J.; Nelson, B.; Faber, N.; Perez, A.; Carlino, R.; Yang, F.; Henze, C.; Karacalioglu, A.; O'Toole, C.; Swenson, J.
This paper provides a status update on the implementation of a flexible, long-term space debris simulation approach. The motivation is to build a tool that can assess the long-term impact of various options for debris-remediation, including the LightForce space debris collision avoidance scheme. State-of-the-art simulation approaches that assess the long-term development of the debris environment use either completely statistical approaches, or they rely on large time steps in the order of several (5-15) days if they simulate the positions of single objects over time. They cannot be easily adapted to investigate the impact of specific collision avoidance schemes or de-orbit schemes, because the efficiency of a collision avoidance maneuver can depend on various input parameters, including ground station positions, space object parameters and orbital parameters of the conjunctions and take place in much smaller timeframes than 5-15 days. For example, LightForce only changes the orbit of a certain object (aiming to reduce the probability of collision), but it does not remove entire objects or groups of objects. In the same sense, it is also not straightforward to compare specific de-orbit methods in regard to potential collision risks during a de-orbit maneuver. To gain flexibility in assessing interactions with objects, we implement a simulation that includes every tracked space object in LEO, propagates all objects with high precision, and advances with variable-sized time-steps as small as one second. It allows the assessment of the (potential) impact of changes to any object. The final goal is to employ a Monte Carlo approach to assess the debris evolution during the simulation time-frame of 100 years and to compare a baseline scenario to debris remediation scenarios or other scenarios of interest. To populate the initial simulation, we use the entire space-track object catalog in LEO. We then use a high precision propagator to propagate all objects over the entire simulation duration. If collisions are detected, the appropriate number of debris objects are created and inserted into the simulation framework. Depending on the scenario, further objects, e.g. due to new launches, can be added. At the end of the simulation, the total number of objects above a cut-off size and the number of detected collisions provide benchmark parameters for the comparison between scenarios. The simulation approach is computationally intensive as it involves ten thousands of objects; hence we use a highly parallel approach employing up to a thousand cores on the NASA Pleiades supercomputer for a single run. This paper describes our simulation approach, the status of its implementation, the approach in developing scenarios and examples of first test runs.
Interference Mitigation Schemes for Wireless Body Area Sensor Networks: A Comparative Survey
Le, Thien T.T.; Moh, Sangman
2015-01-01
A wireless body area sensor network (WBASN) consists of a coordinator and multiple sensors to monitor the biological signals and functions of the human body. This exciting area has motivated new research and standardization processes, especially in the area of WBASN performance and reliability. In scenarios of mobility or overlapped WBASNs, system performance will be significantly degraded because of unstable signal integrity. Hence, it is necessary to consider interference mitigation in the design. This survey presents a comparative review of interference mitigation schemes in WBASNs. Further, we show that current solutions are limited in reaching satisfactory performance, and thus, more advanced solutions should be developed in the future. PMID:26110407
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-10
... ice area are linked in the IPCC climate models to GHG emissions by the physics of radiation processes... scenario), a model that is known for incorporating advanced sea ice physics, and for which snow data were...
Machine Translation: The Alternative for the 21st Century?
ERIC Educational Resources Information Center
Cribb, V. Michael
2000-01-01
Outlines a scenario for the future of Teaching English as a Second or Other Languages that has seldom, if ever been considered in academic discussion: that advances in and availability of quality machine translation could mitigate the need for English language learning. (Author/VWL)
2015-01-01
Robust team exercise and simulation • Air-gapped; isolation from production networks • “Train as you fight” scenarios • Advanced user and Internet...Security Onion • SIFT (Linux/Windows) • Kali • Rucksack • Docker • VTS 18 GCD Overview January 2015 © 2014 Carnegie Mellon University TEXN Architecture
Sidi, Avner; Gravenstein, Nikolaus; Vasilopoulos, Terrie; Lampotang, Samsun
2017-06-02
We describe observed improvements in nontechnical or "higher-order" deficiencies and cognitive performance skills in an anesthesia residency cohort for a 1-year time interval. Our main objectives were to evaluate higher-order, cognitive performance and to demonstrate that simulation can effectively serve as an assessment of cognitive skills and can help detect "higher-order" deficiencies, which are not as well identified through more traditional assessment tools. We hypothesized that simulation can identify longitudinal changes in cognitive skills and that cognitive performance deficiencies can then be remediated over time. We used 50 scenarios evaluating 35 residents during 2 subsequent years, and 18 of those 35 residents were evaluated in both years (post graduate years 3 then 4) in the same or similar scenarios. Individual basic knowledge and cognitive performance during simulation-based scenarios were assessed using a 20- to 27-item scenario-specific checklist. Items were labeled as basic knowledge/technical (lower-order cognition) or advanced cognitive/nontechnical (higher-order cognition). Identical or similar scenarios were repeated annually by a subset of 18 residents during 2 successive academic years. For every scenario and item, we calculated group error scenario rate (frequency) and individual (resident) item success. Grouped individuals' success rates are calculated as mean (SD), and item success grade and group error rates are calculated and presented as proportions. For all analyses, α level is 0.05. Overall PGY4 residents' error rates were lower and success rates higher for the cognitive items compared with technical item performance in the operating room and resuscitation domains. In all 3 clinical domains, the cognitive error rate by PGY4 residents was fairly low (0.00-0.22) and the cognitive success rate by PGY4 residents was high (0.83-1.00) and significantly better compared with previous annual assessments (P < 0.05). Overall, there was an annual decrease in error rates for 2 years, primarily driven by decreases in cognitive errors. The most commonly observed cognitive error types remained anchoring, availability bias, premature closure, and confirmation bias. Simulation-based assessments can highlight cognitive performance areas of relative strength, weakness, and progress in a resident or resident cohort. We believe that they can therefore be used to inform curriculum development including activities that require higher-level cognitive processing.
Bankole, Temitayo; Jones, Dustin; Bhattacharyya, Debangsu; ...
2017-11-03
In this study, a two-level control methodology consisting of an upper-level scheduler and a lower-level supervisory controller is proposed for an advanced load-following energy plant with CO 2 capture. With the use of an economic objective function that considers fluctuation in electricity demand and price at the upper level, optimal scheduling of energy plant electricity production and carbon capture with respect to several carbon tax scenarios is implemented. The optimal operational profiles are then passed down to corresponding lower-level supervisory controllers designed using a methodological approach that balances control complexity with performance. Finally, it is shown how optimal carbon capturemore » and electricity production rate profiles for an energy plant such as the integrated gasification combined cycle (IGCC) plant are affected by electricity demand and price fluctuations under different carbon tax scenarios. As a result, the paper also presents a Lyapunov stability analysis of the proposed scheme.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bankole, Temitayo; Jones, Dustin; Bhattacharyya, Debangsu
In this study, a two-level control methodology consisting of an upper-level scheduler and a lower-level supervisory controller is proposed for an advanced load-following energy plant with CO 2 capture. With the use of an economic objective function that considers fluctuation in electricity demand and price at the upper level, optimal scheduling of energy plant electricity production and carbon capture with respect to several carbon tax scenarios is implemented. The optimal operational profiles are then passed down to corresponding lower-level supervisory controllers designed using a methodological approach that balances control complexity with performance. Finally, it is shown how optimal carbon capturemore » and electricity production rate profiles for an energy plant such as the integrated gasification combined cycle (IGCC) plant are affected by electricity demand and price fluctuations under different carbon tax scenarios. As a result, the paper also presents a Lyapunov stability analysis of the proposed scheme.« less
Pinsker, R. I.; Austin, M. E.; Diem, S. J.; ...
2014-02-12
Fast Wave (FW) heating and electron cyclotron heating (ECH) are used in the DIII-D tokamak to study plasmas with low applied torque and dominant electron heating characteristic of burning plasmas. FW heating via direct electron damping has reached the 2.5 MW level in high performance ELMy H-mode plasmas. In Advanced Inductive (AI) plasmas, core FW heating was found to be comparable to that of ECH, consistent with the excellent first-pass absorption of FWs predicted by ray-tracing models at high electron beta. FW heating at the ~2 MW level to ELMy H-mode discharges in the ITER Baseline Scenario (IBS) showed unexpectedlymore » strong absorption of FW power by injected neutral beam (NB) ions, indicated by significant enhancement of the D-D neutron rate, while the intended absorption on core electrons appeared rather weak. As a result, the AI and IBS discharges are compared in an effort to identify the causes of the different response to FWs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinsker, R. I.; Jackson, G. L.; Luce, T. C.
Fast Wave (FW) heating and electron cyclotron heating (ECH) are used in the DIII-D tokamak to study plasmas with low applied torque and dominant electron heating characteristic of burning plasmas. FW heating via direct electron damping has reached the 2.5 MW level in high performance ELMy H-mode plasmas. In Advanced Inductive (AI) plasmas, core FW heating was found to be comparable to that of ECH, consistent with the excellent first-pass absorption of FWs predicted by ray-tracing models at high electron beta. FW heating at the ∼2 MW level to ELMy H-mode discharges in the ITER Baseline Scenario (IBS) showed unexpectedlymore » strong absorption of FW power by injected neutral beam (NB) ions, indicated by significant enhancement of the D-D neutron rate, while the intended absorption on core electrons appeared rather weak. The AI and IBS discharges are compared in an effort to identify the causes of the different response to FWs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinsker, R. I.; Austin, M. E.; Diem, S. J.
Fast Wave (FW) heating and electron cyclotron heating (ECH) are used in the DIII-D tokamak to study plasmas with low applied torque and dominant electron heating characteristic of burning plasmas. FW heating via direct electron damping has reached the 2.5 MW level in high performance ELMy H-mode plasmas. In Advanced Inductive (AI) plasmas, core FW heating was found to be comparable to that of ECH, consistent with the excellent first-pass absorption of FWs predicted by ray-tracing models at high electron beta. FW heating at the ~2 MW level to ELMy H-mode discharges in the ITER Baseline Scenario (IBS) showed unexpectedlymore » strong absorption of FW power by injected neutral beam (NB) ions, indicated by significant enhancement of the D-D neutron rate, while the intended absorption on core electrons appeared rather weak. As a result, the AI and IBS discharges are compared in an effort to identify the causes of the different response to FWs.« less
NASA Astrophysics Data System (ADS)
Chabi, A.
2015-12-01
ackground: Reduced Emissions from Deforestation and Degradation (REDD+), being developed through the United Nations Framework Convention on Climate Change (UNFCCC) requires information on the carbon/nitrogen stocks in the plant biomass for predicting future climate under scenarios development. The development of land use scenarios in West Africa is needed to predict future impacts of change in the environment and the socio-economic status of rural communities. The study aims at developing land use scenario based on mitigation strategy to climate change as an issue of contributing for carbon and nitrogen sequestration, the condition 'food focused' as a scenario based crop production and 'financial investment' as scenario based on an economic development pathway, and to explore the possible future temporal and spatial impacts on vegetation carbon/nitrogen sequestration/emission and socio-economic status of rural communities. Preliminary results: BEN-LUDAS (Benin-Land Use DyNamic Simulator) model, carbon and nitrogen equations, remote sensing and socio-economic data were used to predict the future impacts of each scenario in the environment and human systems. The preliminary results which are under analysis will be presented soon. Conclusion: The proposed BEN-LUDAS models will help to contribute to policy decision making at the local and regional scale and to predict future impacts of change in the environment and socio-economic status of the rural communities. Keywords: Land use scenarios development, BEN-LUDAS, socio-economic status of rural communities, future impacts of change, assessment, West African Sudan savanna watershed, Benin
Scenarios and US National Climate Assessments: Where have they been and where could they go?
NASA Astrophysics Data System (ADS)
Leidner, A. K.
2015-12-01
U.S. National Climate Assessments (NCA), conducted under the auspices of the U.S. Global Change Research Program, analyze the effects of global change on the United States and examine current and projected changes out to 100 years. Scenarios of global change have been incorporated in all NCAs to date, although such scenarios have typically been developed late in the assessment cycle, limiting the depth of their use in regional and sectoral assessments. This lack of use is particularly notable for scenarios focused on aspects other than climate and associated projections of temperature and precipitation. Here, we review how scenarios have been incorporated in previous NCAs and present potential options for both the development and inclusion of a wider range of scenarios topics in future quadrennial NCA reports and other sustained assessment activities within USGCRP and federal agencies. Incorporating a broad range of U.S. scenarios will present both intellectual and programmatic challenges, as scenario developers from relatively disparate communities will need to come together to create internally consistent assumptions within each type of scenario (e.g. climate, land cover and land use, population) for sub-national scales. As USGCRP moves forward with a sustained assessment process, a richer set of scenarios can serve as a bridge between the research community, decision makers, and practitioners.
NASA Astrophysics Data System (ADS)
Han, Haejin; Hwang, YunSeop; Ha, Sung Ryong; Kim, Byung Sik
2015-05-01
This study developed three scenarios of future land use/land cover on a local level for the Kyung-An River Basin and its vicinity in South Korea at a 30-m resolution based on the two scenario families of the Intergovernmental Panel on Climate Change (IPCC) Special Report Emissions Scenarios (SRES): A2 and B1, as well as a business-as-usual scenario. The IPCC SRES A2 and B1 were used to define future local development patterns and associated land use change. We quantified the population-driven demand for urban land use for each qualitative storyline and allocated the urban demand in geographic space using the SLEUTH model. The model results demonstrate the possible land use/land cover change scenarios for the years from 2000 to 2070 by examining the broad narrative of each SRES within the context of a local setting, such as the Kyoungan River Basin, constructing narratives of local development shifts and modeling a set of `best guess' approximations of the future land use conditions in the study area. This study found substantial differences in demands and patterns of land use changes among the scenarios, indicating compact development patterns under the SRES B1 compared to the rapid and dispersed development under the SRES A2.
Han, Haejin; Hwang, YunSeop; Ha, Sung Ryong; Kim, Byung Sik
2015-05-01
This study developed three scenarios of future land use/land cover on a local level for the Kyung-An River Basin and its vicinity in South Korea at a 30-m resolution based on the two scenario families of the Intergovernmental Panel on Climate Change (IPCC) Special Report Emissions Scenarios (SRES): A2 and B1, as well as a business-as-usual scenario. The IPCC SRES A2 and B1 were used to define future local development patterns and associated land use change. We quantified the population-driven demand for urban land use for each qualitative storyline and allocated the urban demand in geographic space using the SLEUTH model. The model results demonstrate the possible land use/land cover change scenarios for the years from 2000 to 2070 by examining the broad narrative of each SRES within the context of a local setting, such as the Kyoungan River Basin, constructing narratives of local development shifts and modeling a set of 'best guess' approximations of the future land use conditions in the study area. This study found substantial differences in demands and patterns of land use changes among the scenarios, indicating compact development patterns under the SRES B1 compared to the rapid and dispersed development under the SRES A2.
Huynen, Maud M. T. E.; Martens, Pim
2015-01-01
Although people will most likely adjust to warmer temperatures, it is still difficult to assess what this adaptation will look like. This scenario-based integrated health impacts assessment explores baseline (1981–2010) and future (2050) population attributable fractions (PAF) of mortality due to heat (PAFheat) and cold (PAFcold), by combining observed temperature–mortality relationships with the Dutch KNMI’14 climate scenarios and three adaptation scenarios. The 2050 model results without adaptation reveal a decrease in PAFcold (8.90% at baseline; 6.56%–7.85% in 2050) that outweighs the increase in PAFheat (1.15% at baseline; 1.66%–2.52% in 2050). When the 2050 model runs applying the different adaptation scenarios are considered as well, however, the PAFheat ranges between 0.94% and 2.52% and the PAFcold between 6.56% and 9.85%. Hence, PAFheat and PAFcold can decrease as well as increase in view of climate change (depending on the adaptation scenario). The associated annual mortality burdens in 2050—accounting for both the increasing temperatures and mortality trend—show that heat-related deaths will range between 1879 and 5061 (1511 at baseline) and cold-related deaths between 13,149 and 19,753 (11,727 at baseline). Our results clearly illustrate that model outcomes are not only highly dependent on climate scenarios, but also on adaptation assumptions. Hence, a better understanding of (the impact of various) plausible adaptation scenarios is required to advance future integrated health impact assessments. PMID:26512680
Combined sewer overflow control with LID based on SWMM: an example in Shanghai, China.
Liao, Z L; Zhang, G Q; Wu, Z H; He, Y; Chen, H
2015-01-01
Although low impact development (LID) has been commonly applied across the developed countries for mitigating the negative impacts of combined sewer overflows (CSOs) on urban hydrological environment, it has not been widely used in developing countries yet. In this paper, a typical combined sewer system in an urbanized area of Shanghai, China was used to demonstrate how to design and choose CSO control solutions with LID using stormwater management model. We constructed and simulated three types of CSO control scenarios. Our findings support the notion that LID measures possess favorable capability on CSO reduction. Nevertheless, the green scenarios which are completely comprised by LID measures fail to achieve the maximal effectiveness on CSO reduction, while the gray-green scenarios (LID measure combined with gray measures) achieve it. The unit cost-effectiveness of each type of scenario sorts as: green scenario > gray-green scenario > gray scenario. Actually, as the storage tank is built in the case catchment, a complete application of green scenario is inaccessible here. Through comprehensive evaluation and comparison, the gray-green scenario F which used the combination of storage tank, bio-retention and rain barrels is considered as the most feasible one in this case.
Developing High-Fidelity Health Care Simulation Scenarios: A Guide for Educators and Professionals
ERIC Educational Resources Information Center
Alinier, Guillaume
2011-01-01
The development of appropriate scenarios is critical in high-fidelity simulation training. They need to be developed to address specific learning objectives, while not preventing other learning points from emerging. Buying a patient simulator, finding a volunteer to act as the patient, or even obtaining ready-made scenarios from another simulation…
The future of scenarios: issues in developing new climate change scenarios
NASA Astrophysics Data System (ADS)
Pitcher, Hugh M.
2009-04-01
In September, 2007, the IPCC convened a workshop to discuss how a new set of scenarios to support climate model runs, mitigation analyses, and impact, adaptation and vulnerability research might be developed. The first phase of the suggested new approach is now approaching completion. This article discusses some of the issues raised by scenario relevant research and analysis since the last set of IPCC scenarios were created (IPCC SRES, 2000) that will need to be addressed as new scenarios are developed by the research community during the second phase. These include (1) providing a logic for how societies manage to transition from historical paths to the various future development paths foreseen in the scenarios, (2) long-term economic growth issues, (3) the appropriate GDP metric to use (purchasing power parity or market exchange rates), (4) ongoing issues with moving from the broad geographic and time scales of the emission scenarios to the finer scales needed for impacts, adaptation and vulnerability analyses and (5) some possible ways to handle the urgent request from the policy community for some guidance on scenario likelihoods. The challenges involved in addressing these issues are manifold; the reward is greater credibility and deeper understanding of an analytic tool that does much to form the context within which many issues in addition to the climate problem will need to be addressed.
DOT National Transportation Integrated Search
2015-04-01
The Central New Mexico Climate Change Scenario Planning Project, an Interagency Transportation, Land Use, and Climate Change Initiative, utilized a scenario planning process to develop a multiagency transportation- and land use-focused development st...
Testing of a Stitched Composite Large-Scale Multi-Bay Pressure Box
NASA Technical Reports Server (NTRS)
Jegley, Dawn; Rouse, Marshall; Przekop, Adam; Lovejoy, Andrew
2016-01-01
NASA has created the Environmentally Responsible Aviation (ERA) Project to develop technologies to reduce aviation's impact on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe to enable the introduction of unconventional aircraft configurations. NASA and The Boeing Company have worked together to develop a structural concept that is lightweight and an advancement beyond state-of-the-art composite structures. The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is an integrally stiffened panel design where elements are stitched together. The PRSEUS concept is designed to maintain residual load carrying capabilities under a variety of damage scenarios. A series of building block tests were evaluated to explore the fundamental assumptions related to the capability and advantages of PRSEUS panels. The final step in the building block series is an 80%-scale pressure box representing a portion of the center section of a Hybrid Wing Body (HWB) transport aircraft. The testing of this article under maneuver load and internal pressure load conditions is the subject of this paper. The experimental evaluation of this article, along with the other building block tests and the accompanying analyses, has demonstrated the viability of a PRSEUS center body for the HWB vehicle. Additionally, much of the development effort is also applicable to traditional tube-and-wing aircraft, advanced aircraft configurations, and other structures where weight and through-the-thickness strength are design considerations.
2nd Generation Reusable Launch Vehicle Potential Commercial Development Scenarios
NASA Technical Reports Server (NTRS)
Creech, Stephen D.; Rogacki, John R. (Technical Monitor)
2001-01-01
The presentation will discuss potential commercial development scenarios for a Second Generation Reusable Launch Vehicle. The analysis of potential scenarios will include commercial rates of return, government return on investment, and market considerations. The presentation will include policy considerations in addition to analysis of Second Generation Reusable Launch Vehicle economics. The data discussed is being developed as a part of NASA's Second Generation Reusable Launch Vehicle Program, for consideration as potential scenarios for enabling a next generation system. Material will include potential scenarios not previously considered by NASA or presented at other conferences. Candidate paper has not been presented at a previous meeting, and conference attendance of the author has been approved by NASA.
NASA Astrophysics Data System (ADS)
Sampson, David D.; Chin, Lixin; Gong, Peijun; Wijesinghe, Philip; Es'haghian, Shaghayegh; Allen, Wesley M.; Klyen, Blake R.; Kirk, Rodney W.; Kennedy, Brendan F.; McLaughlin, Robert A.
2016-03-01
INVITED TALK Advances in imaging tissue microstructure in living subjects, or in freshly excised tissue with minimum preparation and processing, are important for future diagnosis and surgical guidance in the clinical setting, particularly for application to cancer. Whilst microscopy methods continue to advance on the cellular scale and medical imaging is well established on the scale of the whole tumor or organ, it is attractive to consider imaging the tumor environment on the micro-scale, between that of cells and whole tissues. Such a scenario is ideally suited to optical coherence tomography (OCT), with the twin attractions of requiring little or no tissue preparation, and in vivo capability. OCT's intrinsic scattering contrast reveals many morphological features of tumors, but is frequently ineffective in revealing other important aspects, such as microvasculature, or in reliably distinguishing tumor from uninvolved stroma. To address these shortcomings, we are developing several advances on the basic OCT approach. We are exploring speckle fluctuations to image tissue microvasculature and we have been developing several parametric approaches to tissue micro-scale characterization. Our approaches extract, from a three-dimensional OCT data set, a two-dimensional image of an optical parameter, such as attenuation or birefringence, or a mechanical parameter, such as stiffness, that aids in characterizing the tissue. This latter method, termed optical coherence elastography, parallels developments in ultrasound and magnetic resonance imaging. Parametric imaging of birefringence and of stiffness both show promise in addressing the important issue of differentiating cancer from uninvolved stroma in breast tissue.
Airborne Forward-Looking Interferometer for the Detection of Terminal-Area Hazards
NASA Technical Reports Server (NTRS)
West, Leanne; Gimmestad, Gary; Lane, Sarah; Smith, Bill L.; Kireev, Stanislav; Daniels, Taumi S.; Cornman, Larry; Sharman, Bob
2014-01-01
The Forward Looking Interferometer (FLI) program was a multi-year cooperative research effort to investigate the use of imaging radiometers with high spectral resolution, using both modeling/simulation and field experiments, along with sophisticated data analysis techniques that were originally developed for analysis of data from space-based radiometers and hyperspectral imagers. This investigation has advanced the state of knowledge in this technical area, and the FLI program developed a greatly improved understanding of the radiometric signal strength of aviation hazards in a wide range of scenarios, in addition to a much better understanding of the real-world functionality requirements for hazard detection instruments. The project conducted field experiments on three hazards (turbulence, runway conditions, and wake vortices) and analytical studies on several others including volcanic ash, reduced visibility conditions, in flight icing conditions, and volcanic ash.
Man-Vehicle Systems Research Facility - Design and operating characteristics
NASA Technical Reports Server (NTRS)
Shiner, Robert J.; Sullivan, Barry T.
1992-01-01
This paper describes the full-mission flight simulation facility at the NASA Ames Research Center. The Man-Vehicle Systems Research Facility (MVSRF) supports aeronautical human factors research and consists of two full-mission flight simulators and an air-traffic-control simulator. The facility is used for a broad range of human factors research in both conventional and advanced aviation systems. The objectives of the research are to improve the understanding of the causes and effects of human errors in aviation operations, and to limit their occurrence. The facility is used to: (1) develop fundamental analytical expressions of the functional performance characteristics of aircraft flight crews; (2) formulate principles and design criteria for aviation environments; (3) evaluate the integration of subsystems in contemporary flight and air traffic control scenarios; and (4) develop training and simulation technologies.
NASA Astrophysics Data System (ADS)
Ongena, J.; Messiaen, A.; Kazakov, Ye O.; Koch, R.; Ragona, R.; Bobkov, V.; Crombé, K.; Durodié, F.; Goniche, M.; Krivska, A.; Lerche, E.; Louche, F.; Lyssoivan, A.; Vervier, M.; Van Eester, D.; Van Schoor, M.; Wauters, T.; Wright, J.; Wukitch, S.
2017-05-01
Ion temperatures of over 100 million degrees need to be reached in future fusion reactors for the deuterium-tritium fusion reaction to work. Ion cyclotron resonance heating (ICRH) is a method that has the capability to directly heat ions to such high temperatures, via a resonant interaction between the plasma ions and radiofrequency waves launched in the plasma. This paper gives an overview of recent developments in this field. In particular a novel and recently developed three-ion heating scenario will be highlighted. It is a flexible scheme with the potential to accelerate heavy ions to high energies in high density plasmas as expected for future fusion reactors. New antenna designs will be needed for next step large future devices like DEMO, to deliver steady-state high power levels, cope with fast variations in coupling due to fast changes in the edge density and to reduce the possibility for impurity production. Such a new design is the traveling wave antenna (TWA) consisting of an array of straps distributed around the circumference of the machine, which is intrinsically resilient to edge density variations and has an optimized power coupling to the plasma. The structure of the paper is as follows: to provide the general reader with a basis for a good understanding of the later sections, an overview is given of wave propagation, coupling and RF power absorption in the ion cyclotron range of frequencies, including a brief summary of the traditionally used heating scenarios. A special highlight is the newly developed three-ion scenario together with its promising applications. A next section discusses recent developments to study edge-wave interaction and reduce impurity influx from ICRH: the dedicated devices IShTAR and Aline, field aligned and three-strap antenna concepts. The principles behind and the use of ICRH as an important option for first wall conditioning in devices with a permanent magnetic field is discussed next. The final section presents ongoing developments for antenna systems in next step devices like ITER and DEMO, with as highlight the TWA concept.
Offshore Wind Jobs and Economic Development Impacts in the United States: Four Regional Scenarios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tegen, S.; Keyser, D.; Flores-Espino, F.
This report uses the offshore wind Jobs and Economic Development Impacts (JEDI) model and provides four case studies of potential offshore deployment scenarios in different regions of the United States: the Southeast, the Great Lakes, the Gulf Coast, and the Mid-Atlantic. Researchers worked with developers and industry representatives in each region to create potential offshore wind deployment and supply chain growth scenarios, specific to their locations. These scenarios were used as inputs into the offshore JEDI model to estimate jobs and other gross economic impacts in each region.
NASA Astrophysics Data System (ADS)
Balasubramanian, E. P.; Rao, N. Prahlad; Sarkar, S.; Singh, D. K.
2008-07-01
Over the past two decades Indian Space Research Organization (ISRO) has developed and operationalized satellites to generate a large capacity of transponders for telecommunication service use in INSAT system. More powerful on-board transmitters are built to usher-in direct-to-home broadcast services. These have transformed the Satcom application scenario in the country. With the proliferation of satellite technology, a shift in the Indian market is witnessed today in terms of demand for new services like Broadband Internet, Interactive Multimedia, etc. While it is imperative to pay attention to market trends, ISRO is also committed towards taking the benefits of technological advancement to all round growth of our population, 70% of which dwell in rural areas. The initiatives already taken in space application related to telemedicine, tele-education and Village Resource Centres are required to be taken to a greater height of efficiency. These targets pose technological challenges to build a large capacity and cost-effective satellite system. This paper addresses advanced payload concepts and system architecture along with the trade-off analysis on design parameters in proposing a new generation satellite system capable of extending the reach of the Indian broadband structure to individual users, educational and medical institutions and enterprises for interactive services. This will be a strategic step in the evolution of INSAT system to employ advanced technology to touch every human face of our population.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmintier, Bryan; Giraldez, Julieta; Gruchalla, Kenny
2016-11-01
Duke Energy, Alstom Grid, and the National Renewable Energy Laboratory teamed up to better understand the impacts of solar photovoltaics (PV) on distribution system operations. The core goal of the project is to compare the operational - specifically, voltage regulation - impacts of three classes of PV inverter operations: 1.) Active power only (Baseline); 2.) Local inverter control (e.g., PF...not equal...1, Q(V), etc.); and 3.) Integrated volt-VAR control (centralized through the distribution management system). These comparisons were made using multiple approaches, each of which represents an important research-and-development effort on its own: a) Quasi-steady-state time-series modeling for approximately 1 yearmore » of operations using the Alstom eTerra (DOTS) system as a simulation engine, augmented by Python scripting for scenario and time-series control and using external models for an advanced inverter; b) Power-hardware-in-the-loop (PHIL) testing of a 500-kVA-class advanced inverter and traditional voltage regulating equipment. This PHIL testing used cosimulation to link full-scale feeder simulation using DOTS in real time to hardware testing; c) Advanced visualization to provide improved insights into time-series results and other PV operational impacts; and d) Cost-benefit analysis to compare the financial and business-model impacts of each integration approach.« less
Rossi, Antonio; Maione, Paolo; Bareschino, Maria Anna; Schettino, Clorinda; Sacco, Paola Claudia; Ferrara, Marianna Luciana; Castaldo, Vincenzo; Gridelli, Cesare
2010-01-01
Lung cancer is the leading cause of cancer mortality worldwide. Non-small cell lung cancer (NSCLC), accounting for about 85% of all lung cancers, includes squamous carcinoma, adenocarcinoma and undifferentiated large cell carcinoma. The majority of patients have advanced disease at diagnosis, and medical treatment is the cornerstone of management. Several randomized trials comparing third-generation platinum-based doublets concluded that all such combinations are comparable in their clinical efficacy, failing to document a difference based on histology. However, recent evidences, arising from the availability of pemetrexed, have shown that histology represents an important variable in the decision making. The major progresses in the understanding cancer biology and mechanism of oncogenesis have allowed the development of several potential molecular targets for cancer treatment such as vascular growth factor and its receptors and epidermal growth factor receptor. Targeted drugs seem to be safer or more effective in a specific histology subtype. All of these data have led to choose the optimal first-line treatment of advanced NSCLC based on histologic diagnosis. However, this scenario raises a diagnostic issue: a specific diagnosis of NSCLC histologic subtype is mandatory. This review will discuss these new evidences in the first-line treatment of advanced NSCLC and their implication in the current clinical decision-making.
Weinberg, Benjamin A.; Gowen, Kyle; Lee, Thomas K.; Ou, Sai‐Hong Ignatius; Bristow, Robert; Krill, Lauren; Almira‐Suarez, M. Isabel; Ali, Siraj M.; Miller, Vincent A.; Liu, Stephen V.
2017-01-01
Abstract Background. Metastatic recurrence after treatment for locoregional cancer is a major cause of morbidity and cancer‐specific mortality. Distinguishing metastatic recurrence from the development of a second primary cancer has important prognostic and therapeutic value and represents a difficult clinical scenario. Advances beyond histopathological comparison are needed. We sought to interrogate the ability of comprehensive genomic profiling (CGP) to aid in distinguishing between these clinical scenarios. Materials and Methods. We identified three prospective cases of recurrent tumors in patients previously treated for localized cancers in which histologic analyses suggested subsequent development of a distinct second primary. Paired samples from the original primary and recurrent tumor were subjected to hybrid capture next‐generation sequencing‐based CGP to identify base pair substitutions, insertions, deletions, copy number alterations (CNA), and chromosomal rearrangements. Genomic profiles between paired samples were compared using previously established statistical clonality assessment software to gauge relatedness beyond global CGP similarities. Results. A high degree of similarity was observed among genomic profiles from morphologically distinct primary and recurrent tumors. Genomic information suggested reclassification as recurrent metastatic disease, and patients received therapy for metastatic disease based on the molecular determination. Conclusions. Our cases demonstrate an important adjunct role for CGP technologies in separating metastatic recurrence from development of a second primary cancer. Larger series are needed to confirm our observations, but comparative CGP may be considered in patients for whom distinguishing metastatic recurrence from a second primary would alter the therapeutic approach. Implications for Practice. Distinguishing a metastatic recurrence from a second primary cancer can represent a difficult clinicopathologic problem but has important prognostic and therapeutic implications. Approaches to aid histologic analysis may improve clinician and pathologist confidence in this increasingly common clinical scenario. Our series provides early support for incorporating paired comprehensive genomic profiling in clinical situations in which determination of metastatic recurrence versus a distinct second primary cancer would influence patient management. PMID:28193735
Futures Scenario in Science Learning
ERIC Educational Resources Information Center
Lloyd, David; Vanderhout, Annastasia; Lloyd, Lisa; Atkins, David
2010-01-01
In this article we describe our experiences in developing futures scenarios in two science contexts, space science and atmospheric science/climate change. Futures scenario writing can develop scientific literacy by connecting science learning to students' lifeworlds--past, present and future. They also provide a synthesising mechanism for…
NASA Astrophysics Data System (ADS)
Habib, E. H.; Tarboton, D. G.; Lall, U.; Bodin, M.; Rahill-Marier, B.; Chimmula, S.; Meselhe, E. A.; Ali, A.; Williams, D.; Ma, Y.
2013-12-01
The hydrologic community has long recognized the need for broad reform in hydrologic education. A paradigm shift is critically sought in undergraduate hydrology and water resource education by adopting context-rich, student-centered, and active learning strategies. Hydrologists currently deal with intricate issues rooted in complex natural ecosystems containing a multitude of interconnected processes. Advances in the multi-disciplinary field include observational settings such as Critical Zone and Water, Sustainability and Climate Observatories, Hydrologic Information Systems, instrumentation and modeling methods. These research advances theory and practices call for similar efforts and improvements in hydrologic education. The typical, text-book based approach in hydrologic education has focused on specific applications and/or unit processes associated with the hydrologic cycle with idealizations, rather than the contextual relations in the physical processes and the spatial and temporal dynamics connecting climate and ecosystems. An appreciation of the natural variability of these processes will lead to graduates with the ability to develop independent learning skills and understanding. This appreciation cannot be gained in curricula where field components such as observational and experimental data are deficient. These types of data are also critical when using simulation models to create environments that support this type of learning. Additional sources of observations in conjunction with models and field data are key to students understanding of the challenges associated with using models to represent such complex systems. Recent advances in scientific visualization and web-based technologies provide new opportunities for the development of active learning techniques utilizing ongoing research. The overall goal of the current study is to develop visual, case-based, data and simulation driven learning experiences to instructors and students through a web server-based system. Open source web technologies and community-based tools are used to facilitate wide dissemination and adaptation by diverse, independent institutions. The new hydrologic learning modules are based on recent developments in hydrologic modeling, data, and resources. The modules are embedded in three regional-scale ecosystems, Coastal Louisiana, Florida Everglades, and Utah Great Salt Lake Basin. These sites provide a wealth of hydrologic concepts and scenarios that can be used in most water resource and hydrology curricula. The study develops several learning modules based on the three hydro-systems covering subjects such as: water-budget analysis, effects of human and natural changes, climate-hydrology teleconnections, and water-resource management scenarios. The new developments include an instructional interface to give critical guidance and support to the learner and an instructor's guide containing adaptation and implementation procedures to assist instructors in adopting and integrating the material into courses and provide a consistent experience. The design of the new hydrologic education developments will be transferable to independent institutions and adaptable both instructionally and technically through a server system capable of supporting additional developments by the educational community.
Developing ecological scenarios for the prospective aquatic risk assessment of pesticides.
Rico, Andreu; Van den Brink, Paul J; Gylstra, Ronald; Focks, Andreas; Brock, Theo Cm
2016-07-01
The prospective aquatic environmental risk assessment (ERA) of pesticides is generally based on the comparison of predicted environmental concentrations in edge-of-field surface waters with regulatory acceptable concentrations derived from laboratory and/or model ecosystem experiments with aquatic organisms. New improvements in mechanistic effect modeling have allowed a better characterization of the ecological risks of pesticides through the incorporation of biological trait information and landscape parameters to assess individual, population and/or community-level effects and recovery. Similarly to exposure models, ecological models require scenarios that describe the environmental context in which they are applied. In this article, we propose a conceptual framework for the development of ecological scenarios that, when merged with exposure scenarios, will constitute environmental scenarios for prospective aquatic ERA. These "unified" environmental scenarios are defined as the combination of the biotic and abiotic parameters that are required to characterize exposure, (direct and indirect) effects, and recovery of aquatic nontarget species under realistic worst-case conditions. Ideally, environmental scenarios aim to avoid a potential mismatch between the parameter values and the spatial-temporal scales currently used in aquatic exposure and effect modeling. This requires a deeper understanding of the ecological entities we intend to protect, which can be preliminarily addressed by the formulation of ecological scenarios. In this article we present a methodological approach for the development of ecological scenarios and illustrate this approach by a case-study for Dutch agricultural ditches and the example focal species Sialis lutaria. Finally, we discuss the applicability of ecological scenarios in ERA and propose research needs and recommendations for their development and integration with exposure scenarios. Integr Environ Assess Manag 2016;12:510-521. © 2015 SETAC. © 2015 SETAC.
Franz, Kamila W; Romanowski, Jerzy; Johst, Karin; Grimm, Volker
2013-01-01
When data are limited it is difficult for conservation managers to assess alternative management scenarios and make decisions. The natterjack toad (Bufo calamita) is declining at the edges of its distribution range in Europe and little is known about its current distribution and abundance in Poland. Although different landscape management plans for central Poland exist, it is unclear to what extent they impact this species. Based on these plans, we investigated how four alternative landscape development scenarios would affect the total carrying capacity and population dynamics of the natterjack toad. To facilitate decision-making, we first ranked the scenarios according to their total carrying capacity. We used the software RAMAS GIS to determine the size and location of habitat patches in the landscape. The estimated carrying capacities were very similar for each scenario, and clear ranking was not possible. Only the reforestation scenario showed a marked loss in carrying capacity. We therefore simulated metapopulation dynamics with RAMAS taking into account dynamical processes such as reproduction and dispersal and ranked the scenarios according to the resulting species abundance. In this case, we could clearly rank the development scenarios. We identified road mortality of adults as a key process governing the dynamics and separating the different scenarios. The renaturalisation scenario clearly ranked highest due to its decreased road mortality. Taken together our results suggest that road infrastructure development might be much more important for natterjack toad conservation than changes in the amount of habitat in the semi-natural river valley. We gained these insights by considering both the resulting metapopulation structure and dynamics in the form of a PVA. We conclude that the consideration of dynamic processes in amphibian conservation management may be indispensable for ranking management scenarios.
Robotics, Artificial Intelligence, Computer Simulation: Future Applications in Special Education.
ERIC Educational Resources Information Center
Moore, Gwendolyn B.; And Others
1986-01-01
Describes possible applications of new technologies to special education. Discusses results of a study designed to explore the use of robotics, artificial intelligence, and computer simulations to aid people with handicapping conditions. Presents several scenarios in which specific technological advances may contribute to special education…
Historical and projected power requirements
NASA Technical Reports Server (NTRS)
Wolfe, M. G.
1978-01-01
Policy planning for projected space power requirements is discussed. Topics of discussion cover: (1) historical space power trends (prime power requirements and power system costs); and (2) two approaches to future space power requirements (mission/traffic model approach and advanced system scenario approach). Graphs, tables, and flow charts are presented.
JPRS Report, Soviet Union, International Affairs.
1987-09-09
technical progress and the middle levels of the population, especially young people who fill the ranks of the unemployed in considerable numbers, an...but also a special optical psychic instrument, with the help of which it might be possible to recarve the events along a scenario prepared in advance
NASA Astrophysics Data System (ADS)
O'Neill, Brian; Pulver, Simone; Van Deveer, Stacy; Garb, Yaakov
2008-12-01
Scenarios have become a standard tool in the portfolio of techniques that scientists and policy-makers use to envision and plan for the future. Defined as plausible, challenging and relevant stories about how the future might unfold that integrate quantitative models with qualitative assessments of social and political trends, scenarios are a central component in assessment processes for a range of global issues, including climate change, biodiversity, agriculture, and energy. Yet, despite their prevalence, systematic analysis of scenarios is in its beginning stages. Fundamental questions remain about both the epistemology and scientific credibility of scenarios and their roles in policymaking and social change. Answers to these questions have the potential to determine the future of scenario analyses. Is scenario analysis moving in the direction of earth system governance informed by global scenarios generated through increasingly complex and comprehensive models integrating socio-economic and earth systems? Or will global environmental scenario analyses lose favour compared to more focused, policy-driven, regionally specific modelling? These questions come at an important time for the climate change issue, given that the scenario community, catalyzed by the Intergovernmental Panel on Climate Change (IPCC), is currently preparing to embark on a new round of scenario development processes aimed at coordinating research and assessment, and informing policy, over the next five to ten years. These and related questions about where next to go with global environmental scenarios animated a workshop held at Brown University (Note1) that brought together leading practitioners and scholars of global environmental change scenarios from research, policy-making, advocacy, and business settings. The workshop aimed to provide an overview of current practices/best practices in scenario production and scenario use across a range of global environmental change arenas. Participants worked to bring the experience generated from over four decades of scenario development in other issue domains, including energy and security, to bear on environmental scenarios, and to bring into dialogue scenario practitioners, both producers and users, with social science scholars. The set of contributions to this focus issue of Environmental Research Letters arose out of this workshop and collectively examines key challenges facing the scenario community, synthesizes lessons, and offers recommendations for new research and practice in this field. One theme that emerged in many of the discussions at the workshop revolved around the distinction between two broad perspectives on the goals of scenario exercises: scenarios as products and scenarios as processes. Most global environmental change scenario exercises are product-oriented; the content of the scenarios developed is the main goal of many participants and those who commission or organize the scenario development process. Typically, what is of most interest are the environmental outcomes produced, how they relate to the various factors driving them, and what the results tell us about the prospects for future environmental change, for impacts, and for mitigation. A product-oriented perspective assumes that once produced, scenario products have lives of their own, divorced from the processes that generated them and able to serve multiple, often unspecified purposes. Thus, it is often assumed that the scenario products can be 'taken up' by a variety of users in a variety of fora. A contrasting scenario approach is process-oriented and self-consciously privileges the process of scenario development as the primary goal, for example as a means to motivate organizational learning, find commonalities across different perspectives, achieve consensus on goals, or come to a shared understanding of challenges. Focusing on scenarios as processes highlights the social contexts in which scenarios are created and used. Process-oriented scenario exercises also generate scenario products, but such products are recognized as meaningful mostly (or only) in the social context in which they were developed. It should be noted that those seeking to understand the functions, implications and utility of scenarios can approach analysis of scenarios and their impacts from either perspective—focusing attention on product outcomes and influence or assessing procedural and contextual dynamics and implications. Papers in this issue examine various aspects of scenario products, scenario processes and their interactions, with specific reference to global environmental change scenarios. Hulme and Dessai (2008) use the product-process distinction as a starting point for developing a framework to evaluate the success of scenario exercises. They identify 'prediction success', 'decision success' and 'learning success' as three evaluation metrics for scenarios, with the first two most relevant to scenario products and the last emphasizing procedural aspects of scenarios. They suggest that viewing scenarios primarily as products implies examining how closely actual outcomes have matched envisioned outcomes, while viewing them primarily as processes suggests evaluating the extent to which scenarios engaged participants and enabled their learning. O'Neill and Nakicenovic (2008) focus on Hulme and Dessai's evaluation metric, learning. Based on a review of six scenario/assessment exercises, they ask if and how scenario products have incorporated comparative assessments of results in order to enable cumulative learning across scenario efforts. The authors conclude that, although participating modelling teams have benefited greatly from the process of scenario activities and applied that learning to other scenario exercises in which they engage, learning from comparative assessments of scenario products has been rather limited; the latter due to the limited time and resources invested in comparative analysis. Pitcher (2009) speaks to a similar audience, namely the emissions scenario communities that are organizing to undertake a new round of scenario development in the lead-up to the IPCC Fifth Assessment Report. His focus is primarily on a set of concerns that need to be addressed if the new set of socio-economic and emissions scenario products are to adequately support climate model runs, mitigation analyses, and impacts, adaptation and vulnerability research. Pitcher flags issues associated with assessment and measurement of economic growth, challenges associated with downscaling long-term, global scenarios to finer geographic and time scales, and possible ways to grapple with probability and uncertainty in scenario analyses. Garb et al (2008) shift focus to the process aspects of scenarios, focusing on how scenarios simultaneously shape and embed their social contexts. They outline and give examples from a research agenda, drawing on concepts and methods from sociology, political science, and science and technology studies, aimed at redressing the growing imbalance between the increasing technical sophistication of the quantitative components of scenarios on the one hand, and the continued simplicity of our understandings of the social origins, linkages, and implications of the narratives to which they are coupled on the other. Focusing on the treatment of equity concerns in the IPCC Special Report on Emissions Scenarios, Baer (2009) offers a concrete example of how particular social assumptions and definitions of equity are built into scenarios which then create particular worldviews about rights and responsibilities. Baer argues that incorporating distributions of income within—and not only between—countries in quantitative scenario exercises makes visible questions regarding the assignment of rights and the distribution of costs and benefits; such equity considerations, he argues, are central to engendering the cooperation necessary to address the climate crisis. For Parson (2008), the product-process distinction serves to highlight the unique characteristics and challenges of scenarios for global environmental change, including their use in large-scale official assessments, basis in biophysical modelling, weak connections to decision-makers, and roles as sites of public controversy. Parson argues that these characteristics of global environmental change scenarios prohibit process-oriented approaches, which rely on pre-identifying intended users and engaging them in the scenario development process. Instead, he proposes ways in which scenario products can be enhanced to support use by multiple, non-participant user communities. Wilkinson and Eidinow (2008) reach a different conclusion. They too identify the particular challenges of grappling with global environmental change. They examine approaches to past scenario efforts and categorize them into two groups that map loosely onto the product-process distinction: 'problem-focused' and 'actor-centric' approaches. They propose that progress in global environmental issues can best be made through a new, third type of approach ('reflexive interventionist or multi-agent based') that would combine elements of problem- and actor-focused approaches, creating scenario processes that can simultaneously support longer-term thinking as well as more immediate actions. Collectively, the papers in this issue range widely across issues associated with contemporary scenario processes and products. We can discern in them the outlines of an important set of suggestions for improving scenario development in the future, including, among others, the following: Focus scenario exercises on more specific questions so that results from multiple models can be more illuminating (O'Neill and Nakicenovic; Garb et al 2008). Enhance scenario transparency so as to enable extensions by users, rather than further expanding representation in global scenarios themselves (Parson 2008). Incorporate relatively simple measures (such as sub-national disaggregation of income distributions and climate change impacts) in order to boost the equity sensitivity of scenarios (Baer 2009). Recognize topics where social science inputs are becoming important for improving modelling and model relevance, such as providing a logic for how societies manage to transition from historical paths to the various future development paths foreseen in the scenarios, or developing measures of well-being which are independent of income levels, and include in global environmental scenario teams more representatives of social science professionals (Pitcher 2009; Garb et al 2008). Invest greater resources in assessing scenario results, and in understanding and overcoming the barriers to carrying out such assessment (Hulme and Dessai 2008; O'Neill and Nakicenovic, 2008). Disaggregate the variety of global change decision makers targeted as audiences for scenarios (Parson 2008; Garb et al 2008). Develop an additional 'reflective interventionist' scenarios approach that involves different epistemologies for active learning in the public interest (Wilkinson and Eidinow 2008). Draw on the extensive toolkit of social science research methods to analyze the social work of scenarios (Garb et al 2008). Create new institutions and scenario activities that can adapt and extend global scenarios to specific, often local or regional decision contexts (Parson 2008). Create fora in which scenario practitioners, modellers, decision-makers, and social scientists of various kinds can discuss the process of scenario construction and use (Garb et al 2008). We do not mean to imply a consensus among the participants in the Brown University workshop or of contributors to this collection of papers. At the same time, we believe that these and other insights and suggestions from these contributions do have a certain coherence, and collectively point to a deepening and reinvigoration of the environmental scenario-modelling enterprise—an enterprise now facing environmental change processes that are emerging as some of the most pressing challenges of our time. Acknowledgements We would like to thank the Global Environment Program at the Watson Institute for International Studies at Brown University and the US Environmental Protection Agency for financially supporting publication of this focus issue. Focus on Global Environmental Scenarios Contents Predicting, deciding, learning: can one evaluate the 'success' of national climate scenarios? Mike Hulme and Suraje Dessai Learning from global emissions scenarios Brian C O'Neill and Nebojsa Nakicenovic Scenarios in society, society in scenarios: toward a social scientific analysis of storyline-driven environmental modeling Yaakov Garb, Simone Pulver and Stacy D VanDeveer Useful global-change scenarios: current issues and challenges E A Parson Evolving practices in environmental scenarios: a new scenario typology Angela Wilkinson and Esther Eidinow Notes Note1 The workshop was held in March 2007, jointly sponsored by the Watson Institute for International Studies at Brown University, the International Institute for Applied Systems Analysis (IIASA) in Austria, and the US National Intelligence Council. See http://www.watsoninstitute.org/ge/scenarios/ for more information.