Sample records for advanced science students

  1. Comparison of Gifted and Advanced Students on Motivation toward Science Learning and Attitude toward Science

    ERIC Educational Resources Information Center

    Köksal, Mustafa Serdar

    2013-01-01

    In this study, comparison of academically advanced science students and gifted students in terms of attitude toward science and motivation toward science learning is aimed. The survey method was used for the data collection by the help of two different instruments: "Attitude Toward Science" scale and "motivation toward science…

  2. The Effect of Explicit Embedded Reflective Instruction on Nature of Science Understandings in Advanced Science Students

    ERIC Educational Resources Information Center

    Koksal, Mustafa Serdar; Cakiroglu, Jale; Geban, Omer

    2013-01-01

    The purpose of this study is to investigate the effectiveness of explicit-embedded-reflective (EER) instruction in nature of science (NOS) understandings of ninth-grade advanced science students. This study was conducted with 71 students, who were divided into three groups, by using non-equivalent quasi-experimental design. In the treatment…

  3. Reaching the Next Stephen Hawking: Five Ways to Help Students with Disabilities in Advanced Placement Science Classes

    ERIC Educational Resources Information Center

    Howard, Lori A.; Potts, Elizabeth A.; Linz, Ed

    2013-01-01

    As the federal government encourages all students to attempt advanced math and science courses, more students with disabilities are enrolling in Advanced Placement (AP) science classes. AP science teachers can better serve these students by understanding the various types of disabilities (whether physical, learning, emotional, or behavioral),…

  4. Engaging High School Students in Advanced Math and Science Courses for Success in College: Is Advanced Placement the Answer?

    ERIC Educational Resources Information Center

    Kelley-Kemple, Thomas; Proger, Amy; Roderick, Melissa

    2011-01-01

    The current study provides an in-depth look at Advanced Placement (AP) math and science course-taking in one school district, the Chicago Public Schools (CPS). Using quasi-experimental methods, this study examines the college outcomes of students who take AP math and science courses. Specifically, this study asks whether students who take AP math…

  5. The Structural Relationship between Out-of-School Time Enrichment and Black Student Participation in Advanced Science

    ERIC Educational Resources Information Center

    Young, Jamaal; Young, Jemimah

    2018-01-01

    The researchers tested a model of the structural relationship between Black student engagement in out-of-school time (OST) science enrichment and participation in advanced science courses in high school. The participants in the sample were Black students (N = 3,173) who participated in the High School Longitudinal Study of 2009/2012. The student…

  6. Teaching Advanced Life Sciences in an Animal Context: Agricultural Science Teacher Voices

    ERIC Educational Resources Information Center

    Balschweid, Mark; Huerta, Alexandria

    2008-01-01

    The purpose of this qualitative study was to determine agricultural science teacher comfort with a new high school Advanced Life Science: Animal course and determine their perceptions of student impact. The advanced science course is eligible for college credit. The teachers revealed they felt confident of their science background in preparation…

  7. Stereotype Threat? Male and Female Students in Advanced High School Courses

    NASA Astrophysics Data System (ADS)

    Corra, Mamadi

    Propositions of stereotype threat theory imply that the social consequences of academic distinction in advanced quantitative areas (such as math and the physical sciences) for women may promote the under representation of female students in advanced quantitative academic courses. The hypothesis that female students will be underrepresented in advanced quantitative (honors and advanced placement math and physical science) courses is tested using academic performance and enrollment data for high school students in a "Student/Parent Informed Choice" (open registration) school district in North Carolina. Results show female students to be overrepresented in both advanced verbal/writing intensive (honors and advanced placement English, foreign language, and social science) and advanced quantitative (honors and advanced placement math and physical science) courses compared to their proportion of the student body. More surprisingly, results also indicate female students (compared to male students) to be overrepresented in advanced courses compared to their proportion of high-performing students. Furthermore, as with patterns observed at the district level, additional analysis of enrollment data for the entire state reveals similar results. Taken together, the findings call into question the prevailing presumption that female students continue to be underrepresented in math and physical science courses. Instead, the changing social context within which females and males experience schooling may provide an explanation for the findings.

  8. High School Students' Attitudes and Beliefs on Using the Science Writing Heuristic in an Advanced Placement Chemistry Class

    ERIC Educational Resources Information Center

    Putti, Alice

    2011-01-01

    This paper discusses student attitudes and beliefs on using the Science Writing Heuristic (SWH) in an advanced placement (AP) chemistry classroom. During the 2007 school year, the SWH was used in a class of 24 AP chemistry students. Using a Likert-type survey, student attitudes and beliefs on the process were determined. Methods for the study are…

  9. The Science Advancement through Group Engagement Program: Leveling the Playing Field and Increasing Retention in Science

    ERIC Educational Resources Information Center

    Hall, Donna M.; Curtin-Soydan, Amanda J.; Canelas, Dorian A.

    2014-01-01

    How can colleges and universities keep an open gateway to the science disciplines for the least experienced first-year science students while also maintaining high standards that challenge the students with the strongest possible high school backgrounds? The Science Advancement through Group Engagement (SAGE) project targets cohorts of less…

  10. Making Advanced Computer Science Topics More Accessible through Interactive Technologies

    ERIC Educational Resources Information Center

    Shao, Kun; Maher, Peter

    2012-01-01

    Purpose: Teaching advanced technical concepts in a computer science program to students of different technical backgrounds presents many challenges. The purpose of this paper is to present a detailed experimental pedagogy in teaching advanced computer science topics, such as computer networking, telecommunications and data structures using…

  11. The nature of advanced reasoning and science instruction

    NASA Astrophysics Data System (ADS)

    Lawson, Anton E.

    Although the development of reasoning is recognized as an important goal of science instruction, its nature remains somewhat of a mystery. This article discusses two key questions: Does formal thought constitute a structured whole? And what role does propositional logic play in advanced reasoning? Aspects of a model of advanced reasoning are presented in which hypothesis generation and testing are viewed as central processes in intellectual development. It is argued that a number of important advanced reasoning schemata are linked by these processes and should be made a part of science instruction designed to improve students' reasoning abilities.Concerning students' development and use of formal reasoning, Linn (1982) calls for research into practical issues such as the roles of task-specific knowledge and individual differences in performance, roles not emphasized by Piaget in his theory and research. From a science teacher's point of view, this is good advice. Accordingly, this article will expand upon some of the issues raised by Linn in a discussion of the nature of advanced reasoning which attempts to reconcile the apparent contradiction between students' differential use of advanced reasoning schemata in varying contexts with the notion of a general stage of formal thought. Two key questions will be discussed: Does formal thought constitute a structured whole? And what role does propositional logic play in advanced reasoning? The underlying assumption of the present discussion is that, among other things, science instruction should concern itself with the improvement of students' reasoning abilities (cf. Arons, 1976; Arons & Karplus, 1976; Bady, 1979; Bauman, 1976; Educational Policies Commission, 1966; Herron, 1978; Karplus, 1979; Kohlberg & Mayer, 1972; Moshman & Thompson, 1981; Lawson, 1979; Levine & linn, 1977; Pallrand, 1977; Renner & Lawson, 1973; Sayre & Ball, 1975; Schneider & Renner, 1980; Wollman, 1978). The questions are of interest because to

  12. Effect of the science teaching advancement through modeling physical science professional development workshop on teachers' attitudes, beliefs and content knowledge and students' content knowledge

    NASA Astrophysics Data System (ADS)

    Dietz, Laura

    The Science Teaching Advancement through Modeling Physical Science (STAMPS) professional development workshop was evaluated for effectiveness in improving teachers' and students' content knowledge. Previous research has shown modeling to be an effective method of instruction for improving student and teacher content knowledge, evidenced by assessment scores. Data includes teacher scores on the Force Concept Inventory (FCI; Hestenes, Wells, & Swackhamer, 1992) and the Chemistry Concept Inventory (CCI; Jenkins, Birk, Bauer, Krause, & Pavelich, 2004), as well as student scores on a physics and chemistry assessment. Quantitative data is supported by teacher responses to a post workshop survey and classroom observations. Evaluation of the data shows that the STAMPS professional development workshop was successful in improving both student and teacher content knowledge. Conclusions and suggestions for future study are also included.

  13. Effects of the Integrated Online Advance Organizer Teaching Materials on Students' Science Achievement and Attitude

    NASA Astrophysics Data System (ADS)

    Korur, Fikret; Toker, Sacip; Eryılmaz, Ali

    2016-08-01

    This two-group quasi-experimental study investigated the effects of the Online Advance Organizer Concept Teaching Material (ONACOM) integrated with inquiry teaching and expository teaching methods. Grade 7 students' posttest performances on the light unit achievement and light unit attitude tests controlled for gender, previous semester science grade, and pretest scores were analyzed. No significant treatment effects were found between the inquiry and expository approaches. However, both groups demonstrated significant pretest-posttest gains in achievement and attitude. Independent from the method used, ONACOM was judged effective in both groups as students demonstrated increased achievement and attitude scores. ONACOM has a social and semantic network-aided infrastructure that can be adapted to both methods to increase students' achievement and improve their attitude.

  14. Moral Perceptions of College Science Students

    NASA Astrophysics Data System (ADS)

    Nolan, Eric

    This thesis argues that college-level science education is in need of explicit moral focuses centered on society's use of scientific knowledge. Many benefits come with scientific advancements but unfortunately the misuse of scientific knowledge has led to planetary crises that should be a concern for all who inhabit the Earth (e.g., climate change). The teaching of the misuses of science is often left out of college science classrooms and the purpose of this thesis is to see what effect college science students' education has had on their moral perception of these pressing issues. To evaluate how college science students morally perceive these global issues within their educational experiences, two focus group interviews were conducted and analyzed. Students converged on three themes when thinking of society's misuse of science: 1) there is something wrong with the way science is communicated between science and non-science groups; 2) misusing science for private benefit is not right, and 3) it is important for people to comprehend sustainability along different scales of understanding and action. This thesis concludes that although to some extent students were familiar with moral features that stem from society's misuse of science, they did not attribute their learning of those features from any of their required coursework within their programs of study.

  15. Advanced Science.

    ERIC Educational Resources Information Center

    Coles, Mike; Nelms, Rick

    1996-01-01

    Describes a study that explores the depth and breadth of scientific facts, principles, and procedures which are required in the Advanced General National Vocational Qualifications (GNVQ) science through comparison with GCE Advanced level. The final report takes account of the updated 1996 version of GNVQ science. (DDR)

  16. Advancing Space Sciences through Undergraduate Research Experiences at UC Berkeley's Space Sciences Laboratory - a novel approach to undergraduate internships for first generation community college students

    NASA Astrophysics Data System (ADS)

    Raftery, C. L.; Davis, H. B.; Peticolas, L. M.; Paglierani, R.

    2015-12-01

    The Space Sciences Laboratory at UC Berkeley launched an NSF-funded Research Experience for Undergraduates (REU) program in the summer of 2015. The "Advancing Space Sciences through Undergraduate Research Experiences" (ASSURE) program recruited heavily from local community colleges and universities, and provided a multi-tiered mentorship program for students in the fields of space science and engineering. The program was focussed on providing a supportive environment for 2nd and 3rd year undergraduates, many of whom were first generation and underrepresented students. This model provides three levels of mentorship support for the participating interns: 1) the primary research advisor provides academic and professional support. 2) The program coordinator, who meets with the interns multiple times per week, provides personal support and helps the interns to assimilate into the highly competitive environment of the research laboratory. 3) Returning undergraduate interns provided peer support and guidance to the new cohort of students. The impacts of this program on the first generation students and the research mentors, as well as the lessons learned will be discussed.

  17. Addressing Diversity in Health Science Students by Enhancing Flexibility through e-Learning

    ERIC Educational Resources Information Center

    Penman, Joy; Thalluri, Jyothi

    2014-01-01

    The technological advancements for teaching and learning sciences for health science students are embedded in the Thalluri-Penman Good Practice Model, which aims to improve the learning experiences of science students and increase student retention and success rates. The model also links students from urban and rural areas, studying both on-and…

  18. Advancing participation of blind students in Science, Technology, Engineering, and Math

    NASA Astrophysics Data System (ADS)

    Beck-Winchatz, Bernhard; Riccobono, Mark A.

    2008-12-01

    Like their sighted peers, many blind students in elementary, middle, and high school are naturally interested in space. This interest can motivate them to learn fundamental scientific, quantitative, and critical thinking skills, and sometimes even lead to careers in Science, Technology, Engineering, and Math (STEM) disciplines. However, these students are often at a disadvantage in science because of the ubiquity of important graphical information that is generally not available in accessible formats, the unfamiliarity of teachers with non-visual teaching methods, lack of access to blind role models, and the low expectations of their teachers and parents. We discuss joint efforts by the National Aeronautics and Space Administration (NASA) and the National Federation of the Blind’s (NFB) National Center for Blind Youth in Science (NCBYS) to develop and implement strategies to promote opportunities for blind youth in science. These include the development of tactile space science books and curriculum materials, science academies for blind middle school and high school students, and college-level internship and mentoring programs. The partnership with the NFB exemplifies the effectiveness of collaborations between NASA and consumer-directed organizations to improve opportunities for underserved and underrepresented individuals.

  19. Development, Evaluation and Use of a Student Experience Survey in Undergraduate Science Laboratories: The Advancing Science by Enhancing Learning in the Laboratory Student Laboratory Learning Experience Survey

    NASA Astrophysics Data System (ADS)

    Barrie, Simon C.; Bucat, Robert B.; Buntine, Mark A.; Burke da Silva, Karen; Crisp, Geoffrey T.; George, Adrian V.; Jamie, Ian M.; Kable, Scott H.; Lim, Kieran F.; Pyke, Simon M.; Read, Justin R.; Sharma, Manjula D.; Yeung, Alexandra

    2015-07-01

    Student experience surveys have become increasingly popular to probe various aspects of processes and outcomes in higher education, such as measuring student perceptions of the learning environment and identifying aspects that could be improved. This paper reports on a particular survey for evaluating individual experiments that has been developed over some 15 years as part of a large national Australian study pertaining to the area of undergraduate laboratories-Advancing Science by Enhancing Learning in the Laboratory. This paper reports on the development of the survey instrument and the evaluation of the survey using student responses to experiments from different institutions in Australia, New Zealand and the USA. A total of 3153 student responses have been analysed using factor analysis. Three factors, motivation, assessment and resources, have been identified as contributing to improved student attitudes to laboratory activities. A central focus of the survey is to provide feedback to practitioners to iteratively improve experiments. Implications for practitioners and researchers are also discussed.

  20. The effects of hands-on-science instruction on the science achievement of middle school students

    NASA Astrophysics Data System (ADS)

    Wiggins, Felita

    Student achievement in the Twenty First Century demands a new rigor in student science knowledge, since advances in science and technology require students to think and act like scientists. As a result, students must acquire proficient levels of knowledge and skills to support a knowledge base that is expanding exponentially with new scientific advances. This study examined the effects of hands-on-science instruction on the science achievement of middle school students. More specifically, this study was concerned with the influence of hands-on science instruction versus traditional science instruction on the science test scores of middle school students. The subjects in this study were one hundred and twenty sixth-grade students in six classes. Instruction involved lecture/discussion and hands-on activities carried out for a three week period. Specifically, the study ascertained the influence of the variables gender, ethnicity, and socioeconomic status on the science test scores of middle school students. Additionally, this study assessed the effect of the variables gender, ethnicity, and socioeconomic status on the attitudes of sixth grade students toward science. The two instruments used to collect data for this study were the Prentice Hall unit ecosystem test and the Scientific Work Experience Programs for Teachers Study (SWEPT) student's attitude survey. Moreover, the data for the study was treated using the One-Way Analysis of Covariance and the One-Way Analysis of Variance. The following findings were made based on the results: (1) A statistically significant difference existed in the science performance of middle school students exposed to hands-on science instruction. These students had significantly higher scores than the science performance of middle school students exposed to traditional instruction. (2) A statistically significant difference did not exist between the science scores of male and female middle school students. (3) A statistically

  1. Student opinion in England about science and technology

    NASA Astrophysics Data System (ADS)

    Jenkins, Edgar W.

    2006-05-01

    An earlier paper in this Journal (Jenkins & Nelson, 2005) drew upon the findings of the Relevance of Science Education Project (ROSE) to report the attitudes of students in England towards their secondary school science education. The present paper draws upon the same project to explore what the same students, almost all in their penultimate year of compulsory schooling, think about science and technology. It suggests that several basic research questions need to be addressed and answered if the present widespread decline in the industrialised world in the popularity of the physical sciences as subjects of advanced study is to be halted.

  2. Integration of a Communicating Science Module into an Advanced Chemistry Laboratory Course

    ERIC Educational Resources Information Center

    Renaud, Jessica; Squier, Christopher; Larsen, Sarah C.

    2006-01-01

    A communicating science module was introduced into an advanced undergraduate physical chemistry laboratory course. The module was integrated into the course such that students received formal instruction in communicating science interwoven with the chemistry laboratory curriculum. The content of the communicating science module included three…

  3. A qualitative study of motivation in Alaska Native Science and Engineering Program (ANSEP) precollege students

    NASA Astrophysics Data System (ADS)

    Yatchmeneff, Michele

    The dramatic underrepresentation of Alaska Natives in science, technology, engineering and mathematics (STEM) degrees and professions calls for rigorous research in how students access these fields. Research has shown that students who complete advanced mathematics and science courses while in high school are more academically prepared to pursue and succeed in STEM degree programs and professions. There is limited research on what motivates precollege students to become more academically prepared before they graduate from high school. In Alaska, Alaska Native precollege students regularly underperform on required State of Alaska mathematics and science exams when compared to non-Alaska Native students. Research also suggests that different things may motivate Alaska Native students than racial majority students. Therefore there is a need to better understand what motivates Alaska Native students to take and successfully complete advanced mathematics and science courses while in high school so that they are academically prepared to pursue and succeed in STEM degrees and professions. The Alaska Native Science & Engineering Program (ANSEP) is a longitudinal STEM educational enrichment program that works with Alaska Native students starting in middle school through doctoral degrees and further professional endeavors. Research suggests that Alaska Native students participating in ANSEP are completing STEM degrees at higher rates than before the program was available. ANSEP appears to be unique due to its longitudinal approach and the large numbers of Alaska Native precollege, university, and graduate students it supports. ANSEP provides precollege students with opportunities to take advanced high school and college-level mathematics and science courses and complete STEM related projects. Students work and live together on campus during the program components. Student outcome data suggests that ANSEP has been successful at motivating precollege participants to

  4. "I am Not a Statistic": Identities of African American Males in Advanced Science Courses

    NASA Astrophysics Data System (ADS)

    Johnson, Diane Wynn

    The United States Bureau of Labor Statistics (2010) expects new industries to generate approximately 2.7 million jobs in science and technology by the year 2018, and there is concern as to whether there will be enough trained individuals to fill these positions. A tremendous resource remains untapped, African American students, especially African American males (National Science Foundation, 2009). Historically, African American males have been omitted from the so called science pipeline. Fewer African American males pursue a science discipline due, in part; to limiting factors they experience in school and at home (Ogbu, 2004). This is a case study of African American males who are enrolled in advanced science courses at a predominantly African American (84%) urban high school. Guided by expectancy-value theory (EVT) of achievement related results (Eccles, 2009; Eccles et al., 1983), twelve African American male students in two advanced science courses were observed in their science classrooms weekly, participated in an in-depth interview, developed a presentation to share with students enrolled in a tenth grade science course, responded to an open-ended identity questionnaire, and were surveyed about their perceptions of school. Additionally, the students' teachers were interviewed, and seven of the students' parents. The interview data analyses highlighted the important role of supportive parents (key socializers) who had high expectations for their sons and who pushed them academically. The students clearly attributed their enrollment in advanced science courses to their high regard for their science teachers, which included positive relationships, hands-on learning in class, and an inviting and encouraging learning environment. Additionally, other family members and coaches played important roles in these young men's lives. Students' PowerPoint(c) presentations to younger high school students on why they should take advanced science courses highlighted these

  5. The effect of the Advanced Placement Training and Incentive Program on increasing enrollment and performance on Advanced Placement science exams

    NASA Astrophysics Data System (ADS)

    Ramsey, Susan Brady

    The purpose of this study is to examine the effectiveness of the National Math and Science Initiative's Advanced Placement Training and Incentive Program (APTIP) on the number of students taking AP science courses and their performance. The study evaluated 39 schools over a six-year period in six states that participate in the APTIP. The National Math and Science Initiative provided data for cohort I. A general linear model for repeated measures was used to evaluate the data. Data was evaluated three years prior to the intervention and three years during the intervention, which will actually continue for two more years (2012 and 2013) since cohort I schools were awarded five years of support. Students in APTIP schools enrolled in more AP science exams (AP Biology, AP Chemistry, AP Environmental Science, and AP Physics-B) over the course of the intervention. The quantity of students earning qualifying scores increased during the intervention years. APTIP is a multi-tiered program that includes seven days of teacher training, three six-hour student prep sessions, school equipment, reduced exam fees, and monetary incentives for students and teachers. This program positively impacted the quantity of enrollment and qualifying scores during the three years evaluated in this study. Increases in the number of female and African American students' test takers their and qualifying scores were seen in all three years of the APTIP intervention. This study supports the premise that the first step to increasing the Science, technology, engineering, and math (STEM) pipeline is giving access to advanced courses to more students in high schools.

  6. An Investigation of Students' Personality Traits and Attitudes toward Science

    NASA Astrophysics Data System (ADS)

    Hong, Zuway-R.; Lin, Huann-shyang

    2011-05-01

    The purposes of this study were to validate an instrument of attitudes toward science and to investigate grade level, type of school, and gender differences in Taiwan's students' personality traits and attitudes toward science as well as predictors of attitudes toward science. Nine hundred and twenty-two elementary students and 1,954 secondary students completed the School Student Questionnaire in 2008. Factor analyses, correlation analyses, ANOVAs, and regressions were used to compare the similarities and differences among male and female students in different grade levels. The findings were as follows: female students had higher interest in science and made more contributions in teams than their male counterparts across all grade levels. As students advanced through school, student scores on the personality trait scales of Conscientiousness and Openness sharply declined; students' scores on Neuroticism dramatically increased. Elementary school and academic high school students had significantly higher total scores on interest in science than those of vocational high and junior high school students. Scores on the scales measuring the traits of Agreeableness, Extraversion, and Conscientiousness were the most significant predictors of students' attitudes toward science. Implications of these findings for classroom instruction are discussed.

  7. Advancing Geospatial Technologies in Science and Social Science: A Case Study in Collaborative Education

    NASA Astrophysics Data System (ADS)

    Williams, N. A.; Morris, J. N.; Simms, M. L.; Metoyer, S.

    2007-12-01

    The Advancing Geospatial Skills in Science and Social Sciences (AGSSS) program, funded by NSF, provides middle and high school teacher-partners with access to graduate student scientists for classroom collaboration and curriculum adaptation to incorporate and advance skills in spatial thinking. AGSSS Fellows aid in the delivery of geospatially-enhanced activities utilizing technology such as geographic information systems, remote sensing, and virtual globes. The partnership also provides advanced professional development for both participating teachers and fellows. The AGSSS program is mutually beneficial to all parties involved. This successful collaboration of scientists, teachers, and students results in greater understanding and enthusiasm for the use of spatial thinking strategies and geospatial technologies. In addition, the partnership produces measurable improvements in student efficacy and attitudes toward processes of spatial thinking. The teacher partner training and classroom resources provided by AGSSS will continue the integration of geospatial activities into the curriculum after the project concludes. Time and resources are the main costs in implementing this partnership. Graduate fellows invest considerable time and energy, outside of academic responsibilities, to develop materials for the classroom. Fellows are required to be available during K-12 school hours, which necessitates forethought in scheduling other graduate duties. However, the benefits far outweigh the costs. Graduate fellows gain experience in working in classrooms. In exchange, students gain exposure to working scientists and their research. This affords graduate fellows the opportunity to hone their communication skills, and specifically allows them to address the issue of translating technical information for a novice audience. Teacher-partners and students benefit by having scientific expertise readily available. In summation, these experiences result in changes in teacher/student

  8. Middle school science teachers' teaching self-efficacy and students' science self-efficacy

    NASA Astrophysics Data System (ADS)

    Pisa, Danielle

    Project 2061, initiated by the American Association for the Advancement of Science (AAAS), developed recommendations for what is essential in education to produce scientifically literate citizens. Furthermore, they suggest that teachers teach effectively. There is an abundance of literature that focuses on the effects of a teacher's science teaching self-efficacy and a student's science self-efficacy. However, there is no literature on the relationship between the two self-efficacies. This study investigated if there is a differential change in students' science self-efficacy over an academic term after instruction from a teacher with high science teaching self-efficacy. Quantitative analysis of STEBI scores for teachers showed that mean STEBI scores did not change over one academic term. A t test indicated that there was no statistically significant difference in mean SMTSL scores for students' science self-efficacy over the course of one academic term for a) the entire sample, b) each science class, and c) each grade level. In addition, ANOVA indicated that there was no statistically significant difference in mean gain factor of students rated as low, medium, and high on science self-efficacy as measured by the SMTSL, when students received instruction from a teacher with a high science teaching self-efficacy value as measured by the STEBI. Finally, there was no statistically significant association between the pre- and post-instructional rankings of SMTSL by grade level when students received instruction from a teacher with a high science teaching self-efficacy value as measured by the STEBI. This is the first study of its kind. Studies indicated that teaching strategies typically practiced by teachers with high science teaching were beneficial to physics self-efficacy (Fencl & Scheel, 2005). Although it was unsuccessful at determining whether or not a teacher with high science teaching self-efficacy has a differential affect on students' science self

  9. The science experience: The relationship between an inquiry-based science program and student outcomes

    NASA Astrophysics Data System (ADS)

    Poderoso, Charie

    Science education reforms in U.S. schools emphasize the importance of students' construction of knowledge through inquiry. Organizations such as the National Science Foundation (NSF), the National Research Council (NRC), and the American Association for the Advancement of Science (AAAS) have demonstrated a commitment to searching for solutions and renewed efforts to improve science education. One suggestion for science education reform in U.S. schools was a transition from traditional didactic, textbook-based to inquiry-based instructional programs. While inquiry has shown evidence for improved student learning in science, what is needed is empirical evidence of those inquiry-based practices that affect student outcomes in a local context. This study explores the relationship between instructional programs and curricular changes affecting student outcomes in the Santa Ana Unified District (SAUSD): It provides evidence related to achievement and attitudes. SAUSD employs two approaches to teaching in the middle school science classrooms: traditional and inquiry-based approaches. The Leadership and Assistance for Science Education Reform (LASER) program is an inquiry-based science program that utilizes resources for implementation of the University of California Berkeley's Lawrence Hall of Science Education for Public Understanding Program (SEPUP) to support inquiry-based teaching and learning. Findings in this study provide empirical support related to outcomes of seventh-grade students, N = 328, in the LASER and traditional science programs in SAUSD.

  10. The Ideal Science Student: Exploring the Relationship of Students' Perceptions to Their Problem Solving Activity in a Robotics Context

    ERIC Educational Resources Information Center

    Sullivan, Florence; Lin, Xiadong

    2012-01-01

    The purpose of this study is to examine the relationship of middle school students' perceptions of the ideal science student to their problem solving activity and conceptual understanding in the applied science area of robotics. Twenty-six 11 and 12 year-olds (22 boys) attending a summer camp for academically advanced students participated in the…

  11. The effect of teacher education level, teaching experience, and teaching behaviors on student science achievement

    NASA Astrophysics Data System (ADS)

    Zhang, Danhui

    Previous literature leaves us unanswered questions about whether teaching behaviors mediate the relationship between teacher education level and experience with student science achievement. This study examined this question with 655 students from sixth to eighth grade and their 12 science teachers. Student science achievements were measured at the beginning and end of 2006-2007 school year. Given the cluster sampling of students nested in classrooms, which are nested in teachers, a two-level multilevel model was employed to disentangle the effects from teacher-level and student-level factors. Several findings were discovered in this study. Science teachers possessing of advanced degrees in science or education significantly and positively influenced student science achievement. However, years of teaching experience in science did not directly influence student science achievement. A significant interaction was detected between teachers possessing an advanced degree in science or education and years of teaching science, which was inversely associated to student science achievement. Better teaching behaviors were also positively related to student achievement in science directly, as well as mediated the relationship between student science achievement and both teacher education and experience. Additionally, when examined separately, each teaching behavior variable (teacher engagement, classroom management, and teaching strategies) served as a significant intermediary between both teacher education and experience and student science achievement. The findings of this study are intended to provide insights into the importance of hiring and developing qualified teachers who are better able to help students achieve in science, as well as to direct the emphases of ongoing teacher inservice training.

  12. Grade six students' understanding of the nature of science

    NASA Astrophysics Data System (ADS)

    Cochrane, Donald Brian

    The goal of scientific literacy requires that students develop an understanding of the nature of science to assist them in the reasoned acquisition of science concepts and in their future role as citizens in a participatory democracy. The purpose of this study was to investigate and describe the range of positions that grade six students hold with respect to the nature of science and to investigate whether gender or prior science education was related to students' views of the nature of science. Two grade six classes participated in this study. One class was from a school involved in a long-term elementary science curriculum project. The science curriculum at this school involved constructivist epistemology and pedagogy and a realist ontology. The curriculum stressed hands-on, open-ended activities and the development of science process skills. Students were frequently involved in creating and testing explanations for physical phenomena. The second class was from a matched school that had a traditional science program. Results of the study indicated that students hold a wider range of views of the nature of science than previously documented. Student positions ranged from having almost no understanding of the nature of science to those expressing positions regarding the nature of science that were more developed than previous studies had documented. Despite the range of views documented, all subjects held realist views of scientific knowledge. Contrary to the literature, some students were able to evaluate a scientific theory in light of empirical evidence that they had generated. Results also indicated that students from the project school displayed more advanced views of the nature of science than their matched peers. However, not all students benefited equally from their experiences. No gender differences were found with respect to students' understanding of the nature of science.

  13. A phenomenological analysis of the essence of the science education experience as perceived by female high school physics and advanced chemistry students

    NASA Astrophysics Data System (ADS)

    Papadimitriou, Michael

    The purpose of this phenomenological study was to describe the essential elements of the current science education experience as constructed by twelve female high school physics and advanced chemistry students. The expressed desired outcome was a description of the phenomenon from a participant point of view. Student recollections and interpretations of experiences were assessed for a twelve-week period. Data sources were student journals, autobiographies, interviews, focus group interviews and researcher observations. In addition, each participant completed the Test of Science Related Attitudes (Fraser, 1981) in order to create attitude profiles for triangulation with other data. While a wide range of aspects of the science education experience emerged, results showed that female students describe and interpret their science education experiences on the basis of actual interest in science, early science experiences, perception of ability, self-confidence, teacher attributes, parental and peer interaction, societal expectations, the nature of science, and gender. Of these factors, specifically, interest and curiosity, societal influence, the nature of science, lack of in-school experiences, the desire to help others, and general parent support were most impacting upon experience and the desire to continue science study. Moreover, the interaction of these factors is relevant. Very simply, early experiences are crucial to interest development. In general, parents can enhance this interest by providing science-related experiences. In the absence of early in-school experiences (i.e., which the participants reported), these out-of-school experiences become crucial. More importantly, quality instruction and parent and peer support are needed to foster science interest and to overcome the powerfully negative influence of society, the discriminatory nature of science, and the lack of experiences.

  14. Lincoln Advanced Science and Engineering Reinforcement (LASER) program

    NASA Technical Reports Server (NTRS)

    Williams, Willie E.

    1989-01-01

    Lincoln University, under the Lincoln Advanced Science and Engineering Reinforcement (LASER) Program, has identified and successfully recruited over 100 students for majors in technical fields. To date, over 70 percent of these students have completed or will complete technical degrees in engineering, physics, chemistry, and computer science. Of those completing the undergraduate degree, over 40 percent have gone on to graduate and professional schools. This success is attributable to well planned approaches to student recruitment, training, personal motivation, retention, and program staff. Very closely coupled to the above factors is a focus designed to achieve excellence in program services and student performance. Future contributions by the LASER Program to the pool of technical minority graduates will have a significant impact. This is already evident from the success of the students that began the first year of the program. With program plans to refine many of the already successful techniques, follow-on activities are expected to make even greater contributions to the availability of technically trained minorities. For example, undergraduate research exposure, broadened summer, and co-op work experiences will be enhanced.

  15. Advanced Technologies and Data Management Practices in Environmental Science: Lessons from Academia

    ERIC Educational Resources Information Center

    Hernandez, Rebecca R.; Mayernik, Matthew S.; Murphy-Mariscal, Michelle L.; Allen, Michael F.

    2012-01-01

    Environmental scientists are increasing their capitalization on advancements in technology, computation, and data management. However, the extent of that capitalization is unknown. We analyzed the survey responses of 434 graduate students to evaluate the understanding and use of such advances in the environmental sciences. Two-thirds of the…

  16. Teaching advanced science concepts through Freshman Research Immersion

    NASA Astrophysics Data System (ADS)

    Wahila, M. J.; Amey-Proper, J.; Jones, W. E.; Stamp, N.; Piper, L. F. J.

    2017-03-01

    We have developed a new introductory physics/chemistry programme that teaches advanced science topics and practical laboratory skills to freshmen undergraduate students through the use of student-led, bona fide research activities. While many recent attempts to improve college-level physics education have focused on integrating interactive demonstrations and activities into traditional passive lectures, we have taken the idea of active-learning several steps further. Working in conjunction with several research faculty at Binghamton University, we have created a programme that puts undergraduate students on an accelerated path towards working in real research laboratories performing publishable research. Herein, we describe in detail the programme goals, structure, and educational content, and report on our promising initial student outcomes.

  17. Emerging areas of science: Recommendations for Nursing Science Education from the Council for the Advancement of Nursing Science Idea Festival.

    PubMed

    Henly, Susan J; McCarthy, Donna O; Wyman, Jean F; Heitkemper, Margaret M; Redeker, Nancy S; Titler, Marita G; McCarthy, Ann Marie; Stone, Patricia W; Moore, Shirley M; Alt-White, Anna C; Conley, Yvette P; Dunbar-Jacob, Jacqueline

    2015-01-01

    The Council for the Advancement of Nursing Science aims to "facilitate and recognize life-long nursing science career development" as an important part of its mission. In light of fast-paced advances in science and technology that are inspiring new questions and methods of investigation in the health sciences, the Council for the Advancement of Nursing Science convened the Idea Festival for Nursing Science Education and appointed the Idea Festival Advisory Committee (IFAC) to stimulate dialogue about linking PhD education with a renewed vision for preparation of the next generation of nursing scientists. Building on the 2005 National Research Council report Advancing The Nation's Health Needs and the 2010 American Association of Colleges of Nursing Position Statement on the Research-Focused Doctorate Pathways to Excellence, the IFAC specifically addressed the capacity of PhD programs to prepare nursing scientists to conduct cutting-edge research in the following key emerging and priority areas of health sciences research: omics and the microbiome; health behavior, behavior change, and biobehavioral science; patient-reported outcomes; big data, e-science, and informatics; quantitative sciences; translation science; and health economics. The purpose of this article is to (a) describe IFAC activities, (b) summarize 2014 discussions hosted as part of the Idea Festival, and (c) present IFAC recommendations for incorporating these emerging areas of science and technology into research-focused doctoral programs committed to preparing graduates for lifelong, competitive careers in nursing science. The recommendations address clearer articulation of program focus areas; inclusion of foundational knowledge in emerging areas of science in core courses on nursing science and research methods; faculty composition; prerequisite student knowledge and skills; and in-depth, interdisciplinary training in supporting area of science content and methods. Copyright © 2015 Elsevier Inc

  18. An analysis of high-performing science students' preparation for collegiate science courses

    NASA Astrophysics Data System (ADS)

    Walter, Karen

    This mixed-method study surveyed first year high-performing science students who participated in high-level courses such as International Baccalaureate (IB), Advanced Placement (AP), and honors science courses in high school to determine their perception of preparation for academic success at the collegiate level. The study used 52 students from an honors college campus and surveyed the students and their professors. The students reported that they felt better prepared for academic success at the collegiate level by taking these courses in high school (p<.001). There was a significant negative correlation between perception of preparation and student GPA with honors science courses (n=55 and Pearson's r=-0.336), while AP courses (n=47 and Pearson's r=0.0016) and IB courses (n=17 and Pearson's r=-0.2716) demonstrated no correlation between perception of preparation and GPA. Students reported various themes that helped or hindered their perception of academic success once at the collegiate level. Those themes that reportedly helped students were preparedness, different types of learning, and teacher qualities. Students reported in a post-hoc experience that more lab time, rigorous coursework, better teachers, and better study techniques helped prepare them for academic success at the collegiate level. Students further reported on qualities of teachers and teaching that helped foster their academic abilities at the collegiate level, including teacher knowledge, caring, teaching style, and expectations. Some reasons for taking high-level science courses in high school include boosting GPA, college credit, challenge, and getting into better colleges.

  19. Advances in Cross-Cutting Ideas for Computational Climate Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, Esmond; Evans, Katherine J.; Caldwell, Peter

    This report presents results from the DOE-sponsored workshop titled, ``Advancing X-Cutting Ideas for Computational Climate Science Workshop,'' known as AXICCS, held on September 12--13, 2016 in Rockville, MD. The workshop brought together experts in climate science, computational climate science, computer science, and mathematics to discuss interesting but unsolved science questions regarding climate modeling and simulation, promoted collaboration among the diverse scientists in attendance, and brainstormed about possible tools and capabilities that could be developed to help address them. Emerged from discussions at the workshop were several research opportunities that the group felt could advance climate science significantly. These include (1)more » process-resolving models to provide insight into important processes and features of interest and inform the development of advanced physical parameterizations, (2) a community effort to develop and provide integrated model credibility, (3) including, organizing, and managing increasingly connected model components that increase model fidelity yet complexity, and (4) treating Earth system models as one interconnected organism without numerical or data based boundaries that limit interactions. The group also identified several cross-cutting advances in mathematics, computer science, and computational science that would be needed to enable one or more of these big ideas. It is critical to address the need for organized, verified, and optimized software, which enables the models to grow and continue to provide solutions in which the community can have confidence. Effectively utilizing the newest computer hardware enables simulation efficiency and the ability to handle output from increasingly complex and detailed models. This will be accomplished through hierarchical multiscale algorithms in tandem with new strategies for data handling, analysis, and storage. These big ideas and cross-cutting technologies for enabling

  20. Advances in Cross-Cutting Ideas for Computational Climate Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, E.; Evans, K.; Caldwell, P.

    This report presents results from the DOE-sponsored workshop titled, Advancing X-Cutting Ideas for Computational Climate Science Workshop,'' known as AXICCS, held on September 12--13, 2016 in Rockville, MD. The workshop brought together experts in climate science, computational climate science, computer science, and mathematics to discuss interesting but unsolved science questions regarding climate modeling and simulation, promoted collaboration among the diverse scientists in attendance, and brainstormed about possible tools and capabilities that could be developed to help address them. Emerged from discussions at the workshop were several research opportunities that the group felt could advance climate science significantly. These include (1)more » process-resolving models to provide insight into important processes and features of interest and inform the development of advanced physical parameterizations, (2) a community effort to develop and provide integrated model credibility, (3) including, organizing, and managing increasingly connected model components that increase model fidelity yet complexity, and (4) treating Earth system models as one interconnected organism without numerical or data based boundaries that limit interactions. The group also identified several cross-cutting advances in mathematics, computer science, and computational science that would be needed to enable one or more of these big ideas. It is critical to address the need for organized, verified, and optimized software, which enables the models to grow and continue to provide solutions in which the community can have confidence. Effectively utilizing the newest computer hardware enables simulation efficiency and the ability to handle output from increasingly complex and detailed models. This will be accomplished through hierarchical multiscale algorithms in tandem with new strategies for data handling, analysis, and storage. These big ideas and cross-cutting technologies for enabling

  1. Tap™: The System for Teacher and Student Advancement. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2015

    2015-01-01

    "TAP"™: "The System for Teacher and Student Advancement (TAP™)" is an educator effectiveness program that aims to improve student achievement through supports and incentives for teachers. Based on the research, "TAP"™ teachers were found to have no discernible effects on student achievement in science, English…

  2. Soil Water: Advanced Crop and Soil Science. A Course of Study.

    ERIC Educational Resources Information Center

    Miller, Larry E.

    The course of study represents the fourth of six modules in advanced crop and soil science and introduces the agriculture student to the topic of soil water. Upon completing the three day module, the student will be able to classify water as to its presence in the soil, outline the hydrological cycle, list the ways water is lost from the soil,…

  3. Soil Erosion: Advanced Crop and Soil Science. A Course of Study.

    ERIC Educational Resources Information Center

    Miller, Larry E.

    The course of study represents the last of six modules in advanced crop and soil science and introduces the agriculture student to the topic of soil erosion. Upon completion of the two day lesson, the student will be able to: (1) define conservation, (2) understand how erosion takes place, and (3) list ways of controlling wind and water erosion.…

  4. Preparing minority undergraduate students for successful science careers.

    NASA Astrophysics Data System (ADS)

    Akundi, Murty

    2008-03-01

    Xavier University of Louisiana is well known for being number one in graduating the most minority students in physical and biological sciences. The reason for this success is built on the concept of Standards with Sympathy in the Sciences (Triple S). This is an outgrowth of over twenty years of planning and development by the Xavier science faculty to devise a program for preparing and retaining students in the sciences and engineering. Xavier has been successfully conducting for over ten years, Summer Science Academy (SSA) for middle and high school students; Science Technology, Engineering and Mathematics (STEM) Scholars and Howard Hughes Biomedical programs for in-coming freshmen. Recently, through a grant from NSF, we have developed the Experiential Problem-solving and Analytical Reasoning (EPsAR) summer bridge program for in-coming freshmen who were given conditional admission to the university (i.e., those students who scored below the acceptable range for placement into degree mathematics courses). In this program, EPsAR participants will be engaged in problem-solving and critical thinking activities for eight hours per day, five days per week, for six weeks. Additionally, an interdisciplinary approach is taken to convey the mathematical skills learned to relate to physics, chemistry, biology, and computer science. Sixty-six students have participated in the last two years in the EPsAR program. During the first year 23 of 28 students successfully bi-passed the algebra review course and were placed into a degree credit course in mathematics. In the second year, thirty-one (31) of the 38 were advanced to a higher-level mathematics course. Twenty-three (23) out of 38 went on to degree credit math course. To retain students in the sciences peer tutoring in all the science disciplines are made available to students throughout the day for 5 days per week. Faculty and students are available to give guidance to the needed students. The University has established a

  5. Science Olympiad students' nature of science understandings

    NASA Astrophysics Data System (ADS)

    Philpot, Cindy J.

    2007-12-01

    Recent reform efforts in science education focus on scientific literacy for all citizens. In order to be scientifically literate, an individual must have informed understandings of nature of science (NOS), scientific inquiry, and science content matter. This study specifically focused on Science Olympiad students' understanding of NOS as one piece of scientific literacy. Research consistently shows that science students do not have informed understandings of NOS (Abd-El-Khalick, 2002; Bell, Blair, Crawford, and Lederman, 2002; Kilcrease and Lucy, 2002; Schwartz, Lederman, and Thompson, 2001). However, McGhee-Brown, Martin, Monsaas and Stombler (2003) found that Science Olympiad students had in-depth understandings of science concepts, principles, processes, and techniques. Science Olympiad teams compete nationally and are found in rural, urban, and suburban schools. In an effort to learn from students who are generally considered high achieving students and who enjoy science, as opposed to the typical science student, the purpose of this study was to investigate Science Olympiad students' understandings of NOS and the experiences that formed their understandings. An interpretive, qualitative, case study method was used to address the research questions. The participants were purposefully and conveniently selected from the Science Olympiad team at a suburban high school. Data collection consisted of the Views of Nature of Science -- High School Questionnaire (VNOS-HS) (Schwartz, Lederman, & Thompson, 2001), semi-structured individual interviews, and a focus group. The main findings of this study were similar to much of the previous research in that the participants had informed understandings of the tentative nature of science and the role of inferences in science, but they did not have informed understandings of the role of human imagination and creativity, the empirical nature of science, or theories and laws. High level science classes and participation in

  6. Issue-Oriented Science: Using Socioscientific Issues to Engage Biology Students

    ERIC Educational Resources Information Center

    Lenz, Laura; Willcox, Maia K.

    2012-01-01

    In today's global society, with science and technology advancing at a rapid pace, issues about biological topics are common. A typical standards-based high school or general college-level biology classroom naturally lends itself to teaching issue-oriented science. In an issue-oriented classroom, students analyze and discuss personal, societal, and…

  7. Science Outside the Lab: Helping Graduate Students in Science and Engineering Understand the Complexities of Science Policy.

    PubMed

    Bernstein, Michael J; Reifschneider, Kiera; Bennett, Ira; Wetmore, Jameson M

    2017-06-01

    Helping scientists and engineers challenge received assumptions about how science, engineering, and society relate is a critical cornerstone for macroethics education. Scientific and engineering research are frequently framed as first steps of a value-free linear model that inexorably leads to societal benefit. Social studies of science and assessments of scientific and engineering research speak to the need for a more critical approach to the noble intentions underlying these assumptions. "Science Outside the Lab" is a program designed to help early-career scientists and engineers understand the complexities of science and engineering policy. Assessment of the program entailed a pre-, post-, and 1 year follow up survey to gauge student perspectives on relationships between science and society, as well as a pre-post concept map exercise to elicit student conceptualizations of science policy. Students leave Science Outside the Lab with greater humility about the role of scientific expertise in science and engineering policy; greater skepticism toward linear notions of scientific advances benefiting society; a deeper, more nuanced understanding of the actors involved in shaping science policy; and a continued appreciation of the contributions of science and engineering to society. The study presents an efficacious program that helps scientists and engineers make inroads into macroethical debates, reframe the ways in which they think about values of science and engineering in society, and more thoughtfully engage with critical mediators of science and society relationships: policy makers and policy processes.

  8. What Is Soil? Advanced Crop and Soil Science. A Course of Study.

    ERIC Educational Resources Information Center

    Miller, Larry E.

    The course of study represents the first of six modules in advanced crop and soil science and introduces the agriculture student to the topic of soil management. Upon completing the two day lesson, the student will be able to define "soil", list the soil forming agencies, define and use soil terminology, and discuss soil formation and…

  9. Science faculty's subtle gender biases favor male students.

    PubMed

    Moss-Racusin, Corinne A; Dovidio, John F; Brescoll, Victoria L; Graham, Mark J; Handelsman, Jo

    2012-10-09

    Despite efforts to recruit and retain more women, a stark gender disparity persists within academic science. Abundant research has demonstrated gender bias in many demographic groups, but has yet to experimentally investigate whether science faculty exhibit a bias against female students that could contribute to the gender disparity in academic science. In a randomized double-blind study (n = 127), science faculty from research-intensive universities rated the application materials of a student-who was randomly assigned either a male or female name-for a laboratory manager position. Faculty participants rated the male applicant as significantly more competent and hireable than the (identical) female applicant. These participants also selected a higher starting salary and offered more career mentoring to the male applicant. The gender of the faculty participants did not affect responses, such that female and male faculty were equally likely to exhibit bias against the female student. Mediation analyses indicated that the female student was less likely to be hired because she was viewed as less competent. We also assessed faculty participants' preexisting subtle bias against women using a standard instrument and found that preexisting subtle bias against women played a moderating role, such that subtle bias against women was associated with less support for the female student, but was unrelated to reactions to the male student. These results suggest that interventions addressing faculty gender bias might advance the goal of increasing the participation of women in science.

  10. Science dual enrollment: An examination of high school students' post-secondary aspirations

    NASA Astrophysics Data System (ADS)

    Berry, Chelsia

    The purpose of this study was to determine if participation in science dual enrollment courses influenced African American high school students' post-secondary aspirations that will lead to college attendance. The investigation examined the relationship between African American students' learning experiences and how their self-efficacy and outcome expectations impact their goal setting. The goal was to determine the impact of the following variables on African American students' plan to pursue a bachelor's or advanced degree: (a) STEM exposure, (b) Algebra 1 achievement, (c) level of science class, and (d) receiving science college credit for dual enrollment course. The social cognitive career theory framed this body of research to explore how career and academic interests mature, are developed, and are translated into action. Science dual enrollment participation is a strategy for addressing the lack of African American presence in the STEM fields. The causal comparative ex post facto research design was used in this quantitative study. The researcher performed the Kruskal-Wallis non-parametric analysis of variance and Pearson's chi-square tests to analyze secondary data from the High School Longitudinal Study first follow-up student questionnaire. The results indicate that STEM exposure and early success in Algebra 1 have a statistically significant impact on African American students' ambition to pursue a bachelor's or advanced degree. According to the Pearson's chi-square and independent sample Kruskal-Wallis analyses, level of students' science class and receiving college credit for dual enrollment do not significantly influence African American students' postsecondary aspirations.

  11. The Effect of Background Experience and an Advance Organizer on the Attainment of Certain Science Concepts.

    ERIC Educational Resources Information Center

    McAdaragh, Mary Kathleen

    This study examined the effects of an advance organizer and background experience in science on the attainment of science concepts. Ninth-grade earth science students (N=90) were given the Dubbins Earth Science Test (DEST) and a Science Background Experience Inventory (SBEI) developed by the author. They were then placed into high, medium, and low…

  12. Using Recent Planetary Science Data to Develop Advanced Undergraduate Physics and Astronomy Activities

    NASA Astrophysics Data System (ADS)

    Steckloff, Jordan; Lindell, Rebecca

    2016-10-01

    Teaching science by having students manipulate real data is a popular trend in astronomy and planetary science education. However, many existing activities simply couple this data with traditional "cookbook" style verification labs. As with most topics within science, this instructional technique does not enhance the average students' understanding of the phenomena being studied. Here we present a methodology for developing "science by doing" activities that incorporate the latest discoveries in planetary science with up-to-date constructivist pedagogy to teach advanced concepts in Physics and Astronomy. In our methodology, students are first guided to understand, analyze, and plot real raw scientific data; develop and test physical and computational models to understand and interpret the data; finally use their models to make predictions about the topic being studied and test it with real data.To date, two activities have been developed according to this methodology: Understanding Asteroids through their Light Curves (hereafter "Asteroid Activity"), and Understanding Exoplanetary Systems through Simple Harmonic Motion (hereafter "Exoplanet Activity"). The Asteroid Activity allows students to explore light curves available on the Asteroid Light Curve Database (ALCDB) to discover general properties of asteroids, including their internal structure, strength, and mechanism of asteroid moon formation. The Exoplanet Activity allows students to investigate the masses and semi-major axes of exoplanets in a system by comparing the radial velocity motion of their host star to that of a coupled simple harmonic oscillator. Students then explore how noncircular orbits lead to deviations from simple harmonic motion. These activities will be field tested during the Fall 2016 semester in an advanced undergraduate mechanics and astronomy courses at a large Midwestern STEM-focused university. We will present the development methodologies for these activities, description of the

  13. A study of the factors affecting advancement and graduation for engineering students

    NASA Astrophysics Data System (ADS)

    Fletcher, John Thomas

    The purpose of this study was, first, to determine whether a set of predictor variables could be identified from pre-enrollment and post-enrollment data that would differentiate students who advance to a major in engineering from non-advancers and, further, to determine if the predictor variables would differentiate students who graduate from the College of Engineering from non-graduates and graduates of other colleges at Auburn University. A second purpose was to determine if the predictor variables would correctly identify male and female students with the same degree of accuracy. The third purpose was to determine if there were significant relationships between the predictor variables studied and grades earned in a set of 15 courses that have enrollments over 100 students and are part of the pre-engineering curriculum. The population for this study was the 868 students who entered the pre-engineering program at Auburn University as freshmen during the Summer and Fall Quarters of 1991. The variables selected to differentiate the different groups were ACT scores, high school grade indices, and first quarter college grade point average. Two sets of classification matrices were developed using analysis and holdout samples that were divided based on sex. With respect to the question about advancement to the professional engineering program, structure coefficients derived from discriminant analysis procedures performed on all the cases combined indicated that first quarter college grade point average, high school math index, ACT math score, and high school science grade index were important predictor variables in classifying students who advanced to the professional engineering program and those who did not. Further, important structure coefficients with respect to graduation with a degree from the College of Engineering were first quarter college grade point average, high school math index, ACT math score, and high school science grade index. The results of this

  14. Investigation of Factors Affecting Students' Science Achievement According to Student Science Teachers

    ERIC Educational Resources Information Center

    Tatar, Erdal; Tüysüz, Cengiz; Tosun, Cemal; Ilhan, Nail

    2016-01-01

    In this study, it was aimed to investigate the factors affecting students' science achievement according to student science teachers. The survey model which is one of the quantitative research methods was used. The sample was consisted of total 606 student science teachers from four state universities in Turkey. The data were obtained by using the…

  15. A collaborative approach to advance student research at the University of Southern California.

    PubMed

    Stephens, Heather; Jensen, Bridger; Carpiaux, Weston; Sedghizadeh, Parish; Chai, Yang

    2012-05-01

    The continued advancement of oral health and science relies upon the cultivation of a student's interest in research. The Student Research Group at the Ostrow School of Dentistry of the University of Southern California is working to increase student involvement in research and develop future academic leaders. This study aims to, through student surveys, quantitatively evaluate students' involvement in research, students' interest in participating in research and to identify specific barriers students feel challenge their ability to participate in research.

  16. A Trial of Physics Education for Liberal Arts Students Using the Advancing Physics

    NASA Astrophysics Data System (ADS)

    Ochi, Nobuaki

    A new approach to physics education for liberal arts students was performed in a Japanese university. The Advancing Physics, a modern textbook developed by the Institute of Physics, was employed as the base of this approach. The textbook includes a variety of modern topics about science and technology with beautiful pictures, while the use of math is kept to a minimum. From results of the questionnaire after one-semester lectures, it turned out that students' interest in science and technology rose substantially. On the other hand, there were some difficulties in lecturing, mathematical techniques in particular, which should be modified by the next trial. This result is an indication of a potential of the Advancing Physics for liberal arts education.

  17. Students' attitudes towards interdisciplinary education: a course on interdisciplinary aspects of science and engineering education

    NASA Astrophysics Data System (ADS)

    Gero, Aharon

    2017-05-01

    A course entitled 'Science and Engineering Education: Interdisciplinary Aspects' was designed to expose undergraduate students of science and engineering education to the attributes of interdisciplinary education which integrates science and engineering. The core of the course is an interdisciplinary lesson, which each student is supposed to teach his/her peers. Sixteen students at advanced stages of their studies attended the course. The research presented here used qualitative instruments to characterise students' attitudes towards interdisciplinary learning and teaching of science and engineering. According to the findings, despite the significant challenge which characterises interdisciplinary teaching, a notable improvement was evident throughout the course in the percentage of students who expressed willingness to teach interdisciplinary classes in future.

  18. The ASP at 125: Advancing Science Literacy in an Age of Acceleration

    NASA Astrophysics Data System (ADS)

    Manning, Jim

    2014-01-01

    On February 7, 2014, the Astronomical Society of the Pacific will celebrate its 125th birthday and a century and a quarter of advancing astronomy and astronomy/science education during a period of revolutionary change in our understanding of the universe. In keeping with both the retrospective and forward-looking nature of such milestones, the presenter will: 1) share highlights of the Society’s work in supporting the communication of astronomy research through its professional publications, and creating innovative astronomy education and public outreach projects and networks to advance student, teacher and public understanding of astronomy and science; 2) report on current NASA- and NSF-funded efforts and on plans going forward; 3) and solicit input from the assembled community on how the ASP can best serve its various constituencies and the cause of science education, communication and literacy at a time when both the universe and life on Earth are accelerating at unprecedented rates. Birthdays are for celebrating; come celebrate with us as we rededicate ourselves to a mission of advancing science literacy through astronomy.

  19. Revisiting the silence of Asian immigrant students: The negotiation of Korean immigrant students' identities in science classrooms

    NASA Astrophysics Data System (ADS)

    Ryu, Minjung

    This dissertation is a study about Korean immigrant students' identities, including academic identities related to science learning and identities along various social dimensions. I explore how Korean immigrant students participate in science classrooms and how they enact and negotiate their identities in their classroom discursive participation. My dissertation is motivated by the increasing attention in educational research to the intersectionality between science learning and various dimensions of identities (e.g., gender, race, ethnicity, social networks) and a dearth of such research addressing Asian immigrant students. Asian immigrant students are stereotyped as quiet and successful learners, particularly in science and mathematics classes, and their success is often explained by cultural differences. I confront this static and oversimplified notion of cultural differences and Asians' academic success and examine the intersectionality between science learning and identities of Asian immigrant students, with the specific case of Korean immigrants. Drawing upon cultural historical and sociolinguistic perspectives of identity, I propose a theoretical framework that underscores multiple levels of contexts (macro level, meso level, personal, and micro level contexts) in understanding and analyzing students' identities. Based on a year-long ethnographic study in two high school Advanced Placement Biology classes in a public high school, I present the meso level contexts of the focal school and biology classes, and in-depth analyses of three focal students. The findings illustrate: (1) how meso level contexts play a critical role in these students' identities and science classroom participation, (2) how the meso level contexts are reinterpreted and have different meanings to different students depending on their personal contexts, and (3) how students negotiated their positions to achieve certain identity goals. I discuss the implications of the findings for the

  20. Chemical Features of Soil: Advanced Crop and Soil Science. A Course of Study.

    ERIC Educational Resources Information Center

    Miller, Larry E.

    The course of study represents the fifth of six modules in advanced crop and soil science and introduces the agriculture student to chemical features of the soil. Upon completing the four day lesson, the student will be able to: (1) list macro- and micro-nutrients, (2) define pH and its effect on plants, (3) outline Cation Exchange of the soil,…

  1. Relationship Between Teacher Inquiry Science Instruction Self-Efficacy and Student Achievement

    NASA Astrophysics Data System (ADS)

    Hanners, Grace D.

    Standardized test data indicate that student achievement in science is a problem both nationally and locally. At the study site, only a small percentage of fifth-grade students score at the advanced level on the Maryland state science assessment (MSA). In addition, the performance of African American, economically disadvantaged, and special education students is well below that of the general student population. Some studies have shown that teacher self-efficacy affects student achievement. Therefore, the purpose of this study was to explore the relationship between fifth-grade teacher inquiry science instruction self-efficacy scores and the scores of their students on the MSA. Bandura's work on the effect of self-efficacy on human behavior provided the theoretical basis for this study. The research questions examined the relationship between teacher inquiry science instructional self-efficacy scores and students' science MSA scores as well as the relationship by student subgroups. A correlational research design was used. The Teaching Science as Inquiry survey instrument was used to quantify teacher self-efficacy, and archival MSA data were the source for student scores. The study included data from 22 teachers and 1,625 of their students. A 2-tailed Pearson coefficient analysis revealed significant, positive relationships with regard to overall student achievement ( r20 = .724, p < .01) and the achievement of each of the subgroups (African American: r20 = .549, p < .01; economically disadvantaged: r20 = .655, p < .01; and special education: r18 = .532, p < .05). The results of this study present an opportunity for positive social change because the local school system can provide professional development that may increase teacher inquiry science instruction self-efficacy as a possible means to improve overall science achievement and to reduce achievement gaps.

  2. Investigating minority student participation in an authentic science research experience

    NASA Astrophysics Data System (ADS)

    Preston, Stephanie Danette

    In the United States, a problem previously overlooked in increasing the total number of scientifically literate citizens is the lack of diversity in advanced science classes and in science, technology, engineering, and mathematics (STEM) fields. Groups traditionally underserved in science education and thus underrepresented in the STEM fields include: low-income, racial/ethnic minorities, and females of all ethnic and racial backgrounds. Despite the number of these students who are initially interested in science very few of them thrive in the discipline. Some scholars suggest that the declining interest for students underrepresented in science is traceable to K-12th grade learning experiences and access to participating in authentic science. Consequently, the diminishing interest of minorities and women in science contributes negatively to the representation of these groups in the STEM disciplines. The purpose of this study was to investigate a summer science research experience for minority students and the nature of students' participation in scientific discourse and practices within the context of the research experience. The research questions that guided this study are: The nature of the Summer Experience in Earth and Mineral Science (SEEMS) research experience . (A) What are the SEEMS intended outcomes? (B) To what extent does SEEMS enacted curriculum align with the intended outcomes of the program? The nature of students engagement in the SEEMS research. (A) In what ways do students make sense of and apply science concepts as they engage in the research (e.g., understand problem, how they interpret data, how they construct explanations), and the extent to which they use the science content appropriately? (B) In what ways do students engage in the cultural practices of science, such as using scientific discourse, interpreting inscriptions, and constructing explanations from evidence (engaging in science practices, knowing science and doing science)? The

  3. EVALUATION AND FOLLOWUP STUDY OF A SUMMER SCIENCE AND MATHEMATICS PROGRAM FOR TALENTED SECONDARY SCHOOL STUDENTS.

    ERIC Educational Resources Information Center

    BASSETT, ROBERT D.; COOLEY, WILLIAM W.

    THIS STUDY WAS TO EVALUATE A SUMMER PROGRAM IN SCIENCE AND MATHEMATICS FOR 60 PROMISING SCIENCE STUDENTS, AND TO DETERMINE THE EFFECTS OF SUCH A PROGRAM ON THE BEHAVIOR OF STUDENTS IN CLASSES DURING THE ENSUING YEAR AND ON THEIR FUTURE CAREER DECISIONS. THE FIRST 2 OF THE 10 WEEKS OF THIS PROGRAM THE STUDENTS WERE GIVEN ADVANCED INSTRUCTION BY…

  4. Science faculty’s subtle gender biases favor male students

    PubMed Central

    Moss-Racusin, Corinne A.; Dovidio, John F.; Brescoll, Victoria L.; Graham, Mark J.; Handelsman, Jo

    2012-01-01

    Despite efforts to recruit and retain more women, a stark gender disparity persists within academic science. Abundant research has demonstrated gender bias in many demographic groups, but has yet to experimentally investigate whether science faculty exhibit a bias against female students that could contribute to the gender disparity in academic science. In a randomized double-blind study (n = 127), science faculty from research-intensive universities rated the application materials of a student—who was randomly assigned either a male or female name—for a laboratory manager position. Faculty participants rated the male applicant as significantly more competent and hireable than the (identical) female applicant. These participants also selected a higher starting salary and offered more career mentoring to the male applicant. The gender of the faculty participants did not affect responses, such that female and male faculty were equally likely to exhibit bias against the female student. Mediation analyses indicated that the female student was less likely to be hired because she was viewed as less competent. We also assessed faculty participants’ preexisting subtle bias against women using a standard instrument and found that preexisting subtle bias against women played a moderating role, such that subtle bias against women was associated with less support for the female student, but was unrelated to reactions to the male student. These results suggest that interventions addressing faculty gender bias might advance the goal of increasing the participation of women in science. PMID:22988126

  5. An investigation of the impact of science course sequencing on student performance in high school science and math

    NASA Astrophysics Data System (ADS)

    Mary, Michael Todd

    High school students in the United States for the past century have typically taken science courses in a sequence of biology followed by chemistry and concluding with physics. An alternative sequence, typically referred to as "physics first" inverts the traditional sequence by having students begin with physics and end with biology. Proponents of physics first cite advances in biological sciences that have dramatically changed the nature of high school biology and the potential benefit to student learning in math that would accompany taking an algebra-based physics course in the early years of high school to support changing the sequence. Using a quasi-experimental, quantitative research design, the purpose of this study was to investigate the impact of science course sequencing on student achievement in math and science at a school district that offered both course sequences. The Texas state end-of-course exams in biology, chemistry, physics, algebra I and geometry were used as the instruments measuring student achievement in math and science at the end of each academic year. Various statistical models were used to analyze these achievement data. The conclusion was, for students in this study, the sequence in which students took biology, chemistry, and physics had little or no impact on performance on the end-of-course assessments in each of these courses. Additionally there was only a minimal effect found with respect to math performance, leading to the conclusion that neither the traditional or "physics first" science course sequence presented an advantage for student achievement in math or science.

  6. Student Motivation in Science Subjects in Tanzania, Including Students' Voices

    NASA Astrophysics Data System (ADS)

    Mkimbili, Selina Thomas; Ødegaard, Marianne

    2017-12-01

    Fostering and maintaining students' interest in science is an important aspect of improving science learning. The focus of this paper is to listen to and reflect on students' voices regarding the sources of motivation for science subjects among students in community secondary schools with contextual challenges in Tanzania. We conducted a group-interview study of 46 Form 3 and Form 4 Tanzanian secondary school students. The study findings reveal that the major contextual challenges to student motivation for science in the studied schools are limited resources and students' insufficient competence in the language of instruction. Our results also reveal ways to enhance student motivation for science in schools with contextual challenges; these techniques include the use of questioning techniques and discourse, students' investigations and practical work using locally available materials, study tours, more integration of classroom science into students' daily lives and the use of real-life examples in science teaching. Also we noted that students' contemporary life, culture and familiar language can be utilised as a useful resource in facilitating meaningful learning in science in the school. Students suggested that, to make science interesting to a majority of students in a Tanzanian context, science education needs to be inclusive of students' experiences, culture and contemporary daily lives. Also, science teaching and learning in the classroom need to involve learners' voices.

  7. Achieving equity through critical science agency: An ethnographic study of African American students in a health science career academy

    NASA Astrophysics Data System (ADS)

    Haun-Frank, Julie

    The purpose of this study was to examine the potential of a High School Health Science Career Academy to support African American students' science career trajectories. I used three key theoretical tools---critical science agency (Basu, 2007; Calabrese Barton & Tan, 2008), power (Nespor, 1994), and cultural production (Carlone, 2004; Eisenhart & Finkel, 1998) to highlight the intersections between the career trajectory implied by the Academy (its curriculum, classroom activities, and clinical experiences) and the students' pursued career trajectories. Data was collected over five months and included individual student interviews, group interviews, parent and administrator interviews, field notes from a culminating medical course and clinical internship, and Academy recruitment documents. The results of this study suggest that participants pursued a health science career for altruistic purposes and the Academy was a resource they drew upon to do so. However, the meanings of science and science person implied by the Academy hindered the possibility for many participants' to advance their science career trajectories. While the Academy promised to expose students to a variety of high-status health care roles, they were funneled into feminine, entry-level positions. This study adds to previous underrepresentation literature by contextualizing how identity-related factors influence African American students' career attainment.

  8. Learning Contexts, Black Cultural Ethos, and the Science Achievement of African American Students in an Urban Middle School

    ERIC Educational Resources Information Center

    Parsons, Eileen Carlton

    2008-01-01

    As other countries vigorously promote rapid advancement in science, optimizing the participation of all students in the United States in science is imperative. This study focused on African American students and examined their science achievement in relation to Black Cultural Ethos (BCE), a construct rooted in psychology. Via qualitative and…

  9. Robert J. Genco: Pioneer in Oral Science Advancement.

    PubMed

    Taubman, M A

    2018-07-01

    Professor Robert J. Genco made extraordinary research advances in immunology, periodontology, and microbiology research, pioneering major advances in oral science. In addition to his extraordinary research advancements in oral biology, his pioneering advances in oral science leadership at the local/university, national, and international levels are recognized worldwide, as are his educational advancements. In his era, he is truly the "father" of oral science.

  10. Student experience of school science

    NASA Astrophysics Data System (ADS)

    Shirazi, Shaista

    2017-09-01

    This paper presents the findings of a two-phase mixed methods research study that explores the link between experiences of school science of post-16 students and their decisions to take up science for their higher studies. In the first phase, students aged 16-17 (n = 569) reflected on the past five years of their school science experience in a quasi-longitudinal approach to determine a typology of experiences. The second phase entailed data collection through interviews of a sample of these students (n = 55) to help triangulate and extend findings from the first phase. Students taking up science post-16 reported significantly more positive experiences of school science than students who had decided not to take science further. Of school-related factors influencing experiences of school science curriculum content was the most important followed by being interested and motivated in the subject. There is evidence that interest and motivation in science depend on teacher practice and the perception of science as a difficult subject.

  11. What Makes the Finnish Different in Science? Assessing and Comparing Students' Science Learning in Three Countries

    ERIC Educational Resources Information Center

    Geller, Cornelia; Neumann, Knut; Boone, William J.; Fischer, Hans E.

    2014-01-01

    This manuscript details our efforts to assess and compare students' learning about electricity in three countries. As our world is increasingly driven by technological advancements, the education of future citizens in science becomes one important resource for economic productivity. Not surprisingly international large-scale assessments are viewed…

  12. From a Sense of Stereotypically Foreign to Belonging in a Science Community: Ways of Experiential Descriptions About High School Students' Science Internship

    NASA Astrophysics Data System (ADS)

    Hsu, Pei-Ling; Roth, Wolff-Michael

    2010-05-01

    Science educators often suggest that students should learn science in ways and settings that bear family resemblance with “the real thing.” Internship in science laboratories constitutes one such way in which students may learn science and learn about science. However, very little is known about how participants experience a science internship in an “authentic” science setting (i.e., a science laboratory). Our study was designed to understand the nature of participants’ experiences of “authentic science.” Participants included 11 high school students, one high school teacher, five laboratory technicians, and two scientists. High school students practiced science alongside technicians (young scientists) in real ongoing projects of a biology laboratory. Data sources include 19 semi-structured and video-recorded interviews held after the 2-month science internship. Drawing on phenomenographic method, we identified five categories of experiential descriptions: (a) authenticity of university science, (b) channeling and connecting different communities, (c) advanced knowledge required in and lengthy procedures mobilized by university science, (d) self-exploration and reflection, and (e) comprehensive science learning. Each category’s meaning for participants and implications for science education are illustrated and discussed. This study demonstrates positive evidence of the science internship on helping students learn different dimensions of science and reflect their relationship with science. Suggestions on facilitating the partnership between secondary and postsecondary education are provided.

  13. Why Do Students Drop Advanced Mathematics?

    ERIC Educational Resources Information Center

    Horn, Ilana

    2004-01-01

    Students, especially black, Latino and Native American youth and students of low socio-economic status drop out of advanced mathematics. Teachers must coordinate their expectations, their knowledge of students and their teaching practices in order to stop struggling students from dropping out of advanced math classes.

  14. Biological Features of the Soil: Advanced Crop and Soil Science. A Course of Study.

    ERIC Educational Resources Information Center

    Miller, Larry E.

    The course of study represents the third of six modules in advanced crop and soil science and introduces the agriculture student to biological features of soil. Upon completing the two day lesson, the student will: (1) realize the vast amount of life present in the soil, (2) be able to list representative animal and plant life in the soil by size,…

  15. Moon 101: Introducing Students to Lunar Science and Exploration

    NASA Astrophysics Data System (ADS)

    Shaner, A. J.; Shipp, S. S.; Allen, J. S.; Kring, D. A.

    2011-12-01

    Moon 101 is designed with the purpose of familiarizing students with lunar geology and exploration. Armed with guiding questions, students read articles covering various lunar science topics and browse images from past and current lunar missions to familiarize themselves with available lunar data sets. Moon 101 was originally created for high school students preparing to conduct open-inquiry, lunar research. Most high school students' knowledge of lunar science is limited to lunar phases and tides, and their knowledge of lunar exploration is close to non-existent. Moon 101 provides a summary of the state of knowledge of the Moon's formation and evolution, and the exploration that has helped inform the lunar science community. Though designed for high school students, Moon 101 is highly appropriate for the undergraduate classroom, especially at the introductory level where resources for teaching lunar science are scarce. Moon 101 is comprised of two sections covering lunar science (formation and geologic evolution of the Moon) and one section covering lunar exploration. Students read information on the formation and geologic evolution of the Moon from sources such as the Planetary Science Research Discoveries (PSRD) website and the USGS professional paper A Geologic History of the Moon by Wilhelms. While these resources are not peer-reviewed journals, the information is presented at a level more advanced than articles from newspapers and popular science magazines. This ensures that the language is accessible to students who do not have a strong lunar/planetary science background, or a strong science background in general. Formation readings include information on older and current formation hypotheses, including the Giant Impact Hypothesis, the Magma Ocean hypothesis, and the age of the lunar crust. Lunar evolution articles describe ideas such as the Late Heavy Bombardment and geologic processes such as volcanism and impact cratering. After reading the articles

  16. [Activities of Center for Lidar and Atmospheric Sciences Students, Hampton University

    NASA Technical Reports Server (NTRS)

    Temple, Doyle

    2004-01-01

    The mission of CLASS was to provide education and training in NASA-related mathematics, technology and science to US. students who are underrepresented. In these areas and to encourage them to pursue advanced degrees. The project has three goals which support this mission: research training, curriculum development and outreach. All project activities are designed to meet a concrete objective which directly advances one of these goals. The common theme of all project activities is NASA's Earth Science Enterprise, in particular, the use of laser-based remote sensing systems (lidars) to monitor and understand the earth's environment

  17. How does a Next Generation Science Standard Aligned, Inquiry Based, Science Unit Impact Student Achievement of Science Practices and Student Science Efficacy in an Elementary Classroom?

    NASA Astrophysics Data System (ADS)

    Whittington, Kayla Lee

    This study examined the impact of an inquiry based Next Generation Science Standard aligned science unit on elementary students' understanding and application of the eight Science and Engineering Practices and their relation in building student problem solving skills. The study involved 44 second grade students and three participating classroom teachers. The treatment consisted of a school district developed Second Grade Earth Science unit: What is happening to our playground? that was taught at the beginning of the school year. Quantitative results from a Likert type scale pre and post survey and from student content knowledge assessments showed growth in student belief of their own abilities in the science classroom. Qualitative data gathered from student observations and interviews performed at the conclusion of the Earth Science unit further show gains in student understanding and attitudes. This study adds to the existing literature on the importance of standard aligned, inquiry based science curriculum that provides time for students to engage in science practices.

  18. Investigating Changes in Student Attitudes and Understanding of Science through Participation in Citizen Science Projects in College Coursework

    NASA Astrophysics Data System (ADS)

    Cardamone, Carolin; Cobb, Bethany E.

    2018-01-01

    Over the last decade, web-based “citizen science” projects such as the Zooniverse have allowed volunteers and professional scientists to work together for the advancement of science. While much attention has been paid to the benefits to science from these new projects, less attention has been paid to their impact on the participants and, in particular, to the projects’ potential to impact students who might engage in these projects through coursework. We report on a study engaging students in introductory astronomy classes at the George Washington University and Wheelock College in an assignment in which each student individually contributed to a “physics” or “space” citizen science project of their choice, and groups of students worked together to understand and articulate the scientific purpose of a citizen science project to which they all contributed. Over the course of approximately four weeks, the students kept logs of their individual contributions to the project, and recorded a brief reflection on each of their visits (noting, for example, interesting or confusing things they might encounter along the way). The project culminated with each group delivering a creative presentation that demonstrated their understanding of both the science goals of the project and the value of their own contributions to the project. In this talk, we report on the experience of the students with the project and on an assessment of the students’ attitudes toward science and knowledge of the process of science completed before the introduction of the assignment and again at its conclusion.

  19. Teacher research experiences, epistemology, and student attitudes toward science

    NASA Astrophysics Data System (ADS)

    Payne, Diana L.

    This concurrent mixed methods research study examined the impact of a Teacher Research Experience (TRE) on science teacher beliefs about science, scientific research, science teaching, and student attitudes toward science. Surveys, interviews, reflective journals, and classroom observations of six teachers involved in a TRE were utilized to examine changes in beliefs as a result of participation in the TRE. Student attitudes were measured with a pre and post survey. An analysis of qualitative data from the teachers' interviews, journals, and pre and post TRE surveys indicated that some change occurred in their beliefs about science and scientists for all six teachers, and that teachers' beliefs about science teaching were affected in a variety of ways after participating in the TRE. The quantitative results of the study using Science Teachers' Beliefs About Science (STBAS) instrument suggest that the change from the beginning to the end of the school year, if any, was minimal. However, interviews with and observations of teachers identified valuable components of the TRE, such as the advanced resources (e.g., DVD, samples), a feeling of rejuvenation in teaching, a new perspective on science and scientific research, and first hand experiences in science. Results from the classroom observations using the Science Classroom Practice Record (SCPR) were mixed. Some differences may be explained, however, as relating to content taught in the pre and post classes observed or simply to inherent differences in student dynamics and behavior from class to class. There were no significant differences from pre to post TRE regarding student attitudes toward science as measured by paired samples t-tests on the modified Attitudes Toward Science (mATSI) instrument. Attitudes and beliefs are not easily changed, and change is more likely to result from direct experience and education rather than an indirect experience. Although the results are generalizable only to the participants in

  20. Sustaining Student Engagement in Learning Science

    ERIC Educational Resources Information Center

    Ateh, Comfort M.; Charpentier, Alicia

    2014-01-01

    Many students perceive science to be a difficult subject and are minimally engaged in learning it. This article describes a lesson that embedded an activity to engage students in learning science. It also identifies features of a science lesson that are likely to enhance students' engagement and learning of science and possibly reverse students'…

  1. Advances in the NASA Earth Science Division Applied Science Program

    NASA Astrophysics Data System (ADS)

    Friedl, L.; Bonniksen, C. K.; Escobar, V. M.

    2016-12-01

    The NASA Earth Science Division's Applied Science Program advances the understanding of and ability to used remote sensing data in support of socio-economic needs. The integration of socio-economic considerations in to NASA Earth Science projects has advanced significantly. The large variety of acquisition methods used has required innovative implementation options. The integration of application themes and the implementation of application science activities in flight project is continuing to evolve. The creation of the recently released Earth Science Division, Directive on Project Applications Program and the addition of an application science requirement in the recent EVM-2 solicitation document NASA's current intent. Continuing improvement in the Earth Science Applications Science Program are expected in the areas of thematic integration, Project Applications Program tailoring for Class D missions and transfer of knowledge between scientists and projects.

  2. Science Students' Classroom Discourse: Tasha's Umwelt

    NASA Astrophysics Data System (ADS)

    Arnold, Jenny

    2012-04-01

    Over the past twenty-five years researchers have been concerned with understanding the science student. The need for such research is still grounded in contemporary issues including providing opportunities for all students to develop scientific literacy and the failure of school science to connect with student's lives, interests and personal identities. The research reported here is unusual in its use of discourse analysis in social psychology to contribute to an understanding of the way students make meaning in secondary school science. Data constructed for the study was drawn from videotapes of nine consecutive lessons in a year-seven science classroom in Melbourne, post-lesson video-stimulated interviews with students and the teacher, classroom observation and the students' written work. The classroom videotapes were recorded using four cameras and seven audio tracks by the International Centre for Classroom Research at the University of Melbourne. Student talk within and about their science lessons was analysed from a discursive perspective. Classroom episodes in which students expressed their sense of personal identity and agency, knowledge, attitude or emotion in relation to science were identified for detailed analysis of the function of the discourse used by students, and in particular the way students were positioned by others or positioned themselves. This article presents the discursive Umwelt or life-space of one middle years science student, Tasha. Her case is used here to highlight the complex social process of meaning making in science classrooms and the need to attend to local moral orders of rights and duties in research on student language use, identity and learning in science.

  3. Aspects of science engagement, student background, and school characteristics: Impacts on science achievement of U.S. students

    NASA Astrophysics Data System (ADS)

    Grabau, Larry J.

    Science achievement of U.S. students has lagged significantly behind other nations; educational reformers have suggested science engagement may enhance this critical measure. The 2006 Program for International Student Assessment (PISA) was science-focused and measured science achievement along with nine aspects of science engagement: science self-efficacy, science self-concept, enjoyment of science, general interest in learning science, instrumental motivation for science, future-oriented science motivation, general value of science, personal value of science, and science-related activities. I used multilevel modeling techniques to address both aspects of science engagement and science achievement as outcome variables in the context of student background and school characteristics. Treating aspects of science engagement as outcome variables provided tests for approaches for their enhancement; meanwhile, treating science achievement as the outcome variable provided tests for the influence of the aspects of science engagement on science achievement under appropriate controls. When aspects of science engagement were treated as outcome variables, gender and father's SES had frequent (significant) influences, as did science teaching strategies which focused on applications or models and hands-on activities over-and-above influences of student background and other school characteristics. When science achievement was treated as the outcome variable, each aspect of science engagement was significant, and eight had medium or large effect sizes (future-oriented science motivation was the exception). The science teaching strategy which involved hands-on activities frequently enhanced science achievement over-and-above influences of student background and other school characteristics. Policy recommendations for U.S. science educators included enhancing eight aspects of science engagement and implementing two specific science teaching strategies (focus on applications or models

  4. Overview of the Nasa/science Mission Directorate University Student Instrument Project (usip)

    NASA Astrophysics Data System (ADS)

    Pierce, D. L.

    2016-12-01

    These are incredible times of space and Earth science discovery related to the Earth system, our Sun, the planets, and the universe. The National Aeronautics and Space Administration (NASA) Science Mission Directorate (SMD) provides authentic student-led hands-on flight research projects as a component part of the NASA's science program. The goal of the Undergraduate Student Instrument Project (USIP) is to enable student-led scientific and technology investigations, while also providing crucial hands-on training opportunities for the Nation's future researchers. SMD, working with NASA's Office of Education (OE), the Space Technology Mission Directorate (STMD) and its Centers (GSFC/WFF and AFRC), is actively advancing the vision for student flight research using NASA's suborbital and small spacecraft platforms. Recently proposed and selected USIP projects will open up opportunities for undergraduate researchers in conducting science and developing space technologies. The paper will present an overview of USIP, results of USIP-I, and the status of current USIP-II projects that NASA is sponsoring and expects to fly in the near future.

  5. Studying Students' Science Literacy: Non-Scientific Beliefs and Science Literacy Measures

    NASA Astrophysics Data System (ADS)

    Impey, C.; Buxner, S.

    2015-11-01

    We have been conducting a study of university students' science literacy for the past 24 years. Based on the work of the National Science Board's ongoing national survey of the US public, we have administered the same survey to undergraduate science students at the University of Arizona almost every year since 1989. Results have shown relatively little change in students' overall science literacy, descriptions of science, and knowledge of basic science topics for almost a quarter of a century despite an increase in education interventions, the rise of the internet, and increased access to knowledge. Several trends do exist in students' science literacy and descriptions of science. Students who exhibit beliefs in non-scientific phenomenon (e.g., lucky numbers, creationism) consistently have lower science literacy scores and less correct descriptions of scientific phenomenon. Although not surprising, our results support ongoing efforts to help students generate evidence based thinking.

  6. Flipped Classrooms for Advanced Science Courses

    NASA Astrophysics Data System (ADS)

    Tomory, Annette; Watson, Sunnie Lee

    2015-12-01

    This article explains how issues regarding dual credit and Advanced Placement high school science courses could be mitigated via a flipped classroom instructional model. The need for advanced high school courses will be examined initially, followed by an analysis of advanced science courses and the reform they are experiencing. Finally, it will conclude with an explanation of flipped classes as well as how they may be a solution to the reform challenges teachers are experiencing as they seek to incorporate more inquiry-based activities.

  7. Investigating Elementary Teachers' Thinking About and Learning to Notice Students' Science Ideas

    NASA Astrophysics Data System (ADS)

    Luna, Melissa Jo

    work contributes to research on teacher cognition by advancing what we know about teachers' understanding of attending to students' science ideas. In addition, it provides practical information concerning the design of teacher professional development supporting their learning to attend closely to the ideas students raise about scientific phenomena.

  8. Advanced Science for Employment and Higher Education.

    ERIC Educational Resources Information Center

    Gadd, Ken

    1998-01-01

    Compares the extent to which two types of advanced level qualifications, General Certificate of Education (GCE) A-levels and General National Vocational Qualification (GNVQ) advanced science, meet the needs of employers and tutors of science courses in higher education. (Author/CCM)

  9. Defining a Technology Research Agenda for Elementary and Secondary Students with Learning and Other High-Incidence Disabilities in Inclusive Science Classrooms

    ERIC Educational Resources Information Center

    Marino, Matthew T.

    2010-01-01

    Increased numbers of elementary and secondary students with learning and other disabilities are participating in inclusive science classrooms. Unfortunately, many of these students struggle to achieve at a level commensurate with their peers. As a result, few students with disabilities pursue advanced scientific coursework or enter science,…

  10. Online Options for Math-Advanced Students

    ERIC Educational Resources Information Center

    Wessling, Suki

    2012-01-01

    Once upon a time, a student well advanced past grade level in math would have had few choices. Advanced students would invariably outpace the skills of their elementary teachers, and due to age wouldn't have options such as going to the middle school or community college for classes. Soon thereafter, students would enter middle school only to find…

  11. The Relationship between Self-Efficacy and Advanced STEM Coursework in Female Secondary Students

    ERIC Educational Resources Information Center

    Bernasconi, Bethany

    2017-01-01

    Despite years of attention, gender inequity persists in science, technology, engineering, and mathematics (STEM). Female STEM faculty, positive social interactions, and enrollment in advanced STEM secondary coursework are supportive factors in promoting female students' persistence in STEM fields. To address the gap in understanding these factors,…

  12. Development of Research Professionalism in Advanced Undergraduate and Beginning Graduate Students. Working Papers.

    ERIC Educational Resources Information Center

    Mitchell, John J.

    The paper describes an individualized approach to teaching social science research methodology. The approach is intended to make psychology research in college level courses an exciting and rewarding experience for advanced undergraduate and graduate students. Advantages of this approach over more traditional approaches include that it requires…

  13. Science Teaching and Learning Activities and Students' Engagement in Science

    ERIC Educational Resources Information Center

    Hampden-Thompson, Gillian; Bennett, Judith

    2013-01-01

    The purpose of this analysis is to describe the variation in students' reports of engagement in science across science teaching and learning activities. In addition, this study examines student and school characteristics that may be associated with students' levels of engagement in science. Data are drawn from the Programme for International…

  14. Global Patterns in Students' Views of Science and Interest in Science

    NASA Astrophysics Data System (ADS)

    van Griethuijsen, Ralf A. L. F.; van Eijck, Michiel W.; Haste, Helen; den Brok, Perry J.; Skinner, Nigel C.; Mansour, Nasser; Savran Gencer, Ayse; BouJaoude, Saouma

    2015-08-01

    International studies have shown that interest in science and technology among primary and secondary school students in Western European countries is low and seems to be decreasing. In many countries outside Europe, and especially in developing countries, interest in science and technology remains strong. As part of the large-scale European Union funded `Science Education for Diversity' project, a questionnaire probing potential reasons for this difference was completed by students in the UK, Netherlands, Turkey, Lebanon, India and Malaysia. This questionnaire sought information about favourite courses, extracurricular activities and views on the nature of science. Over 9,000 students aged mainly between 10 and 14 years completed the questionnaire. Results revealed that students in countries outside Western Europe showed a greater interest in school science, in careers related to science and in extracurricular activities related to science than did Western European students. Non-European students were also more likely to hold an empiricist view of the nature of science and to believe that science can solve many problems faced by the world. Multilevel analysis revealed a strong correlation between interest in science and having such a view of the Nature of Science.

  15. Japanese medical students' interest in basic sciences: a questionnaire survey of a medical school in Japan.

    PubMed

    Yamazaki, Yuka; Uka, Takanori; Shimizu, Haruhiko; Miyahira, Akira; Sakai, Tatsuo; Marui, Eiji

    2013-02-01

    The number of physicians engaged in basic sciences and teaching is sharply decreasing in Japan. To alleviate this shortage, central government has increased the quota of medical students entering the field. This study investigated medical students' interest in basic sciences in efforts to recruit talent. A questionnaire distributed to 501 medical students in years 2 to 6 of Juntendo University School of Medicine inquired about sex, grade, interest in basic sciences, interest in research, career path as a basic science physician, faculties' efforts to encourage students to conduct research, increases in the number of lectures, and practical training sessions on research. Associations between interest in basic sciences and other variables were examined using χ(2) tests. From among the 269 medical students (171 female) who returned the questionnaire (response rate 53.7%), 24.5% of respondents were interested in basic sciences and half of them considered basic sciences as their future career. Obstacles to this career were their original aim to become a clinician and concerns about salary. Medical students who were likely to be interested in basic sciences were fifth- and sixth-year students, were interested in research, considered basic sciences as their future career, considered faculties were making efforts to encourage medical students to conduct research, and wanted more research-related lectures. Improving physicians' salaries in basic sciences is important for securing talent. Moreover, offering continuous opportunities for medical students to experience research and encouraging advanced-year students during and after bedside learning to engage in basic sciences are important for recruiting talent.

  16. Associations of Middle School Student Science Achievement and Attitudes about Science with Student-Reported Frequency of Teacher Lecture Demonstrations and Student-Centered Learning

    ERIC Educational Resources Information Center

    Odom, Arthur Louis; Bell, Clare Valerie

    2015-01-01

    The purpose of this study was to examine the association of middle school student science achievement and attitudes about science with student-reported frequency of teacher lecture demonstrations and student-centered learning. The student sample was composed of 602 seventh- and eighth-grade students enrolled in middle school science. Multiple…

  17. The impact of different college science courses on students' attitude towards science

    NASA Astrophysics Data System (ADS)

    Flohic, Helene

    2015-08-01

    For non-science majors, a general education course in college is often the last science course they will ever take. General education courses are often regarded by students as a right of passage in which they have no interest. Thus strict coursework might aggravate students against the matter taught, and decrease their general interest in the subject. To test whether general education courses killed the students' interest in science, we administered a science attitude inventory at the beginning and at the end of an introductory astronomy course. We compared the gain/loss in science attitude with that experienced by students of a writing course as a baseline. Finally, we evaluated the gain/loss in science attitude for students enrolled in a general education seminar on science and society, where no formal science knowledge was taught, but where the students discussed the different aspects of the relation between science and society.We find that the science and society seminar had a more positive impact on students' attitude towards science than the astronomy class, which decreased the students' confidence in their ability to understand science. This study (once tested on a larger scale) could serve as a guideline for educational policies aiming to foster a positive attitude in the population of college graduates.

  18. Laptop Use, Interactive Science Software, and Science Learning Among At-Risk Students

    NASA Astrophysics Data System (ADS)

    Zheng, Binbin; Warschauer, Mark; Hwang, Jin Kyoung; Collins, Penelope

    2014-08-01

    This year-long, quasi-experimental study investigated the impact of the use of netbook computers and interactive science software on fifth-grade students' science learning processes, academic achievement, and interest in further science, technology, engineering, and mathematics (STEM) study within a linguistically diverse school district in California. Analysis of students' state standardized science test scores indicated that the program helped close gaps in scientific achievement between at-risk learners (i.e., English learners, Hispanics, and free/reduced-lunch recipients) and their counterparts. Teacher and student interviews and classroom observations suggested that computer-supported visual representations and interactions supported diverse learners' scientific understanding and inquiry and enabled more individualized and differentiated instruction. Finally, interviews revealed that the program had a positive impact on students' motivation in science and on their interest in pursuing science-related careers. This study suggests that technology-facilitated science instruction is beneficial for improving at-risk students' science achievement, scaffolding students' scientific understanding, and strengthening students' motivation to pursue STEM-related careers.

  19. Magnifying Students' Interest in Science

    ERIC Educational Resources Information Center

    Frazier, Wendy

    2006-01-01

    While some textbooks still teach students that there is one scientific process that must be rigidly followed, this stagnant portrayal of the process of science can lead students to think that science and scientists are quite boring. Through integrating visual art and microscopy, students learn about the creativity of scientists and begin to…

  20. The impact of problem-based learning on students' perceptions of preparedness for advanced pharmacy practice experiences.

    PubMed

    Hogan, Shirley; Lundquist, Lisa M

    2006-08-15

    To evaluate graduating pharmacy students' perceptions of their preparedness for advanced pharmacy practice experiences and the effectiveness of problem-based learning in their preparation. A survey instrument was administered anonymously in May 2004 and May 2005 to graduating pharmacy students of the University of Mississippi School of Pharmacy. Students reported that the areas in which problem-based learning prepared them most effectively for advanced pharmacy practice experiences were retrieval of medical information (80%), discussion of disease states and drug therapies at the basic science level (56%), and evaluation of the appropriateness of a medication regimen based on patient specific information (50%). Areas in which students reported being inadequately prepared included identifying and utilizing drug assistance programs (42%) and processing prescriptions/hospital orders (40%). Data from 2 consecutive graduating classes supports that problem-based learning is an effective format for preparing pharmacy students for advanced pharmacy practice experiences in a variety of areas.

  1. Students' awareness of science teachers' leadership, attitudes toward science, and positive thinking

    NASA Astrophysics Data System (ADS)

    Lu, Ying-Yan; Chen, Hsiang-Ting; Hong, Zuway-R.; Yore, Larry D.

    2016-09-01

    There appears to be a complex network of cognitive and affective factors that influence students' decisions to study science and motivate their choices to engage in science-oriented careers. This study explored 330 Taiwanese senior high school students' awareness of their science teacher's learning leadership and how it relates to the students' attitudes toward science and positive thinking. Initial results revealed that the optimism of positive thinking is highly and positively correlated with the future participation in science and learning science in school attitudes toward science and self-concept in science. Moreover, structural equation modelling (SEM) results indicated that the subscale of teachers' leadership with idealised influence was the most predictive of students' attitudes toward science (β = .37), and the leadership with laissez-faire was predictive of students' positive thinking (β = .21). In addition, the interview results were consistent with the quantitative findings. The correlation and SEM results indicate some of the associations and potential relationships amongst the motivational and affective factors studied and students' attitudes toward and intentions to study science, which will increase their likelihood of future involvement in science careers.

  2. Effectiveness of Selected Advanced Placement Programs on the Academic Performance and College Readiness of High School Students

    ERIC Educational Resources Information Center

    Lewis, Traschell S.

    2012-01-01

    The purpose of this study was to examine the effectiveness of selected Advanced Placement (AP) programs on the academic performance and college readiness of high school students. Specifically, the researcher was concerned with ascertaining the effectiveness of social science, math, science, English, music/art and language AP programs on the…

  3. Academic integrity in the online learning environment for health sciences students.

    PubMed

    Azulay Chertok, Ilana R; Barnes, Emily R; Gilleland, Diana

    2014-10-01

    The online learning environment not only affords accessibility to education for health sciences students, but also poses challenges to academic integrity. Technological advances contribute to new modes of academic dishonesty, although there may be a lack of clarity regarding behaviors that constitute academic dishonesty in the online learning environment. To evaluate an educational intervention aimed at increasing knowledge and improving attitudes about academic integrity in the online learning environment among health sciences students. A quasi-experimental study was conducted using a survey of online learning knowledge and attitudes with strong reliability that was developed based on a modified version of a previously developed information technology attitudes rating tool with an added knowledge section based on the academic integrity statement. Blended-learning courses in a university health sciences center. 355 health sciences students from various disciplines, including nursing, pre-medical, and exercise physiology students, 161 in the control group and 194 in the intervention group. The survey of online learning knowledge and attitudes (SOLKA) was used in a pre-post test study to evaluate the differences in scores between the control group who received the standard course introduction and the intervention group who received an enhanced educational intervention about academic integrity during the course introduction. Post-intervention attitude scores were significantly improved compared to baseline scores for the control and intervention groups, indicating a positive relationship with exposure to the information, with a greater improvement among intervention group participants (p<0.001). There was a significant improvement in the mean post-intervention knowledge score of the intervention group compared to the control group (p=0.001). Recommendations are provided for instructors in promoting academic integrity in the online environment. Emphasis should be made

  4. Science and Community Engagement: Connecting Science Students with the Community

    ERIC Educational Resources Information Center

    Lancor, Rachael; Schiebel, Amy

    2018-01-01

    In this article we describe a course on science outreach that was developed as part of our college's goal that all students participate in a meaningful community engagement experience. The Science & Community Engagement course provides a way for students with science or science-related majors to learn how to effectively communicate scientific…

  5. Developing science talent in minority students: Perspectives of past participants in a summer mentorship program

    NASA Astrophysics Data System (ADS)

    Schimmel, Dale Bishop

    The underrepresentation of women and ethnic minorities in science has been well documented. Research efforts are directed toward understanding the high attrition rate in science course selection as students advance through high school and college. The attrition rate is especially high for females and minority students. Since 1980 the Department of Biological Sciences at the University of Connecticut has conducted a "Minority Research Apprentice Program" to attract students by expanding their knowledge of research and technology. The goal of the program is to encourage students from underrepresented groups to eventually select careers in the field of science. This qualitative study of past participants explored factors that related to students' decisions to pursue or not to pursue careers in science. Descriptive statistics and qualitative data collected from surveys and interviews of twenty former apprentices, along with comparative case studies of four selected individuals, revealed the educational interventions, personal traits and social supports that helped guide students' eventual career choice decisions. Participation in gifted programs, advanced placement courses, and talented high school science teachers all played a critical role in assisting these individuals in developing their potential interest. Qualitative data revealed the role of the Minority Research Apprentice Program played in helping talented individuals gain an appreciation of the nature of scientific research through apprenticeship and involvement with authentic projects. For all those involved, it assisted them in clarifying their eventual career choices. Individuals identified the lack of challenge of the introductory science courses, the commitment science requires, and the nature of laboratory work as reasons for leaving the field. Females who left science switched majors more frequently than males. Qualitative data revealed the dilemma that multipotentiality and lack of career counseling

  6. Technology to Advance High School and Undergraduate Students with Disabilities in Science, Technology, Engineering, and Mathematics

    ERIC Educational Resources Information Center

    Leddy, Mark H.

    2010-01-01

    Americans with disabilities are underemployed in science, technology, engineering and mathematics (STEM) at higher rates than their nondisabled peers. This article provides an overview of the National science Foundation's Research in Disabilities Education (RDE) program, of technology use by students with disabilities (SWD) in STEM, and of…

  7. The effects of a test-taking strategy intervention for high school students with test anxiety in advanced placement science courses

    NASA Astrophysics Data System (ADS)

    Markus, Doron J.

    Test anxiety is one of the most debilitating and disruptive factors associated with underachievement and failure in schools (Birenbaum, Menucha, Nasser, & Fadia, 1994; Tobias, 1985). Researchers have suggested that interventions that combine multiple test-anxiety reduction techniques are most effective at reducing test anxiety levels (Ergene, 2003). For the current study, involving 62 public high school students enrolled in advanced placement science courses, the researcher designed a multimodal intervention designed to reduce test anxiety. Analyses were conducted to assess the relationships among test anxiety levels, unit examination scores, and irregular multiple-choice error patterns (error clumping), as well as changes in these measures after the intervention. Results indicate significant, positive relationships between some measures of test anxiety and error clumping, as well as significant, negative relationships between test anxiety levels and student achievement. In addition, results show significant decreases in holistic measures of test anxiety among students with low anxiety levels, as well as decreases in Emotionality subscores of test anxiety among students with high levels of test anxiety. There were no significant changes over time in the Worry subscores of test anxiety. Suggestions for further research include further confirmation of the existence of error clumping, and its causal relationship with test anxiety.

  8. Advancing Water Science through Improved Cyberinfrastructure

    NASA Astrophysics Data System (ADS)

    Koch, B. J.; Miles, B.; Rai, A.; Ahalt, S.; Band, L. E.; Minsker, B.; Palmer, M.; Williams, M. R.; Idaszak, R.; Whitton, M. C.

    2012-12-01

    Major scientific advances are needed to help address impacts of climate change and increasing human-mediated environmental modification on the water cycle at global and local scales. However, such advances within the water sciences are limited in part by inadequate information infrastructures. For example, cyberinfrastructure (CI) includes the integrated computer hardware, software, networks, sensors, data, and human capital that enable scientific workflows to be carried out within and among individual research efforts and across varied disciplines. A coordinated transformation of existing CI and development of new CI could accelerate the productivity of water science by enabling greater discovery, access, and interoperability of data and models, and by freeing scientists to do science rather than create and manage technological tools. To elucidate specific ways in which improved CI could advance water science, three challenges confronting the water science community were evaluated: 1) How does ecohydrologic patch structure affect nitrogen transport and fate in watersheds?, 2) How can human-modified environments emulate natural water and nutrient cycling to enhance both human and ecosystem well-being?, 3) How do changes in climate affect water availability to support biodiversity and human needs? We assessed the approaches used by researchers to address components of these challenges, identified barriers imposed by limitations of current CI, and interviewed leaders in various water science subdisciplines to determine the most recent CI tools employed. Our preliminary findings revealed four areas where CI improvements are likely to stimulate scientific advances: 1) sensor networks, 2) data quality assurance/quality control, 3) data and modeling standards, 4) high performance computing. In addition, the full potential of a re-envisioned water science CI cannot be realized without a substantial training component. In light of these findings, we suggest that CI

  9. Student science enrichment training program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandhu, S.S.

    1994-08-01

    This is a report on the Student Science Enrichment Training Program, with special emphasis on chemical and computer science fields. The residential summer session was held at the campus of Claflin College, Orangeburg, SC, for six weeks during 1993 summer, to run concomitantly with the college`s summer school. Fifty participants selected for this program, included high school sophomores, juniors and seniors. The students came from rural South Carolina and adjoining states which, presently, have limited science and computer science facilities. The program focused on high ability minority students, with high potential for science engineering and mathematical careers. The major objectivemore » was to increase the pool of well qualified college entering minority students who would elect to go into science, engineering and mathematical careers. The Division of Natural Sciences and Mathematics and engineering at Claflin College received major benefits from this program as it helped them to expand the Departments of Chemistry, Engineering, Mathematics and Computer Science as a result of additional enrollment. It also established an expanded pool of well qualified minority science and mathematics graduates, which were recruited by the federal agencies and private corporations, visiting Claflin College Campus. Department of Energy`s relationship with Claflin College increased the public awareness of energy related job opportunities in the public and private sectors.« less

  10. Student conceptions of the nature of science

    NASA Astrophysics Data System (ADS)

    Talbot, Amanda L.

    Research has shown that students from elementary school to college have major misconceptions about the nature of science. While an appropriate understanding of the nature of science has been an objective of science education for a century, researchers using a variety of instruments, continue to document students' inadequate conceptions of what science is and how it operates as an enterprise. Current research involves methods to improve student understanding of the nature of science. Students often misunderstand the creative, subjective, empirical, and tentative nature of science. They do not realize the relationship between laws and theories, nor do they understand that science does not follow a prescribed method. Many do not appreciate the influence culture, society, and politics; nor do they have an accurate understanding of the types of questions addressed by science. This study looks at student understanding of key nature of science (NOS) concepts in order to examine the impact of implementing activities intended to help students better understand the process of science and to see if discussion of key NOS concepts following those activities will result in greater gains in NOS understanding. One class received an "activities only" treatment, while the other participated in the same activities followed by explicit discussion of key NOS themes relating to the activity. The interventions were implemented for one school year in two high school anatomy and physiology courses composed of juniors and seniors. Student views of the nature of science were measured using the Views of the Nature of Science-Form C (VNOS-C). Students in both classes demonstrated significant gains in NOS understanding. However, contrary to current research, the addition of explicit discussion did not result in significantly greater gains in NOS understanding. This suggests that perhaps students in higher-level science classes can draw the correlations between NOS related activities and

  11. The Impact of Science Fiction Films on Student Interest in Science

    ERIC Educational Resources Information Center

    Laprise, Shari; Winrich, Chuck

    2010-01-01

    Science fiction films were used in required and elective nonmajor science courses as a pedagogical tool to motivate student interest in science and to reinforce critical thinking about scientific concepts. Students watched various films and critiqued them for scientific accuracy in written assignments. Students' perception of this activity was…

  12. Preclinical science course "preludes" taken by premedical students: do they provide a competitive advantage?

    PubMed

    Caplan, R M; Kreiter, C; Albanese, M

    1996-08-01

    Premedical students often elect advanced science courses whose content will reappear during preclinical courses. Are such "preludes" useful? The study participants were the 176 first-year students entering the University of Iowa College of Medicine in 1992. Their grades in medical school courses in biochemistry, gross anatomy, histology, physiology, and microbiology were compared with their grades in similar premedical courses. The students who had taken a premedical prelude in advanced science performed no better than their classmates except in biochemistry, where the 118 students (67%) with prior biochemistry exposure had a significantly higher mean score (96.3 vs 87.6, p < .0001 using Student's t-test). A biochemistry prelude appeared to benefit all students, especially those from minorities underrepresented in medicine. In addition, among the 13 students who failed biochemistry in medical school, a number of them had low grades in organic chemistry and had not taken a premedical course in biochemistry. To test the replicability of the findings, an analysis was undertaken of the biochemistry performances of the 162 students who had entered in 1991, and again a significant difference was found between the students who had and those who had not taken a biochemistry prelude. A premedical biochemistry course, required by only two schools in 1995-96, appears advantageous, especially for students with weak academic preparation. Lack of such benefit from other preludes suggests that premedical students might better choose electives in arts and humanities to enhance their educational breadth.

  13. The Impact of Science Fiction Film on Student Understanding of Science

    NASA Astrophysics Data System (ADS)

    Barnett, Michael; Wagner, Heather; Gatling, Anne; Anderson, Janice; Houle, Meredith; Kafka, Alan

    2006-04-01

    Researchers who have investigated the public understanding of science have argued that fictional cinema and television has proven to be particularly effective at blurring the distinction between fact and fiction. The rationale for this study lies in the notion that to teach science effectively, educators need to understand how popular culture influences their students' perception and understanding of science. Using naturalistic research methods in a diverse middle school we found that students who watched a popular science fiction film, The Core, had a number of misunderstandings of earth science concepts when compared to students who did not watch the movie. We found that a single viewing of a science fiction film can negatively impact student ideas regarding scientific phenomena. Specifically, we found that the film leveraged the scientific authority of the main character, coupled with scientifically correct explanations of some basic earth science, to create a series of plausible, albeit unscientific, ideas that made sense to students.

  14. Science Careers and Disabled Students.

    ERIC Educational Resources Information Center

    Jagoda, Sue; Cremer, Bob

    1981-01-01

    Summarizes proceedings and student experiences at the 1980 Science Career Workshop for Physically Disabled Students at the Lawrence Hall of Science (University of California). Includes a description of the key-note speaker's topics, and other workshop activities. (DS)

  15. Motivating Students with Authentic Science Experiences: Changes in Motivation for School Science

    ERIC Educational Resources Information Center

    Hellgren, Jenny M.; Lindberg, Stina

    2017-01-01

    Background: Students' motivation for science declines over the early teenage years, and students often find school science difficult and irrelevant to their everyday lives. This paper asks whether creating opportunities to connect school science to authentic science can have positive effects on student motivation. Purpose: To understand how…

  16. Student Experience of School Science

    ERIC Educational Resources Information Center

    Shirazi, Shaista

    2017-01-01

    This paper presents the findings of a two-phase mixed methods research study that explores the link between experiences of school science of post-16 students and their decisions to take up science for their higher studies. In the first phase, students aged 16-17 (n = 569) reflected on the past five years of their school science experience in a…

  17. Is Science for Us? Black Students' and Parents' Views of Science and Science Careers.

    PubMed

    Archer, Louise; Dewitt, Jennifer; Osborne, Jonathan

    2015-03-01

    There are widespread policy concerns to improve (widen and increase) science, technology, engineering, and mathematics participation, which remains stratified by ethnicity, gender, and social class. Despite being interested in and highly valuing science, Black students tend to express limited aspirations to careers in science and remain underrepresented in post-16 science courses and careers, a pattern which is not solely explained by attainment. This paper draws on survey data from nationally representative student cohorts and longitudinal interview data collected over 4 years from 10 Black African/Caribbean students and their parents, who were tracked from age 10-14 (Y6-Y9), as part of a larger study on children's science and career aspirations. The paper uses an intersectional analysis of the qualitative data to examine why science careers are less "thinkable" for Black students. A case study is also presented of two young Black women who "bucked the trend" and aspired to science careers. The paper concludes with implications for science education policy and practice.

  18. Promoting Elementary Students' Epistemology of Science through Computer-Supported Knowledge-Building Discourse and Epistemic Reflection

    ERIC Educational Resources Information Center

    Lin, Feng; Chan, Carol K. K.

    2018-01-01

    This study examined the role of computer-supported knowledge-building discourse and epistemic reflection in promoting elementary-school students' scientific epistemology and science learning. The participants were 39 Grade 5 students who were collectively pursuing ideas and inquiry for knowledge advance using Knowledge Forum (KF) while studying a…

  19. Full-participation of students with physical disabilities in science and engineering laboratories.

    PubMed

    Jeannis, Hervens; Joseph, James; Goldberg, Mary; Seelman, Katherine; Schmeler, Mark; Cooper, Rory A

    2018-02-01

    To conduct a literature review identifying barriers and facilitators students with physical disabilities (SwD-P) may encounter in science and engineering (S&E) laboratories. Publications were identified from 1991 to 2015 in ERIC, web of science via web of knowledge, CINAHL, SCOPUS, IEEEXplore, engineering village, business source complete and PubMed databases using search terms and synonyms for accommodations, advanced manufacturing, additive manufacturing, assistive technology (AT), barriers, engineering, facilitators, instructor, laboratory, STEM education, science, students with disabilities and technology. Twenty-two of the 233 publications that met the review's inclusion criteria were examined. Barriers and facilitators were grouped based on the international classification of functioning, disability and health framework (ICF). None of the studies directly found barriers or facilitators to SwD-P in science or engineering laboratories within postsecondary environments. The literature is not clear on the issues specifically related to SwD-P. Given these findings, further research (e.g., surveys or interviews) should be conducted to identify more details to obtain more substantial information on the barriers that may prevent SwD-P from fully participating in S&E instructional laboratories. Implications for Rehabilitation Students with disabilities remain underrepresented going into STEM careers. A need exist to help uncover barriers students with disabilities encounter in STEM laboratory. Environments. Accommodations and strategies that facilitate participation in STEM laboratory environments are promising for students with disabilities.

  20. Physics in advanced GNVQ Science

    NASA Astrophysics Data System (ADS)

    Sang, D.

    1995-07-01

    GNVQ Science is a vocational qualification for students in England, with a demand equivalent to traditional GCE A-levels. This article looks at the approach adopted by GNVQ to physics, and discusses the way in which appropriate teaching resources have been developed by the Nuffield Science in Practice project.

  1. Assessment of oral health attitudes and behavior among students of Kuwait University Health Sciences Center.

    PubMed

    Ali, Dena A

    2016-01-01

    The aims of this study were to assess attitudes and behavior of oral health maintenance among students in four faculties (Medicine, Dentistry, Pharmacy, and Allied Health) and to compare oral health attitudes and behavior of all students at Kuwait University Health Sciences Center (KUHSC) based on their academic level. Students enrolled in the Faculties of Dentistry, Medicine, Pharmacy, and Allied Health at KUHSC were evaluated regarding their oral health attitudes and behavior by an e-mail invitation with a link to the Hiroshima University Dental Behavior Inventory survey that was sent to all 1802 students with Kuwait University Health Sciences Center e-mail addresses. The data were analyzed for frequency distributions, and differences among the groups were assessed using the Mann-Whitney U test, Chi-square test, and Kruskal-Wallis test. P values less than 0.05 were considered to be statistically significant ( P < 0.05). The results of this study indicated that dental students achieved better oral health attitudes and behavior than that of their nondental professional fellow students ( P < 0.05). Students in advanced academic levels and female students demonstrated better oral health attitudes and behavior. Dental students and students who were in advanced levels of their training along with female students demonstrated better oral health practices and perceptions than students in lower academic levels and male students, respectively. Additional studies for investigating the effectiveness and identifying areas requiring modification within the dental curriculum at KUHSC may be warranted.

  2. Understanding adolescent student perceptions of science education

    NASA Astrophysics Data System (ADS)

    Ebert, Ellen Kress

    This study used the Relevance of Science Education (ROSE) survey (Sjoberg & Schreiner, 2004) to examine topics of interest and perspectives of secondary science students in a large school district in the southwestern U.S. A situated learning perspective was used to frame the project. The research questions of this study focused on (a) perceptions students have about themselves and their science classroom and how these beliefs may influence their participation in the community of practice of science; (b) consideration of how a future science classroom where the curriculum is framed by the Next Generation Science Standards might foster students' beliefs and perceptions about science education and their legitimate peripheral participation in the community of practice of science; and (c) reflecting on their school science interests and perspectives, what can be inferred about students' identities as future scientists or STEM field professionals? Data were collected from 515 second year science students during a 4-week period in May of 2012 using a Web-based survey. Data were disaggregated by gender and ethnicity and analyzed descriptively and by statistical comparison between groups. Findings for Research Question 1 indicated that boys and girls showed statistically significant differences in scientific topics of interest. There were no statistical differences between ethnic groups although. For Research Question 2, it was determined that participants reported an increase in their interest when they deemed the context of the content to be personally relevant. Results for Research Question 3 showed that participants do not see themselves as youthful scientists or as becoming scientists. While participants value the importance of science in their lives and think all students should take science, they do not aspire to careers in science. Based on this study, a need for potential future work has been identified in three areas: (a) exploration of the perspectives and

  3. The impact of scienceware and foundations on students' attitudes towards science and science classes

    NASA Astrophysics Data System (ADS)

    Stratford, Steven J.; Finkel, Elizabeth A.

    1996-03-01

    In this paper, we describe changes in students' ideas about science classes, attitudes about science, and motivations for studying science, in a classroom designed to support projectbased science learing. Using a survey designed to provide a measure of students' attitudes towards science classes and science, we have compared students enrolled in a traditional high school biology course, with students enrolled in an integrated, project-based science course called Foundations I. Survey responses were analyzed to look at differences between and within two groups of students over the course of one school year. In general, the results of this study suggest that providing students with opportunities to collect and analyze their own data in science classes results in a change in students' ideas about science classrooms. Foundations I students' increased tendency to agree with statements about `using information,' `drawing conclusions,' and `thinking about problems,' implies a change in their understanding of what it means to do science in school. These students, in contrast to students in the traditional Biology course, no longer describe their science experience as one of memorization, textbook reading, and test taking. Instead they see science class as a place in which they can collect data, draw conclusions, and formulate and solve problems.

  4. Development of research paper writing skills of poultry science undergraduate students studying food microbiology.

    PubMed

    Howard, Z R; Donalson, L M; Kim, W K; Li, X; Zabala Díaz, I; Landers, K L; Maciorowski, K G; Ricke, S C

    2006-02-01

    Because food and poultry industries are demanding an improvement in written communication skills among graduates, research paper writing should be an integral part of a senior undergraduate class. However, scientific writing assignments are often treated as secondary to developing the technical skills of the students. Scientific research paper writing has been emphasized in an undergraduate course on advanced food microbiology taught in the Poultry Science Department at Texas A& M University (College Station, TX). Students' opinions suggest that research paper writing as part of a senior course in Poultry Science provides students with scientific communication skills and useful training for their career, but more emphasis on reading and understanding scientific literature may be required.

  5. The Polaris Project: Undergraduate Research Catalyzing Advances in Arctic Science

    NASA Astrophysics Data System (ADS)

    Schade, J. D.; Holmes, R. M.; Natali, S.; Mann, P. J.; Bunn, A. G.; Frey, K. E.

    2017-12-01

    With guidance and sufficient resources, undergraduates can drive the exploration of new research directions, lead high impact scientific products, and effectively communicate the value of science to the public. As mentors, we must recognize the strong contribution undergraduates make to the advancement of scientific understanding and their unique ability and desire to be transdisciplinary and to translate ideas into action. Our job is to be sure students have the resources and tools to successfully explore questions that they care about, not to provide or lead them towards answers we already have. The central goal of the Polaris Project is to advance understanding of climate change in the Arctic through an integrated research, training, and outreach program that has at its heart a research expedition for undergraduates to a remote field station in the Arctic. Our integrative approach to training provides undergraduates with strong intellectual development and they bring fresh perspectives, creativity, and a unique willingness to take risks on new ideas that have an energizing effect on research and outreach. Since the projects inception in summer 2008, we have had >90 undergraduates participate in high-impact field expeditions and outreach activities. Over the years, we have also been fortunate enough to attract an ethnically, racially, and culturally diverse group of students, including students from Puerto Rico, Hispanic-, African- and Native-Americans, members of the LGBT community, and first-generation college students. Most of these students have since pursued graduate degrees in ecology, and many have received NSF fellowships and Fulbright scholarships. One of our major goals is to increase the diversity of the scientific community, and we have been successful in our short-term goal of recruiting and retaining a diverse group of students. The goal of this presentation is to provide a description of the mentoring model at the heart of the Polaris Project

  6. Does Doing Scientific Research in High School Correlate with Students Staying in Science? A Half-Century Retrospective Study

    NASA Astrophysics Data System (ADS)

    Roberts, Lesley F.; Wassersug, Richard J.

    2009-03-01

    The American Association for the Advancement of Science (AAAS) has declared in an advertising campaign that “you can’t start young enough” in science. However, there is no long-term data evaluating the effect of early exposure to original scientific research on producing career scientists. To address this issue, we examined a hands-on summer science research program for high school students that ran from 1958 to 1972. We compared participants in that program with science students that only began their hands-on research experience once in university. Our data indicate that students who are interested in science and have an opportunity to participate in original scientific research while in high school are significantly more likely ( p < .005) to both enter and maintain a career in science compared to students whose first research experience didn’t occur until university. Our data suggest that more hands-on high school science research programs could help increase the number of students entering and maintaining scientific careers, relieving the growing concern that North America is losing its leadership status in the international scientific community.

  7. Midwest Science Festival: Exploring Students' and Parents' Participation in and Attitudes Toward Science.

    PubMed

    Dippel, Elizabeth A; Mechels, Keegan B; Griese, Emily R; Laufmann, Rachel N; Weimer, Jill M

    2016-08-01

    Compared to national numbers, South Dakota has a higher proportion of students interested in science, technology, engineering, and mathematics (STEM) fields. Interest in science can be influenced by exposure to science through formal and informal learning. Informal science activities (including exposures and participation) have been found to elicit higher levels of interest in science, likely impacting one's attitude towards science overall. The current study goal is to better understand the levels and relationships of attitude, exposure, and participation in science that were present among students and parents attending a free science festival. The project collected survey data from 65 students and 79 parents attending a science festival ranging from age 6 to 65. Informal science participation is significantly related to science attitudes in students and informal science exposure is not. No relationship was found for parents between science attitudes and participation. Students who indicated high levels of informal science participation (i.e., reading science-themed books) were positively related to their attitudes regarding science. However, informal science exposures, such as attending the zoo or independently visiting a science lab, was not significantly associated with positive attitudes towards science.

  8. Advancing the science of Forest Hydrology

    Treesearch

    Devendra M. Amatya; R. Wayne Skaggs; Carl C. Trettin

    2009-01-01

    For more than a century, agricultural and biological engineers have provided major advances in science, engineering, and technology to increase food and fiber production to meet the demands of a rapidly growing global population. The land base for these technological advances has...

  9. [Activities of Research Institute for Advanced Computer Science

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R. (Technical Monitor); Leiner, Barry M.

    2001-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administrations missions. RIACS is located at the NASA Ames Research Center, Moffett Field, California. RIACS research focuses on the three cornerstones of IT research necessary to meet the future challenges of NASA missions: 1. Automated Reasoning for Autonomous Systems Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth. 2. Human-Centered Computing Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities. 3. High Performance Computing and Networking Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to analysis of large scientific datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply IT research to a variety of NASA application domains. RIACS also engages in other activities, such as workshops, seminars, visiting scientist programs and student summer programs, designed to encourage and facilitate collaboration between the university and NASA IT research communities.

  10. Taiwanese Students' Science Learning Self-Efficacy and Teacher and Student Science Hardiness: A Multilevel Model Approach

    ERIC Educational Resources Information Center

    Wang, Ya-Ling; Tsai, Chin-Chung

    2016-01-01

    This study aimed to investigate the factors accounting for science learning self-efficacy (the specific beliefs that people have in their ability to complete tasks in science learning) from both the teacher and the student levels. We thus propose a multilevel model to delineate its relationships with teacher and student science hardiness (i.e.,…

  11. Developing models to predict 8th grade students' achievement levels on timss science based on opportunity-to-learn variables

    NASA Astrophysics Data System (ADS)

    Whitford, Melinda M.

    Science educational reforms have placed major emphasis on improving science classroom instruction and it is therefore vital to study opportunity-to-learn (OTL) variables related to student science learning experiences and teacher teaching practices. This study will identify relationships between OTL and student science achievement and will identify OTL predictors of students' attainment at various distinct achievement levels (low/intermediate/high/advanced). Specifically, the study (a) address limitations of previous studies by examining a large number of independent and control variables that may impact students' science achievement and (b) it will test hypotheses of structural relations to how the identified predictors and mediating factors impact on student achievement levels. The study will follow a multi-stage and integrated bottom-up and top-down approach to identify predictors of students' achievement levels on standardized tests using TIMSS 2011 dataset. Data mining or pattern recognition, a bottom-up approach will identify the most prevalent association patterns between different student achievement levels and variables related to student science learning experiences, teacher teaching practices and home and school environments. The second stage is a top-down approach, testing structural equation models of relations between the significant predictors and students' achievement levels according.

  12. Science Alive!: Connecting with Elementary Students through Science Exploration.

    PubMed

    Raja, Aarti; Lavin, Emily Schmitt; Gali, Tamara; Donovan, Kaitlin

    2016-05-01

    A novel program called Science Alive! was developed by undergraduate faculty members, K-12 school teachers, and undergraduate students to enrich science, technology, engineering, and mathematics (STEM) literacy at community schools located near the university. The ultimate goal of the program is to bolster the scientific knowledge and appreciation of local area students and community members and serve as a model for similar programs. Through the program, we observed that elementary school students made gains toward learning their grade-level science curricula after a hands-on learning experience and had fun doing these hands-on activities. Through the program, undergraduate students, working with graduate students and alumni, build scientific learning modules using explanatory handouts and creative activities as classroom exercises. This helps better integrate scientific education through a collaborative, hands-on learning program. Results showed that elementary school students made the highest learning gains in their performance on higher-level questions related to both forces and matter as a result of the hands-on learning modules. Additionally, college students enjoyed the hands-on activities, would consider volunteering their time at such future events, and saw the service learning program as a benefit to their professional development through community building and discipline-specific service. The science modules were developed according to grade-level curricular standards and can be used year after year to teach or explain a scientific topic to elementary school students via a hands-on learning approach.

  13. Science Alive!: Connecting with Elementary Students through Science Exploration†

    PubMed Central

    Raja, Aarti; Lavin, Emily Schmitt; Gali, Tamara; Donovan, Kaitlin

    2016-01-01

    A novel program called Science Alive! was developed by undergraduate faculty members, K–12 school teachers, and undergraduate students to enrich science, technology, engineering, and mathematics (STEM) literacy at community schools located near the university. The ultimate goal of the program is to bolster the scientific knowledge and appreciation of local area students and community members and serve as a model for similar programs. Through the program, we observed that elementary school students made gains toward learning their grade-level science curricula after a hands-on learning experience and had fun doing these hands-on activities. Through the program, undergraduate students, working with graduate students and alumni, build scientific learning modules using explanatory handouts and creative activities as classroom exercises. This helps better integrate scientific education through a collaborative, hands-on learning program. Results showed that elementary school students made the highest learning gains in their performance on higher-level questions related to both forces and matter as a result of the hands-on learning modules. Additionally, college students enjoyed the hands-on activities, would consider volunteering their time at such future events, and saw the service learning program as a benefit to their professional development through community building and discipline-specific service. The science modules were developed according to grade-level curricular standards and can be used year after year to teach or explain a scientific topic to elementary school students via a hands-on learning approach. PMID:27158309

  14. Popular Science Writing Bringing New Perspectives into Science Students' Theses

    ERIC Educational Resources Information Center

    Pelger, Susanne

    2018-01-01

    This study analyses which perspectives occur in science students' texts at different points in time during the process of writing a popular science article. The intention is, thus, to explore how popular science writing can help students discover and discuss different perspectives on science matter. For this purpose, texts written by 12 bachelor…

  15. Back to the basic sciences: an innovative approach to teaching senior medical students how best to integrate basic science and clinical medicine.

    PubMed

    Spencer, Abby L; Brosenitsch, Teresa; Levine, Arthur S; Kanter, Steven L

    2008-07-01

    Abraham Flexner persuaded the medical establishment of his time that teaching the sciences, from basic to clinical, should be a critical component of the medical student curriculum, thus giving rise to the "preclinical curriculum." However, students' retention of basic science material after the preclinical years is generally poor. The authors believe that revisiting the basic sciences in the fourth year can enhance understanding of clinical medicine and further students' understanding of how the two fields integrate. With this in mind, a return to the basic sciences during the fourth year of medical school may be highly beneficial. The purpose of this article is to (1) discuss efforts to integrate basic science into the clinical years of medical student education throughout the United States and Canada, and (2) describe the highly developed fourth-year basic science integration program at the University of Pittsburgh School of Medicine. In their critical review of medical school curricula of 126 U.S. and 17 Canadian medical schools, the authors found that only 19% of U.S. medical schools and 24% of Canadian medical schools require basic science courses or experiences during the clinical years, a minor increase compared with 1985. Curricular methods ranged from simple lectures to integrated case studies with hands-on laboratory experience. The authors hope to advance the national discussion about the need to more fully integrate basic science teaching throughout all four years of the medical student curriculum by placing a curricular innovation in the context of similar efforts by other U.S. and Canadian medical schools.

  16. Using a schoolyard garden to increase language acquisition and conceptual understanding of science in elementary ELL students

    NASA Astrophysics Data System (ADS)

    Stewart, Morgan

    This action research study examined a small cross-section of a Texas public school population. Participants were kindergarten through third grade students enrolled in the English as a Second Language (ESL) Program who were pulled out of their general classroom to receive English support within the content area of science. This study looked at how effective a hands-on learning experience using a schoolyard garden enhanced the academic language and science content of the participants. The study began in mid-March and concluded at the end of April with each group receiving 40 minutes of instruction five days a week. Each group consisted of a Beginner, Intermediate, and Advanced/Advanced High student for a total of 12 participants. Four forms of data were used in this study: archival, pre-test, post-test, and journal. Rubrics were used to analyze individual students' level of academic language before and after the study. The results illustrate that the younger students (kindergarten and first grade) descriptions were very basic and concrete while the older students had more accurate and descriptive responses. Upon completion of this research, it was determined that the usage of a schoolyard garden compliments both the acquisition of academic language and the increase in science content knowledge.

  17. Ninth Annual Student Science Jeopardy Tournament Set for July 22 | Poster

    Cancer.gov

    The Scientific Library staff is pleased to announce the return of the annual Student Science Jeopardy Tournament July 22, in the auditorium of Building 549. The contest will begin at 10 a.m. and will run continuously until its conclusion at approximately 12:45 p.m. A video of the tournament will be broadcast live at the Advanced Technology Research Facility.

  18. Advancing Research on Undergraduate Science Learning

    ERIC Educational Resources Information Center

    Singer, Susan Rundell

    2013-01-01

    This special issue of "Journal of Research in Science Teaching" reflects conclusions and recommendations in the "Discipline-Based Education Research" (DBER) report and makes a substantial contribution to advancing the field. Research on undergraduate science learning is currently a loose affiliation of related fields. The…

  19. Middle School Students' Attitudes toward Science, Scientists, Science Teachers and Classes

    ERIC Educational Resources Information Center

    Kapici, Hasan Özgür; Akçay, Hakan

    2016-01-01

    It is an indispensable fact that having a positive attitude towards science is one of the important factors that promotes students for studying in science. The study is a kind of national study that aims to investigate middle school students', from different regions of Turkey, attitudes toward science, scientists and science classes. The study was…

  20. Training the "assertive practitioner of behavioral science": advancing a behavioral medicine track in a family medicine residency.

    PubMed

    Butler, Dennis J; Holloway, Richard L; Fons, Dominique

    2013-01-01

    This article describes the development of a Behavioral Medicine track in a family medicine residency designed to train physicians to proactively and consistently apply advanced skills in psychosocial medicine, psychiatric care, and behavioral medicine. The Behavioral Medicine track emerged from a behavioral science visioning retreat, an opportunity to restructure residency training, a comparative family medicine-psychiatry model, and qualified residents with high interest in behavioral science. Training was restructured to increase rotational opportunities in core behavioral science areas and track residents were provided an intensive longitudinal counseling seminar and received advanced training in psychopharmacology, case supervision, and mindfulness. The availability of a Behavioral Medicine track increased medical student interest in the residency program and four residents have completed the track. All track residents have presented medical Grand Rounds on behavioral science topics and have lead multiple workshops or research sessions at national meetings. Graduate responses indicate effective integration of behavioral medicine skills and abilities in practice, consistent use of brief counseling skills, and good confidence in treating common psychiatric disorders. As developed and structured, the Behavioral Medicine track has achieved the goal of producing "assertive practitioners of behavioral science in family medicine" residents with advanced behavioral science skills and abilities who globally integrate behavioral science into primary care.

  1. Advanced Methodologies for NASA Science Missions

    NASA Astrophysics Data System (ADS)

    Hurlburt, N. E.; Feigelson, E.; Mentzel, C.

    2017-12-01

    Most of NASA's commitment to computational space science involves the organization and processing of Big Data from space-based satellites, and the calculations of advanced physical models based on these datasets. But considerable thought is also needed on what computations are needed. The science questions addressed by space data are so diverse and complex that traditional analysis procedures are often inadequate. The knowledge and skills of the statistician, applied mathematician, and algorithmic computer scientist must be incorporated into programs that currently emphasize engineering and physical science. NASA's culture and administrative mechanisms take full cognizance that major advances in space science are driven by improvements in instrumentation. But it is less well recognized that new instruments and science questions give rise to new challenges in the treatment of satellite data after it is telemetered to the ground. These issues might be divided into two stages: data reduction through software pipelines developed within NASA mission centers; and science analysis that is performed by hundreds of space scientists dispersed through NASA, U.S. universities, and abroad. Both stages benefit from the latest statistical and computational methods; in some cases, the science result is completely inaccessible using traditional procedures. This paper will review the current state of NASA and present example applications using modern methodologies.

  2. Advancing Alternative Analysis: Integration of Decision Science.

    PubMed

    Malloy, Timothy F; Zaunbrecher, Virginia M; Batteate, Christina M; Blake, Ann; Carroll, William F; Corbett, Charles J; Hansen, Steffen Foss; Lempert, Robert J; Linkov, Igor; McFadden, Roger; Moran, Kelly D; Olivetti, Elsa; Ostrom, Nancy K; Romero, Michelle; Schoenung, Julie M; Seager, Thomas P; Sinsheimer, Peter; Thayer, Kristina A

    2017-06-13

    Decision analysis-a systematic approach to solving complex problems-offers tools and frameworks to support decision making that are increasingly being applied to environmental challenges. Alternatives analysis is a method used in regulation and product design to identify, compare, and evaluate the safety and viability of potential substitutes for hazardous chemicals. We assessed whether decision science may assist the alternatives analysis decision maker in comparing alternatives across a range of metrics. A workshop was convened that included representatives from government, academia, business, and civil society and included experts in toxicology, decision science, alternatives assessment, engineering, and law and policy. Participants were divided into two groups and were prompted with targeted questions. Throughout the workshop, the groups periodically came together in plenary sessions to reflect on other groups' findings. We concluded that the further incorporation of decision science into alternatives analysis would advance the ability of companies and regulators to select alternatives to harmful ingredients and would also advance the science of decision analysis. We advance four recommendations: a ) engaging the systematic development and evaluation of decision approaches and tools; b ) using case studies to advance the integration of decision analysis into alternatives analysis; c ) supporting transdisciplinary research; and d ) supporting education and outreach efforts. https://doi.org/10.1289/EHP483.

  3. Mineral Physics Educational Modules for Advanced Undergraduates and Graduate Students

    NASA Astrophysics Data System (ADS)

    Burnley, P. C.; Thomas, S.; Honn, D. K.

    2011-12-01

    We are assembling a group of web-based educational modules for a course entitled "Introduction to Mineral Physics". Although the modules are designed to function as part of a full semester course, each module will also be able to stand alone. The modules are targeted at entry level graduate students and advanced undergraduate students. Learning outcomes for the course are being developed in consultation with educators throughout the mineral physics community. Potential users include mineral physicists teaching "bricks and mortar" graduate classes at their own institutions, mineral physicists teaching graduate classes in a distance education setting, mineralogy teachers interested in including supplementary material in their undergraduate mineralogy class, undergraduates doing independent study projects and graduate students and colleagues in other subdisciplines who wish to brush up on mineral physics topics. The modules reside on the Science Education Resource Center at Carleton College web site in the On the Cutting Edge - Teaching Mineralogy collection. Links to the materials will be posted on the Consortium for Materials Properties Research in Earth Sciences website. The modules will be piloted in a graduate level distance education course in mineral physics taught from UNLV during the spring 2012 semester. This course and others like it can address the current problems faced by faculty in state universities where rising minimum enrollments are making it difficult to teach a suitable graduate course to incoming students.

  4. University science students' knowledge of fats.

    PubMed

    Mazier, M J Patricia; McLeod, Sheena L

    2007-01-01

    Students entering university often lack knowledge about fats; whether students gain such information during four years at university is unclear. Students' knowledge of fat in the first and fourth years was measured and compared. The effect of a nutrition course on knowledge was also examined. A total of 215 science students at a small undergraduate university completed a 15-item, closed-ended questionnaire concerning knowledge of fats in the diet. Fourth-year science students have greater nutrition knowledge of fats than do first-year science students (p<0.005). Given that the majority of first-year students reside on campus and the majority of fourth-year students reside off campus, the purchasing of food and preparation of meals may explain the senior students' greater knowledge of fat. Students who have taken a nutrition course know more about fats than do those who have not (p<0.001). Taking even one course in nutrition greatly increases nutrition knowledge. Universities could encourage undergraduate students to take a basic nutrition course, which should emphasize the identification and understanding of different types of dietary fats.

  5. Radiologic science students' perceptions of parental involvement.

    PubMed

    DuBose, Cheryl; Barymon, Deanna; Vanderford, Virginia; Hensley, Chad; Shaver, Gary

    2014-01-01

    A new generation of students is in the classroom, and they are not always alone. Helicopter parents, those who hover around the student and attempt to ease life's challenges, are accompanying the students to radiologic science programs across the nation. To determine radiologic science students' perception regarding their parents' level of involvement in their lives. A survey focused on student perceptions of parental involvement inside and outside of the academic setting was completed by 121 radiologic science students at 4 institutional settings. The analysis demonstrates statistically significant relationships between student sex, age, marital status, and perceived level of parental involvement. In addition, as financial support increases, students' perception of the level of parental involvement also increases. Radiologic science students want their parents to be involved in their higher education decisions. Research indicates that students with involved parents are more successful, and faculty should be prepared for increased parental involvement in the future. Radiologic science students perceive their parents to be involved in their academic careers. Ninety-five percent of respondents believe that the financial support of their parent or parents contributes to their academic success. Sixty-five percent of participants are content with their parents' current level of involvement, while 11% wish their parents were more involved in their academic careers.

  6. Elementary Students' Retention of Environmental Science Knowledge: Connected Science Instruction versus Direct Instruction

    ERIC Educational Resources Information Center

    Upadhyay, Bhaskar; DeFranco, Cristina

    2008-01-01

    This study compares 3rd-grade elementary students' gain and retention of science vocabulary over time in two different classes--"connected science instruction" versus "direct instruction." Data analysis yielded that students who received connected science instruction showed less gain in science knowledge in the short term compared to students who…

  7. Do Science Teachers Distinguish Between Their own Learning and the Learning of Their Students?

    NASA Astrophysics Data System (ADS)

    Brauer, Heike; Wilde, Matthias

    2018-02-01

    Learning beliefs influence learning and teaching. For this reason, teachers and teacher educators need to be aware of them. To support students' knowledge construction, teachers must develop appropriate learning and teaching beliefs. Teachers appear to have difficulties when analysing students' learning. This seems to be due to the inability to differentiate the beliefs about their students' learning from those about their own learning. Both types of beliefs seem to be intertwined. This study focuses on whether pre-service teachers' beliefs about their own learning are identical to those about their students' learning. Using a sample of pre-service teachers, we measured general beliefs about "constructivist" and "transmissive" learning and science-specific beliefs about "connectivity" and "taking pre-concepts into account". We also analysed the development of these four beliefs during teacher professionalisation by comparing beginning and advanced pre-service teachers. Our results show that although pre-service teachers make the distinction between their own learning and the learning of their students for the general tenets of constructivist and transmissive learning, there is no significant difference for science-specific beliefs. The beliefs pre-service teachers hold about their students' science learning remain closely tied to their own.

  8. Supporting students in developing literacy in science.

    PubMed

    Krajcik, Joseph S; Sutherland, LeeAnn M

    2010-04-23

    Reading, writing, and oral communication are critical literacy practices for participation in a global society. In the context of science inquiry, literacy practices support learners by enabling them to grapple with ideas, share their thoughts, enrich understanding, and solve problems. Here we suggest five instructional and curricular features that can support students in developing literacy in the context of science: (i) linking new ideas to prior knowledge and experiences, (ii) anchoring learning in questions that are meaningful in the lives of students, (iii) connecting multiple representations, (iv) providing opportunities for students to use science ideas, and (v) supporting students' engagement with the discourses of science. These five features will promote students' ability to read, write, and communicate about science so that they can engage in inquiry throughout their lives.

  9. Students' Awareness of Science Teachers' Leadership, Attitudes toward Science, and Positive Thinking

    ERIC Educational Resources Information Center

    Lu, Ying-Yan; Chen, Hsiang-Ting; Hong, Zuway-R.; Yore, Larry D.

    2016-01-01

    There appears to be a complex network of cognitive and affective factors that influence students' decisions to study science and motivate their choices to engage in science-oriented careers. This study explored 330 Taiwanese senior high school students' awareness of their science teacher's learning leadership and how it relates to the students'…

  10. Preparing Graduate Students as Science Communicators

    NASA Astrophysics Data System (ADS)

    Knudson, K.; Gutstein, J.

    2012-12-01

    Our presentation introduces our interdisciplinary curriculum that teaches graduate students at our R-1 university to translate their research to general audiences. We also discuss the challenges we have faced and strategies we have employed to broaden graduate education at our campus to include preparation in science communication. Our "Translating Research beyond Academia" curriculum consists of three separate thematically based courses taught over the academic year: Education and Community Outreach, Science Communication and Writing, Communicating with Policy- and Decision-makers. Course goals are to provide professional development training so that graduate students become more capable professionals prepared for careers inside and outside academia while increasing the public understanding of science and technology. Open to graduate students of any discipline, each course meets weekly for two hours; students receive academic credit through a co-sponsoring graduate program. Students learn effective strategies for communicating research and academic knowledge with the media, the general public, youth, stakeholders, and decision- and policy-makers. Courses combine presentations from university and regional experts with hands-on work sessions aimed towards creating effective communications, outreach and policy plans, broader impacts statements, press releases, blogs, and policy briefs. A final presentation and reflections are required. Students may opt for further training through seminars tailored to student need. Initial results of our analyses of student evaluations and work indicate that students appreciate the interdisciplinary, problem-based approach and the low-risk opportunities for learning professional development skills and for exploring non-academic employment. Several students have initiated engaged work in their disciplines, and several have secured employment in campus science communication positions. Two have changed career plans as a direct result of

  11. High School Students' Reasons for Their Science Dispositions: Community-Based Innovative Technology-Embedded Environmental Research Projects

    NASA Astrophysics Data System (ADS)

    Ebenezer, Jazlin; Kaya, Osman Nafiz; Kasab, Dimma

    2018-05-01

    The purpose of this investigation was to qualitatively describe high school students' reasons for their science dispositions (attitude, perception, and self-confidence) based on their long-term experience with innovative technology-embedded environmental research projects. Students in small groups conducted research projects in and out of school with the help of their teachers and community experts (scientists and engineers). During the 3-year period of this nationally funded project, a total of 135 students from five schools in a mid-west State participated in research activities. Of the 135 students, 53 students were individually interviewed to explore reasons for their science dispositions. Students' reasons for each disposition were grouped into categories, and corresponding frequency was converted to a percentage. The categories of reasons were not only attributed to the use of innovative technologies in environmental research but also the contexts and events that surrounded it. The reasons that influenced students' science dispositions positively were because engaging in environmental research projects with technology contributed to easing fear and difficulty, building a research team, disseminating findings, communicating with the community, researching with scientists, training by teachers, and acknowledging teachers' knowledge. These results advanced how and why students develop science dispositions in the positive direction, which are as follows: building science teacher capacity, developing a community of inquirers, and committing to improve pedagogical practices.

  12. Advanced Science Students' Understanding on Nature of Science in Turkey

    ERIC Educational Resources Information Center

    Köksal, Mustafa Serdar; Sormunen, Kari

    2014-01-01

    Nature of science (NOS), as an aspect of informed decision making about science related issues in daily life, is frequently emphasised when reform and the curriculum are in question. When reflecting on studies done on the subject, it comes apparent that the majority of them comprise of determination or assessment studies conducted with traditional…

  13. Conceptions of learning factors in postgraduate health sciences master students: a comparative study with non-health science students and between genders.

    PubMed

    Campos, Fernando; Sola, Miguel; Santisteban-Espejo, Antonio; Ruyffelaert, Ariane; Campos-Sánchez, Antonio; Garzón, Ingrid; Carriel, Víctor; de Dios Luna-Del-Castillo, Juan; Martin-Piedra, Miguel Ángel; Alaminos, Miguel

    2018-06-07

    The students' conceptions of learning in postgraduate health science master studies are poorly understood. The aim of this study was to compare the factors influencing conceptions of learning in health sciences and non-health sciences students enrolled in postgraduate master programs in order to obtain information that may be useful for students and for future postgraduate programs. A modified version of the Learning Inventory Conception Questionnaire (COLI) was used to compare students' conception learning factors in 131 students at the beginning of their postgraduate studies in health sciences, experimental sciences, arts and humanities and social sciences. The present study demonstrates that a set of factors may influence conception of learning of health sciences postgraduate students, with learning as gaining information, remembering, using, and understanding information, awareness of duty and social commitment being the most relevant. For these students, learning as a personal change, a process not bound by time or place or even as acquisition of professional competences, are less relevant. According to our results, this profile is not affected by gender differences. Our results show that the overall conceptions of learning differ among students of health sciences and non-health sciences (experimental sciences, arts and humanities and social sciences) master postgraduate programs. These finding are potentially useful to foster the learning process of HS students, because if they are metacognitively aware of their own conception or learning, they will be much better equipped to self-regulate their learning behavior in a postgraduate master program in health sciences.

  14. Seeding science success: Relations of secondary students' science self-concepts and motivation with aspirations and achievement

    NASA Astrophysics Data System (ADS)

    Chandrasena, Wanasinghe Durayalage

    This research comprises three inter-related synergistic studies. Study 1 aims to develop a psychometrically sound tool to measure secondary students' science self-concepts, motivation, and aspirations in biology, chemistry, earth and environmental methodology to explicate students' and teachers' views, practices, and personal experiences, to identify the barriers to undertaking science for secondary students and to provide rich insights into the relations of secondary students' science self-concepts and motivation with their aspirations and achievement. Study 3 will detect additional issues that may not necessarily be identifiable from the quantitative findings of Study 2. The psychometric properties of the newly developed instrument demonstrated that students' science self-concepts were domain specific, while science motivation and science aspirations were not. Students' self-concepts in general science, chemistry, and physics were stronger for males than females. Students' self-concepts in general science and biology became stronger for students in higher years of secondary schooling. Students' science motivation did not vary across gender and year levels. Though students' science aspirations did not vary across gender, they became stronger with age. In general, students' science self-concepts and science motivation were positively related to science aspirations and science achievement. Specifically, students' year level, biology self-concept, and physics self concept predicted their science and career aspirations. Biology self-concept predicted teacher ratings of students' achievement, and students' general science self-concepts predicted their achievement according to students' ratings. Students' year level and intrinsic motivation in science were predictors of their science aspirations, and intrinsic motivation was a greater significant predictor of students' achievement, according to student ratings. Based upon students' and teachers' perceptions, the

  15. Advanced placement math and science courses: Influential factors and predictors for success in college STEM majors

    NASA Astrophysics Data System (ADS)

    Hoepner, Cynthia Colon

    President Obama has recently raised awareness on the need for our nation to grow a larger pool of students with knowledge in science mathematics, engineering, and technology (STEM). Currently, while the number of women pursuing college degrees continues to rise, there remains an under-representation of women in STEM majors across the country. Although research studies offer several contributing factors that point to a higher attrition rate of women in STEM than their male counterparts, no study has investigated the role that high school advanced placement (AP) math and science courses play in preparing students for the challenges of college STEM courses. The purpose of this study was to discover which AP math and science courses and/or influential factors could encourage more students, particularly females, to consider pursuing STEM fields in college. Further, this study examined which, if any, AP math or science courses positively contribute to a student's overall preparation for college STEM courses. This retrospective study combined quantitative and qualitative research methods. The survey sample consisted of 881 UCLA female and male students pursuing STEM majors. Qualitative data was gathered from four single-gender student focus groups, two female groups (15 females) and two male groups (16 males). This study examined which AP math and science courses students took in high school, who or what influenced them to take those courses, and which particular courses influenced student's choice of STEM major and/or best prepared her/him for the challenges of STEM courses. Findings reveal that while AP math and science course-taking patterns are similar of female and male STEM students, a significant gender-gap remains in five of the eleven AP courses. Students report four main influences on their choice of AP courses; self, desire for math/science major, higher grade point average or class rank, and college admissions. Further, three AP math and science courses were

  16. Teacher and Student Perceptions on High School Science Flipped Classrooms: Educational Breakthrough or Media Hype?

    NASA Astrophysics Data System (ADS)

    Hunley, Rebecca C.

    For years educators have struggled to ensure students meet the rigors of state mandated tests. Challenges that often impede student success are student absences, school closings due to weather, and remediation for students who need additional help while advanced students can move ahead. Many educators, especially secondary math and science teachers, have responded to these issues by implementing a teaching strategy called the flipped classroom where students view lectures, power points, or podcasts outside of school and class time shifts to allow opportunities for collaborative learning. The purpose of this research was to evaluate teacher and student perceptions of high school flipped science classrooms. A qualitative phenomenological study was conducted to observe 3 high school science teachers from Georgia, North Carolina, and Tennessee selected through purposeful sampling who have used the flipped classroom method for a minimum of 2 years. Analysis of data from an online survey, direct observation, teacher interviews, and student focus groups helped to identify challenges and benefits of this teaching and learning strategy. Findings indicated that teachers find the flipped classroom beneficial to build student relationships but requires a significant amount of time to develop. Mixed student reactions revealed benefits of a flipped classroom as a successful learning tool for current and future endeavors for college or career preparation.

  17. Out-of-School Experience Categories Influencing Interest in Science of Upper Primary Students by Gender and Locale: Exploration on an Indian Sample

    ERIC Educational Resources Information Center

    Gafoor, K. Abdul; Narayan, Smitha

    2012-01-01

    In view of student shift away from science at advanced levels, and gender and locale based divergence in interest in studying physics, chemistry and biology, this study explores experience categories that significantly contribute to interest in science on a sample of upper primary school students from Kerala, India. A series of multiple regression…

  18. Smooth Transition for Advancement to Graduate Education (STAGE) for Underrepresented Groups in the Mathematical Sciences Pilot Project: Broadening Participation through Mentoring

    ERIC Educational Resources Information Center

    Eubanks-Turner, Christina; Beaulieu, Patricia; Pal, Nabendu

    2018-01-01

    The Smooth Transition for Advancement to Graduate Education (STAGE) project was a three-year pilot project designed to mentor undergraduate students primarily from under-represented groups in the mathematical sciences. The STAGE pilot project focused on mentoring students as they transitioned from undergraduate education to either graduate school…

  19. Engaging Students in Science: Turtle Nestwatch

    ERIC Educational Resources Information Center

    Lewis, Elaine; Baudains, Catherine; Mansfield, Caroline

    2009-01-01

    Involving students in authentic science work is one way to enhance their interest in science. This paper reports a project in which Year 4-7 students actively participated in a study that involved the provision of a suitable nesting site for local turtles. The students collected data on turtle nests at the site and evidence of turtle hatchlings at…

  20. Enhancing students' science literacy using solar cell learning multimedia containing science and nano technology

    NASA Astrophysics Data System (ADS)

    Eliyawati, Sunarya, Yayan; Mudzakir, Ahmad

    2017-05-01

    This research attempts to enhance students' science literacy in the aspects of students' science content, application context, process, and students' attitude using solar cell learning multimedia containing science and nano technology. The quasi-experimental method with pre-post test design was used to achieve these objectives. Seventy-two students of class XII at a high school were employed as research's subject. Thirty-six students were in control class and another thirty-six were in experiment class. Variance test (t-test) was performed on the average level of 95% to identify the differences of students' science literacy in both classes. As the result, there were significant different of learning outcomes between experiment class and control class. Almost half of students (41.67%) in experiment class are categorized as high. Therefore, the learning using solar cell learning multimedia can improve students' science literacy, especially in the students' science content, application context, and process aspects with n-gain(%) 59.19 (medium), 63.04 (medium), and 52.98 (medium). This study can be used to develop learning multimedia in other science context.

  1. Using Citizen Science beyond Teaching Science Content: A Strategy for Making Science Relevant to Students' Lives

    ERIC Educational Resources Information Center

    Jenkins, Lynda L.

    2011-01-01

    I respond to Pike and Dunne by exploring the utilization of citizen science in science education. Their results indicate that students fail to pursue science beyond the secondary level, in part, because of prior educational experiences with science education. Students lack motivation to pursue degrees and careers in science because they feel…

  2. High School Students' Views of Science in a University Science Internship with Cogenerative Dialogues

    NASA Astrophysics Data System (ADS)

    Hayes, Gabriel Micah

    The purpose of this thesis is to determine how participation in long term university science internships affect nature of science (NOS) conceptual change in high school students. The study was conducted on high school students who volunteered to participate in a seven month university science internship in west Texas. Student views of NOS were measured by pre- and post-internship interviews using five questions about NOS. Internship and no internship student responses were qualitatively analyzed to show change in views of NOS. Findings indicated that participation in long term science internships with cogenerative dialogues improved students conceptualizations of the social dimensions of NOS more than the no internship students. This trend indicates that long term science internships and cogenerative dialogues improve student conceptualizations of the role of social interaction in developing meaning in science.

  3. Advances in welding science: A perspective

    NASA Astrophysics Data System (ADS)

    David, S. A.; Vitek, J. M.; Babu, S. S.; Debroy, T.

    The ultimate goal of welding technology is to improve the joint integrity and increase productivity. Over the years, welding has been more of an art than a science, but in the last few decades major advances have taken place in welding science and technology. With the development of new methodologies at the crossroads of basic and applied sciences, enormous opportunities and potential exist to develop a science-based tailoring of composition, structure, and properties of welds with intelligent control and automation of the welding processes.

  4. Student Attitudes, Student Anxieties, and How to Address Them; A handbook for science teachers

    NASA Astrophysics Data System (ADS)

    Kastrup, Helge

    2016-02-01

    This book is based on a commitment to teaching science to everybody. What may work for training professional scientists does not work for general science education. Students bring to the classrooms preconceived attitudes, as well as the emotional baggage called 'science anxiety'. Students may regard science as cold, unfriendly, and even inherently hostile and biased against women. This book has been designed to deal with each of these issues and results from research in both Denmark and the USA. The first chapter discusses student attitudes towards science and the second discusses science anxiety. The connection between the two is discussed before the introduction of constructivism as a pedagogy that can aid science learning if it also addresses attitudes and anxieties. Much of the book elucidates what the authors have learned as science teachers and science education researchers. They studied various groups including university students majoring in the sciences, mathematics, humanities, social sciences, business, nursing, and education; high-school students; teachers' seminary students; science teachers at all levels from middle school through college; and science administrators. The insights of these groups constitute the most important feature of the book, and by sharing them, the authors hope to help their fellow science teachers to understand student attitudes about science, to recognize the connections between these and science anxiety, and to see how a pedagogy that takes these into account can improve science learning.

  5. The Perceptions of Elementary School Teachers Regarding Their Efforts to Help Students Utilize Student-to-Student Discourse in Science

    NASA Astrophysics Data System (ADS)

    Craddock, Jennifer Lovejoy

    The purpose of this phenomenological study was to examine the perceptions of elementary teachers who teach science as opposed to science teacher specialists regarding their efforts to help students use student-to-student discourse for improving science learning. A growing body of research confirms the importance of a) student-to-student discourse for making meaning of science ideas and b) moving students' conceptual development towards a more scientific understanding of the natural world. Based on those foundations, the three research questions that guided this study examined the value elementary teachers place on student-to-student discourse, the various approaches teachers employ to promote the use of student-to-student discourse for learning science, and the factors and conditions that promote and inhibit the use of student-to-student discourse as an effective pedagogical strategy in elementary science. Data were gathered from 23 elementary teachers in a single district using an on-line survey and follow-up interviews with 8 teachers. All data were analyzed and evolving themes led to the following findings: (1) elementary teachers value student-to-student discourse in science, (2) teachers desire to increase time using student-to-student discourse, (3) teachers use a limited number of student-to-student discourse strategies to increase student learning in science, (4) teachers use student-to-student discourse as formative assessment to determine student learning in science, (5) professional development focusing on approaches to student-to-student discourse develops teachers' capacity for effective implementation, (6) teachers perceive school administrators' knowledge of and support for student-to-student discourse as beneficial, (7) time and scheduling constraints limit the use of student-to-student discourse in science. Implications of this study included the necessity of school districts to focus on student-to-student discourse in science, provide teacher and

  6. The Extraction and Partial Purification of Bacterial DNA as a Practical Exercise for GCE Advanced Level Students.

    ERIC Educational Resources Information Center

    Falconer, A. C.; Hayes, L. J.

    1986-01-01

    Describes a relatively simple method of extraction and purification of bacterial DNA. This technique permits advanced secondary-level science students to obtain adequate amounts of DNA from very small pellets of bacteria and to observe some of its polymer properties. (ML)

  7. Student Initiatives in Urban Elementary Science Classrooms

    ERIC Educational Resources Information Center

    Lewis, Scott; Lee, Okhee; Santau, Alexandra; Cone, Neporcha

    2010-01-01

    Student initiatives play an important role in inquiry-based science with all students, including English language learning (ELL) students. This study examined initiatives that elementary students made as they participated in an intervention to promote science learning and English language development over a three-year period. In addition, the…

  8. Advancing Alternative Analysis: Integration of Decision Science

    PubMed Central

    Zaunbrecher, Virginia M.; Batteate, Christina M.; Blake, Ann; Carroll, William F.; Corbett, Charles J.; Hansen, Steffen Foss; Lempert, Robert J.; Linkov, Igor; McFadden, Roger; Moran, Kelly D.; Olivetti, Elsa; Ostrom, Nancy K.; Romero, Michelle; Schoenung, Julie M.; Seager, Thomas P.; Sinsheimer, Peter; Thayer, Kristina A.

    2017-01-01

    Background: Decision analysis—a systematic approach to solving complex problems—offers tools and frameworks to support decision making that are increasingly being applied to environmental challenges. Alternatives analysis is a method used in regulation and product design to identify, compare, and evaluate the safety and viability of potential substitutes for hazardous chemicals. Objectives: We assessed whether decision science may assist the alternatives analysis decision maker in comparing alternatives across a range of metrics. Methods: A workshop was convened that included representatives from government, academia, business, and civil society and included experts in toxicology, decision science, alternatives assessment, engineering, and law and policy. Participants were divided into two groups and were prompted with targeted questions. Throughout the workshop, the groups periodically came together in plenary sessions to reflect on other groups’ findings. Results: We concluded that the further incorporation of decision science into alternatives analysis would advance the ability of companies and regulators to select alternatives to harmful ingredients and would also advance the science of decision analysis. Conclusions: We advance four recommendations: a) engaging the systematic development and evaluation of decision approaches and tools; b) using case studies to advance the integration of decision analysis into alternatives analysis; c) supporting transdisciplinary research; and d) supporting education and outreach efforts. https://doi.org/10.1289/EHP483 PMID:28669940

  9. Science Anxiety and Gender in Students Taking General Education Science Courses

    NASA Astrophysics Data System (ADS)

    Udo, M. K.; Ramsey, G. P.; Mallow, J. V.

    2004-12-01

    Earlier studies [Mallow, J. V. (1994). Gender-related science anxiety: A first binational study. Journal of Science Education and Technology 3: 227-238; Udo, M. K., Ramsey, G. P., Reynolds-Alpert, S., and Mallow, J. V. (2001). Does physics teaching affect gender-based science anxiety? Journal of Science Education and Technology 10: 237-247] of science anxiety in various student cohorts suggested that nonscience majors were highly science anxious (SA), regardless of what science courses they were taking. In this study, we investigated science anxiety in a cohort consisting mostly of nonscience majors taking general education science courses. Regression analysis shows that the leading predictors of science anxiety are (i) nonscience anxiety and (ii) gender, as they were for different cohorts in the earlier studies. We confirm earlier findings that females are more SA than males. Chi-square analysis of acute science anxiety shows an amplification of these differences. We found statistically significant levels of science anxiety in humanities and social science students of both genders, and gender differences in science anxiety, despite the fact that the students were all enrolled in general education science courses specifically designed for nonscience majors. We found acute levels of anxiety in several groups, especially education, nursing, and business majors. We describe specific interventions to alleviate science anxiety.

  10. Effects of the Integrated Online Advance Organizer Teaching Materials on Students' Science Achievement and Attitude

    ERIC Educational Resources Information Center

    Korur, Fikret; Toker, Sacip; Eryilmaz, Ali

    2016-01-01

    This two-group quasi-experimental study investigated the effects of the Online Advance Organizer Concept Teaching Material (ONACOM) integrated with inquiry teaching and expository teaching methods. Grade 7 students' posttest performances on the light unit achievement and light unit attitude tests controlled for gender, previous semester science…

  11. Racial Differences in Mathematics Test Scores for Advanced Mathematics Students

    ERIC Educational Resources Information Center

    Minor, Elizabeth Covay

    2016-01-01

    Research on achievement gaps has found that achievement gaps are larger for students who take advanced mathematics courses compared to students who do not. Focusing on the advanced mathematics student achievement gap, this study found that African American advanced mathematics students have significantly lower test scores and are less likely to be…

  12. UK School Students' Attitudes towards Science and Potential Science-Based Careers

    ERIC Educational Resources Information Center

    White, Emelia L.; Harrison, Timothy G.

    2012-01-01

    This is a review of literature pertaining to UK secondary school students, their uptake of science at higher levels and their consideration of careers as scientists. As with all countries, the continued uptake of sufficient numbers of science at all levels is in the UK's interest. Unfortunately too many UK secondary students see science as…

  13. Investigating elementary principals' science beliefs and knowledge and its relationship to students' science outcomes

    NASA Astrophysics Data System (ADS)

    Khan, Uzma Zafar

    The aim of this quantitative study was to investigate elementary principals' beliefs about reformed science teaching and learning, science subject matter knowledge, and how these factors relate to fourth grade students' superior science outcomes. Online survey methodology was used for data collection and included a demographic questionnaire and two survey instruments: the K-4 Physical Science Misconceptions Oriented Science Assessment Resources for Teachers (MOSART) and the Beliefs About Reformed Science Teaching and Learning (BARSTL). Hierarchical multiple regression analysis was used to assess the separate and collective contributions of background variables such as principals' personal and school characteristics, principals' science teaching and learning beliefs, and principals' science knowledge on students' superior science outcomes. Mediation analysis was also used to explore whether principals' science knowledge mediated the relationship between their beliefs about science teaching and learning and students' science outcomes. Findings indicated that principals' science beliefs and knowledge do not contribute to predicting students' superior science scores. Fifty-two percent of the variance in percentage of students with superior science scores was explained by school characteristics with free or reduced price lunch and school type as the only significant individual predictors. Furthermore, principals' science knowledge did not mediate the relationship between their science beliefs and students' science outcomes. There was no statistically significant variation among the variables. The data failed to support the proposed mediation model of the study. Implications for future research are discussed.

  14. Teaching Science in Light of World View: The Effect of Contextualized Instruction on the Scientific Compatibility of Religious College Students' World Views

    ERIC Educational Resources Information Center

    Gossard, Paula Rae

    2009-01-01

    Authors of recent science reform documents promote the goal of scientific literacy for all Americans (American Association for the Advancement of Science, 1989, 1993). Some students, however, feel apprehensive about learning science due to perceptions that science is antagonistic to their world views (Alters, 2005; Esbenshade, 1993). This study…

  15. Students' science attitudes, beliefs, and context: associations with science and chemistry aspirations

    NASA Astrophysics Data System (ADS)

    Mujtaba, Tamjid; Sheldrake, Richard; Reiss, Michael J.; Simon, Shirley

    2018-04-01

    There is a widespread concern that relatively few students, especially those from disadvantaged backgrounds, continue to study chemistry and other science subjects after compulsory education. Yet it remains unclear how different aspects of students' background and home context, their own attitudes and beliefs, and their experiences of particular teaching approaches in school might limit or facilitate their studying aspirations; concurrently, less research has specifically focused on and surveyed disadvantaged students. In order to gain more insight, 4780 students were surveyed, covering those in Year 7 (age 11-12 years) and in Year 8 (age 12-13) from schools in England with high proportions of those from disadvantaged backgrounds. Predictive modelling highlighted that the students' aspirations to study non-compulsory science in the future, and to study the particular subject of chemistry, were strongly associated with their extrinsic motivation towards science (their perceived utility of science, considered as a means to gain particular careers or skills), their intrinsic interest in science, and their engagement in extra-curricular activities. Additionally, their self-concept beliefs (their confidence in their own abilities in science), some teaching approaches, and encouragement from teachers and family alongside family science capital had smaller but still relevant associations.

  16. Science Process Skills and Attitudes toward Science among Palestinian Secondary School Students

    ERIC Educational Resources Information Center

    Zeidan, Afif Hafez; Jayosi, Majdi Rashed

    2015-01-01

    The aims of this study were to investigate the relationship between the Palestinian secondary school students knowledge level of science process skills and their attitudes toward science, and the effect of gender and residence of these students on their knowledge level of science process skills and on their attitudes toward science. The study used…

  17. Nursing students' attitudes toward science in the nursing curricula

    NASA Astrophysics Data System (ADS)

    Maroo, Jill Deanne

    The nursing profession combines the art of caregiving with scientific concepts. Nursing students need to learn science in order to start in a nursing program. However, previous research showed that students left the nursing program, stating it included too much science (Andrew et al., 2008). Research has shown a correlation between students' attitudes and their performance in a subject (Osborne, Simon, & Collins, 2003). However, little research exists on the overall attitude of nursing students toward science. At the time of my study there existed no large scale quantitative study on my topic. The purpose of my study was to identify potential obstacles nursing students face, specifically, attitude and motivation toward learning science. According to research the nation will soon face a nursing shortage and students cite the science content as a reason for not completing the nursing program. My study explored nursing students' attitudes toward science and reasons these students are motivated to learn science. I ran a nationwide mixed methods approach with 1,402 participants for the quantitative portion and 4 participants for the qualitative portion. I validated a questionnaire in order to explore nursing students' attitudes toward science, discovered five different attitude scales in that questionnaire and determined what demographic factors provided a statistically significant prediction of a student's score. In addition, I discovered no statistical difference in attitude exists between students who have the option of taking nursing specific courses and those who do not have that option. I discovered in the qualitative interviews that students feel science is necessary in nursing but do not feel nurses are scientists. My study gives a baseline of the current attitude of nursing students toward science and why these students feel the need to learn the science.

  18. Saudi Arabia: A future regional hub for advanced education, research, science and technology.

    PubMed

    Meo, Sultan Ayoub

    2015-10-01

    Saudi Arabia is the largest country of the Arabian Peninsula, blessed with significant natural resources, including oil, gas and minerals. Saudi Arabia has recognised the importance of education in social and economic transformation, and has established a large number of universities, research and advanced technical institutes which have broken the metropolitan boundaries and have been extended to the far-flung areas of the country. There are 68 universities and degree-awarding institutes. The educational budget reached its highest-ever level of $56.56 billion for the year 2014. About 124,000 Saudi students are pursuing higher education in about 500 universities around the world. Saudi Arabia produced 177826 research papers in Institute for Scientific Information (ISI) database and in the year 2014 alone, 26168 research papers were published in indexed science journals with a rising h-index of 144. The country is turning into a regional hub for advanced education, research, science and technology while swiftly shifting from an oil-based to a knowledge-based economy.

  19. Student explanations of their science teachers' assessments, grading practices and how they learn science

    NASA Astrophysics Data System (ADS)

    del Carmen Gomez, María

    2018-03-01

    The current paper draws on data generated through group interviews with students who were involved in a larger ethnographic research project performed in three science classrooms. The purpose of the study from which this data was generated, was to understand science teachers' assessment practices in an upper-secondary school in Sweden. During group interviews students were asked about their conceptions of what were the assessment priority of teachers, why the students were silent during lecturing and their experiences regarding peer- and self-assessments. The research design and analysis of the findings derives from what students told us about their assessments and learning sciences experiences. Students related that besides the results of the written test, they do not know what else teachers assessed and used to determine their grades. It was also found that students did not participate in the discussion on science because of peer-pressure and a fear of disappointing their peers. Student silence is also linked with student conceptions of science learning and student experiences with methodologies of teaching and learning sciences.

  20. Promoting elementary students' epistemology of science through computer-supported knowledge-building discourse and epistemic reflection

    NASA Astrophysics Data System (ADS)

    Lin, Feng; Chan, Carol K. K.

    2018-04-01

    This study examined the role of computer-supported knowledge-building discourse and epistemic reflection in promoting elementary-school students' scientific epistemology and science learning. The participants were 39 Grade 5 students who were collectively pursuing ideas and inquiry for knowledge advance using Knowledge Forum (KF) while studying a unit on electricity; they also reflected on the epistemic nature of their discourse. A comparison class of 22 students, taught by the same teacher, studied the same unit using the school's established scientific investigation method. We hypothesised that engaging students in idea-driven and theory-building discourse, as well as scaffolding them to reflect on the epistemic nature of their discourse, would help them understand their own scientific collaborative discourse as a theory-building process, and therefore understand scientific inquiry as an idea-driven and theory-building process. As hypothesised, we found that students engaged in knowledge-building discourse and reflection outperformed comparison students in scientific epistemology and science learning, and that students' understanding of collaborative discourse predicted their post-test scientific epistemology and science learning. To further understand the epistemic change process among knowledge-building students, we analysed their KF discourse to understand whether and how their epistemic practice had changed after epistemic reflection. The implications on ways of promoting epistemic change are discussed.

  1. Urban middle-school students' attitudes toward a defined science

    NASA Astrophysics Data System (ADS)

    Zacharia, Zacharias; Calabrese Barton, Angela

    2004-03-01

    Recent studies have shown that urban students and students of color have exceptionally negative attitudes toward school science and their futures in that field as compared with white students and nonurban students. In this paper we summarize research findings on students' attitudes toward science. We note that most of the studies of students' attitudes toward science that have been conducted so far have measured students' attitudes against the backdrop of a generalized science. Thus, we develop a detailed argument for why science needs to be more clearly defined in attitude instruments. We report on our development of this instrument as well as our initial findings.

  2. What students are saying about science: Student perspectives of meaningful, effective and ineffective learning experiences in science class

    NASA Astrophysics Data System (ADS)

    Brown, Thomas John

    Statement of the problem. Research studies have rarely incorporated the subjective experience of students as they are engaged in learning. When the students' position is viewed at all in a research study, it is usually viewed from the perspective of the adult educators' interests and ways of seeing. As a result, the most conspicuously absent feature from the research literature is the first person voice of the student. In regards to science education specifically, few studies have focused on the students' perspective of their experience in science. Therefore, the purpose of this study was to describe and understand student perspectives of meaningful, effective, and ineffective learning experiences in science class. The following served as guiding questions: (1) What do students describe as meaningful and effective learning experiences in science class? (2) What do students describe as obstacles to their effective learning in science class? Methods. An interpretive research methodology was chosen for this study. The nine participants that took part in the study were grouped as self-directed, teacher-guided, and teacher-dependent learners. A variety of data gathering techniques were used including field notes, participant observations, interviews and focus groups. Throughout the study, inductive analysis was employed as a process for making sense out of the data. More specifically, the constant comparative method was used to categorize the data and facilitate the search for meaningful patterns. The analysis included a thick description of the students' experience of science in the first person voice of the student. The results of this study indicate that teachers play the fundamental role in the establishment of an effective learning environment and that students' consider their improved understanding to be a key to their meaningful learning. In addition, the students' improved understanding requires that teachers are actively involved in their progress and are

  3. Enhancement of Elementary School Students' Science Learning by Web-Quest Supported Science Writing

    ERIC Educational Resources Information Center

    Min-Hsiung, Chuang; Jeng-Fung, Hung; Quo-Cheng, Sung

    2011-01-01

    This study aimed to probe into the influence of implementing Web-quest supported science writing instruction on students' science learning and science writing. The subjects were 34 students in one class of grade six in an elementary school in Taiwan. The students participated in the instruction, which lasted for eight weeks. Data collection…

  4. Original science-based music and student learning

    NASA Astrophysics Data System (ADS)

    Smolinski, Keith

    American middle school student science scores have been stagnating for several years, demonstrating a need for better learning strategies to aid teachers in instruction and students in content learning. It has also been suggested by researchers that music can be used to aid students in their learning and memory. Employing the theoretical framework of brain-based learning, the purpose of this study was to examine the impact of original, science-based music on student content learning and student perceptions of the music and its impact on learning. Students in the treatment group at a public middle school learned songs with lyrics related to the content of a 4-week cells unit in science; whereas an equally sized control group was taught the same material using existing methods. The content retention and learning experiences of the students in this study were examined using a concurrent triangulation, mixed-methods study. Independent sample t test and ANOVA analyses were employed to determine that the science posttest scores of students in the treatment group (N = 93) were significantly higher than the posttest scores of students in the control group (N = 93), and that the relative gains of the boys in the treatment group exceeded those of the girls. The qualitative analysis of 10 individual interviews and 3 focus group interviews followed Patton's method of a priori coding, cross checking, and thematic analysis to examine the perceptions of the treatment group. These results confirmed that the majority of the students thought the music served as an effective learning tool and enhanced recall. This study promoted social change because students and teachers gained insight into how music can be used in science classrooms to aid in the learning of science content. Researchers could also utilize the findings for continued investigation of the interdisciplinary use of music in educational settings.

  5. The importance of teacher-student interpersonal relationships for Turkish students' attitudes towards science

    NASA Astrophysics Data System (ADS)

    Telli, Sibel; den Brok, Perry; Cakiroglu, Jale

    2010-11-01

    The purpose of this study was to examine associations between Turkish high school students' perceptions of their science teachers' interpersonal behaviour and their attitudes towards science. Students' perceptions of the teacher-student interpersonal relationship were mapped with the Questionnaire on Teacher Interaction (QTI), which uses two relational dimensions: influence and proximity. Data on Students' subject-related attitudes were collected with the Test of Science Related Attitudes (TOSRA). A total of 7484 students (Grades 9 to 11) from 278 science classes (55 public schools) in 13 major Turkish cities participated in the study. Multilevel analyses of variance indicated that influence was related with student enjoyment, while proximity was associated with attitudes towards inquiry and with enjoyment.

  6. TIMMS Advanced 2015 Assessment Frameworks

    ERIC Educational Resources Information Center

    Mullis, Ina V. S., Ed.; Martin, Michael O., Ed.

    2014-01-01

    It is critical for countries to ensure that capable secondary school students receive further preparation in advanced mathematics and science, so that they are ready to enter challenging university-level studies that prepare them for careers in science, technology, engineering, and mathematics (STEM) fields. This group of students will become the…

  7. The effectiveness of Family Science and Technology Workshops on parental involvement, student achievement, and student curiosity

    NASA Astrophysics Data System (ADS)

    Kosten, Lora Bechard

    The literature suggests that parental involvement in schools results in positive changes in students and that schools need to provide opportunities for parents to share in the learning process. Workshops are an effective method of engaging parents in the education of their children. This dissertation studies the effects of voluntary Family Science and Technology Workshops on elementary children's science interest and achievement, as well as on parents' collaboration in their child's education. The study involved 35 second and third-grade students and their parents who volunteered to participate. The parental volunteers were randomly assigned to either the control group (children attending the workshops without a parent) or the treatment group (children attending the workshops with a parent). The study was conducted in the Fall of 1995 over a four-week period. The Analysis of Variance (ANOVA) and Kruskal-Wallis tests were used to determine the effects of the workshops on children's science achievement and science curiosity, as well as on parents' involvement with their child's education. The study revealed that there was no significant statistical difference at the.05 level between the treatment/control groups in children's science achievement or science curiosity, or in parent's involvement with their children's education. However, the study did focus parental attention on effective education and points the way to more extensive research in this critical learning area. This dual study, that is, the effects of teaching basic technology to young students with the support of their parents, reflects the focus of the Salve Regina University Ph.D. program in which technology is examined in its effects on humans. In essence, this program investigates what it means to be human in an age of advanced technology.

  8. The effectiveness of constructivist science instructional methods on middle school students' student achievement and motivation

    NASA Astrophysics Data System (ADS)

    Brooks, John

    A problem facing science educators is determining the most effective means of science instruction so that students will meet or exceed the new rigorous standards. The theoretical framework for this study was based on reform and research efforts that have informed science teachers that using constructivism is the best method of science instruction. The purpose of this study was to investigate how the constructivist method of science instruction affected student achievement and student motivation in a sixth grade science classroom. The guiding research question involved understanding which method of science instruction would be most effective at improving student achievement in science. Other sub-questions included the factors that contribute to student motivation in science and the method of science instruction students receive that affects motivation to learn science. Quantitative data were collected using a pre-test and post-test single group design. T-test and ANCOVA were used to test quantitative hypotheses. Qualitative data were collected using student reflective journals and classroom discussions. Students' perspectives were transcribed, coded and used to further inform quantitative findings. The findings of this study supported the recommendations made by science reformists that the best method of science instruction was a constructivist method. This study also found that participant comments favored constructivist taught classes. The implications for social change at the local level included potential increases in student achievement in science and possibly increased understanding that can facilitate similar changes at other schools. From a global perspective, constructivist-oriented methods might result in students becoming more interested in majoring in science at the college level and in becoming part of a scientifically literate work force.

  9. Methods and successes of New York University workshops for science graduate students and post-docs in science writing for general audiences (readers and radio listeners)

    NASA Astrophysics Data System (ADS)

    Hall, S. S.

    2012-12-01

    Scientists and science administrators often stress the importance of communication to the general public, but rarely develop educational infrastructures to achieve this goal. Since 2009, the Arthur L. Carter Journalism Institute at New York University has offered a series of basic and advanced writing workshops for graduate students and post-docs in NYU's eight scientific divisions (neuroscience, psychology, physics, biology, chemistry, mathematics, anthropology, and computer science). The basic methodology of the NYU approach will be described, along with successful examples of both written and radio work by students that have been either published or broadcast by general interest journalism outlets.

  10. Attitudes and Achievement of Bruneian Science Students.

    ERIC Educational Resources Information Center

    Dhindsa, Harkirat S.; Chung, Gilbert

    2003-01-01

    Evaluates attitudes towards and achievement in science of Form 3 students studying in single-sex and coeducational schools in Brunei. Results demonstrated significant differences in attitudes towards and achievement in science of male and female students in single-sex schools and students in coeducational schools. (Contains 46 references.)…

  11. Understanding high school students' science internship: At the intersection of secondary school science and university science

    NASA Astrophysics Data System (ADS)

    Hsu, Pei-Ling

    In this dissertation I explore the nature of an internship for high school students in a university science laboratory and the issues that arise from it. The investigation of science internships is relatively new to science education; therefore, this exploration is urgently needed. Twenty-one participants were involved in the internship experience, including 13 students, one teacher, two research scientists, and five technicians. Data sources include observations, field notes, and videotapes. Drawing on four coherent and complementary research tools---cultural-historical activity theory, discourse analysis, conversation analysis, and phenomenography, I articulate a variety of phenomena from multiple perspectives. The phenomena identified in the dissertation include (a) the discursive resources deployed by a teacher for interesting and inviting students to participate in science; (b) the discursive resources high school students used for articulating their interests in science-related careers; (c) the natural pedagogical conversations for accomplishing the work of teaching and learning during the internship; (d) the theoretical concepts mobilized for describing the unfolding of science expertise in the internship; (e) participants' ways of experiencing the science internship; and (f) students' understandings of scientific practice after participating in the internship. The study identifies many useful resources for understanding the nature of the science internship and provides a foundation for future research. The findings reported here will also serve others as a springboard for establishing partnerships between high schools and science communities and improving teaching and learning in science education.

  12. Using Science Journals to Encourage All Students to Write

    ERIC Educational Resources Information Center

    Fingon, Joan C.; Fingon, Shallon D.

    2008-01-01

    It seems that everyone is using science journals or notebooks lately. As middle school science teachers, the authors use science journals as a tool to enhance students' knowledge and understanding of content and reinforce students' writing skills. Here they share how they use science journals to motivate students to write about science in middle…

  13. Science for All: Engaging Students with Special Needs in and about Science

    ERIC Educational Resources Information Center

    Villanueva, Mary Grace; Hand, Brian

    2011-01-01

    The notion of "science for all" suggests that all students--irrespective of achievement and ability--should engage in opportunities to understand the practice and discourse of science. Improving scientific literacy is an intrinsic goal of science education, yet current instructional practices may not effectively support all students, in…

  14. Ninth Grade Student Responses to Authentic Science Instruction

    NASA Astrophysics Data System (ADS)

    Ellison, Michael Steven

    This mixed methods case study documents an effort to implement authentic science and engineering instruction in one teacher's ninth grade science classrooms in a science-focused public school. The research framework and methodology is a derivative of work developed and reported by Newmann and others (Newmann & Associates, 1996). Based on a working definition of authenticity, data were collected for eight months on the authenticity in the experienced teacher's pedagogy and in student performance. Authenticity was defined as the degree to which a classroom lesson, an assessment task, or an example of student performance demonstrates construction of knowledge through use of the meaning-making processes of science and engineering, and has some value to students beyond demonstrating success in school (Wehlage et al., 1996). Instruments adapted for this study produced a rich description of the authenticity of the teacher's instruction and student performance. The pedagogical practices of the classroom teacher were measured as moderately authentic on average. However, the authenticity model revealed the teacher's strategy of interspersing relatively low authenticity instructional units focused on building science knowledge with much higher authenticity tasks requiring students to apply these concepts and skills. The authenticity of the construction of knowledge and science meaning-making processes components of authentic pedagogy were found to be greater, than the authenticity of affordances for students to find value in classroom activities beyond demonstrating success in school. Instruction frequently included one aspect of value beyond school, connections to the world outside the classroom, but students were infrequently afforded the opportunity to present their classwork to audiences beyond the teacher. When the science instruction in the case was measured to afford a greater level of authentic intellectual work, a higher level of authentic student performance on

  15. Examining Teacher Framing, Student Reasoning, and Student Agency in School-Based Citizen Science

    NASA Astrophysics Data System (ADS)

    Harris, Emily Mae

    This dissertation presents three interrelated studies examining opportunities for student learning through contributory citizen science (CS), where students collect and contribute data to help generate new scientific knowledge. I draw on sociocultural perspectives of learning to analyze three cases where teachers integrated CS into school science, one third grade, one fourth grade, and one high school Marine Biology classroom. Chapter 2 is a conceptual investigation of the opportunities for students to engage in scientific reasoning practices during CS data collection activities. Drawing on science education literature and vignettes from case studies, I argue that the teacher plays an important role in mediating opportunities for students to engage in investigative, explanatory, and argumentative practices of science through CS. Chapter 3 focuses on teacher framing of CS, how teachers perceive what is going on (Goffman, 1974) and how they communicate that to students as they launch CS tasks. Through analysis of videos and interviews of two upper elementary school teachers, I found that teachers frame CS for different purposes. These framings were influenced by teachers' goals, orientations towards science and CS, planning for instruction, and prior knowledge and experience. Chapter 4 examines how students demonstrate agency with environmental science as they explore their personal interests across their third grade classroom, school garden, and science lab contexts, through the lens of social practice theory (Holland, Lachicotte, Skinner, & Cain, 1998). Through analysis of classroom observations, student interviews, teacher interviews and important moments for three focal students, I found that student agency was enabled and constrained by the different cultures of the classroom, garden, and science lab. Despite affordances of the garden and science lab, the teachers' epistemic authority in the classroom permeated all three contexts, constraining student agency. In

  16. Science Literacy for All Students.

    ERIC Educational Resources Information Center

    Brown, Peggy, Ed.

    1982-01-01

    Selected college programs designed to increase students' science literacy are described, and perspectives on science education are addressed in an article by E. James Rutherford, "Sputnik, Halley's Comet, and Science Education." The article suggests that leadership and consensus are needed at the national level to improve science…

  17. The Effects of Earth Science Programs on Student Knowledge and Interest in Earth Science

    NASA Astrophysics Data System (ADS)

    Wilson, A.

    2016-12-01

    Ariana Wilson, Chris Skinner, Chris Poulsen Abstract For many years, academic programs have been in place for the instruction of young students in the earth sciences before they undergo formal training in high school or college. However, there has been little formal assessment of the impacts of these programs on student knowledge of the earth sciences and their interest in continuing with earth science. On August 6th-12th 2016 I will attend the University of Michigan's annual Earth Camp, where I will 1) ascertain high school students' knowledge of earth science-specifically atmospheric structure and wind patterns- before and after Earth Camp, 2) record their opinions about earth science before and after Earth Camp, and 3) record how the students feel about how the camp was run and what could be improved. I will accomplish these things through the use of surveys asking the students questions about these subjects. I expect my results will show that earth science programs like Earth Camp deepen students' knowledge of and interest in earth science and encourage them to continue their study of earth science in the future. I hope these results will give guidance on how to conduct future learning programs and how to recruit more students to become earth scientists in the future.

  18. Earthquake!: An Event-Based Science Module. Student Edition. Earth Science Module.

    ERIC Educational Resources Information Center

    Wright, Russell G.

    This book is designed for middle school students to learn scientific literacy through event-based science. Unlike traditional curricula, the event-based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork, independent research, hands-on investigations, and…

  19. Using History of Science to Teach Nature of Science to Elementary Students

    NASA Astrophysics Data System (ADS)

    Fouad, Khadija E.; Masters, Heidi; Akerson, Valarie L.

    2015-11-01

    Science lessons using inquiry only or history of science with inquiry were used for explicit reflective nature of science (NOS) instruction for second-, third-, and fourth-grade students randomly assigned to receive one of the treatments. Students in both groups improved in their understanding of creative NOS, tentative NOS, empirical NOS, and subjective NOS as measured using VNOS-D as pre- and post-test surveys. Social and cultural context of science was not accessible for the students. Students in second, third, and fourth grades were able to attain adequate views of empirical NOS, the role of observation and inference, creative and imaginative NOS, and subjective NOS. Students were not able to express adequate views of socially and culturally embedded NOS. Most gains in NOS eroded by the next school year, except for tentative NOS for both groups and creative NOS for the inquiry group.

  20. Using History of Science to Teach Nature of Science to Elementary Students

    ERIC Educational Resources Information Center

    Fouad, Khadija E.; Masters, Heidi; Akerson, Valarie L.

    2015-01-01

    Science lessons using inquiry only or history of science with inquiry were used for explicit reflective nature of science (NOS) instruction for second-, third-, and fourth-grade students randomly assigned to receive one of the treatments. Students in both groups improved in their understanding of creative NOS, tentative NOS, empirical NOS, and…

  1. The Potentials of Student Initiated Netspeak in a Middle Primary Science-inspired Multiliteracies Project

    NASA Astrophysics Data System (ADS)

    Ridgewell, Jay; Exley, Beryl

    2011-11-01

    There is no denying that the information technology revolution of the late twentieth century has arrived. Whilst not equitably accessible for many, others hold high expectations for the contributions online activity will make to student learning outcomes. Concurrently, and not necessarily consequentially, the number of science and technology secondary school and university graduates throughout the world has declined substantially, as has their motivation and engagement with school science (OECD 2006). The aim of this research paper is to explore one aspect of online activity, that of forum-based netspeak (Crystal 2006), in relation to the possibilities and challenges it provides for forms of scientific learning. This paper reports findings from a study investigating student initiated netspeak in a science inspired multiliteracies (New London Group 2000) project in one middle primary (aged 7-10 years) multi-age Australian classroom. Drawing on the theoretical description of the five phases of enquiry proposed by Bybee (1997), an analytic framework is proffered that allows identification of student engagement, exploration, explanation, elaboration and evaluation of scientific enquiry. The findings provide insight into online forums for advancing learning in, and motivation for, science in the middle primary years.

  2. Advances in engineering science, volume 1

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Proceedings from a conference on engineering advances are presented, including materials science, fracture mechanics, and impact and vibration testing. The tensile strength and moisture transport of laminates are also discussed.

  3. Do You Think You Can? The Influence of Student Self-Efficacy on the Effectiveness of Tutorial Dialogue for Computer Science

    ERIC Educational Resources Information Center

    Wiggins, Joseph B.; Grafsgaard, Joseph F.; Boyer, Kristy Elizabeth; Wiebe, Eric N.; Lester, James C.

    2017-01-01

    In recent years, significant advances have been made in intelligent tutoring systems, and these advances hold great promise for adaptively supporting computer science (CS) learning. In particular, tutorial dialogue systems that engage students in natural language dialogue can create rich, adaptive interactions. A promising approach to increasing…

  4. From professional development for science teachers to student learning in science

    NASA Astrophysics Data System (ADS)

    Tinoca, Luis Fonseca

    This study investigates the effects of professional development for science teachers on student learning. It is usually expected that professional development programs positively impact student learning, however this dimension is not commonly incorporated in the programs evaluation. It is simply assumed that students will be indirectly impacted through their participating teachers in the work with their students. Two main research questions are addressed: (1) Are professional development programs effective in enhancing student learning in science? (2) What are the characteristics of the most and least effective programs? To answer these questions a meta-analysis of 37 professional development programs reporting their impact on student learning was performed. Program characteristics have been defined according to the categories defined by Loucks-Horsley et al (1998), the National Science Education Standards (NRC, 1996), as well as new categories developed by us analyzing other variables such as the programs length. A significant impact of professional development for science teachers on student learning has been found in the form of an overall correlation effect size of r = 0.22 (p < 0.001). Moreover, a Fixed Effects Model was used to differentiate between the impacts of the different characteristics of professional development programs for science teachers. In particular, programs emphasizing work on curriculum development, replacement, or implementation, scientific inquiry, pedagogical content knowledge, lasting over 6 month and with a total duration of at least 100 hours have been identified as having a larger impact on student learning. To enhance the findings vignettes have been developed based on the attained effect sizes describing possible professional development programs. Recommendations for present and future professional development programs are made based on what works best in order to maximize their impact on student learning.

  5. Enhancing Teacher and Student Engagement and Understanding of Marine Science Through Classroom Citizen Science Projects

    NASA Astrophysics Data System (ADS)

    Goodale, T. A.

    2016-02-01

    Overview This paper presentation shares findings from a granted funded project that sought to expand teacher content knowledge and pedagogy within the fields of marine science and coastal resource management through the implementation of classroom citizen science projects. A secondary goal was to increase middle and high school student interest and participation in marine science and natural resources research. Background A local science & engineering fair has seen a rapid decline in secondary student participants in the past four years. Research has demonstrated that when students are a part of a system of knowledge production (citizen science) they become much more aware, involved and conscious of scientific concepts compared to traditional school laboratory and nature of science activities. This project's primary objectives were to: (a) enhance teacher content expertise in marine science, (b) enrich teacher professional learning, (c) support citizen science classroom projects and inspire student activism and marine science engagement. Methods Project goals were addressed through classroom and meaningful outdoor educational experiences that put content knowledge into field based practices. Teachers learned to apply thier expanded content knowlege through classroom citizen science projects that focus on marine resource conservation issues such as fisheries management, water quality, turtle nesting and biodiversity of coastal ecosystems. These projects would eventually become potential topics of citizen science research topics for their students to pursue. Upon completion of their professional development, participants were urged to establish student Marine Science clubs with the goal of mentoring student submissions into the local science fair. Supplemental awards were possible for the students of project participants. Findings Based on project measures participants significantly increased their knowledge and awareness of presented material marine science and

  6. Attitudes and achievement of Bruneian science students

    NASA Astrophysics Data System (ADS)

    Dhindsa, Harkirat S.; Chung, Gilbert

    2003-08-01

    The aim of this study was to evaluate attitudes towards and achievement in science of Form 3 students studying in single-sex and coeducational schools in Brunei. The results demonstrated significant differences in attitudes towards and achievement in science of male and female students in single-sex schools and students in coeducational schools. These differences were at moderate level. In single-sex schools, the girls achieved moderately better in science than the boys despite their attitudes were only marginally better than the boys. However, there were no gender differences in attitudes towards and achievement in science of students in coeducational schools. The attitudes towards and achievement in science of girls in single-sex schools were moderately better than those of girls in coeducational schools. Whereas the attitudes towards and achievement in science of boys in single-sex schools were only marginally better than the boys in coeducational schools. However, further research to investigate (a) if these differences are repeated at other levels as well as in other subjects, and (b) the extent to which school type contributed towards these differences is recommended.

  7. Can participation in a school science fair improve middle school students' attitudes toward science and interest in science careers?

    NASA Astrophysics Data System (ADS)

    Finnerty, Valerie

    The purpose of this study was to investigate whether participation in a school-based science fair affects middle school students' attitudes toward science and interest in science and engineering careers. A quasi-experimental design was used to compare students' pre- and posttest attitudes toward and interest in science. Forty-eight of the 258 participants completed a school-based science fair during the study. In addition, twelve middle school science teachers completed an online survey. Both the Survey of Science Attitudes and Interest I and II (SSAI-I and II) measured students' attitudes toward and interest in science and science and mathematics self-efficacy, asked about classroom inquiry experiences and gathered demographic information. An online survey gathered qualitative data about science teachers' perceptions of school science fairs. The results showed no significant interactions among completion of a science fair project and attitudes toward and interest in science, science and mathematics self-efficacy or gender. There were significant differences at both pre- and posttest in attitudes between the students who did and did not complete a science fair project. All participating teachers believed that participation in science fairs could have a positive effect on students' attitudes and interest, but cited lack of time as a major impediment. There was significant interaction between level of classroom inquiry and attitudes and interest in science; students who reported more experiences had higher scores on these measures. Classroom inquiry also interacted with the effects of a science fair and participants' pre- and posttest attitude scores. Finally, the amount and source of assistance on a science fair project had a significant impact on students' posttest measures. Major limitations which affect the generalization of these findings include the timing of the administration of the pretest, the number of participants in the experimental group and differences

  8. Teachers' tendencies to promote student-led science projects: Associations with their views about science

    NASA Astrophysics Data System (ADS)

    Bencze, J. Lawrence; Bowen, G. Michael; Alsop, Steve

    2006-05-01

    School science students can benefit greatly from participation in student-directed, open-ended scientific inquiry projects. For various possible reasons, however, students tend not to be engaged in such inquiries. Among factors that may limit their opportunities to engage in open-ended inquiries of their design are teachers' conceptions about science. To explore possible relationships between teachers' conceptions about science and the types of inquiry activities in which they engage students, instrumental case studies of five secondary science teachers were developed, using field notes, repertory grids, samples of lesson plans and student activities, and semistructured interviews. Based on constructivist grounded theory analysis, participating teachers' tendencies to promote student-directed, open-ended scientific inquiry projects seemed to correspond with positions about the nature of science to which they indicated adherence. A tendency to encourage and enable students to carry out student-directed, open-ended scientific inquiry projects appeared to be associated with adherence to social constructivist views about science. Teachers who opposed social constructivist views tended to prefer tight control of student knowledge building procedures and conclusions. We suggest that these results can be explained with reference to human psychological factors, including those associated with teachers' self-esteem and their relationships with knowledge-building processes in the discipline of their teaching.

  9. Math-Science Bills Advance in Congress

    ERIC Educational Resources Information Center

    Hoff, David J.; Cavanagh, Sean

    2007-01-01

    Improving K-12 instruction and student achievement in mathematics and science is at the heart of separate bills intended to bolster America's economic standing that won overwhelming approval in both houses of Congress last week. The House on April 24 approved the 10,000 Teachers, 10 Million Minds Science and Math Scholarship Act by a vote of…

  10. The Perceptions of Elementary School Teachers Regarding Their Efforts to Help Students Utilize Student-to-Student Discourse in Science

    ERIC Educational Resources Information Center

    Craddock, Jennifer Lovejoy

    2017-01-01

    The purpose of this phenomenological study was to examine the perceptions of elementary teachers who teach science as opposed to science teacher specialists regarding their efforts to help students use student-to-student discourse for improving science learning. A growing body of research confirms the importance of a) student-to-student discourse…

  11. On the Attitude of Secondary 1 Students towards Science

    NASA Astrophysics Data System (ADS)

    Kuppan, L.; Munirah, S. K.; Foong, S. K.; Yeung, A. S.

    2010-07-01

    The understanding of students' attitude towards science will give a sense of direction when designing pedagogical approaches and lesson packages so that reasons for not liking science is arrested and eventually the nation's need for science oriented workforce is addressed in the future. This study is part of a 3-year research project entitled PbI1@School: A large scale study on the effect of "Physics by Inquiry" pedagogy on Secondary One students' attitude and aptitude in science, involving school, National Institute of Education (NIE) Singapore, University of Washington at Seattle and the Ministry of Education (MOE) of Singapore. The results from a survey conducted on a sample size of 215 secondary 1 students indicate that fun in studying science is a major reason for their interest towards the subject. Those who do not like science dislike the idea of surface learning such as memorizing facts and information. Besides, all these students in our sample appear to be inquisitive. We believe that the teaching and learning system needs to be modified to increase or at least sustain the students' interest in science and capitalize on students' inquisitiveness. Although the results obtained are interesting and give an insight on secondary 1 students' attitude towards science, we intend to carry out a more rigorous study to identify correlations between students' responses for different attitude questions to understand deeply their attitude towards science.

  12. Science Literacy and Prior Knowledge of Astronomy MOOC Students

    NASA Astrophysics Data System (ADS)

    Impey, Chris David; Buxner, Sanlyn; Wenger, Matthew; Formanek, Martin

    2018-01-01

    Many of science classes offered on Coursera fall into fall into the category of general education or general interest classes for lifelong learners, including our own, Astronomy: Exploring Time and Space. Very little is known about the backgrounds and prior knowledge of these students. In this talk we present the results of a survey of our Astronomy MOOC students. We also compare these results to our previous work on undergraduate students in introductory astronomy courses. Survey questions examined student demographics and motivations as well as their science and information literacy (including basic science knowledge, interest, attitudes and beliefs, and where they get their information about science). We found that our MOOC students are different than the undergraduate students in more ways than demographics. Many MOOC students demonstrated high levels of science and information literacy. With a more comprehensive understanding of our students’ motivations and prior knowledge about science and how they get their information about science, we will be able to develop more tailored learning experiences for these lifelong learners.

  13. Secondary School Students' Predictors of Science Attitudes

    ERIC Educational Resources Information Center

    Tosun, Cemal; Genç, Murat

    2016-01-01

    The purpose of this study is to identify the factors that affect the secondary school students' attitudes in science. This study was conducted using survey method. The sample of the study was 503 students from four different secondary schools in Bartin and Düzce. Data were obtained using the Survey of Factors Affecting Students' Science Attitudes…

  14. Improving Student Science Literacy through an Inquiry-Based, Integrated Science Curriculum and Review of Science Media.

    ERIC Educational Resources Information Center

    Bardeen, Karen

    This project studied the effects of an inquiry-based, integrated science course on student science literacy. The course was aligned to state and national science standards. The target population consisted of sophomore, junior, and senior high-school students in an upper-middle class suburb of a major Midwestern city. Questionnaires, tests, and…

  15. Evaluating Science Education Reform via Fourth-Grade Students' Image of Science Teaching

    ERIC Educational Resources Information Center

    Yilmaz, Hulya; Turkmen, Hakan; Pedersen, Jon E.

    2008-01-01

    The purpose of this study was to investigate fourth-grade students image of current science teaching by using a Draw-A-Science-Teacher-Test Checklist (DASTT-C), and give a glance whether the new restructured science education reform in Turkey is implemented successfully or not. Fifty-five (34 girls and 21 boys) fourth-grade students from three…

  16. Undergraduate Biotechnology Students' Views of Science Communication

    NASA Astrophysics Data System (ADS)

    Edmondston, Joanne Elisabeth; Dawson, Vaille; Schibeci, Renato

    2010-12-01

    Despite rapid growth of the biotechnology industry worldwide, a number of public concerns about the application of biotechnology and its regulation remain. In response to these concerns, greater emphasis has been placed on promoting biotechnologists' public engagement. As tertiary science degree programmes form the foundation of the biotechnology sector by providing a pipeline of university graduates entering into the profession, it has been proposed that formal science communication training be introduced at this early stage of career development. The aim of the present study was to examine the views of biotechnology students towards science communication and science communication training. Using an Australian biotechnology degree programme as a case study, 69 undergraduates from all three years of the programme were administered a questionnaire that asked them to rank the importance of 12 components of a biotechnology curriculum, including two science communication items. The results were compared to the responses of 274 students enrolled in other science programmes. Additional questions were provided to the second year biotechnology undergraduates and semi-structured interviews were undertaken with 13 of these students to further examine their views of this area. The results of this study suggest that the biotechnology students surveyed do not value communication with non-scientists nor science communication training. The implications of these findings for the reform of undergraduate biotechnology courses yet to integrate science communication training into their science curriculum are discussed.

  17. Understanding science teaching effectiveness: examining how science-specific and generic instructional practices relate to student achievement in secondary science classrooms

    NASA Astrophysics Data System (ADS)

    Mikeska, Jamie N.; Shattuck, Tamara; Holtzman, Steven; McCaffrey, Daniel F.; Duchesneau, Nancy; Qi, Yi; Stickler, Leslie

    2017-12-01

    In order to create conditions for students' meaningful and rigorous intellectual engagement in science classrooms, it is critically important to help science teachers learn which strategies and approaches can be used best to develop students' scientific literacy. Better understanding how science teachers' instructional practices relate to student achievement can provide teachers with beneficial information about how to best engage their students in meaningful science learning. To address this need, this study examined the instructional practices that 99 secondary biology teachers used in their classrooms and employed regression to determine which instructional practices are predictive of students' science achievement. Results revealed that the secondary science teachers who had well-managed classroom environments and who provided opportunities for their students to engage in student-directed investigation-related experiences were more likely to have increased student outcomes, as determined by teachers' value-added measures. These findings suggest that attending to both generic and subject-specific aspects of science teachers' instructional practice is important for understanding the underlying mechanisms that result in more effective science instruction in secondary classrooms. Implications about the use of these observational measures within teacher evaluation systems are discussed.

  18. Friends and Family: A Literature Review on How High School Social Groups Influence Advanced Math and Science Coursetaking

    ERIC Educational Resources Information Center

    Gottfried, Michael; Owens, Ann; Williams, Darryl; Kim, Hui Yon; Musto, Michela

    2017-01-01

    In this study, we synthesized the literature on how informal contexts, namely friends and family social groups, shape high school students' likelihood of pursuing advanced math and science coursework. Extending scholarly understandings of STEM education, we turned to the body of literature with three guiding questions: (1) What influence do…

  19. The ADVANCE Program: Targeting the Increase in the Participation and Advancement of Women in Academic Science and Engineering Careers

    NASA Astrophysics Data System (ADS)

    Esperanca, S.

    2003-12-01

    The goal of NSF's ADVANCE Program is to help increase the participation of women in the scientific and engineering workforce through the increased representation and advancement of women in academic science and engineering careers. The Program tries to address this under representation by focusing on support for men and women with three approaches: institutional (Institutional Transformation), grass-root (Leadership), and individual (Fellows) support. The ADVANCE Program alternates with a round of Institutional and Leadership awards in one year and a Fellows competition the next. Since its inception in 2001, NSF has had two competitive rounds for each of the three award types and will have spent approximately 75 M\\ by the end of the next fiscal year (2004). The first and second ADVANCE Institutional Transformation competitions (FY 2001 and 2003) received over 70 proposals each. These awards are for multi-year support in the amount of 3-4M\\ each. Details and access to the websites for the ADVANCE programs of each institution can be found in NSF's ADVANCE webpage at http://nsf.gov/home/crssprgm/advance/itwebsites.htm. The number of proposals submitted for the Leadership awards competition dropped from 35 in 2001 to 26 in 2003, despite an increase in the allowed award size for the second round. In terms of projected goals, this part of ADVANCE is perhaps the most eclectic. Some Leadership awards were made to professional societies to work specifically with their respective scientific communities in identifying needs that might be peculiar to a field of science. In the first round of the Leadership awards, PI Mary-Anne Holmes of the University of Nebraska-Lincoln and collaborators received a grant to work with the Association of Women Geoscientists to determine the current status of women geoscientists in the US. These grantees hope to disseminate the information gathered under this award broadly in order to educate women students and faculty on strategies to

  20. Inquiry-Driven Field-Based (IDFB) Ocean Science Classes: an Important Role in College Students' Development as Scientists, and Student Retention in the Geo-science Pipeline.

    NASA Astrophysics Data System (ADS)

    Crane, N. L.

    2004-12-01

    Experiential learning, engaging students in the process of science, can not only teach students important skills and knowledge, it can also help them become connected with the process on a personal level. This study investigates the role that Inquiry-Driven Field-Based (IDFB) experiences (primarily field classes) in ocean science have on undergraduate science students' development as ocean scientists. Both cognitive (knowledge-based) and affective (motivation and attitude) measures most important to students were used as indicators of development. Major themes will be presented to illustrate how IDFB science experiences can enhance the academic and personal development of students of science. Through their active engagement in the process of science, students gain important skills and knowledge as well as increased confidence, motivation, and ability to plan for their future (in particular their career and educational pathways). This growth is an important part of their development as scientists; the IDFB experience provides them a way to build a relationship with the world of science, and to better understand what science is, what scientists do, and their own future role as scientists. IDFB experiences have a particularly important role in affective measures of development: students develop an important personal connection to science. By doing science, students learn to be scientists and to understand science and science concepts in context. Many underrepresented students do not have the opportunity to take IDFB classes, and addressing this access issue could be an important step towards engaging more underrepresented students in the field. The nature of IDFB experiences and their impact on students makes them a potentially important mechanism for retaining students in the geo-science `pipeline'.

  1. All Students Need Advanced Mathematics. Math Works

    ERIC Educational Resources Information Center

    Achieve, Inc., 2013

    2013-01-01

    This fact sheet explains that to thrive in today's world, all students will need to graduate with very strong math skills. That can only mean one thing: advanced math courses are now essential math courses. Highlights of this paper include: (1) Advanced math equals college success; (2) Advanced math equals career opportunity; and (3) Advanced math…

  2. A correlation study involving a comparison of professional science teaching standards and student performance

    NASA Astrophysics Data System (ADS)

    Schum, Paul A.

    If international report cards were issued today, to all industrialized nations world wide, the United States would receive a "C" at best in mathematics and science. This is not simply a temporary or simple cause and effect circumstance that can easily be addressed. The disappointing truth is that this downward trend in mathematics and science mastery by American students has been occurring steadily for at least the last eight years of international testing, and that there are numerous and varied bases for this reality. In response to this crisis, The National Science Teachers Association (NSTA), The American Association for the Advancement of Science (AAAS), and The National Research Council (NRC) each have proposed relatively consistent, but individual sets of professional science teaching standards, designed to improve science instruction in American schools. It is of extreme value to the scientific, educational community to know if any or all of these standards lead to improved student performance. This study investigates the correlation between six, specific teacher behaviors that are common to these national standards and which behaviors, if any, result in improved student performance, as demonstrated on the Science Reasoning sub-test of the ACT Assessment. These standards focus classroom science teachers on professional development, leading toward student mastery of scientific interpretation, concept development, and constructive relationship building. Because all individual teachers interpret roles, expectations, and guiding philosophies from different lenses, effective professional practice may reflect consistency in rationale and methodology yet will be best evidenced by an examination of specific teaching techniques. In this study, these teaching techniques are evidenced by self-reported teacher awareness and adherence to these consensual standards. Assessment instruments vary widely, and the results of student performance often reflect the congruency of

  3. Advancing Pre-college Science and Mathematics Education

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Rick

    With support from the US Department of Energy, Office of Science, Fusion Energy Sciences, and General Atomics, an educational and outreach program primarily for grades G6-G13 was developed using the basic science of plasma and fusion as the content foundation. The program period was 1994 - 2015 and provided many students and teachers unique experiences such as a visit to the DIII-D National Fusion Facility to tour the nation’s premiere tokamak facility or to interact with interesting and informative demonstration equipment and have the opportunity to increase their understanding of a wide range of scientific content, including states of matter,more » the electromagnetic spectrum, radiation & radioactivity, and much more. Engaging activities were developed for classroom-size audiences, many made by teachers in Build-it Day workshops. Scientist and engineer team members visited classrooms, participated in science expositions, held workshops, produced informational handouts in paper, video, online, and gaming-CD format. Participants could interact with team members from different institutions and countries and gain a wider view of the world of science and engineering educational and career possibilities. In addition, multiple science stage shows were presented to audiences of up to 700 persons in a formal theatre setting over a several day period at Science & Technology Education Partnership (STEP) Conferences. Annually repeated participation by team members in various classroom and public venue events allowed for the development of excellent interactive skills when working with students, teachers, and educational administrative staff members. We believe this program has had a positive impact in science understanding and the role of the Department of Energy in fusion research on thousands of students, teachers, and members of the general public through various interactive venues.« less

  4. Women and girls in science education: Female teachers' and students' perspectives on gender and science

    NASA Astrophysics Data System (ADS)

    Crotty, Ann

    Science is a part of all students' education, PreK-12. Preparing students for a more scientifically and technologically complex world requires the best possible education including the deliberate inclusion and full contributions of all students, especially an underrepresented group: females in science. In the United States, as elsewhere in the world, the participation of girls and women in science education and professional careers in science is limited, particularly in the physical sciences (National Academy of Sciences [NAS], 2006). The goal of this research study is to gain a better understanding of the perspectives and perceptions of girls and women, both science educators and students, related to gender and participation in science at the time of an important course: high school chemistry. There is a rich body of research literature in science education that addresses gender studies post---high school, but less research that recognizes the affective voices of practicing female science teachers and students at the high school level (Bianchini, Cavazos, & Helms, 2000; Brown & Gilligan, 1992; Gilligan, 1982). Similarly, little is known with regard to how female students and teachers navigate their educational, personal, and professional experiences in science, or how they overcome impediments that pose limits on their participation in science, particularly the physical sciences. This exploratory study focuses on capturing voices (Brown & Gilligan, 1992; Gilligan, 1982) of high school chemistry students and teachers from selected urban and suburban learning communities in public schools in the Capital Region of New York State. Through surveys, interviews, and focus groups, this qualitative study explores the intersection of the students' and teachers' experiences with regard to the following questions: (1) How do female chemistry teachers view the role gender has played in their professional and personal lives as they have pursued education, degree status, and

  5. An Integrative Cultural Model to better situate marginalized science students in postsecondary science education

    NASA Astrophysics Data System (ADS)

    Labouta, Hagar Ibrahim; Adams, Jennifer Dawn; Cramb, David Thomas

    2018-03-01

    In this paper we reflect on the article "I am smart enough to study postsecondary science: a critical discourse analysis of latecomers' identity construction in an online forum", by Phoebe Jackson and Gale Seiler (Cult Stud Sci Educ. https://doi.org/10.1007/s11422-017-9818-0). In their article, the authors did a significant amount of qualitative analysis of a discussion on an online forum by four latecomer students with past negative experiences in science education. The students used this online forum as an out-of-class resource to develop a cultural model based on their ability to ask questions together with solidarity as a new optimistic way to position themselves in science. In this forum, we continue by discussing the identity of marginalized science students in relation to resources available in postsecondary science classes. Recent findings on a successful case of a persistent marginalized science student in spite of prior struggles and failures are introduced. Building on their model and our results, we proposed a new cultural model, emphasizing interaction between inside and outside classroom resources which can further our understanding of the identity of marginalized science students. Exploring this cultural model could better explain drop-outs or engagement of marginalized science students to their study. We, then, used this model to reflect on both current traditional and effective teaching and learning practices truncating or re-enforcing relationships of marginalized students with the learning environment. In this way, we aim to further the discussion initiated by Jackson and Seiler and offer possible frameworks for future research on the interactions between marginalized students with past low achievements and other high and mid achieving students, as well as other interactions between resources inside and outside science postsecondary classrooms.

  6. Physical Science Rocks! Outreach for Elementary Students

    ERIC Educational Resources Information Center

    McKone, Kevin

    2010-01-01

    Students at Copiah-Lincoln Community College (Co-Lin) have been hesitant to take courses in the physical sciences, mostly because of a lack of exposure to them in K-12 or a bad experience in this area. The college is addressing this need by exposing students to the physical sciences early on in their education. The science division at Co-Lin has…

  7. Physics First: Impact of course sequencing on the attitudes of female students toward science

    NASA Astrophysics Data System (ADS)

    O'Connor, Linda Miller

    This study was causal-comparative research to determine if there is any relationship between course sequencing and female students' attitudes toward science and their intent to participate in advanced level science courses or pursue science related careers. Physics First promotes the reversal of the traditional sequencing of high school science courses (biology, chemistry and physics) to physics, chemistry and biology or a two or three year integrated European science approach. Physics as a first year high school course of study necessitates changing the course approach to a more conceptual approach and less mathematical and theoretical. Eleventh grade students from two suburban Chicago high schools comprised the sample. The two schools were judged to be extremely similar in their demographic make-up as reported in the 2002 Illinois School Report Card. The notable difference between the schools being the science course sequence recommended for average and above average students. The sample responded to a scanable questionnaire consisting of demographic data and the Test of Science Related Attitudes (TOSRA). TOSRA is a seventy item Likert Scale instrument that addresses attitudes in seven domains; social implications of science, normality of scientists, attitude toward inquiry, adoption of scientific attitudes, enjoyment of science lessons, leisure interest in science, and career interest in science. Values from 1-50 are obtained for each domain with no overall attitude value assigned. The research found that girls in general had significantly more positive attitudes toward science in all seven of the measured domains and the females from the traditional approach were more positive than the females from the Physics First approach. Girls from the traditional approach also reported intent to take high-level (AP) science courses in their senior year at a significantly higher rate than did the girls in Physics First. Neither science approach showed any significance in

  8. Development of a transferable student engagement and knowledge retention framework for the earth sciences

    NASA Astrophysics Data System (ADS)

    Palsole, Sunay Vasant

    The earth sciences play an important role in engaging students in science and in science, technology, engineering and mathematics (STEM) disciplines, because of the integrative nature of the disciplines. It then becomes important for us to provide an engaging experience for students taking earth science courses, because it serves a dual purpose of possibly increasing new majors in the discipline and helping to create a science literate population. Given that a majority of students in the larger introductory courses are non-majors, it behooves us to explore alternative engagement techniques and measure their efficacy in student engagement, which in turn can help inform instructional design for advanced geoscience courses. This study focused on creating a highly engaging course using inquiry based learning scenarios inter-spread throughout the semester along with heuristic quizzes (a series of questions in a specific sequence that map to a process) with very specific feedback that help students understand the development of the earth processes. Along with the heuristic quizzes, the course was transformed into an active learning based hybrid course, where the didactic content was uploaded and made available to the students using a learning management system and class time was spent working on application exercises that were developed by me. I chose specific scenarios and processes that the students could possibly encounter in the greater El Paso region to provide a local and situational aspect to the exercises. The course and instructional design process followed a period of 18 months with each semester providing data to jigsaw into the final design. Student performance data, both qualitative (self efficacy, self reported engagement ) as well as quantitative scales (performance on assessments, course grades) was collected over the entire development period. Comparative data of the hybrid course and a traditional course indicate improved student performance in the

  9. "Discoveries in Planetary Sciences": Slide Sets Highlighting New Advances for Astronomy Educators

    NASA Astrophysics Data System (ADS)

    Brain, D. A.; Schneider, N. M.; Beyer, R. A.

    2010-12-01

    Planetary science is a field that evolves rapidly, motivated by spacecraft mission results. Exciting new mission results are generally communicated rather quickly to the public in the form of press releases and news stories, but it can take several years for new advances to work their way into college textbooks. Yet it is important for students to have exposure to these new advances for a number of reasons. In some cases, new work renders older textbook knowledge incorrect or incomplete. In some cases, new discoveries make it possible to emphasize older textbook knowledge in a new way. In all cases, new advances provide exciting and accessible examples of the scientific process in action. To bridge the gap between textbooks and new advances in planetary sciences we have developed content on new discoveries for use by undergraduate instructors. Called 'Discoveries in Planetary Sciences', each new discovery is summarized in a 3-slide PowerPoint presentation. The first slide describes the discovery, the second slide discusses the underlying planetary science concepts, and the third presents the big picture implications of the discovery. A fourth slide includes links to associated press releases, images, and primary sources. This effort is generously sponsored by the Division for Planetary Sciences of the American Astronomical Society, and the slide sets are available at http://dps.aas.org/education/dpsdisc/. Sixteen slide sets have been released so far covering topics spanning all sub-disciplines of planetary science. Results from the following spacecraft missions have been highlighted: MESSENGER, the Spirit and Opportunity rovers, Cassini, LCROSS, EPOXI, Chandrayan, Mars Reconnaissance Orbiter, Mars Express, and Venus Express. Additionally, new results from Earth-orbiting and ground-based observing platforms and programs such as Hubble, Keck, IRTF, the Catalina Sky Survey, HARPS, MEarth, Spitzer, and amateur astronomers have been highlighted. 4-5 new slide sets are

  10. Learning style preferences of Australian health science students.

    PubMed

    Zoghi, Maryam; Brown, Ted; Williams, Brett; Roller, Louis; Jaberzadeh, Shapour; Palermo, Claire; McKenna, Lisa; Wright, Caroline; Baird, Marilyn; Schneider-Kolsky, Michal; Hewitt, Lesley; Sim, Jenny; Holt, Tangerine-Ann

    2010-01-01

    It has been identified that health science student groups may have distinctive learning needs. By university educators' and professional fieldwork supervisors' being aware of the unique learning style preferences of health science students, they have the capacity to adjust their teaching approaches to best fit with their students' learning preferences. The purpose of this study was to investigate the learning style preferences of a group of Australian health science students enrolled in 10 different disciplines. The Kolb Learning Style Inventory was distributed to 2,885 students enrolled in dietetics and nutrition, midwifery, nursing, occupational therapy, paramedics, pharmacy, physiotherapy, radiation therapy, radiography, and social work at one Australian university. A total of 752 usable survey forms were returned (response rate 26%). The results indicated the converger learning style to be most frequently preferred by health science students and that the diverger and accommodator learning styles were the least preferred. It is recommended that educators take learning style preferences of health science students into consideration when planning, implementing, and evaluating teaching activities, such as including more problem-solving activities that fit within the converger learning style.

  11. Teacher Research Programs Participation Improves Student Achievement in Science

    NASA Astrophysics Data System (ADS)

    Dubner, J.

    2009-12-01

    Research experience programs engage teachers in the hands-on practice of science. Program advocates assert that program participation enhances teachers’ skills in communicating science to students. We have measured the impact of New York City public high school science teacher participation in Columbia University’s Summer Research Program for Science Teachers on their students’ academic performance in science. In the year prior to program entry, students of participating and non-participating teachers passed a New York State Regents science examination at the same rate. In years three and four following program entry, participating teachers’ students passed Regents science exams at a higher rate (p = 0.049) than non-participating teachers’ students. Other program benefits include decreased teacher attrition from classroom teaching and school cost savings.

  12. Practical science communication strategies for graduate students.

    PubMed

    Kuehne, Lauren M; Twardochleb, Laura A; Fritschie, Keith J; Mims, Meryl C; Lawrence, David J; Gibson, Polly P; Stewart-Koster, Ben; Olden, Julian D

    2014-10-01

    Development of skills in science communication is a well-acknowledged gap in graduate training, but the constraints that accompany research (limited time, resources, and knowledge of opportunities) make it challenging to acquire these proficiencies. Furthermore, advisors and institutions may find it difficult to support graduate students adequately in these efforts. The result is fewer career and societal benefits because students have not learned to communicate research effectively beyond their scientific peers. To help overcome these hurdles, we developed a practical approach to incorporating broad science communication into any graduate-school time line. The approach consists of a portfolio approach that organizes outreach activities along a time line of planned graduate studies. To help design the portfolio, we mapped available science communication tools according to 5 core skills essential to most scientific careers: writing, public speaking, leadership, project management, and teaching. This helps graduate students consider the diversity of communication tools based on their desired skills, time constraints, barriers to entry, target audiences, and personal and societal communication goals. By designing a portfolio with an advisor's input, guidance, and approval, graduate students can gauge how much outreach is appropriate given their other commitments to teaching, research, and classes. The student benefits from the advisors' experience and mentorship, promotes the group's research, and establishes a track record of engagement. When graduate student participation in science communication is discussed, it is often recommended that institutions offer or require more training in communication, project management, and leadership. We suggest that graduate students can also adopt a do-it-yourself approach that includes determining students' own outreach objectives and time constraints and communicating these with their advisor. By doing so we hope students will

  13. The effect of classroom instruction, attitudes towards science and motivation on students' views of uncertainty in science

    NASA Astrophysics Data System (ADS)

    Schroeder, Meadow

    This study examined developmental and gender differences in Grade 5 and 9 students' views of uncertainty in science and the effect of classroom instruction on attitudes towards science, and motivation. Study 1 examined views of uncertainty in science when students were taught science using constructivist pedagogy. A total of 33 Grade 5 (n = 17, 12 boys, 5 girls) and Grade 9 (n = 16, 8 boys, 8 girls) students were interviewed about the ideas they had about uncertainty in their own experiments (i.e., practical science) and in professional science activities (i.e., formal science). Analysis found an interaction between grade and gender in the number of categories of uncertainty identified for both practical and formal science. Additionally, in formal science, there was a developmental shift from dualism (i.e., science is a collection of basic facts that are the result of straightforward procedures) to multiplism (i.e., there is more than one answer or perspective on scientific knowledge) from Grade 5 to Grade 9. Finally, there was a positive correlation between the understanding uncertainty in practical and formal science. Study 2 compared the attitudes and motivation towards science and motivation of students in constructivist and traditional classrooms. Scores on the measures were also compared to students' views of uncertainty for constructivist-taught students. A total of 28 students in Grade 5 (n = 13, 11 boys, 2 girls) and Grade 9 (n = 15, 6 boys, 9 girls), from traditional science classrooms and the 33 constructivist students from Study 1 participated. Regardless of classroom instruction, fifth graders reported more positive attitudes towards science than ninth graders. Students from the constructivist classrooms reported more intrinsic motivation than students from the traditional classrooms. Constructivist students' views of uncertainty in formal and practical science did not correlate with their attitudes towards science and motivation.

  14. Advancing palliative and end-of-life science in cardiorespiratory populations: The contributions of nursing science.

    PubMed

    Grady, Patricia A

    Nursing science has a critical role to inform practice, promote health, and improve the lives of individuals across the lifespan who face the challenges of advanced cardiorespiratory disease. Since 1997, the National Institute of Nursing Research (NINR) has focused attention on the importance of palliative and end-of-life care for advanced heart failure and advanced pulmonary disease through the publication of multiple funding opportunity announcements and by supporting a cadre of nurse scientists that will continue to address new priorities and future directions for advancing palliative and end-of-life science in cardiorespiratory populations. Published by Elsevier Inc.

  15. A Qualitative Study of Technology-Based Training in Organizations that Hire Agriculture and Life Sciences Students

    ERIC Educational Resources Information Center

    Bedgood, Leslie; Murphrey, Theresa Pesl; Dooley, Kim E.

    2008-01-01

    Technological advances have created unlimited opportunities in education. Training and technology have merged to create new methods referred to as technology-based training. The purpose of this study was to identify organizations that hire agriculture and life sciences students for positions involving technology-based training and identify…

  16. Student leadership in small group science inquiry

    NASA Astrophysics Data System (ADS)

    Oliveira, Alandeom W.; Boz, Umit; Broadwell, George A.; Sadler, Troy D.

    2014-09-01

    Background: Science educators have sought to structure collaborative inquiry learning through the assignment of static group roles. This structural approach to student grouping oversimplifies the complexities of peer collaboration and overlooks the highly dynamic nature of group activity. Purpose: This study addresses this issue of oversimplification of group dynamics by examining the social leadership structures that emerge in small student groups during science inquiry. Sample: Two small student groups investigating the burning of a candle under a jar participated in this study. Design and method: We used a mixed-method research approach that combined computational discourse analysis (computational quantification of social aspects of small group discussions) with microethnography (qualitative, in-depth examination of group discussions). Results: While in one group social leadership was decentralized (i.e., students shared control over topics and tasks), the second group was dominated by a male student (centralized social leadership). Further, decentralized social leadership was found to be paralleled by higher levels of student cognitive engagement. Conclusions: It is argued that computational discourse analysis can provide science educators with a powerful means of developing pedagogical models of collaborative science learning that take into account the emergent nature of group structures and highly fluid nature of student collaboration.

  17. High School Students Presenting Science: An Interactional Sociolinguistic Analysis.

    ERIC Educational Resources Information Center

    Bleicher, Robert

    1994-01-01

    This study examines strategies employed by students as they make science presentations; assesses student's conceptual understandings of particular science topics; and investigates gender differences. Focuses on the methodology employed and how it helps inform these goals. Advice for teaching students to present science, implications for use of…

  18. Structure of Black Male Students Academic Achievement in Science

    NASA Astrophysics Data System (ADS)

    Rascoe, Barbara

    Educational policies and practices have been largely unsuccessful in closing the achievement gap between Black and White students "Schwartz, 2001". This achievement gap is especially problematic for Black students in science "Maton, Hrabrowski, - Schmitt, 2000. Given the fact that the Black-White achievement gap is still an enigma, the purpose of this article is to address the Black female-Black male academic achievement gap in science majors. Addressing barriers that Black male students may experience as college science and engineering majors, this article presents marketing strategies relative to politics, emotional intelligence, and issues with respect to how science teaching, and Black male students' responses to it, are different. Many Black male students may need to experience a paradigm shift, which structures and enhances their science achievement. Paradigm shifts are necessary because exceptional academic ability and motivation are not enough to get Black males from their first year in a science, technology, education, and mathematics "STEM" major to a bachelor's degree in science and engineering. The conclusions focus on the balance of truth-slippery slopes concerning the confluence of science teachers' further ado and Black male students' theories, methods, and values that position their academic achievement in science and engineering majors.

  19. Science Education and ESL Students

    ERIC Educational Resources Information Center

    Allen, Heather; Park, Soonhye

    2011-01-01

    The number of students who learn English as a second language (ESL) in U.S. schools has grown significantly in the past decade. This segment of the student population increased by 56% between the 1994-95 and 2004-05 school years (NCLR 2007). As the ESL student population increases, many science teachers struggle to tailor instructional materials,…

  20. Science Students and the Social Sciences: Strange Bedfellows?

    ERIC Educational Resources Information Center

    Yeong, Foong May

    2014-01-01

    With various internet resources available to students, the main aim of a good university education today should not merely be to provide students with content knowledge, but rather to equip them with essential skills necessary to develop into lifelong learners. Among science educators, repeated calls have been made to promote a more holistic…

  1. Evaluation of the Effects of the Medium of Instruction on Science Learning of Hong Kong Secondary Students: Students' Self-Concept in Science

    ERIC Educational Resources Information Center

    Yip, Din Yan; Tsang, Wing Kwong

    2007-01-01

    A longitudinal study has been conducted to explore the impact of a new language policy for Hong Kong secondary schools on science learning. According to this policy, only schools that recruit the best 25% of students can teach science in English, the students' second language, while the other schools have to teach science in Chinese, the students'…

  2. Improving Student Attitudes about Learning Science and Student Scientific Reasoning Skills

    ERIC Educational Resources Information Center

    Duncan, Douglas K.; Arthurs, Leilani

    2012-01-01

    Student attitudes about learning science and student ideas about the nature of science were compared at the end of two astronomy courses taught in Fall 2007, a course with a traditional astronomy curriculum and a transformed course, whose traditional astronomy curriculum was supplemented by an embedded curriculum that explicitly addressed the…

  3. Science for Kids Outreach Programs: College Students Teaching Science to Elementary Students and Their Parents

    NASA Astrophysics Data System (ADS)

    Koehler, Birgit G.; Park, Lee Y.; Kaplan, Lawrence J.

    1999-11-01

    For a number of years we have been organizing and teaching a special outreach course during our Winter Study Program (the month of January). College students plan, develop, and present hands-on workshops to fourth-grade students and their parents, with faculty providing logistical support and pedagogical advice. Recent topics have been "Forensic Science", "Electricity and Magnetism", "Chemistry and Cooking", "Waves", "Natural Disasters", "Liquids", "Pressure", "Color and Light", "Momentum and Inertia", "Illusions", and "The Senses". The two-hour workshops, held one weekend on campus, emphasize hands-on experiments involving both the kids and the parents. Handouts for each workshop give instructions for doing several experiments at home. This program has been a great success for all involved: the college students gain insight into an aspect of science and what it takes to develop and teach that topic, the elementary school students participate in an exciting and challenging scientific exploration, and the parents have a chance to learn some science while spending time working on projects with their children. We provide an overview of the pedagogical aims of our current approach and a sense of the time-line for putting together such a program in a month.

  4. Women in science: Current advances and challenges in Belarus

    NASA Astrophysics Data System (ADS)

    Tashlykova-Bushkevich, Iya I.

    2015-12-01

    Women constitute 49% of all natural scientists in Belarus. However, fewer than 18% of Belarusian natural scientists who hold a doctor of science degree are women. The proportion of women decreases with increasing rank at universities and institutes in Belarus. Gender imbalance at the level of full professor is striking at just 17.5% women, and illuminates the vertical segregation of women in the natural sciences. This report reviews the positions of women in science in Belarus to draw out current advances and challenges encountered by female scientists in the former socialist country. New statistical data are broken down by gender and aimed at advancing the general agenda for women in science.

  5. Elementary student teachers' science content representations

    NASA Astrophysics Data System (ADS)

    Zembal-Saul, Carla; Krajcik, Joseph; Blumenfeld, Phyllis

    2002-08-01

    This purpose of this study was to examine the ways in which three prospective teachers who had early opportunities to teach science would approach representing science content within the context of their student teaching experiences. The study is framed in the literature on pedagogical content knowledge and learning to teach. A situated perspective on cognition is applied to better understand the influence of context and the role of the cooperating teacher. The three participants were enrolled in an experimental teacher preparation program designed to enhance the teaching of science at the elementary level. Qualitative case study design guided the collection, organization, and analysis of data. Multiple forms of data associated with student teachers' content representations were collected, including audiotaped planning and reflection interviews, written lesson plans and reflections, and videotaped teaching experiences. Broad analysis categories were developed and refined around the subconstructs of content representation (i.e., knowledge of instructional strategies that promote learning and knowledge of students and their requirements for meaningful science learning). Findings suggest that when prospective teachers are provided with opportunities to apply and reflect substantively on their developing considerations for supporting children's science learning, they are able to maintain a subject matter emphasis. However, in the absence of such opportunities, student teachers abandon their subject matter emphasis, even when they have had extensive background and experiences addressing subject-specific considerations for teaching and learning.

  6. Project BioEYES: Accessible Student-Driven Science for K-12 Students and Teachers.

    PubMed

    Shuda, Jamie R; Butler, Valerie G; Vary, Robert; Farber, Steven A

    2016-11-01

    BioEYES, a nonprofit outreach program using zebrafish to excite and educate K-12 students about science and how to think and act like scientists, has been integrated into hundreds of under-resourced schools since 2002. During the week-long experiments, students raise zebrafish embryos to learn principles of development and genetics. We have analyzed 19,463 participating students' pre- and post-tests within the program to examine their learning growth and attitude changes towards science. We found that at all grade levels, BioEYES effectively increased students' content knowledge and produced favorable shifts in students' attitudes about science. These outcomes were especially pronounced in younger students. Having served over 100,000 students, we find that our method for providing student-centered experiences and developing long-term partnerships with teachers is essential for the growth and sustainability of outreach and school collaborations.

  7. Science on Sunday: The Prospective Graduate Student Workshop in Ocean Sciences

    NASA Astrophysics Data System (ADS)

    Jacox, M. G.; Powers, M. L.

    2010-12-01

    Here, we present the design and implementation of the Prospective Graduate Student Workshop (PGSW) in Ocean Sciences, a new teaching venue developed within the University of California's Center for Adaptive Optics (CfAO). The one-day workshop introduced undergraduate and community college students interested in pursuing graduate school to the field of ocean sciences through a series of inquiry-based activities. Throughout the activity design process, two important themes were emphasized; 1) physical, chemical, and biological properties are tightly coupled in the ocean; 2) ocean sciences is a highly inter-disciplinary field that includes scientists from diverse backgrounds. With these ideas in mind the workshop was split into two activities, morning and afternoon, each of which concentrated on teaching certain process skills thought to be useful for prospective graduate students. The morning covered density and mixing in the ocean and the afternoon was focused on phytoplankton and how they experience the ocean as a low Reynolds number environment. Attendees were instructed to complete pre- and post-activity questionnaires, which enabled assessment of individual components and the workshop as a whole. Response was very positive, students gained knowledge about ocean sciences, scientific inquiry, and graduate school in general, and most importantly had fun voluntarily participating in science on a Sunday.

  8. Hypothetical Biotechnology Companies: A Role-Playing Student Centered Activity for Undergraduate Science Students

    ERIC Educational Resources Information Center

    Chuck, Jo-Anne

    2011-01-01

    Science students leaving undergraduate programs are entering the biotechnology industry where they are presented with issues which require integration of science content. Students find this difficult as through-out their studies, most content is limited to a single subdiscipline (e.g., biochemistry, immunology). In addition, students need…

  9. College student perceptions of science teachers and the effect on science teaching as a career path

    NASA Astrophysics Data System (ADS)

    Cost, Michael George

    2000-10-01

    Past research documented that student perceptions of scientists constituted a stereotypical image that had a negative effect on the students' attitudes towards science and resulted in low numbers of students studying to become scientists and engineers in college. The present study paralleled the research on student perceptions of scientists to investigate to what extent student perceptions of science teachers affect their willingness to consider science teaching as a career. This was accomplished by surveying 91 college students and 25 science teachers at the beginning, middle, and end of the collegiate career path of becoming a science teacher. Each survey contained quantitative data utilizing seven-point semantic differential scales and written open response questions. In-depth interviews with two members of each level were conducted to supplement the survey data. The study found that college students begin college with a positive perception of teaching as a career and highly rank teachers, especially science teachers, as having a positive influence on their career path. The qualities of job enjoyment, job stability, and helping others that are characteristic of teaching were also found to be of high importance. Perceptions of the personal, social, professional, and career qualities of a science teacher were found to differ from a scientist. While both science teachers and scientists were found to be responsible, persistent, and productive, science teachers were perceived as being a distinct career possessing qualities that make them more personable, sociable, and wise than scientists. Some gender differences were detected but there was no evidence of gender bias affecting students choosing a career path to science teaching. Science teachers were perceived to be very supportive of females pursuing scientific career paths. The study also found evidence that some introductory level college students steer away from science teaching because of low salary, the lack of

  10. ``It depends on what science teacher you got'': urban science self-efficacy from teacher and student voices

    NASA Astrophysics Data System (ADS)

    Bolshakova, Virginia L. J.; Johnson, Carla C.; Czerniak, Charlene M.

    2011-12-01

    In the United States today, urban schools serve the majority of high-poverty and high minority populations including large numbers of Hispanic students. While many Hispanic students perform below grade level in middle school science, the science teaching community as a whole is lacking elements of diversity as teachers struggle to meet the needs of all learners. Researchers have recognized that science teacher effectiveness, one consequence of self-efficacy among teachers, is associated with future science achievement and science-related careers of their students. This qualitative study explores how three science teachers' effectiveness in the classroom impacts students' science self-efficacy beliefs at one urban middle school. Hispanic students were the focus of this investigation due to demographics and history of underperformance within this district. Teachers' perspectives, as well as outside observer evaluations of instructional strategies and classroom climates were triangulated to explore dynamics that influence students' interests and motivation to learn science using a framework to link teachers' sense of efficacy (focusing on student outcomes). Findings suggest the impact teacher effectiveness can have on student outcomes, including strengthened student science self-efficacy and increased science achievement. Building awareness and support in teachers' sense of efficacy, as well as developing respectful and supportive relationships between educator/facilitator and pupil during the transition to middle school may construct permanence and accomplishment for all in science.

  11. Student-generated illustrations and written narratives of biological science concepts: The effect on community college life science students' achievement in and attitudes toward science

    NASA Astrophysics Data System (ADS)

    Harvey, Robert Christopher

    The purpose of this study was to determine the effects of two conceptually based instructional strategies on science achievement and attitudes of community college biological science students. The sample consisted of 277 students enrolled in General Biology 1, Microbiology, and Human Anatomy and Physiology 1. Control students were comprised of intact classes from the 2005 Spring semester; treatment students from the 2005 Fall semester were randomly assigned to one of two groups within each course: written narrative (WN) and illustration (IL). WN students prepared in-class written narratives related to cell theory and metabolism, which were taught in all three courses. IL students prepared in-class illustrations of the same concepts. Control students received traditional lecture/lab during the entire class period and neither wrote in-class descriptions nor prepared in-class illustrations of the targeted concepts. All groups were equivalent on age, gender, ethnicity, GPA, and number of college credits earned and were blinded to the study. All interventions occurred in class and no group received more attention or time to complete assignments. A multivariate analysis of covariance (MANCOVA) via multiple regression was the primary statistical strategy used to test the study's hypotheses. The model was valid and statistically significant. Independent follow-up univariate analyses relative to each dependent measure found that no research factor had a significant effect on attitude, but that course-teacher, group membership, and student academic characteristics had a significant effect (p < .05) on achievement: (1) Biology students scored significantly lower in achievement than A&P students; (2) Microbiology students scored significantly higher in achievement than Biology students; (3) Written Narrative students scored significantly higher in achievement than Control students; and (4) GPA had a significant effect on achievement. In addition, given p < .08: (1

  12. NASA Space Science Day Events-Engaging Students in Science

    NASA Technical Reports Server (NTRS)

    Foxworth, S.; Mosie, A.; Allen, J.; Kent, J.; Green, A.

    2015-01-01

    The NASA Space Science Day Event follows the same format of planning and execution at all host universities and colleges. These institutions realized the importance of such an event and sought funding to continue hosting NSSD events. In 2014, NASA Johnson Space Center ARES team has supported the following universities and colleges that have hosted a NSSD event; the University of Texas at Brownsville, San Jacinto College, Georgia Tech University and Huston-Tillotson University. Other universities and colleges are continuing to conduct their own NSSD events. NASA Space Science Day Events are supported through continued funding through NASA Discovery Program. Community Night begins with a NASA speaker and Astromaterials display. The entire community surrounding the host university or college is invited to the Community Night. This year at the Huston-Tillotson (HTU) NSSD, we had Dr. Laurie Carrillo, a NASA Engineer, speak to the public and students. She answered questions, shared her experiences and career path. The speaker sets a tone of adventure and discovery for the NSSD event. After the speaker, the public is able to view Lunar and Meteorite samples and ask questions from the ARES team. The students and teachers from nearby schools attended the NSSD Event the following day. Students are able to see the university or college campus and the university or college mentors are available for questions. Students rotate through hour long Science Technology Engineering and Mathematics (STEM) sessions and a display area. These activities are from the Discovery Program activities that tie in directly with k- 12 instruction. The sessions highlight the STEM in exploration and discovery. The Lunar and Meteorite display is again available for students to view and ask questions. In the display area, there are also other interactive displays. Angela Green, from San Jacinto College, brought the Starlab for students to watch a planetarium exhibit for the NSSD at Huston

  13. Research Experiences for Science Teachers: The Impact On Their Students

    NASA Astrophysics Data System (ADS)

    Dubner, J.

    2005-12-01

    Deficiencies in science preparedness of United States high school students were recognized more than two decades ago, as were some of their underlying causes. Among the primary causes are the remoteness of the language, tools, and concepts of science from the daily experiences of teachers and students, and the long-standing national shortage of appropriately prepared science teachers. Secondary school science teachers are challenged each school year by constantly changing content, new technologies, and increasing demands for standards-based instruction. A major deficiency in the education of science teachers was their lack of experience with the practice of science, and with practicing scientists. Providing teachers with opportunities to gain hands-on experience with the tools and materials of science under the guidance and mentorship of leading scientists in an environment attuned to professional development, would have many beneficial effects. They would improve teachers' understanding of science and their ability to develop and lead inquiry- and standards-based science classes and laboratories. They would enable them to communicate the vitality and dynamism of science to their students and to other teachers. They would enhance their ability to motivate and guide students. From its inception, Columbia University's Summer Research Program for Science Teacher's goal has been to enhance interest and improve performance in science of students in New York City area schools. The program seeks to achieve this goal by increasing the professional competence of teachers. Our ongoing program evaluation shows that following completion of the program, the teachers implement more inquiry-based classroom and laboratory exercises, increase utilization of Internet resources, motivate students to participate in after school science clubs and Intel-type science projects; and create opportunities for students to investigate an area of science in greater depth and for longer periods

  14. High school students presenting science: An interactional sociolinguistic analysis

    NASA Astrophysics Data System (ADS)

    Bleicher, Robert

    Presenting science is an authentic activity of practicing scientists. Thus, effective communication of science is an important skill to nurture in high school students who are learning science. This study examines strategies employed by high school students as they make science presentations; it assesses students' conceptual understandings of particular science topics through their presentations and investigates gender differences. Data are derived from science presentation given by eight high school students, three females and five males who attended a summer science program. Data sources included videotaped presentations, ethnographic fieldnotes, interviews with presenters and members of the audience, and presenter notes and overheads. Presentations were transcribed and submitted to discourse analysis from an interactional sociolinguistic perspective. This article focuses on the methodology employed and how it helps inform the above research questions. The author argues that use of this methodology leads to findings that inform important social-communicative issues in the learning of science. Practical advice for teaching students to present science, implications for use of presentations to assess conceptual learning, and indications of some possible gender differences are discussed.Received: 14 April 1993; Revised: 15 February 1994;

  15. A Window on Science: Exploring the JASON Project and Student Conceptions of Science.

    ERIC Educational Resources Information Center

    Moss, David M.

    2003-01-01

    Describes how the JASON project was implemented in a self-contained 4th grade classroom and examines this project within the overall context of student-scientist partnership (SSP) models of science education reform. Examines changes in student conceptions of the nature of science as a result of participating in science. (Contains 24 references.)…

  16. A study of the long term impact of an inquiry-based science program on student's attitudes towards science and interest in science careers

    NASA Astrophysics Data System (ADS)

    Gibson, Helen Lussier

    One reason science enrichment programs were created was to address the underrepresentation of women and minorities in science. These programs were designed to increase underrepresented groups' interest in science and science careers. One attempt to increase students' interest in science was the Summer Science Exploration Program (SSEP). The SSEP was a two week, inquiry-based summer science camp offered by Hampshire College for students entering grades seven and eight. Students who participated were from three neighboring school districts in Western Massachusetts. The goal of the program was to stimulate greater interest in science and scientific careers among middle school students, in particular among females and students of color. A review of the literature of inquiry-based science programs revealed that the effect of inquiry-based programs on students' attitudes towards science is typically investigated shortly after the end of the treatment period. The findings from this study contribute to our understanding of the long-term impact of inquiry-based science enrichment programs on students' attitude towards science and their interest in science careers. The data collected consisted of quantitative survey data as well as qualitative data through case studies of selected participants from the sample population. This study was guided by the following questions: (1) What was the nature and extent of the impact of the Summer Science Exploration Program (SSEP) on students' attitudes towards science and interest in science careers, in particular among females and students of color? (2) What factors, if any, other than participation in SSEP impacted students' attitude towards science and interest in scientific careers? (3) In what other ways, if any, did the participants benefit from the program? Conclusions drawn from the data indicate that SSEP helped participants maintain a high level of interest in science. In contrast, students who applied but were not accepted

  17. Creative Writing and Promoting Understanding in Science: Alternative Ways to Interest Students in Writing about Science

    ERIC Educational Resources Information Center

    Akcay, Hakan; Hand, Brian; Norton-Meier, Lori

    2010-01-01

    Science writing opportunities are used as a resource to enable students to understand science concepts. This study represents three different writing-to-learn tasks that enable students to learn science and to demonstrate their developing understanding about the human body system. The teacher and students engaged in a variety of science enquiries…

  18. Recent advances in vacuum sciences and applications

    NASA Astrophysics Data System (ADS)

    Mozetič, M.; Ostrikov, K.; Ruzic, D. N.; Curreli, D.; Cvelbar, U.; Vesel, A.; Primc, G.; Leisch, M.; Jousten, K.; Malyshev, O. B.; Hendricks, J. H.; Kövér, L.; Tagliaferro, A.; Conde, O.; Silvestre, A. J.; Giapintzakis, J.; Buljan, M.; Radić, N.; Dražić, G.; Bernstorff, S.; Biederman, H.; Kylián, O.; Hanuš, J.; Miloševič, S.; Galtayries, A.; Dietrich, P.; Unger, W.; Lehocky, M.; Sedlarik, V.; Stana-Kleinschek, K.; Drmota-Petrič, A.; Pireaux, J. J.; Rogers, J. W.; Anderle, M.

    2014-04-01

    Recent advances in vacuum sciences and applications are reviewed. Novel optical interferometer cavity devices enable pressure measurements with ppm accuracy. The innovative dynamic vacuum standard allows for pressure measurements with temporal resolution of 2 ms. Vacuum issues in the construction of huge ultra-high vacuum devices worldwide are reviewed. Recent advances in surface science and thin films include new phenomena observed in electron transport near solid surfaces as well as novel results on the properties of carbon nanomaterials. Precise techniques for surface and thin-film characterization have been applied in the conservation technology of cultural heritage objects and recent advances in the characterization of biointerfaces are presented. The combination of various vacuum and atmospheric-pressure techniques enables an insight into the complex phenomena of protein and other biomolecule conformations on solid surfaces. Studying these phenomena at solid-liquid interfaces is regarded as the main issue in the development of alternative techniques for drug delivery, tissue engineering and thus the development of innovative techniques for curing cancer and cardiovascular diseases. A review on recent advances in plasma medicine is presented as well as novel hypotheses on cell apoptosis upon treatment with gaseous plasma. Finally, recent advances in plasma nanoscience are illustrated with several examples and a roadmap for future activities is presented.

  19. Insights for undergraduates seeking an advanced degree in wildlife and fisheries sciences

    USGS Publications Warehouse

    Kaemingk, Mark A.; Dembkowski, Daniel J.; Meyer, Hilary A.; Gigliotti, Larry M.

    2013-01-01

    In today's job market, having a successful career in the fisheries and wildlife sciences is becoming more dependent on obtaining an advanced degree. As a result, competition for getting accepted into a graduate program is fierce. Our objective for this study was to provide prospective graduate students some insights as to what qualifications or attributes would best prepare them for obtaining a graduate position (M.S.) and to excel once they are enrolled in a graduate program. A survey was sent to 50 universities within the National Association of University Fisheries and Wildlife Programs (NAUFWP) where both faculty and undergraduate students were asked questions relating to graduate school. Faculty rated the importance of various criteria and attributes of graduate school, and students answered the questions according to how they believed faculty members would respond. Overall, undergraduate students shared many of the same graduate school viewpoints as those held by faculty members. However, viewpoints differed on some topics related to admittance and the most important accomplishment of a graduate student while enrolled in a graduate program. These results indicate that undergraduate students may be better prepared for graduate school—and they may understand how to be successful once they are enrolled in a program—than was initially thought.

  20. Students as Mentors and Owners of Geoscience and Environmental Education: Advancing the Science of Climate Change in the Public Schools

    NASA Astrophysics Data System (ADS)

    Schuster, D. A.; Thomas, C. W.; Smith, J. S.; Wood, E. J.; Filippelli, G. M.

    2007-12-01

    The importance of K-12 educational programs and resources that seek to share the science of climate change has recently come into focus. During the fall 2006 AGU meeting, we presented the conceptual framework used to guide both the curriculum and year-one programs of Students as Mentors and Owners of Geoscience and Environmental Education: The Global Warming Road Show. Currently this dynamic, three-phase, tiered mentoring program selects and empowers a diverse population of 11th and 12th grade students from a large urban high school in the Midwest to teach a curriculum on climate change to 7th graders from a local feeder school. In December 2007 we will complete year-one of the program and will present an overview of 1) students' conceptual representations of climate change, 2) the most recent curriculum and programs, and 3) the ongoing program evaluation. We will synthesize these three areas and reflect on how to improve upon year-two of both the curriculum and the program. During various stages of the program, students have constructed concept maps, written in journals, created lesson plans, and participated in focus group interviews. These materials are being analyzed to provide a brief overview of high school students' initial conceptualizations of climate change. During the intensive 2007 summer workshop, these 11th and 12th grade students were supported by university scientists and science educators, secondary science teachers, and museum educators as they attempted to better understand climate change and as they reflected on how to effectively teach this topic to 7th graders. During the fall semester of 2007, the workshop graduates are scheduled to teach 25 to 30 7th graders a five week climate unit. The program will culminate with the 11th and 12th grade student-mentors working with the 7th graders to create a "Road Show," which will be presented to other 7th and 8th graders within the same school district. To ensure that this program is current, a team of

  1. Next Generation Science Standards: All Standards, All Students

    ERIC Educational Resources Information Center

    Lee, Okhee; Miller, Emily C.; Januszyk, Rita

    2014-01-01

    The Next Generation Science Standards (NGSS) offer a vision of science teaching and learning that presents both learning opportunities and demands for all students, particularly student groups that have traditionally been underserved in science classrooms. The NGSS have addressed issues of diversity and equity from their inception, and the NGSS…

  2. Applied aerodynamics experience for secondary science teachers and students

    NASA Technical Reports Server (NTRS)

    Abbitt, John D., III; Carroll, Bruce F.

    1992-01-01

    The Department of Aerospace Engineering, Mechanics & Engineering Science at the University of Florida in conjunction with the Alachua County, Florida School Board has embarked on a four-year project of university-secondary school collaboration designed to enhance mathematics and science instruction in secondary school classrooms. The goals are to provide teachers with a fundamental knowledge of flight sciences, and to stimulate interest among students, particularly women and minorities, toward careers in engineering, mathematics, and science. In the first year of the project, all thirteen of the eighth grade physical science teachers and all 1200 of the eighth grade physical science students in the county participated. The activities consisted of a three-day seminar taught at the college level for the teachers, several weeks of classroom instruction for all the students, and an airport field trip for a subgroup of about 430 students that included an orientation flight in a Cessna 172 aircraft. The project brought together large numbers of middle school students, teachers, undergraduate and graduate engineering students, school board administrators, and university engineering faculty.

  3. Findings from Five Years Investigating Science Literacy and Where Students Get their Information about Science

    NASA Astrophysics Data System (ADS)

    Buxner, Sanlyn; Impey, C. D.; Nieberding, M. N.; Romine, J. M.; Antonellis, J. C.; Llull, J.; Tijerino, K.; Collaborations of Astronomy Teaching Scholars (CATS)

    2014-01-01

    Supported by funding from NSF, we have been investigating the science literacy of undergraduate students using data collected from 1980 -2013. To date, we have collected over 12,000 surveys asking students about their foundational science knowledge as well as their attitudes towards science and technology topics. In 2012, we began investigating where students get their information about science and we have collected 30 interviews and almost 1000 survey responses. Our findings reveal that students’ science literacy, as measured by this instrument, has changed very little over the 23 years of data collection despite major educational innovations offered to students. A fraction of students continue to hold onto non-scientific beliefs, coupled with faith-based attitudes and beliefs, which are resistant to formal college instruction. Analysis of students’ open-ended responses show that although students use words often associated with science, they lack understandings of key aspects of science including the importance of evidence to support arguments and the need for replication of results. These results have important implications about how we teach science and how we assess students’ scientific understandings during class. Our recent work has shown that students use online sources to gain information about science for classes their own interests. Despite this, they rate professors and researchers as more reliable sources of scientific knowledge than online sources. This disconnect raises questions about how educators can work with students to provide knowledge in ways that are both accessible and reliable and how to help students sort knowledge in an age where everything can be found online. This material is based in part upon work supported by the National Science Foundation under Grant No. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS). Any opinions, findings, and conclusions or recommendations expressed in this

  4. Identity and science learning in African American students in informal science education contexts

    NASA Astrophysics Data System (ADS)

    James, Sylvia M.

    2007-12-01

    Science education researchers are recognizing the need to consider identity and other sociocultural factors when examining causes of the science achievement gap for African American students. Non-school settings may hold greater promise than formal schooling to promote identities that are conductive to science learning in African Americans. This mixed-methods study explored the relationship between participation in out-of-school-time (OST) science enrichment programs and African American middle and high school students' racial and ethnic identity (RED, social identity as science learners, and achievement. Pre-post questionnaires used a previously validated model of REI combined with an original subscale that was developed to measure social identity as science learners. Case studies of two programs allowed for an analysis of the informal learning setting. The treatment group (N = 36) consisted of African American middle and high school students in five OST science programs, while the control group (N = 54) students were enrolled in science classes in public schools in the mid-Atlantic region. Results of a t-test of independent means indicated that there was no significant difference between the treatment and control group on measures of REI or science identity. However, the treatment group earned significantly higher science grades compared to the control group, and an ANOVA revealed a significant relationship between science identity and the intention to pursue post-secondary science studies. Although not significant, MANOVA results indicated that students who participated in OST programs exhibited gradual increases in RD and science identity over time according to grade level and gender. Follow-up analysis revealed significant relationships between awareness of racism, gender, and length of time in OST programs. The case studies illustrated that a unique community of practice exists within the OST programs. Access to authentic science learning experiences, youth

  5. Individual Difference Predictors of Creativity in Art and Science Students

    ERIC Educational Resources Information Center

    Furnham, Adrian; Batey, Mark; Booth, Tom W.; Patel, Vikita; Lozinskaya, Dariya

    2011-01-01

    Two studies are reported that used multiple measures of creativity to investigate creativity differences and correlates in arts and science students. The first study examined Divergent Thinking fluency, Self-Rated Creativity and Creative Achievement in matched groups of Art and Science students. Arts students scored higher than Science students on…

  6. Student perceptions of secondary science: A performance technology application

    NASA Astrophysics Data System (ADS)

    Small, Belinda Rusnak

    The primary purpose of this study was to identify influences blocking or promoting science performance from the lived K-12 classroom experience. Human Performance Technology protocols were used to understand factors promoting or hindering science performance. The goal was to gain information from the individual students' perspective to enhance opportunities for stakeholders to improve the current state of performance in science education. Individual perspectives of 10 secondary science students were examined using grounded theory protocols. Findings include students' science learning behaviors are influenced by two major themes, environmental supports and individual learning behaviors. The three environmental support factors identified include the methods students receive instruction, students' opportunities to access informal help apart from formal instruction, and students' feelings of teacher likability. Additionally, findings include three major factors causing individual learners to generate knowledge in science. Factors reported include personalizing information to transform data into knowledge, customizing learning opportunities to maximize peak performance, and tapping motivational opportunities to persevere through complex concepts. The emergent theory postulated is that if a performance problem exists in an educational setting, then integrating student perspectives into the cause analysis opens opportunity to align interventions for influencing student performance outcomes. An adapted version of Gilbert's Behavioral Engineering Model is presented as an organizational tool to display the findings. The boundaries of this Performance Technology application do not extend to the identification, selection, design, or implementation of solutions to improved science performance. However, as stakeholders begin to understand learner perspectives then aligned decisions may be created to support learners of science in a direct, cost effective manner.

  7. On Students‧ Evasion of Science and Engineering Course in Korea and the Recent Conditions of College Students Employment

    NASA Astrophysics Data System (ADS)

    Kim, Youngjong

    In the 21st century as information society, to increase the advancement rate of high capable students in science and engineering majors, we can consider the sociological, economical and psychological aspects of the problem. So, we need promote the gifted and talented students in elementary and secondary education, and through such improving measures we need plan to reform the trend of avoiding science and engineering courses. And also, we have to develop diverse education programs to get higher competence. We have to develop the programs for female students with the help of the experts. We have to establish the career guidance system. As a whole, we have to aim both the specialization and diversification of the education system for improving quality of the education. And by analyzing the difficult situation of finding job for college student in South Korea, we have to devise countermeasures for long-term graduate unemployment. In this article, I will introduce the Korean case of an analysis of the trend of avoiding science and engineering courses and the case of recent job-hunting situations of college students.

  8. Predictors of student success in entry-level science courses

    NASA Astrophysics Data System (ADS)

    Singh, Mamta K.

    Although the educational evaluation process is useful and valuable and is supported by the Higher Education Act, a strong research base for program evaluation of college entry-level science courses is still lacking. Studies in science disciplines such as, biology, chemistry, and physics have addressed various affective and demographic factors and their relationships to student achievement. However, the literature contains little information that specifically addresses student biology content knowledge skills (basics and higher order thinking skills) and identifies factors that affect students' success in entry-level college science courses. These gate-keeping courses require detailed evaluation if the goal of an institution is to increase students' performance and success in these courses. These factors are, in fact, a stepping stone for increasing the number of graduates in Science, Technology, Engineering, and Mathematics (STEM) majors. The present study measured students' biology content knowledge and investigated students' performance and success in college biology, chemistry, and physics entry-level courses. Seven variables---gender, ethnicity, high school Grade Point Average (GPA), high school science, college major, school financial aid support, and work hours were used as independent variables and course final performance as a dichotomous dependent variable. The sample comprised voluntary student participants in entry-level science courses. The study attempted to explore eight research questions. Content knowledge assessments, demographic information analysis, multiple regression analysis, and binary logistic regression analysis were used to address research questions. The results suggested that high school GPA was a consistently good predictor of students' performance and success in entry-level science courses. Additionally, high school chemistry was a significant predictor variable for student success in entry-level biology and chemistry courses

  9. The Impact of Teachers and Their Science Teaching on Students' "Science Interest": A Four-Year Study

    ERIC Educational Resources Information Center

    Logan, Marianne R.; Skamp, Keith R.

    2013-01-01

    There is a crisis in school science in Australia and this may be related to insufficient students developing an interest in science. This extended study looked at changes in 14 students' interest in science as they moved through junior secondary school into Year 10. Although the majority of these students still had an interest in science in Year…

  10. Teacher perceptions of high school students underachievement in science

    NASA Astrophysics Data System (ADS)

    Gopalsingh, Bhagyalakshmi

    Low high school graduation rates continue to be a challenge in American public education. The pressure to meet the demands of adequate yearly progress (AYP) under the No Child Left behind Act of 2001 has led to an achievement gap in student performance between science and other core subjects, namely English, math, and social studies, on the Georgia High School Graduation Test (GHSGT). GHSGT statistics have consistently reflected a lower science pass percentage compared with other core subjects on the test. The objective of this nonexperimental, quantitative study was to analyze teacher perceptions on reasons for student science underachievement on the GHSGT. A self-developed questionnaire based on Bloom's taxonomy model was administered to 115 high school core subject teachers of a single school district. Analyses of variance (ANOVA) and chi-square tests were used to test hypotheses. Results confirmed that teachers perceived that (a) students demonstrated a low rate of proficiency in science because science demands higher cognitive skills, (b) less emphasis was placed on science because it is a non-AYP indicator, and (c) making science an AYP indicator will optimize student science achievement. Based on results, recommendations were made to promote the integration of English, math, and social studies curriculum with science curriculum to enable students to transfer learned skills and information across subjects. The potential benefits of outcome of this study include (a) providing critical insight for policy makers and educational practitioners to understand the impact of science underachievement on graduation rates, and (b) raising student science achievement to improve graduation rates.

  11. Student Perceptions of Using Games to Address Science Literacy

    NASA Astrophysics Data System (ADS)

    Keller, Cara M.

    The purpose of this qualitative evaluative case study was to gain insight into how students perceived the efficacy of using games to address their science literacy concerns. Scientists in the United States are concerned with the lack of science literacy. The No Child Left Behind Act of 2001 requires proficiency in reading, mathematics, language arts, and science by the completion of the 2013--2014 school year. The high school participating in this study received substandard test scores on both the 2009 state graduation test and the science portion of the ACT test. The research question included understanding how students perceive the use of games in addressing their science literacy needs. The data from the student journals, field notes, and transcribed class discussions were analyzed using a 6 step method that included coding the data into main themes. The triangulated data were used to both gain insight into student perspective and inform game development. Constructivist theories formed the conceptual framework of the study. The findings of the study suggested that games may prove a valuable tool in science literacy attainment. The study indicated that games were perceived by the students to be effective tools in meeting their learning needs. Implications for positive social change included providing students, educators, and administrators with game resources that can be used to meet the science learning needs of struggling students, thereby improving science scores on high stakes tests.

  12. Understanding the Language Demands on Science Students from an Integrated Science and Language Perspective

    NASA Astrophysics Data System (ADS)

    Seah, Lay Hoon; Clarke, David John; Hart, Christina Eugene

    2014-04-01

    This case study of a science lesson, on the topic thermal expansion, examines the language demands on students from an integrated science and language perspective. The data were generated during a sequence of 9 lessons on the topic of 'States of Matter' in a Grade 7 classroom (12-13 years old students). We identify the language demands by comparing students' writings with the scientific account of expansion that the teacher intended the students to learn. The comparison involved both content analysis and lexicogrammatical (LG) analysis. The framework of Systemic Functional Linguistics was adopted for the LG analysis. Our analysis reveals differences in the meaning and the way LG resources were employed between the students' writings and the scientific account. From these differences, we found the notion of condition-of-use for LG resources to be a significant aspect of the language that students need to appropriate in order to employ the language of school science appropriately. This notion potentially provides a means by which teachers could concurrently address the conceptual and representational demands of science learning. Finally, we reflect on how the complementary use of content analysis and LG analysis provides a way for integrating the science and language perspectives in order to understand the demands of learning science through language.

  13. Advancing the Relationship between Business School Ranking and Student Learning

    ERIC Educational Resources Information Center

    Elbeck, Matt

    2009-01-01

    This commentary advances a positive relationship between a business school's ranking in the popular press and student learning by advocating market-oriented measures of student learning. A framework for student learning is based on the Assurance of Learning mandated by the Association to Advance Collegiate Schools of Business International,…

  14. Student-Teachers' Dialectically Developed Motivation for Promoting Student-Led Science Projects

    ERIC Educational Resources Information Center

    Bencze, J. Lawrence; Bowen, G. Michael

    2009-01-01

    School science systems tend to emphasize teaching and learning about achievements of science (such as laws and theories) at the expense of providing students with opportunities to develop realistic conceptions about science and science inquiry and expertise they could use to conduct their own science inquiry projects. Among reasons for such an…

  15. Comparison of attitudes of non-science major students toward science and technology

    NASA Astrophysics Data System (ADS)

    Wick, Donald Gary

    This study examines the attitudes of non-science major students who were enrolled in General Education Required (GER) science courses at three diverse Iowa post-secondary educational institutions: The University of Iowa, Cornell College, and Kirkwood Community College. The information was gathered using a survey instrument with the test subjects responding with a five-part Likert-scale to a series of statements regarding: (1) reasons for taking the science course, (2) views and attitudes toward science, and (3) the nature and implications of science and technology. The initial data gathered was analyzed using either chi-squared, analysis of variance (ANOVA), and/or Bonferroni tests. Responses to grouped statements were used to generate population indices related to: (1) experience, (2) attitude, (3) experimentation, and (4) technology. These indices were analyzed for statistically significant differences using Tukey's Studentized (HSD) and Tukey-Krammer tests. Statistically significant differences were found in the response means for some individual statements. When a population index was calculated for each school using the grouped responses related to attitude, experience, science/technology, multiple comparison testing determined significant differences with regards to attitude, experiences, and science/technology. No significant differences were found between the schools for the population index regarding experimentation. Demographic information gathered concerning the nature of the student populations included: (1) declared major, (2) classification, (3) previous number of science courses, (4) gender, and (5) use of computers for the science course. Analysis of demographic data also revealed statistically significant differences. The differences found in this study provide additional quantitative data to characterize the non-science major student. Recommendations based on this data are: (1) The University of Iowa strive for smaller GER class sizes and

  16. The impact of a developmental science course on college success for underprepared health science students

    NASA Astrophysics Data System (ADS)

    Johnson, Candace A.

    Developmental education for the academically underprepared college student has been aimed at helping students succeed in college. However, developmental education courses have traditionally focused on reading, writing and math. This quantitative study examined the relationship between a developmental science course for underprepared health science students on grades achieved in college level medical terminology courses. The effect was measured by analyzing student grades retrieved from a college database of official school records through the use of correlation research methodology during a previous 2-year academic period at a selected independent 4-year right-to-try college. The results yielded a weakly positive correlation, but not statistically significant coefficient of 0.325 between grades for students who successfully completed the developmental science course and their subsequent success in a college-level science course. The study added to the gap in knowledge in terms of the effect a developmental science course has on grades in college-level science courses.

  17. "Discoveries in Planetary Sciences": Slide Sets Highlighting New Advances for Astronomy Educators

    NASA Astrophysics Data System (ADS)

    Brain, David; Schneider, N.; Molaverdikhani, K.; Afsharahmadi, F.

    2012-10-01

    We present two new features of an ongoing effort to bring recent newsworthy advances in planetary science to undergraduate lecture halls. The effort, called 'Discoveries in Planetary Sciences', summarizes selected recently announced discoveries that are 'too new for textbooks' in the form of 3-slide PowerPoint presentations. The first slide describes the discovery, the second slide discusses the underlying planetary science concepts at a level appropriate for students of 'Astronomy 101', and the third presents the big picture implications of the discovery. A fourth slide includes links to associated press releases, images, and primary sources. This effort is generously sponsored by the Division for Planetary Sciences of the American Astronomical Society, and the slide sets are available at http://dps.aas.org/education/dpsdisc/ for download by undergraduate instructors or any interested party. Several new slide sets have just been released, and we summarize the topics covered. The slide sets are also being translated into languages other than English (including Spanish and Farsi), and we will provide an overview of the translation strategy and process. Finally, we will present web statistics on how many people are using the slide sets, as well as individual feedback from educators.

  18. Science Communication versus Science Education: The Graduate Student Scientist as a K-12 Classroom Resource

    NASA Technical Reports Server (NTRS)

    Strauss, Jeff; Shope, Richard E., III; Terebey, Susan

    2005-01-01

    Science literacy is a major goal of science educational reform (NRC, 1996; AAAS, 1998; NCLB Act, 2001). Some believe that teaching science only requires pedagogical content knowledge (PCK). Others believe doing science requires knowledge of the methodologies of scientific inquiry (NRC, 1996). With these two mindsets, the challenge for science educators is to create models that bring the two together. The common ground between those who teach science and those who do science is science communication, an interactive process that galvanizes dialogue among scientists, teachers, and learners in a rich ambience of mutual respect and a common, inclusive language of discourse . The dialogue between science and non-science is reflected in the polarization that separates those who do science and those who teach science, especially as it plays out everyday in the science classroom. You may be thinking, why is this important? It is vital because, although not all science learners become scientists, all K-12 students are expected to acquire science literacy, especially with the implementation of the No Child Left Behind Act of 2001 (NCLB). Students are expected to acquire the ability to follow the discourse of science as well as connect the world of science to the context of their everyday life if they plan on moving to the next grade level, and in some states, to graduate from high school. This paper posits that science communication is highly effective in providing the missing link for K-12 students cognition in science and their attainment of science literacy. This paper will focus on the "Science For Our Schools" (SFOS) model implemented at California State Univetsity, Los Angeles (CSULA) as a project of the National Science Foundation s GK-12 program, (NSF 2001) which has been a huge success in bridging the gap between those who "know" science and those who "teach" science. The SFOS model makes clear the distinctions that identify science, science communication, science

  19. The relationship between science classroom facility conditions and ninth grade students' attitudes toward science

    NASA Astrophysics Data System (ADS)

    Ford, Angela Y.

    Over half of the school facilities in America are in poor condition. Unsatisfactory school facilities have a negative impact on teaching and learning. The purpose of this correlational study was to identify the relationship between high school science teachers' perceptions of the school science environment (instructional equipment, demonstration equipment, and physical facilities) and ninth grade students' attitudes about science through their expressed enjoyment of science, importance of time spent on science, and boredom with science. A sample of 11,523 cases was extracted, after a process of data mining, from a databank of over 24,000 nationally representative ninth graders located throughout the United States. The instrument used to survey these students was part of the High School Longitudinal Study of 2009 (HSLS:2009). The research design was multiple linear regression. The results showed a significant relationship between the science classroom conditions and students' attitudes. Demonstration equipment and physical facilities were the best predictors of effects on students' attitudes. Conclusions based on this study and recommendations for future research are made.

  20. Co-opting Science: A preliminary study of how students invoke science in value-laden discussions

    NASA Astrophysics Data System (ADS)

    Nielsen, Jan Alexis

    2012-01-01

    Letting students deliberate on socio-scientific issues is a tricky affair. It is yet unclear how to assess whether, or even support that, students weave science facts into value-laden socio-scientific deliberations without committing the naturalistic fallacy of deducing 'ought' from 'is'. As a preliminary step, this study investigated how Danish upper secondary biology students actually interwove science facts and values in socio-scientific discussions. In particular, the focus was the argumentative effects of different ways of blurring the fact-value distinction. The data consisted of the transcriptions of three 45-60 minute discussions among 4-5 students about whether human gene therapy should be allowed. The data were analysed from a normative pragmatics perspective-with a focus on how the students designed and elicited messages to influence the decisions of others. It was found that the students regularly co-opted science to make it appear that their evaluative claims were more solidly supported than those of their opponents. Further, the students tended to co-opt science content so as to redefine what the issue or object of contention should be. The findings suggest that assessment of whether students properly used correct science facts in socio-scientific learning activities is very difficult. From the perspective of teachers, this means that much more work needs to be done in order to sort out how the fact-value distinction should be addressed appropriately. From the perspective of researchers, it means a continued negotiation of what they mean when they say that students should become able to use science on issues from outside science.

  1. Life science students' attitudes, interest, and performance in introductory physics for life sciences: An exploratory study

    NASA Astrophysics Data System (ADS)

    Crouch, Catherine H.; Wisittanawat, Panchompoo; Cai, Ming; Renninger, K. Ann

    2018-06-01

    In response to national calls for improved physical sciences education for students pursuing careers in the life sciences and medicine, reformed introductory physics for life sciences (IPLS) courses are being developed. This exploratory study is among the first to assess the effect of an IPLS course on students' attitudes, interest, and performance. The IPLS course studied was the second semester of introductory physics, following a standard first semester course, allowing the outcomes of the same students in a standard course and in an IPLS course to be compared. In the IPLS course, each physics topic was introduced and elaborated in the context of a life science example, and developing students' skills in applying physics to life science situations was an explicitly stated course goal. Items from the Colorado Learning about Science Survey were used to assess change in students' attitudes toward and their interest in physics. Whereas the same students' attitudes declined during the standard first semester course, we found that students' attitudes toward physics hold steady or improve in the IPLS course. In particular, students with low initial interest in physics displayed greater increases in both attitudes and interest during the IPLS course than in the preceding standard course. We also find that in the IPLS course, students' interest in the life science examples is a better predictor of their performance than their pre-IPLS interest in physics. Our work suggests that the life science examples in the IPLS course can support the development of student interest in physics and positively influence their performance.

  2. The Impact of an Informal Science Program on Students' Science Knowledge and Interest

    NASA Astrophysics Data System (ADS)

    Zandstra, Anne Maria

    In this sequential explanatory mixed methods study, quantitative and qualitative data were used to measure the impact of an informal science program on eleventh grade students' science knowledge and interest. The local GEAR UP project has been working for six years with a cohort of students who were in eleventh and twelfth grade during the time of the study. Participants of this study were 122 eleventh grade students from this cohort. In the first, quantitative phase, state standardized test scores and a modified version of the Test of Science Related Attitudes (TOSRA) were used to measure participants' science knowledge and interest respectively. The findings of the quantitative phase revealed a small but significant correlation between students' attendance at the program elements (in total number of hours) and their science knowledge. In addition, small but significant correlations were found between (1) students' attendance at the mathematics program element and their total interest scores, (2) their mathematics attendance and the career interest subscore, and (3) their total attendance and the normality of scientist subscore. The qualitative data in the second phase consisted of focus group interviews with fourteen of the participants. Results of this phase showed that the majority of the focus group participants agreed that they had learned something from the GEAR UP field trips and half of them thought the field trips had impacted their grades and test scores. Furthermore, a majority of the focus group participants concurred that their experiences in the field trips had increased their interest in science. The purpose of the qualitative phase of this study was to provide explanations for the results of the quantitative phase. Explanations for the correlation between attendance and knowledge were that the field trips covered the same content as the formal science classes and that students learned more because they perceived the field trips as fun and hands

  3. Is Science Me? Exploring Middle School Students' STE-M Career Aspirations

    NASA Astrophysics Data System (ADS)

    Aschbacher, Pamela R.; Ing, Marsha; Tsai, Sherry M.

    2014-12-01

    This study explores middle school students' aspirations in science, technology, engineering, and medical (STE-M) careers by analyzing survey data during their eighth and ninth grade years from an ethnically and economically diverse sample of Southern California urban and suburban public school students ( n = 493). Students were classified based on their responses to questions about their science ability beliefs and subjective task values using latent class analysis (LCA). Four distinct groups of students were identified: Science is Me; I Value Science But Don't Do It Well; I Can Do Science but I Don't Value It Highly; and Science is Not Me. Few students (22 %) were classified as having strong science ability beliefs, and only a third as strongly valuing learning/doing science; a majority (57 %) were in the Science is Not Me category, underscoring the scope of the challenge to invite more young people to want to learn science. As predicted, students who believed they could do science and valued science were more likely than others to indicate interest in STE-M careers. This relationship between perceptions and aspirations was true regardless of gender, ethnicity, and type of STE-M field, but varied depending on socioeconomic status. Using LCA to organize information about students' science self-perceptions may help target specific interventions to student interests and aspirations and better support and encourage their persistence in STE-M careers.

  4. Engaging Students In The Science Of Climate Change

    NASA Astrophysics Data System (ADS)

    Rhew, R. C.; Halversen, C.; Weiss, E.; Pedemonte, S.; Weirman, T.

    2013-12-01

    Climate change is arguably the defining environmental issue of our generation. It is thus increasingly necessary for every member of the global community to understand the basic underlying science of Earth's climate system and how it is changing in order to make informed, evidence-based decisions about how we will respond individually and as a society. Through exploration of the inextricable interconnection between Earth's ocean, atmosphere and climate, we believe students will be better prepared to tackle the complex issues surrounding the causes and effects of climate change and evaluate possible solutions. If students are also given opportunities to gather evidence from real data and use scientific argumentation to make evidence-based explanations about climate change, not only will they gain an increased understanding of the science concepts and science practices, the students will better comprehend the nature of climate change science. Engaging in argument from evidence is a scientific practice not only emphasized in the Framework for K-12 Science Education and the Next Generation Science Standards (NGSS), but also emphasized in the Common Core State Standards for English Language Arts & Literacy in History/Social Studies and Science (CCSS). This significant overlap between NGSS and CCSS has implications for science and language arts classrooms, and should influence how we support and build students' expertise with this practice of sciences. The featured exemplary curricula supports middle school educators as they address climate change in their classrooms. The exemplar we will use is the NOAA-funded Ocean Sciences Sequence (OSS) for Grades 6-8: The ocean-atmosphere connection and climate change, which are curriculum units that deliver rich science content correlated to the Next Generation Science Standards (NGSS) Disciplinary Core Ideas and an emphasis on the Practices of Science, as called for in NGSS and the Framework. Designed in accordance with the latest

  5. Effects of a Collaborative Science Intervention on High Achieving Students' Learning Anxiety and Attitudes toward Science

    NASA Astrophysics Data System (ADS)

    Hong, Zuway-R.

    2010-10-01

    This study investigated the effects of a collaborative science intervention on high achieving students' learning anxiety and attitudes toward science. Thirty-seven eighth-grade high achieving students (16 boys and 21 girls) were selected as an experimental group who joined a 20-week collaborative science intervention, which integrated and utilized an innovative teaching strategy. Fifty-eight eighth-grade high achieving students were selected as the comparison group. The Secondary School Student Questionnaire was conducted to measure all participants' learning anxiety and attitudes toward science. In addition, 12 target students from the experimental group (i.e., six active and six passive students) were recruited for weekly classroom observations and follow-up interviews during the intervention. Both quantitative and qualitative findings revealed that experimental group students experienced significant impact as seen through increased attitudes and decreased anxiety of learning science. Implications for practice and research are provided.

  6. Science Teaching Methods Preferred by Grade 9 Students in Finland

    ERIC Educational Resources Information Center

    Juuti, Kalle; Lavonen, Jari; Uitto, Anna; Byman, Reijo; Meisalo, Veijo

    2010-01-01

    Students find science relevant to society, but they do not find school science interesting. This survey study analyzes Finnish grade 9 students' actual experiences with science teaching methods and their preferences for how they would like to study science. The survey data were collected from 3,626 grade 9 students (1,772 girls and 1,832 boys)…

  7. Kindergarten Students' Explanations during Science Learning

    ERIC Educational Resources Information Center

    Harris, Karleah

    2010-01-01

    The study examines kindergarten students' explanations during science learning. The data on children's explanations are drawn from videotaped and transcribed discourse collected from four public kindergarten science classrooms engaged in a life science inquiry unit on the life cycle of the monarch butterfly. The inquiry unit was implemented as…

  8. Making sense of teacher-feedback to high school students in science classes: Science instruction and student learning

    NASA Astrophysics Data System (ADS)

    Pahl, Jarvis Van Netta Calvin

    When we perceive the world as whole and begin to explore how things are interrelated, we confer a sense of meaning and order to what we are studying. When we include the learner as an active participant in what is being learned, we have the basis for an educational practice that accentuates meaning. The connectedness between meaning and learning will become more apparent...connectedness is natural...it is everywhere and in everything. We have only to look for it. As our perceptions change, so will our practice. (Caine, Caine, and Cromwell, 1994) What can we learn about our teaching practices when we ask high school students their perceptions about teacher-feedback to them regarding their learning science? This research study uses students' written stories of what teacher-feedback in high school science classes means to them. Students provide vivid descriptions of how they use science teacher-feedback to create new meaning or how they do not use or receive science teacher-feedback. There were three essential questions in the study, one qualitative and two quantitative. These questions were: what types of teacher-feedback do high school students receive from their science teachers; how do students use the teacher-feedback they receive; and what teacher-feedback do students identify as most useful to them? This research study used a qualitative-quantitative approach for gathering and analyzing data. The design of the procedure was a blend of the qualitative research question to access initial data to be used with a modified quantitative approach in a followup of the remaining two research questions which were focused on a student survey for a practical application of the research. The following six emergent dichotomous types of teacher-feedback were found in the study: supportive and non supportive teacher-feedback; short term and long term teacher-feedback; academic and non academic teacher-feedback; teacher-initiated and student-initiated contact with the teacher

  9. Predicting Student Misconceptions in Science

    ERIC Educational Resources Information Center

    Fouché, Jaunine

    2015-01-01

    Two challenges science teachers face are identifying misconceptions students have about how the world operates and getting past those misconceptions. Students' prior conceptions often conflict with the content educators are trying to teach. The gateway to revealing and changing such misconceptions, Fouché says, is predictive questioning. As they…

  10. The connection between students' out-of-school experiences and science learning

    NASA Astrophysics Data System (ADS)

    Tran, Natalie A.

    This study sought to understand the connection between students' out-of-school experiences and their learning in science. This study addresses the following questions: (a) What effects does contextualized information have on student achievement and engagement in science? (b) To what extent do students use their out-of-school activities to construct their knowledge and understanding about science? (c) To what extent do science teachers use students' skills and knowledge acquired in out-of-school settings to inform their instructional practices? This study integrates mixed methods using both quantitative and qualitative approaches to answer the research questions. It involves the use of survey questionnaire and science assessment and features two-level hierarchical analyses of student achievement outcomes nested within classrooms. Hierarchical Linear Model (HLM) analyses were used to account for the cluster effect of students nested within classrooms. Interviews with students and teachers were also conducted to provide information about how learning opportunities that take place in out-of-school settings can be used to facilitate student learning in science classrooms. The results of the study include the following: (a) Controlling for student and classroom factors, students' ability to transfer science learning across contexts is associated with positive learning outcomes such as achievement, interest, career in science, self-efficacy, perseverance, and effort. Second, teacher practice using students' out-of-school experiences is associated with decrease in student achievement in science. However, as teachers make more connection to students' out-of-school experiences, the relationship between student effort and perseverance in science learning and transfer gets weaker, thus closing the gaps on these outcomes between students who have more ability to establish the transfer of learning across contexts and those who have less ability to do so. Third, science teachers

  11. Best practices for measuring students' attitudes toward learning science.

    PubMed

    Lovelace, Matthew; Brickman, Peggy

    2013-01-01

    Science educators often characterize the degree to which tests measure different facets of college students' learning, such as knowing, applying, and problem solving. A casual survey of scholarship of teaching and learning research studies reveals that many educators also measure how students' attitudes influence their learning. Students' science attitudes refer to their positive or negative feelings and predispositions to learn science. Science educators use attitude measures, in conjunction with learning measures, to inform the conclusions they draw about the efficacy of their instructional interventions. The measurement of students' attitudes poses similar but distinct challenges as compared with measurement of learning, such as determining validity and reliability of instruments and selecting appropriate methods for conducting statistical analyses. In this review, we will describe techniques commonly used to quantify students' attitudes toward science. We will also discuss best practices for the analysis and interpretation of attitude data.

  12. Fostering Spaces of Student Ownership in Middle School Science

    ERIC Educational Resources Information Center

    O'Neill, Tara B.

    2010-01-01

    A critical challenge in urban science education is determining how to provide empowering science learning experiences for all students. In an effort to address the achievement gap in science education, I have focused on the concept of ownership, specifically when and how students gain ownership in science learning. This paper presents a teacher…

  13. Students' Scientific Epistemic Beliefs, Online Evaluative Standards, and Online Searching Strategies for Science Information: The Moderating Role of Cognitive Load Experience

    NASA Astrophysics Data System (ADS)

    Hsieh, Ya-Hui; Tsai, Chin-Chung

    2014-06-01

    The purpose of this study is to examine the moderating role of cognitive load experience between students' scientific epistemic beliefs and information commitments, which refer to online evaluative standards and online searching strategies. A total of 344 science-related major students participated in this study. Three questionnaires were used to ascertain the students' scientific epistemic beliefs, information commitments, and cognitive load experience. Structural equation modeling was then used to analyze the moderating effect of cognitive load, with the results revealing its significant moderating effect. The relationships between sophisticated scientific epistemic beliefs and the advanced evaluative standards used by the students were significantly stronger for low than for high cognitive load students. Moreover, considering the searching strategies that the students used, the relationships between sophisticated scientific epistemic beliefs and advanced searching strategies were also stronger for low than for high cognitive load students. However, for the high cognitive load students, only one of the sophisticated scientific epistemic belief dimensions was found to positively associate with advanced evaluative standard dimensions.

  14. The Student/Library Computer Science Collaborative

    ERIC Educational Resources Information Center

    Hahn, Jim

    2015-01-01

    With funding from an Institute of Museum and Library Services demonstration grant, librarians of the Undergraduate Library at the University of Illinois at Urbana-Champaign partnered with students in computer science courses to design and build student-centered mobile apps. The grant work called for demonstration of student collaboration…

  15. Computer Simulations of Quantum Theory of Hydrogen Atom for Natural Science Education Students in a Virtual Lab

    ERIC Educational Resources Information Center

    Singh, Gurmukh

    2012-01-01

    The present article is primarily targeted for the advanced college/university undergraduate students of chemistry/physics education, computational physics/chemistry, and computer science. The most recent software system such as MS Visual Studio .NET version 2010 is employed to perform computer simulations for modeling Bohr's quantum theory of…

  16. Lived experiences of self-reported science-anxious students taking an interdisciplinary undergraduate science course

    NASA Astrophysics Data System (ADS)

    Minger, Mark Austin

    Having fears and frustrations while studying science topics can lead to science anxiety for some individuals. For those who experience science learning anxiety, the reality is often poor performance, lowered self-esteem, anger, and avoidance of further science courses. Using an interpretive approach, this study captures the experiences of five self-reported science anxious students as they participate in an interdisciplinary science course at the University of Minnesota. A series of three in-depth interviews were conducted with five students who were enrolled in the "Our Changing Planet" course offered at the University of Minnesota. The interviews were transcribed verbatim, coded, and analyzed thematically. Four major themes emerged from the interviews. Two of the themes involve the realities of being a science anxious student. These focus on participants' experiences of feeling frustrated, anxious and incompetent when studying both math and science; and the experiences of trying to learn science content that does not seem relevant to them. The last two themes highlight the participants' perceptions of their experiences during the "Our Changing Planet" course, including how the course seemed different from previous science courses as well as their learning experiences in cooperative groups. After presenting the themes, with supporting quotations, each theme is linked to the related literature. The essence of the participants' science anxiety experiences is presented and practical implications regarding science anxious students are discussed. Finally, insights gained and suggestions for further research are provided.

  17. Seeding Science Success: Psychometric Properties of Secondary Science Questionnaire on Students' Self-Concept, Motivation, and Aspirations

    ERIC Educational Resources Information Center

    Chandrasena, Wanasinghe; Craven, Rhonda G.; Tracey, Danielle; Dillon, Anthony

    2014-01-01

    Every sphere of life has been revolutionised by science. Thus, science understanding is an increasingly precious resource throughout the world. Despite the widely recognised need for better science education, the percentage of school students studying science is particularly low, and the numbers of students pursuing science continue to decline…

  18. Graduate Experience in Science Education: the development of a science education course for biomedical science graduate students.

    PubMed

    Markowitz, Dina G; DuPré, Michael J

    2007-01-01

    The University of Rochester's Graduate Experience in Science Education (GESE) course familiarizes biomedical science graduate students interested in pursuing academic career tracks with a fundamental understanding of some of the theory, principles, and concepts of science education. This one-semester elective course provides graduate students with practical teaching and communication skills to help them better relate science content to, and increase their confidence in, their own teaching abilities. The 2-h weekly sessions include an introduction to cognitive hierarchies, learning styles, and multiple intelligences; modeling and coaching some practical aspects of science education pedagogy; lesson-planning skills; an introduction to instructional methods such as case studies and problem-based learning; and use of computer-based instructional technologies. It is hoped that the early development of knowledge and skills about teaching and learning will encourage graduate students to continue their growth as educators throughout their careers. This article summarizes the GESE course and presents evidence on the effectiveness of this course in providing graduate students with information about teaching and learning that they will use throughout their careers.

  19. Graduate Experience in Science Education: The Development of a Science Education Course for Biomedical Science Graduate Students

    PubMed Central

    DuPré, Michael J.

    2007-01-01

    The University of Rochester's Graduate Experience in Science Education (GESE) course familiarizes biomedical science graduate students interested in pursuing academic career tracks with a fundamental understanding of some of the theory, principles, and concepts of science education. This one-semester elective course provides graduate students with practical teaching and communication skills to help them better relate science content to, and increase their confidence in, their own teaching abilities. The 2-h weekly sessions include an introduction to cognitive hierarchies, learning styles, and multiple intelligences; modeling and coaching some practical aspects of science education pedagogy; lesson-planning skills; an introduction to instructional methods such as case studies and problem-based learning; and use of computer-based instructional technologies. It is hoped that the early development of knowledge and skills about teaching and learning will encourage graduate students to continue their growth as educators throughout their careers. This article summarizes the GESE course and presents evidence on the effectiveness of this course in providing graduate students with information about teaching and learning that they will use throughout their careers. PMID:17785406

  20. Science writing heurisitc: A writing-to-learn strategy and its effect on student's science achievement, science self-efficacy, and scientific epistemological view

    NASA Astrophysics Data System (ADS)

    Caukin, Nancy S.

    The purpose of this mixed-methods study was to determine if employing the writing-to-learn strategy known as a "Science Writing Heuristic" would positively effect students' science achievement, science self-efficacy, and scientific epistemological view. The publications Science for All American, Blueprints for Reform: Project 2061 (AAAS, 1990; 1998) and National Science Education Standards (NRC 1996) strongly encourage science education that is student-centered, inquiry-based, active rather than passive, increases students' science literacy, and moves students towards a constructivist view of science. The capacity to learn, reason, problem solve, think critically and construct new knowledge can potentially be experienced through writing (Irmscher, 1979; Klein, 1999; Applebee, 1984). Science Writing Heuristic (SWH) is a tool for designing science experiences that move away from "cookbook" experiences and allows students to design experiences based on their own ideas and questions. This non-traditional classroom strategy focuses on claims that students make based on evidence, compares those claims with their peers and compares those claims with the established science community. Students engage in reflection, meaning making based on their experiences, and demonstrate those understandings in multiple ways (Hand, 2004; Keys et al, 1999, Poock, nd.). This study involved secondary honors chemistry students in a rural prek-12 school in Middle Tennessee. There were n = 23 students in the group and n = 8 in the control group. Both groups participated in a five-week study of gases. The treatment group received the instructional strategy known as Science Writing Heuristic and the control group received traditional teacher-centered science instruction. The quantitative results showed that females in the treatment group outscored their male counterparts by 11% on the science achievement portion of the study and the males in the control group had a more constructivist scientific

  1. A quantitative examination of public school student attitudes toward science

    NASA Astrophysics Data System (ADS)

    Schuchman, Matthew

    There is a deficit of male and female students entering the fields of math and science, and the need for highly educated individuals in these areas is expected to increase. While various factors may play a role in creating this deficit, there is a lack of research on one factor, that of student attitudes toward science. The theories of social aspects, how children learn and how teachers teach provided the framework for an examination of public school student attitudes toward science. The purpose of this study was to determine if there is a significant difference in attitudes toward science in Grades 4-12 based on gender and grade level. Using a quantitative one-shot case study preexperimental design, the study described the relationships in student attitudes toward science and how those relationships change with grade and gender. This study investigated the relationship in attitudes toward science in different grade levels, the relationship in male and female attitudes toward science in different grade levels, and the difference in attitudes toward science between male and female students. The Kruskal-Wallis test and the nonparametric independent samples test for gender differences were performed to examine grade level, gender, and attitudes toward science. The convenience sample of 1,008 students was drawn from a population of approximately 1,200 students enrolled in Grades 4 through 12 in a rural, public school district in the northeastern United States. The data analysis revealed no difference in male attitudes toward science, but did reveal a significant difference in female attitudes toward science between different grade levels, (H(8) = 32.773, p < .000). Implications for social change include an improved student attitude toward science, which increases educational opportunities and career options for underrepresented groups.

  2. The key factors affecting students' individual interest in school science lessons

    NASA Astrophysics Data System (ADS)

    Cheung, Derek

    2018-01-01

    Individual interest in school science lessons can be defined as a relatively stable and enduring personal emotion comprising affective and behavioural reactions to events in the regular science lessons at school. Little research has compared the importance of different factors affecting students' individual interest in school science lessons. The present study aimed to address this gap, using a mixed methods design. Qualitative interview data were collected from 60 Hong Kong junior secondary school students, who were asked to describe the nature of their interest in science lessons and the factors to which they attribute this. Teacher interviews, parent interviews, and classroom observations were conducted to triangulate student interview data. Five factors affecting students' individual interest in school science lessons were identified: situational influences in science lessons, individual interest in science, science self-concept, grade level, and gender. Quantitative data were then collected from 591 students using a questionnaire. Structural equation modelling was applied to test a hypothesised model, which provided an acceptable fit to the student data. The strongest factor affecting students' individual interest in school science lessons was science self-concept, followed by individual interest in science and situational influences in science lessons. Grade level and gender were found to be nonsignificant factors. These findings suggest that teachers should pay special attention to the association between academic self-concept and interest if they want to motivate students to learn science at school.

  3. Deciding on Science: An Analysis of Higher Education Science Student Major Choice Criteria

    NASA Astrophysics Data System (ADS)

    White, Stephen Wilson

    The number of college students choosing to major in science, technology, engineering, and math (STEM) in the United States affects the size and quality of the American workforce (Winters, 2009). The number of graduates in these academic fields has been on the decline in the United States since the 1960s, which, according to Lips and McNeil (2009), has resulted in a diminished ability of the United States to compete in science and engineering on the world stage. The purpose of this research was to learn why students chose a STEM major and determine what decision criteria influenced this decision. According to Ajzen's (1991) theory of planned behavior (TPB), the key components of decision-making can be quantified and used as predictors of behavior. In this study the STEM majors' decision criteria were compared between different institution types (two-year, public four-year, and private four-year), and between demographic groups (age and sex). Career, grade, intrinsic, self-efficacy, and self-determination were reported as motivational factors by a majority of science majors participating in this study. Few students reported being influenced by friends and family when deciding to major in science. Science students overwhelmingly attributed the desire to solve meaningful problems as central to their decision to major in science. A majority of students surveyed credited a teacher for influencing their desire to pursue science as a college major. This new information about the motivational construct of the studied group of science majors can be applied to the previously stated problem of not enough STEM majors in the American higher education system to provide workers required to fill the demand of a globally STEM-competitive United States (National Academy of Sciences, National Academy of Engineering, & Institute of Medicine, 2010).

  4. Examining Classroom Science Practice Communities: How Teachers and Students Negotiate Epistemic Agency and Learn Science-as-Practice

    ERIC Educational Resources Information Center

    Stroupe, David

    2014-01-01

    The Next Generation Science Standards and other reforms call for students to learn science-as-practice, which I argue requires students to become epistemic agents--shaping the knowledge and practice of a science community. I examined a framework for teaching--ambitious instruction--that scaffolds students' learning of science-as-practice as…

  5. Investigating Undergraduate Science Students' Conceptions and Misconceptions of Ocean Acidification

    ERIC Educational Resources Information Center

    Danielson, Kathryn I.; Tanner, Kimberly D.

    2015-01-01

    Scientific research exploring ocean acidification has grown significantly in past decades. However, little science education research has investigated the extent to which undergraduate science students understand this topic. Of all undergraduate students, one might predict science students to be best able to understand ocean acidification. What…

  6. Student perceptions of the nature of science and attitudes towards science education in an experiential science program

    NASA Astrophysics Data System (ADS)

    Jelinek, David John

    1997-11-01

    This study investigates student perceptions of the nature of science and student attitudes toward science education, then employs experiential teaching strategies to determine what role, if any, these play in enhancing those perceptions and attitudes. The literature review identifies three shortcomings that justify the need for such research, concluding that a study to help broaden knowledge regarding interactive effects of attitudes, perceptions, and experiential learning could add significantly to the literature base. This is an explorative case study of 20 high school students participating in an Upward Bound summer program at the University of California in Santa Barbara. A six-week course drawing upon experiential learning theory was devised and delivered to the students, then various qualitative data collection materials were administered. The objective was to investigate pre-, during-, and post-instruction perspectives of students, thus identifying core factors concerning attitudes and perceptions. Constant comparative analysis was used to investigate the multiple sources of data, resulting in: (a) a collection of emic perspectives that distinguish between pre- and post-perceptions of the nature of science and of attitudes towards science education; (b) three themes of enhanced students' images of science and scientists; (c) two themes suggesting sociological perspectives that help broaden student perceptions; and (d) interest and boredom as key motivational considerations. A model of nature of science enhancement is proposed, proceeding through four stages of: (a) engagement in meaningful, first-hand activities; (b) student accountability for active participation and reflectiveness; (c) emphasis of high importance and high interest values; and (d) in-depth, multiple encounters with the phenomena and processes. Finally, implications of catching and holding interest are discussed. It was found that various experiential strategies proved successful in catching

  7. Discover science: Hands-on science workshops for elementary teachers and summer science camps for elementary students

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gotlib, L.; Bibby, E.; Cullen, B.

    1994-12-31

    Teams of local mentor teachers (assisted by college students in the NC Teaching Fellows Program) run week-long workshops for elementary teachers (at four sites in 1993, six in 1994). Major funding for the camps is provided through The Glaxo Foundation, supplemented with local funds. The workshops focus on hands-on science (using inexpensive materials) and provide familiarity and experience with the new NC science curriculum and assessment program. The use of local resources is stressed (including visiting scientists and readily available store-bought materials). Each camp has its own theme and provides teachers with a variety of resources to be used withmore » students of all abilities. The mentor teachers then run week-long, all expense paid, non-residential science camps for elementary students (open to all students, but with females and minorities as target groups). Students take part in long-and short-term projects, working individually and in groups. Pre and post participation surveys of all participants were conducted and analyzed, with favorable results for both the student and teacher weeks. Additional activities include parent nights, and follow-up workshops. Eighty-nine teachers and 208 students participated in 1993.« less

  8. Making science education meaningful for American Indian students: The effect of science fair participation

    NASA Astrophysics Data System (ADS)

    Welsh, Cynthia Ann

    Creating opportunities for all learners has not been common practice in the United States, especially when the history of Native American educational practice is examined (Bull, 2006; Chenoweth, 1999; Starnes, 2006a). The American Indian Science and Engineering Society (AISES) is an organization working to increase educational opportunity for American Indian students in science, engineering, and technology related fields (AISES, 2005). AISES provides pre-college support in science by promoting student science fair participation. The purpose of this qualitative research is to describe how American Indian student participation in science fairs and the relationship formed with their teacher affects academic achievement and the likelihood of continued education beyond high school. Two former American Indian students mentored by the principal investigator participated in this study. Four ethnographic research methods were incorporated: participant observation, ethnographic interviewing, search for artifacts, and auto-ethnographic researcher introspection (Eisenhart, 1988). After the interview transcripts, photos documenting past science fair participation, and researcher field notes were analyzed, patterns and themes emerged from the interviews that were supported in literature. American Indian academic success and life long learning are impacted by: (a) the effects of racism and oppression result in creating incredible obstacles to successful learning, (b) positive identity formation and the importance of family and community are essential in student learning, (c) the use of best practice in science education, including the use of curricular cultural integration for American Indian learners, supports student success, (d) the motivational need for student-directed educational opportunities (science fair/inquiry based research) is evident, (e) supportive teacher-student relationships in high school positively influences successful transitions into higher education. An

  9. The relationship between nature of science understandings and science self-efficacy beliefs of sixth grade students

    NASA Astrophysics Data System (ADS)

    Parker, Elisabeth Allyn

    Bandura (1986) posited that self-efficacy beliefs help determine what individuals do with the knowledge and skills they have and are critical determinants of how well skill and knowledge are acquired. Research has correlated self-efficacy beliefs with academic success and subject interest (Pajares, Britner, & Valiante, 2000). Similar studies report a decreasing interest by students in school science beginning in middle school claiming that they don't enjoy science because the classes are boring and irrelevant to their lives (Basu & Barton, 2007). The hypothesis put forth by researchers is that students need to observe models of how science is done, the nature of science (NOS), so that they connect with the human enterprise of science and thereby raise their self-efficacy (Britner, 2008). This study examined NOS understandings and science self-efficacy of students enrolled in a sixth grade earth science class taught with explicit NOS instruction. The research questions that guided this study were (a) how do students' self-efficacy beliefs change as compared with changes in their nature of science understandings?; and (b) how do changes in students' science self-efficacy beliefs vary with gender and ethnicity segregation? A mixed method design was employed following an embedded experimental model (Creswell & Plano Clark, 2007). As the treatment, five NOS aspects were first taught by the teachers using nonintegrated activities followed by integrated instructional approach (Khishfe, 2008). Students' views of NOS using the Views on Nature of Science (VNOS) (Lederman, Abd-El-Khalick, & Schwartz, 2002) along with their self-efficacy beliefs using three Likert-type science self-efficacy scales (Britner, 2002) were gathered. Changes in NOS understandings were determined by categorizing student responses and then comparing pre- and post-instructional understandings. To determine changes in participants' self-efficacy beliefs as measured by the three subscales, a multivariate

  10. Meats Units for Agricultural Science I and Advanced Livestock Production and Marketing Courses. Instructor's Guide. Volume 18, Number 4.

    ERIC Educational Resources Information Center

    Stewart, Bob R.; McCaskey, Michael J.

    These two units are designed to aid teachers in lesson planning in the secondary agricultural education curriculum in Missouri. The first unit, on meat identification, is to be taught as part of the first year of instruction in agricultural science, while the second unit, advanced meats, was prepared for use with 11th- and 12th-grade students in…

  11. Teaching Environmental Soil Science to Students older than 55

    NASA Astrophysics Data System (ADS)

    Cerdà, Artemi; Civera, Cristina; Giménez-Morera, Antonio; Burguet, María

    2014-05-01

    The life expectancy growth is a general trend for the world population, which translates into an increase of people older than 55 years in Western societies. This entails to the rise of health problems as well as large investments in healthcare. In general, we are spectators Y tambe voldria saber si ens pots fer una asse of how a large group of citizens have a new life after retirement. The XXI century societies are facing the problem of the need of a healthy population, even after retirement. There is a need in developing new strategies to allow those citizens to improve their knowledge of the environmental changes. The research in Soil Science and related disciplines is the strategy we are using on the Geograns program to inform the students (older than 55) about the changes the Earth and the Soil System are suffering. And this should be done in a healthy and active teaching environment. The NAUGRAN program is being developed by the University of Valencia for more than 10 years and shows the advances on education for senior students. Within this program, Geograns is bringing the environmentalist ideas to the students. This is a difficult task as those students were born in a society were nature was created to be exploited and not to be conserved (e.g. Green Revolution, agricultural transformations of the 60's in Spain). This is the reason why the University of Valencia developed at the end of the 90's a program to teach students older than 55. This paper shows the advances on new strategies developed during 2013 with a group of these senior students. The main strategy was to take the students to visit the nature and to explain the functioning of the Earth and Soil System. Those visits were organized with the collaboration of scientist, environmentalist, farmers and technicians; and the guiding thread was trekking. This mix showed our students different views and sides of the same phenomena (e.g. tillage operations, soil erosion problems, water quantity and

  12. Integration of basic sciences and clinical sciences in oral radiology education for dental students.

    PubMed

    Baghdady, Mariam T; Carnahan, Heather; Lam, Ernest W N; Woods, Nicole N

    2013-06-01

    Educational research suggests that cognitive processing in diagnostic radiology requires a solid foundation in the basic sciences and knowledge of the radiological changes associated with disease. Although it is generally assumed that dental students must acquire both sets of knowledge, little is known about the most effective way to teach them. Currently, the basic and clinical sciences are taught separately. This study was conducted to compare the diagnostic accuracy of students when taught basic sciences segregated or integrated with clinical features. Predoctoral dental students (n=51) were taught four confusable intrabony abnormalities using basic science descriptions integrated with the radiographic features or taught segregated from the radiographic features. The students were tested with diagnostic images, and memory tests were performed immediately after learning and one week later. On immediate and delayed testing, participants in the integrated basic science group outperformed those from the segregated group. A main effect of learning condition was found to be significant (p<0.05). The results of this study support the critical role of integrating biomedical knowledge in diagnostic radiology and shows that teaching basic sciences integrated with clinical features produces higher diagnostic accuracy in novices than teaching basic sciences segregated from clinical features.

  13. Soil Science Education for Primary and Secondary Students

    NASA Astrophysics Data System (ADS)

    Sparrow, Elena; Yoshikawa, Kenji; Kopplin, Martha

    2013-04-01

    Soils is one of the science investigation areas in the Global learning and Observations to Benefit the Environment (GLOBE), an international science and education program (112 countries) that teaches primary and secondary students to learn science by doing science. For each area of investigation GLOBE provides background information, measurement protocols and learning activities compiled as a chapter in the GLOBE Teacher's Guide. Also provided are data sheets and field guides to assist in the accurate collection of data as well as suggestions of scientific instruments and calibration methods. Teachers learn GLOBE scientific measurement protocols at professional development workshops led by scientists and educators, who then engage their students in soil studies that also contribute to ongoing science investigations. Students enter their data on the GLOBE website and can access their data as well as other data contributed by students from other parts of the world. Soil characterization measurements carried out in the field include site description, horizon depths, soil structure, soil color, soil consistence, soil texture, roots, rocks and carbonates. Other field measurements are soil temperature and soil moisture monitoring while the following measurements are carried out in the classroom or laboratory: gravimetric soil moisture, bulk density, particle density, particle size distribution, pH and soil fertility (nitrogen, phosphorus and potassium). Learning activities provide support for preparing students to do the measurements and for better understanding of science concepts. Many countries in GLOBE have adopted standards for education including science education with commonalities among them. For the Teacher's Guide, the National Science Education Standards published by the US National Academy of Sciences, selected additional content standards that GLOBE scientists and educators feel are appropriate and the National Geography Standards prepared by the (US

  14. Applied Developmental Science: An Advanced Textbook. The SAGE Program on Applied Developmental Science

    ERIC Educational Resources Information Center

    Lerner, Richard M., Ed.; Jacobs, Fraincine, Ed.; Wertlieb, Donald, Ed.

    2005-01-01

    This course textbook has been adapted from the four-volume "Handbook of Applied Developmental Science" (SAGE 2003), a work that offers a detailed roadmap for action and research in ensuring positive child, youth, and family development. In 20 chapters, "Applied Developmental Science: An Advanced Textbook" brings together theory and application…

  15. Investigating Undergraduate Science Students' Conceptions and Misconceptions of Ocean Acidification.

    PubMed

    Danielson, Kathryn I; Tanner, Kimberly D

    2015-01-01

    Scientific research exploring ocean acidification has grown significantly in past decades. However, little science education research has investigated the extent to which undergraduate science students understand this topic. Of all undergraduate students, one might predict science students to be best able to understand ocean acidification. What conceptions and misconceptions of ocean acidification do these students hold? How does their awareness and knowledge compare across disciplines? Undergraduate biology, chemistry/biochemistry, and environmental studies students, and science faculty for comparison, were assessed on their awareness and understanding. Results revealed low awareness and understanding of ocean acidification among students compared with faculty. Compared with biology or chemistry/biochemistry students, more environmental studies students demonstrated awareness of ocean acidification and identified the key role of carbon dioxide. Novel misconceptions were also identified. These findings raise the question of whether undergraduate science students are prepared to navigate socioenvironmental issues such as ocean acidification. © 2015 K. I. Danielson and K. D. Tanner. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  16. High school science enrollment of black students

    NASA Astrophysics Data System (ADS)

    Goggins, Ellen O.; Lindbeck, Joy S.

    How can the high school science enrollment of black students be increased? School and home counseling and classroom procedures could benefit from variables identified as predictors of science enrollment. The problem in this study was to identify a set of variables which characterize science course enrollment by black secondary students. The population consisted of a subsample of 3963 black high school seniors from The High School and Beyond 1980 Base-Year Survey. Using multiple linear regression, backward regression, and correlation analyses, the US Census regions and grades mostly As and Bs in English were found to be significant predictors of the number of science courses scheduled by black seniors.

  17. Kindergarten students' explanations during science learning

    NASA Astrophysics Data System (ADS)

    Harris, Karleah

    The study examines kindergarten students' explanations during science learning. The data on children's explanations are drawn from videotaped and transcribed discourse collected from four public kindergarten science classrooms engaged in a life science inquiry unit on the life cycle of the monarch butterfly. The inquiry unit was implemented as part of a larger intervention conducted as part of the Scientific Literacy Project or SLP (Mantzicopoulos, Patrick & Samarapungavan, 2005). The children's explanation data were coded and analyzed using quantitative content analysis procedures. The coding procedures involved initial "top down" explanation categories derived from the existing theoretical and empirical literature on scientific explanation and the nature of students' explanations, followed by an inductive or "bottom up" analysis, that evaluated and refined the categorization scheme as needed. The analyses provide important descriptive data on the nature and frequency of children's explanations generated in classroom discourse during the inquiry unit. The study also examines how teacher discourse strategies during classroom science discourse are related to children's explanations. Teacher discourse strategies were coded and analyzed following the same procedures as the children's explanations as noted above. The results suggest that, a) kindergarten students have the capability of generating a variety of explanations during inquiry-based science learning; b) teachers use a variety of classroom discourse strategies to support children's explanations during inquiry-based science learning; and c) The conceptual discourse (e.g., asking for or modeling explanations, asking for clarifications) to non-conceptual discourse (e.g., classroom management discourse) is related to the ratio of explanatory to non-explanatory discourse produced by children during inquiry-based science learning.

  18. High-School Students' Epistemic Knowledge of Science and Its Relation to Learner Factors in Science Learning

    NASA Astrophysics Data System (ADS)

    Yang, Fang-Ying; Liu, Shiang-Yao; Hsu, Chung-Yuan; Chiou, Guo-Li; Wu, Hsin-Kai; Wu, Ying-Tien; Chen, Sufen; Liang, Jyh-Chong; Tsai, Meng-Jung; Lee, Silvia W.-Y.; Lee, Min-Hsien; Lin, Che-Li; Chu, Regina Juchun; Tsai, Chin-Chung

    2017-04-01

    The purpose of this study was to develop and validate an online contextualized test for assessing students' understanding of epistemic knowledge of science. In addition, how students' understanding of epistemic knowledge of science interacts with learner factors, including time spent on science learning, interest, self-efficacy, and gender, was also explored. The participants were 489 senior high school students (244 males and 245 females) from eight different schools in Taiwan. Based on the result of an extensive literature review, we first identified six factors of epistemic knowledge of science, such as status of scientific knowledge, the nature of scientific enterprise, measurement in science, and so on. An online test was then created for assessing students' understanding of the epistemic knowledge of science. Also, a learner-factor survey was developed by adopting previous PISA survey items to measure the abovementioned learner factors. The results of this study show that; (1) by factor analysis, the six factors of epistemic knowledge of science could be grouped into two dimensions which reflect the nature of scientific knowledge and knowing in science, respectively; (2) there was a gender difference in the participants' understanding of the epistemic knowledge of science; and (3) students' interest in science learning and the time spent on science learning were positively correlated to their understanding of the epistemic knowledge of science.

  19. Associate in Science (AS) to Bachelor of Science in Applied Science (BSAS) Transfer Students: An Analysis of Student Characteristics, Engagement, and Success

    ERIC Educational Resources Information Center

    Collins, Jerry C.

    2009-01-01

    This study sought to examine and comprehensively describe transfer students who have earned a two-year technical or occupational Associate in Science (AS) degree at the community college and entered the university to pursue the Bachelor of Science in Applied Science (BSAS). The BSAS degree is a specialized baccalaureate degree program created…

  20. Helping Students Bridge Inferences in Science Texts Using Graphic Organizers

    ERIC Educational Resources Information Center

    Roman, Diego; Jones, Francesca; Basaraba, Deni; Hironaka, Stephanie

    2016-01-01

    The difficulties that students face when reading science texts go beyond understanding vocabulary and syntactic structures. Comprehension of science texts requires students to infer how these texts function as a unit to communicate scientific meaning. To help students in this process, science texts sometimes employ logical connectives (e.g.,…

  1. Science Student Teachers and Educational Technology: Experience, Intentions, and Value

    ERIC Educational Resources Information Center

    Efe, Rifat

    2011-01-01

    The primary purpose of this study is to examine science student teachers' experience with educational technology, their intentions for their own use, their intentions for their students' use, and their beliefs in the value of educational technology in science instruction. Four hundred-forty-eight science student teachers of different disciplines…

  2. The Gender and Science Digital Library: Affecting Student Achievement in Science.

    ERIC Educational Resources Information Center

    Nair, Sarita

    2003-01-01

    Describes the Gender and Science Digital Library (GSDL), an online collection of high-quality, interactive science resources that are gender-fair, inclusive, and engaging to students. Considers use by teachers and school library media specialists to encourage girls to enter careers in science, technology, engineering, and math (STEM). (LRW)

  3. The effectiveness of an American science camp for Taiwanese high school students

    NASA Astrophysics Data System (ADS)

    Kuo, Pi-Chu

    The purposes of this study were: (1) to evaluate the effectiveness of an American science camp for Taiwanese high school students in terms of student attitudes toward science; (2) to understand the factors that affect student attitudes toward science in the American science camp. Qualitative and quantitative data were collected and analyzed to answer my research questions: (1) How did the influence of the abroad science camp differ from the local one in terms of student attitudes toward science? (2) How did gender, grade level, and personality affect student attitudes toward science in the abroad science camp? An Attitudes toward Science Inventory was used in this study to measure student attitudes. The results of factor analysis suggested that the attitudes measured in this study include five common factors: science as school subjects (SC), science in society (SS), value of science (VS), science in laboratory (SL), and nature of science (NS). Significant improvements were found in SS, VS, and NS after the experiences of the abroad science camp. In the local science camp, only NS was non-significant comparing before and after the camp. The results from the comparisons between the two science camps show that different program designs have different impacts on student attitudes toward science. Furthermore, whether the science camps are designed based on learning theory or not, and regardless of how much time the campers spend in science-related activities during science camps, science camps can motivate students' interests in learning science. The results of mixed-design ANOVA for gender, grade level, and personality suggest that most of these personal factors did not significantly affect student attitudes. However, extraversion/introversion and sensing/intuition had impacts on the persuasibility of the abroad science camp.

  4. Using a Concept Inventory to Assess the Reasoning Component of Citizen-Level Science Literacy: Results from a 17,000-Student Study.

    PubMed

    Nuhfer, Edward B; Cogan, Christopher B; Kloock, Carl; Wood, Gregory G; Goodman, Anya; Delgado, Natalie Zayas; Wheeler, Christopher W

    2016-03-01

    After articulating 12 concepts for the reasoning component of citizen-level science literacy and restating these as assessable student learning outcomes (SLOs), we developed a valid and reliable assessment instrument for addressing the outcomes with a brief 25-item science literacy concept inventory (SLCI). In this paper, we report the results that we obtained from assessing the citizen-level science literacy of 17,382 undergraduate students, 149 graduate students, and 181 professors. We address only findings at or above the 99.9% confidence level. We found that general education (GE) science courses do not significantly advance understanding of science as a way of knowing. However, the understanding of science's way of knowing does increase through academic ranks, indicating that the extended overall academic experience better accounts for increasing such thinking capacity than do science courses alone. Higher mean institutional SLCI scores correlate closely with increased institutional selectivity, as measured by the institutions' higher mean SAT and ACT scores. Socioeconomic factors of a) first-generation student, b) English as a native language, and c) interest in commitment to a science major are unequally distributed across ethnic groups. These factors proved powerful in accounting for the variations in SLCI scores across ethnicities and genders.

  5. Students using visual thinking to learn science in a Web-based environment

    NASA Astrophysics Data System (ADS)

    Plough, Jean Margaret

    United States students' science test scores are low, especially in problem solving, and traditional science instruction could be improved. Consequently, visual thinking, constructing science structures, and problem solving in a web-based environment may be valuable strategies for improving science learning. This ethnographic study examined the science learning of fifteen fourth grade students in an after school computer club involving diverse students at an inner city school. The investigation was done from the perspective of the students, and it described the processes of visual thinking, web page construction, and problem solving in a web-based environment. The study utilized informal group interviews, field notes, Visual Learning Logs, and student web pages, and incorporated a Standards-Based Rubric which evaluated students' performance on eight science and technology standards. The Visual Learning Logs were drawings done on the computer to represent science concepts related to the Food Chain. Students used the internet to search for information on a plant or animal of their choice. Next, students used this internet information, with the information from their Visual Learning Logs, to make web pages on their plant or animal. Later, students linked their web pages to form Science Structures. Finally, students linked their Science Structures with the structures of other students, and used these linked structures as models for solving problems. Further, during informal group interviews, students answered questions about visual thinking, problem solving, and science concepts. The results of this study showed clearly that (1) making visual representations helped students understand science knowledge, (2) making links between web pages helped students construct Science Knowledge Structures, and (3) students themselves said that visual thinking helped them learn science. In addition, this study found that when using Visual Learning Logs, the main overall ideas of the

  6. Content Area Literacy: Individualizing Student Instruction in Second-Grade Science

    ERIC Educational Resources Information Center

    Connor, Carol McDonald; Kaya, Sibel; Luck, Melissa; Toste, Jessica R.; Canto, Angela; Rice, Diana; Tani, Novell; Underwood, Phyllis S.

    2010-01-01

    This study describes a second-grade science curriculum designed to individualize student instruction (ISI-Science) so that students, regardless of initial science and literacy skills, gain science knowledge and reading skills. ISI-Science relies on the 5-E Learning Cycle as a framework and incorporates flexible, homogeneous, literacy skills-based…

  7. Teaching Efficacy of Universiti Putra Malaysia Science Student Teachers

    ERIC Educational Resources Information Center

    Bakar, Abd. Rahim; Konting, Mohd. Majid; Jamian, Rashid; Lyndon, Novel

    2008-01-01

    The objective of the study was to access teaching efficacy of Universiti Putra Malaysia Science student teachers. The specific objectives were to determine teaching efficacy of Science student teachers in terms of student engagement; instructional strategies; classroom management and teaching with computers in classroom; their satisfaction with…

  8. Relationships Between the Way Students Are Assessed in Science Classrooms and Science Achievement Across Canada

    NASA Astrophysics Data System (ADS)

    Chu, Man-Wai; Fung, Karen

    2018-04-01

    Canadian students experience many different assessments throughout their schooling (O'Connor 2011). There are many benefits to using a variety of assessment types, item formats, and science-based performance tasks in the classroom to measure the many dimensions of science education. Although using a variety of assessments is beneficial, it is unclear exactly what types, format, and tasks are used in Canadian science classrooms. Additionally, since assessments are often administered to help improve student learning, this study identified assessments that may improve student learning as measured using achievement scores on a standardized test. Secondary analyses of the students' and teachers' responses to the questionnaire items asked in the Pan-Canadian Assessment Program were performed. The results of the hierarchical linear modeling analyses indicated that both students and teachers identified teacher-developed classroom tests or quizzes as the most common types of assessments used. Although this ranking was similar across the country, statistically significant differences in terms of the assessments that are used in science classrooms among the provinces were also identified. The investigation of which assessment best predicted student achievement scores indicated that minds-on science performance-based tasks significantly explained 4.21% of the variance in student scores. However, mixed results were observed between the student and teacher responses towards tasks that required students to choose their own investigation and design their own experience or investigation. Additionally, teachers that indicated that they conducted more demonstrations of an experiment or investigation resulted in students with lower scores.

  9. Effectiveness of Science-Technology-Society (STS) Instruction on Student Understanding of the Nature of Science and Attitudes toward Science

    ERIC Educational Resources Information Center

    Akcay, Behiye; Akcay, Hakan

    2015-01-01

    The study reports on an investigation about the impact of science-technology-society (STS) instruction on middle school student understanding of the nature of science (NOS) and attitudes toward science compared to students taught by the same teacher using traditional textbook-oriented instruction. Eight lead teachers used STS instruction an…

  10. COMPRES Mineral Physics Educational Modules for Advanced Undergraduates and Graduate Students

    NASA Astrophysics Data System (ADS)

    Burnley, P. C.; Thomas, S.

    2012-12-01

    The Consortium for Materials Properties Research in Earth Sciences (COMPRES) is a community-based consortium whose goal is to advance and facilitate experimental high pressure research in the Earth Sciences. An important aspect of this goal is sharing our knowledge with the next generation of researchers. To facilitate this, we have created a group of web-based educational modules on mineral physics topics. The modules reside in the On Cutting Edge, Teaching Mineralogy collection on the Science Education Resource Center (SERC) website. Although the modules are designed to function as part of a full semester course, each module can also stand alone. Potential users of the modules include mineral physics faculty teaching "bricks and mortar" classes at their own institutions, or in distance education setting, mineralogy teachers interested in including supplementary material in their mineralogy class, undergraduates doing independent study projects and graduate students and colleagues in other sub-disciplines who wish to brush up on a mineral physics topic. We used the modules to teach an on-line course entitled "Introduction to Mineral Physics" during the spring 2012 semester. More than 20 students and postdocs as well as 15 faculty and senior scientists participated in the course which met twice weekly as a webinar. Recordings of faculty lectures and student-led discussions of journal articles are now available upon request and edited versions of the lectures will be incorporated into the educational modules. Our experience in creating the modules and the course indicates that the use of 1) community-generated internet-based resources and 2) webinars to enable shared teaching between faculty at different universities, has the potential to both enrich graduate education and create efficiencies for university faculty.;

  11. A study of students' motivation using the augmented reality science textbook

    NASA Astrophysics Data System (ADS)

    Gopalan, Valarmathie; Zulkifli, Abdul Nasir; Bakar, Juliana Aida Abu

    2016-08-01

    Science plays a major role in assisting Malaysia to achieve the developed nation status by 2020. However, over a few decades, Malaysia is facing a downward trend in the number of students pursuing careers and higher education in science related fields. Since school is the first platform where students learn science, a new learning approach needs to be introduced to motivate them towards science learning. The aim of this study is to determine whether the intervention of the enhanced science textbook using augmented reality contributes to the learning process of lower secondary school students in science. The study was carried out among a sample of 70 lower secondary school students. Pearson Correlation and Regression analyses were used to determine the effects of ease of use, engaging, enjoyment and fun on students' motivation in using the augmented reality science textbook for science learning. The results provide empirical support for the positive and statistically significant relationship between engaging, enjoyment and fun and students' motivation for science learning. However, Ease of use is not significant but positively correlated to Motivation.

  12. Effects of Teacher Science Support on Student Science Support in Selected Tenth Grade Biology Classes.

    ERIC Educational Resources Information Center

    Simpson, Ronald Dale

    The objectives of this study were (1) to assess the effects of teacher science support, as measured by the Science Support Scale (Tri-S scale), on student science support and (2) to gain normative data on the Science Support Scale as an instrument for use with high school students. Twenty-four 10th grade biology teachers were given the Tri-S scale…

  13. The Inspiring Science Education project and the resources for HEP analysis by university students

    NASA Astrophysics Data System (ADS)

    Fassouliotis, Dimitris; Kourkoumelis, Christine; Vourakis, Stylianos

    2016-11-01

    The Inspiring Science Education outreach project has been running for more than two years, creating a large number of inquiry based educational resources for high-school teachers and students. Its goal is the promotion of science education in schools though new methods built on the inquiry based education techniques, involving large consortia of European partners and implementation of large-scale pilots in schools. Recent hands-on activities, developing and testing the above mentioned innovative applications are reviewed. In general, there is a lack for educational scenaria and laboratory courses earmarked for more advanced, namely university, students. At the University of Athens for the last four years, the HYPATIA on-line event analysis tool has been used as a lab course for fourth year undergraduate physics students, majoring in HEP. Up to now, the course was limited to visual inspection of a few tens of ATLAS events. Recently the course was enriched with additional analysis exercises, which involve large samples of events. The students through a user friendly interface can analyse the samples and optimize the cut selection in order to search for new physics. The implementation of this analysis is described.

  14. Outstanding Science Trade Books for Students K-12.

    ERIC Educational Resources Information Center

    Science Teacher, 2003

    2003-01-01

    Presents outstanding science trade books published in 2002 for students in grades K-12. Sections include Archaeology, Anthropology, and Paleontology; Biography; Environment and Ecology; Life Science; Physical Science; and Science-Related Careers. (KHR)

  15. Ocean Science in a K-12 setting: Promoting Inquiry Based Science though Graduate Student and Teacher Collaboration

    NASA Astrophysics Data System (ADS)

    Lodico, J. M.; Greely, T.; Lodge, A.; Pyrtle, A.; Ivey, S.; Madeiros, A.; Saleem, S.

    2005-12-01

    The University of South Florida, College of Marine Science Oceans: GK-12 Teaching Fellowship Program is successfully enriching science learning via the oceans. Funded by the National Science Foundation, the program provides a unique opportunity among scientists and K-12 teachers to interact with the intention of bringing ocean science concepts and research to the classroom environment enhance the experience of learning and doing science, and to promote `citizen scientists' for the 21st century. The success of the program relies heavily on the extensive summer training program where graduate students develop teaching skills, create inquiry based science activities for a summer Oceanography Camp for Girls program and build a relationship with their mentor teacher. For the last year and a half, two graduate students from the College of Marine Science have worked in cooperation with teachers from the Pinellas county School District, Southside Fundamental Middle School. Successful lesson plans brought into a 6th grade Earth Science classroom include Weather and climate: Global warming, The Geologic timescale: It's all about time, Density: Layering liquids, and Erosion processes: What moves water and sediment. The school and students have benefited greatly from the program experiencing hands-on inquiry based science and the establishment of an after school science club providing opportunities for students to work on their science fair projects and pursuit other science interests. Students are provided scoring rubrics and their progress is creatively assessed through KWL worksheets, concept maps, surveys, oral one on one and classroom discussions and writing samples. The year culminated with a series of hands on lessons at the nearby beach, where students demonstrated their mastery of skills through practical application. Benefits to the graduate student include improved communication of current science research to a diverse audience, a better understanding of the

  16. Assessment of Student Memo Assignments in Management Science

    ERIC Educational Resources Information Center

    Williams, Julie Ann Stuart; Stanny, Claudia J.; Reid, Randall C.; Hill, Christopher J.; Rosa, Katie Martin

    2015-01-01

    Frequently in Management Science courses, instructors focus primarily on teaching students the mathematics of linear programming models. However, the ability to discuss mathematical expressions in business terms is an important professional skill. The authors present an analysis of student abilities to discuss management science concepts through…

  17. Proving or Improving Science Learning? Understanding High School Students' Conceptions of Science Assessment in Taiwan

    ERIC Educational Resources Information Center

    Lee, Min-Hsien; Lin, Tzung-Jin; Tsai, Chin-Chung

    2013-01-01

    Classroom assessment is a critical aspect of teaching and learning. In this paper, Taiwanese high school students' conceptions of science assessment and the relationship between their conceptions of science assessment and of science learning were investigated. The study used both qualitative and quantitative methods. First, 60 students were…

  18. How to Change Students' Images of Science and Technology

    ERIC Educational Resources Information Center

    Scherz, Zahava; Oren, Miri

    2006-01-01

    This paper examines the images middle school students have of science and technology, the workplaces, and the relevant professions. It also describes the effect on these images caused by an instructional initiative, "Investigation into Science and Technology" (IST), designed to introduce students to science and technology in the "real life."…

  19. Examining Teacher Framing, Student Reasoning, and Student Agency in School-Based Citizen Science

    ERIC Educational Resources Information Center

    Harris, Emily Mae

    2017-01-01

    This dissertation presents three interrelated studies examining opportunities for student learning through contributory citizen science (CS), where students collect and contribute data to help generate new scientific knowledge. I draw on sociocultural perspectives of learning to analyze three cases where teachers integrated CS into school science,…

  20. Reading Instruction in Science for Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Kaldenberg, Erica R.; Watt, Sarah J.; Therrien, William J.

    2015-01-01

    As a growing number of students with learning disabilities (LD) receive science instruction in general education settings, students with LD continue to perform significantly lower than their non-disabled peers. The shift from textbook-driven instruction to inquiry-based approaches to science learning supports students who struggle with reading.…

  1. Capturing and portraying science student teachers' pedagogical content knowledge through CoRe construction

    NASA Astrophysics Data System (ADS)

    Thongnoppakun, Warangkana; Yuenyong, Chokchai

    2018-01-01

    Pedagogical content knowledge (PCK) is an essential kind of knowledge that teacher have for teaching particular content to particular students for enhance students' understanding, therefore, teachers with adequate PCK can give content to their students in an understandable way rather than transfer subject matter knowledge to learner. This study explored science student teachers' PCK for teaching science using Content representation base methodology. Research participants were 68 4th year science student teachers from department of General Science, faculty of Education, Phuket Rajabhat University. PCK conceptualization for teaching science by Magnusson et al. (1999) was applied as a theoretical framework in this study. In this study, Content representation (CoRe) by Loughran et al. (2004) was employed as research methodology in the lesson preparation process. In addition, CoRe consisted of eight questions (CoRe prompts) that designed to elicit and portray teacher's PCK for teaching science. Data were collected from science student teachers' CoRes design for teaching a given topic and student grade. Science student teachers asked to create CoRes design for teaching in topic `Motion in one direction' for 7th grade student and further class discussion. Science student teachers mostly created a same group of science concepts according to subunits of school science textbook rather than planned and arranged content to support students' understanding. Furthermore, they described about the effect of student's prior knowledge and learning difficulties such as students' knowledge of Scalar and Vector quantity; and calculating skill. These responses portrayed science student teacher's knowledge of students' understanding of science and their content knowledge. However, they still have inadequate knowledge of instructional strategies and activities for enhance student learning. In summary, CoRes design can represented holistic overviews of science student teachers' PCK related

  2. `Hard science': a career option for socially and societally interested students? Grade 12 students' vocational interest gap explored

    NASA Astrophysics Data System (ADS)

    Struyf, Annemie; Boeve-de Pauw, Jelle; Van Petegem, Peter

    2017-11-01

    A key theme in science education research concerns the decline in young peoples' interest in science and the need for professionals in hard science. Goal Congruity Theory posits that an important aspect of the decision whether to pursue hard science for study or as a career is the perception that hard science careers do not fulfil social (working with people) and societal (serving or helping others) interests. In this qualitative study, we explore grade 12 students' perceptions about the social and societal orientation of hard science careers. Furthermore, we investigate the variation in students' social and societal interests. Six focus groups were conducted with 58 grade 12 students in Flanders. Our results indicate that a number of students hold stereotypical views about hard science careers' social orientation, while others believe cooperation with others is an important aspect of hard science careers nowadays. Furthermore, our results show that students believe hard science careers can be societally oriented in the sense that they often associate them with innovation or societal progress. Finally, our results indicate that students may differentiate direct versus indirect societal orientation. These findings contribute to literature regarding social and societal interests and students' perceptions of hard science careers.

  3. Advancing Water Science through Data Visualization

    NASA Astrophysics Data System (ADS)

    Li, X.; Troy, T.

    2014-12-01

    As water scientists, we are increasingly handling larger and larger datasets with many variables, making it easy to lose ourselves in the details. Advanced data visualization will play an increasingly significant role in propelling the development of water science in research, economy, policy and education. It can enable analysis within research and further data scientists' understanding of behavior and processes and can potentially affect how the public, whom we often want to inform, understands our work. Unfortunately for water scientists, data visualization is approached in an ad hoc manner when a more formal methodology or understanding could potentially significantly improve both research within the academy and outreach to the public. Firstly to broaden and deepen scientific understanding, data visualization can allow for more analyzed targets to be processed simultaneously and can represent the variables effectively, finding patterns, trends and relationships; thus it can even explores the new research direction or branch of water science. Depending on visualization, we can detect and separate the pivotal and trivial influential factors more clearly to assume and abstract the original complex target system. Providing direct visual perception of the differences between observation data and prediction results of models, data visualization allows researchers to quickly examine the quality of models in water science. Secondly data visualization can also improve public awareness and perhaps influence behavior. Offering decision makers clearer perspectives of potential profits of water, data visualization can amplify the economic value of water science and also increase relevant employment rates. Providing policymakers compelling visuals of the role of water for social and natural systems, data visualization can advance the water management and legislation of water conservation. By building the publics' own data visualization through apps and games about water

  4. Helping Students Write about Science without Plagiarizing

    ERIC Educational Resources Information Center

    Wheeler-Toppen, Jodi

    2006-01-01

    Writing is an integral part of science. The growth of scientific knowledge depends on scientists' ability to record their thoughts and discoveries for future scientists to build on. Everyday literacy is the basis of scientific literacy. In addition, writing about science helps students learn science. In order to transfer science concepts from what…

  5. Middle school girls: Experiences in a place-based education science classroom

    NASA Astrophysics Data System (ADS)

    Shea, Charlene K.

    The middle school years are a crucial time when girls' science interest and participation decrease (Barton, Tan, O'Neill, Bautista-Guerra, & Brecklin, 2013). The purpose of this study was to examine the experiences of middle school girls and their teacher in an eighth grade place-based education (PBE) science classroom. PBE strives to increase student recognition of the importance of educational concepts by reducing the disconnection between education and community (Gruenewald, 2008; Smith, 2007; Sobel, 2004). The current study provides two unique voices---the teacher and her students. I describe how this teacher and her students perceived PBE science instruction impacting the girls' participation in science and their willingness to pursue advanced science classes and science careers. The data were collected during the last three months of the girls' last year of middle school by utilizing observations, interviews and artifacts of the teacher and her female students in their eighth grade PBE science class. The findings reveal how PBE strategies, including the co-creation of science curriculum, can encourage girls' willingness to participate in advanced science education and pursue science careers. The implications of these findings support the use of PBE curricular strategies to encourage middle school girls to participate in advance science courses and science careers.

  6. Transforming student's discourse as a method of teaching science inquiry

    NASA Astrophysics Data System (ADS)

    Livingston, David

    2005-07-01

    A qualitative case study on the instructional practice of one secondary science teacher addresses the persistent reluctance of many science teachers to integrate the cultural resources and social practices of professional science communities into the science content they teach. The literature has shown that teachers' hesitation to implement a social and locally situated learning strategy curtails students' ability to draw upon the language of science necessary to co-construct and shape authentic science inquiry and in particular appropriate argument schemes. The study hypothesized that a teacher's dialogic facilitation of a particular social context and instructional practices enhances a students' ability to express verbally the claims and warrants that rise from evidence taken from their inquiries of natural phenomena. The study also tracks students' use of the Key Words and Ideas of this science curriculum for the purpose of assessing the degree of students' assimilation of these terms into their speech and written expressions of inquiry. The theoretical framework is Vygotskian (1978) and the analysis of the qualitative data is founded on Toulmin (1958), Walton (1996), Jimenez-Alexandre et al. (2000) and Shavelson (1996). The dialogic structure of this teacher's facilitation of student's science knowledge is shown to utilize students' presumptive statements to hone their construction of inductive or deductive arguments. This instructional practice may represent teacher-student activity within the zone of proximal development and supports Vygotsky's notion that a knowledgeable other is instrumental in transforming student's spontaneous talk into scientific speech. The tracking of the curriculum's Key Words and Ideas into students' speech and writing indicated that this teachers' ability to facilitate students' presumptuous reasoning into logic statements did not necessarily guarantee that they could post strong written expressions of this verbal know-how in

  7. The effect of science-technology-society issue instruction on the attitudes of female middle school students toward science

    NASA Astrophysics Data System (ADS)

    Mullinnix, Debra Lynn

    An assessment of the science education programs of the last thirty years reveals traditional science courses are producing student who have negative attitudes toward science, do not compete successfully in international science and mathematics competitions, are not scientifically literate, and are not interested in pursuing higher-level science courses. When the number of intellectually-capable females that fall into this group is considered, the picture is very disturbing. Berryman (1983) and Kahle (1985) have suggested the importance of attitude both, in terms of achievement in science and intention to pursue high-level science courses. Studies of attitudes toward science reveal that the decline in attitudes during grades four through eight was much more dramatic for females than for males. There exists a need, therefore, to explore alternative methods of teaching science, particularly in the middle school, that would increase scientific literacy, improve attitudes toward science, and encourage participation in higher-level science courses of female students. Yager (1996) has suggested that science-technology-society (STS) issue instruction does make significant changes in students' attitudes toward science, stimulates growth in science process skills, and increases concept mastery. The purpose of this study was to examine the effect STS issue instruction had on the attitudes of female middle school students toward science in comparison to female middle school students who experience traditional science instruction. Another purpose was to examine the effect science-technology-society issue instruction had on the attitudes of female middle school students in comparison to male middle school students. The pretests and the posttests were analyzed to examine differences in ten domains: enjoyment of science class; usefulness of information learned in science class; usefulness of science skills; feelings about science class in general; attitudes about what took place

  8. Science Cafes: Engaging graduate students one drink at a time!

    NASA Astrophysics Data System (ADS)

    Schiebel, H.; Chen, R. F.

    2016-02-01

    Science Cafes are events that take place in casual settings (pubs, coffeehouses) that are typically open to a broad audience and feature engaging conversations with scientists about particular topics. Science Cafes are a grassroots movement and exist on an international scale with a common goal of engaging broad audiences in informal scientific discussions. Graduate Students for Ocean Education (GrOE), funded by COSEE OCEAN (Center for Ocean Science Education Excellence—Ocean Communities in Science Education And social Networks), has taken this model and honed in on a specific audience: graduate students. Through monthly Science Cafes with varying themes (ocean acidification to remote sensing), GrOE has engaged over two hundred graduate students throughout New England. While attendance at the Science Cafes is consistent, the presence and engagement of graduate students on the GrOE Facebook page is now growing, a trend attributed to having face-to-face contact with scientists and other graduate students.

  9. Secondary Science Teachers' and Students' Involvement in a Primary School Community of Science Practice: How It Changed Their Practices and Interest in Science

    NASA Astrophysics Data System (ADS)

    Forbes, Anne; Skamp, Keith

    2016-02-01

    MyScience is a primary science education initiative in which being in a community of practice is integral to the learning process. In this initiative, stakeholder groups—primary teachers, primary students and mentors—interact around the `domain' of `investigating scientifically'. This paper builds on three earlier publications and interprets the findings of the views of four secondary science teachers and five year 9 secondary science students who were first-timer participants—as mentors—in MyScience. Perceptions of these mentors' interactions with primary students were analysed using attributes associated with both `communities of practice' and the `nature of science'. Findings reveal that participation in MyScience changed secondary science teachers' views and practices about how to approach the teaching of science in secondary school and fostered primary-secondary links. Year 9 students positively changed their views about secondary school science and confidence in science through participation as mentors. Implications for secondary science teaching and learning through participation in primary school community of science practice settings are discussed.

  10. The Science Standards and Students of Color

    ERIC Educational Resources Information Center

    Strachan, Samantha L.

    2017-01-01

    In a 2014 report, the National Center for Education Statistics (NCES) projected that by the year 2022, minority students will outnumber non-Hispanic white students enrolled in public schools. As the diversity of the student population in the United States increases, concerns arise about student performance in science classes, especially among…

  11. Historical short stories as nature of science instruction in secondary science classrooms: Science teachers' implementation and students' reactions

    NASA Astrophysics Data System (ADS)

    Reid-Smith, Jennifer Ann

    This study explores the use of historical short stories as nature of science (NOS) instruction in thirteen secondary science classes. The stories focus on the development of science ideas and include statements and questions to draw students' and teachers' attention to key NOS ideas and misconceptions. This study used mixed methods to examine how teachers implement the stories, factors influencing teachers' implementation, the impact on students' NOS understanding, students' interest in the stories and factors correlated with their interest. Teachers' implementation decisions were influenced by their NOS understanding, curricula, time constraints, perceptions of student ability and resistance, and student goals. Teachers implementing stories at a high-level of effectiveness were more likely to make instructional decisions to mitigate constraints from the school environment and students. High-level implementers frequently referred to their learning goals for students as a rationale for implementing the stories even when facing constraints. Teachers implementing at a low-level of effectiveness were more likely to express that constraints inhibited effective implementation. Teachers at all levels of implementation expressed concern regarding the length of the stories and time required to fully implement the stories. Additionally, teachers at all levels of implementation expressed a desire for additional resources regarding effective story implementation and reading strategies. Evidence exists that the stories can be used to improve students' NOS understanding. However, under what conditions the stories are effective is still unclear. Students reported finding the stories more interesting than textbook readings and many students enjoyed learning about scientists and the development of science idea. Students' interest in the stories is correlated with their attitudes towards reading, views of effective science learning, attributions of academic success, and interest in

  12. Comparison of health risk behavior, awareness, and health benefit beliefs of health science and non-health science students: An international study.

    PubMed

    Peltzer, Karl; Pengpid, Supa; Yung, Tony K C; Aounallah-Skhiri, Hajer; Rehman, Rehana

    2016-06-01

    This study determines the differences in health risk behavior, knowledge, and health benefit beliefs between health science and non-health science university students in 17 low and middle income countries. Anonymous questionnaire data were collected in a cross-sectional survey of 13,042 undergraduate university students (4,981 health science and 8,061 non-health science students) from 17 universities in 17 countries across Asia, Africa, and the Americas. Results indicate that overall, health science students had the same mean number of health risk behaviors as non-health science university students. Regarding addictive risk behavior, fewer health science students used tobacco, were binge drinkers, or gambled once a week or more. Health science students also had a greater awareness of health behavior risks (5.5) than non-health science students (4.6). Linear regression analysis found a strong association with poor or weak health benefit beliefs and the health risk behavior index. There was no association between risk awareness and health risk behavior among health science students and an inverse association among non-health science students. © 2015 Wiley Publishing Asia Pty Ltd.

  13. Increasing High School Student Interest in Science: An Action Research Study

    NASA Astrophysics Data System (ADS)

    Vartuli, Cindy A.

    An action research study was conducted to determine how to increase student interest in learning science and pursuing a STEM career. The study began by exploring 10th-grade student and teacher perceptions of student interest in science in order to design an instructional strategy for stimulating student interest in learning and pursuing science. Data for this study included responses from 270 students to an on-line science survey and interviews with 11 students and eight science teachers. The action research intervention included two iterations of the STEM Career Project. The first iteration introduced four chemistry classes to the intervention. The researcher used student reflections and a post-project survey to determine if the intervention had influence on the students' interest in pursuing science. The second iteration was completed by three science teachers who had implemented the intervention with their chemistry classes, using student reflections and post-project surveys, as a way to make further procedural refinements and improvements to the intervention and measures. Findings from the exploratory phase of the study suggested students generally had interest in learning science but increasing that interest required including personally relevant applications and laboratory experiences. The intervention included a student-directed learning module in which students investigated three STEM careers and presented information on one of their chosen careers. The STEM Career Project enabled students to explore career possibilities in order to increase their awareness of STEM careers. Findings from the first iteration of the intervention suggested a positive influence on student interest in learning and pursuing science. The second iteration included modifications to the intervention resulting in support for the findings of the first iteration. Results of the second iteration provided modifications that would allow the project to be used for different academic levels

  14. Science Fairs: A Qualitative Study of Their Impact on Student Science Inquiry Learning and Attitudes toward STEM

    ERIC Educational Resources Information Center

    Schmidt, Kathleen M.; Kelter, Paul

    2017-01-01

    Little is known about the impact of science fair participation on student science inquiry learning. Furthermore, there is only a small research base relating to science fair participation and student attitudes toward science, technology, engineering, and mathematics (STEM) careers and coursework. In this study, 41 seventh-grade science fair…

  15. Using a Concept Inventory to Assess the Reasoning Component of Citizen-Level Science Literacy: Results from a 17,000-Student Study†

    PubMed Central

    Nuhfer, Edward B.; Cogan, Christopher B.; Kloock, Carl; Wood, Gregory G.; Goodman, Anya; Delgado, Natalie Zayas; Wheeler, Christopher W.

    2016-01-01

    After articulating 12 concepts for the reasoning component of citizen-level science literacy and restating these as assessable student learning outcomes (SLOs), we developed a valid and reliable assessment instrument for addressing the outcomes with a brief 25-item science literacy concept inventory (SLCI). In this paper, we report the results that we obtained from assessing the citizen-level science literacy of 17,382 undergraduate students, 149 graduate students, and 181 professors. We address only findings at or above the 99.9% confidence level. We found that general education (GE) science courses do not significantly advance understanding of science as a way of knowing. However, the understanding of science’s way of knowing does increase through academic ranks, indicating that the extended overall academic experience better accounts for increasing such thinking capacity than do science courses alone. Higher mean institutional SLCI scores correlate closely with increased institutional selectivity, as measured by the institutions’ higher mean SAT and ACT scores. Socioeconomic factors of a) first-generation student, b) English as a native language, and c) interest in commitment to a science major are unequally distributed across ethnic groups. These factors proved powerful in accounting for the variations in SLCI scores across ethnicities and genders. PMID:27047612

  16. Understanding Science Teaching Effectiveness: Examining How Science-Specific and Generic Instructional Practices Relate to Student Achievement in Secondary Science Classrooms

    ERIC Educational Resources Information Center

    Mikeska, Jamie N.; Shattuck, Tamara; Holtzman, Steven; McCaffrey, Daniel F.; Duchesneau, Nancy; Qi, Yi; Stickler, Leslie

    2017-01-01

    In order to create conditions for students' meaningful and rigorous intellectual engagement in science classrooms, it is critically important to help science teachers learn which strategies and approaches can be used best to develop students' scientific literacy. Better understanding how science teachers' instructional practices relate to student…

  17. Increasing High School Student Interest in Science: An Action Research Study

    ERIC Educational Resources Information Center

    Vartuli, Cindy A.

    2016-01-01

    An action research study was conducted to determine how to increase student interest in learning science and pursuing a STEM career. The study began by exploring 10th-grade student and teacher perceptions of student interest in science in order to design an instructional strategy for stimulating student interest in learning and pursuing science.…

  18. Using Art to Teach Students Science Outdoors: How Creative Science Instruction Influences Observation, Question Formation, and Involvement

    NASA Astrophysics Data System (ADS)

    Cone, Christina Schull

    Elementary education has become increasingly divided into subjects and focused on the demand for high math and reading scores. Consequently, teachers spend less time devoted to science and art instruction. However, teaching art and science is crucial to developing creative and rational thinking, especially for observation and questioning skills. In this study, third grade students attending an urban school in Portland, Oregon received instruction of an art strategy using observational and quantifying drawing techniques. This study examines, "Will an art strategy observing the local environment help students make observations and ask questions?" and "In what ways are student learning and perspectives of science affected by the art strategy?" The independent variable is the art strategy developed for this study. There are three dependent variables: quality of student observations, quality of questions, and themes on student learning and perspectives of science. I predicted students would develop strong observation and questioning skills and that students would find the strategy useful or have an increased interest in science. The art scores were high for relevance and detail, but not for text. There were significant correlations between art scores and questions. Interviews revealed three themes: observations create questions, drawing is helpful and challenging, and students connected to science. By examining science through art, students were engaged and created strong observations and questions. Teachers need to balance unstructured drawing time with scaffolding for optimal results. This study provides an integrated science and art strategy that teachers can use outdoors or adapt for the classroom.

  19. Gesticulating Science: Emergent Bilingual Students' Use of Gestures

    ERIC Educational Resources Information Center

    Ünsal, Zeynep; Jakobson, Britt; Wickman, Per-Olof; Molander, Bengt-Olov

    2018-01-01

    This article examines how emergent bilingual students used gestures in science class, and the consequences of students' gestures when their language repertoire limited their possibilities to express themselves. The study derived from observations in two science classes in Sweden. In the first class, 3rd grade students (9-10 years old) were…

  20. Inquiry and Groups: Student Interactions in Cooperative Inquiry-Based Science

    ERIC Educational Resources Information Center

    Woods-McConney, Amanda; Wosnitza, Marold; Sturrock, Keryn L.

    2016-01-01

    Science education research has recommended cooperative inquiry based science in the primary science context for more than two decades but after more than 20 years, student achievement in science has not substantially improved. This study, through direct observation and analysis, investigated content-related student interactions in an authentic…

  1. Project BioEYES: Accessible Student-Driven Science for K–12 Students and Teachers

    PubMed Central

    Shuda, Jamie R.; Butler, Valerie G.; Vary, Robert; Farber, Steven A.

    2016-01-01

    BioEYES, a nonprofit outreach program using zebrafish to excite and educate K–12 students about science and how to think and act like scientists, has been integrated into hundreds of under-resourced schools since 2002. During the week-long experiments, students raise zebrafish embryos to learn principles of development and genetics. We have analyzed 19,463 participating students’ pre- and post-tests within the program to examine their learning growth and attitude changes towards science. We found that at all grade levels, BioEYES effectively increased students’ content knowledge and produced favorable shifts in students’ attitudes about science. These outcomes were especially pronounced in younger students. Having served over 100,000 students, we find that our method for providing student-centered experiences and developing long-term partnerships with teachers is essential for the growth and sustainability of outreach and school collaborations. PMID:27832064

  2. The Effect of Environmental Science Projects on Students' Environmental Knowledge and Science Attitudes

    ERIC Educational Resources Information Center

    Al-Balushi, Sulaiman M.; Al-Aamri, Shamsa S.

    2014-01-01

    The current study explores the effectiveness of involving students in environmental science projects for their environmental knowledge and attitudes towards science. The study design is a quasi-experimental pre-post control group design. The sample was 62 11th-grade female students studying at a public school in Oman. The sample was divided into…

  3. Interactive Higher Education Instruction to Advance STEM Instruction in the Environmental Sciences - the Brownfield Action Model

    NASA Astrophysics Data System (ADS)

    Liddicoat, J. C.; Bower, P.

    2015-12-01

    The U.S. Environmental Protection Agency estimates that presently there are over half a million brownfields in the United States, but this number only includes sites for which an Environmental Site Assessment has been conducted. The actual number of brownfields is certainly in the millions and constitutes one of the major environmental issues confronting all communities today. Taught in part or entirely online for more than 15 years in environmental science, engineering, and hydrology courses at over a dozen colleges, universities, and high schools in the United States, Brownfield Action (BA) is an interactive, web-based simulation that combines scientific expertise, constructivist education philosophy, and multimedia to advance the teaching of environmental science (Bower et al., 2011, 2014; Liddicoat and Bower, 2015). In the online simulation and classroom, students form geotechnical consulting companies with a peer chosen at random to solve a problem in environmental forensics. The BA model contains interdisciplinary scientific and social information that are integrated within a digital learning environment that encourages students to construct their knowledge as they learn by doing. As such, the approach improves the depth and coherence of students understanding of the course material. Like real-world environmental consultants and professionals, students are required to develop and apply expertise from a wide range of fields, including environmental science and engineering as well as journalism, medicine, public health, law, civics, economics, and business management. The overall objective is for students to gain an unprecedented appreciation of the complexity, ambiguity, and risk involved in any environmental issue, and to acquire STEM knowledge that can be used constructively when confronted with such an issue.

  4. High School Physics Students' Personal Epistemologies and School Science Practice

    NASA Astrophysics Data System (ADS)

    Alpaslan, Muhammet Mustafa; Yalvac, Bugrahan; Loving, Cathleen

    2017-11-01

    This case study explores students' physics-related personal epistemologies in school science practices. The school science practices of nine eleventh grade students in a physics class were audio-taped over 6 weeks. The students were also interviewed to find out their ideas on the nature of scientific knowledge after each activity. Analysis of transcripts yielded several epistemological resources that students activated in their school science practice. The findings show that there is inconsistency between students' definitions of scientific theories and their epistemological judgments. Analysis revealed that students used several epistemological resources to decide on the accuracy of their data including accuracy via following the right procedure and accuracy via what the others find. Traditional, formulation-based, physics instruction might have led students to activate naive epistemological resources that prevent them to participate in the practice of science in ways that are more meaningful. Implications for future studies are presented.

  5. Advancing the Science of Implementation in Primary Health Care.

    PubMed

    Bazemore, Andrew; Neale, Anne Victoria; Lupo, Phillip; Seehusen, Dean

    2018-01-01

    Implementation Science is commonly described as the study of methods and approaches that promote the uptake and use of evidence-based interventions into routine practice and policymaking. In this issue of JABFM , investigators share a wealth of new insights from the frontlines of Implementation Science in primary care: what it is, how we are doing it, and how it is advancing the evidence base of primary care. The breadth of implementation science in primary care is affirmed by the range of topics covered, from thought leader recommendations on future directions for the field, to reports on how best practices in policy and practice are shaping primary care implementation in the United States and Canada. There are also important updates on agents of primary care implementation themselves, such as practice facilitators, geriatric care teams, and family physicians interested in providing obstetric care. Other articles report on novel practice transformation efforts that advance health promotion and disease prevention, and innovative approaches to identifying and addressing social determinants of health in primary care practices and the communities they serve. The articles seem to generate as many new questions as they answer, and highlight the need for continued emphasis on advancing the science of implementation in primary health care. © Copyright 2018 by the American Board of Family Medicine.

  6. Science Learning Motivation as Correlate of Students' Academic Performances

    ERIC Educational Resources Information Center

    Libao, Nhorvien Jay P.; Sagun, Jessie John B.; Tamangan, Elvira A.; Pattalitan, Agaton P., Jr.; Dupa, Maria Elena D.; Bautista, Romiro G.

    2016-01-01

    This study was designed to analyze the relationship of students' learning motivation and their academic performances in science. The study made use of 21 junior and senior Biological Science students to conclude on the formulated research problems. The respondents had a good to very good motivation in learning science. In general, the extent of…

  7. Evaluation of Students' Energy Conception in Environmental Science

    ERIC Educational Resources Information Center

    Park, Mihwa; Johnson, Joseph A.

    2016-01-01

    While significant research has been conducted on students' conceptions of energy, alternative conceptions of energy have not been actively explored in the area of environmental science. The purpose of this study is to examine students' alternative conceptions in the environmental science discipline through the analysis of responses of first year…

  8. How do we interest students in science?

    NASA Astrophysics Data System (ADS)

    Murray, L.

    2016-02-01

    In today's world science literacy is now, more than ever, critical to society. However, today's technically savvy student tends to be bored by "cook-book" laboratory exercises and dated lecture style, which typifies the way that most science courses are taught. To enhance student interest in and understanding of the sciences, we developed two unique programs, in which teachers were provided with the tools and hands-on experience that enabled them to implement research- and inquiry-based projects with their students. The approach was based a framework that is student driven and enables active participation and innovation in the study of the environment. The framework involved selection of a theme and an activity that captured the interest of the participants, participant development of research or investigative questions based on the theme, experimentation to address the research questions, formulation of conclusions, and communication of these results. The projects consisted of two parts: a professional development institute for teachers and the classroom implementation of student research projects, both of which incorporated the framework process. The institutes focused on modeling the framework process, with teachers actively developing questions, researching the question, formulating results and conclusions. This method empowered teachers to be confident in the implementation of the process with their students. With support from project staff, teachers followed up by incorporating the method of teaching with their students. Evaluation results from the programs concluded that projects such as these can increase student interest in and understanding of the scientific process.

  9. The Ph.D. Process - A Student's Guide to Graduate School in the Sciences

    NASA Astrophysics Data System (ADS)

    Bloom, Dale F.; Karp, Jonathan D.; Cohen, Nicholas

    1999-02-01

    The Ph.D. Process offers the essential guidance that students in the biological and physical sciences need to get the most out of their years in graduate school. Drawing upon the insights of numerous current and former graduate students, this book presents a rich portrayal of the intellectual and emotional challenges inherent in becoming a scientist, and offers the informed, practical advice a "best friend" would give about each stage of the graduate school experience. What are the best strategies for applying to a graduate program? How are classes conducted? How should I choose an advisor and a research project? What steps can I take now to make myself more "employable" when I get my degree? What goes on at the oral defense? Through a balanced, thorough examination of issues ranging from lab etiquette to stress management, the authors--each a Ph.D. in the sciences--provide the vital information that will allow students to make informed decisions all along the way to the degree. Headlined sections within each chapter make it fast and easy to look up any subject, while dozens of quotes describing personal experiences in graduate programs from people in diverse scientific fields contribute invaluable real-life expertise. Special attention is also given to the needs of international students.Read in advance, this book prepares students for each step of the graduate school experience that awaits them. Read during the course of a graduate education, it serves as a handy reference covering virtually all major issues and decisions a doctoral candidate is likely to face. The Ph.D. Process is the one book every graduate student in the biological and physical sciences can use to stay a step ahead, from application all the way through graduation.

  10. Neighborhood Science Stories: Bridging Science Standards and Urban Students' Lives

    ERIC Educational Resources Information Center

    Burke, Christopher

    2007-01-01

    Shelter, distribution of resources, adaptation and food sources are all key topics in teaching fifth grade students ecosystems. These terms and ideas are often presented in value neutral terms in the standard science curriculum. These terms have radically different connotations in different communities. In this paper students' fictional narrative…

  11. Student achievement in science: A longitudinal look at individual and school differences

    NASA Astrophysics Data System (ADS)

    Martinez, Alina

    The importance of science in today's technological society necessitates continued attention to students' experiences in science and specifically their achievement in science. There is a need to look at gender and race/ethnicity simultaneously when studying students' experiences in science and to explore factors related to higher achievement among students. Using data from the Longitudinal Study of American Youth, this study contributes to existing literature on student achievement in science by simultaneously exploring the effects of race/ethnicity and gender. Capitalizing on the availability of yearly science achievement scores, I present trajectories of student achievement from 7th to 12th grade. This study also includes an exploration of school effects. Overall, student achievement in science increases from 7th to 12th grade, although some leveling is seen in later grades. Growth in achievement differs by both gender and race/ethnicity, but racial/ethnic differences are larger than gender differences. Hispanic, Black, Asian, and White males score higher, on average, throughout the secondary grades than their female counterparts. Achievement scores of Asian students are consistently higher than White students, who in turn score higher than Hispanic and finally Black students. Both background and science-related factors help explain variation in achievement status and growth in achievement. Parental education is positively associated with achievement status among all groups except Black students for whom there is no effect of parental education. Science related resources in the home are positively associated with student achievement and the effect of these resources increases in later grades. Student achievement in science is also positively related to student course taking and attitude toward science. Furthermore, both the negative effect of viewing science as a male domain, which exists for males and females, and the positive effect of parental support for

  12. Girls in Engineering, Mathematics and Science, GEMS: A Science Outreach Program for Middle-School Female Students

    ERIC Educational Resources Information Center

    Dubetz, Terry A.; Wilson, Jo Ann

    2013-01-01

    Girls in Engineering, Mathematics and Science (GEMS) is a science and math outreach program for middle-school female students. The program was developed to encourage interest in math and science in female students at an early age. Increased scientific familiarity may encourage girls to consider careers in science and mathematics and will also help…

  13. Bringing Science to Life for Students, Teachers and the Community

    NASA Astrophysics Data System (ADS)

    Pratt, K.

    2012-04-01

    Bringing Science to Life for Students, Teachers and the Community Prior to 2008, 5th grade students at two schools of the New Haven Unified School District consistently scored in the bottom 20% of the California State Standards Test for science. Teachers in the upper grades reported not spending enough time teaching science, which is attributed to lack of time, resources or knowledge of science. A proposal was written to the National Oceanic and Atmospheric Administration's Bay Watershed Education Grant program and funding was received for Bringing Science to Life for Students, Teachers and the Community to address these concerns and instill a sense of stewardship in our students. This program engages and energizes students in learning science and the protection of the SF Bay Watershed, provides staff development for teachers, and educates the community about conservation of our local watershed. The project includes a preparation phase, outdoor phase, an analysis and reporting phase, and teacher training and consists of two complete units: 1) The San Francisco Bay Watershed Unit and 2) the Marine Environment Unit. At the end of year 5, our teachers were teaching more science, the community was engaged in conservation of the San Francisco Bay Watershed and most importantly, student scores increased on the California Science Test at one site by over 121% and another site by 152%.

  14. The efficacy of student-centered instruction in supporting science learning.

    PubMed

    Granger, E M; Bevis, T H; Saka, Y; Southerland, S A; Sampson, V; Tate, R L

    2012-10-05

    Transforming science learning through student-centered instruction that engages students in a variety of scientific practices is central to national science-teaching reform efforts. Our study employed a large-scale, randomized-cluster experimental design to compare the effects of student-centered and teacher-centered approaches on elementary school students' understanding of space-science concepts. Data included measures of student characteristics and learning and teacher characteristics and fidelity to the instructional approach. Results reveal that learning outcomes were higher for students enrolled in classrooms engaging in scientific practices through a student-centered approach; two moderators were identified. A statistical search for potential causal mechanisms for the observed outcomes uncovered two potential mediators: students' understanding of models and evidence and the self-efficacy of teachers.

  15. Effects of different forms of physiology instruction on the development of students' conceptions of and approaches to science learning.

    PubMed

    Lin, Yi-Hui; Liang, Jyh-Chong; Tsai, Chin-Chung

    2012-03-01

    The purpose of this study was to investigate students' conceptions of and approaches to learning science in two different forms: internet-assisted instruction and traditional (face-to-face only) instruction. The participants who took part in the study were 79 college students enrolled in a physiology class in north Taiwan. In all, 46 of the participants were from one class and 33 were from another class. Using a quasi-experimental research approach, the class of 46 students was assigned to be the "internet-assisted instruction group," whereas the class of 33 students was assigned to be the "traditional instruction group." The treatment consisted of a series of online inquiry activities. To explore the effects of different forms of instruction on students' conceptions of and approaches to learning science, two questionnaires were administered before and after the instruction: the Conceptions of Learning Science Questionnaire and the Approaches to Learning Science Questionnaire. Analysis of covariance results revealed that the students in the internet-assisted instruction group showed less agreement than the traditional instruction group in the less advanced conceptions of learning science (such as learning as memorizing and testing). In addition, the internet-assisted instruction group displayed significantly more agreement than the traditional instruction group in more sophisticated conceptions (such as learning as seeing in a new way). Moreover, the internet-assisted instruction group expressed more orientation toward the approaches of deep motive and deep strategy than the traditional instruction group. However, the students in the internet-assisted instruction group also showed more surface motive than the traditional instruction group did.

  16. Preservice elementary teachers' personal science teaching efficacy and science teaching outcome expectancies: The influence of student teaching

    NASA Astrophysics Data System (ADS)

    Plourde, Lee Alton

    This study was unique in garnering an early view at how the deterioration of science teacher education begins. This investigation examined the impact of the student teaching semester on preservice elementary teachers' personal efficacy beliefs and outcome expectancy beliefs in science teaching. Participants in the study included the student teachers of three separate cohort groups commencing and completing their student teaching semester at the same time. Qualitative data were gathered from interviews and observations from selected individuals of these cohort groups. Quantitative and qualitative research methods were employed in the study. Utilizing a pretest and posttest one group research design, quantitative data were obtained from the administration of a psychometric test, Science Teaching Efficacy Belief Instrument for preservice teachers (STEBI-B). The pretest was administered at the beginning of the student teaching semester, before the student teachers began their "soloing" teaching, and the posttest was administered at the completion of the student teaching semester and "soloing" period. Qualitative data were derived from interviews and observations which were audio recorded and transcribed. The results of this study revealed that the student teaching semester did not have a statistically significant impact on the subjects' sense of personal self-efficacy, but the influence was statistically significant in regards to the student teachers' beliefs about children's ability to learn science. Data gathered through interviews and observations suggested that beliefs appear to originate from one or more of the following: a lack of practical work, personal involvement, and hands-on manipulation in science related activities in elementary, secondary, and tertiary education; a dependence of science courses on textbooks and lectures; the dispassionate association with science teachers/instructors; a focus on formalized tests with no performance assessments; the

  17. Students build glovebox at Space Science Center

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Students in the Young Astronaut Program at the Coca-Cola Space Science Center in Columbus, GA, constructed gloveboxes using the new NASA Student Glovebox Education Guide. The young astronauts used cardboard copier paper boxes as the heart of the glovebox. The paper boxes transformed into gloveboxes when the students pasted poster-pictures of an actual NASA microgravity science glovebox inside and outside of the paper boxes. The young astronauts then added holes for gloves and removable transparent top covers, which completed the construction of the gloveboxes. This image is from a digital still camera; higher resolution is not available.

  18. The Impact of an Informal Science Program on Students' Science Knowledge and Interest

    ERIC Educational Resources Information Center

    Zandstra, Anne Maria

    2012-01-01

    In this sequential explanatory mixed methods study, quantitative and qualitative data were used to measure the impact of an informal science program on eleventh grade students' science knowledge and interest. The local GEAR UP project has been working for six years with a cohort of students who were in eleventh and twelfth grade during the time of…

  19. Inspiring Inquiry: Scientists, science teachers, and GK-12 students learning climate science together

    NASA Astrophysics Data System (ADS)

    Stwertka, C.; Blonquist, J.; Feener, D.

    2010-12-01

    A major communication gap exists between climate scientists, educators, and society. As a result, findings from climate research, potential implications of climate change, and possible mitigation strategies are not fully understood and accepted outside of the climate science community. A good way to begin bridging the gap is to teach climate science to students in public schools. TGLL (Think Globally, Learn Locally) is an NSF GK-12 program based at the University of Utah, which partners graduate students in the biological, geological and atmospheric sciences with middle and high school teachers in the Salt Lake City School District to improve the communication skills of Fellows and enhance inquiry-based science teaching and learning in the classroom. Each TGLL Fellow works in the same classroom(s) throughout the year, developing his or her scientific communication skills while providing teachers with content knowledge, resources, classroom support, and enhancing the experience of students such that science becomes an interesting and accessible tool for acquiring knowledge. The TGLL Fellows work closely as a group to develop inquiry-based teaching modules (a series of lessons) and a field trip that involve students in doing authentic science. Lessons are designed to apply national and Utah core curriculum concepts to broader scientific issues such as habitat alteration, pollution and disturbance, invasive species, and infectious disease, with the focus of the 2010-2011 school year being climate change. The TGLL Global Climate Change module contains lesson plans on climate temporal and spatial scales, temperature variation, energy balance, the carbon cycle, the greenhouse effect, climate feedback loops, anthropogenic climate change indicators, climate change consequences and impacts, and actions students can take to reduce greenhouse gas emissions. The capstone experience for the module is a “Backyard Climate Change” field trip to a local pristine canyon

  20. SoSTI Course: An Elective Science Course for Thai Upper Secondary School Non-Science Students

    ERIC Educational Resources Information Center

    Pruekpramool, Chaninan; Phonphok, Nason; White, Orvil L.; Musikul, Kusalin

    2013-01-01

    This study is aimed to develop the interdisciplinary SoSTI (science of sound in traditional Thai musical instruments) course for Thai non-science upper secondary school students to study the students' attitudes toward science before and after studying from the course. The SoSTI course development is based on the interdisciplinary concept model and…

  1. Building Model NASA Satellites: Elementary Students Studying Science Using a NASA-Themed Transmedia Book Featuring Digital Fabrication Activities

    ERIC Educational Resources Information Center

    Tillman, Daniel; An, Song; Boren, Rachel; Slykhuis, David

    2014-01-01

    This study assessed the impact of nine lessons incorporating a NASA-themed transmedia book featuring digital fabrication activities on 5th-grade students (n = 29) recognized as advanced in mathematics based on their academic record. Data collected included a pretest and posttest of science content questions taken from released Virginia Standards…

  2. Teachers' participation in research programs improves their students' achievement in science.

    PubMed

    Silverstein, Samuel C; Dubner, Jay; Miller, Jon; Glied, Sherry; Loike, John D

    2009-10-16

    Research experience programs engage teachers in the hands-on practice of science. Program advocates assert that program participation enhances teachers' skills in communicating science to students. We measured the impact of New York City public high-school science teachers' participation in Columbia University's Summer Research Program on their students' academic performance in science. In the year before program entry, students of participating and nonparticipating teachers passed a New York State Regents science examination at the same rate. In years three and four after program entry, participating teachers' students passed Regents science exams at a rate that was 10.1% higher (P = 0.049) than that of nonparticipating teachers' students. Other program benefits include decreased teacher attrition from classroom teaching and school cost savings of U.S. $1.14 per $1 invested in the program.

  3. Research Microcultures as Socialization Contexts for Underrepresented Science Students.

    PubMed

    Thoman, Dustin B; Muragishi, Gregg A; Smith, Jessi L

    2017-06-01

    How much does scientific research potentially help people? We tested whether prosocial-affordance beliefs (PABs) about science spread among group members and contribute to individual students' motivation for science. We tested this question within the context of research experience for undergraduates working in faculty-led laboratories, focusing on students who belong to underrepresented minority (URM) groups. Longitudinal survey data were collected from 522 research assistants in 41 labs at six institutions. We used multilevel modeling, and results supported a socialization effect for URM students: The aggregate PABs of their lab mates predicted the students' own initial PABs, as well as their subsequent experiences of interest and their motivation to pursue a career in science, even after controlling for individual-level PABs. Results demonstrate that research labs serve as microcultures of information about the science norms and values that influence motivation. URM students are particularly sensitive to this information. Efforts to broaden participation should be informed by an understanding of the group processes that convey such prosocial values.

  4. Scientific Literacy and Student Attitudes: Perspectives from PISA 2006 science

    NASA Astrophysics Data System (ADS)

    Bybee, Rodger; McCrae, Barry

    2011-01-01

    International assessments provide important knowledge about science education and help inform decisions about policies, programmes, and practices in participating countries. In 2006, science was the primary domain for the Programme for International Student Assessment (PISA), supported by the Organisation for Economic Cooperation and Development (OECD) and conducted by the Australian Council for Educational Research (ACER). Compared to the school curriculum orientation of Trends in International Math and Science Study (TIMSS), PISA provides a perspective that emphasises the application of knowledge to science and technology-related life situations. The orientation of PISA includes both knowledge and attitudes as these contribute to students' competencies that are central to scientific literacy. In addition to students' knowledge and competencies, the 2006 PISA survey gathered data on students' interest in science, support for scientific enquiry, and responsibility towards resources and environments. The survey used both a non-contextualised student questionnaire and contextualised questions. The latter is an innovative approach which embedded attitudinal questions at the conclusion of about two-thirds of the test units. The results presented in this article make connections between students' attitudes and interests in science and scientific literacy.

  5. The Meyerhoff Way: How the Meyerhoff Scholarship Program Helps Black Students Succeed in the Sciences

    NASA Astrophysics Data System (ADS)

    Stolle-McAllister, Kathy; Sto. Domingo, Mariano R.; Carrillo, Amy

    2011-02-01

    The Meyerhoff Scholarship Program (MSP) is widely recognized for its comprehensive approach of integrating students into the science community. The supports provided by the program aim to develop students, primarily Blacks, into scientists by offering them academic, social, and professional opportunities to achieve their academic and career goals. The current study allowed for a rich understanding of the perceptions of current Meyerhoff students and Meyerhoff alumni about how the program works. Three groups of MSP students were included in the study: (1) new Meyerhoff students participating in Summer Bridge ( n = 45), (2) currently enrolled Meyerhoff students ( n = 92), and (3) graduates of the MSP who were currently enrolled in STEM graduate studies or had completed an advanced STEM degree ( n = 19). Students described the importance of several key aspects of the MSP: financial support, the Summer Bridge Program, formation of Meyerhoff identity, belonging to the Meyerhoff family, and developing networks—all of which serve to integrate students both academically and socially.

  6. The Meyerhoff Way: How the Meyerhoff Scholarship Program Helps Black Students Succeed in the Sciences

    PubMed Central

    Stolle-McAllister, Kathy; Sto. Domingo, Mariano R.; Carrillo, Amy

    2011-01-01

    The Meyerhoff Scholarship Program (MSP) is widely recognized for its comprehensive approach of integrating students into the science community. The supports provided by the program aim to develop students, primarily Blacks, into scientists by offering them academic, social, and professional opportunities to achieve their academic and career goals. The current study allowed for a rich understanding of the perceptions of current Meyerhoff students and Meyerhoff alumni about how the program works. Three groups of MSP students were included in the study: 1) new Meyerhoff students participating in Summer Bridge (n=45), 2) currently enrolled Meyerhoff students (n=92), and 3) graduates of the MSP who were currently enrolled in STEM graduate studies or had completed an advanced STEM degree (n=19). Students described the importance of several key aspects of the Meyerhoff Scholars Program: financial support, the Summer Bridge Program, formation of Meyerhoff identity, belonging to the Meyerhoff family, and developing networks - all of which serve to integrate students both academically and socially. PMID:21850153

  7. ARCHES: Advancing Research & Capacity in Hydrologic Education and Science

    NASA Astrophysics Data System (ADS)

    Milewski, A.; Fryar, A. E.; Durham, M. C.; Schroeder, P.; Agouridis, C.; Hanley, C.; Rotz, R. R.

    2013-12-01

    Educating young scientists and building capacity on a global scale is pivotal towards better understanding and managing our water resources. Based on this premise the ARCHES (Advancing Research & Capacity in Hydrologic Education and Science) program has been established. This abstract provides an overview of the program, links to access information, and describes the activities and outcomes of student participants from the Middle East and North Africa. The ARCHES program (http://arches.wrrs.uga.edu) is an integrated hydrologic education approach using online courses, field programs, and various hands-on workshops. The program aims to enable young scientists to effectively perform the high level research that will ultimately improve quality of life, enhance science-based decision making, and facilitate collaboration. Three broad, interlinked sets of activities are incorporated into the ARCHES program: (A1) the development of technical expertise, (A2) the development of professional contacts and skills, and (A3) outreach and long-term sustainability. The development of technical expertise (A1) is implemented through three progressive instructional sections. Section 1: Students were guided through a series of online lectures and exercises (Moodle: http://wrrs.uga.edu/moodle) covering three main topics (Remote Sensing, GIS, and Hydrologic Modeling). Section 2: Students participated in a hands-on workshop hosted at the University of Georgia's Water Resources and Remote Sensing Laboratory (WRRSL). Using ENVI, ArcGIS, and ArcSWAT, students completed a series of lectures and real-world applications (e.g., Development of Hydrologic Models). Section 3: Students participated in field studies (e.g., measurements of infiltration, recharge, streamflow, and water-quality parameters) conducted by U.S. partners and international collaborators in the participating countries. The development of professional contacts and skills (A2) was achieved through the promotion of networking

  8. Hispanic Student Performance on Advanced Placement Exams: A Multiyear, National Investigation

    ERIC Educational Resources Information Center

    Jara, Teresa Dianne

    2013-01-01

    Purpose: The purpose of this study was to analyze the Advanced Placement exams that Hispanic students complete and to compare their overall performance with the performance of White students from 2000 to 2012. A second purpose was to determine which Advanced Placement exams were the most difficult exams for Hispanic students and which Advanced…

  9. Nursing students' attitudes to biomedical science lectures.

    PubMed

    Al-Modhefer, A K; Roe, S

    To explore what first-year nursing students believe to be the preferred characteristics of common foundation programme biomedical science lecturers, and to investigate whether students prefer active or passive learning. Survey and interview methodologies were used to explore the attitudes of a cohort of first-year nursing students at Queen's University Belfast. Questionnaires were distributed among 300 students. Individuals were asked to select five of a list of 14 criteria that they believed characterised the qualities of an effective lecturer. Informal interviews were carried out with five participants who were randomly selected from the sample to investigate which teaching methods were most beneficial in assisting their learning. Nursing students favoured didactic teaching and found interactivity in lectures intimidating. Students preferred to learn biomedical science passively and depended heavily on their instructors. In response to the survey, the authors propose a set of recommendations to enhance the learning process in large classes. This guidance includes giving clear objectives and requirements to students, encouraging active participation, and sustaining student interest through the use of improved teaching aids and innovative techniques.

  10. Students' Regulation of Their Emotions in a Science Classroom

    ERIC Educational Resources Information Center

    Tomas, Louisa; Rigano, Donna; Ritchie, Stephen M.

    2016-01-01

    Research aimed at understanding the role of the affective domain in student learning in classrooms has undergone a recent resurgence due to the need to understand students' affective response to science instruction. In a case study of a year 8 science class in North Queensland, students worked in small groups to write, film, edit, and produce…

  11. Reaching the Students: A New Approach to Enhancing Science Literacy

    NASA Astrophysics Data System (ADS)

    McNamara, B. J.; Burnham, C. C.

    2002-05-01

    Most NSF supported programs directed at improving science literacy among university students who are not majoring in SMET normally target instruction in introductory science or math classes. Unfortunately these efforts seldom reach the vast majority of students at a university because students can fulfil their science requirement by taking several other classes or class sections that are not impacted by the NSF program. Ideally it would be desirable to address the issues of science literacy and science anxiety among non-science majors in a single class that is required of essentially all undergraduates. We describe such a program which is being tested at NMSU. The targeted class is the university's freshman level English class. The idea behind this effort is to provide students with the skills they will need to be successful in their science classes in a less threatening humanities environment. We describe the problems that this approach raises, suggest solutions to these problems, and then discuss the overall status of this effort.

  12. Choosing Science: A Mixed-Methods Study of Factors Predicting Latino and Latina High School Students' Decisions to Pursue Science Degrees

    NASA Astrophysics Data System (ADS)

    Stein, Rachel S.

    Latino/as are an increasingly large subset of the United States population; however, they continue to be underrepresented in science careers. Because of this increase, research regarding Latino/as has improved, but there are still many gaps in regards to gender-specific predictors to pursue science careers. To address this lack of literature, the purpose of this study is to extend previous research and to develop a model of variables that significantly contribute to science career choice among Latino and Latina students when they graduate from high school. In particular the study addressed the following research questions: (1) What are the differences in science outcomes for Latino and Latina students? (2) What are the differences in factors involved in science outcomes for Latino and Latina students? (3) For Latino and Latina students what are the differences in the factors that predict students' choice to pursue a science degree and/or high scores on the Future Plans in Science Scale? (4) What are the differences in how Latino and Latina students experience science, which account for high achieving students to choose to pursue a science major? This study utilized an explanatory mixed-method approach to examine how cognitive, institutional, and motivational factors may be interrelated and play a role in Latino/as choice to pursue science. The first phase of the study incorporated the collection of survey and database information from 12th grade students at two Southern California high schools. The second phase of the study utilized follow-up focus group interviews to explore the specific differential experiences and views of Latino and Latina students. The results of the study demonstrated multiple significant predictors. Science self-concept and views towards science outside of school were the most significant predictors of students' choice to pursue science. Male students also had major predictors of Spanish proficiency, teacher encouragement, religious views

  13. Student Perceptions of Online Radiologic Science Courses.

    PubMed

    Papillion, Erika; Aaron, Laura

    2017-03-01

    To evaluate student perceptions of the effectiveness of online radiologic science courses by examining various learning activities and course characteristics experienced in the online learning environment. A researcher-designed electronic survey was used to obtain results from students enrolled in the clinical portion of a radiologic science program that offers online courses. The survey consisted of elements associated with demographics, experience, and perceptions related to online radiologic science courses. Surveys were sent to 35 program directors of Joint Review Committee on Education in Radiologic Technology-accredited associate and bachelor's degree programs with requests to share the survey with students. The 38 students who participated in the survey identified 4 course characteristics most important for effective online radiologic science courses: a well-organized course, timely instructor feedback, a variety of learning activities, and informative documents, such as course syllabus, calendar, and rubrics. Learner satisfaction is a successful indicator of engagement in online courses. Descriptive statistical analysis indicated that elements related to the instructor's role is one of the most important components of effectiveness in online radiologic science courses. This role includes providing an organized course with informative documents, a variety of learning activities, and timely feedback and communication. Although online courses should provide many meaningful learning activities that appeal to a wide range of learning styles, the nature of the course affects the types of learning activities used and therefore could decrease the ability to vary learning activities. ©2017 American Society of Radiologic Technologists.

  14. Interest, Attitudes and Images Related to Science: Combining Students' Voices with the Voices of School Science, Teachers, and Popular Science

    ERIC Educational Resources Information Center

    Christidou, Vasilia

    2011-01-01

    During the last decades students' science-related interests, attitudes, and images of science and scientists, and their differentiations according to gender, culture, and socio-economic status have been investigated by a multitude of research studies. These aspects of students' voices seem to be interrelated and to also affect students'…

  15. Student Engagement and Empowerment Through Earth System Science

    NASA Astrophysics Data System (ADS)

    Low, R.; Schnurrenberger, D.

    2001-12-01

    Through ESSEA's curricula, we promote empowerment of our diverse student body through access to excellence in science education and technology. Global change, by virtue of its economic relevance and environmental urgency, engages students in science inquiry. Global change is emerging as a political issue as countries with fewer resources are less able to buffer their economic systems from hardships resulting from climatic change. The ESS and global change emphasis facilitates in-depth classroom examination of the social ramifications of science and technology as required by Minnesota's state science standards. Access to ESSEA courses for in-service teachers is promoted by several programmatic initiatives of the University of Minnesota. High school and undergraduate versions of the on-line course are now in development. Summer research experiences for teachers, research projects by secondary classrooms tracking local environmental change, and involvement of graduate student scientists as on-line mentors of the ESSEA courses are components of a broader program that is building a multidisciplinary science-based learning community in Minnesota. ESSEA is the flagship program of Science CentrUM, a consortium of science and education colleges at the University of Minnesota promoting excellence in science education through content-based professional development for K-12 educators.

  16. Perceived self-efficacy and student-teacher relationships among diverse Title I students' achievement in science

    NASA Astrophysics Data System (ADS)

    Larry, Triaka A.

    The need for more diversity in STEM-related careers and college majors is urgent. Self-efficacy and student-teacher relationships are factors that have been linked to influencing students’ pursuit of subject-specific careers and academic achievement. The impact of self-efficacy and student perceptions of teacher interpersonal behaviors on student achievement have been extensively researched in the areas of Mathematics and English, however, most studies using science achievement, as a criterion variable, were conducted using non-diverse, White upper middle class to affluent participants. In order to determine the strength of relationships between perceived science self-efficacy, and student perceptions of teacher interpersonal behaviors as factors that influence science achievement (science GPA), the Science Self-Efficacy Questionnaire (SSEQ) and Questionnaire on Teacher Interactions (QTI) were administered to twelfth grade students enrolled at a highly diverse urban Title I high school, while controlling for demographics, defined as gender, ethnicity, and minority status. Using a hierarchical multiple linear regression analysis, results demonstrated that the predictor variables (i.e., gender, ethnicity, minority status, science self-efficacy, and teacher interpersonal behaviors) accounted for 20.8% of the variance in science GPAs. Science self-efficacy made the strongest unique contribution to explaining science GPA, while minority status and gender were found to be statistically significant contributors to the full model as well. Ethnicity and teacher interpersonal behaviors did not make a statistically significant contribution to the variance in science GPA, and accounted for ≤ 1% of the variance. Implications and recommendations for future research are subsequently given.

  17. An elective course to engage student pharmacists in elementary school science education.

    PubMed

    Woodard, Lisa J; Wilson, Judith S; Blankenship, James; Quock, Raymond M; Lindsey, Marti; Kinsler, Janni J

    2011-12-15

    To develop and assess the impact of an elective course (HealthWISE) on student pharmacists' skills in communication and health promotion and elementary school students' knowledge of and attitudes toward science. Three colleges and schools of pharmacy collaborated to develop a 1-credit elective course that used online and classroom teaching and learning techniques to prepare student pharmacists to teach science in elementary school classrooms. Student pharmacists delivered 6 science lessons to elementary students over the course of 2 months. In weekly journal reflections and a final paper, student pharmacists reported improved communication and health promotion skills. Elementary teachers reported they were satisfied with student pharmacists' performance in the classroom. On pretest and posttest evaluations, elementary students demonstrated increased science knowledge and enhanced enthusiasm for science following the lessons taught by student pharmacists. The HealthWISE elective course provided positive benefit for student pharmacists, elementary school teachers, and elementary students.

  18. Laptop Use, Interactive Science Software, and Science Learning among At-Risk Students

    ERIC Educational Resources Information Center

    Zheng, Binbin; Warschauer, Mark; Hwang, Jin Kyoung; Collins, Penelope

    2014-01-01

    This year-long, quasi-experimental study investigated the impact of the use of netbook computers and interactive science software on fifth-grade students' science learning processes, academic achievement, and interest in further science, technology, engineering, and mathematics (STEM) study within a linguistically diverse school district in…

  19. Impact of Texas high school science teacher credentials on student performance in high school science

    NASA Astrophysics Data System (ADS)

    George, Anna Ray Bayless

    A study was conducted to determine the relationship between the credentials held by science teachers who taught at a school that administered the Science Texas Assessment on Knowledge and Skills (Science TAKS), the state standardized exam in science, at grade 11 and student performance on a state standardized exam in science administered in grade 11. Years of teaching experience, teacher certification type(s), highest degree level held, teacher and school demographic information, and the percentage of students who met the passing standard on the Science TAKS were obtained through a public records request to the Texas Education Agency (TEA) and the State Board for Educator Certification (SBEC). Analysis was performed through the use of canonical correlation analysis and multiple linear regression analysis. The results of the multiple linear regression analysis indicate that a larger percentage of students met the passing standard on the Science TAKS state attended schools in which a large portion of the high school science teachers held post baccalaureate degrees, elementary and physical science certifications, and had 11-20 years of teaching experience.

  20. The Role Model Effect on Gender Equity: How are Female College Students Influenced by Female Teaching Assistants in Science?

    NASA Astrophysics Data System (ADS)

    Ebert, Darilyn

    The gender gap of women in science is an important and unresolved issue in higher education and occupational opportunities. The present study was motivated by the fact that there are typically fewer females than males advancing in science, and therefore fewer female science instructor role models. This observation inspired the questions: Are female college students influenced in a positive way by female science teaching assistants (TAs), and if so how can their influence be measured? The study tested the hypothesis that female TAs act as role models for female students and thereby encourage interest and increase overall performance. To test this "role model" hypothesis, the reasoning ability and self-efficacy of a sample of 724 introductory college biology students were assessed at the beginning and end of the Spring 2010 semester. Achievement was measured by exams and course work. Performance of four randomly formed groups was compared: 1) female students with female TAs, 2) male students with female TAs, 3) female students with male TAs, and 4) male students with male TAs. Based on the role model hypothesis, female students with female TAs were predicted to perform better than female students with male TAs. However, group comparisons revealed similar performances across all four groups in achievement, reasoning ability and self-efficacy. The slight differences found between the four groups in student exam and coursework scores were not statistically significant. Therefore, the results did not support the role model hypothesis. Given that both lecture professors in the present study were males, and given that professors typically have more teaching experience, finer skills and knowledge of subject matter than do TAs, a future study that includes both female science professors and female TAs, may be more likely to find support for the hypothesis.

  1. Study Skills of Arts and Science College Students

    ERIC Educational Resources Information Center

    Sekar, J. Master Arul; Rajendran, K. K.

    2015-01-01

    The main objective of this study is to find out the level of study skills of arts and science college students. Study Skills Check List developed and standardized by Virginia University, Australia (2006) is used to collect the relevant data. The sample consists of 216 Government arts and science college students of Tiruchirappalli district, Tamil…

  2. Student Opinion in England about Science and Technology

    ERIC Educational Resources Information Center

    Jenkins, Edgar

    2006-01-01

    An earlier paper in this Journal (Jenkins & Nelson, 2005) drew upon the findings of the Relevance of Science Education Project (ROSE) to report the attitudes of students in England towards their secondary school science education. The present paper draws upon the same project to explore what the same students, almost all in their penultimate…

  3. Achievement of Serbian Eighth Grade Students in Science

    ERIC Educational Resources Information Center

    Antonijevic, Radovan

    2006-01-01

    The paper considers the main results and some educational implications of the TIMSS 2003 assessment conducted in Serbia in the fields of the science achievement of Serbian eighth grade students and the science curriculum context of their achievement. There were 4264 students in the sample. It was confirmed that Serbian eighth graders had made…

  4. The Effects of Science Models on Students' Understanding of Scientific Processes

    NASA Astrophysics Data System (ADS)

    Berglin, Riki Susan

    This action research study investigated how the use of science models affected fifth-grade students' ability to transfer their science curriculum to a deeper understanding of scientific processes. This study implemented a variety of science models into a chemistry unit throughout a 6-week study. The research question addressed was: In what ways do using models to learn and teach science help students transfer classroom knowledge to a deeper understanding of the scientific processes? Qualitative and quantitative data were collected through pre- and post-science interest inventories, observations field notes, student work samples, focus group interviews, and chemistry unit tests. These data collection tools assessed students' attitudes, engagement, and content knowledge throughout their chemistry unit. The results of the data indicate that the model-based instruction program helped with students' engagement in the lessons and understanding of chemistry content. The results also showed that students displayed positive attitudes toward using science models.

  5. Advancing Research in the National Science Foundation's Advanced Technological Education Program

    ERIC Educational Resources Information Center

    Wingate, Lori A.

    2017-01-01

    Advanced Technological Education is distinct from typical National Science Foundation programs in that it is essentially a training--not research--program, and most grantees are located at technical and two-year colleges. This article presents empirical data on the status of research in the program, discusses the program's role in supporting NSF's…

  6. Science Pedagogy, Teacher Attitudes, and Student Success

    ERIC Educational Resources Information Center

    Munck, Miriam

    2007-01-01

    Through a century-long process, there has been a resolute effort to shape science teaching in elementary classrooms. A close look at science teaching and student learning may provide a better understanding of what really happens in elementary classrooms. This study examines relationships between science teaching pedagogy, teachers' science…

  7. Investigating University Students' Preferences to Science Communication Skills: A Case of Prospective Science Teacher in Indonesia

    ERIC Educational Resources Information Center

    Suprapto, Nadi; Ku, Chih-Hsiung

    2016-01-01

    The purpose of this study was to investigate Indonesian university students' preferences to science communication skills. Data collected from 251 students who were majoring in science education program. The Learning Preferences to Science Communication (LPSC) questionnaire was developed with Indonesian language and validated through an exploratory…

  8. Post-Secondary Science Students' Explanations of "Randomness" and "Variation" and Implications for Science Learning

    ERIC Educational Resources Information Center

    Gougis, Rebekka Darner; Stomberg, Janet F.; O'Hare, Alicia T.; O'Reilly, Catherine M.; Bader, Nicholas E.; Meixner, Thomas; Carey, Cayelan C.

    2017-01-01

    The concepts of randomness and variation are pervasive in science. The purpose of this study was to document how post-secondary life science students explain randomness and variation, infer relationships between their explanations, and ability to describe and identify appropriate and inappropriate variation, and determine if students can identify…

  9. Attitudes and Views of Medical Students toward Science and Pseudoscience.

    PubMed

    Peña, Adolfo; Paco, Ofelia

    2004-12-01

    To know opinions, attitudes and interest of medical students toward science and pseudoscience. A questionnaire was administered to 124 medical students of the San Marcos University in Lima, Peru. 173 students were surveyed. The response rate was 72%. Eighty-three percent (100/121) of respondents said that science is the best source of knowledge, 67% (82/123) said they were interested in science and technology news, 76% said they had not read any science magazine or book (other than medical texts and journals) in the last five years. Thirteen percent (16/124) of respondents said that astrology is "very scientific" and 40% (50/124) stated that it is "sort of scientific." 50% of respondents shared the opinion that some people possess psychic powers. Medical students' attitudes toward science are generally not favorable.

  10. Science That Matters: The Importance of a Cultural Connection in Underrepresented Students' Science Pursuit.

    PubMed

    Jackson, Matthew C; Galvez, Gino; Landa, Isidro; Buonora, Paul; Thoman, Dustin B

    2016-01-01

    Recent research suggests that underrepresented minority (URM) college students, and especially first-generation URMs, may lose motivation to persist if they see science careers as unable to fulfill culturally relevant career goals. In the present study, we used a mixed-methods approach to explore patterns of motivation to pursue physical and life sciences across ethnic groups of freshman college students, as moderated by generational status. Results from a longitudinal survey (N = 249) demonstrated that freshman URM students who enter with a greater belief that science can be used to help their communities identified as scientists more strongly over time, but only among first-generation college students. Analysis of the survey data were consistent with content analysis of 11 transcripts from simultaneously conducted focus groups (N = 67); together, these studies reveal important differences in motivational characteristics both across and within ethnicity across educational generation status. First-generation URM students held the strongest prosocial values for pursuing a science major (e.g., giving back to the community). URM students broadly reported additional motivation to increase the status of their family (e.g., fulfilling aspirations for a better life). These findings demonstrate the importance of culturally connected career motives and for examining intersectional identities to understand science education choices and inform efforts to broaden participation. © 2016 M. C. Jackson et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  11. Feminist teacher research and students' visions of science: Listening as research and pedagogy

    NASA Astrophysics Data System (ADS)

    Howes, Elaine Virginia

    In this dissertation, I bring together methodologies deriving from teacher research and feminist research to study students' visions of the content and processes of science. Through listening intently to students' talk and studying their writing, I address the following questions: (1) What can intensive listening to students tell us about students' thinking and beliefs concerning their images of science as a social enterprise? (2) What kinds of classroom situations encourage and support students' expressions of their lives and beliefs in connection to science? (3) How can feminist theories of education and critiques of science inform our efforts for "science for all"? This study is organized by focusing on the connection between national standards for science education and feminist theories of pedagogy and feminist critiques of science. From this starting point, students' ideas are presented and interpreted thematically. The resonances and dissonances between students' ideas, standards' goals, and feminist theory are explicated. Current best practice in science education demands that science teachers attend to what their students are thinking. For this dissertation, I have taken a perspective that is slightly askew from that of listening to students in order to support or challenge their thinking about natural phenomena. During my teaching, I set up situations in which students could speak about their images of science; these situations are integral to this study. My research goal was to listen in order to learn what students were thinking and believing--but not necessarily in order to change that thinking or those beliefs. My work is meant to cultivate common ground between feminist scholarship and science education, while deepening our understanding of students' thinking about the activities and knowledge of science. I hope that this dissertation will open up conversations between science educators and their students around issues concerning students

  12. The Effect of Guided-Inquiry Instruction on 6th Grade Turkish Students' Achievement, Science Process Skills, and Attitudes Toward Science

    NASA Astrophysics Data System (ADS)

    Koksal, Ela Ayse; Berberoglu, Giray

    2014-01-01

    The purpose of this study is to investigate the effectiveness of guided-inquiry approach in science classes over existing science and technology curriculum in developing content-based science achievement, science process skills, and attitude toward science of grade level 6 students in Turkey. Non-equivalent control group quasi-experimental design was used to investigate the treatment effect. There were 162 students in the experimental group and 142 students in the control group. Both the experimental and control group students took the Achievement Test in Reproduction, Development, and Growth in Living Things (RDGLT), Science Process Skills Test, and Attitudes Toward Science Questionnaire, as pre-test and post-test. Repeated analysis of variance design was used in analyzing the data. Both the experimental and control group students were taught in RDGLT units for 22 class hours. The results indicated the positive effect of guided-inquiry approach on the Turkish students' cognitive as well as affective characteristics. The guided inquiry enhanced the experimental group students' understandings of the science concepts as well as the inquiry skills more than the control group students. Similarly, the experimental group students improved their attitudes toward science more than the control group students as a result of treatment. The guided inquiry seems a transition between traditional teaching method and student-centred activities in the Turkish schools.

  13. Student Science Teachers' Ideas of the Digestive System

    ERIC Educational Resources Information Center

    Cardak, Osman

    2015-01-01

    The aim of this research is to reveal the levels of understanding of student science teachers regarding the digestive system. In this research, 116 student science teachers were tested by applying the drawing method. Upon the analysis of the drawings they made, it was found that some of them had misconceptions such as "the organs of the…

  14. Strategies for Science Student Achievement & Productive School Management

    ERIC Educational Resources Information Center

    Johnson, William L.

    2010-01-01

    There is an increasing literature pertaining to student achievement and school productivity. This session will present school and classroom strategies used in high school science classes at Robert E. Lee High School (5A) in Tyler, Texas. This year, 84% of the students at Lee passed the science TAKS test. Lee is also ranked in the top 1500 high…

  15. Moving to higher ground: Closing the high school science achievement gap

    NASA Astrophysics Data System (ADS)

    Mebane, Joyce Graham

    The purpose of this study was to examine the perceptions of West High School constituents (students, parents, teachers, administrators, and guidance counselors) about the readiness and interest of African American students at West High School to take Advanced Placement (AP) and International Baccalaureate (IB) science courses as a strategy for closing the achievement gap. This case study utilized individual interviews and questionnaires for data collection. The participants were selected biology students and their parents, teachers, administrators, and guidance counselors at West High School. The results of the study indicated that just over half the students and teachers, most parents, and all guidance counselors thought African American students were prepared to take AP science courses. Only one of the three administrators thought the students were prepared to take AP science courses. Between one-half and two-thirds of the students, parents, teachers, and administrators thought students were interested in taking an AP science course. Only two of the guidance counselors thought there was interest among the African American students in taking AP science courses. The general consensus among the constituents about the readiness and interest of African American students at West High School to take IB science courses was that it is too early in the process to really make definitive statements. West is a prospective IB school and the program is new and not yet in place. Educators at the West High School community must find reasons to expect each student to succeed. Lower expectations often translate into lower academic demands and less rigor in courses. Lower academic demands and less rigor in courses translate into less than adequate performance by students. When teachers and administrators maintain high expectations, they encourage students to aim high rather than slide by with mediocre effort (Lumsden, 1997). As a result of the study, the following suggestions should

  16. An exploration of equitable science teaching practices for students with learning disabilities

    NASA Astrophysics Data System (ADS)

    Morales, Marlene

    In this study, a mixed methods approach was used to gather descriptive exploratory information regarding the teaching of science to middle grades students with learning disabilities within a general education classroom. The purpose of this study was to examine teachers' beliefs and their practices concerning providing equitable opportunities for students with learning disabilities in a general education science classroom. Equitable science teaching practices take into account each student's differences and uses those differences to inform instructional decisions and tailor teaching practices based on the student's individualized learning needs. Students with learning disabilities are similar to their non-disabled peers; however, they need some differentiation in instruction to perform to their highest potential achievement levels (Finson, Ormsbee, & Jensen, 2011). In the quantitative phase, the purpose of the study was to identify patterns in the beliefs of middle grades science teachers about the inclusion of students with learning disabilities in the general education classroom. In the qualitative phase, the purpose of the study was to present examples of instruction in the classrooms of science education reform-oriented middle grades science teachers. The quantitative phase of the study collected data from 274 sixth through eighth grade teachers in the State of Florida during the 2007--2008 school year using The Teaching Science to Students with Learning Disabilities Inventory. Overall, the quantitative findings revealed that middle grades science teachers held positive beliefs about the inclusion of students with learning disabilities in the general education science classroom. The qualitative phase collected data from multiple sources (interviews, classroom observations, and artifacts) to develop two case studies of reform-oriented middle grades science teachers who were expected to provide equitable science teaching practices. Based on their responses to The

  17. Successful White teachers of Black students: Teaching across racial lines in urban middle school science classrooms

    NASA Astrophysics Data System (ADS)

    Coleman, Bobbie

    The majority of urban minority students, particularly Black students, continue to perform below proficiency on standardized state and national testing in all areas that seriously impact economically advanced career options, especially in areas involving science. If education is viewed as a way out of poverty, there is a need to identify pedagogical methodologies that assist Black students in achieving higher levels of success in science, and in school in general. The purpose of this study was to explore White teachers' and Black students' perceptions about the teaching strategies used in their low socioeconomic status (LSES) urban science classrooms, that led to academic success for Black students. Participants included three urban middle school White teachers thought to be the best science teachers in the school, and five randomly selected Black students from each of their classrooms. Methods of inquiry involving tenets of grounded theory were used to examine strategies teachers used to inspire Black students into academic success. Data collection included teacher and student interviews, field notes from classroom observations, group discussions, and questionaires. Data were analyzed using open, axial, and selective coding. The teachers' perceptions indicated that their prior belief systems, effective academic and personal communication, caring and nurturing strategies, using relevant and meaningful hands-on activities in small learner-centered groups, enhanced the learning capabilities of all students in their classrooms, especially the Black students. Black students' perceptions indicated that their academic success was attributable to what teachers personally thought about them, demonstrated that they cared, communicated with them on a personal and academic level, gave affirmative feedback, simplified, and explained content matter. Black students labeled teachers who had these attributes as "nice" teachers. The nurturing and caring behaviors of "nice" teachers

  18. Engaging with science: High school students in summer lab internships

    NASA Astrophysics Data System (ADS)

    Bequette, Marjorie Bullitt

    Years of research and rhetoric have suggested that students should be given the opportunity to work with practicing scientists as a way to develop more sophisticated ideas about the nature of science, yet little research about these experiences exists. This project uses a case study approach to examine the experience of eight high school students working part-time during one summer as research assistants in biomedical laboratories. The students completed small research studies under the supervision of scientist-mentors. This dissertation explores questions related to how these students learned to work in a lab, in what ways they grew to understand this scientific context, and how their own relationships with science changed. The goal of looking at these young adults' summer experiences in science labs is to make suggestions for three settings: programs like this one, where high school students work closely with scientists in lab settings; other programs where scientists and students work together; and science education more generally. Analysis of pre- and post-interviews with students, and extensive observations of their laboratory work, suggests that students develop new ideas about the culture of science and the day-to-day workings of the labs. These ideas hold potential power for the students, and other participants in both similar and different educational settings, as they prepare for lives as scientifically engaged adults.

  19. GLOBE Cornerstones: Advancing Student Research Worldwide through Virtual and Regional Symposia

    NASA Astrophysics Data System (ADS)

    Bourgeault, J.; Malmberg, J. S.; Murphy, T.; Darche, S.; Ruscher, P.; Jabot, M.; Odell, M. R. L.; Kennedy, T.

    2016-12-01

    The GLOBE Program, an international science and education program, encourages students from around the world to participate in authentic scientific research of the Earth system. Students use scientific protocols to explore their local environments, compare their findings with other GLOBE schools both in the U.S. and in other participating countries, and then share their findings via the GLOBE.gov website. In order to facilitate this scientific communication, GLOBE held an international virtual science fair in 2016. The science fair included 105 research projects submitted from GLOBE students in various countries, 37 mentoring scientists, and 24 judges. Mentors and judges were members of the GLOBE International STEM Professionals Network and located around the world. On a national level, NSF funded six face-to-face U.S. regional student research symposia where 164 students presented 67 research projects to scientists for review. The 1.5 day events included student activities, teacher professional development, tours of NASA centers, and opportunities for students to engage with scientists to discover both traditional and non-traditional STEM career pathways. To support teachers, the leadership team offered and archived webinars on science practices; from field investigation basics to creating a poster and GLOBE partners provided guidance along the way. This presentation will include the framework for the regional and international science symposia , the scoring rubrics and evaluation, recruitment of judges and mentors, and lessons learned.

  20. Is Science for Us? Black Students' and Parents' Views of Science and Science Careers

    ERIC Educational Resources Information Center

    Archer, Louise; Dewitt, Jennifer; Osborne, Jonathan

    2015-01-01

    There are widespread policy concerns to improve (widen and increase) science, technology, engineering, and mathematics participation, which remains stratified by ethnicity, gender, and social class. Despite being interested in and highly valuing science, Black students tend to express limited aspirations to careers in science and remain…

  1. The Relation between Teachers' Personal Teaching Efficacy and Students' Academic Efficacy for Science and Inquiry Science

    ERIC Educational Resources Information Center

    Kurien, Sarah Anjali

    2011-01-01

    The purpose of this study was to examine the relation between middle school teachers' personal teaching efficacy and their students' academic efficacy for science and inquiry science. Teachers can create classroom environments that promote the development of students' science self-efficacy (Britner & Pajares, 2006). Teachers who are efficacious…

  2. The Conceptions of Learning Science by Laboratory among University Science-Major Students: Qualitative and Quantitative Analyses

    ERIC Educational Resources Information Center

    Chiu, Yu-Li; Lin, Tzung-Jin; Tsai, Chin-Chung

    2016-01-01

    Background: The sophistication of students' conceptions of science learning has been found to be positively related to their approaches to and outcomes for science learning. Little research has been conducted to particularly investigate students' conceptions of science learning by laboratory. Purpose: The purpose of this research, consisting of…

  3. Elementary Teachers' Perceptions of Teaching Science to Improve Student Content Knowledge

    NASA Astrophysics Data System (ADS)

    Stephenson, Robert L.

    The majority of Grade 5 students demonstrate limited science knowledge on state assessments. This trend has been documented since 2010 with no evidence of improvement. Because state accountability formulas include proficiency scores and carry sanctions against districts that fail to meet proficiency thresholds, improved student performance in science is an important issue to school districts. The purpose of this study was to explore elementary teachers' perceptions about their students' science knowledge, the strategies used to teach science, the barriers affecting science teaching, and the self-efficacy beliefs teachers maintain for teaching science. This study, guided by Vygotsky's social constructivist theory and Bandura's concept of self-efficacy, was a bounded instrumental case study in which 15 participants, required to be teaching K-5 elementary science in the county, were interviewed. An analytic technique was used to review the qualitative interview data through open coding, clustering, and analytical coding resulting in identified categorical themes that addressed the research questions. Key findings reflect students' limited content knowledge in earth and physical science. Teachers identified barriers including limited science instructional time, poor curricular resources, few professional learning opportunities, concern about new state standards, and a lack of teaching confidence. To improve student content knowledge, teachers identified the need for professional development. The project is a professional development series provided by a regional education service agency for K-5 teachers to experience science and engineering 3-dimensional learning. Area students will demonstrate deeper science content knowledge and benefit from improved science instructional practice and learning opportunities to become science problem solvers and innovative contributors to society.

  4. Students' conceptions of evidence during a university introductory forensic science course

    NASA Astrophysics Data System (ADS)

    Yeshion, Theodore Elliot

    Students' Conceptions of Science, Scientific Evidence, and Forensic Evidence during a University Introductory Forensic Science Course This study was designed to examine and understand what conceptions undergraduate students taking an introductory forensic science course had about scientific evidence. Because the relationships between the nature of science, the nature of evidence, and the nature of forensic evidence are not well understood in the science education literature, this study sought to understand how these concepts interact and affect students' understanding of scientific evidence. Four participants were purposefully selected for this study from among 89 students enrolled in two sections of an introductory forensic science course taught during the fall 2005 semester. Of the 89 students, 84 were criminal justice majors with minimal science background and five were chemistry majors with academic backgrounds in the natural and physical sciences. All 89 students completed a biographical data sheet and a pre-instruction Likert scale survey consisting of twenty questions relating to the nature of scientific evidence. An evaluation of these two documents resulted in a purposeful selection of four varied student participants, each of whom was interviewed three times throughout the semester about the nature of science, the nature of evidence, and the nature of forensic evidence. The same survey was administered to the participants again at the end of the semester-long course. This study examined students' assumptions, prior knowledge, their understanding of scientific inference, scientific theory, and methodology. Examination of the data found few differences with regard to how the criminal justice majors and the chemistry majors responded to interview questions about forensic evidence. There were qualitative differences, however, when the same participants answered interview questions relating to traditional scientific evidence. Furthermore, suggestions are

  5. Introduce Science to Students Using the Environment: A Guide for Teachers of Native American Students.

    ERIC Educational Resources Information Center

    Richau, Deborah

    Written for science teachers of elementary and secondary Native American students, the guide offers 18 science-related activities that integrate science with Indian culture and life. A teacher preparation exercise is presented first to allow the teacher to look at him/herself and use the information as a tool to understanding the students'…

  6. Uncovering Black/African American and Latina/o students' motivation to learn science: Affordances to science identity development

    NASA Astrophysics Data System (ADS)

    Mahfood, Denise Marcia

    The following dissertation reports on a qualitative exploration that serves two main goals: (1) to qualitatively define and highlight science motivation development of Black/African American and Latina/o students as they learn science in middle school, high school, and in college and (2) to reveal through personal narratives how successful entry and persistence in science by this particular group is linked to the development of their science identities. The targeted population for this study is undergraduate students of color in science fields at a college or university. The theoretical frameworks for this study are constructivist theory, motivation theory, critical theory, and identity theories. The methodological approach is narrative which includes students' science learning experiences throughout the course of their academic lives. I use The Science Motivation Questionnaire II to obtain baseline data to quantitatively assess for motivation to learn science. Data from semi-structured interviews from selected participants were collected, coded, and configured into a story, and emergent themes reveal the important role of science learning in both informal and formal settings, but especially in informal settings that contribute to better understandings of science and the development of science identities for these undergraduate students of color. The findings have implications for science teaching in schools and teacher professional development in science learning.

  7. Sounding Out Science: Incorporating Audio Technology to Assist Students with Learning Differences in Science Education

    NASA Astrophysics Data System (ADS)

    Gomes, Clement V.

    With the current focus to have all students reach scientific literacy in the U.S, there exists a need to support marginalized students, such as those with Learning Disabilities/Differences (LD), to reach the same educational goals as their mainstream counterparts. This dissertation examines the benefits of using audio assistive technology on the iPad to support LD students to achieve comprehension of science vocabulary and semantics. This dissertation is composed of two papers, both of which include qualitative information supported by quantified data. The first paper, titled Using Technology to Overcome Fundamental Literacy Constraints for Students with Learning Differences to Achieve Scientific Literacy, provides quantified evidence from pretest and posttest analysis that audio technology can be beneficial for seventh grade LD students when learning new and unfamiliar science content. Analysis of observations and student interviews support the findings. The second paper, titled Time, Energy, and Motivation: Utilizing Technology to Ease Science Understanding for Students with Learning Differences, supports the importance of creating technology that is clear, audible, and easy for students to use so they benefit and desire to utilize the learning tool. Multiple correlation of Likert Survey analysis was used to identify four major items and was supported with analysis from observations of and interviews with students, parents, and educators. This study provides useful information to support the rising number of identified LD students and their parents and teachers by presenting the benefits of using audio assistive technology to learn science.

  8. Marine Science Summer Enrichment Camp's Impact Ocean Literacy for Middle School Students

    NASA Astrophysics Data System (ADS)

    Young, Victoria Jewel

    Although careers in science, technology, engineering, and mathematics have expanded in the United States, science literacy skills for K-12 students have declined from 2001 to 2011. Limited research has been conducted on the impact of science enrichment programs on the science literacy skills of K-12 students, particularly in marine science. The purpose of this study was to describe the impact of a marine science summer enrichment camp located in the eastern region of the United States on the ocean literacy skills of middle school students who participated in this camp. Weimar's learner centered teaching approach and the definition and principles of ocean literacy formed the conceptual framework. The central research question focused on how a marine science summer enrichment camp impacted the ocean literacy skills of middle grade students. A single case study research design was used with ten participants including 3 camp teachers, four students, and 3 parents of Grade 6-8 students who participated this camp in 2016. Data were collected from multiple sources including individual interviews of camp teachers, students, and parents, as well as camp documents and archival records. A constant comparative method was used to construct categories, determine emergent themes and discrepant data. Results indicated that the marine science camp positively impacted the ocean literacy skills of middle school students through an emphasis on a learner centered instructional approach. The findings of this study may provide a positive social impact by demonstrating active science literacy instructional strategies for teachers which can motivate students to continue studies in science and science related fields.

  9. Graduate Student Fellowship Program Effects on Attitude and Interest toward Science of Middle School Students

    ERIC Educational Resources Information Center

    Lindner, James R.; Rayfield, John; Briers, Gary; Johnson, Larry

    2012-01-01

    The purpose of this study was to describe the effects of a graduate student fellowship program on middle school students' attitude toward science and their interest in science. Using a descriptive and correlational research design, data were collected from 588 middle school students (grades 6, 7, and 8). Participants completed a pretest and a…

  10. Students' motivational beliefs in science learning, school motivational contexts, and science achievement in Taiwan

    NASA Astrophysics Data System (ADS)

    Wang, Cheng-Lung; Liou, Pey-Yan

    2017-05-01

    Taiwanese students are featured as having high academic achievement but low motivational beliefs according to the serial results of the Trends in Mathematics and Science Study (TIMSS). Moreover, given that the role of context has become more important in the development of academic motivation theory, this study aimed to examine the relationship between motivational beliefs and science achievement at both the student and school levels. Based on the Expectancy-Value Theory, the three motivational beliefs, namely self-concept, intrinsic value, and utility value, were the focuses of this study. The two-level hierarchical linear model was used to analyse the Taiwanese TIMSS 2011 eighth-grade student data. The results indicated that each motivational belief had a positive predictive effect on science achievement. Additionally, a positive school contextual effect of self-concept on science achievement was identified. Furthermore, school-mean utility value had a negative moderating effect on the relationship between utility value and science achievement. In conclusion, this study sheds light on the functioning of motivational beliefs in science learning among Taiwanese adolescents with consideration of the school motivational contexts.

  11. NITARP: Changing Perceptions of Science Among Secondary Students and Teachers

    NASA Astrophysics Data System (ADS)

    Kohrs, Russell; Kilts, Kelly; Urbanowski, Vincent; Rutherford, Thomas; Gorjian, Varoujan

    2017-01-01

    The NASA/IPAC Teacher Archival Research Program (NITARP) provides secondary teachers and their students with an authentic, high-level research experience. NITARP participants work alongside one another as colleagues, allowing both teachers and students to experience the challenges of actual research. Teachers and students learn that science doesn’t always follow the prescriptive methodology taught in most high schools. Current NITARP students and teachers were interviewed on how their perceptions of the methods by which science is really conducted changed over the course of the program. Following participation in the NITARP program, both teacher and student perceptions of how science operates were found to have changed in many ways.

  12. Perceptions of Science Graduating Students on their Learning Gains

    NASA Astrophysics Data System (ADS)

    Varsavsky, Cristina; Matthews, Kelly E.; Hodgson, Yvonne

    2014-04-01

    In this study, the Science Student Skills Inventory was used to gain understanding of student perceptions about their science skills set developed throughout their programme (scientific content knowledge, communication, scientific writing, teamwork, quantitative skills, and ethical thinking). The study involved 400 responses from undergraduate science students about to graduate from two Australian research-intensive institutions. For each skill, students rated on a four-point Likert scale their perception of the importance of developing the skill within the programme, how much they improved it throughout their undergraduate science programme, how much they saw the skill included in the programme, how confident they were about the skill, and how much they will use the skill in the future. Descriptive statistics indicate that overall, student perception of importance of these skills was greater than perceptions of improvement, inclusion in the programme, confidence, and future use. Quantitative skills and ethical thinking were perceived by more students to be less important. t-Test analyses revealed some differences in perception across different demographic groups (gender, age, graduate plans, and research experience). Most notably, gender showed significant differences across most skills. Implications for curriculum development are discussed, and lines for further research are given.

  13. Speaking Activities for the Advanced College-Bound Student.

    ERIC Educational Resources Information Center

    Henderson, Don

    Three activities for developing speaking skills of advanced English as second language students are presented. Impromptu speaking, extemporaneous speaking, and debate activities are designed to train students to organize concepts, develop spontaneous oral skills, and enhance confidence and clarity of thought. Impromptu speaking develops…

  14. An Elective Course to Engage Student Pharmacists in Elementary School Science Education

    PubMed Central

    Wilson, Judith S.; Blankenship, James; Quock, Raymond M.; Lindsey, Marti; Kinsler, Janni J.

    2011-01-01

    Objective. To develop and assess the impact of an elective course (HealthWISE) on student pharmacists’ skills in communication and health promotion and elementary school students’ knowledge of and attitudes toward science. Design. Three colleges and schools of pharmacy collaborated to develop a 1-credit elective course that used online and classroom teaching and learning techniques to prepare student pharmacists to teach science in elementary school classrooms. Student pharmacists delivered 6 science lessons to elementary students over the course of 2 months. Assessment. In weekly journal reflections and a final paper, student pharmacists reported improved communication and health promotion skills. Elementary teachers reported they were satisfied with student pharmacists’ performance in the classroom. On pretest and posttest evaluations, elementary students demonstrated increased science knowledge and enhanced enthusiasm for science following the lessons taught by student pharmacists. Conclusions. The HealthWISE elective course provided positive benefit for student pharmacists, elementary school teachers, and elementary students. PMID:22345722

  15. Advancing the Science of Community-Level Interventions

    PubMed Central

    Beehler, Sarah; Deutsch, Charles; Green, Lawrence W.; Hawe, Penelope; McLeroy, Kenneth; Miller, Robin Lin; Rapkin, Bruce D.; Schensul, Jean J.; Schulz, Amy J.; Trimble, Joseph E.

    2011-01-01

    Community interventions are complex social processes that need to move beyond single interventions and outcomes at individual levels of short-term change. A scientific paradigm is emerging that supports collaborative, multilevel, culturally situated community interventions aimed at creating sustainable community-level impact. This paradigm is rooted in a deep history of ecological and collaborative thinking across public health, psychology, anthropology, and other fields of social science. The new paradigm makes a number of primary assertions that affect conceptualization of health issues, intervention design, and intervention evaluation. To elaborate the paradigm and advance the science of community intervention, we offer suggestions for promoting a scientific agenda, developing collaborations among professionals and communities, and examining the culture of science. PMID:21680923

  16. Impact of SCALE-UP on science teaching self-efficacy of students in general education science courses

    NASA Astrophysics Data System (ADS)

    Cassani, Mary Kay Kuhr

    The objective of this study was to evaluate the effect of two pedagogical models used in general education science on non-majors' science teaching self-efficacy. Science teaching self-efficacy can be influenced by inquiry and cooperative learning, through cognitive mechanisms described by Bandura (1997). The Student Centered Activities for Large Enrollment Undergraduate Programs (SCALE-UP) model of inquiry and cooperative learning incorporates cooperative learning and inquiry-guided learning in large enrollment combined lecture-laboratory classes (Oliver-Hoyo & Beichner, 2004). SCALE-UP was adopted by a small but rapidly growing public university in the southeastern United States in three undergraduate, general education science courses for non-science majors in the Fall 2006 and Spring 2007 semesters. Students in these courses were compared with students in three other general education science courses for non-science majors taught with the standard teaching model at the host university. The standard model combines lecture and laboratory in the same course, with smaller enrollments and utilizes cooperative learning. Science teaching self-efficacy was measured using the Science Teaching Efficacy Belief Instrument - B (STEBI-B; Bleicher, 2004). A science teaching self-efficacy score was computed from the Personal Science Teaching Efficacy (PTSE) factor of the instrument. Using non-parametric statistics, no significant difference was found between teaching models, between genders, within models, among instructors, or among courses. The number of previous science courses was significantly correlated with PTSE score. Student responses to open-ended questions indicated that students felt the larger enrollment in the SCALE-UP room reduced individual teacher attention but that the large round SCALE-UP tables promoted group interaction. Students responded positively to cooperative and hands-on activities, and would encourage inclusion of more such activities in all of the

  17. Promoting and Scaffolding Elementary School Students' Attitudes Toward Science and Argumentation Through a Science and Society Intervention

    NASA Astrophysics Data System (ADS)

    Hong, Zuway-R.; Lin, Huann-shyang; Wang, Hsin-Hui; Chen, Hsiang-Ting; Yang, Kuay-Keng

    2013-07-01

    This study investigated the effects of a science and society intervention on elementary school students' argumentation skills and their attitudes toward science. One hundred and eleven fifth grade students volunteered as an experimental group to join a 12-week intervention; another 107 sixth grade students volunteered to be the comparison group. All participants completed the Student Questionnaire at the beginning and end of this study. Observation and interview results were used to triangulate and consolidate the quantitative findings. The data showed that after the intervention, the quality of the experimental group students' arguments and their attitudes toward science were significantly higher than their comparison group counterparts. In addition, the experimental group boys made significantly greater progress in the quality of their argumentation from the pretest to posttest than the girls; and low achievers made the most significant progress in their attitudes toward science and quality of argumentation. Interviews and observations indicated that their understandings of explanation and argumentation changed over the intervention. This indicated that a science and society intervention can enhance both the ability of students to develop strong arguments and their attitudes toward science.

  18. Designing for student engagement in middle school science: Collaborative problem-solving in environmental science, using nanotechnology and electron microscopy

    NASA Astrophysics Data System (ADS)

    Harmer, Andrea J.

    Engaging middle-school students in scientific inquiry is typically recognized as important, but difficult. Designed to foster learner engagement, this method used an online, problem-based, science inquiry that investigated the Lehigh Gap, Palmerton Superfund Site during five weeks of collaborative classroom sessions. The inquiry prototype was authored in WISE, the Web-Based Science Inquiry Environment headquartered at UC, Berkeley. Online materials, readings, and class sessions were augmented with remote access to an electron microscope to analyze Lehigh Gap samples and an introduction to nanoscale science and nanotechnology through the ImagiNations Web site at Lehigh University. Students contributed the artifacts they generated during their research to a university database and presented them to researchers at the university working on the same problem. This approach proved highly engaging and generated design and development guidelines useful to others interested in designing for student engagement and introducing nanoscale science and electron microscopy in middle school science. This study further found that students' engaged in science inquiry both behaviorally and emotionally and on several different levels. The various levels appeared to create two hierarchies of engagement, one based on behavioral criteria and the other based on emotional criteria. For students involved in the collaborative, problem-solving science, which included experts and access to their microscopes, the highest levels of engagement seemed to empower students and create in them a passion towards science. These hierarchies are illustrated with students' direct quotes, which prove that students engaged in this particular design of science inquiry. Students' engagement in the inquiry led to their achievements in understanding nanoscale science, nanotechnology, and electron microscopy and initiated positive attitude changes towards learning science.

  19. (re)producing Good Science Students: Girls' Participation in High School Physics

    NASA Astrophysics Data System (ADS)

    Carlone, Heidi B.

    In this ethnographic study, the author describes the meanings of science and science student in a physics classroom in an upper-middle-class high school and the ways girls participated within these meanings. The classroom practices reproduced prototypical meanings of science (as authoritative) and science student (as "dutiful"). The results highlight girls' embrace of prototypical school science. Yet at the end of the school year, the girls did not consider themselves "science people," nor did they want to pursue physics further. The author's interpretation of these results takes seriously girls' agency in producing the meaning of the physics class (as a way to polish one's transcript) and draws attention to the promoted identities (prototypical good student identities) in the classroom. The author argues that students' agency in resisting or accepting the practices, identities, and knowledge of school science is worth understanding for the improvement of science education.

  20. Critical incidents influencing students' selection of elective science

    NASA Astrophysics Data System (ADS)

    Essary, Danny Ray

    Purpose of the study. The purpose of the study was to investigate the critical incidents that determined high school students' self selection into and out of elective science classes. The Critical Incident Technique was used to gather data. Procedure. Subjects for study were 436 students attending five high schools within the geographical boundaries of a Northeast Texas County. Each student was enrolled in a senior level government/economics course during the spring semester of 1997. Students enrolled and in attendance during data collection procedures were subjects of the study. The subjects recorded 712 usable critical incidents. Incidents were categorized by examiners and a total of eleven incident categories emerged for analysis purposes. Incident frequencies were categorized by sample population, selectors, and nonselectors; subdivided by gender. Findings. The following categories emerged for study; (A) Mentored, (B) Requirements, (C) Personal Interest(s), (D) Level of Difficulty, (E) Time Restraints, (F) Future Concerns, (G) Grades, (H) Teacher, (I) Peer Influence, (J) Challenge, (K) Other Academic Experiences. Data were analyzed qualitatively to answer research questions and quantitatively to test hypotheses. There was an emergence of ten incident categories for nonselectors and an emergence of eleven incident categories for selectors. Of the twelve hypotheses, four failed to be rejected and eight were rejected. Conclusions. Nonselectors and selectors of elective science were influenced by various external factors. Requirements were influential for nonselectors. Nonselectors chose to select the minimum number of science classes necessary for graduation. Selectors were influenced by curriculum requirements, future concerns and mentors. Special programs that required extra science classes were influential in students' decisions to enroll in elective science. Gender differences were not influential for selectors or nonselectors of elective science.

  1. Increasing Student Participation in Science Fair Competitions

    ERIC Educational Resources Information Center

    Miles, Rhea

    2012-01-01

    In the summer of 2009, 22 African American middle school students in eastern North Carolina became participants in the Reach Up program to increase the number of underrepresented students participating in science-, technology-, engineering-, and mathematics-related activities. One of the goals of the program was for these students to participate…

  2. Teaching Advance Care Planning to Medical Students with a Computer-Based Decision Aid

    PubMed Central

    Levi, Benjamin H.

    2013-01-01

    Discussing end-of-life decisions with cancer patients is a crucial skill for physicians. This article reports findings from a pilot study evaluating the effectiveness of a computer-based decision aid for teaching medical students about advance care planning. Second-year medical students at a single medical school were randomized to use a standard advance directive or a computer-based decision aid to help patients with advance care planning. Students' knowledge, skills, and satisfaction were measured by self-report; their performance was rated by patients. 121/133 (91%) of students participated. The Decision-Aid Group (n=60) outperformed the Standard Group (n=61) in terms of students´ knowledge (p<0.01), confidence in helping patients with advance care planning (p<0.01), knowledge of what matters to patients (p=0.05), and satisfaction with their learning experience (p<0.01). Likewise, patients in the Decision Aid Group were more satisfied with the advance care planning method (p<0.01) and with several aspects of student performance. Use of a computer-based decision aid may be an effective way to teach medical students how to discuss advance care planning with cancer patients. PMID:20632222

  3. High School Students' Implicit Theories of What Facilitates Science Learning

    ERIC Educational Resources Information Center

    Parsons, Eileen Carlton; Miles, Rhea; Petersen, Michael

    2011-01-01

    Background: Research has primarily concentrated on adults' implicit theories about high quality science education for all students. Little work has considered the students' perspective. This study investigated high school students' implicit theories about what helped them learn science. Purpose: This study addressed (1) What characterizes high…

  4. The Effect of Home Related Science Activities on Students' Performance in Basic Science

    ERIC Educational Resources Information Center

    Obomanu, B. J.; Akporehwe, J. N.

    2012-01-01

    Our study investigated the effect of utilizing home related science activities on student's performance in some basic science concepts. The concepts considered were heart energy, ecology and mixtures. The sample consisted of two hundred and forty (240) basic junior secondary two (BJSS11) students drawn from a population of five thousand and…

  5. American Association for the Advancement of Science

    MedlinePlus

    ... KavliAwards_teaser(21).jpg 2017 AAAS Kavli Science Journalism Award Winners Named Full Story ... to Reject Tax Changes That Hit Graduate Students News_111517_AmishGenes_teaser.jpg Study of Amish Suggests Mutation Linked to Longer Life ...

  6. Science knowledge and cognitive strategy use among culturally and linguistically diverse students

    NASA Astrophysics Data System (ADS)

    Lee, Okhee; Fradd, Sandra H.; Sutman, Frank X.

    Science performance is determined, to a large extent, by what students already know about science (i.e., science knowledge) and what techniques or methods students use in performing science tasks (i.e., cognitive strategies). This study describes and compares science knowledge, science vocabulary, and cognitive strategy use among four diverse groups of elementary students: (a) monolingual English Caucasian, (b) African-American, (c) bilingual Spanish, and (d) bilingual Haitian Creole. To facilitate science performance in culturally and linguistically congruent settings, the study included student dyads and teachers of the same language, culture, and gender. Science performance was observed using three science tasks: weather phenomena, simple machines, and buoyancy. Data analysis involved a range of qualitative methods focusing on major themes and patterns, and quantitative methods using coding systems to summarize frequencies and total scores. The findings reveal distinct patterns of science knowledge, science vocabulary, and cognitive strategy use among the four language and culture groups. The findings also indicate relationships among science knowledge, science vocabulary, and cognitive strategy use. These findings raise important issues about science instruction for culturally and linguistically diverse groups of students.Received: 3 January 1995;

  7. Science Engagement and Literacy: A retrospective analysis for students in Canada and Australia

    NASA Astrophysics Data System (ADS)

    Woods-McConney, Amanda; Colette Oliver, Mary; McConney, Andrew; Schibeci, Renato; Maor, Dorit

    2014-07-01

    Given international concerns about students' pursuit (or more correctly, non-pursuit) of courses and careers in science, technology, engineering and mathematics, this study is about achieving a better understanding of factors related to high school students' engagement in science. The study builds on previous secondary analyses of Programme for International Student Assessment (PISA) datasets for New Zealand and Australia. For the current study, we compared patterns of science engagement and science literacy for male and female students in Canada and Australia. The study's secondary analysis revealed that for all PISA measures included under the conceptual umbrella of engagement in science (i.e. interest, enjoyment, valuing, self-efficacy, self-concept and motivation), 15-year-old students in Australia lagged their Canadian counterparts to varying, albeit modest, degrees. Our retrospective analysis further shows, however, that gender equity in science engagement and science literacy is evident in both Canadian and Australian contexts. Additionally, and consistent with our previous findings for indigenous and non-indigenous students in New Zealand and Australia, we found that for male and female students in both countries, the factor most strongly associated with variations in engagement in science was the extent to which students participate in science activities outside of school. In contrast, and again for both Canadian and Australian students, the factors most strongly associated with science literacy were students' socioeconomic backgrounds, and the amount of formal time spent doing science. The implications of these results for science educators and researchers are discussed.

  8. Advances in Science and Technology Education. ICASE 1987 Yearbook.

    ERIC Educational Resources Information Center

    Holbrook, Jack, Comp.; Chisman, Dennis, Comp.

    This yearbook gathers together trends and advances in science and technology education. The articles were reproduced by ICASE to give a better insight into recent developments and to promote international communication. Short accounts on the authors are given to indicate their involvement in science and technology education and the source of their…

  9. Investigating the Relationship between Students' Science Knowledge and Their Reported Sources of Information

    NASA Astrophysics Data System (ADS)

    Buxner, S.; Romine, J.; Impey, C.; Nieberding, M.

    2015-11-01

    Building on a 25 year study of undergraduate students' science literacy, we have been investigating where students report getting information about science. In this study, we investigated the relationship between students' basic science knowledge, responses about studying something scientifically, and where they report gaining information about science. Data for this study was collected through an online survey of astronomy courses during 2014. Responses were collected from a total of 400 students through online surveys. Most survey respondents were non-science majors in the first two years of college who had taken 3 or fewer college science courses. Our results show a relationship between students who report online searches and Wikipedia as reliable sources of information and lower science literacy scores, although there was no relationship between science knowledge and where students report getting information about science. Our results suggest that information literacy is an important component to overall science literacy.

  10. Bringing Science to Life for Students, Teachers and the Community

    NASA Astrophysics Data System (ADS)

    Pratt, Kimberly

    2010-05-01

    Prior to 2008, 5th grade students at two schools of the New Haven Unified School District consistently scored in the bottom 20% of the California State Standards Test for science. Teachers in the upper grades reported not spending enough time teaching science, which is attributed to lack of time, resources or knowledge of science. A proposal was written to the National Oceanic and Atmospheric Administration's Bay Watershed Education Grant program and funding was received for Bringing Science to Life for Students, Teachers and the Community to address these concerns and instill a sense of stewardship in our students. This program engages and energizes students in learning science and the protection of the SF Bay Watershed, provides staff development for teachers, and educates the community about conservation of our local watershed. The project includes a preparation phase, outdoor phase, an analysis and reporting phase, and teacher training and consists of two complete units: 1) The San Francisco Bay Watershed Unit and 2) the Marine Environment Unit. At the end of the three-year program, teachers were teaching more science, the community was engaged in conservation of the San Francisco Bay Watershed and most importantly, student scores increased on the California Science Test at one site by over 70% and another site by 120%.

  11. Trapped between the two cultures: Urban college students' attitudes toward science

    NASA Astrophysics Data System (ADS)

    Dawson, Roy Edward

    Most Americans agree that science plays an important part in maintaining our leadership role in economics, health, and security. Yet when it comes to science and math we appear to be baffled. Only 25% of Americans understand the process of science well enough to make informed judgment about scientific research reported in the media (National Science Foundation, 1998). What is it that turns Americans away from science? Is it our culture, schools, families, or friends? This study investigates urban college students' attitudes toward science to determine what changes might promote increased participation in the questions, ethical implications and culture of science. Volunteers completed a science questionnaire which included multiple-choice and open-answer questions. The questions were divided into the categories of individual characteristics, home/family, peers, and school/teachers. The multiple-choice questions were analyzed with quantitative statistical techniques. The open-answer questions were used to rate each student's attitude toward science and then analyzed with qualitative methods. Thirteen factors were significant in predicting science attitude but none of them, by itself, explained a large amount of variation. A multiple regression model indicated that the significant factors (in order of importance) were watching science television with your family, having a father not employed in science, having friends who like science, and imagining yourself to be a successful student. A hierarchical multiple regression analysis indicated that the categories of individual characteristics, family, and peers were all significant contributors to the model's prediction of science attitude. School environment/teachers did not add significant predictive power to the model. The qualitative results indicated that the factors of (1) a student's previous experience in science classes and (2) the curriculum philosophy which his or her science teachers employed appeared to be the

  12. Epistemologies and scientific reasoning skills among undergraduate science students

    NASA Astrophysics Data System (ADS)

    Mollohan, Katherine N.

    Non-cognitive factors such as students' attitudes and beliefs toward a subject and their proficiency in scientific reasoning are important aspects of learning within science disciplines. Both factors have been studied in relation to science education in various discplines. This dissertation presents three studies that investigate student epistemologies and scientific reasoning in the domain of biology education. The first study investigated students' epistemic viewpoints in two introductory biology courses, one for science majors and one for non-science majors. This quantitative investigation revealed that the majors exhibited a negative shift in their attitudes and beliefs about biology and learning biology during a semester of introductory instruction. However, the non-science majors did not exhibit a similar shift. If fact, the non-science majors improved in their attitudes and beliefs during a semester of instruction, though not significantly so. The second study expands epistemological research to a population that has often been left out of this work, that is, intermediate-level biology majors. Quantitative and qualitative data was collected to reveal that junior and senior ranked students for the most part were able to characterize their views about biology and learning biology, and were able to associate factors with their epistemic improvement. Finally, the third study expands epistemology research further to determine if scientific reasoning and student attitudes and beliefs about learning science (specifically biology) are related. After a description of how various science and engineering majors compare in their scientific reasoning skills, this study indicated that among intermediate level biology majors there is no relationship between scientific reasoning skills and epistemologies, nor is there a relationship with other educational factors, including the number of courses taken during an undergraduate career, cumulative GPA, and standardized test

  13. Perceptions of Science Graduating Students on Their Learning Gains

    ERIC Educational Resources Information Center

    Varsavsky, Cristina; Matthews, Kelly E.; Hodgson, Yvonne

    2014-01-01

    In this study, the Science Student Skills Inventory was used to gain understanding of student perceptions about their science skills set developed throughout their programme (scientific content knowledge, communication, scientific writing, teamwork, quantitative skills, and ethical thinking). The study involved 400 responses from undergraduate…

  14. Advance the Earth Science Education in China by Using New Technology

    NASA Astrophysics Data System (ADS)

    Qian, R.; Wang, X.; Sun, L.

    2013-12-01

    With the development of Chinese economy, science and technology, as well as the increasing demand of the persons with knowledge and experience in earth science and geological exploration, the higher education of earth science has been boosted in recent years. There are 2,000 to 3,000 students studying earth science every year and many of them will take part in scientific research and engineering technology work around the world after graduation, which increased the demand of educators, both in quantity and quality. However, the fact is that there is a huge gap between the demand and the current number of educators due to the explosion of students, which makes the reform of traditional education methods inevitable. There is great significance in doing research on the teaching methods catering to a large number of students. Some research contents and result based on the reform of education methods has been conducted. We integrate the teaching contents with the cutting-edge research projects and stress significance of earth science, which will greatly enhance the student's enthusiasm of it. Moreover. New technology will be applied to solve the problem that every teacher are responsible for 100~150 students in one courses. For instance, building the Internet platform where teachers and the students can discuss the courses contents, read the latest scientific articles. With the numerical simulation technology, the internal structure of the Earth, geological phenomena, characteristics of ore body, geophysical and hydrological fields, etc. can be simulated and the experiments and teaching practice can be demonstrated via video technology. It can also be used to design algorithm statistics and assessment and monitor teaching effect. Students are separated into small groups to take research training with their personal tutor at the beginning of the first semester, which will increase the opportunities for students to communicate with educators and solve the problem that the

  15. Mars mission program for primary students: Building student and teacher skills in science, technology, engineering and mathematics

    NASA Astrophysics Data System (ADS)

    Mathers, Naomi; Pakakis, Michael; Christie, Ian

    2011-09-01

    The Victorian Space Science Education Centre (VSSEC) scenario-based programs, including the Mission to Mars and Mission to the Orbiting Space Laboratory, utilize methodologies such as hands-on applications, immersive learning, integrated technologies, critical thinking and mentoring. The use of a scenario provides a real-life context and purpose to what students might otherwise consider disjointed information. These programs engage students in the areas of maths and science, and highlight potential career paths in science and engineering. The introduction of a scenario-based program for primary students engages students in maths and science at a younger age, addressing the issues of basic numeracy and science literacy, thus laying the foundation for stronger senior science initiatives. Primary students absorb more information within the context of the scenario, and presenting information they can see, hear, touch and smell creates a memorable learning and sensory experience. The mission also supports development of teacher skills in the delivery of hands-on science and helps build their confidence to teach science. The Primary Mission to the Mars Base gives primary school students access to an environment and equipment not available in schools. Students wear flight suits for the duration of the program to immerse them in the experience of being an astronaut. Astronauts work in the VSSEC Space Laboratory, which is transformed into a Mars base for the primary program, to conduct experiments in areas such as robotics, human physiology, microbiology, nanotechnology and environmental science. Specialist mission control software has been developed by La Trobe University Centre for Games Technology to provide age appropriate Information and Communication Technology (ICT) based problem solving and support the concept of a mission. Students in Mission Control observe the astronauts working in the space laboratory and talk to them via the AV system. This interactive

  16. Constructivist Learning Environment among Palestinian Science Students

    ERIC Educational Resources Information Center

    Zeidan, Afif

    2015-01-01

    The purpose of this study was to investigate the constructivist learning environment among Palestinian science students. The study also aimed to investigate the effects of gender and learning level of these students on their perceptions of the constructivist learning environment. Data were collected from 125 male and 101 female students from the…

  17. University Students' Perceptions of Their Science Classrooms

    ERIC Educational Resources Information Center

    Kaya, Osman Nafiz; Kilic, Ziya; Akdeniz, Ali Riza

    2004-01-01

    The purpose of this study was to investigate the dimensions of the university students' perceptions of their science classes and whether or not the students' perceptions differ significantly as regards to the gender and grade level in six main categories namely; (1) pedagogical strategies, (2) faculty interest in teaching, (3) students interest…

  18. Original Science-Based Music and Student Learning

    ERIC Educational Resources Information Center

    Smolinski, Keith

    2010-01-01

    American middle school student science scores have been stagnating for several years, demonstrating a need for better learning strategies to aid teachers in instruction and students in content learning. It has also been suggested by researchers that music can be used to aid students in their learning and memory. Employing the theoretical framework…

  19. A Comparison of Pupil Control Iedology of Science and Non-Science Secondary Student Teachers.

    ERIC Educational Resources Information Center

    Jones, Dan R.

    This paper examines data on pupil control ideology (PCI) from two separate research studies involving secondary student teachers. A comparison was made of the results of the studies contrasting two student teaching populations: (1) eight weeks science (N=19) and (2) sixteen weeks non-science (N=22). The pupil control ideology of the secondary…

  20. Advanced Information Technology Investments at the NASA Earth Science Technology Office

    NASA Astrophysics Data System (ADS)

    Clune, T.; Seablom, M. S.; Moe, K.

    2012-12-01

    The NASA Earth Science Technology Office (ESTO) regularly makes investments for nurturing advanced concepts in information technology to enable rapid, low-cost acquisition, processing and visualization of Earth science data in support of future NASA missions and climate change research. In 2012, the National Research Council published a mid-term assessment of the 2007 decadal survey for future spacemissions supporting Earth science and applications [1]. The report stated, "Earth sciences have advanced significantly because of existing observational capabilities and the fruit of past investments, along with advances in data and information systems, computer science, and enabling technologies." The report found that NASA had responded favorably and aggressively to the decadal survey and noted the role of the recent ESTO solicitation for information systems technologies that partnered with the NASA Applied Sciences Program to support the transition into operations. NASA's future missions are key stakeholders for the ESTO technology investments. Also driving these investments is the need for the Agency to properly address questions regarding the prediction, adaptation, and eventual mitigation of climate change. The Earth Science Division has championed interdisciplinary research, recognizing that the Earth must be studied as a complete system in order toaddress key science questions [2]. Information technology investments in the low-mid technology readiness level (TRL) range play a key role in meeting these challenges. ESTO's Advanced Information Systems Technology (AIST) program invests in higher risk / higher reward technologies that solve the most challenging problems of the information processing chain. This includes the space segment, where the information pipeline begins, to the end user, where knowledge is ultimatelyadvanced. The objectives of the program are to reduce the risk, cost, size, and development time of Earth Science space-based and ground

  1. Students Across Borders: A Summer Earth Science Workshop for Hispanic High School Students

    NASA Astrophysics Data System (ADS)

    Butler, R. F.; Kresan, P.; Baez, A.; Sheppard, P.; Forger, G.; Rendon-Coke, G.; Gray, F.

    2003-12-01

    Southern Arizona has a high school (HS) population that is 28% Hispanic. However this fast-growing minority group represents only 14% of undergraduate students at the University of Arizona and 11% of science and engineering majors. The Students Across Borders Program was designed to assist Hispanic HS students across borders that often separate them from higher education and careers in science. In June 2003, five person student-teacher teams from Tucson, Yuma, and northern Sonora, Mexico lived in dormitories and participated in a weeklong program based on the University of Arizona campus. Activities included: field trips featuring inquiry-based investigations of geology, water quality, and tree rings; tours of engineering and science laboratories; introduction to student support organizations such as the Society of Hispanic Professional Engineers; and counseling by Career Services and Admissions personnel. Technology training included instruction in web design, digital imaging and online communication tools. Web sites developed by the student teams were presented to participants and families at the conclusion of the on-campus program. Web site development is continuing during the academic year to foster continuing communication between the student teams and presentation of results of follow-on projects assisted by graduate and undergraduate CATTS fellows and university faculty.

  2. Why school students choose and reject science: a study of the factors that students consider when selecting subjects

    NASA Astrophysics Data System (ADS)

    Palmer, Tracey-Ann; Burke, Paul F.; Aubusson, Peter

    2017-04-01

    Student study of science at school has been linked to the need to provide a scientifically capable workforce and a scientifically literate society. Educators, scientists, and policymakers are concerned that too few students are choosing science for study in their final years of school. How and why students choose and reject certain subjects, including science, at this time is unclear. A Best-Worst Scaling (BWS) survey was completed by 333 Year 10 (age 14-17) students to investigate the relative importance of 21 factors thought to impact students' subject-selection decisions. Students ranked enjoyment, interest and ability in a subject, and its perceived need in their future study or career plans as the most important factors in both choosing and rejecting subjects. They considered advice from teachers, parents or peers as relatively less important. These findings indicate that enhancing students' enjoyment, interest, and perceptions of their ability in science, as well as increasing student perceptions of its value in a future career, may result in more students studying science at school.

  3. Hierarchical Effects of School-, Classroom-, and Student-Level Factors on the Science Performance of Eighth-Grade Taiwanese Students

    NASA Astrophysics Data System (ADS)

    Tsai, Liang-Ting; Yang, Chih-Chien

    2015-05-01

    This study was conducted to understand the effect of student-, classroom-, and school-level factors on the science performance of 8th-grade Taiwanese students in the Trends in International Mathematics and Science Study (TIMSS) 2011 by using multilevel analysis. A total of 5,042 students from 153 classrooms of 150 schools participated in the TIMSS 2011 study, in which they were required to complete questionnaires. A 3-level multilevel analysis was used to assess the influence of factors at 3 levels on the science performance of 8th-grade Taiwanese students. The results showed that the provision of education resources at home, teachers' level of education, and school climate were the strongest predictor of science performance at the student, classroom, and school level, respectively. It was concluded that the science performance of 8th-grade Taiwanese students is driven largely by individual factors. Classroom-level factors accounted for a smaller proportion of the total variance in science performance than did school-level factors.

  4. How the nature of science is presented to elementary students in science read-alouds

    NASA Astrophysics Data System (ADS)

    Rivera, Seema

    Students as early as elementary school age are capable of learning the aspects of the nature of science (NOS), and the National Benchmarks incorporate the NOS as part of the learning objectives for K--2 students. Learning more about elementary science instruction can aid in understanding how the NOS can be taught or potentially integrated into current teaching methods. Although many teaching methods exist, this study will focus on read-alouds because they are recommended for and are very common in elementary schools. The read-aloud practice is particularly helpful to young students because most of these students have a higher listening comprehension than reading comprehension. One of the main components of the read-aloud practice is the discourse that takes place about the trade book. Both explicit and implicit messages are communicated to students by teachers' language and discussion that takes place in the classroom. Therefore, six multisite naturalistic case studies were conducted to understand elementary teachers' understanding of the NOS, students' understandings of the NOS, trade book representations of the NOS, and read-aloud practices and understandings in upstate New York. The findings of the study revealed that teachers and students held mostly naive and mixed understandings of the NOS. The trade books that had explicit connections to the NOS helped teachers discuss NOS related issues, even when the teachers did not hold strong NOS views. Teachers who held more informed NOS views were able to ask students NOS related questions. All teachers showed they need guidance on how to translate their NOS views into discussion and see the significance of the NOS in their classroom. Explicit NOS instruction can improve student understanding of the NOS, however the focus should be not only on teachers and their NOS understanding but also on the books used. These results show that quality trade books with explicit connections to the NOS are a useful instructional tool

  5. Estonian Science and Non-Science Students' Attitudes towards Mathematics at University Level

    ERIC Educational Resources Information Center

    Kaldo, Indrek; Reiska, Priit

    2012-01-01

    This article investigates the attitudes and beliefs towards studying mathematics by university level students. A total of 970 randomly chosen, first year, Estonian bachelor students participated in the study (of which 498 were science students). Data were collected using a Likert-type scale questionnaire and analysed with a respect to field of…

  6. Indigenous Elementary Students' Science Instruction in Taiwan: Indigenous Knowledge and Western Science

    ERIC Educational Resources Information Center

    Lee, Huei; Yen, Chiung-Fen; Aikenhead, Glen S.

    2012-01-01

    This preliminary ethnographic investigation focused on how Indigenous traditional wisdom can be incorporated into school science and what students learned as a result. Participants included community elders and knowledge keepers, as well as 4th grade (10-year-old) students, all of Amis ancestry, an Indigenous tribe in Taiwan. The students'…

  7. Urban Middle School Students' Reflections on Authentic Science Inquiry

    ERIC Educational Resources Information Center

    Rivera Maulucci, María S.; Brown, Bryan A.; Grey, Salina T.; Sullivan, Shayna

    2014-01-01

    This study explores the experiences of six urban middle school students in an authentic science inquiry program. Drawing on data including teaching journal entries, student work folders, and semi-structured focus group interviews of six participants, the findings explore six dimensions of authentic science inquiry, an approach to science inquiry…

  8. Examining the Effects of Science Manipulatives on Achievement, Attitudes, and Journal Writing of Elementary Science Students.

    ERIC Educational Resources Information Center

    Frederick, Lynda R.; Shaw, Edward L., Jr.

    This study examined several aspects of elementary science students' achievement, attitudes, and journal writing in conjunction with an Alabama Hands-on Activity Science Program (HASP) grant utilizing the Full Option Science System (FOSS) kit. The sample of 56 fourth grade students in two classes was administered a 15-item pretest and post-test.…

  9. Enhancing ASTRO101 Student Engagement Using Student-Created ScienceSKETCHES

    NASA Astrophysics Data System (ADS)

    Slater, Timothy F.; Slater, Stephanie

    2016-01-01

    As astronomy teaching faculty are changing their teaching strategies from those less desirable approaches that allow students to passively listen to professor-centered, information-lectures to more desirable, active-student engagement classrooms characterized by active learning, ASTRO 101 professors are looking for more ways to help students learn to participate in authentic scientific practices. This is consistent with notion advocated by the NRC that students should practice scientific thinking, scientific discourse, and scientific practices while learning science. Noticing that much informal scientific discussion is mediated by sketches—such as those occasionally lively discussions held after hours during scientific conferences—scholars at the CAPER Center for Astronomy & Physics Education Research have been piloting a series of active learning tasks where students are challenged to create scientific drawings to illustrate their understanding of astronomical phenomena or structures. Known informally as ScienceSKETCHES, examples of these tasks challenge students to illustrate: the spectral curve differences between high and low mass stars; the differences among galaxy shapes; the distribution of stars for the Andromeda Galaxy in terms of luminosity versus temperature; old and young planetary surfaces; or the relationships between distances and speeds of orbiting objects. Although our initial testing has focused on predominately on paper and pencil tasks, with the occasional cell phone picture of a ScienceSKETCH being texted to the professor, the electronic-based teaching world is nearly ready to support these sorts of drawing tasks. Already, the ability to complete and submit scientific sketches is becoming commonplace across electronic learning platforms, including shared white-boarding in many desktop videoconferencing systems, and handheld device learning systems for interactive classrooms, like those from Learning Catalytics, among many others. Our

  10. Students as 'catalysts' in the classroom: the impact of co-teaching between science student teachers and primary classroom teachers on children's enjoyment and learning of science

    NASA Astrophysics Data System (ADS)

    Murphy, Colette; Beggs, Jim; Carlisle, Karen; Greenwood, Julian

    2004-08-01

    This study is an investigation of the impact of collaborative teaching by student-teachers and classroom teachers on children's enjoyment and learning of science. The paper describes findings from a project in which undergraduate science specialist student-teachers were placed in primary schools where they 'co-taught' investigative science and technology with primary teachers. Almost six months after the student placement, a survey of children's attitudes to school science revealed that these children enjoyed science lessons more and showed fewer gender or age differences in their attitudes to science than children who had not been involved in the project. The authors discuss how this model of collaborative planning, teaching and evaluation can both enhance teacher education and improve children's experience of science.

  11. Science in the General Educational Development (GED) curriculum: Analyzing the science portion of GED programs and exploring adult students' attitudes toward science

    NASA Astrophysics Data System (ADS)

    Hariharan, Joya Reena

    The General Educational Development (GED) tests enable people to earn a high school equivalency diploma and help them to qualify for more jobs and opportunities. Apart from this main goal, GED courses aim at enabling adults to improve the condition of their lives and to cope with a changing society. In today's world, science and technology play an exceedingly important role in helping people better their lives and in promoting the national goals of informed citizenship. Despite the current efforts in the field of secondary science education directed towards scientific literacy and the concept of "Science for all Americans", the literature does not reflect any corresponding efforts in the field of adult education. Science education research appears to have neglected a population that could possibly benefit from it. The purpose of this study is to explore: the science component of GED programs, significant features of the science portion of GED curricula and GED science materials, and adult learners' attitudes toward various aspects of science. Data collection methods included interviews with GED students and instructors, content analysis of relevant materials, and classroom observations. Data indicate that the students in general feel that the science they learn should be relevant to their lives and have direct applications in everyday life. Student understanding of science and interest in it appears to be contingent to their perceiving it as relevant to their lives and to society. Findings indicate that the instructional approaches used in GED programs influence students' perceptions about the relevance of science. Students in sites that use strategies such as group discussions and field trips appear to be more aware of science in the world around them and more enthusiastic about increasing this awareness. However, the dominant strategy in most GED programs is individual reading. The educational strategies used in GED programs generally focus on developing reading

  12. Understanding the Language Demands on Science Students from an Integrated Science and Language Perspective

    ERIC Educational Resources Information Center

    Seah, Lay Hoon; Clarke, David John; Hart, Christina Eugene

    2014-01-01

    This case study of a science lesson, on the topic thermal expansion, examines the language demands on students from an integrated science and language perspective. The data were generated during a sequence of 9 lessons on the topic of "States of Matter" in a Grade 7 classroom (12-13 years old students). We identify the language demands…

  13. Self-regulated learning and science achievement in a community college

    NASA Astrophysics Data System (ADS)

    Maslin, (Louisa) Lin-Yi L.

    Self-regulated learning involves students' use of strategies and skills to adapt and adjust towards achievement in school. This research investigates the extent to which self-regulated learning is employed by community college students, and also the correlates of self-regulated learning: Is it used more by students in advanced science classes or in some disciplines? Is there a difference in the use of it by students who complete a science course and those who do not? How does it relate to GPA and basic skills assessments and science achievement? Does it predict science achievement along with GPA and assessment scores? Community college students (N = 547) taking a science course responded to the Motivated Strategies for Learning Questionnaire (MSLQ). The scales measured three groups of variables: (1) cognitive strategies (rehearsal, elaboration, organization, and critical thinking); (2) metacognitive self-regulation strategies (planning, monitoring, and self-regulation); and (3) resource management strategies (time and study environment, effort regulation, peer learning, and help-seeking). Students' course scores, college GPA, and basic skills assessment scores were obtained from faculty and college records. Students who completed a science course were found to have higher measures on cumulative college GPAs and assessment scores, but not on self-regulated learning. Self-regulated learning was found not to be used differently between students in the advanced and beginning science groups, or between students in different disciplines. The exceptions were that the advanced group scored higher in critical thinking but lower in effort regulation than the beginning group. Course achievement was found to be mostly unrelated to self-regulated learning, except for several significant but very weak and negative relationships in elaboration, self-regulation, help-seeking, and effort regulation. Cumulative GPA emerged as the only significant predictor of science achievement

  14. Plastics in the Ocean: Engaging Students in Core Competencies Through Issues-Based Activities in the Science Classroom.

    NASA Astrophysics Data System (ADS)

    Fergusson-Kolmes, L. A.

    2016-02-01

    Plastic pollution in the ocean is a critical issue. The high profile of this issue in the popular media makes it an opportune vehicle for promoting deeper understanding of the topic while also advancing student learning in the core competency areas identified in the NSF's Vision and Change document: integration of the process of science, quantitative reasoning, modeling and simulation, and an understanding of the relationship between science and society. This is a challenging task in an introductory non-majors class where the students may have very limited math skills and no prior science background. In this case activities are described that ask students to use an understanding of density to make predictions and test them as they consider the fate of different kinds of plastics in the marine environment. A comparison of the results from different sampling regimes introduces students to the difficulties of carrying out scientific investigations in the complex marine environment as well as building quantitative literacy skills. Activities that call on students to make connections between global issues of plastic pollution and personal actions include extraction of microplastic from personal care products, inventories of local plastic-recycling options and estimations of contributions to the waste stream on an individual level. This combination of hands-on-activities in an accessible context serves to help students appreciate the immediacy of the threat of plastic pollution and calls them to reflect on possible solutions.

  15. Changes in Elementary Student Perceptions of Science, Scientists and Science Careers after Participating in a Curricular Module on Health and Veterinary Science

    PubMed Central

    Shin, Soo Yeon; Parker, Loran Carleton; Adedokun, Omolola; Mennonno, Ann; Wackerly, Amy; SanMiguel, Sandra

    2015-01-01

    This study examined to what extent a curriculum module that uses animal and human health scientists and science concepts to portray science and scientists in a relevant and authentic manner could enhance elementary students’ aspiration for science careers, attitudes to science, positive perceptions of scientists, and perceived relevance of science. The curriculum was developed by a research-based university program and has been put into practice in two early elementary classrooms in an urban school in the Midwest. An attitudinal rating survey and the Draw-A-Scientist Test (DAST) were used to assess pre to post changes in student attitudes toward science, perceptions of scientists, perceived relevance of science, and aspiration for science careers. Findings indicated that the implementation of this curriculum contributed positively to student attitudes toward science, decreased students’ stereotypical images of scientists, and increased student aspirations to become a scientist. PMID:26726271

  16. The effects of student-level and classroom-level factors on elementary students' science achievement in five countries

    NASA Astrophysics Data System (ADS)

    Kaya, Sibel

    The interest in raising levels of achievement in math and science has led to a focus on investigating the factors that shape achievement in these subjects (Lamb & Fullarton, 2002) as well as understanding how these factors operate across countries (Baker, Fabrega, Galindo, & Mishook, 2004). The current study examined the individual student factors and classroom factors on fourth grade science achievement within and across five countries. Guided by the previous school learning models, the elements of students' science learning were categorized as student-level and classroom-level factors. The student-level factors included gender, self-confidence in science, and home resources. The classroom-level factors included teacher characteristics, instructional variables and classroom composition. Results for the United States and four other countries, Singapore, Japan, Australia, and Scotland were reported. Multilevel effects of student and classroom variables were examined through Hierarchical Linear Modeling (HLM) using the Trends in International Mathematics and Science Study (TIMSS) 2003 fourth grade dataset. The outcome variable was the TIMSS 2003 science score. Overall, the results of this study showed that selected student background characteristics were consistently related to elementary science achievement in countries investigated. At the student-level, higher levels of home resources and self-confidence and at the classroom-level, higher levels of class mean home resources yielded higher science scores on the TIMSS 2003. In general, teacher and instructional variables were minimally related to science achievement. There was evidence of positive effects of teacher support in the U.S. and Singapore. The emphasis on science inquiry was positively related to science achievement in Singapore and negatively related in the U.S. and Australia. Experimental studies that investigate the impacts of teacher and instructional factors on elementary science achievement are

  17. Inquiry Learning in the Singaporean Context: Factors affecting student interest in school science

    NASA Astrophysics Data System (ADS)

    Jocz, Jennifer Ann; Zhai, Junqing; Tan, Aik Ling

    2014-10-01

    Recent research reveals that students' interest in school science begins to decline at an early age. As this lack of interest could result in fewer individuals qualified for scientific careers and a population unprepared to engage with scientific societal issues, it is imperative to investigate ways in which interest in school science can be increased. Studies have suggested that inquiry learning is one way to increase interest in science. Inquiry learning forms the core of the primary syllabus in Singapore; as such, we examine how inquiry practices may shape students' perceptions of science and school science. This study investigates how classroom inquiry activities relate to students' interest in school science. Data were collected from 425 grade 4 students who responded to a questionnaire and 27 students who participated in follow-up focus group interviews conducted in 14 classrooms in Singapore. Results indicate that students have a high interest in science class. Additionally, self-efficacy and leisure-time science activities, but not gender, were significantly associated with an increased interest in school science. Interestingly, while hands-on activities are viewed as fun and interesting, connecting learning to real-life and discussing ideas with their peers had a greater relation to student interest in school science. These findings suggest that inquiry learning can increase Singaporean students' interest in school science; however, simply engaging students in hands-on activities is insufficient. Instead, student interest may be increased by ensuring that classroom activities emphasize the everyday applications of science and allow for peer discussion.

  18. Minority Ethnic Students and Science Participation: a Qualitative Mapping of Achievement, Aspiration, Interest and Capital

    NASA Astrophysics Data System (ADS)

    Wong, Billy

    2016-02-01

    In the UK, the `leaky pipeline' metaphor has been used to describe the relationship between ethnicity and science participation. Fewer minority ethnic students continue with science in post-compulsory education, and little is known about the ways in which they participate and identify with science, particularly in the secondary school context. Drawing on an exploratory study of 46 interviews and 22 h of classroom observations with British students (aged 11-14) from Black Caribbean, Bangladeshi, Pakistani, Indian and Chinese ethnic backgrounds, this paper identified five `types' of science participation among minority ethnic students. The five types of science participation emerged from an analysis of students' science achievement, science aspiration, science interest and science capital. The characteristics of the five types are as follows: Science adverse students have no aspirations towards science and lacked interest, achievement and capital in science. Science intrinsic students have high science aspirations, interest and capital but low science attainment. Students who are science intermediate have some aspirations, interest and capital in science, with average science grades. Science extrinsic students achieve highly in science, have some science capital but lacked science aspirations and/or interest. Science prominent students are high science achievers with science aspirations, high levels of interest and capital in science. The findings highlight that minority ethnic students participate in science in diverse ways. Policy implications are suggested for each type as this paper provides empirical evidence to counter against public (and even some academic) discourses of minority ethnic students as a homogeneous group.

  19. Science Engagement and Science Achievement in the Context of Science Instruction: A Multilevel Analysis of U.S. Students and Schools

    ERIC Educational Resources Information Center

    Grabau, Larry J.; Ma, Xin

    2017-01-01

    Using data from the 2006 Program for International Student Assessment (PISA), we explored nine aspects of science engagement (science self-efficacy, science self-concept, enjoyment of science, general interest in learning science, instrumental motivation for science, future-oriented science motivation, general value of science, personal value of…

  20. Connecting Students and Policymakers through Science and Service-Learning

    NASA Astrophysics Data System (ADS)

    Szymanski, D. W.

    2017-12-01

    Successful collaborations in community science require the participation of non-scientists as advocates for the use of science in addressing complex problems. This is especially true, but particularly difficult, with respect to the wicked problems of sustainability. The complicated, unsolvable, and inherently political nature of challenges like climate change can provoke cynicism and apathy about the use of science. While science education is a critical part of preparing all students to address wicked problems, it is not sufficient. Non-scientists must also learn how to advocate for the role of science in policy solutions. Fortunately, the transdisciplinary nature of sustainability provides a venue for engaging all undergraduates in community science, regardless of major. I describe a model for involving non-science majors in a form of service-learning, where the pursuit of community science becomes a powerful pedagogical tool for civic engagement. Bentley University is one of the few stand-alone business schools in the United States and provides an ideal venue to test this model, given that 95% of Bentley's 4000 undergraduates major in a business discipline. The technology-focused business program is combined with an integrated arts & sciences curriculum and experiential learning opportunities though the nationally recognized Bentley Service-Learning and Civic Engagement Center. In addition to a required general education core that includes the natural sciences, students may opt to complete a second major in liberal studies with thematic concentrations like Earth, Environment, and Global Sustainability. In the course Science in Environmental Policy, students may apply to complete a service-learning project for an additional course credit. The smaller group of students then act as consultants, conducting research for a non-profit organization in the Washington, D.C. area involved in geoscience policy. At the end of the semester, students travel to D.C. and present

  1. Science engagement and science achievement in the context of science instruction: a multilevel analysis of U.S. students and schools

    NASA Astrophysics Data System (ADS)

    Grabau, Larry J.; Ma, Xin

    2017-05-01

    Using data from the 2006 Program for International Student Assessment (PISA), we explored nine aspects of science engagement (science self-efficacy, science self-concept, enjoyment of science, general interest in learning science, instrumental motivation for science, future-oriented science motivation, general value of science, personal value of science, and science-related activities) as outcomes and predictors of science achievement. Based on results from multilevel modelling with 4456 students nested within 132 schools, we found that all aspects of science engagement were statistically significantly and positively related to science achievement, and nearly all showed medium or large effect sizes. Each aspect was positively associated with one of the (four) practices (strategies) of science teaching. Focus on applications or models was positively related to the most aspects of science engagement (science self-concept, enjoyment of science, instrumental motivation for science, general value of science, and personal value of science). Hands-on activities were positively related to additional aspects of science engagement (science self-efficacy and general interest in learning science) and also showed a positive relationship with science achievement.

  2. Graduate students teaching elementary earth science through interactive classroom lessons

    NASA Astrophysics Data System (ADS)

    Caswell, T. E.; Goudge, T. A.; Jawin, E. R.; Robinson, F.

    2014-12-01

    Since 2005, graduate students in the Brown University Department of Earth, Environmental, and Planetary Studies have volunteered to teach science to second-grade students at Vartan Gregorian Elementary School in Providence, RI. Initially developed to bring science into classrooms where it was not explicitly included in the curriculum, the graduate student-run program today incorporates the Providence Public Schools Grade 2 science curriculum into weekly, interactive sessions that engage the students in hypothesis-driven science. We will describe the program structure, its integration into the Providence Public Schools curriculum, and 3 example lessons relevant to geology. Lessons are structured to develop the students' ability to share and incorporate others' ideas through written and oral communication. The volunteers explain the basics of the topic and engage the students with introductory questions. The students use this knowledge to develop a hypothesis about the upcoming experiment, recording it in their "Science Notebooks." The students record their observations during the demonstration and discuss the results as a group. The process culminates in the students using their own words to summarize what they learned. Activities of particular interest to educators in geoscience are called "Volcanoes!", "The "Liquid Race," and "Phases of the Moon." The "Volcanoes!" lesson explores explosive vs. effusive volcanism using two simulated volcanoes: one explosive, using Mentos and Diet Coke, and one effusive, using vinegar and baking soda (in model volcanoes that the students construct in teams). In "Liquid Race," which explores viscosity and can be integrated into the "Volcanoes!" lesson, the students connect viscosity to flow speed by racing liquids down a ramp. "Phases of the Moon" teaches the students why the Moon has phases, using ball and stick models, and the terminology of the lunar phases using cream-filled cookies (e.g., Oreos). These lessons, among many others

  3. Listening Instruction and Practice for Advanced ESL Students.

    ERIC Educational Resources Information Center

    Godfrey, Dennis

    This paper attempts to enact Rivers' (1971 and 1972) urgings to base ESL listening instruction on both psychological and linguistic findings and contends that advanced ESL students' listening needs call for improvement in processing spoken English discourse. Psychological data on memory span is cited to demonstrate that advanced ESL students…

  4. Ciencias 2 (Science 2). [Student's Workbook].

    ERIC Educational Resources Information Center

    Raposo, Lucilia

    Ciencias 2 is the second in a series of elementary science textbooks written for Portuguese-speaking students. The text develops the basic skills that students need to study their surroundings and observe natural facts and phenomena by following scientific methods. The book is composed of 10 chapters and includes 57 lessons. Topics included are…

  5. Science achievement of students in the Republic of Yemen and implications for improvement of science instruction

    NASA Astrophysics Data System (ADS)

    Ismail, Nageeb Kassem

    The purpose of this study was to establish a research base from which strategies could be developed for improving science education in Yemen. The study measured the achievement in general science of Yemeni students attending primary, preparatory, and secondary schools, and their counterparts attending three- or five-year education programs in primary teacher training institutions. A sample of 1,984 students from six major cities in Yemen was given the Second International Science Study test in May 1988. Achievement scores of these selected groups were compared. The mean achievement in general science was 11.93 for science track students, 9.21 for three-year teacher training institution students, and 8.49 for five-year teacher training institution students. These mean scores were based on a total of 35 items. This low level of achievement was further verified by making comparisons of the achievement of selected groups from Yemeni high schools in six cities with each other. The following factors were measured in this study: location, grade level, gender and type of science program studied. Selected groups from Yemeni high schools were also compared to their peers in other nations. The researcher compared students of the science track and teacher training institutions to their counterparts in 13 nations and students of the literature track to their counterparts in eight nations. Fifth and ninth grade students' scores were compared with the scores of their counterparts in 15 and 17 nations respectively. In every comparison, every Yemeni group ranked at the bottom of the achievement list. (Jacobson W., & Doran, R. 1988) The outcomes of this research indicate the profound need for improving science programs in all grade levels in Yemen. The research recommendations for improvement in science education in Yemen fall into four areas: a change in attitudes toward education, a change in teacher education, a change in classroom conditions, and a change in educational

  6. Connecting Teachers and Students with Science and Scientists: The Science Learning Hub

    ERIC Educational Resources Information Center

    Cooper, Beverley; Cowie, Bronwen; Jones, Alister

    2010-01-01

    National and international data is raising concerns about levels of student interest and engagement in science in school and student retention into tertiary study. For today's students the Internet plays an important role as a source of information and means for communication with peers. This paper reports on a Ministry of Research Technology and…

  7. Students' self-regulation and teachers' influences in science: interplay between ethnicity and gender

    NASA Astrophysics Data System (ADS)

    Elstad, Eyvind; Turmo, Are

    2010-11-01

    The purpose of this study is to explore students' self-regulation and teachers' influence in science and to examine interplay between ethnicity and gender. Analysis of data from seven Oslo schools (1112 sampled students in the first year of high school) shows that the ethnic minority students reported using learning strategies in science more intensively than ethnic majority students and they had a stronger motivation to learn science. Ethnic majority students are defined here as students who were born in Norway and have at least one parent born in Norway. The study also shows that minority students generally evaluate their science teacher's influence on their learning more positively than the majority. The strongest interplay effects between gender and ethnicity are found in students' perceptions of the relevance of science, as well as their degree of negative responses to the pressure to learn science.

  8. Primary School Students' Views about Science, Technology and Engineering

    ERIC Educational Resources Information Center

    Pekmez, Esin

    2018-01-01

    Some of the main goals of science education are to increase students' knowledge about the technology and engineering design process, and to train students as scientifically and technologically literate individuals. The main purpose of this study is to find out primary students' views about science, technology and engineering. For this aim and in…

  9. First-Year University Science and Engineering Students' Understanding of Plagiarism

    ERIC Educational Resources Information Center

    Yeo, Shelley

    2007-01-01

    This paper is a case study of first-year science and engineering students' understandings of plagiarism. Students were surveyed for their views on scenarios illustrating instances of plagiarism in the context of the academic work and assessment of science and engineering students. The aim was to explore their understandings of plagiarism and their…

  10. What We Could Tell Advanced Student Writers about Audience.

    ERIC Educational Resources Information Center

    Ewald, Helen Rothschild

    1991-01-01

    Explores what advanced student writers could be told about audience based on current principles of reading theory. Discusses reasons why teachers may not want to introduce students to these reading-based concepts of audience. (RS)

  11. Teaching Experiences for Graduate Student Researchers: A Study of the Design and Implementation of Science Courses for Secondary Students

    NASA Astrophysics Data System (ADS)

    Collins, Anne Wrigley

    Modern science education reform recommends that teachers provide K-12 science students a more complete picture of the scientific enterprise, one that lies beyond content knowledge and centers more on the processes and culture of scientists. In the case of Research Experience for Teachers (RET) programs, the "teacher" becomes "researcher" and it is expected that he/she will draw from the short-term science research experience in his/her classroom, offering students more opportunities to practice science as scientists do. In contrast, this study takes place in a program that allows graduate students, engaged in research full-time, to design and implement a short-duration course for high school students on Saturdays; the "researcher" becomes "teacher" in an informal science program. In this study, I investigated eleven graduate students who taught in the Saturday Science (SS) program. Analyses revealed participants' sophisticated views of the nature of science. Furthermore, participants' ideas about science clearly resonated with the tenets of NOS recommended for K-12 education (McComas et al., 1998). This study also highlighted key factors graduate students considered when designing lessons. Instructors took great care to move away from models of traditional, "lecture"-based, university science teaching. Nonetheless, instruction lacked opportunities for students to engage in scientific inquiry. In instances when instructors included discussions of NOS in SS courses, opportunities for high school students to learn NOS were not explicit enough to align with current science reform recommendations (e.g., AAAS, 2009). Graduate students did, however, offer high school students access to their own science or engineering research communities. These findings have significant implications for K-12 classroom reform. Universities continue to be a valuable resource for K-12 given access to scientists, materials or equipment, and funding. Nonetheless, and as was the case with

  12. STEM Integration in Middle School Life Science: Student Learning and Attitudes

    NASA Astrophysics Data System (ADS)

    Guzey, S. Selcen; Moore, Tamara J.; Harwell, Michael; Moreno, Mario

    2016-08-01

    In many countries around the world, there has been an increasing emphasis on improving science education. Recent reform efforts in the USA call for teachers to integrate scientific and engineering practices into science teaching; for example, science teachers are asked to provide learning experiences for students that apply crosscutting concepts (e.g., patterns, scale) and increase understanding of disciplinary core ideas (e.g., physical science, earth science). Engineering practices and engineering design are essential elements of this new vision of science teaching and learning. This paper presents a research study that evaluates the effects of an engineering design-based science curriculum on student learning and attitudes. Three middle school life science teachers and 275 seventh grade students participated in the study. Content assessments and attitude surveys were administered before and after the implementation of the curriculum unit. Statewide mathematics test proficiency scores were included in the data analysis as well. Results provide evidence of the positive effects of implementing the engineering design-based science unit on student attitudes and learning.

  13. Teaching Graduate Students How To Do Informal Science Education

    NASA Astrophysics Data System (ADS)

    Ackerman, S. A.; Crone, W.; Dunwoody, S. L.; Zenner, G.

    2011-12-01

    One of the most important skills a student needs to develop during their graduate days is the skill of communicating their scientific work with a wide array of audiences. That facility will serve them across audiences, from scientific peers to students to neighbors and the general public. Increasingly, graduate students express a need for training in skills needed to manage diverse communicative environments. In response to that need we have created a course for graduate students in STEM-related fields which provides a structured framework and experiential learning about informal science education. This course seeks to familiarize students with concepts and processes important to communicating science successfully to a variety of audiences. A semester-long course, "Informal Science Education for Scientists: A Practicum," has been co-taught by a scientist/engineer and a social scientist/humanist over several years through the Delta Program in Research, Teaching, & Learning at the University of Wisconsin-Madison. The course is project based and understanding audience is stressed throughout the class. Through development and exhibition of the group project, students experience front end, formative and summative evaluation methods. The disciplines of the participating students is broad, but includes students in the geosciences each year. After a brief description of the course and its evolution, we will present assessment and evaluation results from seven different iterations of the course showing significant gains in how informed students felt about evaluation as a tool to determine the effectiveness of their science outreach activities. Significant gains were found in the graduate students' perceptions that they were better qualified to explain a research topic to a lay audience, and in the students' confidence in using and understanding evaluation techniques to determine the effectiveness of communication strategies. There were also increases in the students

  14. Science Teacher Self-Efficacy and Student Achievement: A Quantitative Correlational Study

    ERIC Educational Resources Information Center

    Thompson, Benika J.

    2015-01-01

    A teacher's sense of self-efficacy may have significant influence on the pedagogical decisions in the classroom. An elementary school teacher's sense of self-efficacy in teaching science may negatively influence student achievement in science. Negative beliefs concerning science or the ability to teach and promote student learning in science may…

  15. Township of Ocean School District Contemporary Science. Student Enrichment Materials.

    ERIC Educational Resources Information Center

    Truex, Ronald T.

    Contemporary Science is a program designed to provide non-academic disaffected students as well as college-bound high school students with a meaningful and positive educational experience in science in order to bridge the gap between science and the citizen in a technological world. The program, designed as a full year elective course, involves…

  16. Characteristics of High School Students' and Science Teachers' Cognitive Frame about Effective Teaching Method for High School Science Subject

    NASA Astrophysics Data System (ADS)

    Chung, Duk Ho; Park, Kyeong-Jin; Cho, Kyu Seong

    2016-04-01

    We investigated the cognitive frame of high school students and inservice high school science teachers about effective teaching method, and we also explored how they understood about the teaching methods suggested by the 2009 revised Science Curriculum. Data were collected from 275 high school science teachers and 275 high school students. We analyzed data in terms of the words and the cognitive frame using the Semantic Network Analysis. The results were as follows. First, the teachers perceived that an activity oriented class was the effective science class that helped improve students'' problem-solving abilities and their inquiry skills. The students had the cognitive frame that their teacher had to present relevant and enough teaching materials to students, and that they should also receive assistance from teachers in science class to better prepare for college entrance exam. Second, both students and teachers retained the cognitive frame about the efficient science class that was not reflected 2009 revised Science Curriculum exactly. Especially, neither groups connected the elements of ''convergence'' as well as ''integration'' embedded across science subject areas to their cognitive frame nor cognized the fact that many science learning contents were closed related to one another. Therefore, various professional development opportunities should be offered so that teachers succinctly comprehend the essential features and the intents of the 2009 revised Science Curriculum and thereby implement it in their science lessons effectively. Keywords : semantic network analysis, cognitive frame, teaching method, science lesson

  17. Science Achievement and Students' Self-Confidence and Interest in Science: A Taiwanese Representative Sample Study

    ERIC Educational Resources Information Center

    Chang, Chun-Yen; Cheng, Wei-Ying

    2008-01-01

    The interrelationship between senior high school students' science achievement (SA) and their self-confidence and interest in science (SCIS) was explored with a representative sample of approximately 1,044 11th-grade students from 30 classes attending four high schools throughout Taiwan. Statistical analyses indicated that a statistically…

  18. Nursing Students' Attitudes toward Science in the Nursing Curricula

    ERIC Educational Resources Information Center

    Maroo, Jill Deanne

    2013-01-01

    The nursing profession combines the art of caregiving with scientific concepts. Nursing students need to learn science in order to start in a nursing program. However, previous research showed that students left the nursing program, stating it included too much science (Andrew et al., 2008). Research has shown a correlation between students'…

  19. Direction discovery: A science enrichment program for high school students.

    PubMed

    Sikes, Suzanne S; Schwartz-Bloom, Rochelle D

    2009-03-01

    Launch into education about pharmacology (LEAP) is an inquiry-based science enrichment program designed to enhance competence in biology and chemistry and foster interest in science careers especially among under-represented minorities. The study of how drugs work, how they enter cells, alter body chemistry, and exit the body engages students to conceptualize fundamental precepts in biology, chemistry, and math. Students complete an intensive three-week course in the fundamentals of pharmacology during the summer followed by a mentored research component during the school year. Following a 5E learning paradigm, the summer course captures student interest by introducing controversial topics in pharmacology and provides a framework that guides them to explore topics in greater detail. The 5E learning cycle is recapitulated as students extend their knowledge to design and to test an original research question in pharmacology. LEAP students demonstrated significant gains in biology and chemistry knowledge and interests in pursuing science. Several students earned honors for the presentation of their research in regional and state science fairs. Success of the LEAP model in its initial 2 years argues that coupling college-level coursework of interest to teens with an authentic research experience enhances high school student success in and enthusiasm for science. Copyright © 2009 International Union of Biochemistry and Molecular Biology, Inc.

  20. CosmoQuest: Engaging Students in Authentic Research through Science Fairs

    NASA Astrophysics Data System (ADS)

    Lebofsky, Larry A.; Canizo, Thea; Buxner, Sanlyn; Schmitt, Bill; Runco, Susan; Graff, Paige; CosmoQuest Team

    2016-10-01

    CosmoQuest is embarking on a five-year effort to increase student participation in science fairs through nation-wide training of teachers, science educators, and scientists. The program focuses on helping teachers attain the needed content knowledge and skills to support creation of meaningful science fair research projects. . This includes supporting teachers' understanding of how to engage students in age-appropriate projects as young science and engineering professionals. If successful, students will create their own understanding of STEM content through research. This occurs when students are guided into learning where they become involved at a level that makes it possible for them to independently ask questions and investigate answers by seeking patterns, testing, building conceptual models, and/or designing technology.To support this kind of engagement, we are curating and creating resources to support students of all ages and abilities. Students at different age levels generally have very different developmental reasoning abilities, and engagement and learning are increased when students use age-appropriate reasoning abilities. For instance primary students are effective in observing, communicating, and comparing. As they get older they develop abilities in sequencing and finding relationships. At middle school they add inferring and finally in high school the acquired skills for applying ideas from many disciplines to create more complex understanding.Through a comprehensive program of curriculum development, educator professional development, and building strategic partnerships, we will increase the number and quality of space science related science fair projects in the United States. CosmoQuest is funded through individual donations, through NASA Cooperative Agreement NNX16AC68A, and through additional grants and contracts that are listed on the About page of our website, cosmoquest.org.