NASA Astrophysics Data System (ADS)
Zhou, L.; Xiao, G.
2014-12-01
The engineering geological and hydrological conditions of current tunnels are more and more complicated, as the tunnels are elongated with deeper depth. In constructing these complicated tunnels, geological hazards prone to occur as induced by unfavorable geological bodies, such as fault zones, karst or hydrous structures, etc. The working emphasis and difficulty of the advanced geological exploration for complicated tunnels are mainly focused on the structure and water content of these unfavorable geological bodies. The technical aspects of my paper systematically studied the advanced geological exploration theory and application aspects for complicated tunnels, with discussion on the key technical points and useful conclusions. For the all-aroundness and accuracy of advanced geological exploration results, the objective of my paper is targeted on the comprehensive examination on the structure and hydrous characteristic of the unfavorable geological bodies in complicated tunnels. By the multi-component seismic modeling on a more real model containing the air medium, the wave field response characteristics of unfavorable geological bodies can be analyzed, thus providing theoretical foundation for the observation system layout, signal processing and interpretation of seismic methods. Based on the tomographic imaging theory of seismic and electromagnetic method, 2D integrated seismic and electromagnetic tomographic imaging and visualization software was designed and applied in the advanced drilling hole in the tunnel face, after validation of the forward and inverse modeling results on theoretical models. The transmission wave imaging technology introduced in my paper can be served as a new criterion for detection of unfavorable geological bodies. After careful study on the basic theory, data processing and interpretation, practical applications of TSP and ground penetrating radar (GPR) method, as well as serious examination on their application examples, my paper formulated a suite of comprehensive application system of seismic and electromagnetic methods for the advanced geological exploration of complicated tunnels. This research is funded by National Natural Science Foundation of China (Grant No. 41202223) .
NASA Astrophysics Data System (ADS)
Petrov, P.; Newman, G. A.
2010-12-01
Quantitative imaging of the subsurface objects is essential part of modern geophysical technology important in oil and gas exploration and wide-range engineering applications. A significant advancement in developing a robust, high resolution imaging technology is concerned with using the different geophysical measurements (gravity, EM and seismic) sense the subsurface structure. A joint image of the subsurface geophysical attributes (velocity, electrical conductivity and density) requires the consistent treatment of the different geophysical data (electromagnetic and seismic) due to their differing physical nature - diffusive and attenuated propagation of electromagnetic energy and nonlinear, multiple scattering wave propagation of seismic energy. Recent progress has been reported in the solution of this problem by reducing the complexity of seismic wave field. Works formed by Shin and Cha (2009 and 2008) suggests that low-pass filtering the seismic trace via Laplace-Fourier transformation can be an effective approach for obtaining seismic data that has similar spatial resolution to EM data. The effect of Laplace- Fourier transformation on the low-pass filtered trace changes the modeling of the seismic wave field from multi-wave propagation to diffusion. The key benefit of transformation is that diffusive wave-field inversion works well for both data sets seismic (Shin and Cha, 2008) and electromagnetic (Commer and Newman 2008, Newman et al., 2010). Moreover the different data sets can also be matched for similar and consistent resolution. Finally, the low pass seismic image is also an excellent choice for a starting model when analyzing the entire seismic waveform to recover the high spatial frequency components of the seismic image; its reflectivity (Shin and Cha, 2009). Without a good starting model full waveform seismic imaging and migration can encounter serious difficulties. To produce seismic wave fields consistent for joint imaging in the Laplace-Fourier domain we had developed 3D code for full-wave field simulation in the elastic media which take into account nonlinearity introduced by free-surface effects. Our approach is based on the velocity-stress formulation. In the contrast to conventional formulation we defined the material properties such as density and Lame constants not at nodal points but within cells. This second order finite differences method formulated in the cell-based grid, generate numerical solutions compatible with analytical ones within the range errors determinate by dispersion analysis. Our simulator will be embedded in an inversion scheme for joint seismic- electromagnetic imaging. It also offers possibilities for preconditioning the seismic wave propagation problems in the frequency domain. References. Shin, C. & Cha, Y. (2009), Waveform inversion in the Laplace-Fourier domain, Geophys. J. Int. 177(3), 1067- 1079. Shin, C. & Cha, Y. H. (2008), Waveform inversion in the Laplace domain, Geophys. J. Int. 173(3), 922-931. Commer, M. & Newman, G. (2008), New advances in three-dimensional controlled-source electromagnetic inversion, Geophys. J. Int. 172(2), 513-535. Newman, G. A., Commer, M. & Carazzone, J. J. (2010), Imaging CSEM data in the presence of electrical anisotropy, Geophysics, in press.
Brenguier, F; Campillo, M; Takeda, T; Aoki, Y; Shapiro, N M; Briand, X; Emoto, K; Miyake, H
2014-07-04
Volcanic eruptions are caused by the release of pressure that has accumulated due to hot volcanic fluids at depth. Here, we show that the extent of the regions affected by pressurized fluids can be imaged through the measurement of their response to transient stress perturbations. We used records of seismic noise from the Japanese Hi-net seismic network to measure the crustal seismic velocity changes below volcanic regions caused by the 2011 moment magnitude (M(w)) 9.0 Tohoku-Oki earthquake. We interpret coseismic crustal seismic velocity reductions as related to the mechanical weakening of the pressurized crust by the dynamic stress associated with the seismic waves. We suggest, therefore, that mapping seismic velocity susceptibility to dynamic stress perturbations can be used for the imaging and characterization of volcanic systems. Copyright © 2014, American Association for the Advancement of Science.
Next Generation Seismic Imaging; High Fidelity Algorithms and High-End Computing
NASA Astrophysics Data System (ADS)
Bevc, D.; Ortigosa, F.; Guitton, A.; Kaelin, B.
2007-05-01
The rich oil reserves of the Gulf of Mexico are buried in deep and ultra-deep waters up to 30,000 feet from the surface. Minerals Management Service (MMS), the federal agency in the U.S. Department of the Interior that manages the nation's oil, natural gas and other mineral resources on the outer continental shelf in federal offshore waters, estimates that the Gulf of Mexico holds 37 billion barrels of "undiscovered, conventionally recoverable" oil, which, at 50/barrel, would be worth approximately 1.85 trillion. These reserves are very difficult to find and reach due to the extreme depths. Technological advances in seismic imaging represent an opportunity to overcome this obstacle by providing more accurate models of the subsurface. Among these technological advances, Reverse Time Migration (RTM) yields the best possible images. RTM is based on the solution of the two-way acoustic wave-equation. This technique relies on the velocity model to image turning waves. These turning waves are particularly important to unravel subsalt reservoirs and delineate salt-flanks, a natural trap for oil and gas. Because it relies on an accurate velocity model, RTM opens new frontier in designing better velocity estimation algorithms. RTM has been widely recognized as the next chapter in seismic exploration, as it can overcome the limitations of current migration methods in imaging complex geologic structures that exist in the Gulf of Mexico. The chief impediment to the large-scale, routine deployment of RTM has been a lack of sufficient computer power. RTM needs thirty times the computing power used in exploration today to be commercially viable and widely usable. Therefore, advancing seismic imaging to the next level of precision poses a multi-disciplinary challenge. To overcome these challenges, the Kaleidoscope project, a partnership between Repsol YPF, Barcelona Supercomputing Center, 3DGeo Inc., and IBM brings together the necessary components of modeling, algorithms and the uniquely powerful computing power of the MareNostrum supercomputer in Barcelona to realize the promise of RTM, incorporate it into daily processing flows, and to help solve exploration problems in a highly cost-effective way. Uniquely, the Kaleidoscope Project is simultaneously integrating software (algorithms) and hardware (Cell BE), steps that are traditionally taken sequentially. This unique integration of software and hardware will accelerate seismic imaging by several orders of magnitude compared to conventional solutions running on standard Linux Clusters.
Improved 3D seismic images of dynamic deformation in the Nankai Trough off Kumano
NASA Astrophysics Data System (ADS)
Shiraishi, K.; Moore, G. F.; Yamada, Y.; Kinoshita, M.; Sanada, Y.; Kimura, G.
2016-12-01
In order to improve the seismic reflection image of dynamic deformation and seismogenic faults in the Nankai trough, the 2006 Kumano 3D seismic dataset was reprocessed from the original field records by applying advanced technologies a decade after the data acquisition and initial processing. The 3D seismic survey revealed the geometry of megasplay fault system. However, there were still unclear regions in the accretionary prism beneath from Kumano basin to the outer ridge, because of sea floor multiple reflections and noise caused by the Kuroshio current. For the next stage of deep scientific drilling into the Nankai trough seismogenic zone, it is essential to know exactly the shape and depth of the megasplay, and fine structures around the drilling site. Three important improvements were achieved in data processing before imaging. First, full deghosting and optimized zero phasing techniques could recover broadband signals, especially in low frequency, by compensating for ghost effects at both source and receiver, and removing source bubbles. Second, the multiple reflections better attenuated by applying advanced techniques in combination, and the strong noise caused by the Kuroshio were attenuated carefully. Third, data regularization by means of the optimized 4D trace interpolation was effective both to mitigate non-uniform fold distribution and to improve data quality. Further imaging processes led to obvious improvement from previous results by applying PSTM with higher order correction of VTI anisotropy, and PSDM based on the velocity model built by reflection tomography with TTI anisotropy. Final reflection images show new geological aspects, such as clear steep dip faults around the "notch", and fine scale faults related to main thrusts in frontal thrust zone. The improved images will highly contribute to understanding the deformation process in the old accretionary prism and seismogenic features related to the megasplay faults.
Gabor Deconvolution as Preliminary Method to Reduce Pitfall in Deeper Target Seismic Data
NASA Astrophysics Data System (ADS)
Oktariena, M.; Triyoso, W.
2018-03-01
Anelastic attenuation process during seismic wave propagation is the trigger of seismic non-stationary characteristic. An absorption and a scattering of energy are causing the seismic energy loss as the depth increasing. A series of thin reservoir layers found in the study area is located within Talang Akar Fm. Level, showing an indication of interpretation pitfall due to attenuation effect commonly occurred in deeper level seismic data. Attenuation effect greatly influences the seismic images of deeper target level, creating pitfalls in several aspect. Seismic amplitude in deeper target level often could not represent its real subsurface character due to a low amplitude value or a chaotic event nearing the Basement. Frequency wise, the decaying could be seen as the frequency content diminishing in deeper target. Meanwhile, seismic amplitude is the simple tool to point out Direct Hydrocarbon Indicator (DHI) in preliminary Geophysical study before a further advanced interpretation method applied. A quick-look of Post-Stack Seismic Data shows the reservoir associated with a bright spot DHI while another bigger bright spot body detected in the North East area near the field edge. A horizon slice confirms a possibility that the other bright spot zone has smaller delineation; an interpretation pitfall commonly occurs in deeper level of seismic. We evaluates this pitfall by applying Gabor Deconvolution to address the attenuation problem. Gabor Deconvolution forms a Partition of Unity to factorize the trace into smaller convolution window that could be processed as stationary packets. Gabor Deconvolution estimates both the magnitudes of source signature alongside its attenuation function. The enhanced seismic shows a better imaging in the pitfall area that previously detected as a vast bright spot zone. When the enhanced seismic is used for further advanced reprocessing process, the Seismic Impedance and Vp/Vs Ratio slices show a better reservoir delineation, in which the pitfall area is reduced and some morphed as background lithology. Gabor Deconvolution removes the attenuation by performing Gabor Domain spectral division, which in extension also reduces interpretation pitfall in deeper target seismic.
NASA Astrophysics Data System (ADS)
Brookshire, B. N., Jr.; Mattox, B. A.; Parish, A. E.; Burks, A. G.
2016-02-01
Utilizing recently advanced ultrahigh-resolution 3-dimensional (UHR3D) seismic tools we have imaged the seafloor geomorphology and associated subsurface aspects of seep related expulsion features along the continental slope of the northern Gulf of Mexico with unprecedented clarity and continuity. Over an area of approximately 400 km2, over 50 discrete features were identified and three general seafloor geomorphologies indicative of seep activity including mounds, depressions and bathymetrically complex features were quantitatively characterized. Moreover, areas of high seafloor reflectivity indicative of mineralization and areas of coherent seismic amplitude anomalies in the near-seafloor water column indicative of active gas expulsion were identified. In association with these features, shallow source gas accumulations and migration pathways based on salt related stratigraphic uplift and faulting were imaged. Shallow, bottom simulating reflectors (BSRs) interpreted to be free gas trapped under near seafloor gas hydrate accumulations were very clearly imaged.
NASA Astrophysics Data System (ADS)
Fortin, W.; Holbrook, W. S.; Mallick, S.; Everson, E. D.; Tobin, H. J.; Keranen, K. M.
2014-12-01
Understanding the geologic composition of the Cascadia Subduction Zone (CSZ) is critically important in assessing seismic hazards in the Pacific Northwest. Despite being a potential earthquake and tsunami threat to millions of people, key details of the structure and fault mechanisms remain poorly understood in the CSZ. In particular, the position and character of the subduction interface remains elusive due to its relative aseismicity and low seismic reflectivity, making imaging difficult for both passive and active source methods. Modern active-source reflection seismic data acquired as part of the COAST project in 2012 provide an opportunity to study the transition from the Cascadia basin, across the deformation front, and into the accretionary prism. Coupled with advances in seismic inversion methods, this new data allow us to produce detailed velocity models of the CSZ and accurate pre-stack depth migrations for studying geologic structure. While still computationally expensive, current computing clusters can perform seismic inversions at resolutions that match that of the seismic image itself. Here we present pre-stack full waveform inversions of the central seismic line of the COAST survey offshore Washington state. The resultant velocity model is produced by inversion at every CMP location, 6.25 m laterally, with vertical resolution of 0.2 times the dominant seismic frequency. We report a good average correlation value above 0.8 across the entire seismic line, determined by comparing synthetic gathers to the real pre-stack gathers. These detailed velocity models, both Vp and Vs, along with the density model, are a necessary step toward a detailed porosity cross section to be used to determine the role of fluids in the CSZ. Additionally, the P-velocity model is used to produce a pre-stack depth migration image of the CSZ.
Mantle dynamics and seismic tomography
Tanimoto, Toshiro; Lay, Thorne
2000-01-01
Three-dimensional imaging of the Earth's interior, called seismic tomography, has achieved breakthrough advances in the last two decades, revealing fundamental geodynamical processes throughout the Earth's mantle and core. Convective circulation of the entire mantle is taking place, with subducted oceanic lithosphere sinking into the lower mantle, overcoming the resistance to penetration provided by the phase boundary near 650-km depth that separates the upper and lower mantle. The boundary layer at the base of the mantle has been revealed to have complex structure, involving local stratification, extensive structural anisotropy, and massive regions of partial melt. The Earth's high Rayleigh number convective regime now is recognized to be much more interesting and complex than suggested by textbook cartoons, and continued advances in seismic tomography, geodynamical modeling, and high-pressure–high-temperature mineral physics will be needed to fully quantify the complex dynamics of our planet's interior. PMID:11035784
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wardaya, P. D., E-mail: pongga.wardaya@utp.edu.my; Noh, K. A. B. M., E-mail: pongga.wardaya@utp.edu.my; Yusoff, W. I. B. W., E-mail: pongga.wardaya@utp.edu.my
This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, anmore » advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic wave velocity of rock.« less
NASA Astrophysics Data System (ADS)
Wardaya, P. D.; Noh, K. A. B. M.; Yusoff, W. I. B. W.; Ridha, S.; Nurhandoko, B. E. B.
2014-09-01
This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, an advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic wave velocity of rock.
Multi-azimuth 3D Seismic Exploration and Processing in the Jeju Basin, the Northern East China Sea
NASA Astrophysics Data System (ADS)
Yoon, Youngho; Kang, Moohee; Kim, Jin-Ho; Kim, Kyong-O.
2015-04-01
Multi-azimuth(MAZ) 3D seismic exploration is one of the most advanced seismic survey methods to improve illumination and multiple attenuation for better image of the subsurface structures. 3D multi-channel seismic data were collected in two phases during 2012, 2013, and 2014 in Jeju Basin, the northern part of the East China Sea Basin where several oil and gas fields were discovered. Phase 1 data were acquired at 135° and 315° azimuths in 2012 and 2013 comprised a full 3D marine seismic coverage of 160 km2. In 2014, phase 2 data were acquired at the azimuths 45° and 225°, perpendicular to those of phase 1. These two datasets were processed through the same processing workflow prior to velocity analysis and merged to one MAZ dataset. We performed velocity analysis on the MAZ dataset as well as two phases data individually and then stacked these three datasets separately. We were able to pick more accurate velocities in the MAZ dataset compare to phase 1 and 2 data while velocity picking. Consequently, the MAZ seismic volume provide us better resolution and improved images since different shooting directions illuminate different parts of the structures and stratigraphic features.
The AlpArray Seismic Network: A Large-Scale European Experiment to Image the Alpine Orogen
NASA Astrophysics Data System (ADS)
Hetényi, György; Molinari, Irene; Clinton, John; Bokelmann, Götz; Bondár, István; Crawford, Wayne C.; Dessa, Jean-Xavier; Doubre, Cécile; Friederich, Wolfgang; Fuchs, Florian; Giardini, Domenico; Gráczer, Zoltán; Handy, Mark R.; Herak, Marijan; Jia, Yan; Kissling, Edi; Kopp, Heidrun; Korn, Michael; Margheriti, Lucia; Meier, Thomas; Mucciarelli, Marco; Paul, Anne; Pesaresi, Damiano; Piromallo, Claudia; Plenefisch, Thomas; Plomerová, Jaroslava; Ritter, Joachim; Rümpker, Georg; Šipka, Vesna; Spallarossa, Daniele; Thomas, Christine; Tilmann, Frederik; Wassermann, Joachim; Weber, Michael; Wéber, Zoltán; Wesztergom, Viktor; Živčić, Mladen
2018-04-01
The AlpArray programme is a multinational, European consortium to advance our understanding of orogenesis and its relationship to mantle dynamics, plate reorganizations, surface processes and seismic hazard in the Alps-Apennines-Carpathians-Dinarides orogenic system. The AlpArray Seismic Network has been deployed with contributions from 36 institutions from 11 countries to map physical properties of the lithosphere and asthenosphere in 3D and thus to obtain new, high-resolution geophysical images of structures from the surface down to the base of the mantle transition zone. With over 600 broadband stations operated for 2 years, this seismic experiment is one of the largest simultaneously operated seismological networks in the academic domain, employing hexagonal coverage with station spacing at less than 52 km. This dense and regularly spaced experiment is made possible by the coordinated coeval deployment of temporary stations from numerous national pools, including ocean-bottom seismometers, which were funded by different national agencies. They combine with permanent networks, which also required the cooperation of many different operators. Together these stations ultimately fill coverage gaps. Following a short overview of previous large-scale seismological experiments in the Alpine region, we here present the goals, construction, deployment, characteristics and data management of the AlpArray Seismic Network, which will provide data that is expected to be unprecedented in quality to image the complex Alpine mountains at depth.
Recent Advances in Subsurface Imaging and Monitoring with Active Sources in China
NASA Astrophysics Data System (ADS)
Wang, B.; Chen, Y.; Wang, W.; Yang, W.
2017-12-01
Imaging high-resolution crustal structures and monitoring their temporal changes with active sources is essential to our understanding of regional tectonics and seismic hazards. In the past decades, great efforts has been made in China to looking for an ideal artificial seismic source to study continental crustal structures. After a mountain of field experiments, we developed permanent and portable seismic airgun sources for inland seismotectonic studies. Here we introduce several applications of using airgun source to imaging local crustal structures and monitoring velocity changes associated with natural and anthropogenic loadings. During Oct. 10th-20th, 2015, we carried out a crustal structure exploration experiment by firing portable airgun source along the Yangtze River in Anhui Province of eastern China. About 5000 shots were fired along 300km long section of the river. More than 2000 portable short period seismometers or geophones were deployed during the experiment. About 3000 of 5000 shots were fired at 20 fixed sites roughly evenly distributed along the river, and the rest shots were fired in the walkway. Seismic signal radiated by airgun source can be tracked to 350km. 2D/3D near surface and crustal velocity structure along the Yangtze River and adjacent region were inverted from airgun seismic records. Inverted velocity show well consistence with previous images and geological structure. The high resolution structural image provides a better understanding on regional geologic features and distribution of mineral resources. In the past five years, three Fixed Aigun Signal Transmitting Stations (FASTS) were built in western China. Those FASTS generate seismic signals with high repeatability, which can be tracked to the distance 1300 km. The highly reproducible signals are used to monitor the subtle subsurface changes. Observed diurnal and semi-diurnal velocity changes 10-4 are supposed to be results of barometrical and tidal loading. Suspicious velocity changes prior to several moderate earthquakes are detected around. Seismic velocity measured around the Hutubi underground gas storage show clear correlation with the gas pressure. Those results shed some light on the short term evolution of the shallow to low crust, which may boost our understanding the mechanism of local seismic hazards.
Improving Vintage Seismic Data Quality through Implementation of Advance Processing Techniques
NASA Astrophysics Data System (ADS)
Latiff, A. H. Abdul; Boon Hong, P. G.; Jamaludin, S. N. F.
2017-10-01
It is essential in petroleum exploration to have high resolution subsurface images, both vertically and horizontally, in uncovering new geological and geophysical aspects of our subsurface. The lack of success may have been from the poor imaging quality which led to inaccurate analysis and interpretation. In this work, we re-processed the existing seismic dataset with an emphasis on two objectives. Firstly, to produce a better 3D seismic data quality with full retention of relative amplitudes and significantly reduce seismic and structural uncertainty. Secondly, to facilitate further prospect delineation through enhanced data resolution, fault definitions and events continuity, particularly in syn-rift section and basement cover contacts and in turn, better understand the geology of the subsurface especially in regard to the distribution of the fluvial and channel sands. By adding recent, state-of-the-art broadband processing techniques such as source and receiver de-ghosting, high density velocity analysis and shallow water de-multiple, the final results produced a better overall reflection detail and frequency in specific target zones, particularly in the deeper section.
Introducing Seismic Tomography with Computational Modeling
NASA Astrophysics Data System (ADS)
Neves, R.; Neves, M. L.; Teodoro, V.
2011-12-01
Learning seismic tomography principles and techniques involves advanced physical and computational knowledge. In depth learning of such computational skills is a difficult cognitive process that requires a strong background in physics, mathematics and computer programming. The corresponding learning environments and pedagogic methodologies should then involve sets of computational modelling activities with computer software systems which allow students the possibility to improve their mathematical or programming knowledge and simultaneously focus on the learning of seismic wave propagation and inverse theory. To reduce the level of cognitive opacity associated with mathematical or programming knowledge, several computer modelling systems have already been developed (Neves & Teodoro, 2010). Among such systems, Modellus is particularly well suited to achieve this goal because it is a domain general environment for explorative and expressive modelling with the following main advantages: 1) an easy and intuitive creation of mathematical models using just standard mathematical notation; 2) the simultaneous exploration of images, tables, graphs and object animations; 3) the attribution of mathematical properties expressed in the models to animated objects; and finally 4) the computation and display of mathematical quantities obtained from the analysis of images and graphs. Here we describe virtual simulations and educational exercises which enable students an easy grasp of the fundamental of seismic tomography. The simulations make the lecture more interactive and allow students the possibility to overcome their lack of advanced mathematical or programming knowledge and focus on the learning of seismological concepts and processes taking advantage of basic scientific computation methods and tools.
Putting the slab back: First steps of creating a synthetic seismic section of subducted lithosphere
NASA Astrophysics Data System (ADS)
Zertani, S.; John, T.; Tilmann, F. J.; Leiss, B.; Labrousse, L.; Andersen, T. B.
2016-12-01
Imaging subducted lithosphere is a difficult task which is usually tackled with geophysical methods. To date, the most promising method is receiver function imaging (RF), which concentrates on first order conversions from p- to s-waves at boundaries (e.g. lithological and structural) with contrasting seismic velocities. The resolution is high for the upper parts of the subducting material. However, in greater depths (40-80 km) the visualization of the subducted slab becomes increasingly blurry, until the slab cannot be distinguished from Earth's mantle anymore, rendering a visualization impossible. This blurry zone is thought to occur due to advancing eclogitization of the subducting slab. However, it is not well understood how micro- to macro-scale structures related to progressive eclogitization affect RF signals. The island of Holsnoy in the Bergen Arcs of western Norway represents a partially eclogitized formerly subducted block of lower crust and serves as an analogue to the aforementioned blurry zone in RF images. This eclogitization can be observed in static fluid induced eclogitization patches or fingers, but is mainly present in localized shear zones of variable sizes (mm to 100s of meters). We mapped the area to gain a better understanding of the geometries of such shear zones, which could possibly function as seismic reflectors. Further, we calculated seismic velocities from thermodynamic modelling on the basis of XRF whole rock analysis and compared these results to velocities calculated from a combination of thin section information, EMPA and physical mineral properties (Voigt-Reuss-Hill averaging). Both methods yield consistent results for p- and s-wave velocities of eclogites and granulites from Holsnoy. In combination with X-ray measurements to identify the microtextures of the characteristic samples to incorporate seismic anisotropy caused by e.g. foliation or lineation, these seismic velocities are used as an input for seismic models to reconstruct the progressive eclogitization of a subducting slab as seen in many RF-images (i.e. blurry zone).
NASA Astrophysics Data System (ADS)
Gu, N.; Zhang, H.
2017-12-01
Seismic imaging of fault zones generally involves seismic velocity tomography using first arrival times or full waveforms from earthquakes occurring around the fault zones. However, in most cases seismic velocity tomography only gives smooth image of the fault zone structure. To get high-resolution structure of the fault zones, seismic migration using active seismic data needs to be used. But it is generally too expensive to conduct active seismic surveys, even for 2D. Here we propose to apply the passive seismic imaging method based on seismic interferometry to image fault zone detailed structures. Seismic interferometry generally refers to the construction of new seismic records for virtual sources and receivers by cross correlating and stacking the seismic records on physical receivers from physical sources. In this study, we utilize seismic waveforms recorded on surface seismic stations for each earthquake to construct zero-offset seismic record at each earthquake location as if there was a virtual receiver at each earthquake location. We have applied this method to image the fault zone structure around the 2013 Mw6.6 Lushan earthquake. After the occurrence of the mainshock, a 29-station temporary array is installed to monitor aftershocks. In this study, we first select aftershocks along several vertical cross sections approximately normal to the fault strike. Then we create several zero-offset seismic reflection sections by seismic interferometry with seismic waveforms from aftershocks around each section. Finally we migrate these zero-offset sections to create seismic structures around the fault zones. From these migration images, we can clearly identify strong reflectors, which correspond to major reverse fault where the mainshock occurs. This application shows that it is possible to image detailed fault zone structures with passive seismic sources.
50 years of Global Seismic Observations
NASA Astrophysics Data System (ADS)
Anderson, K. R.; Butler, R.; Berger, J.; Davis, P.; Derr, J.; Gee, L.; Hutt, C. R.; Leith, W. S.; Park, J. J.
2007-12-01
Seismological recordings have been made on Earth for hundreds of years in some form or another, however, global monitoring of earthquakes only began in the 1890's when John Milne created 40 seismic observatories to measure the waves from these events. Shortly after the International Geophysical Year (IGY), a concerted effort was made to establish and maintain a more modern standardized seismic network on the global scale. In the early 1960's, the World-Wide Standardized Seismograph Network (WWSSN) was established through funding from the Advanced Research Projects Agency (ARPA) and was installed and maintained by the USGS's Albuquerque Seismological Laboratory (then a part of the US Coast and Geodetic Survey). This network of identical seismic instruments consisted of 120 stations in 60 countries. Although the network was motivated by nuclear test monitoring, the WWSSN facilitated numerous advances in observational seismology. From the IGY to the present, the network has been upgraded (High-Gain Long-Period Seismograph Network, Seismic Research Observatories, Digital WWSSN, Global Telemetered Seismograph Network, etc.) and expanded (International Deployment of Accelerometers, US National Seismic Network, China Digital Seismograph Network, Joint Seismic Project, etc.), bringing the modern day Global Seismographic Network (GSN) to a current state of approximately 150 stations. The GSN consists of state-of-the-art very broadband seismic transducers, continuous power and communications, and ancillary sensors including geodetic, geomagnetic, microbarographic, meteorological and other related instrumentation. Beyond the GSN, the system of global network observatories includes contributions from other international partners (e.g., GEOSCOPE, GEOFON, MEDNET, F-Net, CTBTO), forming an even larger backbone of permanent seismological observatories as a part of the International Federation of Digital Seismograph Networks. 50 years of seismic network operations have provided valuable data for earth science research. Developments in communications and other technological advances have expanded the role of the GSN in rapid earthquake analysis, tsunami warning, and nuclear test monitoring. With such long-term observations, scientists are now getting a glimpse of Earth structure changes on human time scales, such as the rotation of the inner core, as well as views into climate processes. Continued observations for the next 50 years will enhance our image of the Earth and its processes.
Full Waveform Modelling for Subsurface Characterization with Converted-Wave Seismic Reflection
NASA Astrophysics Data System (ADS)
Triyoso, Wahyu; Oktariena, Madaniya; Sinaga, Edycakra; Syaifuddin, Firman
2017-04-01
While a large number of reservoirs have been explored using P-waves seismic data, P-wave seismic survey ceases to provide adequate result in seismically and geologically challenging areas, like gas cloud, shallow drilling hazards, strong multiples, highly fractured, anisotropy. Most of these reservoir problems can be addressed using P and PS seismic data combination. Multicomponent seismic survey records both P-wave and S-wave unlike conventional survey that only records compressional P-wave. Under certain conditions, conventional energy source can be used to record P and PS data using the fact that compressional wave energy partly converts into shear waves at the reflector. Shear component can be recorded using down going P-wave and upcoming S-wave by placing a horizontal component geophone on the ocean floor. A synthetic model is created based on real data to analyze the effect of gas cloud existence to PP and PS wave reflections which has a similar characteristic to Sub-Volcanic imaging. The challenge within the multicomponent seismic is the different travel time between P-wave and S-wave, therefore the converted-wave seismic data should be processed with different approach. This research will provide a method to determine an optimum converted point known as Common Conversion Point (CCP) that can solve the Asymmetrical Conversion Point of PS data. The value of γ (Vp/Vs) is essential to estimate the right CCP that will be used in converted-wave seismic processing. This research will also continue to the advanced processing method of converted-wave seismic by applying Joint Inversion to PP&PS seismic. Joint Inversion is a simultaneous model-based inversion that estimates the P&S-wave impedance which are consistent with the PP&PS amplitude data. The result reveals a more complex structure mirrored in PS data below the gas cloud area. Through estimated γ section resulted from Joint Inversion, we receive a better imaging improvement below gas cloud area tribute to the converted-wave seismic as additional constrain.
NASA Astrophysics Data System (ADS)
Peter, Daniel; Videau, Brice; Pouget, Kevin; Komatitsch, Dimitri
2015-04-01
Improving the resolution of tomographic images is crucial to answer important questions on the nature of Earth's subsurface structure and internal processes. Seismic tomography is the most prominent approach where seismic signals from ground-motion records are used to infer physical properties of internal structures such as compressional- and shear-wave speeds, anisotropy and attenuation. Recent advances in regional- and global-scale seismic inversions move towards full-waveform inversions which require accurate simulations of seismic wave propagation in complex 3D media, providing access to the full 3D seismic wavefields. However, these numerical simulations are computationally very expensive and need high-performance computing (HPC) facilities for further improving the current state of knowledge. During recent years, many-core architectures such as graphics processing units (GPUs) have been added to available large HPC systems. Such GPU-accelerated computing together with advances in multi-core central processing units (CPUs) can greatly accelerate scientific applications. There are mainly two possible choices of language support for GPU cards, the CUDA programming environment and OpenCL language standard. CUDA software development targets NVIDIA graphic cards while OpenCL was adopted mainly by AMD graphic cards. In order to employ such hardware accelerators for seismic wave propagation simulations, we incorporated a code generation tool BOAST into an existing spectral-element code package SPECFEM3D_GLOBE. This allows us to use meta-programming of computational kernels and generate optimized source code for both CUDA and OpenCL languages, running simulations on either CUDA or OpenCL hardware accelerators. We show here applications of forward and adjoint seismic wave propagation on CUDA/OpenCL GPUs, validating results and comparing performances for different simulations and hardware usages.
NASA Astrophysics Data System (ADS)
Schenini, L.; Beslier, M. O.; Sage, F.; Badji, R.; Galibert, P. Y.; Lepretre, A.; Dessa, J. X.; Aidi, C.; Watremez, L.
2014-12-01
Recent studies on the Algerian and the North-Ligurian margins in the Western Mediterranean have evidenced inversion-related superficial structures, such as folds and asymmetric sedimentary perched basins whose geometry hints at deep compressive structures dipping towards the continent. Deep seismic imaging of these margins is difficult due to steep slope and superficial multiples, and, in the Mediterranean context, to the highly diffractive Messinian evaporitic series in the basin. During the Algerian-French SPIRAL survey (2009, R/V Atalante), 2D marine multi-channel seismic (MCS) reflection data were collected along the Algerian Margin using a 4.5 km, 360 channel digital streamer and a 3040 cu. in. air-gun array. An advanced processing workflow has been laid out using Geocluster CGG software, which includes noise attenuation, 2D SRME multiple attenuation, surface consistent deconvolution, Kirchhoff pre-stack time migration. This processing produces satisfactory seismic images of the whole sedimentary cover, and of southward dipping reflectors in the acoustic basement along the central part of the margin offshore Great Kabylia, that are interpreted as inversion-related blind thrusts as part of flat-ramp systems. We applied this successful processing workflow to old 2D marine MCS data acquired on the North-Ligurian Margin (Malis survey, 1995, R/V Le Nadir), using a 2.5 km, 96 channel streamer and a 1140 cu. in. air-gun array. Particular attention was paid to multiple attenuation in adapting our workflow. The resulting reprocessed seismic images, interpreted with a coincident velocity model obtained by wide-angle data tomography, provide (1) enhanced imaging of the sedimentary cover down to the top of the acoustic basement, including the base of the Messinian evaporites and the sub-salt Miocene series, which appear to be tectonized as far as in the mid-basin, and (2) new evidence of deep crustal structures in the margin which the initial processing had failed to reveal.
The Advanced National Seismic System; management and implementation
Benz, H.M.; Shedlock, K.M.; Buland, R.P.
2001-01-01
What is the Advanced National Seismic System? The Advanced National Seismic System (ANSS) is designed to organize, modernize, and standardize operations of seismic networks in the United States to improve the Nation’s ability to respond effectively to damaging earthquakes, volcanoes, and tsunamis. To achieve this, the ANSS will link more than 7,000 national, regional and urban monitoring stations in real time
Identifying structural styles in Colombia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, W.P.; Van Nieuwenhuise, R.E.; Steuer, M.R.
1996-08-01
Much of our understanding of the Earth is from the study of surface geology and seismic, but many surface structures are responses to deformation which occurred below sedimentary layers. The practice within the petroleum industry is to use top-down processes of analyzing the surface to understand the subsurface, and observed surface structural styles tend to influence seismic interpretations. Yet many conditions which influenced the structural styles seen at the surface are different at depth. Since seismic is a time representation of the Earth, many interpretation pitfalls may exist within areas of complex geology. Also, its reliability decreases with depth andmore » with increasing geologic complexity. Forward modeling and pre-stack depth migration technologies are used to provide true depth images of the seismic data. Even with these advances in seismic imaging technology, the interpreter needs to incorporate additional data into the interpretation. Accurate structural identification requires the interpreter to integrate seismic with surface geology, remote sensing, gravity, magnetic data, geochemistry, fault-plane solutions from earthquakes, and regional tectonic studies. Incorporating these types of data into the interpretation will help us learn how basement is involved in the deformation of overlying sediments. A study of the Eastern Cordillera of Colombia shows the deformation to be dominantly transpressional in style. Euler deconvolution of the areomagnetic data shows a highly fractured basement, steep fault lineaments, en echelon structures, and complex fault patterns, all of which would be typical of wrench-type deformation. Available surface geology, regional studies, earthquake data, and forward modeling support this interpretation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeff Sondrup; Gail Heath; Trent Armstrong
2011-04-01
This report presents the seismic refraction results from the depth to bed rock surveys for two areas being considered for the Remote-Handled Low-Level Waste (RH-LLW) disposal facility at the Idaho National Laboratory. The first area (Site 5) surveyed is located southwest of the Advanced Test Reactor Complex and the second (Site 34) is located west of Lincoln Boulevard near the southwest corner of the Idaho Nuclear Technology and Engineering Center (INTEC). At Site 5, large area and smaller-scale detailed surveys were performed. At Site 34, a large area survey was performed. The purpose of the surveys was to define themore » topography of the interface between the surficial alluvium and underlying basalt. Seismic data were first collected and processed using seismic refraction tomographic inversion. Three-dimensional images for both sites were rendered from the data to image the depth and velocities of the subsurface layers. Based on the interpreted top of basalt data at Site 5, a more detailed survey was conducted to refine depth to basalt. This report briefly covers relevant issues in the collection, processing and inversion of the seismic refraction data and in the imaging process. Included are the parameters for inversion and result rendering and visualization such as the inclusion of physical features. Results from the processing effort presented in this report include fence diagrams of the earth model, for the large area surveys and iso-velocity surfaces and cross sections from the detailed survey.« less
NASA Astrophysics Data System (ADS)
LI, B.; Ghosh, A.
2016-12-01
The 2015 Mw 7.8 Gorkha earthquake provides a good opportunity to study the tectonics and earthquake hazards in the Himalayas, one of the most seismically active plate boundaries. Details of the seismicity patterns and associated structures in the Himalayas are poorly understood mainly due to limited instrumentation. Here, we apply a back-projection method to study the mainshock rupture and the following aftershock sequence using four large aperture global seismic arrays. All the arrays show eastward rupture propagation of about 130 km and reveal similar evolution of seismic energy radiation, with strong high-frequency energy burst about 50 km north of Kathmandu. Each single array, however, is typically limited by large azimuthal gap, low resolution, and artifacts due to unmodeled velocity structures. Therefore, we use a self-consistent empirical calibration method to combine four different arrays to image the Gorkha event. It greatly improves the resolution, can better track rupture and reveal details that cannot be resolved by any individual array. In addition, we also use the same arrays at teleseismic distances and apply a back-projection technique to detect and locate the aftershocks immediately following the Gorkha earthquake. We detect about 2.5 times the aftershocks recorded by the Advance National Seismic System comprehensive earthquake catalog during the 19 days following the mainshock. The aftershocks detected by the arrays show an east-west trend in general, with majority of the aftershocks located at the eastern part of the rupture patch and surrounding the rupture zone of the largest Mw 7.3 aftershock. Overall spatiotemporal aftershock pattern agrees well with global catalog, with our catalog showing more details relative to the standard global catalog. The improved aftershock catalog enables us to better study the aftershock dynamics, stress evolution in this region. Moreover, rapid and better imaging of aftershock distribution may aid rapid response and hazard assessment after destructive large earthquakes. Existing multiple global seismic arrays, when properly calibrated and used in combinations, provide a high resolution image of rupture of large earthquakes and spatiotemporal distribution of aftershocks.
Seismic imaging: From classical to adjoint tomography
NASA Astrophysics Data System (ADS)
Liu, Q.; Gu, Y. J.
2012-09-01
Seismic tomography has been a vital tool in probing the Earth's internal structure and enhancing our knowledge of dynamical processes in the Earth's crust and mantle. While various tomographic techniques differ in data types utilized (e.g., body vs. surface waves), data sensitivity (ray vs. finite-frequency approximations), and choices of model parameterization and regularization, most global mantle tomographic models agree well at long wavelengths, owing to the presence and typical dimensions of cold subducted oceanic lithospheres and hot, ascending mantle plumes (e.g., in central Pacific and Africa). Structures at relatively small length scales remain controversial, though, as will be discussed in this paper, they are becoming increasingly resolvable with the fast expanding global and regional seismic networks and improved forward modeling and inversion techniques. This review paper aims to provide an overview of classical tomography methods, key debates pertaining to the resolution of mantle tomographic models, as well as to highlight recent theoretical and computational advances in forward-modeling methods that spearheaded the developments in accurate computation of sensitivity kernels and adjoint tomography. The first part of the paper is devoted to traditional traveltime and waveform tomography. While these approaches established a firm foundation for global and regional seismic tomography, data coverage and the use of approximate sensitivity kernels remained as key limiting factors in the resolution of the targeted structures. In comparison to classical tomography, adjoint tomography takes advantage of full 3D numerical simulations in forward modeling and, in many ways, revolutionizes the seismic imaging of heterogeneous structures with strong velocity contrasts. For this reason, this review provides details of the implementation, resolution and potential challenges of adjoint tomography. Further discussions of techniques that are presently popular in seismic array analysis, such as noise correlation functions, receiver functions, inverse scattering imaging, and the adaptation of adjoint tomography to these different datasets highlight the promising future of seismic tomography.
NASA Astrophysics Data System (ADS)
Kim, D.; Keranen, K. M.; Abers, G. A.; Kim, Y.; Li, J.; Shillington, D. J.; Brown, L. D.
2017-12-01
The physical factors that control the rupture process of great earthquakes at convergent plate boundaries remain incompletely understood. While recent developments in imaging using the teleseismic wavefield have led to marked advances at wavelengths of a couple kilometers to tens of kilometers, higher resolution imaging of the rupture zone would improve the resolution of imaging and thus provide improved parameter estimation, as the teleseismic wavefield is fundamentally limited by its low frequency content. This study compares and evaluates two seismic imaging techniques using the high-frequency signals from teleseismic coda versus earthquake scattered waves to image the subducting Yakutat oceanic plateau in the Alaska subduction zone. We use earthquakes recorded by the MOOS PASSCAL broadband deployment in southern Alaska. In our first method, we select local earthquakes that lie directly beneath and laterally near the recording array for imaging, and extract body wave information via a simple autocorrelation and stacking. Profiles analogous to seismic reflection profile are constructed using the near-vertically travelling waves. In our second method, we compute teleseismic receiver functions within the 0.02-1.0 Hz frequency band. Both results image interfaces that we associate with the subducting oceanic plate in Alaska-Aleutian system, with greater resolution than commonly used methods with teleseismic sources. Structural details from our results can further our understanding of the conditions and materials that characterize the subduction megathrusts, and the techniques can be employed in other regions along the Alaska-Aleutian system and at other convergent margins with suitable seismic arrays.
Advanced seismic imaging of overdeepened alpine valleys
NASA Astrophysics Data System (ADS)
Burschil, Thomas; Buness, Hermann; Tanner, David; Gabriel, Gerald; Krawczyk, Charlotte M.
2017-04-01
Major European alpine valleys and basins are densely populated areas with infrastructure of international importance. To protect the environment by, e.g., geohazard assessment or groundwater estimation, understanding of the geological structure of these valleys is essential. The shape and deposits of a valley can clarify its genesis and allows a prediction of behaviour in future glaciations. The term "overdeepened" refers to valleys and basins, in which pressurized melt-water under the glacier erodes the valley below the fluvial level. Most overdeepened valleys or basins were thus refilled during the ice melt or remain in the form of lakes. The ICDP-project Drilling Overdeepened Alpine Valleys (DOVE) intends to correlate the sedimentary succession from boreholes between valleys in the entire alpine range. Hereby, seismic exploration is essential to predict the most promising well path and drilling site. In a first step, this DFG-funded project investigates the benefit of multi-component techniques for seismic imaging. At two test sites, the Tannwald Basin and the Lienz Basin, the Leibniz Institute for Applied Geophysics acquired P-wave reflection profiles to gain structural and facies information. Built on the P-wave information, several S-wave reflection profiles were acquired in the pure SH-wave domain as well as 6-C reflection profiles using a horizontal S-wave source in inline and crossline excitation and 3-C receivers. Five P-wave sections reveal the structure of the Tannwald Basin, which is a distal branch basin of the Rhine Glacier. Strong reflections mark the base of the basin, which has a maximum depth of 240 metres. Internal structures and facies vary strongly and spatially, but allow a seismic facies characterization. We distinguish lacustrine, glacio-fluvial, and deltaic deposits, which make up the fill of the Tannwald Basin. Elements of the SH-wave and 6-C seismic imaging correlate with major structures in the P-wave image, but vary in detail. Based on the interpretation, two possible drilling sites are suggested for DOVE that will also prove the seismic interpretation and explain differences in P- and S-wave imaging. First results for the intermountain Lienz Basin are available from four parallel P-wave sections which show the asymmetric basin shape. The sedimentary base is well imaged down to ca. 0.6 km depth, and internal reflectors point to a diverse fill. Here, S-wave imaging produces less distinct sections and requires more sophisticated processing. In summary, P-wave imaging is suitable to map overdeepened structures in the Alps while S-wave imaging can contribute additional information.
SEG Advances in Rotational Seismic Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierson, Robert; Laughlin, Darren; Brune, Bob
2016-10-17
Significant advancements in the development of sensors to enable rotational seismic measurements have been achieved. Prototypes are available now to support experiments that help validate the utility of rotational seismic measurements.
NASA Astrophysics Data System (ADS)
Karplus, M. S.; Kaip, G.; Harder, S. H.; Johnson, K.
2016-12-01
In October 2015, the Advanced Exploration Seismology class at the University of Texas at El Paso together with additional volunteers acquired a 500-m active-source seismic profile across an andesite dike adjacent to the Rio Grande River near Sunland Park, New Mexico. Receivers included 100 RT-125 Reftek Texans with 4.5-Hz geophones, spaced every 5 m, and 47 Fairfield Z-Land nodes incorporating 5-Hz 3C geophones, spaced approximately every 10 m. A 8-gauge, 400 grain seismic gun source was fired every 5-10 m along most of the profile. Several locations at the ends of the profile experienced multiple gun shots, which have been stacked to increase signal-to-noise. We discuss similarities and differences in field methods and data acquired using the Texans compared to the nodes for a shallow active-source experiment. We extend the discussion to other types of active-source experiments using other recently-acquired nodal datasets. We observe changes in velocity between the andesite dike and surrounding lithologies, and create a seismic reflection image of the andesite dike.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kendall, J.; Hams, J.E.; Buck, S.P.
1990-05-01
Advances in high resolution side-scan sonar imaging technology are so effective at imaging sea-floor geology that they have greatly improved the efficiency of a bottom sampling program The traditional sea-floor geology methodology of shooting a high-resolution seismic survey and sampling along the seismic grid was considered successful if outcrops were sampled on 20% of the attempts. A submersible was used sparingly because of the inability to consistently locate sea-floor outcrops. Side-scan sonar images have increased the sampling success ratio to 70-95% and allow the cost-effective use of a submersible even in areas of sparse sea-floor outcrops. In offshore basins thismore » new technology has been used in consolidated and semiconsolidated rock terranes. When combined with observations from a two-man submersible, SCUBA traverses, seismic data, and traditional sea-floor bottom sampling techniques, enough data are provided to develop an integrated sea-floor geologic interpretation. On individual prospects, side-scan sonar has aided the establishment of critical dip in poor seismic data areas, located seeps and tar mounds, and determined erosional breaching of a prospect. Over a mature producing field, side-scan sonar has influenced the search for field extension by documenting the orientation and location of critical trapping cross faults. These relatively inexpensive techniques can provide critical data in any marine basin where rocks crop out on the sea floor.« less
NASA Astrophysics Data System (ADS)
Steadman, Bob; Finklea, John; Kershaw, James; Loughman, Cathy; Shaffner, Patti; Frost, Dean; Deller, Sean
2014-06-01
Textron's Advanced MicroObserver(R) is a next generation remote unattended ground sensor system (UGS) for border security, infrastructure protection, and small combat unit security. The original MicroObserver(R) is a sophisticated seismic sensor system with multi-node fusion that supports target tracking. This system has been deployed in combat theaters. The system's seismic sensor nodes are uniquely able to be completely buried (including antennas) for optimal covertness. The advanced version adds a wireless day/night Electro-Optic Infrared (EOIR) system, cued by seismic tracking, with sophisticated target discrimination and automatic frame capture features. Also new is a field deployable Gateway configurable with a variety of radio systems and flexible networking, an important upgrade that enabled the research described herein. BattleHawkTM is a small tube launched Unmanned Air Vehicle (UAV) with a warhead. Using transmitted video from its EOIR subsystem an operator can search for and acquire a target day or night, select a target for attack, and execute terminal dive to destroy the target. It is designed as a lightweight squad level asset carried by an individual infantryman. Although BattleHawk has the best loiter time in its class, it's still relatively short compared to large UAVs. Also it's a one-shot asset in its munition configuration. Therefore Textron Defense Systems conducted research, funded internally, to determine if there was military utility in having the highly persistent MicroObserver(R) system cue BattleHawk's launch and vector it to beyond visual range targets for engagement. This paper describes that research; the system configuration implemented, and the results of field testing that was performed on a government range early in 2013. On the integrated system that was implemented, MicroObserver(R) seismic detections activated that system's camera which then automatically captured images of the target. The geo-referenced and time-tagged MicroObserver(R) target reports and images were then automatically forwarded to the BattleHawk Android-based controller. This allowed the operator to see the intruder (classified and geo-located) on the map based display, assess the intruder as likely hostile (via the image), and launch BattleHawk with the pre-loaded target coordinates. The operator was thus able to quickly acquire the intended target (without a search) and initiate target engagement immediately. System latencies were a major concern encountered during the research.
Virtual Seismic Observation (VSO) with Sparsity-Promotion Inversion
NASA Astrophysics Data System (ADS)
Tiezhao, B.; Ning, J.; Jianwei, M.
2017-12-01
Large station interval leads to low resolution images, sometimes prevents people from obtaining images in concerned regions. Sparsity-promotion inversion, a useful method to recover missing data in industrial field acquisition, can be lent to interpolate seismic data on none-sampled sites, forming Virtual Seismic Observation (VSO). Traditional sparsity-promotion inversion suffers when coming up with large time difference in adjacent sites, which we concern most and use shift method to improve it. The procedure of the interpolation is that we first employ low-pass filter to get long wavelength waveform data and shift the waveforms of the same wave in different seismograms to nearly same arrival time. Then we use wavelet-transform-based sparsity-promotion inversion to interpolate waveform data on none-sampled sites and filling a phase in each missing trace. Finally, we shift back the waveforms to their original arrival times. We call our method FSIS (Filtering, Shift, Interpolation, Shift) interpolation. By this way, we can insert different virtually observed seismic phases into none-sampled sites and get dense seismic observation data. For testing our method, we randomly hide the real data in a site and use the rest to interpolate the observation on that site, using direct interpolation or FSIS method. Compared with directly interpolated data, interpolated data with FSIS can keep amplitude better. Results also show that the arrival times and waveforms of those VSOs well express the real data, which convince us that our method to form VSOs are applicable. In this way, we can provide needed data for some advanced seismic technique like RTM to illuminate shallow structures.
Recent advances in the use of acoustics across the frequency spectrum in the oil and gas industry
NASA Astrophysics Data System (ADS)
Zeroug, Smaine; Bose, Sandip
2018-04-01
Acoustics enjoys a wide array of applicability in the Oil and Gas industry. Signals with very low-frequencies (tens of Hertz) are routinely used on surface to image the earth subsurface delineating hydrocarbon reservoirs while signals with mid-frequencies (thousands of Hertz) to high-frequencies (hundreds of kilo Hertz) are used in deep boreholes to probe rock mechanical properties and evaluate completion hardware. This article reviews a few recent advances in these applications spanning both measurement concepts and processing and inversion approaches. Three applications are covered, going from high to low frequencies. The first relates to an ultrasonic imager deployed in open boreholes to probe the laminated structure of unconventional shale rock formations at depth of more than 3000 m. The imager yields rock compressional and shear wavespeed images as a function of depth and azimuth revealing a host of geomechanical manifestations of the borehole shape and near-wellbore region at an unprecedented centimetric spatial resolution. The quantitative images have bearing on rock strength and local stresses as they relate to the hydraulic fracturing of these shale formations. The second relates to the interpretation of the complex sonic response in a well cased with double steel strings cemented to the rock formation for the purpose of evaluating the integrity of the cement placed between the outer string and formation. Here, machine learning-based approaches are employed with training on modeling and experimental datasets to develop effective and wellsite diagnosis for the condition of the cement sheath. The third relates to the seismic imaging domain and the deployment of novel accelerometers added to hydrophones on marine seismic cables to capture the subsurface-reflected pressure signals and their spatial gradients. The combination of the two sensors provides the means to deghost the signal from the sea surface reflection, and more importantly, reconstruct the subsurface seismic wavefield that is poorly sampled across cables that are spaced 75m to 150 m apart. Novel compressive-sensing schemes coupled with wave physics are employed for the wavefield reconstruction at virtual sampling rates way beyond Nyquist's criterion.
Homogenization of Electromagnetic and Seismic Wavefields for Joint Inverse Modeling
NASA Astrophysics Data System (ADS)
Newman, G. A.; Commer, M.; Petrov, P.; Um, E. S.
2011-12-01
A significant obstacle in developing a robust joint imaging technology exploiting seismic and electromagnetic (EM) wave fields is the resolution at which these different geophysical measurements sense the subsurface. Imaging of seismic reflection data is an order of magnitude finer in resolution and scale compared to images produced with EM data. A consistent joint image of the subsurface geophysical attributes (velocity, electrical conductivity) requires/demands the different geophysical data types be similar in their resolution of the subsurface. The superior resolution of seismic data results from the fact that the energy propagates as a wave, while propagation of EM energy is diffusive and attenuates with distance. On the other hand, the complexity of the seismic wave field can be a significant problem due to high reflectivity of the subsurface and the generation of multiple scattering events. While seismic wave fields have been very useful in mapping the subsurface for energy resources, too much scattering and too many reflections can lead to difficulties in imaging and interpreting seismic data. To overcome these obstacles a formulation for joint imaging of seismic and EM wave fields is introduced, where each data type is matched in resolution. In order to accomplish this, seismic data are first transformed into the Laplace-Fourier Domain, which changes the modeling of the seismic wave field from wave propagation to diffusion. Though high frequency information (reflectivity) is lost with this transformation, several benefits follow: (1) seismic and EM data can be easily matched in resolution, governed by the same physics of diffusion, (2) standard least squares inversion works well with diffusive type problems including both transformed seismic and EM, (3) joint imaging of seismic and EM data may produce better starting velocity models critical for successful reverse time migration or full waveform imaging of seismic data (non transformed) and (4) possibilities to image across multiple scale lengths, incorporating different types of geophysical data and attributes in the process. Important numerical details of 3D seismic wave field simulation in the Laplace-Fourier domain for both acoustic and elastic cases will also be discussed.
Advanced geophysical underground coal gasification monitoring
Mellors, Robert; Yang, X.; White, J. A.; ...
2014-07-01
Underground Coal Gasification (UCG) produces less surface impact, atmospheric pollutants and greenhouse gas than traditional surface mining and combustion. Therefore, it may be useful in mitigating global change caused by anthropogenic activities. Careful monitoring of the UCG process is essential in minimizing environmental impact. Here we first summarize monitoring methods that have been used in previous UCG field trials. We then discuss in more detail a number of promising advanced geophysical techniques. These methods – seismic, electromagnetic, and remote sensing techniques – may provide improved and cost-effective ways to image both the subsurface cavity growth and surface subsidence effects. Activemore » and passive seismic data have the promise to monitor the burn front, cavity growth, and observe cavity collapse events. Electrical resistance tomography (ERT) produces near real time tomographic images autonomously, monitors the burn front and images the cavity using low-cost sensors, typically running within boreholes. Interferometric synthetic aperture radar (InSAR) is a remote sensing technique that has the capability to monitor surface subsidence over the wide area of a commercial-scale UCG operation at a low cost. It may be possible to infer cavity geometry from InSAR (or other surface topography) data using geomechanical modeling. The expected signals from these monitoring methods are described along with interpretive modeling for typical UCG cavities. They are illustrated using field results from UCG trials and other relevant subsurface operations.« less
Tunnel Detection Using Seismic Methods
NASA Astrophysics Data System (ADS)
Miller, R.; Park, C. B.; Xia, J.; Ivanov, J.; Steeples, D. W.; Ryden, N.; Ballard, R. F.; Llopis, J. L.; Anderson, T. S.; Moran, M. L.; Ketcham, S. A.
2006-05-01
Surface seismic methods have shown great promise for use in detecting clandestine tunnels in areas where unauthorized movement beneath secure boundaries have been or are a matter of concern for authorities. Unauthorized infiltration beneath national borders and into or out of secure facilities is possible at many sites by tunneling. Developments in acquisition, processing, and analysis techniques using multi-channel seismic imaging have opened the door to a vast number of near-surface applications including anomaly detection and delineation, specifically tunnels. Body waves have great potential based on modeling and very preliminary empirical studies trying to capitalize on diffracted energy. A primary limitation of all seismic energy is the natural attenuation of high-frequency energy by earth materials and the difficulty in transmitting a high- amplitude source pulse with a broad spectrum above 500 Hz into the earth. Surface waves have shown great potential since the development of multi-channel analysis methods (e.g., MASW). Both shear-wave velocity and backscatter energy from surface waves have been shown through modeling and empirical studies to have great promise in detecting the presence of anomalies, such as tunnels. Success in developing and evaluating various seismic approaches for detecting tunnels relies on investigations at known tunnel locations, in a variety of geologic settings, employing a wide range of seismic methods, and targeting a range of uniquely different tunnel geometries, characteristics, and host lithologies. Body-wave research at the Moffat tunnels in Winter Park, Colorado, provided well-defined diffraction-looking events that correlated with the subsurface location of the tunnel complex. Natural voids related to karst have been studied in Kansas, Oklahoma, Alabama, and Florida using shear-wave velocity imaging techniques based on the MASW approach. Manmade tunnels, culverts, and crawl spaces have been the target of multi-modal analysis in Kansas and California. Clandestine tunnels used for illegal entry into the U.S. from Mexico were studied at two different sites along the southern border of California. All these studies represent the empirical basis for suggesting surface seismic has a significant role to play in tunnel detection and that methods are under development and very nearly at hand that will provide an effective tool in appraising and maintaining parameter security. As broadband sources, gravity-coupled towed spreads, and automated analysis software continues to make advancements, so does the applicability of routine deployment of seismic imaging systems that can be operated by technicians with interpretation aids for nearly real-time target selection. Key to making these systems commercial is the development of enhanced imaging techniques in geologically noisy areas and highly variable surface terrain.
Illuminating Asset Value through New Seismic Technology
NASA Astrophysics Data System (ADS)
Brandsberg-Dahl, S.
2007-05-01
The ability to reduce risk and uncertainty across the full life cycle of an asset is directly correlated to creating an accurate subsurface image that enhances our understanding of the geology. This presentation focuses on this objective in areas of complex overburden in deepwater. Marine 3D seismic surveys have been acquired in essentially the same way for the past decade. This configuration of towed streamer acquisition, where the boat acquires data in one azimuth has been very effective in imaging areas in fairly benign geologic settings. As the industry has moved into more complicated geologic settings these surveys no longer meet the imaging objectives for risk reduction in exploration through production. In shallow water, we have seen increasing use of ocean bottom cables to meet this challenge. For deepwater, new breakthroughs in technology were required. This will be highlighted through examples of imaging below large salt bodies in the deep water Gulf of Mexico. GoM - Mad Dog: The Mad Dog field is located approximately 140 miles south of the Louisiana coastline in the southern Green Canyon area in water depths between 4100 feet to 6000 feet. The complex salt canopy overlying a large portion of the field results in generally poor seismic data quality. Advanced processing techniques improved the image, but gaps still remained even after several years of effort. We concluded that wide azimuth acquisition was required to illuminate the field in a new way. Results from the Wide Azimuth Towed Streamer (WATS) survey deployed at Mad Dog demonstrated the anticipated improvement in the subsalt image. GoM - Atlantis Field: An alternative approach to wide azimuth acquisition, ocean bottom seismic (OBS) node technology, was developed and tested. In 2001 deepwater practical experience was limited to a few nodes owned by academic institutions and there were no commercial solutions either available or in development. BP embarked on a program of sea trials designed to both evaluate technologies and subsequently encourage vendor activity to develop and deploy a commercial system. The 3D seismic method exploded into general usage in the 1990's. Our industry delivered 3D cheaper and faster, improving quality through improved acquisition specifications and new processing technology. The need to mitigate business risks in highly material subsalt plays led BP to explore the technical limits of the seismic method, testing novel acquisition techniques to improve illumination and signal to noise ratio. These were successful and are applicable to analogue seismic quality problems globally providing breakthroughs in illuminating previously hidden geology and hydrocarbon reservoirs. A focused business challenge, smart risk taking, investment in people and computing capability, partnerships, and rapid implementation are key themes that will be touched on through out the talk.
a Comparative Case Study of Reflection Seismic Imaging Method
NASA Astrophysics Data System (ADS)
Alamooti, M.; Aydin, A.
2017-12-01
Seismic imaging is the most common means of gathering information about subsurface structural features. The accuracy of seismic images may be highly variable depending on the complexity of the subsurface and on how seismic data is processed. One of the crucial steps in this process, especially in layered sequences with complicated structure, is the time and/or depth migration of seismic data.The primary purpose of the migration is to increase the spatial resolution of seismic images by repositioning the recorded seismic signal back to its original point of reflection in time/space, which enhances information about complex structure. In this study, our objective is to process a seismic data set (courtesy of the University of South Carolina) to generate an image on which the Magruder fault near Allendale SC can be clearly distinguished and its attitude can be accurately depicted. The data was gathered by common mid-point method with 60 geophones equally spaced along an about 550 m long traverse over a nearly flat ground. The results obtained from the application of different migration algorithms (including finite-difference and Kirchhoff) are compared in time and depth domains to investigate the efficiency of each algorithm in reducing the processing time and improving the accuracy of seismic images in reflecting the correct position of the Magruder fault.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisses, A.; Kell, A.; Kent, G.
Amy Eisses, Annie Kell, Graham Kent, Neal Driscoll, Robert Karlin, Rob Baskin, John Louie, and Satish Pullammanappallil, 2011, Marine and land active-source seismic imaging of mid-Miocene to Holocene-aged faulting near geothermal prospects at Pyramid Lake, Nevada: Geothermal Resources Council Transactions, 35, 7 pp. Preprint at http://crack.seismo.unr.edu/geothermal/Eisses-GRCpaper-sm.pdf The Pyramid Lake fault zone lies within a vitally important area of the northern Walker Lane where not only can transtension can be studied through a complex arrangement of strike-slip and normal faults but also geothermal activity can be examined in the extensional regime for productivity. This study used advanced and economical seismic methodsmore » in attempt to develop the Paiute Tribe’s geothermal reservoir and to expand upon the tectonics and earthquake hazard knowledge of the area. 500 line-kilometers of marine CHIRP data were collected on Pyramid Lake combined with 27 kilometers of vibrator seismic on-land data from the northwest side of the basin were collected in 2010 that highlighted two distinct phases of faulting. Preliminary results suggest that the geothermal fluids in the area are controlled by the late Pleistoceneto Holocene-aged faults and not through the mid-Miocene-aged conduits as originally hypothesized.« less
Reducing the uncertainty in the fidelity of seismic imaging results
NASA Astrophysics Data System (ADS)
Zhou, H. W.; Zou, Z.
2017-12-01
A key aspect in geoscientific inversion is quantifying the quality of the results. In seismic imaging, we must quantify the uncertainty of every imaging result based on field data, because data noise and methodology limitations may produce artifacts. Detection of artifacts is therefore an important aspect in uncertainty quantification in geoscientific inversion. Quantifying the uncertainty of seismic imaging solutions means assessing their fidelity, which defines the truthfulness of the imaged targets in terms of their resolution, position error and artifact. Key challenges to achieving the fidelity of seismic imaging include: (1) Difficulty to tell signal from artifact and noise; (2) Limitations in signal-to-noise ratio and seismic illumination; and (3) The multi-scale nature of the data space and model space. Most seismic imaging studies of the Earth's crust and mantle have employed inversion or modeling approaches. Though they are in opposite directions of mapping between the data space and model space, both inversion and modeling seek the best model to minimize the misfit in the data space, which unfortunately is not the output space. The fact that the selection and uncertainty of the output model are not judged in the output space has exacerbated the nonuniqueness problem for inversion and modeling. In contrast, the practice in exploration seismology has long established a two-fold approach of seismic imaging: Using velocity modeling building to establish the long-wavelength reference velocity models, and using seismic migration to map the short-wavelength reflectivity structures. Most interestingly, seismic migration maps the data into an output space called imaging space, where the output reflection images of the subsurface are formed based on an imaging condition. A good example is the reverse time migration, which seeks the reflectivity image as the best fit in the image space between the extrapolation of time-reversed waveform data and the prediction based on estimated velocity model and source parameters. I will illustrate the benefits of deciding the best output result in the output space for inversion, using examples from seismic imaging.
Scale independence of décollement thrusting
McBride, John H.; Pugin, Andre J.M.; Hatcher, Robert D.
2007-01-01
Orogen-scale décollements (detachment surfaces) are an enduring subject of investigation by geoscientists. Uncertainties remain as to how crustal convergence processes maintain the stresses necessary for development of low-angle fault surfaces above which huge slabs of rock are transported horizontally for tens to hundreds of kilometers. Seismic reflection profiles from the southern Appalachian crystalline core and several foreland fold-and-thrust belts provide useful comparisons with high-resolution shallow-penetration seismic reflection profiles acquired over the frontal zone of the Michigan lobe of the Wisconsinan ice sheet northwest of Chicago, Illinois. These profiles provide images of subhorizontal and overlapping dipping reflections that reveal a ramp-and-flat thrust system developed in poorly consolidated glacial till. The system is rooted in a master décollement at the top of bedrock. These 2–3 km long images contain analogs of images observed in seismic reflection profiles from orogenic belts, except that the scale of observation in the profiles in glacial materials is two orders of magnitude less. Whereas the décollement beneath the ice lobe thrust belt lies ∼70 m below thrusted anticlines having wavelengths of tens of meters driven by an advancing ice sheet, seismic images from overthrust terranes are related to lithospheric convergence that produces décollements traceable for thousands of kilometers at depths ranging from a few to over 10 km. Dual vergence or reversals in vergence (retrocharriage) that developed over abrupt changes in depth to the décollement can be observed at all scales. The strikingly similar images, despite the contrast in scale and driving mechanism, suggest a scale- and driving mechanism–independent behavior for décollement thrust systems. All these systems initially had the mechanical properties needed to produce very similar geometries with a compressional driving mechanism directed subparallel to Earth's surface. Subduction-related accretionary complexes also produce thrust systems with similar geometries in semi- to unconsolidated materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zucca, J J; Walter, W R; Rodgers, A J
2008-11-19
The last ten years have brought rapid growth in the development and use of three-dimensional (3D) seismic models of Earth structure at crustal, regional and global scales. In order to explore the potential for 3D seismic models to contribute to important societal applications, Lawrence Livermore National Laboratory (LLNL) hosted a 'Workshop on Multi-Resolution 3D Earth Models to Predict Key Observables in Seismic Monitoring and Related Fields' on June 6 and 7, 2007 in Berkeley, California. The workshop brought together academic, government and industry leaders in the research programs developing 3D seismic models and methods for the nuclear explosion monitoring andmore » seismic ground motion hazard communities. The workshop was designed to assess the current state of work in 3D seismology and to discuss a path forward for determining if and how 3D Earth models and techniques can be used to achieve measurable increases in our capabilities for monitoring underground nuclear explosions and characterizing seismic ground motion hazards. This paper highlights some of the presentations, issues, and discussions at the workshop and proposes two specific paths by which to begin quantifying the potential contribution of progressively refined 3D seismic models in critical applied arenas. Seismic monitoring agencies are tasked with detection, location, and characterization of seismic activity in near real time. In the case of nuclear explosion monitoring or seismic hazard, decisions to further investigate a suspect event or to launch disaster relief efforts may rely heavily on real-time analysis and results. Because these are weighty decisions, monitoring agencies are regularly called upon to meticulously document and justify every aspect of their monitoring system. In order to meet this level of scrutiny and maintain operational robustness requirements, only mature technologies are considered for operational monitoring systems, and operational technology necessarily lags contemporary research. Current monitoring practice is to use relatively simple Earth models that generally afford analytical prediction of seismic observables (see Examples of Current Monitoring Practice below). Empirical relationships or corrections to predictions are often used to account for unmodeled phenomena, such as the generation of S-waves from explosions or the effect of 3-dimensional Earth structure on wave propagation. This approach produces fast and accurate predictions in areas where empirical observations are available. However, accuracy may diminish away from empirical data. Further, much of the physics is wrapped into an empirical relationship or correction, which limits the ability to fully understand the physical processes underlying the seismic observation. Every generation of seismology researchers works toward quantitative results, with leaders who are active at or near the forefront of what has been computationally possible. While recognizing that only a 3-dimensional model can capture the full physics of seismic wave generation and propagation in the Earth, computational seismology has, until recently, been limited to simplifying model parameterizations (e.g. 1D Earth models) that lead to efficient algorithms. What is different today is the fact that the largest and fastest machines are at last capable of evaluating the effects of generalized 3D Earth structure, at levels of detail that improve significantly over past efforts, with potentially wide application. Advances in numerical methods to compute travel times and complete seismograms for 3D models are enabling new ways to interpret available data. This includes algorithms such as the Fast Marching Method (Rawlison and Sambridge, 2004) for travel time calculations and full waveform methods such as the spectral element method (SEM; Komatitsch et al., 2002, Tromp et al., 2005), higher order Galerkin methods (Kaser and Dumbser, 2006; Dumbser and Kaser, 2006) and advances in more traditional Cartesian finite difference methods (e.g. Pitarka, 1999; Nilsson et al., 2007). The ability to compute seismic observables using a 3D model is only half of the challenge; models must be developed that accurately represent true Earth structure. Indeed, advances in seismic imaging have followed improvements in 3D computing capability (e.g. Tromp et al., 2005; Rawlinson and Urvoy, 2006). Advances in seismic imaging methods have been fueled in part by theoretical developments and the introduction of novel approaches for combining different seismological observables, both of which can increase the sensitivity of observations to Earth structure. Examples of such developments are finite-frequency sensitivity kernels for body-wave tomography (e.g. Marquering et al., 1998; Montelli et al., 2004) and joint inversion of receiver functions and surface wave group velocities (e.g. Julia et al., 2000).« less
NASA Astrophysics Data System (ADS)
Talukdar, Karabi; Behera, Laxmidhar
2018-03-01
Imaging below the basalt for hydrocarbon exploration is a global problem because of poor penetration and significant loss of seismic energy due to scattering, attenuation, absorption and mode-conversion when the seismic waves encounter a highly heterogeneous and rugose basalt layer. The conventional (short offset) seismic data acquisition, processing and modeling techniques adopted by the oil industry generally fails to image hydrocarbon-bearing sub-trappean Mesozoic sediments hidden below the basalt and is considered as a serious problem for hydrocarbon exploration in the world. To overcome this difficulty of sub-basalt imaging, we have generated dense synthetic seismic data with the help of elastic finite-difference full-wave modeling using staggered-grid scheme for the model derived from ray-trace inversion using sparse wide-angle seismic data acquired along Sinor-Valod profile in the Deccan Volcanic Province of India. The full-wave synthetic seismic data generated have been processed and imaged using conventional seismic data processing technique with Kirchhoff pre-stack time and depth migrations. The seismic image obtained correlates with all the structural features of the model obtained through ray-trace inversion of wide-angle seismic data, validating the effectiveness of robust elastic finite-difference full-wave modeling approach for imaging below thick basalts. Using the full-wave modeling also allows us to decipher small-scale heterogeneities imposed in the model as a measure of the rugose basalt interfaces, which could not be dealt with ray-trace inversion. Furthermore, we were able to accurately image thin low-velocity hydrocarbon-bearing Mesozoic sediments sandwiched between and hidden below two thick sequences of high-velocity basalt layers lying above the basement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nugraha, Andri Dian; Adisatrio, Philipus Ronnie
2013-09-09
Seismic refraction survey is one of geophysical method useful for imaging earth interior, definitely for imaging near surface. One of the common problems in seismic refraction survey is weak amplitude due to attenuations at far offset. This phenomenon will make it difficult to pick first refraction arrival, hence make it challenging to produce the near surface image. Seismic interferometry is a new technique to manipulate seismic trace for obtaining Green's function from a pair of receiver. One of its uses is for improving first refraction arrival quality at far offset. This research shows that we could estimate physical properties suchmore » as seismic velocity and thickness from virtual refraction processing. Also, virtual refraction could enhance the far offset signal amplitude since there is stacking procedure involved in it. Our results show super - virtual refraction processing produces seismic image which has higher signal-to-noise ratio than its raw seismic image. In the end, the numbers of reliable first arrival picks are also increased.« less
NASA Astrophysics Data System (ADS)
Nurhandoko, Bagus Endar B.; Sukmana, Indriani; Mubarok, Syahrul; Deny, Agus; Widowati, Sri; Kurniadi, Rizal
2012-06-01
Migration is important issue for seismic imaging in complex structure. In this decade, depth imaging becomes important tools for producing accurate image in depth imaging instead of time domain imaging. The challenge of depth migration method, however, is in revealing the complex structure of subsurface. There are many methods of depth migration with their advantages and weaknesses. In this paper, we show our propose method of pre-stack depth migration based on time domain inverse scattering wave equation. Hopefully this method can be as solution for imaging complex structure in Indonesia, especially in rich thrusting fault zones. In this research, we develop a recent advance wave equation migration based on time domain inverse scattering wave which use more natural wave propagation using scattering wave. This wave equation pre-stack depth migration use time domain inverse scattering wave equation based on Helmholtz equation. To provide true amplitude recovery, an inverse of divergence procedure and recovering transmission loss are considered of pre-stack migration. Benchmarking the propose inverse scattering pre-stack depth migration with the other migration methods are also presented, i.e.: wave equation pre-stack depth migration, waveequation depth migration, and pre-stack time migration method. This inverse scattering pre-stack depth migration could image successfully the rich fault zone which consist extremely dip and resulting superior quality of seismic image. The image quality of inverse scattering migration is much better than the others migration methods.
Understanding Seismic Anisotropy in Hunt Well of Fort McMurray, Canada
NASA Astrophysics Data System (ADS)
Malehmir, R.; Schmitt, D. R.; Chan, J.
2014-12-01
Seismic imaging plays vital role in geothermal systems as a sustainable energy resource. In this paper, we acquired and processed zero-offset and walk-away VSP and logging as well as surface seismic in Athabasca oil sand area, Alberta. Seismic data were highly processed to make better image geothermal system. Through data processing, properties of natural fractures such as orientation and width were studied and high probable permeable zones were mapped along the deep drilled to the depth of 2363m deep into crystalline basement rocks. In addition to logging data, seismic data were processed to build a reliable image of underground. Velocity analysis in high resolution multi-component walk-away VSP informed us about the elastic anisotropy in place. Study of the natural and induced fracture as well as elastic anisotropy in the seismic data, led us to better map stress regime around the well bore. The seismic image and map of fractures optimizes enhanced geothermal stages through hydraulic stimulation. Keywords: geothermal, anisotropy, VSP, logging, Hunt well, seismic
Computational sciences in the upstream oil and gas industry
Halsey, Thomas C.
2016-01-01
The predominant technical challenge of the upstream oil and gas industry has always been the fundamental uncertainty of the subsurface from which it produces hydrocarbon fluids. The subsurface can be detected remotely by, for example, seismic waves, or it can be penetrated and studied in the extremely limited vicinity of wells. Inevitably, a great deal of uncertainty remains. Computational sciences have been a key avenue to reduce and manage this uncertainty. In this review, we discuss at a relatively non-technical level the current state of three applications of computational sciences in the industry. The first of these is seismic imaging, which is currently being revolutionized by the emergence of full wavefield inversion, enabled by algorithmic advances and petascale computing. The second is reservoir simulation, also being advanced through the use of modern highly parallel computing architectures. Finally, we comment on the role of data analytics in the upstream industry. This article is part of the themed issue ‘Energy and the subsurface’. PMID:27597785
First results from a full-waveform inversion of the African continent using Salvus
NASA Astrophysics Data System (ADS)
van Herwaarden, D. P.; Afanasiev, M.; Krischer, L.; Trampert, J.; Fichtner, A.
2017-12-01
We present the initial results from an elastic full-waveform inversion (FWI) of the African continent which is melded together within the framework of the Collaborative Seismic Earth Model (CSEM) project. The continent of Africa is one of the most geophysically interesting regions on the planet. More specifically, Africa contains the Afar Depression, which is the only place on Earth where incipient seafloor spreading is sub-aerially exposed, along with other anomalous features such as the topography in the south, and several smaller surface expressions such as the Cameroon Volcanic Line and Congo Basin. Despite its significance, relatively few tomographic images exist of Africa, and, as a result, the debate on the geophysical origins of Africa's anomalies is rich and ongoing. Tomographic images of Africa present unique challenges due to uneven station coverage: while tectonically active areas such as the Afar rift are well sampled, much of the continent exhibits a severe lack of seismic stations. And, while Africa is mostly surrounded by tectonically active spreading plate boundaries, the interior of the continent is seismically quiet. To mitigate such issues, our simulation domain is extended to include earthquakes occurring in the South Atlantic and along the western edge of South America. Waveform modelling and inversion is performed using Salvus, a flexible and high-performance software suite based on the spectral-element method. Recently acquired recordings from the AfricaArray and NARS seismic networks are used to complement data obtained from global networks. We hope that this new model presents a fresh high-resolution image of African geodynamic structure, and helps advance the debate regarding the causative mechanisms of its surface anomalies.
Seismic modeling of Earth's 3D structure: Recent advancements
NASA Astrophysics Data System (ADS)
Ritsema, J.
2008-12-01
Global models of Earth's seismic structure continue to improve due to the growth of seismic data sets, implementation of advanced wave propagations theories, and increased computational power. In my presentation, I will summarize seismic tomography results from the past 5-10 years. I will compare the most recent P and S velocity models, discuss model resolution and model interpretation, and present an, admittedly biased, list of research directions required to develop the next generation 3D models.
From Geodetic Imaging of Seismic and Aseismic Fault Slip to Dynamic Modeling of the Seismic Cycle
NASA Astrophysics Data System (ADS)
Avouac, Jean-Philippe
2015-05-01
Understanding the partitioning of seismic and aseismic fault slip is central to seismotectonics as it ultimately determines the seismic potential of faults. Thanks to advances in tectonic geodesy, it is now possible to develop kinematic models of the spatiotemporal evolution of slip over the seismic cycle and to determine the budget of seismic and aseismic slip. Studies of subduction zones and continental faults have shown that aseismic creep is common and sometimes prevalent within the seismogenic depth range. Interseismic coupling is generally observed to be spatially heterogeneous, defining locked patches of stress accumulation, to be released in future earthquakes or aseismic transients, surrounded by creeping areas. Clay-rich tectonites, high temperature, and elevated pore-fluid pressure seem to be key factors promoting aseismic creep. The generally logarithmic time evolution of afterslip is a distinctive feature of creeping faults that suggests a logarithmic dependency of fault friction on slip rate, as observed in laboratory friction experiments. Most faults can be considered to be paved with interlaced patches where the friction law is either rate-strengthening, inhibiting seismic rupture propagation, or rate-weakening, allowing for earthquake nucleation. The rate-weakening patches act as asperities on which stress builds up in the interseismic period; they might rupture collectively in a variety of ways. The pattern of interseismic coupling can help constrain the return period of the maximum- magnitude earthquake based on the requirement that seismic and aseismic slip sum to match long-term slip. Dynamic models of the seismic cycle based on this conceptual model can be tuned to reproduce geodetic and seismological observations. The promise and pitfalls of using such models to assess seismic hazard are discussed.
Three-Dimensional Anisotropic Acoustic and Elastic Full-Waveform Seismic Inversion
NASA Astrophysics Data System (ADS)
Warner, M.; Morgan, J. V.
2013-12-01
Three-dimensional full-waveform inversion is a high-resolution, high-fidelity, quantitative, seismic imaging technique that has advanced rapidly within the oil and gas industry. The method involves the iterative improvement of a starting model using a series of local linearized updates to solve the full non-linear inversion problem. During the inversion, forward modeling employs the full two-way three-dimensional heterogeneous anisotropic acoustic or elastic wave equation to predict the observed raw field data, wiggle-for-wiggle, trace-by-trace. The method is computationally demanding; it is highly parallelized, and runs on large multi-core multi-node clusters. Here, we demonstrate what can be achieved by applying this newly practical technique to several high-density 3D seismic datasets that were acquired to image four contrasting sedimentary targets: a gas cloud above an oil reservoir, a radially faulted dome, buried fluvial channels, and collapse structures overlying an evaporate sequence. We show that the resulting anisotropic p-wave velocity models match in situ measurements in deep boreholes, reproduce detailed structure observed independently on high-resolution seismic reflection sections, accurately predict the raw seismic data, simplify and sharpen reverse-time-migrated reflection images of deeper horizons, and flatten Kirchhoff-migrated common-image gathers. We also show that full-elastic 3D full-waveform inversion of pure pressure data can generate a reasonable shear-wave velocity model for one of these datasets. For two of the four datasets, the inclusion of significant transversely isotropic anisotropy with a vertical axis of symmetry was necessary in order to fit the kinematics of the field data properly. For the faulted dome, the full-waveform-inversion p-wave velocity model recovers the detailed structure of every fault that can be seen on coincident seismic reflection data. Some of the individual faults represent high-velocity zones, some represent low-velocity zones, some have more-complex internal structure, and some are visible merely as offsets between two regions with contrasting velocity. Although this has not yet been demonstrated quantitatively for this dataset, it seems likely that at least some of this fine structure in the recovered velocity model is related to the detailed lithology, strain history and fluid properties within the individual faults. We have here applied this technique to seismic data that were acquired by the extractive industries, however this inversion scheme is immediately scalable and applicable to a much wider range of problems given sufficient quality and density of observed data. Potential targets range from shallow magma chambers beneath active volcanoes, through whole-crustal sections across plate boundaries, to regional and whole-Earth models.
Promoting Diversity in Undergraduate Research in Robotics-Based Seismic
NASA Astrophysics Data System (ADS)
Gifford, C. M.; Arthur, C. L.; Carmichael, B. L.; Webber, G. K.; Agah, A.
2006-12-01
The motivation for this research was to investigate forming evenly-spaced grid patterns with a team of mobile robots for future use in seismic imaging in polar environments. A team of robots was incrementally designed and simulated by incorporating sensors and altering each robot's controller. Challenges, design issues, and efficiency were also addressed. This research project incorporated the efforts of two undergraduate REU students from Elizabeth City State University (ECSU) in North Carolina, and the research staff at the Center for Remote Sensing of Ice Sheets (CReSIS) at the University of Kansas. ECSU is a historically black university. Mentoring these two minority students in scientific research, seismic, robotics, and simulation will hopefully encourage them to pursue graduate degrees in science-related or engineering fields. The goals for this 10-week internship during summer 2006 were to educate the students in the fields of seismology, robotics, and virtual prototyping and simulation. Incrementally designing a robot platform for future enhancement and evaluation was central to this research, and involved simulation of several robots working together to change seismic grid shape and spacing. This process gave these undergraduate students experience and knowledge in an actual research project for a real-world application. The two undergraduate students gained valuable research experience and advanced their knowledge of seismic imaging, robotics, sensors, and simulation. They learned that seismic sensors can be used in an array to gather 2D and 3D images of the subsurface. They also learned that robotics can support dangerous or difficult human activities, such as those in a harsh polar environment, by increasing automation, robustness, and precision. Simulating robot designs also gave them experience in programming behaviors for mobile robots. Thus far, one academic paper has resulted from their research. This paper received third place at the 2006 National Technical Association's (NTA) National Conference in Chicago. CReSIS, in conjunction with ECSU, provided these minority students with a well-rounded educational experience in a real-world research project. Their contributions will be used for future projects.
NASA Astrophysics Data System (ADS)
Kluesner, J. W.; Silver, E. A.; Nale, S. M.; Bangs, N. L.; McIntosh, K. D.
2013-12-01
We employ a seismic meta-attribute workflow to detect and analyze probable faults and fluid-pathways in 3D within the sedimentary section offshore Southern Costa Rica. During the CRISP seismic survey in 2011 we collected an 11 x 55 km grid of 3D seismic reflection data and high-resolvability EM122 multibeam data, with coverage extending from the incoming plate to the outer-shelf. We mapped numerous seafloor seep indicators, with distributions ranging from the lower-slope to ~15 km landward of the shelf break [Kluesner et al., 2013, G3, doi:10.1002/ggge.20058; Silver et al., this meeting]. We used the OpendTect software package to calculate meta-attribute volumes from the 3D seismic data in order to detect and visualize seismic discontinuities in 3D. This methodology consists of dip-steered filtering to pre-condition the data, followed by combining a set of advanced dip-steered seismic attributes into a single object probability attribute using a user-trained neural-network pattern-recognition algorithm. The parameters of the advanced seismic attributes are set for optimal detection of the desired geologic discontinuity (e.g. faults or fluid-pathways). The product is a measure of probability for the desired target that ranges between 0 and 1, with 1 representing the highest probability. Within the sedimentary section of the CRISP survey the results indicate focused fluid-migration pathways along dense networks of intersecting normal faults with approximately N-S and E-W trends. This pattern extends from the middle slope to the outer-shelf region. Dense clusters of fluid-migration pathways are located above basement highs and deeply rooted reverse faults [see Bangs et al., this meeting], including a dense zone of fluid-pathways imaged below IODP Site U1413. In addition, fault intersections frequently show an increased signal of fluid-migration and these zones may act as major conduits for fluid-flow through the sedimentary cover. Imaged fluid pathways root into high-backscatter pockmarks and mounds on the seafloor, which are located atop folds and clustered along intersecting fault planes. Combining the fault and fluid-pathway attribute volumes reveals qualitative first order information on fault seal integrity within the CRISP survey region, highlighting which faults and/or fault sections appear to be sealing or leaking within the sedimentary section. These results provide 3D insight into the fluid-flow behavior offshore southern Costa Rica and suggest that fluids escaping through the deeper crustal rocks are predominantly channeled along faults in the sedimentary cover, especially at fault intersections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Lianjie; Chen, Ting; Tan, Sirui
Imaging fault zones and fractures is crucial for geothermal operators, providing important information for reservoir evaluation and management strategies. However, there are no existing techniques available for directly and clearly imaging fault zones, particularly for steeply dipping faults and fracture zones. In this project, we developed novel acoustic- and elastic-waveform inversion methods for high-resolution velocity model building. In addition, we developed acoustic and elastic reverse-time migration methods for high-resolution subsurface imaging of complex subsurface structures and steeply-dipping fault/fracture zones. We first evaluated and verified the improved capabilities of our newly developed seismic inversion and migration imaging methods using synthetic seismicmore » data. Our numerical tests verified that our new methods directly image subsurface fracture/fault zones using surface seismic reflection data. We then applied our novel seismic inversion and migration imaging methods to a field 3D surface seismic dataset acquired at the Soda Lake geothermal field using Vibroseis sources. Our migration images of the Soda Lake geothermal field obtained using our seismic inversion and migration imaging algorithms revealed several possible fault/fracture zones. AltaRock Energy, Inc. is working with Cyrq Energy, Inc. to refine the geologic interpretation at the Soda Lake geothermal field. Trenton Cladouhos, Senior Vice President R&D of AltaRock, was very interested in our imaging results of 3D surface seismic data from the Soda Lake geothermal field. He planed to perform detailed interpretation of our images in collaboration with James Faulds and Holly McLachlan of University of Nevada at Reno. Using our high-resolution seismic inversion and migration imaging results can help determine the optimal locations to drill wells for geothermal energy production and reduce the risk of geothermal exploration.« less
Seismic isolation of Advanced LIGO: Review of strategy, instrumentation and performance
NASA Astrophysics Data System (ADS)
Matichard, F.; Lantz, B.; Mittleman, R.; Mason, K.; Kissel, J.; Abbott, B.; Biscans, S.; McIver, J.; Abbott, R.; Abbott, S.; Allwine, E.; Barnum, S.; Birch, J.; Celerier, C.; Clark, D.; Coyne, D.; DeBra, D.; DeRosa, R.; Evans, M.; Foley, S.; Fritschel, P.; Giaime, J. A.; Gray, C.; Grabeel, G.; Hanson, J.; Hardham, C.; Hillard, M.; Hua, W.; Kucharczyk, C.; Landry, M.; Le Roux, A.; Lhuillier, V.; Macleod, D.; Macinnis, M.; Mitchell, R.; O'Reilly, B.; Ottaway, D.; Paris, H.; Pele, A.; Puma, M.; Radkins, H.; Ramet, C.; Robinson, M.; Ruet, L.; Sarin, P.; Shoemaker, D.; Stein, A.; Thomas, J.; Vargas, M.; Venkateswara, K.; Warner, J.; Wen, S.
2015-09-01
The new generation of gravitational waves detectors require unprecedented levels of isolation from seismic noise. This article reviews the seismic isolation strategy and instrumentation developed for the Advanced LIGO observatories. It summarizes over a decade of research on active inertial isolation and shows the performance recently achieved at the Advanced LIGO observatories. The paper emphasizes the scientific and technical challenges of this endeavor and how they have been addressed. An overview of the isolation strategy is given. It combines multiple layers of passive and active inertial isolation to provide suitable rejection of seismic noise at all frequencies. A detailed presentation of the three active platforms that have been developed is given. They are the hydraulic pre-isolator, the single-stage internal isolator and the two-stage internal isolator. The architecture, instrumentation, control scheme and isolation results are presented for each of the three systems. Results show that the seismic isolation sub-system meets Advanced LIGO’s stringent requirements and robustly supports the operation of the two detectors.
The Utility of the Extended Images in Ambient Seismic Wavefield Migration
NASA Astrophysics Data System (ADS)
Girard, A. J.; Shragge, J. C.
2015-12-01
Active-source 3D seismic migration and migration velocity analysis (MVA) are robust and highly used methods for imaging Earth structure. One class of migration methods uses extended images constructed by incorporating spatial and/or temporal wavefield correlation lags to the imaging conditions. These extended images allow users to directly assess whether images focus better with different parameters, which leads to MVA techniques that are based on the tenets of adjoint-state theory. Under certain conditions (e.g., geographical, cultural or financial), however, active-source methods can prove impractical. Utilizing ambient seismic energy that naturally propagates through the Earth is an alternate method currently used in the scientific community. Thus, an open question is whether extended images are similarly useful for ambient seismic migration processing and verifying subsurface velocity models, and whether one can similarly apply adjoint-state methods to perform ambient migration velocity analysis (AMVA). Herein, we conduct a number of numerical experiments that construct extended images from ambient seismic recordings. We demonstrate that, similar to active-source methods, there is a sensitivity to velocity in ambient seismic recordings in the migrated extended image domain. In synthetic ambient imaging tests with varying degrees of error introduced to the velocity model, the extended images are sensitive to velocity model errors. To determine the extent of this sensitivity, we utilize acoustic wave-equation propagation and cross-correlation-based migration methods to image weak body-wave signals present in the recordings. Importantly, we have also observed scenarios where non-zero correlation lags show signal while zero-lags show none. This may be a valuable missing piece for ambient migration techniques that have yielded largely inconclusive results, and might be an important piece of information for performing AMVA from ambient seismic recordings.
Geophysical Monitoring Methods Evaluation for the FutureGen 2.0 Project
Strickland, Chris E.; USA, Richland Washington; Vermeul, Vince R.; ...
2014-12-31
A comprehensive monitoring program will be needed in order to assess the effectiveness of carbon sequestration at the FutureGen 2.0 carbon capture and storage (CCS) field-site. Geophysical monitoring methods are sensitive to subsurface changes that result from injection of CO 2 and will be used for: (1) tracking the spatial extent of the free phase CO 2 plume, (2) monitoring advancement of the pressure front, (3) identifying or mapping areas where induced seismicity occurs, and (4) identifying and mapping regions of increased risk for brine or CO 2 leakage from the reservoir. Site-specific suitability and cost effectiveness were evaluated formore » a number of geophysical monitoring methods including: passive seismic monitoring, reflection seismic imaging, integrated surface deformation, time-lapse gravity, pulsed neutron capture logging, cross-borehole seismic, electrical resistivity tomography, magnetotellurics and controlled source electromagnetics. The results of this evaluation indicate that CO 2 injection monitoring using reflection seismic methods would likely be difficult at the FutureGen 2.0 site. Electrical methods also exhibited low sensitivity to the expected CO 2 saturation changes and would be affected by metallic infrastructure at the field site. Passive seismic, integrated surface deformation, time-lapse gravity, and pulsed neutron capture monitoring were selected for implementation as part of the FutureGen 2.0 storage site monitoring program.« less
Geophysical Monitoring Methods Evaluation for the FutureGen 2.0 Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strickland, Chris E.; USA, Richland Washington; Vermeul, Vince R.
A comprehensive monitoring program will be needed in order to assess the effectiveness of carbon sequestration at the FutureGen 2.0 carbon capture and storage (CCS) field-site. Geophysical monitoring methods are sensitive to subsurface changes that result from injection of CO 2 and will be used for: (1) tracking the spatial extent of the free phase CO 2 plume, (2) monitoring advancement of the pressure front, (3) identifying or mapping areas where induced seismicity occurs, and (4) identifying and mapping regions of increased risk for brine or CO 2 leakage from the reservoir. Site-specific suitability and cost effectiveness were evaluated formore » a number of geophysical monitoring methods including: passive seismic monitoring, reflection seismic imaging, integrated surface deformation, time-lapse gravity, pulsed neutron capture logging, cross-borehole seismic, electrical resistivity tomography, magnetotellurics and controlled source electromagnetics. The results of this evaluation indicate that CO 2 injection monitoring using reflection seismic methods would likely be difficult at the FutureGen 2.0 site. Electrical methods also exhibited low sensitivity to the expected CO 2 saturation changes and would be affected by metallic infrastructure at the field site. Passive seismic, integrated surface deformation, time-lapse gravity, and pulsed neutron capture monitoring were selected for implementation as part of the FutureGen 2.0 storage site monitoring program.« less
NASA Astrophysics Data System (ADS)
Wei, Jia; Liu, Huaishan; Xing, Lei; Du, Dong
2018-02-01
The stability of submarine geological structures has a crucial influence on the construction of offshore engineering projects and the exploitation of seabed resources. Marine geologists should possess a detailed understanding of common submarine geological hazards. Current marine seismic exploration methods are based on the most effective detection technologies. Therefore, current research focuses on improving the resolution and precision of shallow stratum structure detection methods. In this article, the feasibility of shallow seismic structure imaging is assessed by building a complex model, and differences between the seismic interferometry imaging method and the traditional imaging method are discussed. The imaging effect of the model is better for shallow layers than for deep layers because coherent noise produced by this method can result in an unsatisfactory imaging effect for deep layers. The seismic interference method has certain advantages for geological structural imaging of shallow submarine strata, which indicates continuous horizontal events, a high resolution, a clear fault, and an obvious structure boundary. The effects of the actual data applied to the Shenhu area can fully illustrate the advantages of the method. Thus, this method has the potential to provide new insights for shallow submarine strata imaging in the area.
Catchings, R.D.; Goldman, M.R.; Lee, W.H.K.; Rymer, M.J.; Ponti, D.J.
1998-01-01
Apparent southward-dipping, reverse-fault zones are imaged to depths of about 1.5 km beneath Potrero Canyon, Los Angeles County, California. Based on their orientation and projection to the surface, we suggest that the imaged fault zones are extensions of the Oak Ridge fault. Geologic mapping by others and correlations with seismicity studies suggest that the Oak Ridge fault is the causative fault of the 17 January 1994 Northridge earthquake (Northridge fault). Our seismically imaged faults may be among several faults that collectively comprise the Northridge thrust fault system. Unusually strong shaking in Potrero Canyon during the Northridge earthquake may have resulted from focusing of seismic energy or co-seismic movement along existing, related shallow-depth faults. The strong shaking produced ground-surface cracks and sand blows distributed along the length of the canyon. Seismic reflection and refraction images show that shallow-depth faults may underlie some of the observed surface cracks. The relationship between observed surface cracks and imaged faults indicates that some of the surface cracks may have developed from nontectonic alluvial movement, but others may be fault related. Immediately beneath the surface cracks, P-wave velocities are unusually low (<400 m/sec), and there are velocity anomalies consistent with a seismic reflection image of shallow faulting to depths of at least 100 m. On the basis of velocity data, we suggest that unconsolidated soils (<800 m/sec) extend to depths of about 15 to 20 m beneath our datum (<25 m below ground surface). The underlying rocks range in velocity from about 1000 to 5000 m/sec in the upper 100 m. This study illustrates the utility of high-resolution seismic imaging in assessing local and regional seismic hazards.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramdhan, Mohamad; Agency for Meteorology, Climatology and Geophysics of Indonesia; Nugraha, Andri Dian
DOMERAPI project has been conducted to comprehensively study the internal structure of Merapi volcano, especially about deep structural features beneath the volcano. DOMERAPI earthquake monitoring network consists of 46 broad-band seismometers installed around the Merapi volcano. Earthquake hypocenter determination is a very important step for further studies, such as hypocenter relocation and seismic tomographic imaging. Ray paths from earthquake events occurring outside the Merapi region can be utilized to delineate the deep magma structure. Earthquakes occurring outside the DOMERAPI seismic network will produce an azimuthal gap greater than 180{sup 0}. Owing to this situation the stations from BMKG seismic networkmore » can be used jointly to minimize the azimuthal gap. We identified earthquake events manually and carefully, and then picked arrival times of P and S waves. The data from the DOMERAPI seismic network were combined with the BMKG data catalogue to determine earthquake events outside the Merapi region. For future work, we will also use the BPPTKG (Center for Research and Development of Geological Disaster Technology) data catalogue in order to study shallow structures beneath the Merapi volcano. The application of all data catalogues will provide good information as input for further advanced studies and volcano hazards mitigation.« less
Improving fault image by determination of optimum seismic survey parameters using ray-based modeling
NASA Astrophysics Data System (ADS)
Saffarzadeh, Sadegh; Javaherian, Abdolrahim; Hasani, Hossein; Talebi, Mohammad Ali
2018-06-01
In complex structures such as faults, salt domes and reefs, specifying the survey parameters is more challenging and critical owing to the complicated wave field behavior involved in such structures. In the petroleum industry, detecting faults has become crucial for reservoir potential where faults can act as traps for hydrocarbon. In this regard, seismic survey modeling is employed to construct a model close to the real structure, and obtain very realistic synthetic seismic data. Seismic modeling software, the velocity model and parameters pre-determined by conventional methods enable a seismic survey designer to run a shot-by-shot virtual survey operation. A reliable velocity model of structures can be constructed by integrating the 2D seismic data, geological reports and the well information. The effects of various survey designs can be investigated by the analysis of illumination maps and flower plots. Also, seismic processing of the synthetic data output can describe the target image using different survey parameters. Therefore, seismic modeling is one of the most economical ways to establish and test the optimum acquisition parameters to obtain the best image when dealing with complex geological structures. The primary objective of this study is to design a proper 3D seismic survey orientation to achieve fault zone structures through ray-tracing seismic modeling. The results prove that a seismic survey designer can enhance the image of fault planes in a seismic section by utilizing the proposed modeling and processing approach.
Semi-automatic mapping for identifying complex geobodies in seismic images
NASA Astrophysics Data System (ADS)
Domínguez-C, Raymundo; Romero-Salcedo, Manuel; Velasquillo-Martínez, Luis G.; Shemeretov, Leonid
2017-03-01
Seismic images are composed of positive and negative seismic wave traces with different amplitudes (Robein 2010 Seismic Imaging: A Review of the Techniques, their Principles, Merits and Limitations (Houten: EAGE)). The association of these amplitudes together with a color palette forms complex visual patterns. The color intensity of such patterns is directly related to impedance contrasts: the higher the contrast, the higher the color intensity. Generally speaking, low impedance contrasts are depicted with low tone colors, creating zones with different patterns whose features are not evident for a 3D automated mapping option available on commercial software. In this work, a workflow for a semi-automatic mapping of seismic images focused on those areas with low-intensity colored zones that may be associated with geobodies of petroleum interest is proposed. The CIE L*A*B* color space was used to perform the seismic image processing, which helped find small but significant differences between pixel tones. This process generated binary masks that bound color regions to low-intensity colors. The three-dimensional-mask projection allowed the construction of 3D structures for such zones (geobodies). The proposed method was applied to a set of digital images from a seismic cube and tested on four representative study cases. The obtained results are encouraging because interesting geobodies are obtained with a minimum of information.
Chouet, B.
2003-01-01
A fundamental goal of volcano seismology is to understand active magmatic systems, to characterize the configuration of such systems, and to determine the extent and evolution of source regions of magmatic energy. Such understanding is critical to our assessment of eruptive behavior and its hazardous impacts. With the emergence of portable broadband seismic instrumentation, availability of digital networks with wide dynamic range, and development of new powerful analysis techniques, rapid progress is being made toward a synthesis of high-quality seismic data to develop a coherent model of eruption mechanics. Examples of recent advances are: (1) high-resolution tomography to image subsurface volcanic structures at scales of a few hundred meters; (2) use of small-aperture seismic antennas to map the spatio-temporal properties of long-period (LP) seismicity; (3) moment tensor inversions of very-long-period (VLP) data to derive the source geometry and mass-transport budget of magmatic fluids; (4) spectral analyses of LP events to determine the acoustic properties of magmatic and associated hydrothermal fluids; and (5) experimental modeling of the source dynamics of volcanic tremor. These promising advances provide new insights into the mechanical properties of volcanic fluids and subvolcanic mass-transport dynamics. As new seismic methods refine our understanding of seismic sources, and geochemical methods better constrain mass balance and magma behavior, we face new challenges in elucidating the physico-chemical processes that cause volcanic unrest and its seismic and gas-discharge manifestations. Much work remains to be done toward a synthesis of seismological, geochemical, and petrological observations into an integrated model of volcanic behavior. Future important goals must include: (1) interpreting the key types of magma movement, degassing and boiling events that produce characteristic seismic phenomena; (2) characterizing multiphase fluids in subvolcanic regimes and determining their physical and chemical properties; and (3) quantitatively understanding multiphase fluid flow behavior under dynamic volcanic conditions. To realize these goals, not only must we learn how to translate seismic observations into quantitative information about fluid dynamics, but we also must determine the underlying physics that governs vesiculation, fragmentation, and the collapse of bubble-rich suspensions to form separate melt and vapor. Refined understanding of such processes-essential for quantitative short-term eruption forecasts-will require multidisciplinary research involving detailed field measurements, laboratory experiments, and numerical modeling.
Murphy, Janice; Goldman, Mark; Fuis, Gary; Rymer, Michael; Sickler, Robert; Miller, Summer; Butcher, Lesley; Ricketts, Jason; Criley, Coyn; Stock, Joann; Hole, John; Chavez, Greg
2011-01-01
Rupture of the southern section of the San Andreas Fault, from the Coachella Valley to the Mojave Desert, is believed to be the greatest natural hazard facing California in the near future. With an estimated magnitude between 7.2 and 8.1, such an event would result in violent shaking, loss of life, and disruption of lifelines (freeways, aqueducts, power, petroleum, and communication lines) that would bring much of southern California to a standstill. As part of the Nation's efforts to prevent a catastrophe of this magnitude, a number of projects are underway to increase our knowledge of Earth processes in the area and to mitigate the effects of such an event. One such project is the Salton Seismic Imaging Project (SSIP), which is a collaborative venture between the United States Geological Survey (USGS), California Institute of Technology (Caltech), and Virginia Polytechnic Institute and State University (Virginia Tech). This project will generate and record seismic waves that travel through the crust and upper mantle of the Salton Trough. With these data, we will construct seismic images of the subsurface, both reflection and tomographic images. These images will contribute to the earthquake-hazard assessment in southern California by helping to constrain fault locations, sedimentary basin thickness and geometry, and sedimentary seismic velocity distributions. Data acquisition is currently scheduled for winter and spring of 2011. The design and goals of SSIP resemble those of the Los Angeles Region Seismic Experiment (LARSE) of the 1990's. LARSE focused on examining the San Andreas Fault system and associated thrust-fault systems of the Transverse Ranges. LARSE was successful in constraining the geometry of the San Andreas Fault at depth and in relating this geometry to mid-crustal, flower-structure-like decollements in the Transverse Ranges that splay upward into the network of hazardous thrust faults that caused the 1971 M 6.7 San Fernando and 1987 M 5.9 Whittier Narrows earthquakes. The project also succeeded in determining the depths and seismic-velocity distributions of several sedimentary basins, including the Los Angeles Basin, San Fernando Valley, and Antelope Valley. These results advanced our ability to understand and assess earthquake hazards in the Los Angeles region. In order to facilitate permitting and planning for the data collection phase of SSIP, in June of 2009 we set off calibration shots and recorded the seismic data with a variety of instruments at varying distances. We also exposed sections of buried clay drainage pipe near the shot points to determine the effect of seismic energy on the pipes. Clay drainage pipes are used by the irrigation districts in both the Coachella and Imperial Valleys to prevent ponding and remove salts and irrigation water. This report chronicles the calibration project. We present new near-source velocity data that are used to test the regression curves that were determined for the LARSE project. These curves are used to create setback tables to determine explosive charge size and for placement of shot points. We also found that our shots did not damage the irrigation pipes and that the ODEX drilling system did well in the clay rich soils of the Imperial Valley.
NASA Astrophysics Data System (ADS)
He, Y.-X.; Angus, D. A.; Blanchard, T. D.; Wang, G.-L.; Yuan, S.-Y.; Garcia, A.
2016-04-01
Extraction of fluids from subsurface reservoirs induces changes in pore pressure, leading not only to geomechanical changes, but also perturbations in seismic velocities and hence observable seismic attributes. Time-lapse seismic analysis can be used to estimate changes in subsurface hydromechanical properties and thus act as a monitoring tool for geological reservoirs. The ability to observe and quantify changes in fluid, stress and strain using seismic techniques has important implications for monitoring risk not only for petroleum applications but also for geological storage of CO2 and nuclear waste scenarios. In this paper, we integrate hydromechanical simulation results with rock physics models and full-waveform seismic modelling to assess time-lapse seismic attribute resolution for dynamic reservoir characterization and hydromechanical model calibration. The time-lapse seismic simulations use a dynamic elastic reservoir model based on a North Sea deep reservoir undergoing large pressure changes. The time-lapse seismic traveltime shifts and time strains calculated from the modelled and processed synthetic data sets (i.e. pre-stack and post-stack data) are in a reasonable agreement with the true earth models, indicating the feasibility of using 1-D strain rock physics transform and time-lapse seismic processing methodology. Estimated vertical traveltime shifts for the overburden and the majority of the reservoir are within ±1 ms of the true earth model values, indicating that the time-lapse technique is sufficiently accurate for predicting overburden velocity changes and hence geomechanical effects. Characterization of deeper structure below the overburden becomes less accurate, where more advanced time-lapse seismic processing and migration is needed to handle the complex geometry and strong lateral induced velocity changes. Nevertheless, both migrated full-offset pre-stack and near-offset post-stack data image the general features of both the overburden and reservoir units. More importantly, the results from this study indicate that integrated seismic and hydromechanical modelling can help constrain time-lapse uncertainty and hence reduce risk due to fluid extraction and injection.
NASA Astrophysics Data System (ADS)
Hibert, C.; Michéa, D.; Provost, F.; Malet, J. P.; Geertsema, M.
2017-12-01
Detection of landslide occurrences and measurement of their dynamics properties during run-out is a high research priority but a logistical and technical challenge. Seismology has started to help in several important ways. Taking advantage of the densification of global, regional and local networks of broadband seismic stations, recent advances now permit the seismic detection and location of landslides in near-real-time. This seismic detection could potentially greatly increase the spatio-temporal resolution at which we study landslides triggering, which is critical to better understand the influence of external forcings such as rainfalls and earthquakes. However, detecting automatically seismic signals generated by landslides still represents a challenge, especially for events with small mass. The low signal-to-noise ratio classically observed for landslide-generated seismic signals and the difficulty to discriminate these signals from those generated by regional earthquakes or anthropogenic and natural noises are some of the obstacles that have to be circumvented. We present a new method for automatically constructing instrumental landslide catalogues from continuous seismic data. We developed a robust and versatile solution, which can be implemented in any context where a seismic detection of landslides or other mass movements is relevant. The method is based on a spectral detection of the seismic signals and the identification of the sources with a Random Forest machine learning algorithm. The spectral detection allows detecting signals with low signal-to-noise ratio, while the Random Forest algorithm achieve a high rate of positive identification of the seismic signals generated by landslides and other seismic sources. The processing chain is implemented to work in a High Performance Computers centre which permits to explore years of continuous seismic data rapidly. We present here the preliminary results of the application of this processing chain for years of continuous seismic record by the Alaskan permanent seismic network and Hi-Climb trans-Himalayan seismic network. The processing chain we developed also opens the possibility for a near-real time seismic detection of landslides, in association with remote-sensing automated detection from Sentinel 2 images for example.
NASA Astrophysics Data System (ADS)
Vasconcelos, Ivan; Ozmen, Neslihan; van der Neut, Joost; Cui, Tianci
2017-04-01
Travelling wide-bandwidth seismic waves have long been used as a primary tool in exploration seismology because they can probe the subsurface over large distances, while retaining relatively high spatial resolution. The well-known Born resolution limit often seems to be the lower bound on spatial imaging resolution in real life examples. In practice, data acquisition cost, time constraints and other factors can worsen the resolution achieved by wavefield imaging. Could we obtain images whose resolution beats the Born limits? Would it be practical to achieve it, and what are we missing today to achieve this? In this talk, we will cover aspects of linear and nonlinear seismic imaging to understand elements that play a role in obtaining "super-resolved" seismic images. New redatuming techniques, such as the Marchenko method, enable the retrieval of subsurface fields that include multiple scattering interactions, while requiring relatively little knowledge of model parameters. Together with new concepts in imaging, such as Target-Enclosing Extended Images, these new redatuming methods enable new targeted imaging frameworks. We will make a case as to why target-oriented approaches to reconstructing subsurface-domain wavefields from surface data may help in increasing the resolving power of seismic imaging, and in pushing the limits on parameter estimation. We will illustrate this using a field data example. Finally, we will draw connections between seismic and other imaging modalities, and discuss how this framework could be put to use in other applications
NASA Astrophysics Data System (ADS)
Murphy, B. S.; Egbert, G. D.
2017-12-01
In addition to its broadband seismic component, the USArray has also been collecting long-period magnetotelluric (MT) data across the continental United States. These data allow for an unprecedented three-dimensional view of the lithospheric geoelectric structure of the continent. As electrical conductivity and seismic properties provide complementary views of the Earth, synthesizing seismic and MT images can reduce ambiguity inherent in each technique and can thereby allow for tighter constraints on lithospheric properties. In the western US, comparison of MT and seismic results has clarified some issues (e.g., with regard to fluids and volatiles) and has raised some new questions, but for the most part the two techniques provide views that generally mesh well together. In sharp contrast, MT and seismic results in the eastern US lead to seemingly contradictory conclusions about lithosphere properties. The most striking example is the Piedmont region of the southeastern United States; here seismic images suggest a relatively thin, warm Phanerozoic lithosphere, while MT images show a large, deep, highly resistive body that seems to require thick, cold, even cratonic lithosphere. While these MT results shed intriguing new light onto the enigmatic post-Paleozoic history of eastern North America, the strong anticorrelation with seismic images remains a mystery. A similar anticorrelation appears to also exist in the Northern Appalachians, and preliminary views of the geoelectric signature of the well-studied Northern Appalachian Anomaly suggest that synthesizing the seismic and MT images of that region may be nontrivial. Clearly, a major challenge in continued analysis of USArray data is the reconciliation of seemingly contradictory seismic and MT images. The path forward in addressing this problem will require closer collaboration between seismologists and MT scientists and will likely require a careful reconsideration of how each group interprets the physical meaning of their respective anomalies.
Seismic imaging for an ocean drilling site survey and its verification in the Izu rear arc
NASA Astrophysics Data System (ADS)
Yamashita, Mikiya; Takahashi, Narumi; Tamura, Yoshihiko; Miura, Seiichi; Kodaira, Shuichi
2018-01-01
To evaluate the crustal structure of a site proposed for International Ocean Discovery Program drilling, the Japan Agency for Marine-Earth Science and Technology carried out seismic surveys in the Izu rear arc between 2006 and 2008, using research vessels Kaiyo and Kairei. High-resolution dense grid surveys, consisting of three kinds of reflection surveys, generated clear seismic profiles, together with a seismic velocity image obtained from a seismic refraction survey. In this paper, we compare the seismic profiles with the geological column obtained from the drilling. Five volcaniclastic sedimentary units were identified in seismic reflection profiles above the 5 km/s and 6 km/s contours of P-wave velocity obtained from the velocity image from the seismic refraction survey. However, some of the unit boundaries interpreted from the seismic images were not recognised in the drilling core, highlighting the difficulties of geological target identification in volcanic regions from seismic images alone. The geological core derived from drilling consisted of seven lithological units (labelled I to VII). Units I to V were aged at 0-9 Ma, and units VI and VII, from 1320-1806.5 m below seafloor (mbsf) had ages from 9 to ~15 Ma. The strong heterogeneity of volcanic sediments beneath the drilling site U1437 was also identified from coherence, calculated using cross-spectral analysis between grid survey lines. Our results suggest that use of a dense grid configuration is important in site surveys for ocean drilling in volcanic rear-arc situations, in order to recognise heterogeneous crustal structure, such as sediments from different origins.
Application of USNRC NUREG/CR-6661 and draft DG-1108 to evolutionary and advanced reactor designs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang 'Apollo', Chen
2006-07-01
For the seismic design of evolutionary and advanced nuclear reactor power plants, there are definite financial advantages in the application of USNRC NUREG/CR-6661 and draft Regulatory Guide DG-1108. NUREG/CR-6661, 'Benchmark Program for the Evaluation of Methods to Analyze Non-Classically Damped Coupled Systems', was by Brookhaven National Laboratory (BNL) for the USNRC, and Draft Regulatory Guide DG-1108 is the proposed revision to the current Regulatory Guide (RG) 1.92, Revision 1, 'Combining Modal Responses and Spatial Components in Seismic Response Analysis'. The draft Regulatory Guide DG-1108 is available at http://members.cox.net/apolloconsulting, which also provides a link to the USNRC ADAMS site to searchmore » for NUREG/CR-6661 in text file or image file. The draft Regulatory Guide DG-1108 removes unnecessary conservatism in the modal combinations for closely spaced modes in seismic response spectrum analysis. Its application will be very helpful in coupled seismic analysis for structures and heavy equipment to reduce seismic responses and in piping system seismic design. In the NUREG/CR-6661 benchmark program, which investigated coupled seismic analysis of structures and equipment or piping systems with different damping values, three of the four participants applied the complex mode solution method to handle different damping values for structures, equipment, and piping systems. The fourth participant applied the classical normal mode method with equivalent weighted damping values to handle differences in structural, equipment, and piping system damping values. Coupled analysis will reduce the equipment responses when equipment, or piping system and structure are in or close to resonance. However, this reduction in responses occurs only if the realistic DG-1108 modal response combination method is applied, because closely spaced modes will be produced when structure and equipment or piping systems are in or close to resonance. Otherwise, the conservatism in the current Regulatory Guide 1.92, Revision 1, will overshadow the advantage of coupled analysis. All four participants applied the realistic modal combination method of DG-1108. Consequently, more realistic and reduced responses were obtained. (authors)« less
Seismic Velocities Contain Information About Depth, Lithology, Fluid Content, and Microstructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berge, P A; Bonner, B P
2002-01-03
Recent advances in field and laboratory methods for measuring elastic wave velocities provide incentive and opportunity for improving interpretation of geophysical data for engineering and environmental applications. Advancing the state-of-the-art of seismic imaging requires developing petrophysical relationships between measured velocities and the hydrogeology parameters and lithology. Our approach uses laboratory data and rock physics methods. Compressional (Vp) and shear (Vs) wave velocities, Vp/Vs ratios, and relative wave amplitudes show systematic changes related to composition, saturation, applied stress (analogous to depth), and distribution of clay for laboratory ultrasonic measurements on soils. The artificial soils were mixtures of Ottawa sand and amore » second phase, either Wyoming bentonite or peat moss used to represent clay or organic components found in natural soils. Compressional and shear wave velocities were measured for dry, saturated, and partially-saturated conditions, for applied stresses between about 7 and 100 kPa, representing approximately the top 5 m of the subsurface. Analysis of the results using rock physics methods shows the link between microstructure and wave propagation, and implications for future advances in seismic data interpretation. For example, we found that Vp in dry sand-clay mixtures initially increases as clay cements the sand grains and fills porosity, but then Vp decreases when the clay content is high enough that the clay matrix controls the elastic response of the material. Vs decreases monotonically with increasing clay content. This provides a method for using Vp/Vs ratios to estimate clay content in a dry soil.« less
Solar-Array Deployment Test for InSight
2015-05-27
Engineers and technicians at Lockheed Martin Space Systems, Denver, run a test of deploying the solar arrays on NASA's InSight lander in this April 30, 2015 image. InSight, for Interior Exploration Using Seismic Investigations, Geodesy and Heat Transport, is scheduled for launch in March 2016 and landing in September 2016. It will study the deep interior of Mars to advance understanding of the early history of all rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA19665
,
1999-01-01
This report assesses the status, needs, and associated costs of seismic monitoring in the United States. It sets down the requirement for an effective, national seismic monitoring strategy and an advanced system linking national, regional, and urban monitoring networks. Modernized seismic monitoring can provide alerts of imminent strong earthquake shaking; rapid assessment of distribution and severity of earthquake shaking (for use in emergency response); warnings of a possible tsunami from an offshore earthquake; warnings of volcanic eruptions; information for correctly characterizing earthquake hazards and for improving building codes; and data on response of buildings and structures during earthquakes, for safe, cost-effective design, engineering, and construction practices in earthquake-prone regions.
Advanced Multivariate Inversion Techniques for High Resolution 3D Geophysical Modeling
2011-09-01
of seismic ambient noise – has been used to image crustal Vs variation with a lateral resolution upward of 100 km either on regional or on sub...to East Africa, we solve for velocity structure in an area with less lateral heterogeneity but great tectonic complexity. To increase the...demonstrate correlation with crustal geology. Figure 1 shows the 3D S-wave velocity model obtained from the joint inversion. The low-velocity anomaly
Geophysical Technologies to Image Old Mine Works
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanaan Hanna; Jim Pfeiffer
2007-01-15
ZapataEngineering, Blackhawk Division performed geophysical void detection demonstrations for the US Department of Labor Mine Safety and Health Administration (MSHA). The objective was to advance current state-of-practices of geophysical technologies for detecting underground mine voids. The presence of old mine works above, adjacent, or below an active mine presents major health and safety hazards to miners who have inadvertently cut into locations with such features. In addition, the presence of abandoned mines or voids beneath roadways and highway structures may greatly impact the performance of the transportation infrastructure in terms of cost and public safety. Roads constructed over abandoned minesmore » are subject to potential differential settlement, subsidence, sinkholes, and/or catastrophic collapse. Thus, there is a need to utilize geophysical imaging technologies to accurately locate old mine works. Several surface and borehole geophysical imaging methods and mapping techniques were employed at a known abandoned coal mine in eastern Illinois to investigate which method best map the location and extent of old works. These methods included: 1) high-resolution seismic (HRS) using compressional P-wave (HRPW) and S-wave (HRSW) reflection collected with 3-D techniques; 2) crosshole seismic tomography (XHT); 3) guided waves; 4) reverse vertical seismic profiling (RVSP); and 5) borehole sonar mapping. In addition, several exploration borings were drilled to confirm the presence of the imaged mine voids. The results indicated that the RVSP is the most viable method to accurately detect the subsurface voids with horizontal accuracy of two to five feet. This method was then applied at several other locations in Colorado with various topographic, geologic, and cultural settings for the same purpose. This paper presents the significant results obtained from the geophysical investigations in Illinois.« less
2D Seismic Imaging of Elastic Parameters by Frequency Domain Full Waveform Inversion
NASA Astrophysics Data System (ADS)
Brossier, R.; Virieux, J.; Operto, S.
2008-12-01
Thanks to recent advances in parallel computing, full waveform inversion is today a tractable seismic imaging method to reconstruct physical parameters of the earth interior at different scales ranging from the near- surface to the deep crust. We present a massively parallel 2D frequency-domain full-waveform algorithm for imaging visco-elastic media from multi-component seismic data. The forward problem (i.e. the resolution of the frequency-domain 2D PSV elastodynamics equations) is based on low-order Discontinuous Galerkin (DG) method (P0 and/or P1 interpolations). Thanks to triangular unstructured meshes, the DG method allows accurate modeling of both body waves and surface waves in case of complex topography for a discretization of 10 to 15 cells per shear wavelength. The frequency-domain DG system is solved efficiently for multiple sources with the parallel direct solver MUMPS. The local inversion procedure (i.e. minimization of residuals between observed and computed data) is based on the adjoint-state method which allows to efficiently compute the gradient of the objective function. Applying the inversion hierarchically from the low frequencies to the higher ones defines a multiresolution imaging strategy which helps convergence towards the global minimum. In place of expensive Newton algorithm, the combined use of the diagonal terms of the approximate Hessian matrix and optimization algorithms based on quasi-Newton methods (Conjugate Gradient, LBFGS, ...) allows to improve the convergence of the iterative inversion. The distribution of forward problem solutions over processors driven by a mesh partitioning performed by METIS allows to apply most of the inversion in parallel. We shall present the main features of the parallel modeling/inversion algorithm, assess its scalability and illustrate its performances with realistic synthetic case studies.
NASA Astrophysics Data System (ADS)
Zhang, L.; Wu, J.; Shi, F.
2017-09-01
After the 2010, Mw7.1, Yushu earthquake, many researchers have conducted detail investigations of the surface rupture zone by optical image interpretation, field surveying and inversion of seismic waves. However, how larger of the crustal deformation area caused by the earthquake and the quantitative co-seismic displacements are still not available. In this paper, we first take advantage of D-InSAR, MAI, and optical image matching methods to determine the whole co-seismic displacement fields. Two PALSAR images and two SPOT5 images before and after the earthquake are processed and the co-seismic displacements at the surface rupture zone and far field are obtained. The results are consistent with the field investigations, which illustrates the rationality of the application of optical image matching technology in the earthquake.
NASA Astrophysics Data System (ADS)
Kent, G. M.; Harding, A. J.; Babcock, J. M.; Orcutt, J. A.; Bazin, S.; Singh, S.; Detrick, R. S.; Canales, J. P.; Carbotte, S. M.; Diebold, J.
2002-12-01
Multichannel seismic (MCS) images of crustal magma chambers are ideal targets for advanced visualization techniques. In the mid-ocean ridge environment, reflections originating at the melt-lens are well separated from other reflection boundaries, such as the seafloor, layer 2A and Moho, which enables the effective use of transparency filters. 3-D visualization of seismic reflectivity falls into two broad categories: volume and surface rendering. Volumetric-based visualization is an extremely powerful approach for the rapid exploration of very dense 3-D datasets. These 3-D datasets are divided into volume elements or voxels, which are individually color coded depending on the assigned datum value; the user can define an opacity filter to reject plotting certain voxels. This transparency allows the user to peer into the data volume, enabling an easy identification of patterns or relationships that might have geologic merit. Multiple image volumes can be co-registered to look at correlations between two different data types (e.g., amplitude variation with offsets studies), in a manner analogous to draping attributes onto a surface. In contrast, surface visualization of seismic reflectivity usually involves producing "fence" diagrams of 2-D seismic profiles that are complemented with seafloor topography, along with point class data, draped lines and vectors (e.g. fault scarps, earthquake locations and plate-motions). The overlying seafloor can be made partially transparent or see-through, enabling 3-D correlations between seafloor structure and seismic reflectivity. Exploration of 3-D datasets requires additional thought when constructing and manipulating these complex objects. As numbers of visual objects grow in a particular scene, there is a tendency to mask overlapping objects; this clutter can be managed through the effective use of total or partial transparency (i.e., alpha-channel). In this way, the co-variation between different datasets can be investigated, even if one data object lies behind another. Stereoscopic viewing is another powerful tool to investigate 3-D relationships between objects. This form of immersion is constructed through viewing two separate images that are interleaved--typically 48 frames per second, per eye--and synced through an emitter and a set of specialized polarizing eyeglasses. The polarizing lenses flicker at an equivalent rate, blanking the eye for which a particular image was not drawn, producing the desired stereo effect. Volumetric visualization of the ARAD 3-D seismic dataset will be presented. The effective use of transparency reveals detailed structure of the melt-lens beneath the 9°03'N overlapping spreading center (OSC) along the East Pacific Rise, including melt-filled fractures within the propagating rift-tip. In addition, range-gated images of seismic reflectivity will be co-registered to investigate the physical properties (melt versus mush) of the magma chamber at this locale. Surface visualization of a dense, 2-D grid of MCS seismic data beneath Axial seamount (Juan de Fuca Ridge) will also be highlighted, including relationships between the summit caldera and rift zones, and the underlying (and humongous) magma chamber. A selection of Quicktime movies will be shown. Popcorn will be served, really!
Imaging near surface mineral targets with ambient seismic noise
NASA Astrophysics Data System (ADS)
Dales, P.; Audet, P.; Olivier, G.
2017-12-01
To keep up with global metal and mineral demand, new ore-deposits have to be discovered on a regular basis. This task is becoming increasingly difficult, since easily accessible deposits have been exhausted to a large degree. The typical procedure for mineral exploration begins with geophysical surveys followed by a drilling program to investigate potential targets. Since the retrieved drill core samples are one-dimensional observations, the many holes needed to interpolate and interpret potential deposits can lead to very high costs. To reduce the amount of drilling, active seismic imaging is sometimes used as an intermediary, however the active sources (e.g. large vibrating trucks or explosive shots) are expensive and unsuitable for operation in remote or environmentally sensitive areas. In recent years, passive seismic imaging using ambient noise has emerged as a novel, low-cost and environmentally sensitive approach for exploring the sub-surface. This technique dispels with active seismic sources and instead uses ambient seismic noise such as ocean waves, traffic or minor earthquakes. Unfortunately at this point, passive surveys are not capable of reaching the required resolution to image the vast majority of the ore-bodies that are being explored. In this presentation, we will show the results of an experiment where ambient seismic noise recorded on 60 seismic stations was used to image a near-mine target. The target consists of a known ore-body that has been partially exhausted by mining efforts roughly 100 years ago. The experiment examined whether ambient seismic noise interferometry can be used to image the intact and exhausted ore deposit. A drilling campaign was also conducted near the target which offers the opportunity to compare the two methods. If the accuracy and resolution of passive seismic imaging can be improved to that of active surveys (and beyond), this method could become an inexpensive intermediary step in the exploration process and result in a large decrease in the amount of drilling required to investigate and identify high-grade ore deposits.
Catchings, Rufus D.; Rymer, Michael J.; Goldman, Mark R.; Bawden, Gerald W.
2010-01-01
In a comment on our 2008 paper (Catchings, Gandhok, et al., 2008) on the Santa Monica fault in Los Angeles, California, Pratt and Dolan (2010) (herein referred to as P&D) cite numerous objections to our work, inferring that our study is flawed. However, as shown in our reply, their objections contradict their own published works, published works of others, and proven seismic methodologies. Rather than responding to each repeated invalid objection, we address their objections by topic in the subsequent sections.In Catchings, Gandhok, et al. (2008), we presented high-resolution seismic-reflection images that showed two near-surface faults in the upper 50 m beneath the grounds of the Wadsworth Veterans Administration Hospital (WVAH). Although P&D suggest we effectively duplicated their seismic acquisition, our survey was not a duplication of their efforts. Rather, we conducted a seismic-imaging survey over a similar profile as Pratt et al. (1998) but used a different data acquisition system and different data processing methods to evaluate methods of seismically imaging blind faults in the wake of the 17 January 1994 M 6.7 Northridge earthquake. We used an acquisition method that provides both tomographic seismic velocities and reflection images. Our combined-data approach allowed for shallower imaging (∼2.5 m minimum) than the ∼20-m minimum of Pratt et al. (1998), clearer images of the fault zone, and more accurate depth determinations (rather than time images). In processing the reflection images, we used prestack depth migration, which is generally accepted as the only proper imaging method for imaging subsurface structures with strong lateral velocity variations (Versteeg, 1993), a condition shown to exist at the WVAH site. We correlated our reflection images with refraction tomography images, borehole lithology, and velocity data, Interferometric Synthetic Aperture Radar images, and changes in groundwater depths. Except for some minor differences, our seismic-reflection images coincide with previously published seismic-reflection images by Dolan and Pratt (1997) and Pratt et al. (1998), and a paleoseismic study by Dolan et al. (2000). Principal differences among our interpretations and those of Pratt et al. (1998) relate to the upper 20 m and the south side of the fault, which Pratt et al. (1998) did not clearly image. In contrast, our seismic images included structures on both sides of the fault zone from about 2.5 m depth to about 100 m depth at WVAH, allowing us to interpret more details.
Seismic reflection imaging of shallow oceanographic structures
NASA Astrophysics Data System (ADS)
Piété, Helen; Marié, Louis; Marsset, Bruno; Thomas, Yannick; Gutscher, Marc-André
2013-05-01
Multichannel seismic (MCS) reflection profiling can provide high lateral resolution images of deep ocean thermohaline fine structure. However, the shallowest layers of the water column (z < 150 m) have remained unexplored by this technique until recently. In order to explore the feasibility of shallow seismic oceanography (SO), we reprocessed and analyzed four multichannel seismic reflection sections featuring reflectors at depths between 10 and 150 m. The influence of the acquisition parameters was quantified. Seismic data processing dedicated to SO was also investigated. Conventional seismic acquisition systems were found to be ill-suited to the imaging of shallow oceanographic structures, because of a high antenna filter effect induced by large offsets and seismic trace lengths, and sources that typically cannot provide both a high level of emission and fine vertical resolution. We considered a test case, the imagery of the seasonal thermocline on the western Brittany continental shelf. New oceanographic data acquired in this area allowed simulation of the seismic acquisition. Sea trials of a specifically designed system were performed during the ASPEX survey, conducted in early summer 2012. The seismic device featured: (i) four seismic streamers, each consisting of six traces of 1.80 m; (ii) a 1000 J SIG sparker source, providing a 400 Hz signal with a level of emission of 205 dB re 1 μPa @ 1 m. This survey captured the 15 m thick, 30 m deep seasonal thermocline in unprecedented detail, showing images of vertical displacements most probably induced by internal waves.
Seismic Imaging of a Prospective Geothermal Play, Using a Dense Geophone Array
NASA Astrophysics Data System (ADS)
Trow, A.; Pankow, K. L.; Wannamaker, P. E.; Lin, F. C.; Ward, K. M.
2017-12-01
In the summer of 2016 a dense array of 48 Nodal Seismic geophones was deployed near Beaver, Utah on the eastern flank of the Mineral Mountains. The array aperture was approximately 20 kilometers and recorded continuous seismic data for 30 days. Geophones were centered on a previously known shallow (5km depth) magnetolluric (MT) low-resistivity body. This region of low resistivity was interpreted to possibly contain hydrothermal/geothermal fluids and was targeted for further seismic investigation. The seismic array geometry was designed to optimize seismic event detection for small (magnitude of completeness zero) earthquakes and to facilitate seismic imaging at depths of 5 km and deeper. For the duration of the experiment, one ML 1 earthquake was detected underneath the array with 15 other earthquakes detected to the east and south in the more seismically active Pavant Range. Different passive imaging techniques, including ambient noise and earthquake tomography are being explored in order to produce a seismic velocity image. Understanding the subsurface, specifically the fracture network and fluid content of the bedrock is important for characterization of a geothermal prospect. If it is rich in fluids, it can be assumed that some fracture network is in place to accommodate such fluids. Both fractures and fluid content of the prospect will have an effect on the seismic velocities in the basement structure. These properties can help determine the viability of a geothermal system for power production.
Rapid Non-Gaussian Uncertainty Quantification of Seismic Velocity Models and Images
NASA Astrophysics Data System (ADS)
Ely, G.; Malcolm, A. E.; Poliannikov, O. V.
2017-12-01
Conventional seismic imaging typically provides a single estimate of the subsurface without any error bounds. Noise in the observed raw traces as well as the uncertainty of the velocity model directly impact the uncertainty of the final seismic image and its resulting interpretation. We present a Bayesian inference framework to quantify uncertainty in both the velocity model and seismic images, given noise statistics of the observed data.To estimate velocity model uncertainty, we combine the field expansion method, a fast frequency domain wave equation solver, with the adaptive Metropolis-Hastings algorithm. The speed of the field expansion method and its reduced parameterization allows us to perform the tens or hundreds of thousands of forward solves needed for non-parametric posterior estimations. We then migrate the observed data with the distribution of velocity models to generate uncertainty estimates of the resulting subsurface image. This procedure allows us to create both qualitative descriptions of seismic image uncertainty and put error bounds on quantities of interest such as the dip angle of a subduction slab or thickness of a stratigraphic layer.
Influence of seismic diffraction for high-resolution imaging: applications in offshore Malaysia
NASA Astrophysics Data System (ADS)
Bashir, Yasir; Ghosh, Deva Prasad; Sum, Chow Weng
2018-04-01
Small-scale geological discontinuities are not easy to detect and image in seismic data, as these features represent themselves as diffracted rather than reflected waves. However, the combined reflected and diffracted image contains full wave information and is of great value to an interpreter, for instance enabling the identification of faults, fractures, and surfaces in built-up carbonate. Although diffraction imaging has a resolution below the typical seismic wavelength, if the wavelength is much smaller than the width of the discontinuity then interference effects can be ignored, as they would not play a role in generating the seismic diffractions. In this paper, by means of synthetic examples and real data, the potential of diffraction separation for high-resolution seismic imaging is revealed and choosing the best method for preserving diffraction are discussed. We illustrate the accuracy of separating diffractions using the plane-wave destruction (PWD) and dip frequency filtering (DFF) techniques on data from the Sarawak Basin, a carbonate field. PWD is able to preserve the diffraction more intelligently than DFF, which is proven in the results by the model and real data. The final results illustrate the effectiveness of diffraction separation and possible imaging for high-resolution seismic data of small but significant geological features.
Seismic Imager Space Telescope
NASA Technical Reports Server (NTRS)
Sidick, Erkin; Coste, Keith; Cunningham, J.; Sievers,Michael W.; Agnes, Gregory S.; Polanco, Otto R.; Green, Joseph J.; Cameron, Bruce A.; Redding, David C.; Avouac, Jean Philippe;
2012-01-01
A concept has been developed for a geostationary seismic imager (GSI), a space telescope in geostationary orbit above the Pacific coast of the Americas that would provide movies of many large earthquakes occurring in the area from Southern Chile to Southern Alaska. The GSI movies would cover a field of view as long as 300 km, at a spatial resolution of 3 to 15 m and a temporal resolution of 1 to 2 Hz, which is sufficient for accurate measurement of surface displacements and photometric changes induced by seismic waves. Computer processing of the movie images would exploit these dynamic changes to accurately measure the rapidly evolving surface waves and surface ruptures as they happen. These measurements would provide key information to advance the understanding of the mechanisms governing earthquake ruptures, and the propagation and arrest of damaging seismic waves. GSI operational strategy is to react to earthquakes detected by ground seismometers, slewing the satellite to point at the epicenters of earthquakes above a certain magnitude. Some of these earthquakes will be foreshocks of larger earthquakes; these will be observed, as the spacecraft would have been pointed in the right direction. This strategy was tested against the historical record for the Pacific coast of the Americas, from 1973 until the present. Based on the seismicity recorded during this time period, a GSI mission with a lifetime of 10 years could have been in position to observe at least 13 (22 on average) earthquakes of magnitude larger than 6, and at least one (2 on average) earthquake of magnitude larger than 7. A GSI would provide data unprecedented in its extent and temporal and spatial resolution. It would provide this data for some of the world's most seismically active regions, and do so better and at a lower cost than could be done with ground-based instrumentation. A GSI would revolutionize the understanding of earthquake dynamics, perhaps leading ultimately to effective warning capabilities, to improved management of earthquake risk, and to improved public safety policies. The position of the spacecraft, its high optical quality, large field of view, and large field of regard will make it an ideal platform for other scientific studies. The same data could be simply reused for other studies. If different data, such as multi-spectral data, is required, additional instruments could share the telescope.
Updated Tomographic Seismic Imaging at Kilauea Volcano, Hawaii
NASA Astrophysics Data System (ADS)
Okubo, P.; Johnson, J.; Felts, E. S.; Flores, N.
2013-12-01
Improved and more detailed geophysical, geological, and geochemical observations and measurements at Kilauea, along with prolonged eruptions at its summit caldera and east rift zone, are encouraging more ambitious interpretation and modeling of volcanic processes over a range of temporal and spatial scales. We are updating three-dimensional models of seismic wave-speed distributions within Kilauea using local earthquake arrival time tomography to support waveform-based modeling of seismic source mechanisms. We start from a tomographic model derived from a combination of permanent seismic stations comprising the Hawaiian Volcano Observatory (HVO) seismographic network and a dense deployment of temporary stations in the Kilauea caldera region in 1996. Using P- and S-wave arrival times measured from the HVO network for local earthquakes from 1997 through 2012, we compute velocity models with the finite difference tomographic seismic imaging technique implemented by Benz and others (1996), and applied to numerous volcanoes including Kilauea. Particular impetus to our current modeling was derived from a focused effort to review seismicity occurring in Kilauea's summit caldera and adjoining regions in 2012. Our results reveal clear P-wave low-velocity features at and slightly below sea level beneath Kilauea's summit caldera, lying between Halemaumau Crater and the north-facing scarps that mark the southern caldera boundary. The results are also suggestive of changes in seismic velocity distributions between 1996 and 2012. One example of such a change is an apparent decrease in the size and southeastward extent, compared to the earlier model, of the low VP feature imaged with the more recent data. However, we recognize the distinct possibility that these changes are reflective of differences in earthquake and seismic station distributions in the respective datasets, and we need to further populate the more recent HVO seismicity catalogs to possibly address this concern. We also look forward to more complete implementation at HVO of seismic imaging techniques that use ambient seismic noise retrieved from continuous seismic recordings, and to using earthquake arrival times and ambient seismic noise jointly to tomographically image Kilauea.
NASA Astrophysics Data System (ADS)
Luo, D.; Cai, F.
2017-12-01
Small-scale and high-resolution marine sparker multi-channel seismic surveys using large energy sparkers are characterized by a high dominant frequency of the seismic source, wide bandwidth, and a high resolution. The technology with a high-resolution and high-detection precision was designed to improve the imaging quality of shallow sedimentary. In the study, a 20KJ sparker and 24-channel streamer cable with a 6.25m group interval were used as a seismic source and receiver system, respectively. Key factors for seismic imaging of gas hydrate are enhancement of S/N ratio, amplitude compensation and detailed velocity analysis. However, the data in this study has some characteristics below: 1. Small maximum offsets are adverse to velocity analysis and multiple attenuation. 2. Lack of low frequency information, that is, information less than 100Hz are invisible. 3. Low S/N ratio since less coverage times (only 12 times). These characteristics make it difficult to reach the targets of seismic imaging. In the study, the target processing methods are used to improve the seismic imaging quality of gas hydrate. First, some technologies of noise suppression are combined used in pre-stack seismic data to suppression of seismic noise and improve the S/N ratio. These technologies including a spectrum sharing noise elimination method, median filtering and exogenous interference suppression method. Second, the combined method of three technologies including SRME, τ-p deconvolution and high precision Radon transformation is used to remove multiples. Third, accurate velocity field are used in amplitude energy compensation to highlight the Bottom Simulating Reflector (short for BSR, the indicator of gas hydrates) and gas migration pathways (such as gas chimneys, hot spots et al.). Fourth, fine velocity analysis technology are used to improve accuracy of velocity analysis. Fifth, pre-stack deconvolution processing technology is used to compensate for low frequency energy and suppress of ghost, thus formation reflection characteristics are highlighted. The result shows that the small-scale and high resolution marine sparker multi-channel seismic surveys are very effective in improving the resolution and quality of gas hydrate imaging than the conventional seismic acquisition technology.
Seismic imaging of post-glacial sediments - test study before Spitsbergen expedition
NASA Astrophysics Data System (ADS)
Szalas, Joanna; Grzyb, Jaroslaw; Majdanski, Mariusz
2017-04-01
This work presents results of the analysis of reflection seismic data acquired from testing area in central Poland. For this experiment we used total number of 147 vertical component seismic stations (DATA-CUBE and Reftek "Texan") with accelerated weight drop (PEG-40). The profile was 350 metres long. It is a part of pilot study for future research project on Spitsbergen. The purpose of the study is to recognise the characteristics of seismic response of post-glacial sediments in order to design the most adequate survey acquisition parameters and processing sequence for data from Spitsbergen. Multiple tests and comparisons have been performed to obtain the best possible quality of seismic image. In this research we examine the influence of receiver interval size, front mute application and surface wave attenuation attempts. Although seismic imaging is the main technique we are planning to support this analysis with additional data from traveltime tomography, MASW and other a priori information.
The OSCAR experiment: using full-waveform inversion in the analysis of young oceanic crust
NASA Astrophysics Data System (ADS)
Silverton, Akela; Morgan, Joanna; Wilson, Dean; Hobbs, Richard
2017-04-01
The OSCAR experiment aims to derive an integrated model to better explain the effects of heat loss and alteration by hydrothermal fluids, associated with the cooling of young oceanic crust at an axial ridge. High-resolution seismic imaging of the sediments and basaltic basement can be used to map fluid flow pathways between the oceanic crust and the surrounding ocean. To obtain these high-resolution images, we undertake full-waveform inversion (FWI), an advanced seismic imaging technique capable of resolving velocity heterogeneities at a wide range of length scales, from background trends to fine-scale geological/crustal detail, in a fully data-driven automated manner. This technology is widely used within the petroleum sector due to its potential to obtain high-resolution P-wave velocity models that lead to improvements in migrated seismic images of the subsurface. Here, we use the P-wave velocity model obtained from travel-time tomography as the starting model in the application of acoustic, time-domain FWI to a multichannel streamer field dataset acquired in the east Pacific along a profile between the Costa Rica spreading centre and the Ocean Drilling Program (ODP) borehole 504B, where the crust is approximately six million years old. FWI iteratively improves the velocity model by minimizing the misfit between the predicted data and the field data. It seeks to find a high-fidelity velocity model that is capable of matching individual seismic waveforms of the original raw field dataset, with an initial focus on matching the low-frequency components of the early arriving energy. Quality assurance methods adopted during the inversion ensure convergence in the direction of the global minimum. We demonstrate that FWI is able to recover fine-scale, high-resolution velocity heterogeneities within the young oceanic crust along the profile. The highly resolved FWI velocity model is useful in the identification of the layer 2A/2B interface and low-velocity layers that may represent zones of enhanced fluid movement. With FWI we are able to better explain the non-linear changes in velocity as the crust evolves with distance from the spreading centre and image the effects of any alteration by hydrothermal fluids. This model provides valuable insight and new constraints on the thermal processes involved, at spreading centres, setting a new benchmark for integrated multi-physics experiments at similar ocean ridge systems. This research is part of a major, interdisciplinary NERC-funded collaboration entitled: Oceanographic and Seismic Characterisation of heat dissipation and alteration by hydrothermal fluids at an Axial Ridge (OSCAR).
NASA Astrophysics Data System (ADS)
Garcia-Yeguas, A.; Ibañez, J. M.; Rietbrock, A.; Tom-Teidevs, G.
2008-12-01
An active seismic experiment to study the internal structure of Teide Volcano was carried out on Tenerife, a volcanic island in Spain's Canary Islands. The main objective of the TOM-TEIDEVS experiment is to obtain a 3-dimensional structural image of Teide Volcano using seismic tomography and seismic reflection/refraction imaging techniques. At present, knowledge of the deeper structure of Teide and Tenerife is very limited, with proposed structural models mainly based on sparse geophysical and geological data. This multinational experiment which involves institutes from Spain, Italy, the United Kingdom, Ireland, and Mexico will generate a unique high resolution structural image of the active volcano edifice and will further our understanding of volcanic processes.
Advanced downhole periodic seismic generator
Hardee, Harry C.; Hills, Richard G.; Striker, Richard P.
1991-07-16
An advanced downhole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.
Examining the interior of Llaima Volcano with receiver functions
NASA Astrophysics Data System (ADS)
Bishop, J. W.; Lees, J. M.; Biryol, C. B.; Mikesell, T. D.; Franco, L.
2018-02-01
Llaima Volcano in Chile is one of the largest and most active volcanoes in the southern Andes, with over 50 eruptions since the 1600s. After years of persistent degassing, Llaima most recently erupted in a series of violent Strombolian eruptions in 2007-2009. This period had few precursory signals, which highlights the need to obtain accurate magma storage information. While petrologic advancements have been made in understanding magma degassing and crystallization trends, a comprehensive seismic study has yet to be completed. Here, we present results of a receiver function survey utilizing a dense seismic array surrounding Llaima volcano. Application of H-κ stacking and common conversion point stacking techniques reveals a new Moho estimate and two structural anomalies beneath Llaima Volcano. We interpret a low velocity zone between 8 and 13 km depth as a newly imaged magma body.
NASA Astrophysics Data System (ADS)
Wu, Zedong; Alkhalifah, Tariq
2018-07-01
Numerical simulation of the acoustic wave equation in either isotropic or anisotropic media is crucial to seismic modeling, imaging and inversion. Actually, it represents the core computation cost of these highly advanced seismic processing methods. However, the conventional finite-difference method suffers from severe numerical dispersion errors and S-wave artifacts when solving the acoustic wave equation for anisotropic media. We propose a method to obtain the finite-difference coefficients by comparing its numerical dispersion with the exact form. We find the optimal finite difference coefficients that share the dispersion characteristics of the exact equation with minimal dispersion error. The method is extended to solve the acoustic wave equation in transversely isotropic (TI) media without S-wave artifacts. Numerical examples show that the method is highly accurate and efficient.
Micro-seismic imaging using a source function independent full waveform inversion method
NASA Astrophysics Data System (ADS)
Wang, Hanchen; Alkhalifah, Tariq
2018-03-01
At the heart of micro-seismic event measurements is the task to estimate the location of the source micro-seismic events, as well as their ignition times. The accuracy of locating the sources is highly dependent on the velocity model. On the other hand, the conventional micro-seismic source locating methods require, in many cases manual picking of traveltime arrivals, which do not only lead to manual effort and human interaction, but also prone to errors. Using full waveform inversion (FWI) to locate and image micro-seismic events allows for an automatic process (free of picking) that utilizes the full wavefield. However, full waveform inversion of micro-seismic events faces incredible nonlinearity due to the unknown source locations (space) and functions (time). We developed a source function independent full waveform inversion of micro-seismic events to invert for the source image, source function and the velocity model. It is based on convolving reference traces with these observed and modeled to mitigate the effect of an unknown source ignition time. The adjoint-state method is used to derive the gradient for the source image, source function and velocity updates. The extended image for the source wavelet in Z axis is extracted to check the accuracy of the inverted source image and velocity model. Also, angle gathers is calculated to assess the quality of the long wavelength component of the velocity model. By inverting for the source image, source wavelet and the velocity model simultaneously, the proposed method produces good estimates of the source location, ignition time and the background velocity for synthetic examples used here, like those corresponding to the Marmousi model and the SEG/EAGE overthrust model.
Application of random seismic inversion method based on tectonic model in thin sand body research
NASA Astrophysics Data System (ADS)
Dianju, W.; Jianghai, L.; Qingkai, F.
2017-12-01
The oil and gas exploitation at Songliao Basin, Northeast China have already progressed to the period with high water production. The previous detailed reservoir description that based on seismic image, sediment core, borehole logging has great limitations in small scale structural interpretation and thin sand body characterization. Thus, precise guidance for petroleum exploration is badly in need of a more advanced method. To do so, we derived the method of random seismic inversion constrained by tectonic model.It can effectively improve the depicting ability of thin sand bodies, combining numerical simulation techniques, which can credibly reducing the blindness of reservoir analysis from the whole to the local and from the macroscopic to the microscopic. At the same time, this can reduce the limitations of the study under the constraints of different geological conditions of the reservoir, accomplish probably the exact estimation for the effective reservoir. Based on the research, this paper has optimized the regional effective reservoir evaluation and the productive location adjustment of applicability, combined with the practical exploration and development in Aonan oil field.
Wavelet extractor: A Bayesian well-tie and wavelet extraction program
NASA Astrophysics Data System (ADS)
Gunning, James; Glinsky, Michael E.
2006-06-01
We introduce a new open-source toolkit for the well-tie or wavelet extraction problem of estimating seismic wavelets from seismic data, time-to-depth information, and well-log suites. The wavelet extraction model is formulated as a Bayesian inverse problem, and the software will simultaneously estimate wavelet coefficients, other parameters associated with uncertainty in the time-to-depth mapping, positioning errors in the seismic imaging, and useful amplitude-variation-with-offset (AVO) related parameters in multi-stack extractions. It is capable of multi-well, multi-stack extractions, and uses continuous seismic data-cube interpolation to cope with the problem of arbitrary well paths. Velocity constraints in the form of checkshot data, interpreted markers, and sonic logs are integrated in a natural way. The Bayesian formulation allows computation of full posterior uncertainties of the model parameters, and the important problem of the uncertain wavelet span is addressed uses a multi-model posterior developed from Bayesian model selection theory. The wavelet extraction tool is distributed as part of the Delivery seismic inversion toolkit. A simple log and seismic viewing tool is included in the distribution. The code is written in Java, and thus platform independent, but the Seismic Unix (SU) data model makes the inversion particularly suited to Unix/Linux environments. It is a natural companion piece of software to Delivery, having the capacity to produce maximum likelihood wavelet and noise estimates, but will also be of significant utility to practitioners wanting to produce wavelet estimates for other inversion codes or purposes. The generation of full parameter uncertainties is a crucial function for workers wishing to investigate questions of wavelet stability before proceeding to more advanced inversion studies.
NASA Astrophysics Data System (ADS)
Guo, B.; Gao, X.; Chen, J.; Liu, Q.; Li, S.
2016-12-01
The continuing collision of the northward advancing Indian continent with the Eurasia results in the high elevations and thickened Tibetan Plateau. Numerous geologic and geophysical studies engaged in the mechanics of the Tibetan Plateau deformation and uplift. Many seismic experiments were deployed in south and central Tibet, such as INDEPTH and Hi-climb, but very few in northeastern Tibet. Between 2013 and 2015, The China Seismic Array-experiment operated 670 broadband seismic stations with an average station spacing of 35km. This seismic array located in northeastern Tibet and covered the Qilian Mountains, Qaidam Basin, and part of Songpan-Ganzi, Gobi-Alashan, Yangzi, and Ordos. A new multiscale seismic traveltime tomography technique with sparsity constrains were used to map the upper mantle P-wave velocity structure beneath northeastern Tibet. The seismic tomography algorithm employs sparsity constrains on the wavelet representation velocity model via the L1-norm regularization. This algorithm can efficiently deal with the uneven-sampled volume, and give multiscale images of the model. Our preliminary results can be summarized as follows: 1) in the upper mantle down to 200km, significate low-velocity anomalies exist beneath the northeastern Tibet, and slight high-velocity anomalies beneath the Qaidam basin; 2) under Gobi-Alashan, Yangzi, and Ordos, high-velocity anomalies appear to extend to a depth of 250km, this high-velocity may correspond to the lithosphere; 3) there exist relative high-velocity anomalies at depth of 250km-350km underneath north Tibet, which suggests lithospheric delamination; 4) the strong velocity contrast between north Tibet and Yangzi, Gabi-Alashan is visible down to 200km, which implies the north Tibet boundary.
Geophysical Observations Supporting Research of Magmatic Processes at Icelandic Volcanoes
NASA Astrophysics Data System (ADS)
Vogfjörd, Kristín. S.; Hjaltadóttir, Sigurlaug; Roberts, Matthew J.
2010-05-01
Magmatic processes at volcanoes on the boundary between the European and North American plates in Iceland are observed with in-situ multidisciplinary geophysical networks owned by different national, European or American universities and research institutions, but through collaboration mostly operated by the Icelandic Meteorological Office. The terrestrial observations are augmented by space-based interferometric synthetic aperture radar (InSAR) images of the volcanoes and their surrounding surface. Together this infrastructure can monitor magma movements in several volcanoes from the base of the crust up to the surface. The national seismic network is sensitive enough to detect small scale seismicity deep in the crust under some of the voclanoes. High resolution mapping of this seismicity and its temporal progression has been used to delineate the track of the magma as it migrates upwards in the crust, either to form an intrusion at shallow levels or to reach the surface in an eruption. Broadband recording has also enabled capturing low frequency signals emanating from magmatic movements. In two volcanoes, Eyjafjallajökull and Katla, just east of the South Iceland Seismic Zone (SISZ), seismicity just above the crust-mantle boundary has revealed magma intruding into the crust from the mantle below. As the magma moves to shallower levels, the deformation of the Earth‘s surface is captured by geodetic systems, such as continuous GPS networks, (InSAR) images of the surface and -- even more sensitive to the deformation -- strain meters placed in boreholes around 200 m below the Earth‘s surface. Analysis of these signals can reveal the size and shape of the magma as well as the temporal evolution. At near-by Hekla volcano flanking the SISZ to the north, where only 50% of events are of M>1 compared to 86% of earthquakes in Eyjafjallajökull, the sensitivity of the seismic network is insufficient to detect the smallest seismicity and so the volcano appears less active and deep seismicity has not been detected. Improved seismic station density may improve the resolution of deep processes. Due do Hekla‘s continued expansion, the concentration of the continuous GPS network has been increased around Hekla and a strain meter will be installed by the volcano in 2010. The increased density of geodetic observations is expected to increase the resolution of the depth, volume and geometry of the magma chamber. Before the volcano's latest eruption in 2000, the increased seismicity and deformation signal recorded by the nearest seismic station and strain meter (at 15 km distance) enabled a public warning to be issued of the impending eruption 30 minutes prior to eruption. The additional instrumentation around Hekla is expected to extend the previous advance warning time.
NASA Astrophysics Data System (ADS)
2016-05-01
The geophysicist Walter Arabasz made his name in professional circles as the driving force behind the US Advanced National Seismic System, an organization set up in 2000 to collect data about seismic events across the country, unifying the work of several regional seismic networks.
NASA Astrophysics Data System (ADS)
Pucinotti, Raffaele; Ferrario, Fabio; Bursi, Oreste S.
2008-07-01
A multi-objective advanced design methodology dealing with seismic actions followed by fire on steel-concrete composite full strength joints with concrete filled tubes is proposed in this paper. The specimens were designed in detail in order to exhibit a suitable fire behaviour after a severe earthquake. The major aspects of the cyclic behaviour of composite joints are presented and commented upon. The data obtained from monotonic and cyclic experimental tests have been used to calibrate a model of the joint in order to perform seismic simulations on several moment resisting frames. A hysteretic law was used to take into account the seismic degradation of the joints. Finally, fire tests were conducted with the objective to evaluate fire resistance of the connection already damaged by an earthquake. The experimental activity together with FE simulation demonstrated the adequacy of the advanced design methodology.
Pulling the rug out from under California: Seismic images of the Mendocino Triple Junction region
Tréhu, Anne M.
1995-01-01
In 1993 and 1994 a network of large-aperture seismic profiles was collected to image the crustal and upper-mantle structure beneath northern California and the adjacent continental margin. The data include approximately 650 km of onshore seismic refraction/reflection data, 2000 km of off-shore multichannel seismic (MCS) reflection data, and simultaneous onshore and offshore recording of the MCS airgun source to yield large-aperture data. Scientists from more than 12 institutions were involved in data acquisition.
Mapping Fluid Injection and Associated Induced Seismicity Using InSAR Analysis
NASA Astrophysics Data System (ADS)
Thorpe, S. D.; Tiampo, K. F.
2016-12-01
In recent years there has been a rise in unconventional oil and gas production in western North America which has been coupled with an increase in the number of earthquakes recorded in these regions, commonly referred to as "induced seismicity" (Ellsworth, 2013). As fluid is pumped into the subsurface during hydraulic fracturing or fluid disposal, the state of stress within the subsurface changes, potentially reactivating pre-existing faults and/or causing subsidence or uplift of the surface. This anthropogenic surface deformation also provides significant hazard to communities and structures surrounding these hydraulic fracturing or fluid disposal sites (Barnhart et al., 2014; Shirzaei et al., 2016). This study aims to relate, both spatially and temporally, this surface deformation to hydraulic fracturing and fluid disposal operations in Alberta (AB) and British Columbia (BC) using Differential Interferometric Synthetic Aperture Radar (InSAR) analysis. Satellite-based geodetic methods such as InSAR provide frequent measurements of ground deformation at high spatial resolution. Based on locations of previously identified induced seismicity in areas throughout AB and BC, images were acquired for multiple locations from the Canadian RADARSAT-2 satellite, including Fort St. John and Fox Creek, AB (Atkinson et al., 2016). Using advanced processing techniques, these images then were stacked to generate coherent interferograms. We present results from this processing as a set of time series that are correlated with both hydraulic fracturing and fluid disposal sites at each location. These results reveal the temporal and spatial relationship between well injection activity and associated induced seismicity in western Canada. Future work will utilise these time series to model subsurface fluid flow, providing important information regarding the nature of the subsurface structure and associated aquifer due to fluid injection and withdrawal.
Reflection imaging of the Moon's interior using deep-moonquake seismic interferometry
NASA Astrophysics Data System (ADS)
Nishitsuji, Yohei; Rowe, C. A.; Wapenaar, Kees; Draganov, Deyan
2016-04-01
The internal structure of the Moon has been investigated over many years using a variety of seismic methods, such as travel time analysis, receiver functions, and tomography. Here we propose to apply body-wave seismic interferometry to deep moonquakes in order to retrieve zero-offset reflection responses (and thus images) beneath the Apollo stations on the nearside of the Moon from virtual sources colocated with the stations. This method is called deep-moonquake seismic interferometry (DMSI). Our results show a laterally coherent acoustic boundary around 50 km depth beneath all four Apollo stations. We interpret this boundary as the lunar seismic Moho. This depth agrees with Japan Aerospace Exploration Agency's (JAXA) SELenological and Engineering Explorer (SELENE) result and previous travel time analysis at the Apollo 12/14 sites. The deeper part of the image we obtain from DMSI shows laterally incoherent structures. Such lateral inhomogeneity we interpret as representing a zone characterized by strong scattering and constant apparent seismic velocity at our resolution scale (0.2-2.0 Hz).
In-situ Planetary Subsurface Imaging System
NASA Astrophysics Data System (ADS)
Song, W.; Weber, R. C.; Dimech, J. L.; Kedar, S.; Neal, C. R.; Siegler, M.
2017-12-01
Geophysical and seismic instruments are considered the most effective tools for studying the detailed global structures of planetary interiors. A planet's interior bears the geochemical markers of its evolutionary history, as well as its present state of activity, which has direct implications to habitability. On Earth, subsurface imaging often involves massive data collection from hundreds to thousands of geophysical sensors (seismic, acoustic, etc) followed by transfer by hard links or wirelessly to a central location for post processing and computing, which will not be possible in planetary environments due to imposed mission constraints on mass, power, and bandwidth. Emerging opportunities for geophysical exploration of the solar system from Venus to the icy Ocean Worlds of Jupiter and Saturn dictate that subsurface imaging of the deep interior will require substantial data reduction and processing in-situ. The Real-time In-situ Subsurface Imaging (RISI) technology is a mesh network that senses and processes geophysical signals. Instead of data collection then post processing, the mesh network performs the distributed data processing and computing in-situ, and generates an evolving 3D subsurface image in real-time that can be transmitted under bandwidth and resource constraints. Seismic imaging algorithms (including traveltime tomography, ambient noise imaging, and microseismic imaging) have been successfully developed and validated using both synthetic and real-world terrestrial seismic data sets. The prototype hardware system has been implemented and can be extended as a general field instrumentation platform tailored specifically for a wide variety of planetary uses, including crustal mapping, ice and ocean structure, and geothermal systems. The team is applying the RISI technology to real off-world seismic datasets. For example, the Lunar Seismic Profiling Experiment (LSPE) deployed during the Apollo 17 Moon mission consisted of four geophone instruments spaced up to 100 meters apart, which in essence forms a small aperture seismic network. A pattern recognition technique based on Hidden Markov Models was able to characterize this dataset, and we are exploring how the RISI technology can be adapted for this dataset.
The Time-Frequency Signatures of Advanced Seismic Signals Generated by Debris Flows
NASA Astrophysics Data System (ADS)
Chu, C. R.; Huang, C. J.; Lin, C. R.; Wang, C. C.; Kuo, B. Y.; Yin, H. Y.
2014-12-01
The seismic monitoring is expected to reveal the process of debris flow from the initial area to alluvial fan, because other field monitoring techniques, such as the video camera and the ultrasonic sensor, are limited by detection range. For this reason, seismic approaches have been used as the detection system of debris flows over the past few decades. The analysis of the signatures of the seismic signals in time and frequency domain can be used to identify the different phases of debris flow. This study dedicates to investigate the different stages of seismic signals due to debris flow, including the advanced signal, the main front, and the decaying tail. Moreover, the characteristics of the advanced signals forward to the approach of main front were discussed for the warning purpose. This study presents a permanent system, composed by two seismometers, deployed along the bank of Ai-Yu-Zi Creek in Nantou County, which is one of the active streams with debris flow in Taiwan. The three axes seismometer with frequency response of 7 sec - 200 Hz was developed by the Institute of Earth Sciences (IES), Academia Sinica for the purpose to detect debris flow. The original idea of replacing the geophone system with the seismometer technique was for catching the advanced signals propagating from the upper reach of the stream before debris flow arrival because of the high sensitivity. Besides, the low frequency seismic waves could be also early detected because of the low attenuation. However, for avoiding other unnecessary ambient vibrations, the sensitivity of seismometer should be lower than the general seismometer for detecting teleseism. Three debris flows with different mean velocities were detected in 2013 and 2014. The typical triangular shape was obviously demonstrated in time series data and the spectrograms of the seismic signals from three events. The frequency analysis showed that enormous debris flow bearing huge boulders would induce low frequency seismic waves. Owing to the less attenuation of low frequency waves, advanced signals mainly ranged between 2 and 10 Hz were detected in several minutes prior to the arrival of the main surge of a debris flow. As the results, the prior time of the advanced signals could be used not only to extend the warning time, but also to identify the initial location of a developing debris flow.
Earthquake information products and tools from the Advanced National Seismic System (ANSS)
Wald, Lisa
2006-01-01
This Fact Sheet provides a brief description of postearthquake tools and products provided by the Advanced National Seismic System (ANSS) through the U.S. Geological Survey Earthquake Hazards Program. The focus is on products specifically aimed at providing situational awareness in the period immediately following significant earthquake events.
NASA Astrophysics Data System (ADS)
De Siena, Luca; Rawlinson, Nicholas
2016-04-01
Non-standard seismic imaging (velocity, attenuation, and scattering tomography) of the North Sea basins by using unexploited seismic intensities from previous passive and active surveys are key for better imaging and monitoring fluid under the subsurface. These intensities provide unique solutions to the problem of locating/tracking gas/fluid movements in the crust and depicting sub-basalt and sub-intrusives in volcanic reservoirs. The proposed techniques have been tested in volcanic Islands (Deception Island) and have been proved effective at monitoring fracture opening, imaging buried fluid-filled bodies, and tracking water/gas interfaces. These novel seismic attributes are modelled in space and time and connected with the lithology of the sampled medium, specifically density and permeability with as key output a novel computational code with strong commercial potential.
Seismic Fracture Characterization Methodologies for Enhanced Geothermal Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Queen, John H.
2016-05-09
Executive Summary The overall objective of this work was the development of surface and borehole seismic methodologies using both compressional and shear waves for characterizing faults and fractures in Enhanced Geothermal Systems. We used both surface seismic and vertical seismic profile (VSP) methods. We adapted these methods to the unique conditions encountered in Enhanced Geothermal Systems (EGS) creation. These conditions include geological environments with volcanic cover, highly altered rocks, severe structure, extreme near surface velocity contrasts and lack of distinct velocity contrasts at depth. One of the objectives was the development of methods for identifying more appropriate seismic acquisition parametersmore » for overcoming problems associated with these geological factors. Because temperatures up to 300º C are often encountered in these systems, another objective was the testing of VSP borehole tools capable of operating at depths in excess of 1,000 m and at temperatures in excess of 200º C. A final objective was the development of new processing and interpretation techniques based on scattering and time-frequency analysis, as well as the application of modern seismic migration imaging algorithms to seismic data acquired over geothermal areas. The use of surface seismic reflection data at Brady's Hot Springs was found useful in building a geological model, but only when combined with other extensive geological and geophysical data. The use of fine source and geophone spacing was critical in producing useful images. The surface seismic reflection data gave no information about the internal structure (extent, thickness and filling) of faults and fractures, and modeling suggests that they are unlikely to do so. Time-frequency analysis was applied to these data, but was not found to be significantly useful in their interpretation. Modeling does indicate that VSP and other seismic methods with sensors located at depth in wells will be the most effective seismic tools for getting information on the internal structure of faults and fractures in support of fluid flow pathway management and EGS treatment. Scattered events similar to those expected from faults and fractures are seen in the VSP reported here. Unfortunately, the source offset and well depth coverage do not allow for detailed analysis of these events. This limited coverage also precluded the use of advanced migration and imaging algorithms. More extensive acquisition is needed to support fault and fracture characterization in the geothermal reservoir at Brady's Hot Springs. The VSP was effective in generating interval velocity estimates over the depths covered by the array. Upgoing reflection events are also visible in the VSP results at locations corresponding to reflection events in the surface seismic. Overall, the high temperature rated fiber optic sensors used in the VSP produced useful results. Modeling has been found useful in the interpretation of both surface reflection seismic and VSP data. It has helped identify possible near surface scattering in the surface seismic data. It has highlighted potential scattering events from deeper faults in the VSP data. Inclusion of more detailed fault and fracture specific stiffness parameters are needed to fully interpret fault and fracture scattered events for flow properties (Pyrak-Nolte and Morris, 2000, Zhu and Snieder, 2002). Shear wave methods were applied in both the surface seismic reflection and VSP work. They were not found to be effective in the Brady's Hot Springs area. This was due to the extreme attenuation of shear waves in the near surface at Brady's. This does not imply that they will be ineffective in general. In geothermal areas where good shear waves can be recorded, modeling suggests they should be very useful for characterizing faults and fractures.« less
NASA Astrophysics Data System (ADS)
Lay, Vera; Bodenburg, Sascha; Buske, Stefan; Townend, John; Kellett, Richard; Savage, Martha; Schmitt, Douglas; Constantinou, Alexis; Eccles, Jennifer; Lawton, Donald; Hall, Kevin; Bertram, Malcolm; Gorman, Andrew
2017-04-01
The plate-bounding Alpine Fault in New Zealand is an 850 km long transpressive continental fault zone that is late in its earthquake cycle. The Deep Fault Drilling Project (DFDP) aims to deliver insight into the geological structure of this fault zone and its evolution by drilling and sampling the Alpine Fault at depth. Previously analysed 2D reflection seismic data image the main Alpine Fault reflector at a depth of 1.5-2.2 km with a dip of approximately 48° to the southeast below the DFDP-2 borehole. Additionally, there are indications of a more complex 3D fault structure with several fault branches which have not yet been clearly imaged in detail. For that reason we acquired a 3D-VSP seismic data set at the DFDP-2 drill site in January 2016. A zero-offset VSP and a walk-away VSP survey were conducted using a Vibroseis source. Within the borehole, a permanently installed "Distributed Acoustic Fibre Optic Cable" (down to 893 m) and a 3C Sercel slimwave tool (down to 400 m) were used to record the seismic wavefield. In addition, an array of 160 three-component receivers with a spacing of 10 m perpendicular and 20 m parallel to the main strike of the Alpine Fault was set up and moved successively along the valley to record reflections from the main Alpine Fault zone over a broad depth range and to derive a detailed 3D tomographic velocity model in the hanging wall. We will show a detailed 3D velocity model derived from first-arrival traveltime tomography. Subsets of the whole data set were analysed separately to estimate the corresponding ray coverage and the reliability of the observed features in the obtained velocity model. By testing various inversion parameters and starting models, we derived a detailed near-surface velocity model that reveals the significance of the old glacial valley structures. Hence, this new 3D model improves the velocity model derived previously from a 2D seismic profile line in that area. Furthermore, processing of the dense 3C data shows clear reflections on both inline and crossline profiles. Correlating single reflection events enables us to identify the origin of reflections recorded in the data and reveal their 3D character. This array data gives strong evidence for reflections coming from the side, possibly from the steeply dipping valley flanks. Finally, the data will be processed using advanced seismic imaging methods to derive a detailed structural image of the valley and the fault zone at depth. Thus, the results will provide a detailed basis for a seismic site characterization at the DFDP-2 drill site, that will be of crucial importance for further structural and geological investigations of the architecture of the Alpine Fault in this area.
NASA Astrophysics Data System (ADS)
Alexandrakis, C.; Schreiter, L.; Hlousek, F.; Jusri, T.; Buske, S.
2017-12-01
In crystalline environments, imaging faults, layer boundaries and small scale structures is challenging due to the complex geometry of the structures themselves and the influence of the hardrock environment on the seismic wavefield. Optimally designed active seismic surveys and careful processing can produce a clear image of the subsurface structures. However, if little is known about the local geology and tectonic state of the area, the imaged reflections can be difficult to interpret. This is the case in the West Bohemia Seismic Zone, located along the border of Germany and Czech Republic. This geodynamically active area is spotted with springs and gas vents, and frequently experiences low magnitude seismic swarms. The most active region is located in the Cheb basin and coincides with the junction of a northwest trending fault with a north-south trending shear zone, making for a structurally complex hardrock setting. In the early 1990s, two long-offset reflection seismic profiles were collected along the boundary of the Cheb basin: MVE-90 along the northern edge, and 9HR-91 in the east. These profiles were recently reprocessed using Kirchhoff PreStack Depth Migration, revealing high amplitude reflections, or bright spots, that correlate to nearby seismicity. Several studies have hypothesized that the 9HR-91 bright spots image a fluid trap, where mantle-sourced fluids accumulate, thereby facilitating slip on the faults and triggering the swarms. However, the exact nature of the bright spots remains an open question. They may be a change in lithology and/or porosity, an infilled vein or an impermeable fault. We aim to answer this question by first using Coherency-Based PreStack Depth Migration to produce detailed images of the bright spots. We then forward model the waveforms guided by the reflection coefficients in order to derive rock-physical parameters. Finally, the best-fitting models are interpreted in terms of their possible relationship to the West Bohemia swarms.
NASA Astrophysics Data System (ADS)
Piete, H.; Marié, L.; Marsset, B.; Gutscher, M.
2012-12-01
The recent development of the seismic oceanography technique has made possible the imaging of a variety of deep oceanographic structures (Holbrook et al., 2003); however, until now this method has remained ill suited for the study of shallow (<200m) thermohaline structures. This difficulty is partly due to the fact that both important seismic trace lengths and large offsets that characterize the acoustic receiver device (seismic streamer) cause significant signal attenuations through an induced antenna filter effect. Further difficulties are related to limitations of currently employed seismic sources, which do not conciliate 1- high power (essential to the imaging of weakly reflective structures in a noisy environment) and 2- spectral contents offering high vertical resolutions (relevant to the mapping of small vertical wavelength structures). In this study we defined and tested a new experimental seismic acquisition system capable of imaging the ~10 m thick seasonal thermocline on the western Brittany continental shelf. To accomplish this task, we pursued two complementary approaches: 1. Analysis of legacy seismic data (multi-channel seismic reflection profiles acquired on the East-Corsican margin, Bahamas Plateau and Gulf of Cadiz in various oceanographic environments) featuring reflectors at depths between 25 and 150 m, in order to identify and quantify the influence of acquisition parameters (seismic trace length, offsets, emission level and frequency content). 2. Incorporation of new oceanographic data acquired during the FROMVAR cruise (July 28th to August 10th 2010) on the western Brittany shelf in thermally stratified waters for use in the simulation of the seismic acquisition, in order to further define the optimal parameters for the system. Finally a 3D seismic system has emerged and was tested during the ASPEX scientific cruise led from June 17th to 19th 2012 across the western Brittany shelf. The device featured: i- four seismic streamers, each consisting of 6 traces at a spacing of 1.80 m; ii- a 1000 J SIG Sparker producing a 400 Hz signal with a 220 dB re 1μPa @1m level of emission, towed at a 8 m distance of the first seismic trace. This survey provided high lateral resolution images of the seasonal thermocline located at a 30 m depth with vertical displacements induced by internal waves. References Holbrook, W.S., Paramo, P., Pearse, S. and Schmitt, R.W., 2003. Thermohaline Fine Structure in an Oceanographic Front from Seismic Reflection Profiling. Science, 301(5634): 821.
,
2017-05-25
SummaryEarthquakes pose a threat to the safety of over 143 million people living in the United States. Earthquake impacts can be significantly reduced if communities understand their risk and take proactive steps to mitigate that risk. The Advanced National Seismic System (ANSS) is a cooperative effort to collect and analyze seismic and geodetic data on earthquakes, issue timely and reliable notifications of their occurrence and impacts, and provide data for earthquake research and the hazard and risk assessments that are the foundation for creating an earthquakeresilient nation.
NASA Astrophysics Data System (ADS)
Olive, J. A. L.; Escartin, J.; Leclerc, F.; Garcia, R.; Gracias, N.; Odemar Science Party, T.
2016-12-01
While >70% of Earth's seismicity is submarine, almost all observations of earthquake-related ruptures and surface deformation are restricted to subaerial environments. Such observations are critical for understanding fault behavior and associated hazards (including tsunamis), but are not routinely conducted at the seafloor due to obvious constraints. During the 2013 ODEMAR cruise we used autonomous and remotely operated vehicles to map the Roseau normal Fault (Lesser Antilles), source of the 2004 Mw6.3 earthquake and associated tsunami (<3.5m run-up). These vehicles acquired acoustic (multibeam bathymetry) and optical data (video and electronic images) spanning from regional (>1 km) to outcrop (<1 m) scales. These high-resolution submarine observations, analogous to those routinely conducted subaerially, rely on advanced image and video processing techniques, such as mosaicking and structure-from-motion (SFM). We identify sub-vertical fault slip planes along the Roseau scarp, displaying coseismic deformation structures undoubtedly due to the 2004 event. First, video mosaicking allows us to identify the freshly exposed fault plane at the base of one of these scarps. A maximum vertical coseismic displacement of 0.9 m can be measured from the video-derived terrain models and the texture-mapped imagery, which have better resolution than any available acoustic systems (<10 cm). Second, seafloor photomosaics allow us to identify and map both additional sub-vertical fault scarps, and cracks and fissures at their base, recording hangingwall damage from the same event. These observations provide critical parameters to understand the seismic cycle and long-term seismic behavior of this submarine fault. Our work demonstrates the feasibility of extensive, high-resolution underwater surveys using underwater vehicles and novel imaging techniques, thereby opening new possibilities to study recent seafloor changes associated with tectonic, volcanic, or hydrothermal activity.
Wang, Lei; Tian, Wei; Shi, Yongmin
2017-08-07
The morphology and structure of plumbing systems can provide key information on the eruption rate and style of basalt lava fields. The most powerful way to study subsurface geo-bodies is to use industrial 3D reflection seismological imaging. However, strategies to image subsurface volcanoes are very different from that of oil and gas reservoirs. In this study, we process seismic data cubes from the Northern Tarim Basin, China, to illustrate how to visualize sills through opacity rendering techniques and how to image the conduits by time-slicing. In the first case, we isolated probes by the seismic horizons marking the contacts between sills and encasing strata, applying opacity rendering techniques to extract sills from the seismic cube. The resulting detailed sill morphology shows that the flow direction is from the dome center to the rim. In the second seismic cube, we use time-slices to image the conduits, which corresponds to marked discontinuities within the encasing rocks. A set of time-slices obtained at different depths show that the Tarim flood basalts erupted from central volcanoes, fed by separate pipe-like conduits.
InSight Lander in Mars-Surface Configuration
2015-05-27
The solar arrays on NASA's InSight lander are deployed in this test inside a clean room at Lockheed Martin Space Systems, Denver. This configuration is how the spacecraft will look on the surface of Mars. The image was taken on April 30, 2015. InSight, for Interior Exploration Using Seismic Investigations, Geodesy and Heat Transport, is scheduled for launch in March 2016 and landing in September 2016. It will study the deep interior of Mars to advance understanding of the early history of all rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA19664
Transient triggering of near and distant earthquakes
Gomberg, J.; Blanpied, M.L.; Beeler, N.M.
1997-01-01
We demonstrate qualitatively that frictional instability theory provides a context for understanding how earthquakes may be triggered by transient loads associated with seismic waves from near and distance earthquakes. We assume that earthquake triggering is a stick-slip process and test two hypotheses about the effect of transients on the timing of instabilities using a simple spring-slider model and a rate- and state-dependent friction constitutive law. A critical triggering threshold is implicit in such a model formulation. Our first hypothesis is that transient loads lead to clock advances; i.e., transients hasten the time of earthquakes that would have happened eventually due to constant background loading alone. Modeling results demonstrate that transient loads do lead to clock advances and that the triggered instabilities may occur after the transient has ceased (i.e., triggering may be delayed). These simple "clock-advance" models predict complex relationships between the triggering delay, the clock advance, and the transient characteristics. The triggering delay and the degree of clock advance both depend nonlinearly on when in the earthquake cycle the transient load is applied. This implies that the stress required to bring about failure does not depend linearly on loading time, even when the fault is loaded at a constant rate. The timing of instability also depends nonlinearly on the transient loading rate, faster rates more rapidly hastening instability. This implies that higher-frequency and/or longer-duration seismic waves should increase the amount of clock advance. These modeling results and simple calculations suggest that near (tens of kilometers) small/moderate earthquakes and remote (thousands of kilometers) earthquakes with magnitudes 2 to 3 units larger may be equally effective at triggering seismicity. Our second hypothesis is that some triggered seismicity represents earthquakes that would not have happened without the transient load (i.e., accumulated strain energy would have been relieved via other mechanisms). We test this using two "new-seismicity" models that (1) are inherently unstable but slide at steady-state conditions under the background load and (2) are conditionally stable such that instability occurs only for sufficiently large perturbations. For the new-seismicity models, very small-amplitude transients trigger instability relative to the clock-advance models. The unstable steady-state models predict that the triggering delay depends inversely and nonlinearly on the transient amplitude (as in the clock-advance models). We were unable to generate delayed triggering with conditionally stable models. For both new-seismicity models, the potential for triggering is independent of when the transient load is applied or, equivalently, of the prestress (unlike in the clock-advance models). In these models, a critical triggering threshold appears to be inversely proportional to frequency. Further advancement of our understanding will require more sophisticated, quantitative models and observations that distinguish between our qualitative, yet distinctly different, model predictions.
ERIC Educational Resources Information Center
Donovan, Neville
1979-01-01
Provides a survey and a review of earthquake activity and global tectonics from the advancement of the theory of continental drift to the present. Topics include: an identification of the major seismic regions of the earth, seismic measurement techniques, seismic design criteria for buildings, and the prediction of earthquakes. (BT)
Activity at Klyuchevskaya Volcano Resumes
2017-12-08
NASA image acquired December 4, 2010 After a respite of less than a month, Klyuchevskaya Volcano resumed erupting in late November 2010. The Global Volcanism Program reported several ash plumes that rose up to 7.9 kilometers (26,000 feet) above sea level from November 25–29. According to the Kamchatka Volcanic Eruption Response Team (KVERT) seismicity was “slightly above background levels” on November 26th and 27th, and they reported observations of strombolian activity on December 1st and 2nd. A plume of ash, steam, and other volcanic gases streamed from Klyuchevskaya on December 4, 2010, visible in this natural-color image acquired by the Advanced Land Imager (ALI) aboard the Earth Observing-1 (EO-1) satellite. In the large image, a much smaller plume is visible above neighboring Bezymianny Volcano. NASA Earth Observatory image by Jesse Allen & Robert Simmon, using ALI data from the NASA EO-1 team. Caption by Robert Simmon. Instrument: EO-1 - ALI Credit: NASA Earth Observatory NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook
Goloshubin, Gennady M.; Korneev, Valeri A.
2006-11-14
A method for identifying, imaging and monitoring dry or fluid-saturated underground reservoirs using seismic waves reflected from target porous or fractured layers is set forth. Seismic imaging the porous or fractured layer occurs by low pass filtering of the windowed reflections from the target porous or fractured layers leaving frequencies below low-most corner (or full width at half maximum) of a recorded frequency spectra. Additionally, the ratio of image amplitudes is shown to be approximately proportional to reservoir permeability, viscosity of fluid, and the fluid saturation of the porous or fractured layers.
Goloshubin, Gennady M.; Korneev, Valeri A.
2005-09-06
A method for identifying, imaging and monitoring dry or fluid-saturated underground reservoirs using seismic waves reflected from target porous or fractured layers is set forth. Seismic imaging the porous or fractured layer occurs by low pass filtering of the windowed reflections from the target porous or fractured layers leaving frequencies below low-most corner (or full width at half maximum) of a recorded frequency spectra. Additionally, the ratio of image amplitudes is shown to be approximately proportional to reservoir permeability, viscosity of fluid, and the fluid saturation of the porous or fractured layers.
NASA Astrophysics Data System (ADS)
Xu, Jincheng; Liu, Wei; Wang, Jin; Liu, Linong; Zhang, Jianfeng
2018-02-01
De-absorption pre-stack time migration (QPSTM) compensates for the absorption and dispersion of seismic waves by introducing an effective Q parameter, thereby making it an effective tool for 3D, high-resolution imaging of seismic data. Although the optimal aperture obtained via stationary-phase migration reduces the computational cost of 3D QPSTM and yields 3D stationary-phase QPSTM, the associated computational efficiency is still the main problem in the processing of 3D, high-resolution images for real large-scale seismic data. In the current paper, we proposed a division method for large-scale, 3D seismic data to optimize the performance of stationary-phase QPSTM on clusters of graphics processing units (GPU). Then, we designed an imaging point parallel strategy to achieve an optimal parallel computing performance. Afterward, we adopted an asynchronous double buffering scheme for multi-stream to perform the GPU/CPU parallel computing. Moreover, several key optimization strategies of computation and storage based on the compute unified device architecture (CUDA) were adopted to accelerate the 3D stationary-phase QPSTM algorithm. Compared with the initial GPU code, the implementation of the key optimization steps, including thread optimization, shared memory optimization, register optimization and special function units (SFU), greatly improved the efficiency. A numerical example employing real large-scale, 3D seismic data showed that our scheme is nearly 80 times faster than the CPU-QPSTM algorithm. Our GPU/CPU heterogeneous parallel computing framework significant reduces the computational cost and facilitates 3D high-resolution imaging for large-scale seismic data.
Dynamics of the Yellowstone hydrothermal system
Hurwitz, Shaul; Lowenstern, Jacob B.
2014-01-01
The Yellowstone Plateau Volcanic Field is characterized by extensive seismicity, episodes of uplift and subsidence, and a hydrothermal system that comprises more than 10,000 thermal features, including geysers, fumaroles, mud pots, thermal springs, and hydrothermal explosion craters. The diverse chemical and isotopic compositions of waters and gases derive from mantle, crustal, and meteoric sources and extensive water-gas-rock interaction at variable pressures and temperatures. The thermal features are host to all domains of life that utilize diverse inorganic sources of energy for metabolism. The unique and exceptional features of the hydrothermal system have attracted numerous researchers to Yellowstone beginning with the Washburn and Hayden expeditions in the 1870s. Since a seminal review published a quarter of a century ago, research in many fields has greatly advanced our understanding of the many coupled processes operating in and on the hydrothermal system. Specific advances include more refined geophysical images of the magmatic system, better constraints on the time scale of magmatic processes, characterization of fluid sources and water-rock interactions, quantitative estimates of heat and magmatic volatile fluxes, discovering and quantifying the role of thermophile microorganisms in the geochemical cycle, defining the chronology of hydrothermal explosions and their relation to glacial cycles, defining possible links between hydrothermal activity, deformation, and seismicity; quantifying geyser dynamics; and the discovery of extensive hydrothermal activity in Yellowstone Lake. Discussion of these many advances forms the basis of this review.
Advances in Solid Earth and Basal Water Dynamics and their Relation to GIA in Antarctica
NASA Astrophysics Data System (ADS)
Ivins, E. R.; Seroussi, H. L.; Wiens, D.; Larour, E. Y.; James, T. S.; Adhikari, S.
2016-12-01
The last decade has seen great advances in mapping and interpreting mantle and lithospheric structure throughout the Antarctic region. The seismic structure images also create a link to the mantle dynamics that play a role in late-Cretaceous to present-day tectonics. Space altimetry observations from NASA's ICESat-1 and ESA's CryoSat-2 missions have revealed that an extensive basal hydrological system of lakes, with substantial water transport between them, exists throughout the continent. This fact, along with the most recent measurements of geothermal heat flux at the top of bedrock below ice and lake cover, and newly mapped seismicity in West Antarctica, are leading to a new paradigm for modeling GIA in West Antarctica: a mantle that is relatively hot and of a `weak' rheological type, with relatively thin lithospheric cover. This type of solid Earth strength to creep gives rise to much more rapid stress relaxation. The immediate implication is that interpretation of GNSS bedrock station data needs to be revisited, for it is very likely that most of the stress relaxation from loading and/or unloading events that are critical to GIA computations are, in fact, younger than the global glacial-interglacial transition (GGIT) age ( 10.5 ± 0.5 ka). At the passage of GGIT roughly 77 ± 8 % of the Last Glacial Age water mass transport from continents to oceans had been completed (Lambeck et al., 2014;PNAS, doi:10.1073/pnas.1411762111). The regions in West Antarctica affected by the implied reduction in mechanical strength are spatially variable. To advance GIA modeling for the mantle beneath the West Antarctic Ice Sheet we attempt to develop a new model around evidence from seismic tomography, basal ice conditions, and our recent reconstruction of mantle plumes that are consistent with both seismic tomography and the inferences of basal water generation rates from observations (Seroussi et al., 2016; Geochem., Geophys., Geosys., submitted). One of the basic questions raised with the great reduction in creep strength implied by a mantle plume is: When does West Antarctica terminate regional unloading? We do know that a regionalized glacial-interglacial transition termination time is much later than GGIT.
Diffraction Seismic Imaging of the Chalk Group Reservoir Rocks
NASA Astrophysics Data System (ADS)
Montazeri, M.; Fomel, S.; Nielsen, L.
2016-12-01
In this study we investigate seismic diffracted waves instead of seismic reflected waves, which are usually much stronger and carry most of the information regarding subsurface structures. The goal of this study is to improve imaging of small subsurface features such as faults and fractures. Moreover, we focus on the Chalk Group, which contains important groundwater resources onshore and oil and gas reservoirs in the Danish sector of the North Sea. Finding optimum seismic velocity models for the Chalk Group and estimating high-quality stacked sections with conventional processing methods are challenging tasks. Here, we try to filter out as much as possible of undesired arrivals before stacking the seismic data. Further, a plane-wave destruction method is applied on the seismic stack in order to dampen the reflection events and thereby enhance the visibility of the diffraction events. After this initial processing, we estimate the optimum migration velocity using diffraction events in order to obtain a better resolution stack. The results from this study demonstrate how diffraction imaging can be used as an additional tool for improving the images of small-scale features in the Chalk Group reservoir, in particular faults and fractures. Moreover, we discuss the potential of applying this approach in future studies focused on such reservoirs.
Magnitude, moment, and measurement: The seismic mechanism controversy and its resolution.
Miyake, Teru
This paper examines the history of two related problems concerning earthquakes, and the way in which a theoretical advance was involved in their resolution. The first problem is the development of a physical, as opposed to empirical, scale for measuring the size of earthquakes. The second problem is that of understanding what happens at the source of an earthquake. There was a controversy about what the proper model for the seismic source mechanism is, which was finally resolved through advances in the theory of elastic dislocations. These two problems are linked, because the development of a physically-based magnitude scale requires an understanding of what goes on at the seismic source. I will show how the theoretical advances allowed seismologists to re-frame the questions they were trying to answer, so that the data they gathered could be brought to bear on the problem of seismic sources in new ways. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Filippidou, N.; Drijkoningen, G.; Braaksma, H.; Verwer, K.; Kenter, J.
2005-05-01
Interest in high-resolution 3D seismic experiments for imaging shallow targets has increased over the past years. Many case studies presented, show that producing clear seismic images with this non-evasive method, is still a challenge. We use two test-sites where nearby outcrops are present so that an accurate geological model can be built and the seismic result validated. The first so-called natural field laboratory is located in Boulonnais (N. France). It is an upper Jurassic siliciclastic sequence; age equivalent of the source rock of N. Sea. The second one is located in Cap Blanc,to the southwest of the Mallorca island(Spain); depicting an excellent example of Miocene prograding reef platform (Llucmajor Platform); it is a textbook analog for carbonate reservoirs. In both cases, the multidisciplinary experiment included the use of multicomponent and quasi- or 3D seismic recordings. The target depth does not exceed 120m. Vertical and shear portable vibrators were used as source. In the center of the setups, boreholes were drilled and Vertical Seismic Profiles were shot, along with core and borehole measurements both in situ and in the laboratory. These two geologically different sites, with different seismic stratigraphy have provided us with exceptionally high resolution seismic images. In general seismic data was processed more or less following standard procedures, a few innovative techniques on the Mallorca data, as rotation of horizontal components, 3D F-K filter and addition of parallel profiles, have improved the seismic image. In this paper we discuss the basic differences as seen on the seismic sections. The Boulonnais data present highly continuous reflection patterns of extremenly high resolution. This facilitated a high resolution stratigraphic description. Results from the VSP showed substantial wave energy attenuation. However, the high-fold (330 traces ) Mallorca seismic experiment returned a rather discontinuous pattern of possible reflectors, opposing to the predicted seismic stratigraphy/geology of the area. The Llumajor Platform has been buried only a few meters at most, therefore primary and secondary porocity remains intact, creating a fractal like environment of scatterers and diffractors. We have interpreted two possible reflections, the top of the reef and the water table; the former is nicely coupled with the VSP. The seismic wave attenuation observed is believed to be predominantly due to the scattering effects.
NASA Astrophysics Data System (ADS)
Bhatti, Zahid Imran; Zhao, Junmeng; Khan, Nangyal Ghani; Shah, Syed Tallataf Hussain
2018-08-01
The India-Asia collision and subsequent subduction initiated the evolution of major tectonic features in the Western Syntaxis. The complex tectonic structure and shallow to deep seismicity have attracted geoscientists over the past two decades. The present research is based on a 3D tomographic inversion of P-wave arrival time data to constrain the crustal and upper mantle structure beneath the NW Himalayas and Pamir-Hindukush region using the Double-difference tomography. We utilized a very large multi-scale dataset comprising 19,080 earthquakes recorded at 397 local and regional seismic stations from 1950 to 2017. The northward dipping seismic zone coinciding with the low velocity anomaly suggests the subduction of the Indian lower crust beneath the Hindukush. The extent of the northward advancing Indian slab increases from east to west in this region. We observed no signs of northward subduction of the Indian plate under the Hindukush beyond 71°E longitude. The Indian plate overturns due south after interacting with the Asian plate beneath the southern Pamir, which correlates with the counter-clockwise rotation of the Indian plate. The Asian plate is also imaged as a southward subducting seismic zone beneath the southern Pamir. In the NW Himalayas, the northward subducting Indian plate appears as a gently dipping low velocity anomaly beneath the Karakoram Block. The stresses caused by the collision and subduction along the Shyok Suture and Indus Suture are translated to the south. The crustal scale seismicity and high velocity anomalies indicate an intense deformation in the crust, which is manifested by syntaxial bends and thrust faults to the south of the Main Mantle Thrust.
The Collaborative Seismic Earth Model Project
NASA Astrophysics Data System (ADS)
Fichtner, A.; van Herwaarden, D. P.; Afanasiev, M.
2017-12-01
We present the first generation of the Collaborative Seismic Earth Model (CSEM). This effort is intended to address grand challenges in tomography that currently inhibit imaging the Earth's interior across the seismically accessible scales: [1] For decades to come, computational resources will remain insufficient for the exploitation of the full observable seismic bandwidth. [2] With the man power of individual research groups, only small fractions of available waveform data can be incorporated into seismic tomographies. [3] The limited incorporation of prior knowledge on 3D structure leads to slow progress and inefficient use of resources. The CSEM is a multi-scale model of global 3D Earth structure that evolves continuously through successive regional refinements. Taking the current state of the CSEM as initial model, these refinements are contributed by external collaborators, and used to advance the CSEM to the next state. This mode of operation allows the CSEM to [1] harness the distributed man and computing power of the community, [2] to make consistent use of prior knowledge, and [3] to combine different tomographic techniques, needed to cover the seismic data bandwidth. Furthermore, the CSEM has the potential to serve as a unified and accessible representation of tomographic Earth models. Generation 1 comprises around 15 regional tomographic refinements, computed with full-waveform inversion. These include continental-scale mantle models of North America, Australasia, Europe and the South Atlantic, as well as detailed regional models of the crust beneath the Iberian Peninsula and western Turkey. A global-scale full-waveform inversion ensures that regional refinements are consistent with whole-Earth structure. This first generation will serve as the basis for further automation and methodological improvements concerning validation and uncertainty quantification.
High Resolution SAR Imaging Employing Geometric Features for Extracting Seismic Damage of Buildings
NASA Astrophysics Data System (ADS)
Cui, L. P.; Wang, X. P.; Dou, A. X.; Ding, X.
2018-04-01
Synthetic Aperture Radar (SAR) image is relatively easy to acquire but difficult for interpretation. This paper probes how to identify seismic damage of building using geometric features of SAR. The SAR imaging geometric features of buildings, such as the high intensity layover, bright line induced by double bounce backscattering and dark shadow is analysed, and show obvious differences texture features of homogeneity, similarity and entropy in combinatorial imaging geometric regions between the un-collapsed and collapsed buildings in airborne SAR images acquired in Yushu city damaged by 2010 Ms7.1 Yushu, Qinghai, China earthquake, which implicates a potential capability to discriminate collapsed and un-collapsed buildings from SAR image. Study also shows that the proportion of highlight (layover & bright line) area (HA) is related to the seismic damage degree, thus a SAR image damage index (SARDI), which related to the ratio of HA to the building occupation are of building in a street block (SA), is proposed. While HA is identified through feature extraction with high-pass and low-pass filtering of SAR image in frequency domain. A partial region with 58 natural street blocks in the Yushu City are selected as study area. Then according to the above method, HA is extracted, SARDI is then calculated and further classified into 3 classes. The results show effective through validation check with seismic damage classes interpreted artificially from post-earthquake airborne high resolution optical image, which shows total classification accuracy 89.3 %, Kappa coefficient 0.79 and identical to the practical seismic damage distribution. The results are also compared and discussed with the building damage identified from SAR image available by other authors.
Deep-towed high resolution seismic imaging II: Determination of P-wave velocity distribution
NASA Astrophysics Data System (ADS)
Marsset, B.; Ker, S.; Thomas, Y.; Colin, F.
2018-02-01
The acquisition of high resolution seismic data in deep waters requires the development of deep towed seismic sources and receivers able to deal with the high hydrostatic pressure environment. The low frequency piezoelectric transducer of the SYSIF (SYstème Sismique Fond) deep towed seismic device comply with the former requirement taking advantage of the coupling of a mechanical resonance (Janus driver) and a fluid resonance (Helmholtz cavity) to produce a large frequency bandwidth acoustic signal (220-1050 Hz). The ability to perform deep towed multichannel seismic imaging with SYSIF was demonstrated in 2014, yet, the ability to determine P-wave velocity distribution wasn't achieved. P-wave velocity analysis relies on the ratio between the source-receiver offset range and the depth of the seismic reflectors, thus towing the seismic source and receivers closer to the sea bed will provide a better geometry for P-wave velocity determination. Yet, technical issues, related to the acoustic source directivity, arise for this approach in the particular framework of piezoelectric sources. A signal processing sequence is therefore added to the initial processing flow. Data acquisition took place during the GHASS (Gas Hydrates, fluid Activities and Sediment deformations in the western Black Sea) cruise in the Romanian waters of the Black Sea. The results of the imaging processing are presented for two seismic data sets acquired over gas hydrates and gas bearing sediments. The improvement in the final seismic resolution demonstrates the validity of the velocity model.
Miller, John J.; Agena, W.F.; Lee, M.W.; Zihlman, F.N.; Grow, J.A.; Taylor, D.J.; Killgore, Michele; Oliver, H.L.
2000-01-01
This CD-ROM contains stacked, migrated, 2-Dimensional seismic reflection data and associated support information for 22 regional seismic lines (3,470 line-miles) recorded in the National Petroleum Reserve ? Alaska (NPRA) from 1974 through 1981. Together, these lines constitute about one-quarter of the seismic data collected as part of the Federal Government?s program to evaluate the petroleum potential of the Reserve. The regional lines, which form a grid covering the entire NPRA, were created by combining various individual lines recorded in different years using different recording parameters. These data were reprocessed by the USGS using modern, post-stack processing techniques, to create a data set suitable for interpretation on interactive seismic interpretation computer workstations. Reprocessing was done in support of ongoing petroleum resource studies by the USGS Energy Program. The CD-ROM contains the following files: 1) 22 files containing the digital seismic data in standard, SEG-Y format; 2) 1 file containing navigation data for the 22 lines in standard SEG-P1 format; 3) 22 small scale graphic images of each seismic line in Adobe Acrobat? PDF format; 4) a graphic image of the location map, generated from the navigation file, with hyperlinks to the graphic images of the seismic lines; 5) an ASCII text file with cross-reference information for relating the sequential trace numbers on each regional line to the line number and shotpoint number of the original component lines; and 6) an explanation of the processing used to create the final seismic sections (this document). The SEG-Y format seismic files and SEG-P1 format navigation file contain all the information necessary for loading the data onto a seismic interpretation workstation.
NASA Astrophysics Data System (ADS)
Woods, J.; Ágústsdóttir, T.; Greenfield, T. S.; Green, R. G.; White, R. S.; Brandsdottir, B.
2015-12-01
We present data from our dense seismic network which captured in unprecedented detail the micro-seismicity associated with the 2014 dike intrusion from the subglacial Bárðarbunga volcano in central Iceland. Over 30,000 automatically located earthquakes delineate a complex 46 km dike propagation during the days preceding the onset of effusive magmatism at the Holuhraun lava field on 29 August 2014. Approximately 1.5 km3 of lava was erupted, making this the largest eruption in Iceland for over 200 years.Micro-seismicity tracks the lateral migration of the dike, with a concentration of earthquakes in the advancing tip where stresses are greatest, and trailing zones of lesser or no seismicity behind. Onset of an initial 4 hour fissure eruption was accompanied simultaneously by a backward retreat in seismic activity, followed by a gradual re-advance prior to the onset of a second, sustained fissure eruption in the same location on 31 August. Rock fracture mechanisms are determined from fault plane solutions of these seismic events. At the tip of the advancing dike, left-lateral strike-slip faulting parallel to the propagation is dominant, utilising pre-existing lineations and releasing stress accumulated in the brittle layer from rift zone extension. Behind the dike tip, both right-lateral and left-lateral strike-slip earthquakes are found, marking failure of solidifying magma plugs within the dike conduit. Contrary to many models of dike propagation, both normal faulting and failure at high angles to the dike are rare. Furthermore, a distinct lack of seismicity is observed in the 3-4 km region beneath the surface rupture. This suggests that opening is occuring aseismically, with earthquakes focused at the base of the dike near the brittle-ductile boundary.
Wardell, N.; Childs, J. R.; Cooper, A. K.
2007-01-01
The Antarctic Seismic Data Library System for Cooperative Research (SDLS) has served for the past 16 years under the auspices of the Antarctic Treaty (ATCM Recommendation XVI-12) as a role model for collaboration and equitable sharing of Antarctic multichannel seismic reflection (MCS) data for geoscience studies. During this period, collaboration in MCS studies has advanced deciphering the seismic stratigraphy and structure of Antarctica’s continental margin more rapidly than previously. MCS data compilations provided the geologic framework for scientific drilling at several Antarctic locations and for high-resolution seismic and sampling studies to decipher Cenozoic depositional paleoenvironments. The SDLS successes come from cooperation of National Antarctic Programs and individual investigators in “on-time” submissions of their MCS data. Most do, but some do not. The SDLS community has an International Polar Year (IPY) goal of all overdue MCS data being sent to the SDLS by end of IPY. The community science objective is to compile all Antarctic MCS data to derive a unified seismic stratigraphy for the continental margin – a stratigraphy to be used with drilling data to derive Cenozoic circum-Antarctic paleobathymetry maps and local-to-regional scale paleoenvironmental histories.
Powers, Michael H.; Burton, Bethany L.
2004-01-01
In late May and early June of 2002, the U.S. Geological Survey (USGS) acquired four P-wave seismic profiles across the Straight Creek drainage near Red River, New Mexico. The data were acquired to support a larger effort to investigate baseline and pre-mining ground-water quality in the Red River basin (Nordstrom and others, 2002). For ground-water flow modeling, knowledge of the thickness of the valley fill material above the bedrock is required. When curved-ray refraction tomography was used with the seismic first arrival times, the resulting images of interval velocity versus depth clearly show a sharp velocity contrast where the bedrock interface is expected. The images show that the interpreted buried bedrock surface is neither smooth nor sharp, but it is clearly defined across the valley along the seismic line profiles. The bedrock models defined by the seismic refraction images are consistent with the well data.
NASA Astrophysics Data System (ADS)
Bauer, K.; Pratt, R. G.; Haberland, C.; Weber, M.
2008-10-01
Crosshole seismic experiments were conducted to study the in-situ properties of gas hydrate bearing sediments (GHBS) in the Mackenzie Delta (NW Canada). Seismic tomography provided images of P velocity, anisotropy, and attenuation. Self-organizing maps (SOM) are powerful neural network techniques to classify and interpret multi-attribute data sets. The coincident tomographic images are translated to a set of data vectors in order to train a Kohonen layer. The total gradient of the model vectors is determined for the trained SOM and a watershed segmentation algorithm is used to visualize and map the lithological clusters with well-defined seismic signatures. Application to the Mallik data reveals four major litho-types: (1) GHBS, (2) sands, (3) shale/coal interlayering, and (4) silt. The signature of seismic P wave characteristics distinguished for the GHBS (high velocities, strong anisotropy and attenuation) is new and can be used for new exploration strategies to map and quantify gas hydrates.
Full Waveform Adjoint Seismic Tomography of the Antarctic Plate
NASA Astrophysics Data System (ADS)
Lloyd, A. J.; Wiens, D.; Zhu, H.; Tromp, J.; Nyblade, A.; Anandakrishnan, S.; Aster, R. C.; Huerta, A. D.; Winberry, J. P.; Wilson, T. J.; Dalziel, I. W. D.; Hansen, S. E.; Shore, P.
2017-12-01
Recent studies investigating the response and influence of the solid Earth on the evolution of the cryosphere demonstrate the need to account for 3D rheological structure to better predict ice sheet dynamics, stability, and future sea level impact, as well as to improve glacial isostatic adjustment models and more accurately measure ice mass loss. Critical rheological properties like mantle viscosity and lithospheric thickness may be estimated from shear wave velocity models that, for Antarctica, would ideally possess regional-scale resolution extending down to at least the base of the transition zone (i.e. 670 km depth). However, current global- and continental-scale seismic velocity models are unable to obtain both the resolution and spatial coverage necessary, do not take advantage of the full set of available Antarctic data, and, in most instance, employ traditional seismic imaging techniques that utilize limited seismogram information. We utilize 3-component earthquake waveforms from almost 300 Antarctic broadband seismic stations and 26 southern mid-latitude stations from 270 earthquakes (5.5 ≤ Mw ≤ 7.0) between 2001-2003 and 2007-2016 to conduct a full-waveform adjoint inversion for Antarctica and surrounding regions of the Antarctic plate. Necessary forward and adjoint wavefield simulations are performed utilizing SPECFEM3D_GLOBE with the aid of the Texas Advanced Computing Center. We utilize phase observations from seismogram segments containing P, S, Rayleigh, and Love waves, including reflections and overtones, which are autonomously identified using FLEXWIN. The FLEXWIN analysis is carried out over a short (15-50 s) and long (initially 50-150 s) period band that target body waves, or body and surface waves, respectively. As our model is iteratively refined, the short-period corner of the long period band is gradually reduced to 25 s as the model converges over 20 linearized inversion iterations. We will briefly present this new high-resolution transverse isotropic seismic model of the Antarctic upper mantle and transition zone, which will be broadly valuable to advance cryosphere studies and improve understanding of the tectonic structure and geodynamic processes of Antarctica.
NASA Astrophysics Data System (ADS)
Ishiyama, Tatsuya; Kato, Naoko; Sato, Hiroshi; Koshiya, Shin; Toda, Shigeru; Kobayashi, Kenta
2017-10-01
Active blind thrust faults, which can be a major seismic hazard in urbanized areas, are commonly difficult to image with seismic reflection surveys. To address these challenges in coastal plains, we collected about 8 km-long onshore high-resolution two-dimensional (2D) seismic reflection data using a dense array of 800 geophones across compressionally reactivated normal faults within a failed rift system located along the southwestern extension of the Toyama trough in the Sea of Japan. The processing of the seismic reflection data illuminated their detailed subsurface structures to depths of about 3 km. The interpreted depth-converted section, correlated with nearby Neogene stratigraphy, indicated the presence of and along-strike variation of previously unrecognized complex thrust-related structures composed of active fault-bend folds coupled with pairs of flexural slip faults within the forelimb and newly identified frontal active blind thrusts beneath the alluvial plain. In addition, growth strata and fold scarps that deform lower to upper Pleistocene units record the recent history of their structural growth and fault activity. This case shows that shallow seismic reflection imaging with densely spaced seismic recorders is a useful tool in defining locations, recent fault activity, and complex geometry of otherwise inaccessible active blind thrust faults.
Identifying Conventionally Sub-Seismic Faults in Polygonal Fault Systems
NASA Astrophysics Data System (ADS)
Fry, C.; Dix, J.
2017-12-01
Polygonal Fault Systems (PFS) are prevalent in hydrocarbon basins globally and represent potential fluid pathways. However the characterization of these pathways is subject to the limitations of conventional 3D seismic imaging; only capable of resolving features on a decametre scale horizontally and metres scale vertically. While outcrop and core examples can identify smaller features, they are limited by the extent of the exposures. The disparity between these scales can allow for smaller faults to be lost in a resolution gap which could mean potential pathways are left unseen. Here the focus is upon PFS from within the London Clay, a common bedrock that is tunnelled into and bears construction foundations for much of London. It is a continuation of the Ieper Clay where PFS were first identified and is found to approach the seafloor within the Outer Thames Estuary. This allows for the direct analysis of PFS surface expressions, via the use of high resolution 1m bathymetric imaging in combination with high resolution seismic imaging. Through use of these datasets surface expressions of over 1500 faults within the London Clay have been identified, with the smallest fault measuring 12m and the largest at 612m in length. The displacements over these faults established from both bathymetric and seismic imaging ranges from 30cm to a couple of metres, scales that would typically be sub-seismic for conventional basin seismic imaging. The orientations and dimensions of the faults within this network have been directly compared to 3D seismic data of the Ieper Clay from the offshore Dutch sector where it exists approximately 1km below the seafloor. These have typical PFS attributes with lengths of hundreds of metres to kilometres and throws of tens of metres, a magnitude larger than those identified in the Outer Thames Estuary. The similar orientations and polygonal patterns within both locations indicates that the smaller faults exist within typical PFS structure but are sub-seismic in conventional imaging techniques. These unseen faults could create additional unseen pathways that impact construction in London via water ingress and influence fluid migration within hydrocarbon basins.
Wang, Chun-Yong; Yang, Zhu-En; Luo, Hai; Mooney, W.D.
2004-01-01
The Tien Shan orogenic belt is the most active intracontinental mountain belt in the world. We describe an 86-km-long N–S-trending deep seismic reflection profile (which passes through the southern Junggar basin) located on the northeastern Tien Shan piedmont. Two distinct anticlines beneath the northern margin of the Tien Shan are clearly imaged in the seismic section. In addition, we have imaged two detachment surfaces at depths of ∼7 and ∼16 km. The detachment surface at 16-km depth corresponds to the main detachment that converges with the steep angle reverse fault (the Junggar Southern Marginal Fault) on which the 1906 M~7.7 Manas earthquake occurred. A 12–14-km-thick sedimentary basin is imaged beneath the southern Junggar basin near Shihezi. The crust beneath the northern margin of the Tien Shan is 50–55-km thick, and decreases beneath the Junggar basin to 40–45-km thick. The crustal image of the deep seismic reflection profile is consistent with models derived from nearby seismic refraction data and Bouguer gravity anomalies in the same region. The faulting associated with the 1906 Manas earthquake also fits within the structural framework imaged by the seismic reflection profile. Present-day micro-seismicity shows a hypocentral depth-distribution between 5 and 35 km, with a peak at 20 km. We hypothesize that the 1906 Manas earthquake initiated at a depth of ∼20 km and propagated upwards, causing northward slip on the sub-horizontal detachments beneath the southern Junggar basin. Thus, in accord with regional geological mapping, the current shortening within the eastern Tien Shan is accommodated both by high-angle reverse faulting and detachment faulting that can be clearly imaged at depth in seismic reflection data.
NASA Astrophysics Data System (ADS)
Pilecki, Zenon; Isakow, Zbigniew; Czarny, Rafał; Pilecka, Elżbieta; Harba, Paulina; Barnaś, Maciej
2017-08-01
In this work, the capabilities of the Seismobile system for shallow subsurface imaging of transport routes, such as roads, railways, and airport runways, in different geological conditions were presented. The Seismobile system combines the advantages of seismic profiling using landstreamer and georadar (GPR) profiling. It consists of up to four seismic measuring lines and carriage with a suspended GPR antenna. Shallow subsurface recognition may be achieved to a maximum width of 10.5 m for a distance of 3.5 m between the measurement lines. GPR measurement is performed in the axis of the construction. Seismobile allows the measurement time, labour and costs to be reduced due to easy technique of its installation, remote data transmission from geophones to accompanying measuring modules, automated location of the system based on GPS and a highly automated method of seismic wave excitation. In this paper, the results of field tests carried out in different geological conditions were presented. The methodologies of acquisition, processing and interpretation of seismic and GPR measurements were broadly described. Seismograms and its spectrum registered by Seismobile system were compared to the ones registered by Geode seismograph of Geometrix. Seismic data processing and interpretation software allows for the obtaining of 2D/3D models of P- and S-wave velocities. Combined seismic and GPR results achieved sufficient imaging of shallow subsurface to a depth of over a dozen metres. The obtained geophysical information correlated with geological information from the boreholes with good quality. The results of performed tests proved the efficiency of the Seismobile system in seismic and GPR imaging of a shallow subsurface of transport routes under compound conditions.
Regional Characterization of Tokyo Metoropolitan area using a highly-dense seismic netwok(MeSO-net)
NASA Astrophysics Data System (ADS)
Hirata, N.; Nakagawa, S.; Sakai, S.; Panayotopoulos, Y.; Ishikawa, M.; Ishibe, T.; Kimura, H.; Honda, R.
2014-12-01
We have developed a dense seismic network, MeSO-net (Metropolitan Seismic Observation network), since 2007 in the greater Tokyo urban region under the Special Project for Earthquake Disaster Mitigation in Tokyo Metropolitan Area (FY2007-FY2011) and Special Project for Reducing Vulnerability for Urban Mega Earthquake Disasters (FY2012-FY2016)( Hirata et al., 2009). So far we have acquired more than 120TB continuous seismic data form MeSO-net which consists of about 300 seismic stations. Using MeSO-net data, we obtain clear P- and S- wave velocity tomograms (Nakagawa et al., 2010) and Qp, Qs tomograms (Panayotopoulos et al., 2014) which show a clear image of Philippine Sea Plate (PSP) and PAcific Plate (PAP). A depth to the top of PSP, 20 to 30 km beneath northern part of Tokyo bay, is about 10 km shallower than previous estimates based on the distribution of seismicity (Ishida, 1992). This shallower plate geometry changes estimations of strong ground motion for seismic hazards analysis within the Tokyo region. Based on elastic wave velocities of rocks and minerals, we interpreted the tomographic images as petrologic images. Tomographic images revealed the presence of two stepwise velocity increase of the top layer of the subducting PSP slab. Because strength of the serpentinized peridotite is not large enough for brittle fracture, if the area is smaller than previously estimated, a possible area of the large thrust fault on the upper surface of PSP can be larger than previously thought. Change of seismicity rate after the 2011 Tohoku-oki earthquake suggests change of stressing rate in greater Tokyo. Quantitative analysis of MeSO-net data shows significant increase of rate of earthquakes that have a fault orientation favorable to increasing Coulomb stress after the Tohoku-oki event.
Interpretation of the Seattle uplift, Washington, as a passive-roof duplex
Brocher, T.M.; Blakely, R.J.; Wells, R.E.
2004-01-01
We interpret seismic lines and a wide variety of other geological and geophysical data to suggest that the Seattle uplift is a passive-roof duplex. A passive-roof duplex is bounded top and bottom by thrust faults with opposite senses of vergence that form a triangle zone at the leading edge of the advancing thrust sheet. In passive-roof duplexes the roof thrust slips only when the floor thrust ruptures. The Seattle fault is a south-dipping reverse fault forming the leading edge of the Seattle uplift, a 40-km-wide fold-and-thrust belt. The recently discovered, north-dipping Tacoma reverse fault is interpreted as a back thrust on the trailing edge of the belt, making the belt doubly vergent. Floor thrusts in the Seattle and Tacoma fault zones, imaged as discontinuous reflections, are interpreted as blind faults that flatten updip into bedding plane thrusts. Shallow monoclines in both the Seattle and Tacoma basins are interpreted to overlie the leading edges of thrust-bounded wedge tips advancing into the basins. Across the Seattle uplift, seismic lines image several shallow, short-wavelength folds exhibiting Quaternary or late Quaternary growth. From reflector truncation, several north-dipping thrust faults (splay thrusts) are inferred to core these shallow folds and to splay upward from a shallow roof thrust. Some of these shallow splay thrusts ruptured to the surface in the late Holocene. Ages from offset soils in trenches across the fault scarps and from abruptly raised shorelines indicate that the splay, roof, and floor thrusts of the Seattle and Tacoma faults ruptured about 1100 years ago.
Seismic imaging of the oil and geothermal reservoirs using the induced seismicity
NASA Astrophysics Data System (ADS)
Zhang, H.; Toksoz, M. N.; Fehler, M.
2011-12-01
It is known that microseismicity can be induced in the oil field due to the stress change caused by oil/gas production. Similarly, injection of high-pressure fluids into the reservoir can also induce microseismicity. Due to the proximity of induced seismicity to the reservoir, in some cases, it may be advantageous to use induced seismicity to image the reservoir. The seismic stations for monitoring the induced seismicity are usually sparse. Conventional travel time tomography using travel times from seismic events to stations may not be applicable because of poor ray coverage outside the source region. In comparison, the double-difference tomography method of Zhang and Thurber (2003) that uses the differential travel times is able to image the reservoir by avoiding determining the velocity structure outside the source region. In this study, we present two case studies of applying double-difference tomography to induced seismicity monitored by borehole stations. In the case of an oil field in Oman, five closely spaced monitoring wells are used to monitor microseismicity induced by gas production. In each well, multiple seismic sensors are positioned from depths 750 m - 1250 m and about 2000 events are selected for tomography. Reservoir imaging shows encouraging results in identifying structures and velocity changes within reservoir layers. Clear velocity contrast was seen across the major northeast-southwest faults. Low Vp, low Vs and low Vp/Vs anomalies are mainly associated with the gas production layer. For the case of the Soultz Enhanced Geothermal System at Soultz-sous-Forets, France, we used travel time data from the September and October 1993 hydraulic stimulations, where only four borehole stations are available. The results showed that the S-wave velocity structure correlated well with seismicity and showed low velocity zones at depths between 2900 and 3300 meters, where fluid was believed to have infiltrated the reservoir. We also attempt time-lapse tomography to determine velocity changes at different stages of stimulation. The preliminary results show that the velocity increases outside the reservoir and decreases in the seismicity region.
Controlled Source 4D Seismic Imaging
NASA Astrophysics Data System (ADS)
Luo, Y.; Morency, C.; Tromp, J.
2009-12-01
Earth's material properties may change after significant tectonic events, e.g., volcanic eruptions, earthquake ruptures, landslides, and hydrocarbon migration. While many studies focus on how to interpret observations in terms of changes in wavespeeds and attenuation, the oil industry is more interested in how we can identify and locate such temporal changes using seismic waves generated by controlled sources. 4D seismic analysis is indeed an important tool to monitor fluid movement in hydrocarbon reservoirs during production, improving fields management. Classic 4D seismic imaging involves comparing images obtained from two subsequent seismic surveys. Differences between the two images tell us where temporal changes occurred. However, when the temporal changes are small, it may be quite hard to reliably identify and characterize the differences between the two images. We propose to back-project residual seismograms between two subsequent surveys using adjoint methods, which results in images highlighting temporal changes. We use the SEG/EAGE salt dome model to illustrate our approach. In two subsequent surveys, the wavespeeds and density within a target region are changed, mimicking possible fluid migration. Due to changes in material properties induced by fluid migration, seismograms recorded in the two surveys differ. By back propagating these residuals, the adjoint images identify the location of the affected region. An important issue involves the nature of model. For instance, are we characterizing only changes in wavespeed, or do we also consider density and attenuation? How many model parameters characterize the model, e.g., is our model isotropic or anisotropic? Is acoustic wave propagation accurate enough or do we need to consider elastic or poroelastic effects? We will investigate how imaging strategies based upon acoustic, elastic and poroelastic simulations affect our imaging capabilities.
NASA Astrophysics Data System (ADS)
Provost, Floriane; Malet, Jean-Philippe; Hibert, Clément; Vergne, Jérôme
2017-04-01
Clayey landslides present various seismic sources generated by the slope deformation (rockfall, slidequakes, tremors, fluid transfers). However, the characterization of the micro-seismicity and the construction of advanced catalogs (classification of the seismic source, time, and location) are complex for such objects because of the variety of recorded signals, the low signal to noise ratios, the highly attenuating medium, and the small size of the object that limits the picking of the P and S-waves. A full understanding of the seismic sources is hence often difficult because of the few number of seismometers, the large distance source-to-sensor (> 50m) and because of the lack of a continous spatially distributed record of the slope deformation. Recent progress in the geophysical instrumentation allowed the deployment of a dense network of 150 ZLand nodes (Tesla Corp.) combined with a Ground-Based InSAR sensor (IDS, IBIS-FM) for a period of ca. 2 months at the Super-Sauze clayey landslide (South French Alps). The Zland nodes are vertical wireless seismometers with 12 days autonomy. Three nodes were co-located at 50 locations in the most active part of the landslide and above the main scarp with a sensor-to-sensor distance of ca. 50m and a sample frequency of 400Hz. The Ground-Based InSAR sensor was installed in front of the landslide at a distance of ca. 800m and acquired an image every 15 minutes. The seismic events are detected automatically based on their spectrogram content with Signal-to-Noise Ratio (SNR) larger than 1.5 and automatically classified using the Random Forest algorithm. The landslide endogenous sources are then located by optimization of the inter-trace correlation of the first arrivals. This experiment aims to document the deformation of the landslide by combining surface and in depth information and provides a new insight into the seismic sources interpretation. The spatial distribution of the deformation is compared to the location of the endogenous seismic events in order to analyze seismic vs. aseismic deformation.
NASA Astrophysics Data System (ADS)
Lloyd, A. J.; Wiens, D.; Zhu, H.; Tromp, J.; Nyblade, A.; Anandakrishnan, S.; Aster, R. C.; Huerta, A. D.; Winberry, J. P.; Wilson, T. J.; Dalziel, I. W. D.; Hansen, S. E.; Shore, P.
2017-12-01
The upper mantle and transition zone beneath Antarctica and the surrounding ocean are among the poorest seismically imaged regions of the Earth's interior. Over the last 1.5 decades researchers have deployed several large temporary broadband seismic arrays focusing on major tectonic features in the Antarctic. The broader international community has also facilitated further instrumentation of the continent, often operating stations in additional regions. As of 2016, waveforms are available from almost 300 unique station locations. Using these stations along with 26 southern mid-latitude seismic stations we have imaged the seismic structure of the upper mantle and transition zone using full waveform adjoint techniques. The full waveform adjoint inversion assimilates phase observations from 3-component seismograms containing P, S, Rayleigh, and Love waves, including reflections and overtones, from 270 earthquakes (5.5 ≤ Mw ≤ 7.0) that occurred between 2001-2003 and 2007-2016. We present the major results of the full waveform adjoint inversion following 20 iterations, resulting in a continental-scale seismic model (ANT_20) with regional-scale resolution. Within East Antarctica, ANT_20 reveals internal seismic heterogeneity and differences in lithospheric thickness. For example, fast seismic velocities extending to 200-300 km depth are imaged beneath both Wilkes Land and the Gamburtsev Subglacial Mountains, whereas fast velocities only extend to 100-200 km depth beneath the Lambert Graben and Enderby Land. Furthermore, fast velocities are not found beneath portions of Dronning Maud Land, suggesting old cratonic lithosphere may be absent. Beneath West Antarctica slow upper mantle seismic velocities are imaged extending from the Balleny Island southward along the Transantarctic Mountains front, and broaden beneath the southern and northern portion of the mountain range. In addition, slow upper mantle velocities are imaged beneath the West Antarctic coast extending from Marie Byrd Land to the Antarctic Peninsula. This region of slow velocity only extends to 150-200 km depth beneath the Antarctic Peninsula, while elsewhere it extends to deeper upper mantle depths and possibly into the transition zone as well as offshore, suggesting two different geodynamic processes are at play.
Wave equation datuming applied to S-wave reflection seismic data
NASA Astrophysics Data System (ADS)
Tinivella, U.; Giustiniani, M.; Nicolich, R.
2018-05-01
S-wave high-resolution reflection seismic data was processed using Wave Equation Datuming technique in order to improve signal/noise ratio, attenuating coherent noise, and seismic resolution and to solve static corrections problems. The application of this algorithm allowed obtaining a good image of the shallow subsurface geological features. Wave Equation Datuming moves shots and receivers from a surface to another datum (the datum plane), removing time shifts originated by elevation variation and/or velocity changes in the shallow subsoil. This algorithm has been developed and currently applied to P wave, but it reveals the capacity to highlight S-waves images when used to resolve thin layers in high-resolution prospecting. A good S-wave image facilitates correlation with well stratigraphies, optimizing cost/benefit ratio of any drilling. The application of Wave Equation Datuming requires a reliable velocity field, so refraction tomography was adopted. The new seismic image highlights the details of the subsoil reflectors and allows an easier integration with borehole information and geological surveys than the seismic section obtained by conventional CMP reflection processing. In conclusion, the analysis of S-wave let to characterize the shallow subsurface recognizing levels with limited thickness once we have clearly attenuated ground roll, wind and environmental noise.
NASA Astrophysics Data System (ADS)
Fortin, Will F. J.
The utility and meaning of a geophysical dataset is dependent on good interpretation informed by high-quality data, processing, and attribute examination via technical methodologies. Active source marine seismic reflection data contains a great deal of information in the location, phase, and amplitude of both pre- and post-stack seismic reflections. Using pre- and post-stack data, this work has extracted useful information from marine reflection seismic data in novel ways in both the oceanic water column and the sub-seafloor geology. In chapter 1 we develop a new method for estimating oceanic turbulence from a seismic image. This method is tested on synthetic seismic data to show the method's ability to accurately recover both distribution and levels of turbulent diffusivity. Then we apply the method to real data offshore Costa Rica where we observe lee waves. Our results find elevated diffusivities near the seafloor as well as above the lee waves five times greater than surrounding waters and 50 times greater than open ocean diffusivities. Chapter 2 investigates subsurface geology in the Cascadia Subduction Zone and outlines a workflow for using pre-stack waveform inversion to produce highly detailed velocity models and seismic images. Using a newly developed inversion code, we achieve better imaging results as compared to the product of a standard, user-intensive method for building a velocity model. Our results image the subduction interface ~30 km farther landward than previous work and better images faults and sedimentary structures above the oceanic plate as well as in the accretionary prism. The resultant velocity model is highly detailed, inverted every 6.25 m with ~20 m vertical resolution, and will be used to examine the role of fluids in the subduction system. These results help us to better understand the natural hazards risks associated with the Cascadia Subduction Zone. Chapter 3 returns to seismic oceanography and examines the dynamics of nonlinear internal wave pulses in the South China Sea. Coupling observations from the seismic images with turbulent patterns, we find no evidence for hydraulic jumps in the Luzon passage. Our data suggests geometric resonance may be the underlying physics behind large amplitude nonlinear internal wave pulses seen in the region. We find increased levels of turbulent diffusivity in deep water below 1000 m, associated with internal tide pulses, and near the steep slopes of both the Heng-Chun and Lan-Yu ridges.
Free Surface Downgoing VSP Multiple Imaging
NASA Astrophysics Data System (ADS)
Maula, Fahdi; Dac, Nguyen
2018-03-01
The common usage of a vertical seismic profile is to capture the reflection wavefield (upgoing wavefield) so that it can be used for further well tie or other interpretations. Borehole Seismic (VSP) receivers capture the reflection from below the well trajectory, traditionally no seismic image information above trajectory. The non-traditional way of processing the VSP multiple can be used to expand the imaging above the well trajectory. This paper presents the case study of using VSP downgoing multiples for further non-traditional imaging applications. In general, VSP processing, upgoing and downgoing arrivals are separated during processing. The up-going wavefield is used for subsurface illumination, whereas the downgoing wavefield and multiples are normally excluded from the processing. In a situation where the downgoing wavefield passes the reflectors several times (multiple), the downgoing wavefield carries reflection information. Its benefit is that it can be used for seismic tie up to seabed, and possibility for shallow hazards identifications. One of the concepts of downgoing imaging is widely known as mirror-imaging technique. This paper presents a case study from deep water offshore Vietnam. The case study is presented to demonstrate the robustness of the technique, and the limitations encountered during its processing.
Seismic, satellite, and site observations of internal solitary waves in the NE South China Sea.
Tang, Qunshu; Wang, Caixia; Wang, Dongxiao; Pawlowicz, Rich
2014-06-20
Internal solitary waves (ISWs) in the NE South China Sea (SCS) are tidally generated at the Luzon Strait. Their propagation, evolution, and dissipation processes involve numerous issues still poorly understood. Here, a novel method of seismic oceanography capable of capturing oceanic finescale structures is used to study ISWs in the slope region of the NE SCS. Near-simultaneous observations of two ISWs were acquired using seismic and satellite imaging, and water column measurements. The vertical and horizontal length scales of the seismic observed ISWs are around 50 m and 1-2 km, respectively. Wave phase speeds calculated from seismic observations, satellite images, and water column data are consistent with each other. Observed waveforms and vertical velocities also correspond well with those estimated using KdV theory. These results suggest that the seismic method, a new option to oceanographers, can be further applied to resolve other important issues related to ISWs.
Imaging an Active Volcano Edifice at Tenerife Island, Spain
NASA Astrophysics Data System (ADS)
Ibáñez, Jesús M.; Rietbrock, Andreas; García-Yeguas, Araceli
2008-08-01
An active seismic experiment to study the internal structure of Teide volcano is being carried out on Tenerife, a volcanic island in Spain's Canary Islands archipelago. The main objective of the Tomography at Teide Volcano Spain (TOM-TEIDEVS) experiment, begun in January 2007, is to obtain a three-dimensional (3-D) structural image of Teide volcano using seismic tomography and seismic reflection/refraction imaging techniques. At present, knowledge of the deeper structure of Teide and Tenerife is very limited, with proposed structural models based mainly on sparse geophysical and geological data. The multinational experiment-involving institutes from Spain, the United Kingdom, Italy, Ireland, and Mexico-will generate a unique high-resolution structural image of the active volcano edifice and will further our understanding of volcanic processes.
Noise-based body-wave seismic tomography in an active underground mine.
NASA Astrophysics Data System (ADS)
Olivier, G.; Brenguier, F.; Campillo, M.; Lynch, R.; Roux, P.
2014-12-01
Over the last decade, ambient noise tomography has become increasingly popular to image the earth's upper crust. The seismic noise recorded in the earth's crust is dominated by surface waves emanating from the interaction of the ocean with the solid earth. These surface waves are low frequency in nature ( < 1 Hz) and not usable for imaging smaller structures associated with mining or oil and gas applications. The seismic noise recorded at higher frequencies are typically from anthropogenic sources, which are short lived, spatially unstable and not well suited for constructing seismic Green's functions between sensors with conventional cross-correlation methods. To examine the use of ambient noise tomography for smaller scale applications, continuous data were recorded for 5 months in an active underground mine in Sweden located more than 1km below surface with 18 high frequency seismic sensors. A wide variety of broadband (10 - 3000 Hz) seismic noise sources are present in an active underground mine ranging from drilling, scraping, trucks, ore crushers and ventilation fans. Some of these sources generate favorable seismic noise, while others are peaked in frequency and not usable. In this presentation, I will show that the noise generated by mining activity can be useful if periods of seismic noise are carefully selected. Although noise sources are not temporally stable and not evenly distributed around the sensor array, good estimates of the seismic Green's functions between sensors can be retrieved for a broad frequency range (20 - 400 Hz) when a selective stacking scheme is used. For frequencies below 100 Hz, the reconstructed Green's functions show clear body-wave arrivals for almost all of the 153 sensor pairs. The arrival times of these body-waves are picked and used to image the local velocity structure. The resulting 3-dimensional image shows a high velocity structure that overlaps with a known ore-body. The material properties of the ore-body differ from the host rock and is likely the cause of the observed high velocity structure. For frequencies above 200 Hz, the seismic waves are multiply scattered by the tunnels and excavations and used to determine the scattering properties of the medium. The results of this study should be useful for future imaging and exploration projects in mining and oil and gas industries.
NASA Astrophysics Data System (ADS)
Perfettini, H.; Sladen, A.; Avouac, J.; Simons, M.; Nocquet, J.; Bondoux, F.; Kositsky, A.; Chlieh, M.; Tavera, H.; Audin, L.; Konca, A.; Fielding, E. J.; Farber, D.; Ortega, F. H.
2009-12-01
In the last couple of decades, advances in the analysis techniques and instrumentation have improved significantly our capability to document the different stages of the seismic cycle, namely the co-, post- and inter-seismic phases. To this respect, the Mw8.0 Pisco, Peru, earthquake of August 2007 is exemplary, with numerous data sets allowing to explore the details of each phase and study their relationship. We derive a kinematic model of the coseismic rupture from the joint non-linear inversion of teleseismic and six Interferometric Synthetic Aperture Radar (InSAR) images. Our preferred model indicates a remarkable anti-correlation between the co-seismic slip distribution and the aftershock distribution determined from the Peruvian seismic network. The proposed source model is compatible with regional run-up measurements and open-ocean tsunami records. In particular, the tsunami observations validate that the rupture did not extend to the trench, and confirm that the Pisco event is not a tsunami earthquake despite its low apparent rupture velocity (< 1.5 km/s). We favor the interpretation that the earthquake consists of 2 subevents, each with a conventional rupture velocity (2-4 km/s). The delay between the 2 subevents might reflect the time for the second shock to nucleate or, alternatively, the time it took for afterslip to increase the stress level on the second asperity to a level necessary for static triggering. The source model predicts uplift offshore and subsidence onland with the pivot line following the changes in curvature of the coastline. This observation set the Pisco earthquake as one of the best examples of a link between the geomorphology of the coastline and the pattern of surface deformation induced by large interplate ruptures. The post-seismic deformation following the mainshock is studied using a local network of continuous GPS stations and the PCAIM inversion method. The inversion indicates that the two patches of co-seismic slip triggered aseismic frictional afterslip on two other adjacent patches. The most prominent of those post-seismic patches coincides with the subducting Nazca ridge, an area also characterized by a locally low interseismic coupling and which seems to have acted as a barrier to seismic rupture propagation repeatedly in the past. The ’seismogenic’ portion of the megathrust thus appears to be paved with interfingering of rate-weakening and rate-strengthening patches. The rate-strengthening patches are shown to contribute to an unsuspectedly high proportion of aseismic slip and to determine the extent and frequency of large interplate earthquakes. Aseismic slip accounts for as much as 50-70% of the slip budget on the seismogenic portion of the megathrust of central Peru and the return period of Mw 8.0 earthquakes in the Pisco area is estimated to 250 years.
Catchings, R.D.; Powars, D.S.; Gohn, G.S.; Horton, J. Wright; Goldman, M.R.; Hole, J.A.
2008-01-01
A 30-km-long, radial seismic reflection and refraction survey completed across the northern part of the late Eocene Chesapeake Bay impact structure (CBIS) on the Delmarva Peninsula, Virginia, USA, confirms that the CBIS is a complex central-peak crater. We used a tomographic P wave velocity model and low-fold reflection images, constrained by data from two deep boreholes located on the profile, to interpret the structure and composition of the upper 5 km of crust. The seismic images exhibit well-defined structural features, including (with increasing radial distance) a collapsed central uplift, a breccia-filled moat, and a collapsed transient-crater margin (which collectively constitute a ???40-km-wide collapsed transient crater), and a shallowly deformed annular trough. These seismic images are the first to resolve the deep structure of the crater (>1 km) and the boundaries between the central uplift, moat, and annular trough. Several distinct seismic signatures distinguish breccia units from each other and from more coherent crystalline rocks below the central uplift, moat, and annular trough. Within the moat, breccia extends to a minimum depth of 1.5 km or a maximum of 3.5 km, depending upon the interpretation of the deepest layered materials. The images show ???350 to 500 m of postimpact sediments above the impactites. The imaged structure of the CBIS indicates a complex sequence of event during the cratering process that will provide new constraints for numerical modeling. Copyright 2008 by the American Geophysical Union.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levander, Alan Richard; Zelt, Colin A.
2015-03-17
The work plan for this project was to develop and apply advanced seismic reflection and wide-angle processing and inversion techniques to high resolution seismic data for the shallow subsurface to seismically characterize the shallow subsurface at hazardous waste sites as an aid to containment and cleanup activities. We proposed to continue work on seismic data that we had already acquired under a previous DoE grant, as well as to acquire additional new datasets for analysis. The project successfully developed and/or implemented the use of 3D reflection seismology algorithms, waveform tomography and finite-frequency tomography using compressional and shear waves for highmore » resolution characterization of the shallow subsurface at two waste sites. These two sites have markedly different near-surface structures, groundwater flow patterns, and hazardous waste problems. This is documented in the list of refereed documents, conference proceedings, and Rice graduate theses, listed below.« less
Advanced computational tools for 3-D seismic analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barhen, J.; Glover, C.W.; Protopopescu, V.A.
1996-06-01
The global objective of this effort is to develop advanced computational tools for 3-D seismic analysis, and test the products using a model dataset developed under the joint aegis of the United States` Society of Exploration Geophysicists (SEG) and the European Association of Exploration Geophysicists (EAEG). The goal is to enhance the value to the oil industry of the SEG/EAEG modeling project, carried out with US Department of Energy (DOE) funding in FY` 93-95. The primary objective of the ORNL Center for Engineering Systems Advanced Research (CESAR) is to spearhead the computational innovations techniques that would enable a revolutionary advancemore » in 3-D seismic analysis. The CESAR effort is carried out in collaboration with world-class domain experts from leading universities, and in close coordination with other national laboratories and oil industry partners.« less
NASA Astrophysics Data System (ADS)
Barnes, P.; Ghisetti, F.; Ellis, S. M.; Morgan, J.
2016-12-01
Proto-thrusts are an enigmatic structural feature at the toe of many subduction accretionary wedges. They are commonly recognised in seismic reflection sections as relatively small-displacement (tens of metres) faults seaward of the primary deformation front. Although widely assumed to reflect incipient accretionary deformation and to mark the location of future thrusts, proto-thrusts have received relatively little attention. Few studies have attempted to characterise their displacement properties, evolution, and kinematic role in frontal accretion processes associated with propagation of the interface décollement. In this study, we make use of excellent quality geophysical and bathymetric imaging of the spectacular 25 km-wide Hikurangi margin proto-thrust zone (PTZ), the structure of which varies significantly along strike. From a detailed structural analysis, we provide the first substantial quantitative dataset on proto-thrust geometry, displacement profiles, fault scaling relationships, and fault population characteristics. These analyses provide new insights into the role of inferred stratigraphic inhomogeneity in proto-thrust development, and the role of proto-thrust arrays in frontal accretion. Our observations, combined with our own recently published reconstructions of the wedge, and ongoing numerical simulations, indicate a migrating wave of proto-thrust activity in association with forward-advancement of the décollement. Calculation of tectonic shortening accommodated by the active PTZ east of the present deformation front, from measurements of seismically-imaged fault displacements and estimates of sub-seismic faulting derived from power law relationships, reveal their surprisingly significant role in accommodating regional plate convergence. South of the colliding Bennett Knoll Seamount, the predominantly seaward-vergent PTZ has accommodated 3.3 km of tectonic shortening, of which 70% is at sub-seismic scale. In comparison, north of Bennett Knoll Seamount, the predominantly landward-vergent PTZ has accommodated 4 km of shortening, of which 87% is at sub-seismic scale. These data combined with estimates of stratigraphic ages and deformation duration, indicate that proto-thrusts potentially accommodate up 30-50% of the total convergence rate.
Seismic monitoring at Deception Island volcano (Antarctica): Recent advances
NASA Astrophysics Data System (ADS)
Carmona, E.; Almendros, J.; Martín, R.; Cortés, G.; Alguacil, G.; Moreno, J.; Martín, B.; Martos, A.; Serrano, I.; Stich, D.; Ibáñez, J. M.
2012-04-01
Deception Island (South Shetland Island, Antarctica) is an active volcano with recent eruptions (e.g. 1967, 1969 and 1970). It is also among the Antarctic sites most visited by tourists. Besides, there are currently two scientific bases operating during the austral summers, usually from late November to early March. For these reasons it is necessary to deploy a volcano monitoring system as complete as possible, designed specifically to endure the extreme conditions of the volcanic environment and the Antarctic climate. The Instituto Andaluz de Geofísica of University of Granada, Spain (IAG-UGR) performs seismic monitoring on Deception Island since 1994 during austral summer surveys. The seismicity basically includes volcano-tectonic earthquakes, long-period events and volcanic tremor, among other signals. The level of seismicity is moderate, except for a seismo-volcanic crisis in 1999. The seismic monitoring system has evolved during these years, following the trends of the technological developments and software improvements. Recent advances have been mainly focused on: (1) the improvement of the seismic network introducing broadband stations and 24-bit data acquisition systems; (2) the development of a short-period seismic array, with a 12-channel, 24-bit data acquisition system; (3) the implementation of wireless data transmission from the network stations and also from the seismic array to a recording center, allowing for real-time monitoring; (4) the efficiency of the power supply systems and the monitoring of the battery levels and power consumption; (5) the optimization of data analysis procedures, including database management, automated event recognition tools for the identification and classification of seismo-volcanic signals, and apparent slowness vector estimates using seismic array data; (6) the deployment of permanent seismic stations and the transmission of data during the winter using a satellite connection. A single permanent station is operating at Deception Island since 2008. In the current survey we collaborate with the Spanish Army to add another permanent station that will be able to send to the IAG-UGR seismic information about the activity of the volcano during the winter, using a communications satellite (SPAINSAT). These advances simplify the field work and the data acquisition procedures, and allow us to obtain high-quality seismic data in real-time. These improvements have a very important significance for a better and faster interpretation of the seismo-volcanic activity and assessment of the volcanic hazards at Deception Island volcano.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernest A. Mancini; William C. Parcell; Bruce S. Hart
The principal research effort for Year 2 of the project is on stratigraphic model assessment and development. The research focus for the first six (6) months of Year 2 is on T-R cycle model development. The emphasis for the remainder of the year is on assessing the depositional model and developing and testing a sequence stratigraphy model. The development and testing of the sequence stratigraphy model has been accomplished through integrated outcrop, well log and seismic studies of Mesozoic strata in the Gulf of Mexico, North Atlantic and Rocky Mountain areas.
Seismic Imaging of the Source Physics Experiment Site with the Large-N Seismic Array
NASA Astrophysics Data System (ADS)
Chen, T.; Snelson, C. M.; Mellors, R. J.
2017-12-01
The Source Physics Experiment (SPE) consists of a series of chemical explosions at the Nevada National Security Site. The goal of SPE is to understand seismic wave generation and propagation from these explosions. To achieve this goal, we need an accurate geophysical model of the SPE site. A Large-N seismic array that was deployed at the SPE site during one of the chemical explosions (SPE-5) helps us construct high-resolution local geophysical model. The Large-N seismic array consists of 996 geophones, and covers an area of approximately 2 × 2.5 km. The array is located in the northern end of the Yucca Flat basin, at a transition from Climax Stock (granite) to Yucca Flat (alluvium). In addition to the SPE-5 explosion, the Large-N array also recorded 53 weight drops. Using the Large-N seismic array recordings, we perform body wave and surface wave velocity analysis, and obtain 3D seismic imaging of the SPE site for the top crust of approximately 1 km. The imaging results show clear variation of geophysical parameter with local geological structures, including heterogeneous weathering layer and various rock types. The results of this work are being incorporated in the larger 3D modeling effort of the SPE program to validate the predictive models developed for the site.
NASA Astrophysics Data System (ADS)
Nakamura, Yasuyuki; Kodaira, Shuichi; Cook, Becky J.; Jeppson, Tamara; Kasaya, Takafumi; Yamamoto, Yojiro; Hashimoto, Yoshitaka; Yamaguchi, Mika; Obana, Koichiro; Fujie, Gou
2014-12-01
Seismic image and velocity models were obtained from a newly conducted seismic survey around the Integrated Ocean Drilling Program (IODP) Japan Trench Fast Drilling Project (JFAST) drill site in the Japan Trench. Pre-stack depth migration (PSDM) analysis was applied to the multichannel seismic reflection data to produce an accurate depth seismic profile together with a P wave velocity model along a line that crosses the JFAST site location. The seismic profile images the subduction zone at a regional scale. The frontal prism where the drill site is located corresponds to a typically seismically transparent (or chaotic) zone with several landward-dipping semi-continuous reflections. The boundary between the Cretaceous backstop and the frontal prism is marked by a prominent landward-dipping reflection. The P wave velocity model derived from the PSDM analysis shows low velocity in the frontal prism and velocity reversal across the backstop interface. The PSDM velocity model around the drill site is similar to the P wave velocity model calculated from the ocean bottom seismograph (OBS) data and agrees with the P wave velocities measured from the core experiments. The average Vp/ Vs in the hanging wall sediments around the drill site, as derived from OBS data, is significantly larger than that obtained from core sample measurements.
Fuzzy logic and image processing techniques for the interpretation of seismic data
NASA Astrophysics Data System (ADS)
Orozco-del-Castillo, M. G.; Ortiz-Alemán, C.; Urrutia-Fucugauchi, J.; Rodríguez-Castellanos, A.
2011-06-01
Since interpretation of seismic data is usually a tedious and repetitive task, the ability to do so automatically or semi-automatically has become an important objective of recent research. We believe that the vagueness and uncertainty in the interpretation process makes fuzzy logic an appropriate tool to deal with seismic data. In this work we developed a semi-automated fuzzy inference system to detect the internal architecture of a mass transport complex (MTC) in seismic images. We propose that the observed characteristics of a MTC can be expressed as fuzzy if-then rules consisting of linguistic values associated with fuzzy membership functions. The constructions of the fuzzy inference system and various image processing techniques are presented. We conclude that this is a well-suited problem for fuzzy logic since the application of the proposed methodology yields a semi-automatically interpreted MTC which closely resembles the MTC from expert manual interpretation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yu; Gao, Kai; Huang, Lianjie
Accurate imaging and characterization of fracture zones is crucial for geothermal energy exploration. Aligned fractures within fracture zones behave as anisotropic media for seismic-wave propagation. The anisotropic properties in fracture zones introduce extra difficulties for seismic imaging and waveform inversion. We have recently developed a new anisotropic elastic-waveform inversion method using a modified total-variation regularization scheme and a wave-energy-base preconditioning technique. Our new inversion method uses the parameterization of elasticity constants to describe anisotropic media, and hence it can properly handle arbitrary anisotropy. We apply our new inversion method to a seismic velocity model along a 2D-line seismic data acquiredmore » at Eleven-Mile Canyon located at the Southern Dixie Valley in Nevada for geothermal energy exploration. Our inversion results show that anisotropic elastic-waveform inversion has potential to reconstruct subsurface anisotropic elastic parameters for imaging and characterization of fracture zones.« less
Imaging of magma intrusions beneath Harrat Al-Madinah in Saudi Arabia
NASA Astrophysics Data System (ADS)
Abdelwahed, Mohamed F.; El-Masry, Nabil; Moufti, Mohamed Rashad; Kenedi, Catherine Lewis; Zhao, Dapeng; Zahran, Hani; Shawali, Jamal
2016-04-01
High-resolution tomographic images of the crust and upper mantle beneath Harrat Al-Madinah, Saudi Arabia, are obtained by inverting high-quality arrival-time data of local earthquakes and teleseismic events recorded by newly installed borehole seismic stations to investigate the AD 1256 volcanic eruption and the 1999 seismic swarm in the study region. Our tomographic images show the existence of strong heterogeneities marked with low-velocity zones extending beneath the AD 1256 volcanic center and the 1999 seismic swarm area. The low-velocity zone coinciding with the hypocenters of the 1999 seismic swarm suggests the presence of a shallow magma reservoir that is apparently originated from a deeper source (60-100 km depths) and is possibly connected with another reservoir located further north underneath the NNW-aligned scoria cones of the AD 1256 eruption. We suggest that the 1999 seismic swarm may represent an aborted volcanic eruption and that the magmatism along the western margin of Arabia is largely attributed to the uplifting and thinning of its lithosphere by the Red Sea rifting.
Optimized suppression of coherent noise from seismic data using the Karhunen-Loève transform
NASA Astrophysics Data System (ADS)
Montagne, Raúl; Vasconcelos, Giovani L.
2006-07-01
Signals obtained in land seismic surveys are usually contaminated with coherent noise, among which the ground roll (Rayleigh surface waves) is of major concern for it can severely degrade the quality of the information obtained from the seismic record. This paper presents an optimized filter based on the Karhunen-Loève transform for processing seismic images contaminated with ground roll. In this method, the contaminated region of the seismic record, to be processed by the filter, is selected in such way as to correspond to the maximum of a properly defined coherence index. The main advantages of the method are that the ground roll is suppressed with negligible distortion of the remnant reflection signals and that the filtering procedure can be automated. The image processing technique described in this study should also be relevant for other applications where coherent structures embedded in a complex spatiotemporal pattern need to be identified in a more refined way. In particular, it is argued that the method is appropriate for processing optical coherence tomography images whose quality is often degraded by coherent noise (speckle).
Walker Ranch 3D seismic images
Robert J. Mellors
2016-03-01
Amplitude images (both vertical and depth slices) extracted from 3D seismic reflection survey over area of Walker Ranch area (adjacent to Raft River). Crossline spacing of 660 feet and inline of 165 feet using a Vibroseis source. Processing included depth migration. Micro-earthquake hypocenters on images. Stratigraphic information and nearby well tracks added to images. Images are embedded in a Microsoft Word document with additional information. Exact location and depth restricted for proprietary reasons. Data collection and processing funded by Agua Caliente. Original data remains property of Agua Caliente.
Closed-loop multiple-scattering imaging with sparse seismic measurements
NASA Astrophysics Data System (ADS)
Berkhout, A. J. Guus
2018-03-01
In the theoretical situation of noise-free, complete data volumes (`perfect data'), seismic data matrices are fully filled and multiple-scattering operators have the minimum-phase property. Perfect data allow direct inversion methods to be successful in removing surface and internal multiple scattering. Moreover, under these perfect data conditions direct source wavefields realize complete illumination (no irrecoverable shadow zones) and, therefore, primary reflections (first-order response) can provide us with the complete seismic image. However, in practice seismic measurements always contain noise and we never have complete data volumes at our disposal. We actually deal with sparse data matrices that cannot be directly inverted. The message of this paper is that in practice multiple scattering (including source ghosting) must not be removed but must be utilized. It is explained that in the real world we badly need multiple scattering to fill the illumination gaps in the subsurface. It is also explained that the proposed multiple-scattering imaging algorithm gives us the opportunity to decompose both the image and the wavefields into order-based constituents, making the multiple scattering extension easy to apply. Last but not least, the algorithm allows us to use the minimum-phase property to validate and improve images in an objective way.
InSight Aeroshell Coming Together
2015-08-18
The heat shield is suspended above the rest of the InSight spacecraft in this image taken July 13, 2015, in a spacecraft assembly clean room at Lockheed Martin Space Systems, Denver. The gray cone is the back shell, which together with the heat shield forms a protective aeroshell around the stowed InSight lander. The photo was taken during preparation for vibration testing of the spacecraft. InSight, for Interior Exploration Using Seismic Investigations, Geodesy and Heat Transport, is scheduled for launch in March 2016 and landing in September 2016. It will study the deep interior of Mars to advance understanding of the early history of all rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA19814
Reconstructing the Seismic Wavefield using Curvelets and Distributed Acoustic Sensing
NASA Astrophysics Data System (ADS)
Muir, J. B.; Zhan, Z.
2017-12-01
Distributed Acoustic Sensing (DAS) offers an opportunity to produce cost effective and uniquely dense images of the surface seismic wavefield - DAS also produces extremely large data volumes that require innovative methods of data reduction and seismic parameter inversion to handle efficiently. We leverage DAS and the super-Nyquist sampling enabled by compressed sensing of the wavefield in the curvelet domain to produce accurate images of the horizontal velocity within a target region, using only short ( 1-10 minutes) records of either active seismic sources or ambient seismic signals. Once the wavefield has been fully described, modern "tomographic" techniques, such as Helmholtz tomography or Wavefield Gradiometry, can be employed to determine seismic parameters of interest such as phase velocity. An additional practical benefit of employing a wavefield reconstruction step is that multiple heterogeneous forms of instrumentation can be naturally combined - therefore in this study we also explore the addition of three component nodal seismic data into the reconstructed wavefield. We illustrate these techniques using both synthetic examples and data taken from the Brady Geothermal Field in Nevada during the PoroTomo (U. Wisconsin Madison) experiment of 2016.
Steep-dip seismic imaging of the shallow San Andreas Fault near Parkfield
Hole, J.A.; Catchings, R.D.; St. Clair, K.C.; Rymer, M.J.; Okaya, D.A.; Carney, B.J.
2001-01-01
Seismic reflection and refraction images illuminate the San Andreas Fault to a depth of 1 kilometer. The prestack depth-migrated reflection image contains near-vertical reflections aligned with the active fault trace. The fault is vertical in the upper 0.5 kilometer, then dips about 70° to the southwest to at least 1 kilometer subsurface. This dip reconciles the difference between the computed locations of earthquakes and the surface fault trace. The seismic velocity cross section shows strong lateral variations. Relatively low velocity (10 to 30%), high electrical conductivity, and low density indicate a 1-kilometer-wide vertical wedge of porous sediment or fractured rock immediately southwest of the active fault trace.
Elastic Reverse Time Migration (RTM) From Surface Topography
NASA Astrophysics Data System (ADS)
Akram, Naveed; Chen, Xiaofei
2017-04-01
Seismic Migration is a promising data processing technique to construct subsurface images by projecting the recorded seismic data at surface back to their origins. There are numerous Migration methods. Among them, Reverse Time Migration (RTM) is considered a robust and standard imaging technology in present day exploration industry as well as in academic research field because of its superior performance compared to traditional migration methods. Although RTM is extensive computing and time consuming but it can efficiently handle the complex geology, highly dipping reflectors and strong lateral velocity variation all together. RTM takes data recorded at the surface as a boundary condition and propagates the data backwards in time until the imaging condition is met. It can use the same modeling algorithm that we use for forward modeling. The classical seismic exploration theory assumes flat surface which is almost impossible in practice for land data. So irregular surface topography has to be considered in simulation of seismic wave propagation, which is not always a straightforward undertaking. In this study, Curved grid finite difference method (CG-FDM) is adapted to model elastic seismic wave propagation to investigate the effect of surface topography on RTM results and explore its advantages and limitations with synthetic data experiments by using Foothill model with topography as the true model. We focus on elastic wave propagation rather than acoustic wave because earth actually behaves as an elastic body. Our results strongly emphasize on the fact that irregular surface topography must be considered for modeling of seismic wave propagation to get better subsurface images specially in mountainous scenario and suggest practitioners to properly handled the geometry of data acquired on irregular topographic surface in their imaging algorithms.
Elastic Reverse Time Migration (RTM) From Surface Topography
NASA Astrophysics Data System (ADS)
Naveed, A.; Chen, X.
2016-12-01
Seismic Migration is a promising data processing technique to construct subsurface images by projecting the recorded seismic data at surface back to their origins. There are numerous Migration methods. Among them, Reverse Time Migration (RTM) is considered a robust and standard imaging technology in present day exploration industry as well as in academic research field because of its superior performance compared to traditional migration methods. Although RTM is extensive computing and time consuming but it can efficiently handle the complex geology, highly dipping reflectors and strong lateral velocity variation all together. RTM takes data recorded at the surface as a boundary condition and propagates the data backwards in time until the imaging condition is met. It can use the same modeling algorithm that we use for forward modeling. The classical seismic exploration theory assumes flat surface which is almost impossible in practice for land data. So irregular surface topography has to be considered in simulation of seismic wave propagation, which is not always a straightforward undertaking. In this study, Curved grid finite difference method (CG-FDM) is adapted to model elastic seismic wave propagation to investigate the effect of surface topography on RTM results and explore its advantages and limitations with synthetic data experiments by using Foothill model with topography as the true model. We focus on elastic wave propagation rather than acoustic wave because earth actually behaves as an elastic body. Our results strongly emphasize on the fact that irregular surface topography must be considered for modeling of seismic wave propagation to get better subsurface images specially in mountainous scenario and suggest practitioners to properly handled the geometry of data acquired on irregular topographic surface in their imaging algorithms.
NASA Astrophysics Data System (ADS)
Jiang, Y.; Xing, H. L.
2016-12-01
Micro-seismic events induced by water injection, mining activity or oil/gas extraction are quite informative, the interpretation of which can be applied for the reconstruction of underground stress and monitoring of hydraulic fracturing progress in oil/gas reservoirs. The source characterises and locations are crucial parameters that required for these purposes, which can be obtained through the waveform matching inversion (WMI) method. Therefore it is imperative to develop a WMI algorithm with high accuracy and convergence speed. Heuristic algorithm, as a category of nonlinear method, possesses a very high convergence speed and good capacity to overcome local minimal values, and has been well applied for many areas (e.g. image processing, artificial intelligence). However, its effectiveness for micro-seismic WMI is still poorly investigated; very few literatures exits that addressing this subject. In this research an advanced heuristic algorithm, gravitational search algorithm (GSA) , is proposed to estimate the focal mechanism (angle of strike, dip and rake) and source locations in three dimension. Unlike traditional inversion methods, the heuristic algorithm inversion does not require the approximation of green function. The method directly interacts with a CPU parallelized finite difference forward modelling engine, and updating the model parameters under GSA criterions. The effectiveness of this method is tested with synthetic data form a multi-layered elastic model; the results indicate GSA can be well applied on WMI and has its unique advantages. Keywords: Micro-seismicity, Waveform matching inversion, gravitational search algorithm, parallel computation
The Mohorovičić discontinuity beneath the continental crust: An overview of seismic constraints
NASA Astrophysics Data System (ADS)
Carbonell, Ramon; Levander, Alan; Kind, Rainer
2013-12-01
The seismic signature of the Moho from which geologic and tectonic evolution hypotheses are derived is to a large degree a result of the seismic methodology which has been used to obtain the image. Seismic data of different types, passive source (earthquake) broad-band recordings, and controlled source seismic refraction, densely recorded wide-angle deep seismic reflection, and normal incidence reflection (using VibroseisTM, explosives, or airguns), have contributed to the description of the Moho as a relatively complex transition zone. Of critical importance for the quality and resolution of the seismic image are the acquisition parameters, used in the imaging experiments. A variety of signatures have been obtained for the Moho at different scales generally dependent upon bandwidth of the seismic source. This variety prevents the development of a single universally applicable interpretation. In this way source frequency content, and source and sensor spacing determine the vertical and lateral resolution of the images, respectively. In most cases the different seismic probes provide complementary data that gives a fuller picture of the physical structure of the Moho, and its relationship to a petrologic crust-mantle transition. In regional seismic studies carried out using passive source recordings the Moho is a relatively well defined structure with marked lateral continuity. The characteristics of this boundary change depending on the geology and tectonic evolution of the targeted area. Refraction and wide-angle studies suggest the Moho to be often a relatively sharp velocity contrast, whereas the Moho in coincident high quality seismic reflection images is often seen as the abrupt downward decrease in seismic reflectivity. The origin of the Moho and its relation to the crust-mantle boundary is probably better constrained by careful analysis of its internal details, which can be complex and geographically varied. Unlike the oceanic Moho which is formed in a relatively simple, well understood process, the continental Moho can be subject to an extensive variety of tectonic processes, making overarching conclusions about the continental Moho difficult. Speaking very broadly: 1) In orogenic belts still undergoing compression and active continental volcanic arcs, the Moho evolves with the mountain belt, 2) In collapsed Phanerozoic orogenic belts the Moho under the collapse structure was formed during the collapse, often by a combination of processes. 3) In regions having experienced widespread basaltic volcanism, the Moho can result from underplated basalt and basaltic residuum. In Precambrian terranes the Moho may be as ancient as the formation of the crust, in others Precambrian tectonic and magmatic processes have reset it. We note that seismic reflection data in Phanerosoic orogens as well as from Precambrian cratonic terranes often show thrust type structures extending as deep as the Moho, and suggest that even where crust and mantle xenoliths provide similar age of formation dates, the crust may be semi-allochothonous.
NASA Astrophysics Data System (ADS)
Kalscheuer, Thomas; Yan, Ping; Hedin, Peter; Garcia Juanatey, Maria d. l. A.
2017-04-01
We introduce a new constrained 2D magnetotelluric (MT) inversion scheme, in which the local weights of the regularization operator with smoothness constraints are based directly on the envelope attribute of a reflection seismic image. The weights resemble those of a previously published seismic modification of the minimum gradient support method introducing a global stabilization parameter. We measure the directional gradients of the seismic envelope to modify the horizontal and vertical smoothness constraints separately. An appropriate choice of the new stabilization parameter is based on a simple trial-and-error procedure. Our proposed constrained inversion scheme was easily implemented in an existing Gauss-Newton inversion package. From a theoretical perspective, we compare our new constrained inversion to similar constrained inversion methods, which are based on image theory and seismic attributes. Successful application of the proposed inversion scheme to the MT field data of the Collisional Orogeny in the Scandinavian Caledonides (COSC) project using constraints from the envelope attribute of the COSC reflection seismic profile (CSP) helped to reduce the uncertainty of the interpretation of the main décollement. Thus, the new model gave support to the proposed location of a future borehole COSC-2 which is supposed to penetrate the main décollement and the underlying Precambrian basement.
Seismic, satellite, and site observations of internal solitary waves in the NE South China Sea
Tang, Qunshu; Wang, Caixia; Wang, Dongxiao; Pawlowicz, Rich
2014-01-01
Internal solitary waves (ISWs) in the NE South China Sea (SCS) are tidally generated at the Luzon Strait. Their propagation, evolution, and dissipation processes involve numerous issues still poorly understood. Here, a novel method of seismic oceanography capable of capturing oceanic finescale structures is used to study ISWs in the slope region of the NE SCS. Near-simultaneous observations of two ISWs were acquired using seismic and satellite imaging, and water column measurements. The vertical and horizontal length scales of the seismic observed ISWs are around 50 m and 1–2 km, respectively. Wave phase speeds calculated from seismic observations, satellite images, and water column data are consistent with each other. Observed waveforms and vertical velocities also correspond well with those estimated using KdV theory. These results suggest that the seismic method, a new option to oceanographers, can be further applied to resolve other important issues related to ISWs. PMID:24948180
Aerospace technology can be applied to exploration 'back on earth'. [offshore petroleum resources
NASA Technical Reports Server (NTRS)
Jaffe, L. D.
1977-01-01
Applications of aerospace technology to petroleum exploration are described. Attention is given to seismic reflection techniques, sea-floor mapping, remote geochemical sensing, improved drilling methods and down-hole acoustic concepts, such as down-hole seismic tomography. The seismic reflection techniques include monitoring of swept-frequency explosive or solid-propellant seismic sources, as well as aerial seismic surveys. Telemetry and processing of seismic data may also be performed through use of aerospace technology. Sea-floor sonor imaging and a computer-aided system of geologic analogies for petroleum exploration are also considered.
Updates to FuncLab, a Matlab based GUI for handling receiver functions
NASA Astrophysics Data System (ADS)
Porritt, Robert W.; Miller, Meghan S.
2018-02-01
Receiver functions are a versatile tool commonly used in seismic imaging. Depending on how they are processed, they can be used to image discontinuity structure within the crust or mantle or they can be inverted for seismic velocity either directly or jointly with complementary datasets. However, modern studies generally require large datasets which can be challenging to handle; therefore, FuncLab was originally written as an interactive Matlab GUI to assist in handling these large datasets. This software uses a project database to allow interactive trace editing, data visualization, H-κ stacking for crustal thickness and Vp/Vs ratio, and common conversion point stacking while minimizing computational costs. Since its initial release, significant advances have been made in the implementation of web services and changes in the underlying Matlab platform have necessitated a significant revision to the software. Here, we present revisions to the software, including new features such as data downloading via irisFetch.m, receiver function calculations via processRFmatlab, on-the-fly cross-section tools, interface picking, and more. In the descriptions of the tools, we present its application to a test dataset in Michigan, Wisconsin, and neighboring areas following the passage of USArray Transportable Array. The software is made available online at https://robporritt.wordpress.com/software.
Highly-optimized TWSM software package for seismic diffraction modeling adapted for GPU-cluster
NASA Astrophysics Data System (ADS)
Zyatkov, Nikolay; Ayzenberg, Alena; Aizenberg, Arkady
2015-04-01
Oil producing companies concern to increase resolution capability of seismic data for complex oil-and-gas bearing deposits connected with salt domes, basalt traps, reefs, lenses, etc. Known methods of seismic wave theory define shape of hydrocarbon accumulation with nonsufficient resolution, since they do not account for multiple diffractions explicitly. We elaborate alternative seismic wave theory in terms of operators of propagation in layers and reflection-transmission at curved interfaces. Approximation of this theory is realized in the seismic frequency range as the Tip-Wave Superposition Method (TWSM). TWSM based on the operator theory allows to evaluate of wavefield in bounded domains/layers with geometrical shadow zones (in nature it can be: salt domes, basalt traps, reefs, lenses, etc.) accounting for so-called cascade diffraction. Cascade diffraction includes edge waves from sharp edges, creeping waves near concave parts of interfaces, waves of the whispering galleries near convex parts of interfaces, etc. The basic algorithm of TWSM package is based on multiplication of large-size matrices (make hundreds of terabytes in size). We use advanced information technologies for effective realization of numerical procedures of the TWSM. In particular, we actively use NVIDIA CUDA technology and GPU accelerators allowing to significantly improve the performance of the TWSM software package, that is important in using it for direct and inverse problems. The accuracy, stability and efficiency of the algorithm are justified by numerical examples with curved interfaces. TWSM package and its separate components can be used in different modeling tasks such as planning of acquisition systems, physical interpretation of laboratory modeling, modeling of individual waves of different types and in some inverse tasks such as imaging in case of laterally inhomogeneous overburden, AVO inversion.
Interferometric imaging of crustal structure from wide-angle multicomponent OBS-airgun data
NASA Astrophysics Data System (ADS)
Shiraishi, K.; Fujie, G.; Sato, T.; Abe, S.; Asakawa, E.; Kodaira, S.
2015-12-01
In wide-angle seismic surveys with ocean bottom seismograph (OBS) and airgun, surface-related multiple reflections and upgoing P-to-S conversions are frequently observed. We applied two interferometric imaging methods to the multicomponent OBS data in order to highly utilize seismic signals for subsurface imaging.First, seismic interferometry (SI) is applied to vertical component in order to obtain reflection profile with multiple reflections. By correlating seismic traces on common receiver records, pseudo seismic data are generated with virtual sources and receivers located on all original shot positions. We adopt the deconvolution SI because source and receiver spectra can be canceled by spectral division. Consequently, gapless reflection images from just below the seafloor to the deeper are obtained.Second, receiver function (RF) imaging is applied to multicomponent OBS data in order to image P-to-S conversion boundary. Though RF is commonly applied to teleseismic data, our purpose is to extract upgoing PS converted waves from wide-angle OBS data. The RF traces are synthesized by deconvolution of radial and vertical components at same OBS location for each shot. Final section obtained by stacking RF traces shows the PS conversion boundaries beneath OBSs. Then, Vp/Vs ratio can be estimated by comparing one-way traveltime delay with two-way traveltime of P wave reflections.We applied these methods to field data sets; (a) 175 km survey in Nankai trough subduction zone using 71 OBSs with from 1 km to 10 km intervals and 878 shots with 200 m interval, and (b) 237 km survey in northwest pacific ocean with almost flat layers before subduction using 25 OBSs with 6km interval and 1188 shots with 200 m interval. In our study, SI imaging with multiple reflections is highly applicable to OBS data even in a complex geological setting, and PS conversion boundary is well imaged by RF imaging and Vp/Vs ratio distribution in sediment is estimated in case of simple structure.
Revealing small-scale diffracting discontinuities by an optimization inversion algorithm
NASA Astrophysics Data System (ADS)
Yu, Caixia; Zhao, Jingtao; Wang, Yanfei
2017-02-01
Small-scale diffracting geologic discontinuities play a significant role in studying carbonate reservoirs. The seismic responses of them are coded in diffracted/scattered waves. However, compared with reflections, the energy of these valuable diffractions is generally one or even two orders of magnitude weaker. This means that the information of diffractions is strongly masked by reflections in the seismic images. Detecting the small-scale cavities and tiny faults from the deep carbonate reservoirs, mainly over 6 km, poses an even bigger challenge to seismic diffractions, as the signals of seismic surveyed data are weak and have a low signal-to-noise ratio (SNR). After analyzing the mechanism of the Kirchhoff migration method, the residual of prestack diffractions located in the neighborhood of the first Fresnel aperture is found to remain in the image space. Therefore, a strategy for extracting diffractions in the image space is proposed and a regularized L 2-norm model with a smooth constraint to the local slopes is suggested for predicting reflections. According to the focusing conditions of residual diffractions in the image space, two approaches are provided for extracting diffractions. Diffraction extraction can be directly accomplished by subtracting the predicted reflections from seismic imaging data if the residual diffractions are focused. Otherwise, a diffraction velocity analysis will be performed for refocusing residual diffractions. Two synthetic examples and one field application demonstrate the feasibility and efficiency of the two proposed methods in detecting the small-scale geologic scatterers, tiny faults and cavities.
Integrated Reflection Seismic Monitoring and Reservoir Modeling for Geologic CO2 Sequestration
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Rogers
The US DOE/NETL CCS MVA program funded a project with Fusion Petroleum Technologies Inc. (now SIGMA) to model the proof of concept of using sparse seismic data in the monitoring of CO{sub 2} injected into saline aquifers. The goal of the project was to develop and demonstrate an active source reflection seismic imaging strategy based on deployment of spatially sparse surface seismic arrays. The primary objective was to test the feasibility of sparse seismic array systems to monitor the CO{sub 2} plume migration injected into deep saline aquifers. The USDOE/RMOTC Teapot Dome (Wyoming) 3D seismic and reservoir data targeting themore » Crow Mountain formation was used as a realistic proxy to evaluate the feasibility of the proposed methodology. Though the RMOTC field has been well studied, the Crow Mountain as a saline aquifer has not been studied previously as a CO{sub 2} sequestration (storage) candidate reservoir. A full reprocessing of the seismic data from field tapes that included prestack time migration (PSTM) followed by prestack depth migration (PSDM) was performed. A baseline reservoir model was generated from the new imaging results that characterized the faults and horizon surfaces of the Crow Mountain reservoir. The 3D interpretation was integrated with the petrophysical data from available wells and incorporated into a geocellular model. The reservoir structure used in the geocellular model was developed using advanced inversion technologies including Fusion's ThinMAN{trademark} broadband spectral inversion. Seal failure risk was assessed using Fusion's proprietary GEOPRESS{trademark} pore pressure and fracture pressure prediction technology. CO{sub 2} injection was simulated into the Crow Mountain with a commercial reservoir simulator. Approximately 1.2MM tons of CO{sub 2} was simulated to be injected into the Crow Mountain reservoir over 30 years and subsequently let 'soak' in the reservoir for 970 years. The relatively small plume developed from this injection was observed migrating due to gravity to the apexes of the double anticline in the Crow Mountain reservoir of the Teapot dome. Four models were generated from the reservoir simulation task of the project which included three saturation models representing snapshots at different times during and after simulated CO{sub 2} injection and a fully saturated CO{sub 2} fluid substitution model. The saturation models were used along with a Gassmann fluid substitution model for CO{sub 2} to perform fluid volumetric substitution in the Crow Mountain formation. The fluid substitution resulted in a velocity and density model for the 3D volume at each saturation condition that was used to generate a synthetic seismic survey. FPTI's (Fusion Petroleum Technologies Inc.) proprietary SeisModelPRO{trademark} full acoustic wave equation software was used to simulate acquisition of a 3D seismic survey on the four models over a subset of the field area. The simulated acquisition area included the injection wells and the majority of the simulated plume area.« less
Advances in Global Full Waveform Inversion
NASA Astrophysics Data System (ADS)
Tromp, J.; Bozdag, E.; Lei, W.; Ruan, Y.; Lefebvre, M. P.; Modrak, R. T.; Orsvuran, R.; Smith, J. A.; Komatitsch, D.; Peter, D. B.
2017-12-01
Information about Earth's interior comes from seismograms recorded at its surface. Seismic imaging based on spectral-element and adjoint methods has enabled assimilation of this information for the construction of 3D (an)elastic Earth models. These methods account for the physics of wave excitation and propagation by numerically solving the equations of motion, and require the execution of complex computational procedures that challenge the most advanced high-performance computing systems. Current research is petascale; future research will require exascale capabilities. The inverse problem consists of reconstructing the characteristics of the medium from -often noisy- observations. A nonlinear functional is minimized, which involves both the misfit to the measurements and a Tikhonov-type regularization term to tackle inherent ill-posedness. Achieving scalability for the inversion process on tens of thousands of multicore processors is a task that offers many research challenges. We initiated global "adjoint tomography" using 253 earthquakes and produced the first-generation model named GLAD-M15, with a transversely isotropic model parameterization. We are currently running iterations for a second-generation anisotropic model based on the same 253 events. In parallel, we continue iterations for a transversely isotropic model with a larger dataset of 1,040 events to determine higher-resolution plume and slab images. A significant part of our research has focused on eliminating I/O bottlenecks in the adjoint tomography workflow. This has led to the development of a new Adaptable Seismic Data Format based on HDF5, and post-processing tools based on the ADIOS library developed by Oak Ridge National Laboratory. We use the Ensemble Toolkit for workflow stabilization & management to automate the workflow with minimal human interaction.
2-D traveltime and waveform inversion for improved seismic imaging: Naga Thrust and Fold Belt, India
NASA Astrophysics Data System (ADS)
Jaiswal, Priyank; Zelt, Colin A.; Bally, Albert W.; Dasgupta, Rahul
2008-05-01
Exploration along the Naga Thrust and Fold Belt in the Assam province of Northeast India encounters geological as well as logistic challenges. Drilling for hydrocarbons, traditionally guided by surface manifestations of the Naga thrust fault, faces additional challenges in the northeast where the thrust fault gradually deepens leaving subtle surface expressions. In such an area, multichannel 2-D seismic data were collected along a line perpendicular to the trend of the thrust belt. The data have a moderate signal-to-noise ratio and suffer from ground roll and other acquisition-related noise. In addition to data quality, the complex geology of the thrust belt limits the ability of conventional seismic processing to yield a reliable velocity model which in turn leads to poor subsurface image. In this paper, we demonstrate the application of traveltime and waveform inversion as supplements to conventional seismic imaging and interpretation processes. Both traveltime and waveform inversion utilize the first arrivals that are typically discarded during conventional seismic processing. As a first step, a smooth velocity model with long wavelength characteristics of the subsurface is estimated through inversion of the first-arrival traveltimes. This velocity model is then used to obtain a Kirchhoff pre-stack depth-migrated image which in turn is used for the interpretation of the fault. Waveform inversion is applied to the central part of the seismic line to a depth of ~1 km where the quality of the migrated image is poor. Waveform inversion is performed in the frequency domain over a series of iterations, proceeding from low to high frequency (11-19 Hz) using the velocity model from traveltime inversion as the starting model. In the end, the pre-stack depth-migrated image and the waveform inversion model are jointly interpreted. This study demonstrates that a combination of traveltime and waveform inversion with Kirchhoff pre-stack depth migration is a promising approach for the interpretation of geological structures in a thrust belt.
New insights into the North Taranaki Basin from New Zealand's first broadband 3D survey
NASA Astrophysics Data System (ADS)
Uzcategui, Marjosbet; Francis, Malcolm; Kong, Wai Tin Vincent; Patenall, Richard; Fell, Dominic; Paxton, Andrea; Allen, Tristan
2016-06-01
The Taranaki Basin is the only hydrocarbon producing basin in New Zealand. The North Taranaki Basin has widespread two-dimensional (2D) seismic coverage and numerous wells that have not encountered commercial accumulations. This is attributed to the structural complexity in the central graben and the absence of necessary information to help understand the basin's evolution. An active petroleum system has been confirmed by hydrocarbon shows and non-commercial oil and gas discoveries (Karewa-1 and Kora-1). A broadband long offset three-dimensional (3D) seismic survey was acquired and processed by Schlumberger in 2013 to evaluate the hydrocarbon potential of the North Taranaki Basin. Innovative acquisition techniques were combined with advanced processing and imaging methods. Raypath distortions and depth uncertainty were significantly reduced by processing through tilted transverse isotropy (TTI) anisotropic Kirchhoff prestack depth migration with a geologically constrained velocity model. The survey provided the necessary information to understand the petroleum system and provide evidence for material hydrocarbon accumulations. In this investigation, we assessed the hydrocarbon potential of the North Taranaki Basin using the newly acquired data. 3D seismic interpretation and amplitude-versus-offset (AVO) analysis support the renewed potential of the basin and demonstrate effectiveness of these technologies that together can achieve encouraging results for hydrocarbon exploration.
Seismic dynamics in advance and after the recent strong earthquakes in Italy and New Zealand
NASA Astrophysics Data System (ADS)
Nekrasova, A.; Kossobokov, V. G.
2017-12-01
We consider seismic events as a sequence of avalanches in self-organized system of blocks-and-faults of the Earth lithosphere and characterize earthquake series with the distribution of the control parameter, η = τ × 10B × (5-M) × L C of the Unified Scaling Law for Earthquakes, USLE (where τ is inter-event time, B is analogous to the Gutenberg-Richter b-value, and C is fractal dimension of seismic locus). A systematic analysis of earthquake series in Central Italy and New Zealand, 1993-2017, suggests the existence, in a long-term, of different rather steady levels of seismic activity characterized with near constant values of η, which, in mid-term, intermittently switch at times of transitions associated with the strong catastrophic events. On such a transition, seismic activity, in short-term, may follow different scenarios with inter-event time scaling of different kind, including constant, logarithmic, power law, exponential rise/decay or a mixture of those. The results do not support the presence of universality in seismic energy release. The observed variability of seismic activity in advance and after strong (M6.0+) earthquakes in Italy and significant (M7.0+) earthquakes in New Zealand provides important constraints on modelling realistic earthquake sequences by geophysicists and can be used to improve local seismic hazard assessments including earthquake forecast/prediction methodologies. The transitions of seismic regime in Central Italy and New Zealand started in 2016 are still in progress and require special attention and geotechnical monitoring. It would be premature to make any kind of definitive conclusions on the level of seismic hazard which is evidently high at this particular moment of time in both regions. The study supported by the Russian Science Foundation Grant No.16-17-00093.
Reflection seismic imaging in the volcanic area of the geothermal field Wayang Windu, Indonesia
NASA Astrophysics Data System (ADS)
Polom, Ulrich; Wiyono, Wiyono; Pramono, Bambang; Krawczyk, CharLotte M.
2014-05-01
Reflection seismic exploration in volcanic areas is still a scientific challenge and requires major efforts to develop imaging workflows capable of an economic utilization, e.g., for geothermal exploration. The SESaR (Seismic Exploration and Safety Risk study for decentral geothermal plants in Indonesia) project therefore tackles still not well resolved issues concerning wave propagation or energy absorption in areas covered by pyroclastic sediments using both active P-wave and S-wave seismics. Site-specific exploration procedures were tested in different tectonic and lithological regimes to compare imaging conditions. Based on the results of a small-scale, active seismic pre-site survey in the area of the Wayang Windu geothermal field in November 2012, an additional medium-scale active seismic experiment using P-waves was carried out in August 2013. The latter experiment was designed to investigate local changes of seismic subsurface response, to expand the knowledge about capabilities of the vibroseis method for seismic surveying in regions covered by pyroclastic material, and to achieve higher depth penetration. Thus, for the first time in the Wayang Windu geothermal area, a powerful, hydraulically driven seismic mini-vibrator device of 27 kN peak force (LIAG's mini-vibrator MHV2.7) was used as seismic source instead of the weaker hammer blow applied in former field surveys. Aiming at acquiring parameter test and production data southeast of the Wayang Windu geothermal power plant, a 48-channel GEODE recording instrument of the Badan Geologi was used in a high-resolution configuration, with receiver group intervals of 5 m and source intervals of 10 m. Thereby, the LIAG field crew, Star Energy, GFZ Potsdam, and ITB Bandung acquired a nearly 600 m long profile. In general, we observe the successful applicability of the vibroseis method for such a difficult seismic acquisition environment. Taking into account the local conditions at Wayang Windu, the method is superior to the common seismic explosive source techniques, both with respect to production rate as well as resolution and data quality. Source signal frequencies of 20-80 Hz are most efficient for the attempted depth penetration, even though influenced by the dry subsurface conditions during the experiment. Depth penetration ranges between 0.5-1 km. Based on these new experimental data, processing workflows can be tested the first time for adapted imaging strategies. This will not only allow to focus on larger exploration depths covering the geothermal reservoir at the Wayang Windu power plant site itself, but also opens the possibility to transfer the lessons learned to other sites.
Widespread Mega-Pockmarks Imaged Along the Western Edge of the Cocos Ridge
NASA Astrophysics Data System (ADS)
Gibson, J. C.; Kluesner, J. W.; Silver, E. A.; Bangs, N. L.; McIntosh, K. D.
2012-12-01
A large field (245km2) of 31 seabed mega-pockmarks was imaged between the Cocos ridge and the Quepos plateau on ~16.5 Ma oceanic crust generated at the Cocos-Nazca spreading center. The imaged pockmarks represent only a fraction of the much larger pockmark field evident in 100 m grid cell bathymetry data secured from MGDS. The pockmarks are clustered around 1800-2100 mbsl and were mapped using EM122 multibeam sonar, a 3.5 kHz sub-bottom profiler, and 3D Multi-Channel Seismic (MCS) aboard R/V Marcus G. Langseth during the CRISP seismic survey (2011). Using a constrained swath width of 1.4 km, the increased sounding density facilitated bathymetry/backscatter to be gridded at 10m and 8m respectively. The diameter of the pockmarks varies from ~1 km to ~2 km with a relief range of ~30-80 m, and average slopes of 15°. The MCS data also reveal older buried pockmarks in trench adjacent sediments. Small high-backscatter mounds occur within a subset of the pockmarks, which may indicate bioherms or carbonate banks above focused fluid flow conduits. Based on drilling results of DSDP Site 158 and ODP Site 1381, the pockmarks appear to be the result of paleo-differential advancement of a silica diagenetic front (opal-A to opal-CT). Although, the pockmarks may be erosional features sourced at depth from dewatering of sediments inter-bedded with igneous layers.
Fast principal component analysis for stacking seismic data
NASA Astrophysics Data System (ADS)
Wu, Juan; Bai, Min
2018-04-01
Stacking seismic data plays an indispensable role in many steps of the seismic data processing and imaging workflow. Optimal stacking of seismic data can help mitigate seismic noise and enhance the principal components to a great extent. Traditional average-based seismic stacking methods cannot obtain optimal performance when the ambient noise is extremely strong. We propose a principal component analysis (PCA) algorithm for stacking seismic data without being sensitive to noise level. Considering the computational bottleneck of the classic PCA algorithm in processing massive seismic data, we propose an efficient PCA algorithm to make the proposed method readily applicable for industrial applications. Two numerically designed examples and one real seismic data are used to demonstrate the performance of the presented method.
NASA Astrophysics Data System (ADS)
Poggi, V.; Burjanek, J.; Michel, C.; Fäh, D.
2017-08-01
The Swiss Seismological Service (SED) has recently finalised the installation of ten new seismological broadband stations in northern Switzerland. The project was led in cooperation with the National Cooperative for the Disposal of Radioactive Waste (Nagra) and Swissnuclear to monitor micro seismicity at potential locations of nuclear-waste repositories. To further improve the quality and usability of the seismic recordings, an extensive characterization of the sites surrounding the installation area was performed following a standardised investigation protocol. State-of-the-art geophysical techniques have been used, including advanced active and passive seismic methods. The results of all analyses converged to the definition of a set of best-representative 1-D velocity profiles for each site, which are the input for the computation of engineering soil proxies (traveltime averaged velocity and quarter-wavelength parameters) and numerical amplification models. Computed site response is then validated through comparison with empirical site amplification, which is currently available for any station connected to the Swiss seismic networks. With the goal of a high-sensitivity network, most of the NAGRA stations have been installed on stiff-soil sites of rather high seismic velocity. Seismic characterization of such sites has always been considered challenging, due to lack of relevant velocity contrast and the large wavelengths required to investigate the frequency range of engineering interest. We describe how ambient vibration techniques can successfully be applied in these particular conditions, providing practical recommendations for best practice in seismic site characterization of high-velocity sites.
Design and prototype tests of a seismic attenuation system for the advanced-LIGO output mode cleaner
NASA Astrophysics Data System (ADS)
Bertolini, A.; DeSalvo, R.; Galli, C.; Gennaro, G.; Mantovani, M.; Márka, S.; Sannibale, V.; Takamori, A.; Torrie, C.
2006-04-01
Both present LIGO and advanced LIGO (Ad-LIGO) will need an output mode cleaner (OMC) to reach the desired sensitivity. We designed a suitable OMC seismically attenuated optical table fitting to the existing vacuum chambers (horizontal access module, HAM chambers). The most straightforward and cost-effective solution satisfying the Ad-LIGO seismic attenuation specifications was to implement a single passive seismic attenuation stage, derived from the 'seismic attenuation system' (SAS) concept. We built and tested prototypes of all critical components. On the basis of these tests and past experience, we expect that the passive attenuation performance of this new design, called HAM-SAS, will match all requirements for the LIGO OMC, and all Ad-LIGO optical tables. Its performance can be improved, if necessary, by implementation of a simple active attenuation loop at marginal additional cost. The design can be easily modified to equip the LIGO basic symmetric chamber (BSC) chambers and leaves space for extensive performance upgrades for future evolutions of Ad-LIGO. Design parameters and prototype test results are presented.
NASA Astrophysics Data System (ADS)
Fucugauchi, J. U.; Ortiz-Aleman, C.; Martin, R.
2017-12-01
Large complex craters are characterized by central uplifts that represent large-scale differential movement of deep basement from the transient cavity. Here we investigate the central sector of the large multiring Chicxulub crater, which has been surveyed by an array of marine, aerial and land-borne geophysical methods. Despite high contrasts in physical properties,contrasting results for the central uplift have been obtained, with seismic reflection surveys showing lack of resolution in the central zone. We develop an integrated seismic and gravity model for the main structural elements, imaging the central basement uplift and melt and breccia units. The 3-D velocity model built from interpolation of seismic data is validated using perfectly matched layer seismic acoustic wave propagation modeling, optimized at grazing incidence using shift in the frequency domain. Modeling shows significant lack of illumination in the central sector, masking presence of the central uplift. Seismic energy remains trapped in an upper low velocity zone corresponding to the sedimentary infill, melt/breccias and surrounding faulted blocks. After conversion of seismic velocities into a volume of density values, we use massive parallel forward gravity modeling to constrain the size and shape of the central uplift that lies at 4.5 km depth, providing a high-resolution image of crater structure.The Bouguer anomaly and gravity response of modeled units show asymmetries, corresponding to the crater structure and distribution of post-impact carbonates, breccias, melt and target sediments
Maercklin, N.; Bedrosian, P.A.; Haberland, C.; Ritter, O.; Ryberg, T.; Weber, M.; Weckmann, U.
2005-01-01
Seismic tomography, imaging of seismic scatterers, and magnetotelluric soundings reveal a sharp lithologic contrast along a ???10 km long segment of the Arava Fault (AF), a prominent fault of the southern Dead Sea Transform (DST) in the Middle East. Low seismic velocities and resistivities occur on its western side and higher values east of it, and the boundary between the two units coincides partly with a seismic scattering image. At 1-4 km depth the boundary is offset to the east of the AF surface trace, suggesting that at least two fault strands exist, and that slip occurred on multiple strands throughout the margin's history. A westward fault jump, possibly associated with straightening of a fault bend, explains both our observations and the narrow fault zone observed by others. Copyright 2005 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Swidinsky, Andrei
Gas hydrates are a solid, ice-like mixture of water and low molecular weight hydrocarbons. They are found under the permafrost and to a far greater extent under the ocean, usually at water depths greater than 300m. Hydrates are a potential energy resource, a possible factor in climate change, and a geohazard. For these reasons, it is critical that gas hydrate deposits are quantitatively assessed so that their concentrations, locations and distributions may be established. Due to their ice-like nature, hydrates are electrically insulating. Consequently, a method which remotely detects changes in seafloor electrical conductivity, such as marine controlled source electromagnetics (CSEM), is a useful geophysical tool for marine gas hydrate exploration. Hydrates are geometrically complex structures. Advanced electromagnetic modelling and imaging techniques are crucial for proper survey design and data interpretation. I develop a method to model thin resistive structures in conductive host media which may be useful in building approximate geological models of gas hydrate deposits using arrangements of multiple, bent sheets. I also investigate the possibility of interpreting diffusive electromagnetic data using seismic imaging techniques. To be processed in this way, such data must first be transformed into its non-diffusive, seismic-like counterpart. I examine such a transform from both an analytical and a numerical point of view, focusing on methods to overcome inherent numerical instabilities. This is the first step to applying seismic processing techniques to CSEM data to rapidly and efficiently image resistive gas hydrate structures. The University of Toronto marine electromagnetics group has deployed a permanent marine CSEM array offshore Vancouver Island, in the framework of the NEPTUNE Canada cabled observatory, for the purposes of monitoring gas hydrate deposits. In this thesis I also propose and examine a new CSEM survey technique for gas hydrate which would make use of the stationary seafloor transmitter already on the seafloor, along with a cabled receiver array, towed from a ship. I furthermore develop a modelling algorithm to examine the electromagnetic effects of conductive borehole casings which have been proposed to be placed in the vicinity of this permanent marine CSEM array, and make preliminary recommendations about their locations.
Listening to data from the 2011 magnitude 9.0 Tohoku-Oki, Japan, earthquake
NASA Astrophysics Data System (ADS)
Peng, Z.; Aiken, C.; Kilb, D. L.; Shelly, D. R.; Enescu, B.
2011-12-01
It is important for seismologists to effectively convey information about catastrophic earthquakes, such as the magnitude 9.0 earthquake in Tohoku-Oki, Japan, to general audience who may not necessarily be well-versed in the language of earthquake seismology. Given recent technological advances, previous approaches of using "snapshot" static images to represent earthquake data is now becoming obsolete, and the favored venue to explain complex wave propagation inside the solid earth and interactions among earthquakes is now visualizations that include auditory information. Here, we convert seismic data into visualizations that include sounds, the latter being a term known as 'audification', or continuous 'sonification'. By combining seismic auditory and visual information, static "snapshots" of earthquake data come to life, allowing pitch and amplitude changes to be heard in sync with viewed frequency changes in the seismograms and associated spectragrams. In addition, these visual and auditory media allow the viewer to relate earthquake generated seismic signals to familiar sounds such as thunder, popcorn popping, rattlesnakes, firecrackers, etc. We present a free software package that uses simple MATLAB tools and Apple Inc's QuickTime Pro to automatically convert seismic data into auditory movies. We focus on examples of seismic data from the 2011 Tohoku-Oki earthquake. These examples range from near-field strong motion recordings that demonstrate the complex source process of the mainshock and early aftershocks, to far-field broadband recordings that capture remotely triggered deep tremor and shallow earthquakes. We envision audification of seismic data, which is geared toward a broad range of audiences, will be increasingly used to convey information about notable earthquakes and research frontiers in earthquake seismology (tremor, dynamic triggering, etc). Our overarching goal is that sharing our new visualization tool will foster an interest in seismology, not just for young scientists but also for people of all ages.
NASA Astrophysics Data System (ADS)
Tsinganos, Kanaris; Karastathis, Vassilios K.; Kafatos, Menas; Ouzounov, Dimitar; Tselentis, Gerassimos; Papadopoulos, Gerassimos A.; Voulgaris, Nikolaos; Eleftheriou, Georgios; Mouzakiotis, Evangellos; Liakopoulos, Spyridon; Aspiotis, Theodoros; Gika, Fevronia; E Psiloglou, Basil
2017-04-01
We are presenting the first results of developing a new integrated observational site in Greece to study pre-earthquake processes in Peloponnese, lead by the National Observatory of Athens. We have developed a prototype of multiparameter network approach using an integrated system aimed at monitoring and thorough studies of pre-earthquake processes at the high seismicity area of the Western Hellenic Arc (SW Peloponnese, Greece). The initial prototype of the new observational systems consists of: (1) continuous real-time monitoring of Radon accumulation in the ground through a network of radon sensors, consisting of three gamma radiation detectors [NaI(Tl) scintillators], (2) nine-station seismic array installed to detect and locate events of low magnitude (less than 1.0 R) in the offshore area of the Hellenic arc, (3) real-time weather monitoring systems (air temperature, relative humidity, precipitation, pressure) and (4) satellite thermal radiation from AVHRR/NOAA-18 polar orbit sensing. The first few moths of operations revealed a number of pre-seismic radon variation anomalies before several earthquakes (M>3.6). The radon increases systematically before the larger events. For example a radon anomaly was predominant before the event of Sep 28, M 5.0 (36.73°N, 21.87°E), 18 km ESE of Methoni. The seismic array assists in the evaluation of current seismicity and may yield identification of foreshock activity. Thermal anomalies in satellite images are also examined as an additional tool for evaluation and verification of the Radon increase. According to the Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) concept, atmospheric thermal anomalies observed before large seismic events are associated with the increase of Radon concentration on the ground. Details about the integrating ground and space observations, overall performance of the observational sites, future plans in advancing the cooperation in observations will be discussed.
Seismic Characterization of Silica Diagenesis in the Northwestern Pacific
NASA Astrophysics Data System (ADS)
Greene, J. A.; Lizarralde, D.; Tominaga, M.; Tivey, M.
2017-12-01
We use seismic reflection data to investigate the silica diagenesis that converted siliceous ooze into the widespread chert/porcellanite layer in the northwestern Pacific. In particular, we investigate whether this process is currently ongoing in the oldest lithosphere of the Pacific. We present images of seismic reflection data collected during the R/V Thomas G. Thompson cruise TN272 and processed using a velocity model constructed from concurrently collected sonobuoy refraction data, applying a normal moveout correction and stack, post-stack Kirchhoff time migration, and predictive gap deconvolution. We compare our seismic observations of the chert/porcellanite layer with nearby drill holes and analogous studies of silica diagenesis around the world. In the processed seismic data, we identify a previously unobserved short-wavelength depth variation to a prominent reflector representing the top of the chert/porcellanite layer, with a vertical change in this horizon of 20 m. This short-wavelength character is in contrast to the flat, seafloor parallel character more typical of the regional chert/porcellanite reflector and may be indicative of the active transformation of siliceous ooze to chert/porcellanite. Drill results in the northwestern Pacific document little to no siliceous ooze above the chert/porcellanite layer; however, they have extremely low recovery rates that could have failed to sample this sediment. No folding or reflector offsets indicative of faulting are observed above or below the short-wave character of the chert/porcellanite reflector, suggesting a structural origin is unlikely, nor are the surrounding reflectors disturbed, as would be expected if these features were caused by fluid expulsion. Instead, the short-wavelength depth variation in the chert/porcellanite layer may be the result of differential advancement of the silica diagenetic front where the siliceous ooze to chert/porcellanite reaction locally occurs in shallower sediments, as has been seismically observed in settings around the world. This could indicate that silica diagenesis is currently ongoing in the northwestern Pacific, and that siliceous ooze remains present in the overlying sediment for conversion to chert/porcellanite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burnison, Shaughn; Livers-Douglas, Amanda; Barajas-Olalde, Cesar
The scalable, automated, semipermanent seismic array (SASSA) project led and managed by the Energy & Environmental Research Center (EERC) was designed as a 3-year proof-of-concept study to evaluate and demonstrate an innovative application of the seismic method. The concept was to use a sparse surface array of 96 nodal seismic sensors paired with a single, remotely operated active seismic source at a fixed location to monitor for CO 2 saturation changes in a subsurface reservoir by processing the data for time-lapse changes at individual, strategically chosen reservoir reflection points. The combination of autonomous equipment and modern processing algorithms was usedmore » to apply the seismic method in a manner different from the normal paradigm of collecting a spatially dense data set to produce an image. It was used instead to monitor individual, strategically chosen reservoir reflection points for detectable signal character changes that could be attributed to the passing of a CO 2 saturation front or, possibly, changes in reservoir pressure. Data collection occurred over the course of 1 year at an oil field undergoing CO 2 injection for enhanced oil recovery (EOR) and focused on four overlapping “five-spot” EOR injector–producer patterns. Selection, procurement, configuration, installation, and testing of project equipment and collection of five baseline data sets were completed in advance of CO 2 injection within the study area. Weekly remote data collection produced 41 incremental time-lapse records for each of the 96 nodes. Validation was provided by two methods: 1) a conventional 2-D seismic line acquired through the center of the study area before injection started and again after the project ended and processed in a time-lapse manner and 2) by CO 2 saturation maps created from reservoir simulations based on injection and production history matching. Interpreted results were encouraging but mixed, with indications of changes likely due to the presence of CO 2 on some node reflection points where and when effects would be expected and noneffects where no CO 2 was expected, while results at some locations where simulation outputs suggested CO 2 should be present were ambiguous. Acquisition noise impacted interpretation of data at several locations. Many lessons learned were generated by the study to inform and improve results on a follow-up study. The ultimate aim of the project was to evaluate whether deployment of a SASSA technology can provide a useful and cost-effective monitoring solution for future CO 2 injection projects. The answer appears to be affirmative, with the expectation that lessons learned applied to future iterations, together with technology advances, will likely result in significant improvements.« less
NASA Astrophysics Data System (ADS)
Zhang, H.; Schmandt, B.
2017-12-01
The mantle transition zone has been widely studied by multiple sub-fields in geosciences including seismology, mineral physics and geodynamics. Due to the relatively high water storage capacity of olivine polymorphs (wadsleyite and ringwoodite) inside the transition zone, it is proposed to be a potential geochemical water reservoir that may contain one or more ocean masses of water. However, there is an ongoing debate about the hydration level of those minerals and how it varies from place to place. Considering that dehydration melting, which may happen during mantle flow across phase transitions between hydrated olivine polymorphs, may be seismically detectable, large-scale seismic imaging of heterogeneous scattering in the transition zone can contribute to the debate. To improve our understanding of the properties of the mantle transition zone and how they relate to mantle flow across its boundaries, it is important to gain an accurate image with large spatial coverage. The accuracy is primarily limited by the density of broadband seismic data and the imaging algorithms applied to the data, while the spatial coverage is limited by the availability of wide-aperture (>500 km) seismic arrays. Thus, the emergence of the USArray seismic data set (www.usarray.org) provides a nearly ideal data source for receiver side imaging of the mantle transition zone due to its large aperture ( 4000 km) with relatively small station spacing ( 70 km), which ensures that the transition zone beneath it is well sampled by teleseismic waves. In total, more than 200,000 P to S receiver functions will be used for imaging structures in depth range of 300 km to 800 km beneath the continental US with an improved 3D Kirchhoff pre-stacking migration method. The method uses 3-D wave fronts calculated for P and S tomography models to more accurately calculate point scattering coefficients and map receiver function lag times to 3-D position. The new images will help resolve any laterally sporadic or dipping interfaces that may be present at transition zone depths. The locations of sporadic velocity decreases will be compared with mantle flow models to evaluate the possibility of dehydration melting.
Broadband seismic : case study modeling and data processing
NASA Astrophysics Data System (ADS)
Cahyaningtyas, M. B.; Bahar, A.
2018-03-01
Seismic data with wide range of frequency is needed due to its close relation to resolution and the depth of the target. Low frequency provides deeper penetration for the imaging of deep target. In addition, the wider the frequency bandwidth, the sharper the wavelet. Sharp wavelet is responsible for high-resolution imaging and is very helpful to resolve thin bed. As a result, the demand for broadband seismic data is rising and it spurs the technology development of broadband seismic in oil and gas industry. An obstacle that is frequently found on marine seismic data is the existence of ghost that affects the frequency bandwidth contained on the seismic data. Ghost alters bandwidth to bandlimited. To reduce ghost effect and to acquire broadband seismic data, lots of attempts are used, both on the acquisition and on the processing of seismic data. One of the acquisition technique applied is the multi-level streamer, where some streamers are towed on some levels of depth. Multi-level streamer will yield data with varied ghost notch shown on frequency domain. If the ghost notches are not overlapping, the summation of multi-level streamer data will reduce the ghost effect. The result of the multi-level streamer data processing shows that reduction of ghost notch on frequency domain indeed takes place.
Pollitz, Fred; Mooney, Walter D.
2016-01-01
Seismic surface waves from the Transportable Array of EarthScope's USArray are used to estimate phase velocity structure of 18 to 125 s Rayleigh waves, then inverted to obtain three-dimensional crust and upper mantle structure of the Central and Eastern United States (CEUS) down to ∼200 km. The obtained lithosphere structure confirms previously imaged CEUS features, e.g., the low seismic-velocity signature of the Cambrian Reelfoot Rift and the very low velocity at >150 km depth below an Eocene volcanic center in northwestern Virginia. New features include high-velocity mantle stretching from the Archean Superior Craton well into the Proterozoic terranes and deep low-velocity zones in central Texas (associated with the late Cretaceous Travis and Uvalde volcanic fields) and beneath the South Georgia Rift (which contains Jurassic basalts). Hot spot tracks may be associated with several imaged low-velocity zones, particularly those close to the former rifted Laurentia margin.
Transdimensional Seismic Tomography
NASA Astrophysics Data System (ADS)
Bodin, T.; Sambridge, M.
2009-12-01
In seismic imaging the degree of model complexity is usually determined by manually tuning damping parameters within a fixed parameterization chosen in advance. Here we present an alternative methodology for seismic travel time tomography where the model complexity is controlled automatically by the data. In particular we use a variable parametrization consisting of Voronoi cells with mobile geometry, shape and number, all treated as unknowns in the inversion. The reversible jump algorithm is used to sample the transdimensional model space within a Bayesian framework which avoids global damping procedures and the need to tune regularisation parameters. The method is an ensemble inference approach, as many potential solutions are generated with variable numbers of cells. Information is extracted from the ensemble as a whole by performing Monte Carlo integration to produce the expected Earth model. The ensemble of models can also be used to produce velocity uncertainty estimates and experiments with synthetic data suggest they represent actual uncertainty surprisingly well. In a transdimensional approach, the level of data uncertainty directly determines the model complexity needed to satisfy the data. Intriguingly, the Bayesian formulation can be extended to the case where data uncertainty is also uncertain. Experiments show that it is possible to recover data noise estimate while at the same time controlling model complexity in an automated fashion. The method is tested on synthetic data in a 2-D application and compared with a more standard matrix based inversion scheme. The method has also been applied to real data obtained from cross correlation of ambient noise where little is known about the size of the errors associated with the travel times. As an example, a tomographic image of Rayleigh wave group velocity for the Australian continent is constructed for 5s data together with uncertainty estimates.
Quantifying uncertainties of seismic Bayesian inversion of Northern Great Plains
NASA Astrophysics Data System (ADS)
Gao, C.; Lekic, V.
2017-12-01
Elastic waves excited by earthquakes are the fundamental observations of the seismological studies. Seismologists measure information such as travel time, amplitude, and polarization to infer the properties of earthquake source, seismic wave propagation, and subsurface structure. Across numerous applications, seismic imaging has been able to take advantage of complimentary seismic observables to constrain profiles and lateral variations of Earth's elastic properties. Moreover, seismic imaging plays a unique role in multidisciplinary studies of geoscience by providing direct constraints on the unreachable interior of the Earth. Accurate quantification of uncertainties of inferences made from seismic observations is of paramount importance for interpreting seismic images and testing geological hypotheses. However, such quantification remains challenging and subjective due to the non-linearity and non-uniqueness of geophysical inverse problem. In this project, we apply a reverse jump Markov chain Monte Carlo (rjMcMC) algorithm for a transdimensional Bayesian inversion of continental lithosphere structure. Such inversion allows us to quantify the uncertainties of inversion results by inverting for an ensemble solution. It also yields an adaptive parameterization that enables simultaneous inversion of different elastic properties without imposing strong prior information on the relationship between them. We present retrieved profiles of shear velocity (Vs) and radial anisotropy in Northern Great Plains using measurements from USArray stations. We use both seismic surface wave dispersion and receiver function data due to their complementary constraints of lithosphere structure. Furthermore, we analyze the uncertainties of both individual and joint inversion of those two data types to quantify the benefit of doing joint inversion. As an application, we infer the variation of Moho depths and crustal layering across the northern Great Plains.
Enhanced Seismic Imaging of Turbidite Deposits in Chicontepec Basin, Mexico
NASA Astrophysics Data System (ADS)
Chavez-Perez, S.; Vargas-Meleza, L.
2007-05-01
We test, as postprocessing tools, a combination of migration deconvolution and geometric attributes to attack the complex problems of reflector resolution and detection in migrated seismic volumes. Migration deconvolution has been empirically shown to be an effective approach for enhancing the illumination of migrated images, which are blurred versions of the subsurface reflectivity distribution, by decreasing imaging artifacts, improving spatial resolution, and alleviating acquisition footprint problems. We utilize migration deconvolution as a means to improve the quality and resolution of 3D prestack time migrated results from Chicontepec basin, Mexico, a very relevant portion of the producing onshore sector of Pemex, the Mexican petroleum company. Seismic data covers the Agua Fria, Coapechaca, and Tajin fields. It exhibits acquisition footprint problems, migration artifacts and a severe lack of resolution in the target area, where turbidite deposits need to be characterized between major erosional surfaces. Vertical resolution is about 35 m and the main hydrocarbon plays are turbidite beds no more than 60 m thick. We also employ geometric attributes (e.g., coherent energy and curvature), computed after migration deconvolution, to detect and map out depositional features, and help design development wells in the area. Results of this workflow show imaging enhancement and allow us to identify meandering channels and individual sand bodies, previously undistinguishable in the original seismic migrated images.
Hear it, See it, Explore it: Visualizations and Sonifications of Seismic Signals
NASA Astrophysics Data System (ADS)
Fisher, M.; Peng, Z.; Simpson, D. W.; Kilb, D. L.
2010-12-01
Sonification of seismic data is an innovative way to represent seismic data in the audible range (Simpson, 2005). Seismic waves with different frequency and temporal characteristics, such as those from teleseismic earthquakes, deep “non-volcanic” tremor and local earthquakes, can be easily discriminated when time-compressed to the audio range. Hence, sonification is particularly useful for presenting complicated seismic signals with multiple sources, such as aftershocks within the coda of large earthquakes, and remote triggering of earthquakes and tremor by large teleseismic earthquakes. Previous studies mostly focused on converting the seismic data into audible files by simple time compression or frequency modulation (Simpson et al., 2009). Here we generate animations of the seismic data together with the sounds. We first read seismic data in the SAC format into Matlab, and generate a sequence of image files and an associated WAV sound file. Next, we use a third party video editor, such as the QuickTime Pro, to combine the image sequences and the sound file into an animation. We have applied this simple procedure to generate animations of remotely triggered earthquakes, tremor and low-frequency earthquakes in California, and mainshock-aftershock sequences in Japan and California. These animations clearly demonstrate the interactions of earthquake sequences and the richness of the seismic data. The tool developed in this study can be easily adapted for use in other research applications and to create sonification/animation of seismic data for education and outreach purpose.
Imaging the distribution of transient viscosity after the 2016 Mw 7.1 Kumamoto earthquake.
Moore, James D P; Yu, Hang; Tang, Chi-Hsien; Wang, Teng; Barbot, Sylvain; Peng, Dongju; Masuti, Sagar; Dauwels, Justin; Hsu, Ya-Ju; Lambert, Valère; Nanjundiah, Priyamvada; Wei, Shengji; Lindsey, Eric; Feng, Lujia; Shibazaki, Bunichiro
2017-04-14
The deformation of mantle and crustal rocks in response to stress plays a crucial role in the distribution of seismic and volcanic hazards, controlling tectonic processes ranging from continental drift to earthquake triggering. However, the spatial variation of these dynamic properties is poorly understood as they are difficult to measure. We exploited the large stress perturbation incurred by the 2016 earthquake sequence in Kumamoto, Japan, to directly image localized and distributed deformation. The earthquakes illuminated distinct regions of low effective viscosity in the lower crust, notably beneath the Mount Aso and Mount Kuju volcanoes, surrounded by larger-scale variations of viscosity across the back-arc. This study demonstrates a new potential for geodesy to directly probe rock rheology in situ across many spatial and temporal scales. Copyright © 2017, American Association for the Advancement of Science.
The North Tanzania Rift seen from multi geophysical tools: link between seismicity and resistivity
NASA Astrophysics Data System (ADS)
Gautier, S.; Plasman, M.; Tarits, P.; Hautot, S.; Tiberi, C.; Albaric, J.; Le Gall, B.; Deverchere, J.; Ebinger, C. J.; Roecker, S. W.; Ferdinand, R.; Muzuka, A.; Msabi, M.; Khalfan, M.; Gama, R.; Mulibo, G. D.
2016-12-01
The North Tanzania part of the East African Rift is the place of an incipient break up of the lithosphere. In this region, seismicity and volcanism seem strongly linked to the inherited structures, magmatic intrusion, and tectonic. Natron Lake is characterized by a shallow seismicity and present volcanic activity, whereas Manyara area is the location of a deeper seismicity and sparse volcanism. It is thus of prime interest to image the structure of this area to fully understand the role of each factor on the localisation of the current deformation at the surface. Since 2007 different multidisciplinary projects have taken place in this area to address this question. We present here a work based on a collaborative work between French, American and Tanzanian institutes that started in 2013. We have analysed more than a hundred teleseismic events and local seismicity to compute receiver function and local tomography. We combine this information with two MT profiles in order to image crustal and upper mantle structures. The resistivity deduced from the MT observations confirms the seismic results with a great difference within the crust and upper mantle between Natron and Manyara. The MT profiles evidence crustal structures such as major volcanic edifices, main tectonic units and interfaces. We discuss our combined images in terms of rift-craton interaction and magmatic intrusions.
NASA Astrophysics Data System (ADS)
Kim, W.; Kim, Y.; Min, D.; Oh, J.; Huh, C.; Kang, S.
2012-12-01
During last two decades, CO2 sequestration in the subsurface has been extensively studied and progressed as a direct tool to reduce CO2 emission. Commercial projects such as Sleipner, In Salah and Weyburn that inject more than one million tons of CO2 per year are operated actively as well as test projects such as Ketzin to study the behavior of CO2 and the monitoring techniques. Korea also began the CCS (CO2 capture and storage) project. One of the prospects for CO2 sequestration in Korea is the southwestern continental margin of Ulleung basin. To monitor the behavior of CO2 underground for the evaluation of stability and safety, several geophysical monitoring techniques should be applied. Among various geophysical monitoring techniques, seismic survey is considered as the most effective tool. To verify CO2 migration in the subsurface more effectively, seismic numerical simulation is an essential process. Furthermore, the efficiency of the seismic migration techniques should be investigated for various cases because numerical seismic simulation and migration test help us accurately interpret CO2 migration. In this study, we apply the reverse-time migration and Kirchhoff migration to synthetic seismic monitoring data generated for the simplified model based on the geological structures of Ulleung basin in Korea. Synthetic seismic monitoring data are generated for various cases of CO2 migration in the subsurface. From the seismic migration images, we can investigate CO2 diffusion patterns indirectly. From seismic monitoring simulation, it is noted that while the reverse-time migration generates clear subsurface images when subsurface structures are steeply dipping, Kirchhoff migration has an advantage in imaging horizontal-layered structures such as depositional sediments appearing in the continental shelf. The reverse-time migration and Kirchhoff migration present reliable subsurface images for the potential site characterized by stratigraphical traps. In case of vertical CO2 migration at injection point, the reverse time migration yields better images than Kirchhoff migration does. On the other hand, Kirchhoff migration images horizontal CO2 migration clearer than the reverse time migration does. From these results, we can conclude that the reverse-time migration and Kirchhoff migration can complement with each other to describe the behavior of CO2 in the subsurface. Acknowledgement This work was financially supported by the Brain Korea 21 project of Energy Systems Engineering, the "Development of Technology for CO2 Marine Geological Storage" program funded by the Ministry of Land, Transport and Maritime Affairs (MLTM) of Korea and the Korea CCS R&D Center (KCRC) grant funded by the Korea government (Ministry of Education, Science and Technology) (No. 2012-0008926).
Interferometric imaging of the 2011-2013 Campi Flegrei unrest
NASA Astrophysics Data System (ADS)
De Siena, Luca; Nakahara, Hisashi; Zaccarelli, Lucia; Sammarco, Carmelo; La Rocca, Mario; Bianco, Francesca
2017-04-01
After its 1983-84 seismic and deformation crisis, seismologists have recorded very low and clustered seismicity at Campi Flegrei caldera (Italy). Hence, noise interferometry imaging has become the only option to image the present volcano logical state of the volcano. Three-component noise data recorded before, during, and after Campi Flegrei last deformation and geochemical unrest (2011-2013) have thus been processed with up-to-date interferometric imaging workflow based on MSNoise. Noise anisotropy, which strongly affects measurements throughout the caldera at all frequencies, has been accounted for by self-correlation measurements and smoothed by phase weighted stacking and phase-match filtering. The final group-velocity maps show strong low-velocity anomalies at the location of the last Campi Flegrei eruption (1538 A.D.). The main low-velocity anomalies contour Solfatara volcano and follow geomorphological cross-faulting. The comparison with geophysical imaging results obtained during the last seismic unrest at the caldera suggest strong changes in the physical properties of the volcano, particularly in the area of major hydrogeological hazard.
Seismic Reflection Imaging of Detachment Faulting at 13°N on the Mid-Atlantic Ridge
NASA Astrophysics Data System (ADS)
Falder, M.; Reston, T. J.; Peirce, C.; Simão, N.; MacLeod, C. J.; Searle, R. C.
2016-12-01
The observation of domal corrugated surfaces at slow spreading ridges less than two decades ago, has dramatically challenged our understanding of seafloor spreading. These `oceanic core complexes' are believed to be caused by large-scale detachment faults which accommodate plate separation during periods when melt supply is low or absent entirely. Despite increasing recognition of their importance, the mechanics of, and interactions between, detachment faults at OCCs is not well understood. In Jan-Feb 2016, seismic reflection and refraction data were acquired across the 13N OCCs. The twelve-airgun array seismic source was recorded by a 3000m-long streamer, with shots fired with the full array at either 20 s intervals, or with half the array in a "flip flop" fashion every 10 s. A shorter firing rate results in significantly less spatial aliasing and enhances the performance of the F-K domain filtering. Here we present preliminary seismic reflection images of the 13N region. The currently active 13° 20'N detachment fault is imaged continuing downwards from the smooth fault plane exposed at the seabed. Away from the fault, and between the two OCCs in the area, fewer subsurface structures are observed, which may either represent an actual lack of sharp acoustic contrasts or be as a result of the challenging imaging conditions. Acoustic energy scattered by rough bathymetry both within and out of plane of section is the main challenge of seismic reflection imaging in this area and various strategies are being investigated for its attenuation, including prediction based on high-resolution bathymetry acquired.
2D Time-lapse Seismic Tomography Using An Active Time Constraint (ATC) Approach
We propose a 2D seismic time-lapse inversion approach to image the evolution of seismic velocities over time and space. The forward modeling is based on solving the eikonal equation using a second-order fast marching method. The wave-paths are represented by Fresnel volumes rathe...
NASA Astrophysics Data System (ADS)
Huang, H. H.; Hsu, Y. J.; Kuo, C. Y.; Chen, C. C.; Kuo, L. W.; Chen, R. F.; Lin, C. R.; Lin, P. P.; Lin, C. W.; Lin, M. L.; Wang, K. L.
2017-12-01
A unique landslide monitoring project integrating multidisciplinary geophysics experiments such as GPS, inclinometer, piezometer, and spontaneous potential log has been established at Lantai, Ilan area to investigating the possible detachment depth range and the physical mechanism of a slowly creeping landslide. In parallel with this, a lately deployed local seismic network also lends an opportunity to employ the passive seismic imaging technique to detect the time-lapse changes of seismic velocity in and around the landslide area. Such technique that retrieves Green's functions by cross-correlation of continuous ambient noise has opened new opportunities to seismologically monitoring the environmental and tectonic events such as ground water variation, magma intrusion under volcanos, and co-seismic medium damage in recent years. Integrating these geophysical observations, we explore the primary controls of derived seismic velocity changes and especially the hydrological response of the landslide to the passage of Megi typhoon in the last September 2016, which could potentially further our understanding of the dynamic system of landslides and in turn help the hazard mitigation.
The Virtual Seismic Atlas Project: sharing the interpretation of seismic data
NASA Astrophysics Data System (ADS)
Butler, R.; Mortimer, E.; McCaffrey, B.; Stuart, G.; Sizer, M.; Clayton, S.
2007-12-01
Through the activities of academic research programs, national institutions and corporations, especially oil and gas companies, there is a substantial volume of seismic reflection data. Although the majority is proprietary and confidential, there are significant volumes of data that are potentially within the public domain and available for research. Yet the community is poorly connected to these data and consequently geological and other research using seismic reflection data is limited to very few groups of researchers. This is about to change. The Virtual Seismic Atlas (VSA) is generating an independent, free-to-use, community based internet resource that captures and shares the geological interpretation of seismic data globally. Images and associated documents are explicitly indexed using not only existing survey and geographical data but also on the geology they portray. By using "Guided Navigation" to search, discover and retrieve images, users are exposed to arrays of geological analogues that provide novel insights and opportunities for research and education. The VSA goes live, with evolving content and functionality, through 2008. There are opportunities for designed integration with other global data programs in the earth sciences.
Numerical modeling of time-lapse monitoring of CO2 sequestration in a layered basalt reservoir
Khatiwada, M.; Van Wijk, K.; Clement, W.P.; Haney, M.
2008-01-01
As part of preparations in plans by The Big Sky Carbon Sequestration Partnership (BSCSP) to inject CO2 in layered basalt, we numerically investigate seismic methods as a noninvasive monitoring technique. Basalt seems to have geochemical advantages as a reservoir for CO2 storage (CO2 mineralizes quite rapidly while exposed to basalt), but poses a considerable challenge in term of seismic monitoring: strong scattering from the layering of the basalt complicates surface seismic imaging. We perform numerical tests using the Spectral Element Method (SEM) to identify possibilities and limitations of seismic monitoring of CO2 sequestration in a basalt reservoir. While surface seismic is unlikely to detect small physical changes in the reservoir due to the injection of CO2, the results from Vertical Seismic Profiling (VSP) simulations are encouraging. As a perturbation, we make a 5%; change in wave velocity, which produces significant changes in VSP images of pre-injection and post-injection conditions. Finally, we perform an analysis using Coda Wave Interferometry (CWI), to quantify these changes in the reservoir properties due to CO2 injection.
Bexfield, C.E.; McBride, J.H.; Pugin, Andre J.M.; Ravat, D.; Biswas, S.; Nelson, W.J.; Larson, T.H.; Sargent, S.L.; Fillerup, M.A.; Tingey, B.E.; Wald, L.; Northcott, M.L.; South, J.V.; Okure, M.S.; Chandler, M.R.
2006-01-01
Shallow high-resolution seismic reflection surveys have traditionally been restricted to either compressional (P) or horizontally polarized shear (SH) waves in order to produce 2-D images of subsurface structure. The northernmost Mississippi embayment and coincident New Madrid seismic zone (NMSZ) provide an ideal laboratory to study the experimental use of integrating P- and SH-wave seismic profiles, integrated, where practicable, with micro-gravity data. In this area, the relation between "deeper" deformation of Paleozoic bedrock associated with the formation of the Reelfoot rift and NMSZ seismicity and "shallower" deformation of overlying sediments has remained elusive, but could be revealed using integrated P- and SH-wave reflection. Surface expressions of deformation are almost non-existent in this region, which makes seismic reflection surveying the only means of detecting structures that are possibly pertinent to seismic hazard assessment. Since P- and SH-waves respond differently to the rock and fluid properties and travel at dissimilar speeds, the resulting seismic profiles provide complementary views of the subsurface based on different levels of resolution and imaging capability. P-wave profiles acquired in southwestern Illinois and western Kentucky (USA) detect faulting of deep, Paleozoic bedrock and Cretaceous reflectors while coincident SH-wave surveys show that this deformation propagates higher into overlying Tertiary and Quaternary strata. Forward modeling of micro-gravity data acquired along one of the seismic profiles further supports an interpretation of faulting of bedrock and Cretaceous strata. The integration of the two seismic and the micro-gravity methods therefore increases the scope for investigating the relation between the older and younger deformation in an area of critical seismic hazard. ?? 2006 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Reyes Alfaro, G.; Cruz-Atienza, V. M.; Perez-Campos, X.; Reyes Dávila, G. A.
2014-12-01
We used a receiver function technique for imaging western Mexico, a unique area with several active seismic and volcanic zones like the triple junction of Rivera, Cocos and North American plates and the Colima volcano complex (CVC), the most active in Mexico. Clear images of the distribution of the crust and the lithosphere-asthenosphere boundary are obtained using P-to-S receiver functions (RF) from around ~80 broadband stations recorded by the Mapping the Rivera Subduction Zone (MARS), the Colima Volcano Deep Seismic Experiment (CODEX) and a local network (RESCO) that allowed us to considerably increase the teleseismic database used in the project. For imaging, we constructed several 2-D profiles of depth transformed RFs to delineate the seismic discontinuities of the region. Low seismic velocities associated with the Michoacan-Guanajuato and the Mascota-Ayutla-Tapalpa volcanic fields are also observed. Most impressive, a large and well delineated magma body 100 km underneath CVC is recognized along a surely related depression of the moho discontinuity just above it. We bring more tools for a better understanding of the deep processes that ultimately control eruptive behavior in the region.
NASA Astrophysics Data System (ADS)
Nakashima, Yoshito; Komatsubara, Junko
Unconsolidated soft sediments deform and mix complexly by seismically induced fluidization. Such geological soft-sediment deformation structures (SSDSs) recorded in boring cores were imaged by X-ray computed tomography (CT), which enables visualization of the inhomogeneous spatial distribution of iron-bearing mineral grains as strong X-ray absorbers in the deformed strata. Multifractal analysis was applied to the two-dimensional (2D) CT images with various degrees of deformation and mixing. The results show that the distribution of the iron-bearing mineral grains is multifractal for less deformed/mixed strata and almost monofractal for fully mixed (i.e. almost homogenized) strata. Computer simulations of deformation of real and synthetic digital images were performed using the egg-beater flow model. The simulations successfully reproduced the transformation from the multifractal spectra into almost monofractal spectra (i.e. almost convergence on a single point) with an increase in deformation/mixing intensity. The present study demonstrates that multifractal analysis coupled with X-ray CT and the mixing flow model is useful to quantify the complexity of seismically induced SSDSs, standing as a novel method for the evaluation of cores for seismic risk assessment.
Upper crustal structures beneath Yogyakarta imaged by ambient seismic noise tomography
NASA Astrophysics Data System (ADS)
Zulfakriza, Saygin, E.; Cummins, P.; Widiyantoro, S.; Nugraha, Andri Dian
2013-09-01
Delineating the upper crustal structures beneath Yogyakarta is necessary for understanding its tectonic setting. The presence of Mt. Merapi, fault line and the alluvial deposits contributes to the complex geology of Yogyakarta. Recently, ambient seismic noise tomography can be used to image the subsurface structure. The cross correlations of ambient seismic noise of pair stations were applied to extract the Green's function. The total of 27 stations from 134 seismic stations available in MERapi Amphibious EXperiment (MERAMEX) covering Yogyakarta region were selected to conduct cross correlation. More than 500 Rayleigh waves of Green's functions could be extracted by cross-correlating available the station pairs of short-period and broad-band seismometers. The group velocities were obtained by filtering the extracted Green's function between 0.5 and 20 s. 2-D inversion was applied to the retrieved travel times. Features in the derived tomographic images correlate with the surface geology of Yogyakarta. The Merapi active volcanoes and alluvial deposit in Yogyakarta are clearly described by lower group velocities. The high velocity anomaly contrasts which are visible in the images obtained from the period range between 1 and 5 s, correspond to subsurface imprints of fault that could be the Opak Fault.
Probabilistic seismic demand analysis using advanced ground motion intensity measures
Tothong, P.; Luco, N.
2007-01-01
One of the objectives in performance-based earthquake engineering is to quantify the seismic reliability of a structure at a site. For that purpose, probabilistic seismic demand analysis (PSDA) is used as a tool to estimate the mean annual frequency of exceeding a specified value of a structural demand parameter (e.g. interstorey drift). This paper compares and contrasts the use, in PSDA, of certain advanced scalar versus vector and conventional scalar ground motion intensity measures (IMs). One of the benefits of using a well-chosen IM is that more accurate evaluations of seismic performance are achieved without the need to perform detailed ground motion record selection for the nonlinear dynamic structural analyses involved in PSDA (e.g. record selection with respect to seismic parameters such as earthquake magnitude, source-to-site distance, and ground motion epsilon). For structural demands that are dominated by a first mode of vibration, using inelastic spectral displacement (Sdi) can be advantageous relative to the conventionally used elastic spectral acceleration (Sa) and the vector IM consisting of Sa and epsilon (??). This paper demonstrates that this is true for ordinary and for near-source pulse-like earthquake records. The latter ground motions cannot be adequately characterized by either Sa alone or the vector of Sa and ??. For structural demands with significant higher-mode contributions (under either of the two types of ground motions), even Sdi (alone) is not sufficient, so an advanced scalar IM that additionally incorporates higher modes is used.
Imaging The Shallow Velocity Structure Of The Hikurangi Megathrust Using Full-Waveform Inversion
NASA Astrophysics Data System (ADS)
Gray, M.; Bell, R. E.; Morgan, J. V.
2017-12-01
The Hikurangi margin, offshore North Island, New Zealand, exhibits a number of different slip behaviours, including shallow slow slip events (SSEs) (<2km to 15 km). There is also a strong contrast in geodetic coupling along the margin. While reflection data provides an image of the structure, no information about physical properties is provided. Full-waveform inversion (FWI) is an imaging technique which incorporates the full seismic wavelet rather than just the first arrivals, as in traditional tomography. By propagating synthetic seismic waves through a velocity model and comparing the synthetic wavelets to the field data, we update the velocity model until the real and synthetic wavelets match. In this way, we can resolve high-resolution physical property variations which influence the seismic wavefield. In our study, FWI was used to resolve the P-wave velocity structure at the Hikurangi megathrust up to 2km. This method enables investigation of how upper-plate structure may influence plate boundary slip behaviour. In 2005, a seismic survey was carried out over the Hikurangi megathrust. The data was acquired from a 12km streamer, allowing FWI analysis up to 2km below the seabed. The results show low velocity zones correlating to faults interpreted from reflection seismic imaging. We believe these low velocity zones, particularly near the frontal thrust resolve faulting in the area, and present these faults as possible fluid conduits. As the dataset was not collected specifically for FWI, the results show promise in resolving more information at depth. As such, both a 3D seismic survey and two drilling expeditions have been approved for the period November 2017 - May 2018. The seismic survey will be carried out with parameters optimal for FWI, allow imaging of the fault boundary, which is not possible with the current 2D data. The cores will provide direct geological evidence which can be used in conjunction with velocity models to discern lithology and structure. The current result identifies the existence of overpressure and aids in drilling safety when collecting these cores. In conjunction with the new IODP cores, the FWI model will improve understanding of properties of the shallow structure of the megathrust.
Automated Processing Workflow for Ambient Seismic Recordings
NASA Astrophysics Data System (ADS)
Girard, A. J.; Shragge, J.
2017-12-01
Structural imaging using body-wave energy present in ambient seismic data remains a challenging task, largely because these wave modes are commonly much weaker than surface wave energy. In a number of situations body-wave energy has been extracted successfully; however, (nearly) all successful body-wave extraction and imaging approaches have focused on cross-correlation processing. While this is useful for interferometric purposes, it can also lead to the inclusion of unwanted noise events that dominate the resulting stack, leaving body-wave energy overpowered by the coherent noise. Conversely, wave-equation imaging can be applied directly on non-correlated ambient data that has been preprocessed to mitigate unwanted energy (i.e., surface waves, burst-like and electromechanical noise) to enhance body-wave arrivals. Following this approach, though, requires a significant preprocessing effort on often Terabytes of ambient seismic data, which is expensive and requires automation to be a feasible approach. In this work we outline an automated processing workflow designed to optimize body wave energy from an ambient seismic data set acquired on a large-N array at a mine site near Lalor Lake, Manitoba, Canada. We show that processing ambient seismic data in the recording domain, rather than the cross-correlation domain, allows us to mitigate energy that is inappropriate for body-wave imaging. We first develop a method for window selection that automatically identifies and removes data contaminated by coherent high-energy bursts. We then apply time- and frequency-domain debursting techniques to mitigate the effects of remaining strong amplitude and/or monochromatic energy without severely degrading the overall waveforms. After each processing step we implement a QC check to investigate improvements in the convergence rates - and the emergence of reflection events - in the cross-correlation plus stack waveforms over hour-long windows. Overall, the QC analyses suggest that automated preprocessing of ambient seismic recordings in the recording domain successfully mitigates unwanted coherent noise events in both the time and frequency domain. Accordingly, we assert that this method is beneficial for direct wave-equation imaging with ambient seismic recordings.
NASA Astrophysics Data System (ADS)
Putriani, E.; Huang, W. H.; Shih, R. C.
2017-12-01
The Southwestern Taiwan has higher potential seismic risks among the island. In 1906 the Meishan earthquake of magnitude 7.1 caused very severe damages. The associated Meishan fault was believed extended from Meishan westerly to Hsingang area for 23 km long; however, only the eastern part of the fault could be traces on the surface. The western part of the Meishan fault was simply proposed from the observed lineation of sand blow from the middle of the fault, the Minhsiung area westerly to the Hsingang area. The purpose of this paper is hope to prove the extension of this fault by using near surface P wave and S wave velocities and the seismic reflection images acquired across the suspicious fault location. Totally, we have conducted 20 seismic velocity survey lines, which were deployed in six areas with and without liquefaction observed, and 2 seismic reflection lines. The P and S wave velocities variations were used to analyze depth of the water table, the elastic modulus, soil porosity and the safety factor for soil liquefaction assessment. Preliminary result of the seismic velocity distribution was effective within 17 m deep from surface and showed no particular difference at the sites of liquefaction observed or no liquefaction. The results could indicate that the sand blow observed in 1906 were not site dependent, but more likely related to activity of the Meishan fault. In order to detect the detailed fault trace, the seismic reflection images will be combined for interpreting the buried Meishan fault in the final result.
NASA Astrophysics Data System (ADS)
Posada, G.; Trujillo, J. C., Sr.; Hoyos, C.; Monsalve, G.
2017-12-01
The tectonics setting of Colombia is determined by the interaction of Nazca, Caribbean and South American plates, together with the Panama-Choco block collision, which makes a seismically active region. Regional seismic monitoring is carried out by the National Seismological Network of Colombia and the Accelerometer National Network of Colombia. Both networks calculate locations, magnitudes, depths and accelerations, and other seismic parameters. The Medellín - Aburra Valley is located in the Northern segment of the Central Cordillera of Colombia, and according to the Colombian technical seismic norm (NSR-10), is a region of intermediate hazard, because of the proximity to seismic sources of the Valley. Seismic monitoring in the Aburra Valley began in 1996 with an accelerometer network which consisted of 38 instruments. Currently, the network consists of 26 stations and is run by the Early Warning System of Medellin and Aburra Valley (SIATA). The technical advances have allowed the real-time communication since a year ago, currently with 10 stations; post-earthquake data is processed through operationally near-real-time, obtaining quick results in terms of location, acceleration, spectrum response and Fourier analysis; this information is displayed at the SIATA web site. The strong motion database is composed by 280 earthquakes; this information is the basis for the estimation of seismic hazards and risk for the region. A basic statistical analysis of the main information was carried out, including the total recorded events per station, natural frequency, maximum accelerations, depths and magnitudes, which allowed us to identify the main seismic sources, and some seismic site parameters. With the idea of a more complete seismic monitoring and in order to identify seismic sources beneath the Valley, we are in the process of installing 10 low-cost shake seismometers for micro-earthquake monitoring. There is no historical record of earthquakes with a magnitude greater than 3.5 beneath the Aburra Valley, and the neotectonic evidence are limited, so it is expected that this network helps to characterize the seismic hazards.
NASA Astrophysics Data System (ADS)
Teranishi, Y.; Inamori, T.; Kobayashi, T.; Fujii, T.; Saeki, T.; Takahashi, H.; Kobayashi, F.
2017-12-01
JOGMEC carries out seismic monitoring surveys before and after the 2nd offshore methane hydrate (MH) production test in the Eastern Nankai Trough and evaluates MH dissociation behavior from the time-lapse seismic response. In 2016, JOGMEC deployed Ocean Bottom Cable (OBC) system provided by OCC in the Daini Atsumi Knoll with water depths of 900-1100 m. The main challenge of the seismic survey was to optimize the cable layout for ensuring an effective time-lapse seismic detectability while overcoming the following two issues: 1. OBC receiver lines were limited to only two lines. It was predicted that the imaging of shallow reflectors would suffer from lack of continuity and resolution due to this limitation of receiver lines. 2. The seafloor and shallow sedimentary layers including monitoring target are dipping to the Northwest direction. It was predicted that the refection points would laterally shift to up-dip direction (Southeast direction). In order to understand the impact of the issues above, the seismic survey was designed with elastic wave field simulation. The reflection seismic survey for baseline data was conducted in August 2016. A total of 70 receiver stations distributed along one cable were deployed successfully and a total of 9952 shots were fired. After the baseline seismic survey, the hydrophone and geophone vertical component datasets were processed as outlined below: designaturing, denoising, surface consistent deconvolution and surface consistent amplitude correction. High-frequency imaging with Reverse Time Migration (RTM) was introduced to these data sets. Improvements in imaging from the RTM are remarkable compared to the Kirchhoff migration and the existing Pre-stack time migration with 3D marine surface seismic data obtained and processed in 2002, especially in the following parts. The MH concentrated zone which has complex structures. Below the Bottom Simulating Reflector (BSR) which is present as a impedance-contrast boundary
NASA Astrophysics Data System (ADS)
Scheiber-Enslin, S. E.; Manzi, M. S.; Webb, S. J.
2017-12-01
Loss-of-ground in mining is a common problem. Using the integration of high resolution aeromagnetic and 3D reflection seismic data to delineate the causative geological features allows for more efficient mine planning and risk reduction. High resolution data from Impala Platinum mine in the western Bushveld Complex are used to image potholes, iron-rich ultramafic pegmatoids (IRUPs), faults, dykes and diapirs that may impact the economic horizons (UG2). Imaging of these structures was previously limited to outcrop, both on surface and underground, as well as 2D seismic data. These high resolution seismic data are able to resolve faults with throws as small as 10 m. A diapir is imaged in the southwest of the study area with a diameter of approximately 6 km. The diapir has a depth extend of around 4 km below the UG2 horizon and displaces the horizon by 350 m. It has been suggested that topographic highs in the Transvaal Supergroup basement initiate the formation of these diapirs as new magma is injected into the chamber. The origin of the diapir within the layered basement rocks, and disruption of layering within the complex is visible on the seismic section. In the north of the study area a large region of slumping or several merged potholes is identified that is up to 2.5 km in length, with up to 700 m of vertical displacement. Ductile deformation that formed the potholes is imaged on the seismic section, with the UG2 cutting down into the footwall. However, brittle deformation of the UG2 is also imaged with faulting at the edges of the regions of slumping. The edges of these slump regions are also characterised by the emplacement of iron-rich ultramafic pegmatoids (IRUPs), which show up as regions of diffuse reflectivity on the seismic data and magnetic highs. The proximity of these faults and IRUPs to the edges of the slump structure brings in to question whether they contribute to pothole formation. The diapir and slump structure displaces the economic UG2 horizon at the mining levels and cause faulting of the horizon. Imaging of these structures could be used for future mining planning and design to assess and mitigate the risks posed by these features during mining activities.
Socio-economic effect of seismic retrofit implemented on bridges in the Los Angeles highway network.
DOT National Transportation Integrated Search
2008-12-01
This research studied socio-economic effect of the seismic retrofit implemented on bridges in Los Angeles Area : Freeway Network. Firstly, advanced FE (Finite Element) modeling and nonlinear time history analysis are carried out to : evaluate the sei...
NASA Astrophysics Data System (ADS)
Bell, Rebecca; Henrys, Stuart; Sutherland, Rupert; Barker, Daniel; Wallace, Laura; Holden, Caroline; Power, William; Wang, Xiaoming; Morgan, Joanna; Warner, Michael; Downes, Gaye
2015-04-01
Over the last couple of decades we have learned that a whole spectrum of different fault slip behaviour takes place on subduction megathrust faults from stick-slip earthquakes to slow slip and stable sliding. Geophysical data, including seismic reflection data, can be used to characterise margins and fault zones that undergo different modes of slip. In this presentation we will focus on the Hikurangi margin, New Zealand, which exhibits marked along-strike changes in seismic behaviour and margin characteristics. Campaign and continuous GPS measurements reveal deep interseismic coupling and deep slow slip events (~30-60 km) at the southern Hikurangi margin. The northern margin, in contrast, experiences aseismic slip and shallow (<10-15 km) slow slip events (SSE) every 18-24 months with equivalent moment magnitudes of Mw 6.5-6.8. Updip of the SSE region two unusual megathrust earthquakes occurred in March and May 1947 with characteristics typical of tsunami earthquakes. The Hikurangi margin is therefore an excellent natural laboratory to study differential fault slip behaviour. Using 2D seismic reflection, magnetic anomaly and geodetic data we observe in the source areas of the 1947 tsunami earthquakes i) low amplitude interface reflectivity, ii) shallower interface relief, iii) bathymetric ridges, iv) magnetic anomaly highs and in the case of the March 1947 earthquake v) stronger geodetic coupling. We suggest that this is due to the subduction of seamounts, similar in dimensions to seamounts observed on the incoming Pacific plate, to depths of <10 km. We propose a source model for the 1947 tsunami earthquakes based on geophysical data and find that extremely low rupture velocities (c. 300 m/s) are required to model the observed large tsunami run-up heights (Bell et al. 2014, EPSL). Our study suggests that subducted topography can cause the nucleation of moderate earthquakes with complex, low velocity rupture scenarios that enhance tsunami waves, and the role of subducted rough topography in seismic hazard should not be under-estimated. 2D seismic reflection data along the northern Hikurangi margin also image thick (c. 2 km) high-amplitude reflectivity zones (HRZ) coinciding broadly with the source areas of shallow SSEs. The HRZ may be the result of high-fluid content within subduction sediments, suggesting fluids may exert an important control on the generation of SSEs by reducing effective stress (Bell et al. 2010, GJI). However, this hypothesis remains untested. In this presentation, using synthetic models, we will discuss planned future applications of an advanced seismic imaging technique called Full-waveform inversion, integrated with drilling, at subduction margins like Hikurangi to recover fault physical properties at high-resolution in 3D to examine the properties of heterogeneous fault zones.
NASA Astrophysics Data System (ADS)
Vennemann, Alan
My research investigates the structure of the Indio Mountains in southwest Texas, 34 kilometers southwest of Van Horn, at the UTEP (University of Texas at El Paso) Field Station using newly acquired active-source seismic data. The area is underlain by deformed Cretaceous sedimentary rocks that represent a transgressive sequence nearly 2 km in total stratigraphic thickness. The rocks were deposited in mid Cretaceous extensional basins and later contracted into fold-thrust structures during Laramide orogenesis. The stratigraphic sequence is an analog for similar areas that are ideal for pre-salt petroleum reservoirs, such as reservoirs off the coasts of Brazil and Angola (Li, 2014; Fox, 2016; Kattah, 2017). The 1-km-long 2-D shallow seismic reflection survey that I planned and led during May 2016 was the first at the UTEP Field Station, providing critical subsurface information that was previously lacking. The data were processed with Landmark ProMAX seismic processing software to create a seismic reflection image of the Bennett Thrust Fault and additional imbricate faulting not expressed at the surface. Along the 1-km line, reflection data were recorded with 200 4.5 Hz geophones, using 100 150-gram explosive charges and 490 sledge-hammer blows for sources. A seismic reflection profile was produced using the lower frequency explosive dataset, which was used in the identification of the Bennett Thrust Fault and additional faulting and folding in the subsurface. This dataset provides three possible interpretations for the subsurface geometries of the faulting and folding present. However, producing a seismic reflection image with the higher frequency sledge-hammer sourced dataset for interpretation proved more challenging. While there are no petroleum plays in the Indio Mountains region, imaging and understanding subsurface structural and lithological geometries and how that geometry directs potential fluid flow has implications for other regions with petroleum plays.
On the use of a laser ablation as a laboratory seismic source
NASA Astrophysics Data System (ADS)
Shen, Chengyi; Brito, Daniel; Diaz, Julien; Zhang, Deyuan; Poydenot, Valier; Bordes, Clarisse; Garambois, Stéphane
2017-04-01
Mimic near-surface seismic imaging conducted in well-controlled laboratory conditions is potentially a powerful tool to study large scale wave propagations in geological media by means of upscaling. Laboratory measurements are indeed particularly suited for tests of theoretical modellings and comparisons with numerical approaches. We have developed an automated Laser Doppler Vibrometer (LDV) platform, which is able to detect and register broadband nano-scale displacements on the surface of various materials. This laboratory equipment has already been validated in experiments where piezoelectric transducers were used as seismic sources. We are currently exploring a new seismic source in our experiments, a laser ablation, in order to compensate some drawbacks encountered with piezoelectric sources. The laser ablation source is considered to be an interesting ultrasound wave generator since the 1960s. It was believed to have numerous potential applications such as the Non-Destructive Testing (NDT) and the measurements of velocities and attenuations in solid samples. We aim at adapting and developing this technique into geophysical experimental investigations in order to produce and explore complete micro-seismic data sets in the laboratory. We will first present the laser characteristics including its mechanism, stability, reproducibility, and will evaluate in particular the directivity patterns of such a seismic source. We have started by applying the laser ablation source on the surfaces of multi-scale homogeneous aluminum samples and are now testing it on heterogeneous and fractured limestone cores. Some other results of data processing will also be shown, especially the 2D-slice V P and V S tomographic images obtained in limestone samples. Apart from the experimental records, numerical simulations will be carried out for both the laser source modelling and the wave propagation in different media. First attempts will be done to compare quantitatively the experimental data with simulations. Meanwhile, CT-scan X-ray images of these limestone cores will be used to check the relative pertinences of velocity tomography images produced by this newly developed laser ablation seismic source.
NASA Astrophysics Data System (ADS)
Kang, S. G.; Hong, J. K.; Jin, Y. K.; Kim, S.; Kim, Y. G.; Dallimore, S.; Riedel, M.; Shin, C.
2015-12-01
During Expedition ARA05C (from Aug 26 to Sep 19, 2014) on the Korean icebreaker RV ARAON, the multi-channel seismic (MCS) data were acquired on the outer shelf and slope of the Canadian Beaufort Sea to investigate distribution and internal geological structures of the offshore ice-bonded permafrost and gas hydrates, totaling 998 km L-km with 19,962 shots. The MCS data were recorded using a 1500 m long solid-type streamer with 120 channels. Shot and group spacing were 50 m and 12.5 m, respectively. Most MCS survey lines were designed perpendicular and parallel to the strike of the shelf break. Ice-bonded permafrost or ice-bearing sediments are widely distributed under the Beaufort Sea shelf, which have formed during periods of lower sea level when portions of the shelf less than ~100m water depth were an emergent coastal plain exposed to very cold surface. The seismic P-wave velocity is an important geophysical parameter for identifying the distribution of ice-bonded permafrost with high velocity in this area. Recently, full waveform inversion (FWI) and reverse time migration (RTM) are commonly used to delineate detailed seismic velocity information and seismic image of geological structures. FWI is a data fitting procedure based on wave field modeling and numerical analysis to extract quantitative geophysical parameters such as P-, S-wave velocities and density from seismic data. RTM based on 2-way wave equation is a useful technique to construct accurate seismic image with amplitude preserving of field data. In this study, we suggest two-dimensional P-wave velocity model (Figure.1) using the FWI algorithm to delineate the top and bottom boundaries of ice-bonded permafrost in the Canadian shelf of Beaufort Sea. In addition, we construct amplitude preserving migrated seismic image using RTM to interpret the geological history involved with the evolution of permafrost.
NASA Astrophysics Data System (ADS)
Son, J.; Medina-Cetina, Z.
2017-12-01
We discuss the comparison between deterministic and stochastic optimization approaches to the nonlinear geophysical full-waveform inverse problem, based on the seismic survey data from Mississippi Canyon in the Northern Gulf of Mexico. Since the subsea engineering and offshore construction projects actively require reliable ground models from various site investigations, the primary goal of this study is to reconstruct the accurate subsurface information of the soil and rock material profiles under the seafloor. The shallow sediment layers have naturally formed heterogeneous formations which may cause unwanted marine landslides or foundation failures of underwater infrastructure. We chose the quasi-Newton and simulated annealing as deterministic and stochastic optimization algorithms respectively. Seismic forward modeling based on finite difference method with absorbing boundary condition implements the iterative simulations in the inverse modeling. We briefly report on numerical experiments using a synthetic data as an offshore ground model which contains shallow artificial target profiles of geomaterials under the seafloor. We apply the seismic migration processing and generate Voronoi tessellation on two-dimensional space-domain to improve the computational efficiency of the imaging stratigraphical velocity model reconstruction. We then report on the detail of a field data implementation, which shows the complex geologic structures in the Northern Gulf of Mexico. Lastly, we compare the new inverted image of subsurface site profiles in the space-domain with the previously processed seismic image in the time-domain at the same location. Overall, stochastic optimization for seismic inversion with migration and Voronoi tessellation show significant promise to improve the subsurface imaging of ground models and improve the computational efficiency required for the full waveform inversion. We anticipate that by improving the inversion process of shallow layers from geophysical data will better support the offshore site investigation.
An automated multi-scale network-based scheme for detection and location of seismic sources
NASA Astrophysics Data System (ADS)
Poiata, N.; Aden-Antoniow, F.; Satriano, C.; Bernard, P.; Vilotte, J. P.; Obara, K.
2017-12-01
We present a recently developed method - BackTrackBB (Poiata et al. 2016) - allowing to image energy radiation from different seismic sources (e.g., earthquakes, LFEs, tremors) in different tectonic environments using continuous seismic records. The method exploits multi-scale frequency-selective coherence in the wave field, recorded by regional seismic networks or local arrays. The detection and location scheme is based on space-time reconstruction of the seismic sources through an imaging function built from the sum of station-pair time-delay likelihood functions, projected onto theoretical 3D time-delay grids. This imaging function is interpreted as the location likelihood of the seismic source. A signal pre-processing step constructs a multi-band statistical representation of the non stationary signal, i.e. time series, by means of higher-order statistics or energy envelope characteristic functions. Such signal-processing is designed to detect in time signal transients - of different scales and a priori unknown predominant frequency - potentially associated with a variety of sources (e.g., earthquakes, LFE, tremors), and to improve the performance and the robustness of the detection-and-location location step. The initial detection-location, based on a single phase analysis with the P- or S-phase only, can then be improved recursively in a station selection scheme. This scheme - exploiting the 3-component records - makes use of P- and S-phase characteristic functions, extracted after a polarization analysis of the event waveforms, and combines the single phase imaging functions with the S-P differential imaging functions. The performance of the method is demonstrated here in different tectonic environments: (1) analysis of the one year long precursory phase of 2014 Iquique earthquake in Chile; (2) detection and location of tectonic tremor sources and low-frequency earthquakes during the multiple episodes of tectonic tremor activity in southwestern Japan.
Seismic reflection imaging with conventional and unconventional sources
NASA Astrophysics Data System (ADS)
Quiros Ugalde, Diego Alonso
This manuscript reports the results of research using both conventional and unconventional energy sources as well as conventional and unconventional analysis to image crustal structure using reflected seismic waves. The work presented here includes the use of explosions to investigate the Taiwanese lithosphere, the use of 'noise' from railroads to investigate the shallow subsurface of the Rio Grande rift, and the use of microearthquakes to image subsurface structure near an active fault zone within the Appalachian mountains. Chapter 1 uses recordings from the land refraction and wide-angle reflection component of the Taiwan Integrated Geodynamic Research (TAIGER) project. The most prominent reflection feature imaged by these surveys is an anomalously strong reflector found in northeastern Taiwan. The goal of this chapter is to analyze the TAIGER recordings and to place the reflector into a geologic framework that fits with the modern tectonic kinematics of the region. Chapter 2 uses railroad traffic as a source for reflection profiling within the Rio Grande rift. Here the railroad recordings are treated in an analogous way to Vibroseis recordings. These results suggest that railroad noise in general can be a valuable new tool in imaging and characterizing the shallow subsurface in environmental and geotechnical studies. In chapters 3 and 4, earthquakes serve as the seismic imaging source. In these studies the methodology of Vertical Seismic Profiling (VSP) is borrowed from the oil and gas industry to develop reflection images. In chapter 3, a single earthquake is used to probe a small area beneath Waterboro, Maine. In chapter 4, the same method is applied to multiple earthquakes to take advantage of the increased redundancy that results from multiple events illuminating the same structure. The latter study demonstrates how dense arrays can be a powerful new tool for delineating, and monitoring temporal changes of deep structure in areas characterized by significant seismic activity.
Development of Vertical Cable Seismic System
NASA Astrophysics Data System (ADS)
Asakawa, E.; Murakami, F.; Sekino, Y.; Okamoto, T.; Ishikawa, K.; Tsukahara, H.; Shimura, T.
2011-12-01
In 2009, Ministry of Education, Culture, Sports, Science and Technology(MEXT) started the survey system development for Hydrothermal deposit. We proposed the Vertical Cable Seismic (VCS), the reflection seismic survey with vertical cable above seabottom. VCS has the following advantages for hydrothermal deposit survey. (1) VCS is an efficient high-resolution 3D seismic survey in limited area. (2) It achieves high-resolution image because the sensors are closely located to the target. (3) It avoids the coupling problems between sensor and seabottom that cause serious damage of seismic data quality. (4) Because of autonomous recording system on sea floor, various types of marine source are applicable with VCS such as sea-surface source (GI gun etc.) , deep-towed or ocean bottom source. Our first experiment of 2D/3D VCS surveys has been carried out in Lake Biwa, JAPAN, in November 2009. The 2D VCS data processing follows the walk-away VSP, including wave field separation and depth migration. Seismic Interferometry technique is also applied. The results give much clearer image than the conventional surface seismic. Prestack depth migration is applied to 3D data to obtain good quality 3D depth volume. Seismic Interferometry technique is applied to obtain the high resolution image in the very shallow zone. Based on the feasibility study, we have developed the autonomous recording VCS system and carried out the trial experiment in actual ocean at the water depth of about 400m to establish the procedures of deployment/recovery and to examine the VC position or fluctuation at seabottom. The result shows that the VC position is estimated with sufficient accuracy and very little fluctuation is observed. Institute of Industrial Science, the University of Tokyo took the research cruise NT11-02 on JAMSTEC R/V Natsushima in February, 2011. In the cruise NT11-02, JGI carried out the second VCS survey using the autonomous VCS recording system with the deep towed source provided by Institute of Industrial Science, the University of Tokyo. It generates high frequency acoustic waves around 1kHz. The acquired VCS data clearly shows the reflections and currently being processed for imaging the subsurface structure.
Converting Advances in Seismology into Earthquake Science
NASA Astrophysics Data System (ADS)
Hauksson, Egill; Shearer, Peter; Vidale, John
2004-01-01
Federal and state agencies and university groups all operate seismic networks in California. The U.S. Geological Survey (USGS) operates seismic networks in California in cooperation with the California Institute of Technology (Caltech) in southern California, and the University of California (UC) at Berkeley in northern California. The California Geological Survey (CGS) and the USGS National Strong Motion Program (NSMP) operate dial-out strong motion instruments in the state, primarily to capture data from large earthquakes for earthquake engineering and, more recently, emergency response. The California Governor's Office of Emergency Services (OES) provides leadership for the most recent project, the California Integrated Seismic Network (CISN), to integrate all of the California efforts, and to take advantage of the emergency response capabilities of the seismic networks. The core members of the CISN are Caltech, UC Berkeley, CGS, USGS Menlo Park, and USGS Pasadena (http://www.cisn.org). New seismic instrumentation is in place across southern California, and significant progress has been made in improving instrumentation in northern California. Since 2001, these new field instrumentation efforts, data sharing, and software development for real-time reporting and archiving have been coordinated through the California Integrated Seismic Network (CISN). The CISN is also the California region of the Advanced National Seismic Network (ANSS). In addition, EarthScope deployments of USArray that will begin in early 2004 in California are coordinated with the CISN. The southern and northern California earthquake data centers (SCEDC and NCEDC) have new capabilities that enable seismologists to obtain large volumes of data with only modest effort.
Convolutional neural network for earthquake detection and location
Perol, Thibaut; Gharbi, Michaël; Denolle, Marine
2018-01-01
The recent evolution of induced seismicity in Central United States calls for exhaustive catalogs to improve seismic hazard assessment. Over the last decades, the volume of seismic data has increased exponentially, creating a need for efficient algorithms to reliably detect and locate earthquakes. Today’s most elaborate methods scan through the plethora of continuous seismic records, searching for repeating seismic signals. We leverage the recent advances in artificial intelligence and present ConvNetQuake, a highly scalable convolutional neural network for earthquake detection and location from a single waveform. We apply our technique to study the induced seismicity in Oklahoma, USA. We detect more than 17 times more earthquakes than previously cataloged by the Oklahoma Geological Survey. Our algorithm is orders of magnitude faster than established methods. PMID:29487899
Reverse time migration by Krylov subspace reduced order modeling
NASA Astrophysics Data System (ADS)
Basir, Hadi Mahdavi; Javaherian, Abdolrahim; Shomali, Zaher Hossein; Firouz-Abadi, Roohollah Dehghani; Gholamy, Shaban Ali
2018-04-01
Imaging is a key step in seismic data processing. To date, a myriad of advanced pre-stack depth migration approaches have been developed; however, reverse time migration (RTM) is still considered as the high-end imaging algorithm. The main limitations associated with the performance cost of reverse time migration are the intensive computation of the forward and backward simulations, time consumption, and memory allocation related to imaging condition. Based on the reduced order modeling, we proposed an algorithm, which can be adapted to all the aforementioned factors. Our proposed method benefit from Krylov subspaces method to compute certain mode shapes of the velocity model computed by as an orthogonal base of reduced order modeling. Reverse time migration by reduced order modeling is helpful concerning the highly parallel computation and strongly reduces the memory requirement of reverse time migration. The synthetic model results showed that suggested method can decrease the computational costs of reverse time migration by several orders of magnitudes, compared with reverse time migration by finite element method.
Towards an Earthquake and Tsunami Early Warning in the Caribbean
NASA Astrophysics Data System (ADS)
Huerfano Moreno, V. A.; Vanacore, E. A.
2017-12-01
The Caribbean region (CR) has a documented history of large damaging earthquakes and tsunamis that have affected coastal areas, including the events of Jamaica in 1692, Virgin Islands in 1867, Puerto Rico in 1918, the Dominican Republic in 1946 and Haiti in 2010. There is clear evidence that tsunamis have been triggered by large earthquakes that deformed the ocean floor around the Caribbean Plate boundary. The CR is monitored jointly by national/regional/local seismic, geodetic and sea level networks. All monitoring institutions are participating in the UNESCO ICG/Caribe EWS, the purpose of this initiative is to minimize loss of life and destruction of property, and to mitigate against catastrophic economic impacts via promoting local research, real time (RT) earthquake, geodetic and sea level data sharing and improving warning capabilities and enhancing education and outreach strategies. Currently more than, 100 broad-band seismic, 65 sea levels and 50 GPS high rate stations are available in real or near real-time. These real-time streams are used by Local/Regional or Worldwide detection and warning institutions to provide earthquake source parameters in a timely manner. Currently, any Caribbean event detected to have a magnitude greater than 4.5 is evaluated, and sea level is measured, by the TWC for tsumanigenic potential. The regional cooperation is motivated both by research interests as well as geodetic, seismic and tsunami hazard monitoring and warning. It will allow the imaging of the tectonic structure of the Caribbean region to a high resolution which will consequently permit further understanding of the seismic source properties for moderate and large events and the application of this knowledge to procedures of civil protection. To reach its goals, the virtual network has been designed following the highest technical standards: BB sensors, 24 bits A/D converters with 140 dB dynamic range, real-time telemetry. Here we will discuss the state of the PR component of this virtual network as well as current advances in the imaging of the PR tectonic structure. The goal of this presentation is to describe the Puerto Rico Seismic Network (PRSN) system, including the real time earthquake and tsunami monitoring as well as the specific protocols used to broadcast earthquake/tsunami messages locally.
Directly imaging steeply-dipping fault zones in geothermal fields with multicomponent seismic data
Chen, Ting; Huang, Lianjie
2015-07-30
For characterizing geothermal systems, it is important to have clear images of steeply-dipping fault zones because they may confine the boundaries of geothermal reservoirs and influence hydrothermal flow. Elastic reverse-time migration (ERTM) is the most promising tool for subsurface imaging with multicomponent seismic data. However, conventional ERTM usually generates significant artifacts caused by the cross correlation of undesired wavefields and the polarity reversal of shear waves. In addition, it is difficult for conventional ERTM to directly image steeply-dipping fault zones. We develop a new ERTM imaging method in this paper to reduce these artifacts and directly image steeply-dipping fault zones.more » In our new ERTM method, forward-propagated source wavefields and backward-propagated receiver wavefields are decomposed into compressional (P) and shear (S) components. Furthermore, each component of these wavefields is separated into left- and right-going, or downgoing and upgoing waves. The cross correlation imaging condition is applied to the separated wavefields along opposite propagation directions. For converted waves (P-to-S or S-to-P), the polarity correction is applied to the separated wavefields based on the analysis of Poynting vectors. Numerical imaging examples of synthetic seismic data demonstrate that our new ERTM method produces high-resolution images of steeply-dipping fault zones.« less
Seismic depth imaging of sequence boundaries beneath the New Jersey shelf
NASA Astrophysics Data System (ADS)
Riedel, M.; Reiche, S.; Aßhoff, K.; Buske, S.
2018-06-01
Numerical modelling of fluid flow and transport processes relies on a well-constrained geological model, which is usually provided by seismic reflection surveys. In the New Jersey shelf area a large number of 2D seismic profiles provide an extensive database for constructing a reliable geological model. However, for the purpose of modelling groundwater flow, the seismic data need to be depth-converted which is usually accomplished using complementary data from borehole logs. Due to the limited availability of such data in the New Jersey shelf, we propose a two-stage processing strategy with particular emphasis on reflection tomography and pre-stack depth imaging. We apply this workflow to a seismic section crossing the entire New Jersey shelf. Due to the tomography-based velocity modelling, the processing flow does not depend on the availability of borehole logging data. Nonetheless, we validate our results by comparing the migrated depths of selected geological horizons to borehole core data from the IODP expedition 313 drill sites, located at three positions along our seismic line. The comparison yields that in the top 450 m of the migrated section, most of the selected reflectors were positioned with an accuracy close to the seismic resolution limit (≈ 4 m) for that data. For deeper layers the accuracy still remains within one seismic wavelength for the majority of the tested horizons. These results demonstrate that the processed seismic data provide a reliable basis for constructing a hydrogeological model. Furthermore, the proposed workflow can be applied to other seismic profiles in the New Jersey shelf, which will lead to an even better constrained model.
Retrieval of P wave Basin Response from Autocorrelation of Seismic Noise-Jakarta, Indonesia
NASA Astrophysics Data System (ADS)
Saygin, E.; Cummins, P. R.; Lumley, D. E.
2016-12-01
Indonesia's capital city, Jakarta, is home to a very large (over 10 million), vulnerable population and is proximate to known active faults, as well as to the subduction of Australian plate, which has a megathrust at abut 300 km distance, as well as intraslab seismicity extending to directly beneath the city. It is also located in a basin filled with a thick layer of unconsolidated and poorly consolidated sediment, which increases the seismic hazard the city is facing. Therefore, the information on the seismic velocity structure of the basin is crucial for increasing our knowledge of the seismic risk. We undertook a passive deployment of broadband seismographs throughout the city over a 3-month interval in 2013-2014, recording ambient seismic noise at over 90 sites for intervals of 1 month or more. Here we consider autocorrelations of the vertical component of the continuously recorded seismic wavefield across this dense network to image the shallow P wave velocity structure of Jakarta, Indonesia. Unlike the surface wave Green's functions used in ambient noise tomography, the vertical-component autocorrelograms are dominated by body wave energy that is potentially sensitive to sharp velocity contrasts, which makes them useful in seismic imaging. Results show autocorrelograms at different seismic stations with travel time variations that largely reflect changes in sediment thickness across the basin. We also confirm the validity our interpretation of the observed autocorrelation waveforms by conducting 2D finite difference full waveform numerical modeling for randomly distributed seismic sources to retrieve the reflection response through autocorrelation.
Anatomy of the western Java plate interface from depth-migrated seismic images
NASA Astrophysics Data System (ADS)
Kopp, H.; Hindle, D.; Klaeschen, D.; Oncken, O.; Reichert, C.; Scholl, D.
2009-11-01
Newly pre-stack depth-migrated seismic images resolve the structural details of the western Java forearc and plate interface. The structural segmentation of the forearc into discrete mechanical domains correlates with distinct deformation styles. Approximately 2/3 of the trench sediment fill is detached and incorporated into frontal prism imbricates, while the floor sequence is underthrust beneath the décollement. Western Java, however, differs markedly from margins such as Nankai or Barbados, where a uniform, continuous décollement reflector has been imaged. In our study area, the plate interface reveals a spatially irregular, nonlinear pattern characterized by the morphological relief of subducted seamounts and thicker than average patches of underthrust sediment. The underthrust sediment is associated with a low velocity zone as determined from wide-angle data. Active underplating is not resolved, but likely contributes to the uplift of the large bivergent wedge that constitutes the forearc high. Our profile is located 100 km west of the 2006 Java tsunami earthquake. The heterogeneous décollement zone regulates the friction behavior of the shallow subduction environment where the earthquake occurred. The alternating pattern of enhanced frictional contact zones associated with oceanic basement relief and weak material patches of underthrust sediment influences seismic coupling and possibly contributed to the heterogeneous slip distribution. Our seismic images resolve a steeply dipping splay fault, which originates at the décollement and terminates at the sea floor and which potentially contributes to tsunami generation during co-seismic activity.
Anatomy of the western Java plate interface from depth-migrated seismic images
Kopp, H.; Hindle, D.; Klaeschen, D.; Oncken, O.; Reichert, C.; Scholl, D.
2009-01-01
Newly pre-stack depth-migrated seismic images resolve the structural details of the western Java forearc and plate interface. The structural segmentation of the forearc into discrete mechanical domains correlates with distinct deformation styles. Approximately 2/3 of the trench sediment fill is detached and incorporated into frontal prism imbricates, while the floor sequence is underthrust beneath the d??collement. Western Java, however, differs markedly from margins such as Nankai or Barbados, where a uniform, continuous d??collement reflector has been imaged. In our study area, the plate interface reveals a spatially irregular, nonlinear pattern characterized by the morphological relief of subducted seamounts and thicker than average patches of underthrust sediment. The underthrust sediment is associated with a low velocity zone as determined from wide-angle data. Active underplating is not resolved, but likely contributes to the uplift of the large bivergent wedge that constitutes the forearc high. Our profile is located 100 km west of the 2006 Java tsunami earthquake. The heterogeneous d??collement zone regulates the friction behavior of the shallow subduction environment where the earthquake occurred. The alternating pattern of enhanced frictional contact zones associated with oceanic basement relief and weak material patches of underthrust sediment influences seismic coupling and possibly contributed to the heterogeneous slip distribution. Our seismic images resolve a steeply dipping splay fault, which originates at the d??collement and terminates at the sea floor and which potentially contributes to tsunami generation during co-seismic activity. ?? 2009 Elsevier B.V.
NASA Astrophysics Data System (ADS)
DeGrandpre, K.; Pesicek, J. D.; Lu, Z.
2016-12-01
During the summer of 2014 and the early spring of 2015 two notable increases in seismic activity at Semisopochnoi volcano in the western Aleutian islands were recorded on AVO seismometers on Semisopochnoi and neighboring islands. These seismic swarms did not lead to an eruption. This study employs differential SAR techniques using TerraSAR-X images in conjunction with more accurately relocating the recorded seismic events through simultaneous inversion of event travel times and a three-dimensional velocity model using tomoDD. The interferograms created from the SAR images exhibit surprising coherence and an island wide spatial distribution of inflation that is then used in a Mogi model in order to define the three-dimensional location and volume change required for a source at Semisopochnoi to produce the observed surface deformation. The tomoDD relocations provide a more accurate and realistic three-dimensional velocity model as well as a tighter clustering of events for both swarms that clearly outline a linear seismic void within the larger group of shallow (<10 km) seismicity. While no direct conclusions as to the relationship of these seismic events and the observed surface deformation can be made at this time, these techniques are both complimentary and efficient forms of remotely monitoring volcanic activity that provide much deeper insights into the processes involved without having to risk hazardous or costly field work.
Past seismic slip-to-the-trench recorded in Central America megathrust
NASA Astrophysics Data System (ADS)
Vannucchi, Paola; Spagnuolo, Elena; Aretusini, Stefano; Di Toro, Giulio; Ujiie, Kohtaro; Tsutsumi, Akito; Nielsen, Stefan
2017-12-01
The 2011 Tōhoku-Oki earthquake revealed that co-seismic displacement along the plate boundary megathrust can propagate to the trench. Co-seismic slip to the trench amplifies hazards at subduction zones, so its historical occurrence should also be investigated globally. Here we combine structural and experimental analyses of core samples taken offshore from southeastern Costa Rica as part of the Integrated Ocean Drilling Program (IODP) Expedition 344, with three-dimensional seismic reflection images of the subduction zone. We document a geologic record of past co-seismic slip to the trench. The core passed through a less than 1.9-million-year-old megathrust frontal ramp that superimposes older Miocene biogenic oozes onto late Miocene-Pleistocene silty clays. This, together with our stratigraphic analyses and geophysical images, constrains the position of the basal decollement to lie within the biogenic oozes. Our friction experiments show that, when wet, silty clays and biogenic oozes are both slip-weakening at sub-seismic and seismic slip velocities. Oozes are stronger than silty clays at slip velocities of less than or equal to 0.01 m s-1, and wet oozes become as weak as silty clays only at a slip velocity of 1 m s-1. We therefore suggest that the geological structures found offshore from Costa Rica were deformed during seismic slip-to-the-trench events. During slower aseismic creep, deformation would have preferentially localized within the silty clays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisses, A.; Kell, A.; Kent, G.
Amy Eisses, Annie Kell, Graham Kent, Neal Driscoll, Robert Karlin, Rob Baskin, John Louie, and Satish Pullammanappallil, 2011, Marine and land active-source seismic imaging of mid-Miocene to Holocene-aged faulting near geothermal prospects at Pyramid Lake, Nevada: presented at Geothermal Resources Council Annual Meeting, San Diego, Oct. 23-26.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frary, R.; Louie, J.; Pullammanappallil, S.
Roxanna Frary, John N. Louie, Sathish Pullammanappallil, Amy Eisses, 2011, Preliminary 3d depth migration of a network of 2d seismic lines for fault imaging at a Pyramid Lake, Nevada geothermal prospect: presented at American Geophysical Union Fall Meeting, San Francisco, Dec. 5-9, abstract T13G-07.
NASA Astrophysics Data System (ADS)
Boston, B.; Moore, G. F.; Jurado, M. J.; Sone, H.; Tobin, H. J.; Saffer, D. M.; Hirose, T.; Toczko, S.; Maeda, L.
2014-12-01
The deeper, inner parts of active accretionary prisms have been poorly studied due the lack of drilling data, low seismic image quality and typically thick overlying sediments. Our project focuses on the interior of the Nankai Trough inner accretionary prism using deep scientific drilling and a 3D seismic cube. International Ocean Discovery Program (IODP) Expedition 348 extended the existing riser hole to more than 3000 meters below seafloor (mbsf) at Site C0002. Logging while drilling (LWD) data included gamma ray, resistivity, resistivity image, and sonic logs. LWD analysis of the lower section revealed on the borehole images intense deformation characterized by steep bedding, faults and fractures. Bedding plane orientations were measured throughout, with minor gaps at heavily deformed zones disrupting the quality of the resistivity images. Bedding trends are predominantly steeply dipping (60-90°) to the NW. Interpretation of fractures and faults in the image log revealed the existence of different sets of fractures and faults and variable fracture density, remarkably high at fault zones. Gamma ray, resistivity and sonic logs indicated generally homogenous lithology interpretation along this section, consistent with the "silty-claystone" predominant lithologies described on cutting samples. Drops in sonic velocity were observed at the fault zones defined on borehole images. Seismic reflection interpretation of the deep faults in the inner prism is exceedingly difficult due to a strong seafloor multiple, high-angle bedding dips, and low frequency of the data. Structural reconstructions were employed to test whether folding of seismic horizons in the overlying forearc basin could be from an interpreted paleothrust within the inner prism. We used a trishear-based restoration to estimate fault slip on folded horizons landward of C0002. We estimate ~500 m of slip from a steeply dipping deep thrust within the last ~0.9 Ma. Folding is not found in the Kumano sediments near C0002, where normal faults and tilting dominate the modern basin deformation. Both logging and seismic are consistent in characterizing a heavily deformed inner prism. Most of this deformation must have occurred during or before formation of the overlying modern Kumano forearc basin sediments.
NASA Astrophysics Data System (ADS)
Krabbenhoeft, A.; Papenberg, C. A.; Klaeschen, D.; Bialas, J.
2016-12-01
The goal of this study is to image the sub-seafloor structure beneath the Sevastopol mud volcano (SMV), Sorokin Trough, SE of the Crimean peninsula, Black Sea. The focus lies on structures of/within the feeder channel, the distribution of gas and gas hydrates, and their relation to fluid migration zones in sediments. This study concentrates on a 3D high resolution seismic grid (7 km x 2.5 km) recorded with 13 ocean bottom stations (OBS). The 3D nature of the experiment results from the geometry of 68 densely spaced (25/50 m) profiles, as well as the cubical configuration of the densely spaced receivers on the seafloor ( 300 m station spacing). The seismic profiles are typically longer than 6 km which results in large offsets for the reflections of the OBS. This enables the study of the seismic velocities of the sub-seafloor sediments and additionally large offset incident analysis.The 3D Kirchhoff mirror image time migration, applied to all OBS sections including all shots from all profiles, leads to a spatial image of the sub-seafloor. Here, the migration was applied with the velocity distribution of 1.49 km/s in the water column, 1.5 km/s below the seafloor (bsf) increasing to 2 km/s for the deeper sediments at 2 s bsf. Acoustic blanking occurs beneath the south-easterly located OBS and is associated with the feeder channel of the mud volcano. There, gas from depth can vertically migrate to the seafloor and on its way to the surface horizontally distribute patchily within sediment layers. High amplitude reflections are not observed as continuous reflections, but in a patchy distribution. They are associated with accumulations of gas. Also structures exist within the feeder channel of the SMV.3D mirror imaging proves to be a good tool to seismically image structures compared with 2D streamer seismics, especially steep dipping reflectors and structures which are otherwise obscured by signal scattering, i.e structures associated with fluid migration paths.
Seismic Structure of Perth Basin (Australia) and surroundings from Passive Seismic Deployments
NASA Astrophysics Data System (ADS)
Issa, N.; Saygin, E.; Lumley, D. E.; Hoskin, T. E.
2016-12-01
We image the subsurface structure of Perth Basin, Western Australia and surroundings by using ambient seismic noise data from 14 seismic stations recently deployed by University of Western Australia (UWA) and other available permanent stations from Geoscience Australia seismic network and the Australian Seismometers in Schools program. Each of these 14 UWA seismic stations comprises a broadband sensor and a high fidelity 3-component 10 Hz geophone, recording in tandem at 250 Hz and 1000 Hz. The other stations used in this study are equipped with short period and broadband sensors. In addition, one shallow borehole station is operated with eight 3 component geophones at depths of between 2 and 44 m. The network is deployed to characterize natural seismicity in the basin and to try and identify any microseismic activity across Darling Fault Zone (DFZ), bounding the basin to the east. The DFZ stretches to approximately 1000 km north-south in Western Australia, and is one of the longest fault zones on the earth with a limited number of detected earthquakes. We use seismic noise cross- and auto-correlation methods to map seismic velocity perturbations across the basin and the transition from DFZ to the basin. Retrieved Green's functions are stable and show clear dispersed waveforms. Travel times of the surface wave Green's functions from noise cross-correlations are inverted with a two-step probabilistic framework to map the absolute shear wave velocities as a function of depth. The single station auto-correlations from the seismic noise yields P wave reflectivity under each station, marking the major discontinuities. Resulting images show the shear velocity perturbations across the region. We also quantify the variation of ambient seismic noise at different depths in the near surface using the geophones in the shallow borehole array.
Seismic Imaging of VTI, HTI and TTI based on Adjoint Methods
NASA Astrophysics Data System (ADS)
Rusmanugroho, H.; Tromp, J.
2014-12-01
Recent studies show that isotropic seismic imaging based on adjoint method reduces low-frequency artifact caused by diving waves, which commonly occur in two-wave wave-equation migration, such as Reverse Time Migration (RTM). Here, we derive new expressions of sensitivity kernels for Vertical Transverse Isotropy (VTI) using the Thomsen parameters (ɛ, δ, γ) plus the P-, and S-wave speeds (α, β) as well as via the Chen & Tromp (GJI 2005) parameters (A, C, N, L, F). For Horizontal Transverse Isotropy (HTI), these parameters depend on an azimuthal angle φ, where the tilt angle θ is equivalent to 90°, and for Tilted Transverse Isotropy (TTI), these parameters depend on both the azimuth and tilt angles. We calculate sensitivity kernels for each of these two approaches. Individual kernels ("images") are numerically constructed based on the interaction between the regular and adjoint wavefields in smoothed models which are in practice estimated through Full-Waveform Inversion (FWI). The final image is obtained as a result of summing all shots, which are well distributed to sample the target model properly. The impedance kernel, which is a sum of sensitivity kernels of density and the Thomsen or Chen & Tromp parameters, looks crisp and promising for seismic imaging. The other kernels suffer from low-frequency artifacts, similar to traditional seismic imaging conditions. However, all sensitivity kernels are important for estimating the gradient of the misfit function, which, in combination with a standard gradient-based inversion algorithm, is used to minimize the objective function in FWI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frary, Roxanna
2012-05-05
The Truckee Meadows basin is situated adjacent to the Sierra Nevada microplate, on the western boundary of the Walker Lane. Being in the transition zone between a range-front normal fault on the west and northwest-striking right-lateral strike slip faults to the east, there is no absence of faulting in this basin. The Reno- Sparks metropolitan area is located in this basin, and with a signi cant population living here, it is important to know where these faults are. High-resolution seismic reflection surveys are used for the imaging of these faults along the Truckee River, across which only one fault wasmore » previously mapped, and in southern Reno near and along Manzanita Lane, where a swarm of short faults has been mapped. The reflection profiles constrain the geometries of these faults, and suggest additional faults not seen before. Used in conjunction with depth to bedrock calculations and gravity measurements, the seismic reflection surveys provide de nitive locations of faults, as well as their orientations. O sets on these faults indicate how active they are, and this in turn has implications for seismic hazard in the area. In addition to seismic hazard, the faults imaged here tell us something about the conduits for geothermal fluid resources in Reno.« less
Harrison, Arnell S.; Dadisman, Shawn V.; Kindinger, Jack G.; Morton, Robert A.; Blum, Mike D.; Wiese, Dana S.; Subiño, Janice A.
2007-01-01
In June of 1996, the U.S. Geological Survey conducted geophysical surveys from Nueces to Copano Bays, Texas. This report serves as an archive of unprocessed digital boomer seismic reflection data, trackline maps, navigation files, GIS information, cruise log, and formal FGDC metadata. Filtered and gained digital images of the seismic profiles and high resolution scanned TIFF images of the original paper printouts are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Example SU processing scripts and USGS software for viewing the SEG-Y files (Zihlman, 1992) are also provided.
Accessing seismic data through geological interpretation: Challenges and solutions
NASA Astrophysics Data System (ADS)
Butler, R. W.; Clayton, S.; McCaffrey, B.
2008-12-01
Between them, the world's research programs, national institutions and corporations, especially oil and gas companies, have acquired substantial volumes of seismic reflection data. Although the vast majority are proprietary and confidential, significant data are released and available for research, including those in public data libraries. The challenge now is to maximise use of these data, by providing routes to seismic not simply on the basis of acquisition or processing attributes but via the geology they image. The Virtual Seismic Atlas (VSA: www.seismicatlas.org) meets this challenge by providing an independent, free-to-use community based internet resource that captures and shares the geological interpretation of seismic data globally. Images and associated documents are explicitly indexed by extensive metadata trees, using not only existing survey and geographical data but also the geology they portray. The solution uses a Documentum database interrogated through Endeca Guided Navigation, to search, discover and retrieve images. The VSA allows users to compare contrasting interpretations of clean data thereby exploring the ranges of uncertainty in the geometric interpretation of subsurface structure. The metadata structures can be used to link reports and published research together with other data types such as wells. And the VSA can link to existing data libraries. Searches can take different paths, revealing arrays of geological analogues, new datasets while providing entirely novel insights and genuine surprises. This can then drive new creative opportunities for research and training, and expose the contents of seismic data libraries to the world.
NASA Astrophysics Data System (ADS)
Jain, Kiran; Tripathy, S. C.; Hill, F.
2018-05-01
In this Letter we explore the relationship between the solar seismic radius and total solar irradiance (TSI) during the last two solar cycles using the uninterrupted data from space-borne instruments on board the Solar and Heliospheric Observatory (SoHO) and the Solar Dynamics Observatory (SDO). The seismic radius is calculated from the fundamental (f) modes of solar oscillations utilizing the observations from SoHO/Michelson Doppler Imager (MDI) and SDO/Helioseismic and Magnetic Imager (HMI), and the TSI measurements are obtained from SoHO/VIRGO. Our study suggests that the major contribution to the TSI variation arises from the changes in magnetic field, while the radius variation plays a secondary role. We find that the solar irradiance increases with decreasing seismic radius; however, the anti-correlation between them is moderately weak. The estimated maximum change in seismic radius during a solar cycle is about 5 km, and is consistent in both solar cycles 23 and 24. Previous studies ;suggest a radius change at the surface of the order of 0.06 arcsec to explain the 0.1% variation in the TSI values during the solar cycle; however, our inferred seismic radius change is significantly smaller, hence the TSI variations cannot be fully explained by the temporal changes in seismic radius.
NASA Astrophysics Data System (ADS)
Pratama Wahyu Hidayat, Putra; Hary Murti, Antonius; Sudarmaji; Shirly, Agung; Tiofan, Bani; Damayanti, Shinta
2018-03-01
Geometry is an important parameter for the field of hydrocarbon exploration and exploitation, it has significant effect to the amount of resources or reserves, rock spreading, and risk analysis. The existence of geological structure or fault becomes one factor affecting geometry. This study is conducted as an effort to enhance seismic image quality in faults dominated area namely offshore Madura Strait. For the past 10 years, Oligo-Miocene carbonate rock has been slightly explored on Madura Strait area, the main reason because migration and trap geometry still became risks to be concern. This study tries to determine the boundary of each fault zone as subsurface image generated by converting seismic data into variance attribute. Variance attribute is a multitrace seismic attribute as the derivative result from amplitude seismic data. The result of this study shows variance section of Madura Strait area having zero (0) value for seismic continuity and one (1) value for discontinuity of seismic data. Variance section shows the boundary of RMKS fault zone with Kendeng zone distinctly. Geological structure and subsurface geometry for Oligo-Miocene carbonate rock could be identified perfectly using this method. Generally structure interpretation to identify the boundary of fault zones could be good determined by variance attribute.
Recent Impacts on Mars: Cluster Properties and Seismic Signal Predictions
NASA Astrophysics Data System (ADS)
Justine Daubar, Ingrid; Schmerr, Nicholas; Banks, Maria; Marusiak, Angela; Golombek, Matthew P.
2016-10-01
Impacts are a key source of seismic waves that are a primary constraint on the formation, evolution, and dynamics of planetary objects. Geophysical missions such as InSight (Banerdt et al., 2013) will monitor seismic signals from internal and external sources. New martian craters have been identified in orbital images (Malin et al., 2006; Daubar et al., 2013). Seismically detecting such impacts and subsequently imaging the resulting craters will provide extremely accurate epicenters and source crater sizes, enabling calibration of seismic velocities, the efficiency of impact-seismic coupling, and retrieval of detailed regional and local internal structure.To investigate recent impact-induced seismicity on Mars, we have assessed ~100 new, dated impact sites. In approximately half of new impacts, the bolide partially disintegrates in the atmosphere, forming multiple craters in a cluster. We incorporate the resulting, more complex, seismic effects in our model. To characterize the variation between sites, we focus on clustered impacts. We report statistics of craters within clusters: diameters, morphometry indicating subsurface layering, strewn-field azimuths indicating impact direction, and dispersion within clusters indicating combined effects of bolide strength and elevation of breakup.Measured parameters are converted to seismic predictions for impact sources using a scaling law relating crater diameter to the momentum and source duration, calibrated for impacts recorded by Apollo (Lognonne et al., 2009). We use plausible ranges for target properties, bolide densities, and impact velocities to bound the seismic moment. The expected seismic sources are modeled in the near field using a 3-D wave propagation code (Petersson et al., 2010) and in the far field using a 1-D wave propagation code (Friederich et al., 1995), for a martian seismic model. Thus we calculate the amplitudes of seismic phases at varying distances, which can be used to evaluate the detectability of body and surface wave phases created by different sizes and types of impacts all over Mars.
NASA Astrophysics Data System (ADS)
Miller, N. C.; Lizarralde, D.; McGuire, J.; Hole, J. A.
2006-12-01
We consider methodologies, including survey design and processing algorithms, which are best suited to imaging vertical reflectors in oceanic crust using marine seismic techniques. The ability to image the reflectivity structure of transform faults as a function of depth, for example, may provide new insights into what controls seismicity along these plate boundaries. Turning-wave migration has been used with success to image vertical faults on land. With synthetic datasets we find that this approach has unique difficulties in the deep ocean. The fault-reflected crustal refraction phase (Pg-r) typically used in pre-stack migrations is difficult to isolate in marine seismic data. An "imagable" Pg-r is only observed in a time window between the first arrivals and arrivals from the sediments and the thick, slow water layer at offsets beyond ~25 km. Ocean- bottom seismometers (OBSs), as opposed to a long surface streamer, must be used to acquire data suitable for crustal-scale vertical imaging. The critical distance for Moho reflections (PmP) in oceanic crust is also ~25 km, thus Pg-r and PmP-r are observed with very little separation, and the fault-reflected mantle refraction (Pn-r) arrives prior to Pg-r as the observation window opens with increased OBS-to-fault distance. This situation presents difficulties for "first-arrival" based Kirchoff migration approaches and suggests that wave- equation approaches, which in theory can image all three phases simultaneously, may be more suitable for vertical imaging in oceanic crust. We will present a comparison of these approaches as applied to a synthetic dataset generated from realistic, stochastic velocity models. We will assess their suitability, the migration artifacts unique to the deep ocean, and the ideal instrument layout for such an experiment.
Travel time tomography with local image regularization by sparsity constrained dictionary learning
NASA Astrophysics Data System (ADS)
Bianco, M.; Gerstoft, P.
2017-12-01
We propose a regularization approach for 2D seismic travel time tomography which models small rectangular groups of slowness pixels, within an overall or `global' slowness image, as sparse linear combinations of atoms from a dictionary. The groups of slowness pixels are referred to as patches and a dictionary corresponds to a collection of functions or `atoms' describing the slowness in each patch. These functions could for example be wavelets.The patch regularization is incorporated into the global slowness image. The global image models the broad features, while the local patch images incorporate prior information from the dictionary. Further, high resolution slowness within patches is permitted if the travel times from the global estimates support it. The proposed approach is formulated as an algorithm, which is repeated until convergence is achieved: 1) From travel times, find the global slowness image with a minimum energy constraint on the pixel variance relative to a reference. 2) Find the patch level solutions to fit the global estimate as a sparse linear combination of dictionary atoms.3) Update the reference as the weighted average of the patch level solutions.This approach relies on the redundancy of the patches in the seismic image. Redundancy means that the patches are repetitions of a finite number of patterns, which are described by the dictionary atoms. Redundancy in the earth's structure was demonstrated in previous works in seismics where dictionaries of wavelet functions regularized inversion. We further exploit redundancy of the patches by using dictionary learning algorithms, a form of unsupervised machine learning, to estimate optimal dictionaries from the data in parallel with the inversion. We demonstrate our approach on densely, but irregularly sampled synthetic seismic images.
NASA Astrophysics Data System (ADS)
Lee, En-Jui; Chen, Po
2017-04-01
More precise spatial descriptions of fault systems play an essential role in tectonic interpretations, deformation modeling, and seismic hazard assessments. The recent developed full-3D waveform tomography techniques provide high-resolution images and are able to image the material property differences across faults to assist the understanding of fault systems. In the updated seismic velocity model for Southern California, CVM-S4.26, many velocity gradients show consistency with surface geology and major faults defined in the Community Fault Model (CFM) (Plesch et al. 2007), which was constructed by using various geological and geophysical observations. In addition to faults in CFM, CVM-S4.26 reveals a velocity reversal mainly beneath the San Gabriel Mountain and Western Mojave Desert regions, which is correlated with the detachment structure that has also been found in other independent studies. The high-resolution tomographic images of CVM-S4.26 could assist the understanding of fault systems in Southern California and therefore benefit the development of fault models as well as other applications, such as seismic hazard analysis, tectonic reconstructions, and crustal deformation modeling.
Donne, D.D.; Plccardi, L.; Odum, J.K.; Stephenson, W.J.; Williams, R.A.
2007-01-01
Shallow seismic reflection prospecting has been carried out in order to investigate the faults that bound to the southwest and northeast the Quaternary Upper Tiber Basin (Northern Apennines, Italy). On the northeastern margin of the basin a ??? 1 km long reflection seismic profile images a fault segment and the associated up to 100 meters thick sediment wedge. Across the southwestern margin a 0.5 km-long seismic profile images a 50-55??-dipping extensional fault, that projects to the scarp at the base of the range-front, and against which a 100 m thick syn-tectonic sediment wedge has formed. The integration of surface and sub-surface data allows to estimate at least 190 meters of vertical displacement along the fault and a slip rate around 0.25 m/kyr. Southwestern fault might also be interpreted as the main splay structure of regional Alto Tiberina extensional fault. At last, the 1917 Monterchi earthquake (Imax=X, Boschi et alii, 2000) is correlable with an activation of the southwestern fault, and thus suggesting the seismogenic character of this latter.
Mini-Sosie high-resolution seismic method aids hazards studies
Stephenson, W.J.; Odum, J.; Shedlock, K.M.; Pratt, T.L.; Williams, R.A.
1992-01-01
The Mini-Sosie high-resolution seismic method has been effective in imaging shallow-structure and stratigraphic features that aid in seismic-hazard and neotectonic studies. The method is not an alternative to Vibroseis acquisition for large-scale studies. However, it has two major advantages over Vibroseis as it is being used by the USGS in its seismic-hazards program. First, the sources are extremely portable and can be used in both rural and urban environments. Second, the shifting-and-summation process during acquisition improves the signal-to-noise ratio and cancels out seismic noise sources such as cars and pedestrians. -from Authors
Infrasound Generation from the HH Seismic Hammer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Kyle Richard
2014-10-01
The HH Seismic hammer is a large, "weight-drop" source for active source seismic experiments. This system provides a repetitive source that can be stacked for subsurface imaging and exploration studies. Although the seismic hammer was designed for seismological studies it was surmised that it might produce energy in the infrasonic frequency range due to the ground motion generated by the 13 metric ton drop mass. This study demonstrates that the seismic hammer generates a consistent acoustic source that could be used for in-situ sensor characterization, array evaluation and surface-air coupling studies for source characterization.
Gas hydrate hunting in China seas
NASA Astrophysics Data System (ADS)
Yang, J.; Zhang, X.; Chen, J.; Xiang, Q.; Ye, Y.; Gong, J.
2003-04-01
Gas hydrate research is a hotspot now in geosciences. Many countries have carried on gas hydrate survey and research for many years. China, as a country with large sea areas unfolded gas hydrate research work in its marine areas in 1999 and tries to keep pace with the advanced countries on gas hydrate study. Substantial funds were launched by various governmental and non-governmental funding agencies to support gas hydrate research. Many institutions on marine geosciences are involved in. China Geological Survey (CGS) has launched several research projects in the sea. So far, some fieldwork such as seismic survey, sampling, profiling, underwater video imaging have been done in South China Sea and East China Sea areas. Some preliminary results have been achieved. BSRs are found in many seismic profiles. Some potential gas hydrate bearing areas are marked and potential amount of gas hydrate resources is calculated. At the same time, gas hydrate laboratory was founded and successful experiments have been carried out to model the gas hydrate synthesis in accordance with the geological condition of the China seas. Now, gas hydrate detecting techniques such as sampling equipment (PCS), seismic data processing, interpretation and the formation mechanism study as well as environmental effect research are undergoing. Though China's gas hydrate research work is still at its initial stage, China is willing to be an active member in the international society of gas hydrate study and hopes to contribute its effort.
Davatzes, Nicholas C.; Hickman, Stephen H.
2009-01-01
A suite of geophysical logs has been acquired for structural, fluid flow and stress analysis of well 27-15 in the Desert Peak Geothermal Field, Nevada, in preparation for stimulation and development of an Enhanced Geothermal System (EGS). Advanced Logic Technologies Borehole Televiewer (BHTV) and Schlumberger Formation MicroScanner (FMS) image logs reveal extensive drilling-induced tensile fractures, showing that the current minimum compressive horizontal stress, Shmin, in the vicinity of well 27-15 is oriented along an azimuth of 114±17°. This orientation is consistent with the dip direction of recently active normal faults mapped at the surface and with extensive sets of fractures and some formation boundaries seen in the BHTV and FMS logs. Temperature and spinner flowmeter surveys reveal several minor flowing fractures that are well oriented for normal slip, although over-all permeability in the well is quite low. These results indicate that well 27-15 is a viable candidate for EGS stimulation and complements research by other investigators including cuttings analysis, a reflection seismic survey, pressure transient and tracer testing, and micro-seismic monitoring.
Anomalies of rupture velocity in deep earthquakes
NASA Astrophysics Data System (ADS)
Suzuki, M.; Yagi, Y.
2010-12-01
Explaining deep seismicity is a long-standing challenge in earth science. Deeper than 300 km, the occurrence rate of earthquakes with depth remains at a low level until ~530 km depth, then rises until ~600 km, finally terminate near 700 km. Given the difficulty of estimating fracture properties and observing the stress field in the mantle transition zone (410-660 km), the seismic source processes of deep earthquakes are the most important information for understanding the distribution of deep seismicity. However, in a compilation of seismic source models of deep earthquakes, the source parameters for individual deep earthquakes are quite varied [Frohlich, 2006]. Rupture velocities for deep earthquakes estimated using seismic waveforms range from 0.3 to 0.9Vs, where Vs is the shear wave velocity, a considerably wider range than the velocities for shallow earthquakes. The uncertainty of seismic source models prevents us from determining the main characteristics of the rupture process and understanding the physical mechanisms of deep earthquakes. Recently, the back projection method has been used to derive a detailed and stable seismic source image from dense seismic network observations [e.g., Ishii et al., 2005; Walker et al., 2005]. Using this method, we can obtain an image of the seismic source process from the observed data without a priori constraints or discarding parameters. We applied the back projection method to teleseismic P-waveforms of 24 large, deep earthquakes (moment magnitude Mw ≥ 7.0, depth ≥ 300 km) recorded since 1994 by the Data Management Center of the Incorporated Research Institutions for Seismology (IRIS-DMC) and reported in the U.S. Geological Survey (USGS) catalog, and constructed seismic source models of deep earthquakes. By imaging the seismic rupture process for a set of recent deep earthquakes, we found that the rupture velocities are less than about 0.6Vs except in the depth range of 530 to 600 km. This is consistent with the depth variation of deep seismicity: it peaks between about 530 and 600 km, where the fast rupture earthquakes (greater than 0.7Vs) are observed. Similarly, aftershock productivity is particularly low from 300 to 550 km depth and increases markedly at depth greater than 550 km [e.g., Persh and Houston, 2004]. We propose that large fracture surface energy (Gc) value for deep earthquakes generally prevent the acceleration of dynamic rupture propagation and generation of earthquakes between 300 and 700 km depth, whereas small Gc value in the exceptional depth range promote dynamic rupture propagation and explain the seismicity peak near 600 km.
Use of a Land Streamer System to Image the Potomac Formation in Northern Delaware
NASA Astrophysics Data System (ADS)
Velez, C. C.; McLaughlin, P. P.; McGeary, S.; Sargent, S. L.
2008-12-01
A land streamer system, an alternative to conventional seismic acquisition equipment for collecting large amounts of seismic reflection data in urbanized and semi-urbanized areas, was used to collect a network of high-resolution seismic reflection data in northern Delaware. The principal objective of this work is to image the distribution and geometry of sand bodies in the Cretaceous (Aptian to Cenomanian) non-marine deposits of the Potomac Formation. The Potomac Formation includes the most important confined aquifers in the Coastal Plain of northern Delaware. Previous studies indicate these deposits onlap Paleozoic basement at depths from 115 m to 400 m in the study area and are truncated by an unconformity. Previous descriptions of sedimentary facies from nearby cores and geophysical logs indicate that the Potomac Formation is a predominantly fine-grained alluvial unit with laterally discontinuous fluvial sand bodies, resulting in a "labyrinth style heterogeneity" for aquifer facies. The 20-km seismic dataset collected for this study indicates that land-streamer seismic methods can be used in this area to image the subsurface geology as shallow as 18 m and as deep as the basement at 315 m. The theoretical quarter wavelength of the seismic dataset suggests a resolution of 2 to 4 m, which is sufficient to resolve aquifer sands in the Potomac Formation ranging from 10 to 20 m thick. Final processed seismic sections will be integrated with geophysical logs and core data to provide a robust 2-D dataset that will allow assessment of current concepts for facies and correlations in the Potomac Formation, thus benefiting understanding of critical ground-water resources.
Magnetotelluric Studies of Fault Zones Surrounding the 2016 Pawnee, Oklahoma Earthquake
NASA Astrophysics Data System (ADS)
Evans, R. L.; Key, K.; Atekwana, E. A.
2016-12-01
Since 2008, there has been a dramatic increase in earthquake activity in the central United States in association with major oil and gas operations. Oklahoma is now considered one the most seismically active states. Although seismic networks are able to detect activity and map its locus, they are unable to image the distribution of fluids in the fault responsible for triggering seismicity. Electrical geophysical methods are ideally suited to image fluid bearing faults since the injected waste-waters are highly saline and hence have a high electrical conductivity. To date, no study has imaged the fluids in the faults in Oklahoma and made a direct link to the seismicity. The 2016 M5.8 Pawnee, Oklahoma earthquake provides an unprecedented opportunity for scientists to provide that link. Several injection wells are located within a 20 km radius of the epicenter; and studies have suggested that injection of fluids in high-volume wells can trigger earthquakes as far away as 30 km. During late October to early November, 2016, we are collecting magnetotelluric (MT) data with the aim of constraining the distribution of fluids in the fault zone. The MT technique uses naturally occurring electric and magnetic fields measured at Earth's surface to measure conductivity structure. We plan to carry out a series of short two-dimensional (2D) profiles of wideband MT acquisition located through areas where the fault recently ruptured and seismic activity is concentrated and also across the faults in the vicinity that did not rupture. The integration of our results and ongoing seismic studies will lead to a better understanding of the links between fluid injection and seismicity.
Development of Vertical Cable Seismic System for Hydrothermal Deposit Survey (2) - Feasibility Study
NASA Astrophysics Data System (ADS)
Asakawa, E.; Murakami, F.; Sekino, Y.; Okamoto, T.; Mikada, H.; Takekawa, J.; Shimura, T.
2010-12-01
In 2009, Ministry of Education, Culture, Sports, Science and Technology(MEXT) started the survey system development for Hydrothermal deposit. We proposed the Vertical Cable Seismic (VCS), the reflection seismic survey with vertical cable above seabottom. VCS has the following advantages for hydrothermal deposit survey. . (1) VCS is an effective high-resolution 3D seismic survey within limited area. (2) It achieves high-resolution image because the sensors are closely located to the target. (3) It avoids the coupling problems between sensor and seabottom that cause serious damage of seismic data quality. (4) Various types of marine source are applicable with VCS such as sea-surface source (air gun, water gun etc.) , deep-towed or ocean bottom sources. (5) Autonomous recording system. Our first experiment of 2D/3D VCS surveys has been carried out in Lake Biwa, JAPAN. in November 2009. The 2D VCS data processing follows the walk-away VSP, including wave field separation and depth migration. The result gives clearer image than the conventional surface seismic. Prestack depth migration is applied to 3D data to obtain good quality 3D depth volume. Uncertainty of the source/receiver poisons in water causes the serious problem of the imaging. We used several transducer/transponder to estimate these positions. The VCS seismic records themselves can also provide sensor position using the first break of each trace and we calibrate the positions. We are currently developing the autonomous recording VCS system and planning the trial experiment in actual ocean to establish the way of deployment/recovery and the examine the position through the current flow in November, 2010. The second VCS survey will planned over the actual hydrothermal deposit with deep-towed source in February, 2011.
Imaging with cross-hole seismoelectric tomography
Araji, A.H.; Revil, A.; Jardani, A.; Minsley, Burke J.; Karaoulis, M.
2012-01-01
We propose a cross-hole imaging approach based on seismoelectric conversions (SC) associated with the transmission of seismic waves from seismic sources located in a borehole to receivers (electrodes) located in a second borehole. The seismoelectric (seismic-to-electric) problem is solved using Biot theory coupled with a generalized Ohm's law with an electrokinetic streaming current contribution. The components of the displacement of the solid phase, the fluid pressure, and the electrical potential are solved using a finite element approach with Perfect Match Layer (PML) boundary conditions for the seismic waves and boundary conditions mimicking an infinite material for the electrostatic problem. We develop an inversion algorithm using the electrical disturbances recorded in the second borehole to localize the position of the heterogeneities responsible for the SC. Because of the ill-posed nature of the inverse problem (inherent to all potential-field problems), regularization is used to constrain the solution at each time in the SC-time window comprised between the time of the seismic shot and the time of the first arrival of the seismic waves in the second borehole. All the inverted volumetric current source densities are aggregated together to produce an image of the position of the heterogeneities between the two boreholes. Two simple synthetic case studies are presented to test this concept. The first case study corresponds to a vertical discontinuity between two homogeneous sub-domains. The second case study corresponds to a poroelastic inclusion (partially saturated by oil) embedded into an homogenous poroelastic formation. In both cases, the position of the heterogeneity is recovered using only the electrical disturbances associated with the SC. That said, a joint inversion of the seismic and seismoelectric data could improve these results.
Extending RTM Imaging With a Focus on Head Waves
NASA Astrophysics Data System (ADS)
Holicki, Max; Drijkoningen, Guy
2016-04-01
Conventional industry seismic imaging predominantly focuses on pre-critical reflections, muting post-critical arrivals in the process. This standard approach neglects a lot of information present in the recorded wave field. This negligence has been partially remedied with the inclusion of head waves in more advanced imaging techniques, like Full Waveform Inversion (FWI). We would like to see post-critical information leave the realm of labour-intensive travel-time picking and tomographic inversion towards full migration to improve subsurface imaging and parameter estimation. We present a novel seismic imaging approach aimed at exploiting post-critical information, using the constant travel path for head-waves between shots. To this end, we propose to generalize conventional Reverse Time Migration (RTM) to scenarios where the sources for the forward and backward propagated wave-fields are not coinciding. RTM functions on the principle that backward propagated receiver data, due to a source at some locations, must overlap with the forward propagated source wave field, from the same source location, at subsurface scatterers. Where the wave-fields overlap in the subsurface there is a peak at the zero-lag cross-correlation, and this peak is used for the imaging. For the inclusion of head waves, we propose to relax the condition of coincident sources. This means that wave-fields, from non-coincident-sources, will not overlap properly in the subsurface anymore. We can make the wave-fields overlap in the subsurface again, by time shifting either the forward or backward propagated wave-fields until the wave-fields overlap. This is the same as imaging at non-zero cross-correlation lags, where the lag is the travel time difference between the two wave-fields for a given event. This allows us to steer which arrivals we would like to use for imaging. In the simplest case we could use Eikonal travel-times to generate our migration image, or we exclusively image the subsurface with the head wave from the nth-layer. To illustrate the method we apply it to a layered Earth model with five layers and compare it to conventional RTM. We will show that conventional RTM highlights interfaces, while our head-wave based images highlight layers, producing fundamentally different images. We also demonstrate that our proposed imaging scheme is more sensitive to the velocity model than conventional RTM, which is important for improved velocity model building in the future.
NASA Technical Reports Server (NTRS)
Phillips, Roger J.; Grimm, Robert E.
1991-01-01
The design and ultimate success of network seismology experiments on Mars depends on the present level of Martian seismicity. Volcanic and tectonic landforms observed from imaging experiments show that Mars must have been a seismically active planet in the past and there is no reason to discount the notion that Mars is seismically active today but at a lower level of activity. Models are explored for present day Mars seismicity. Depending on the sensitivity and geometry of a seismic network and the attenuation and scattering properties of the interior, it appears that a reasonable number of Martian seismic events would be detected over the period of a decade. The thermoelastic cooling mechanism as estimated is surely a lower bound, and a more refined estimate would take into account specifically the regional cooling of Tharsis and lead to a higher frequency of seismic events.
High-resolution seismic-reflection data offshore of Dana Point, southern California borderland
Sliter, Ray W.; Ryan, Holly F.; Triezenberg, Peter J.
2010-01-01
The U.S. Geological Survey collected high-resolution shallow seismic-reflection profiles in September 2006 in the offshore area between Dana Point and San Mateo Point in southern Orange and northern San Diego Counties, California. Reflection profiles were located to image folds and reverse faults associated with the San Mateo fault zone and high-angle strike-slip faults near the shelf break (the Newport-Inglewood fault zone) and at the base of the slope. Interpretations of these data were used to update the USGS Quaternary fault database and in shaking hazard models for the State of California developed by the Working Group for California Earthquake Probabilities. This cruise was funded by the U.S. Geological Survey Coastal and Marine Catastrophic Hazards project. Seismic-reflection data were acquired aboard the R/V Sea Explorer, which is operated by the Ocean Institute at Dana Point. A SIG ELC820 minisparker seismic source and a SIG single-channel streamer were used. More than 420 km of seismic-reflection data were collected. This report includes maps of the seismic-survey sections, linked to Google Earth? software, and digital data files showing images of each transect in SEG-Y, JPEG, and TIFF formats.
Berberich, Gabriele; Berberich, Martin; Grumpe, Arne; Wöhler, Christian; Schreiber, Ulrich
2013-01-01
Simple Summary For three years (2009–2012), two red wood ant mounds (Formica rufa-group), located at the seismically active Neuwied Basin (Eifel, Germany), have been monitored 24/7 by high-resolution cameras. Early results show that ants have a well-identifiable standard daily routine. Correlation with local seismic events suggests changes in the ants’ behavior hours before the earthquake: the nocturnal rest phase and daily activity are suppressed, and standard daily routine does not resume until the next day. At present, an automated image evaluation routine is being applied to the video streams. Based on this automated approach, a statistical analysis of the ant behavior will be carried out. Abstract Short-term earthquake predictions with an advance warning of several hours or days are currently not possible due to both incomplete understanding of the complex tectonic processes and inadequate observations. Abnormal animal behaviors before earthquakes have been reported previously, but create problems in monitoring and reliability. The situation is different with red wood ants (RWA; Formica rufa-group (Hymenoptera: Formicidae)). They have stationary mounds on tectonically active, gas-bearing fault systems. These faults may be potential earthquake areas. For three years (2009–2012), two red wood ant mounds (Formica rufa-group), located at the seismically active Neuwied Basin (Eifel, Germany), have been monitored 24/7 by high-resolution cameras with both a color and an infrared sensor. Early results show that ants have a well-identifiable standard daily routine. Correlation with local seismic events suggests changes in the ants’ behavior hours before the earthquake: the nocturnal rest phase and daily activity are suppressed, and standard daily routine does not resume until the next day. At present, an automated image evaluation routine is being applied to the more than 45,000 hours of video streams. Based on this automated approach, a statistical analysis of the ants’ behavior will be carried out. In addition, other parameters (climate, geotectonic and biological), which may influence behavior, will be included in the analysis. PMID:26487310
Advances in Rotational Seismic Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierson, Robert; Laughlin, Darren; Brune, Robert
2016-10-19
Rotational motion is increasingly understood to be a significant part of seismic wave motion. Rotations can be important in earthquake strong motion and in Induced Seismicity Monitoring. Rotational seismic data can also enable shear selectivity and improve wavefield sampling for vertical geophones in 3D surveys, among other applications. However, sensor technology has been a limiting factor to date. The US Department of Energy (DOE) and Applied Technology Associates (ATA) are funding a multi-year project that is now entering Phase 2 to develop and deploy a new generation of rotational sensors for validation of rotational seismic applications. Initial focus is onmore » induced seismicity monitoring, particularly for Enhanced Geothermal Systems (EGS) with fracturing. The sensors employ Magnetohydrodynamic (MHD) principles with broadband response, improved noise floors, robustness, and repeatability. This paper presents a summary of Phase 1 results and Phase 2 status.« less
Towards a first design of a Newtonian-noise cancellation system for Advanced LIGO
NASA Astrophysics Data System (ADS)
Coughlin, M.; Mukund, N.; Harms, J.; Driggers, J.; Adhikari, R.; Mitra, S.
2016-12-01
Newtonian gravitational noise from seismic fields is predicted to be a limiting noise source at low frequency for second generation gravitational-wave detectors. Mitigation of this noise will be achieved by Wiener filtering using arrays of seismometers deployed in the vicinity of all test masses. In this work, we present optimized configurations of seismometer arrays using a variety of simplified models of the seismic field based on seismic observations at LIGO Hanford. The model that best fits the seismic measurements leads to noise reduction limited predominantly by seismometer self-noise. A first simplified design of seismic arrays for Newtonian-noise cancellation at the LIGO sites is presented, which suggests that it will be sufficient to monitor surface displacement inside the buildings.
NASA Astrophysics Data System (ADS)
Tibi, R.; Wiens, D. A.; Shiobara, H.; Sugioka, H.; Yuan, X.
2006-12-01
We use P-to-S converted teleseismic phases recorded at island and ocean bottom stations in Mariana to image the subducting plate and the upper mantle seismic discontinuities in the Mariana subduction zone. The land and seafloor stations which operated from June 2003 to May 2004, were deployed within the framework of the MARGINS Subduction Factory experiment of the Mariana system. The crust in the sudducting plate is observed at about 80--90 km depth beneath the islands of Saipan, Tinian and Rota. For most of the island stations, a low velocity layer is imaged in the forearc at depth between about 20 and 60 km, with decreasing depths toward the arc. The nature of this feature is not yet clear. We found evidence for double seismic discontinuities at the base of the transition zone near the Mariana slab. A shallower discontinuity is imaged at depths of ~650--715 km, and a deeper interface lies at ~740-- 770 km depth. The amplitudes of the seismic signals suggest that the shear velocity contrasts across the two features are comparable. These characteristics support the interpretation that the discontinuities are the results of the phase transformations in olivine (ringwoodite to post-spinel) and garnet (ilminite to perovskite), respectively, for the pyrolite model of mantle composition.
Yong, Alan; Hough, Susan E.; Cox, Brady R.; Rathje, Ellen M.; Bachhuber, Jeff; Dulberg, Ranon; Hulslander, David; Christiansen, Lisa; and Abrams, Michael J.
2011-01-01
We report about a preliminary study to evaluate the use of semi-automated imaging analysis of remotely-sensed DEM and field geophysical measurements to develop a seismic-zonation map of Port-au-Prince, Haiti. For in situ data, VS30 values are derived from the MASW technique deployed in and around the city. For satellite imagery, we use an ASTER GDEM of Hispaniola. We apply both pixel- and object-based imaging methods on the ASTER GDEM to explore local topography (absolute elevation values) and classify terrain types such as mountains, alluvial fans and basins/near-shore regions. We assign NEHRP seismic site class ranges based on available VS30 values. A comparison of results from imagery-based methods to results from traditional geologic-based approaches reveals good overall correspondence. We conclude that image analysis of RS data provides reliable first-order site characterization results in the absence of local data and can be useful to refine detailed site maps with sparse local data.
Seismic Full Waveform Modeling & Imaging in Attenuating Media
NASA Astrophysics Data System (ADS)
Guo, Peng
Seismic attenuation strongly affects seismic waveforms by amplitude loss and velocity dispersion. Without proper inclusion of Q parameters, errors can be introduced for seismic full waveform modeling and imaging. Three different (Carcione's, Robertsson's, and the generalized Robertsson's) isotropic viscoelastic wave equations based on the generalized standard linear solid (GSLS) are evaluated. The second-order displacement equations are derived, and used to demonstrate that, with the same stress relaxation times, these viscoelastic formulations are equivalent. By introducing separate memory variables for P and S relaxation functions, Robertsson's formulation is generalized to allow different P and S wave stress relaxation times, which improves the physical consistency of the Qp and Qs modelled in the seismograms.The three formulations have comparable computational cost. 3D seismic finite-difference forward modeling is applied to anisotropic viscoelastic media. The viscoelastic T-matrix (a dynamic effective medium theory) relates frequency-dependent anisotropic attenuation and velocity to reservoir properties in fractured HTI media, based on the meso-scale fluid flow attenuation mechanism. The seismic signatures resulting from changing viscoelastic reservoir properties are easily visible. Analysis of 3D viscoelastic seismograms suggests that anisotropic attenuation is a potential tool for reservoir characterization. To compensate the Q effects during reverse-time migration (RTM) in viscoacoustic and viscoelastic media, amplitudes need to be compensated during wave propagation; the propagation velocity of the Q-compensated wavefield needs to be the same as in the attenuating wavefield, to restore the phase information. Both amplitude and phase can be compensated when the velocity dispersion and the amplitude loss are decoupled. For wave equations based on the GSLS, because Q effects are coupled in the memory variables, Q-compensated wavefield propagates faster than the attenuating wavefield, and introduce unwanted phase shift. Numerical examples show that there are phase (depth) shifts in the Q-compensated RTM images from the GSLS equation. An adjoint-based least-squares reverse-time migration is proposed for viscoelastic media (Q-LSRTM), to compensate the attenuation losses in P and S images. The viscoelastic adjoint operator, and the P and S modulus perturbation imaging conditions are derived using the adjoint-state method and an augmented Lagrangian functional. Q-LSRTM solves the viscoelastic linearized modeling operator for synthetic data, and the adjoint operator is used for back propagating the data residual. Q-LSRTM is capable of iteratively updating the P and S modulus perturbations,in the direction of minimizing data residuals, and attenuation loss is iteratively compensated. A novel Q compensation approach is developed for adjoint seismic imaging by pseudodifferential scaling. With a correct Q model included in the migration algorithm, propagation effects, including the Q effects, can be compensated with the application of the inverse Hessian to the RTM image. Pseudodifferential scaling is used to efficiently approximate the action of the inverse Hessian. Numerical examples indicate that the adjoint RTM images with pseudodifferential scaling approximate the true model perturbation, and can be used as well-conditioned gradients for least-squares imaging.
Towards a Multi-Resolution Model of Seismic Risk in Central Asia. Challenge and perspectives
NASA Astrophysics Data System (ADS)
Pittore, M.; Wieland, M.; Bindi, D.; Parolai, S.
2011-12-01
Assessing seismic risk, defined as the probability of occurrence of economical and social losses as consequence of an earthquake, both at regional and at local scale is a challenging, multi-disciplinary task. In order to provide a reliable estimate, diverse information must be gathered by seismologists, geologists, engineers and civil authorities, and carefully integrated keeping into account the different levels of uncertainty. The research towards an integrated methodology, able to seamlessly describe seismic risk at different spatial scales is challenging, but discloses new application perspectives, particularly in those countries which suffer from a relevant seismic hazard but do not have resources for a standard assessment. Central Asian countries in particular, which exhibit one of the highest seismic hazard in the world, are experiencing a steady demographic growth, often accompanied by informal settlement and urban sprawling. A reliable evaluation of how these factors affect the seismic risk, together with a realistic assessment of the assets exposed to seismic hazard and their structural vulnerability is of particular importance, in order to undertake proper mitigation actions and to promptly and efficiently react to a catastrophic event. New strategies are needed to efficiently cope with systematic lack of information and uncertainties. An original approach is presented to assess seismic risk based on integration of information coming from remote-sensing and ground-based panoramic imaging, in situ measurements, expert knowledge and already available data. Efficient sampling strategies based on freely available medium-resolution multi-spectral satellite images are adopted to optimize data collection and validation, in a multi-scale approach. Panoramic imaging is also considered as a valuable ground-based visual data collection technique, suitable both for manual and automatic analysis. A full-probabilistic framework based on Bayes Network is proposed to integrate available information taking into account both aleatory and epistemic uncertainties. An improved risk model for the capital of Kyrgyz Republic, Biskek, has been developed following this approach and tested based on different earthquake scenarios. Preliminary results will be presented and discussed.
Probabilistic seismic history matching using binary images
NASA Astrophysics Data System (ADS)
Davolio, Alessandra; Schiozer, Denis Jose
2018-02-01
Currently, the goal of history-matching procedures is not only to provide a model matching any observed data but also to generate multiple matched models to properly handle uncertainties. One such approach is a probabilistic history-matching methodology based on the discrete Latin Hypercube sampling algorithm, proposed in previous works, which was particularly efficient for matching well data (production rates and pressure). 4D seismic (4DS) data have been increasingly included into history-matching procedures. A key issue in seismic history matching (SHM) is to transfer data into a common domain: impedance, amplitude or pressure, and saturation. In any case, seismic inversions and/or modeling are required, which can be time consuming. An alternative to avoid these procedures is using binary images in SHM as they allow the shape, rather than the physical values, of observed anomalies to be matched. This work presents the incorporation of binary images in SHM within the aforementioned probabilistic history matching. The application was performed with real data from a segment of the Norne benchmark case that presents strong 4D anomalies, including softening signals due to pressure build up. The binary images are used to match the pressurized zones observed in time-lapse data. Three history matchings were conducted using: only well data, well and 4DS data, and only 4DS. The methodology is very flexible and successfully utilized the addition of binary images for seismic objective functions. Results proved the good convergence of the method in few iterations for all three cases. The matched models of the first two cases provided the best results, with similar well matching quality. The second case provided models presenting pore pressure changes according to the expected dynamic behavior (pressurized zones) observed on 4DS data. The use of binary images in SHM is relatively new with few examples in the literature. This work enriches this discussion by presenting a new application to match pressure in a reservoir segment with complex pressure behavior.
High-resolution lithospheric imaging with seismic interferometry
NASA Astrophysics Data System (ADS)
Ruigrok, Elmer; Campman, Xander; Draganov, Deyan; Wapenaar, Kees
2010-10-01
In recent years, there has been an increase in the deployment of relatively dense arrays of seismic stations. The availability of spatially densely sampled global and regional seismic data has stimulated the adoption of industry-style imaging algorithms applied to converted- and scattered-wave energy from distant earthquakes, leading to relatively high-resolution images of the lower crust and upper mantle. We use seismic interferometry to extract reflection responses from the coda of transmitted energy from distant earthquakes. In theory, higher-resolution images can be obtained when migrating reflections obtained with seismic interferometry rather than with conversions, traditionally used in lithospheric imaging methods. Moreover, reflection data allow the straightforward application of algorithms previously developed in exploration seismology. In particular, the availability of reflection data allows us to extract from it a velocity model using standard multichannel data-processing methods. However, the success of our approach relies mainly on a favourable distribution of earthquakes. In this paper, we investigate how the quality of the reflection response obtained with interferometry is influenced by the distribution of earthquakes and the complexity of the transmitted wavefields. Our analysis shows that a reasonable reflection response could be extracted if (1) the array is approximately aligned with an active zone of earthquakes, (2) different phase responses are used to gather adequate angular illumination of the array and (3) the illumination directions are properly accounted for during processing. We illustrate our analysis using a synthetic data set with similar illumination and source-side reverberation characteristics as field data recorded during the 2000-2001 Laramie broad-band experiment. Finally, we apply our method to the Laramie data, retrieving reflection data. We extract a 2-D velocity model from the reflections and use this model to migrate the data. On the final reflectivity image, we observe a discontinuity in the reflections. We interpret this discontinuity as the Cheyenne Belt, a suture zone between Archean and Proterozoic terranes.
Scenarios for Evolving Seismic Crises: Possible Communication Strategies
NASA Astrophysics Data System (ADS)
Steacy, S.
2015-12-01
Recent advances in operational earthquake forecasting mean that we are very close to being able to confidently compute changes in earthquake probability as seismic crises develop. For instance, we now have statistical models such as ETAS and STEP which demonstrate considerable skill in forecasting earthquake rates and recent advances in Coulomb based models are also showing much promise. Communicating changes in earthquake probability is likely be very difficult, however, as the absolute probability of a damaging event is likely to remain quite small despite a significant increase in the relative value. Here, we use a hybrid Coulomb/statistical model to compute probability changes for a series of earthquake scenarios in New Zealand. We discuss the strengths and limitations of the forecasts and suggest a number of possible mechanisms that might be used to communicate results in an actual developing seismic crisis.
A new scheme for velocity analysis and imaging of diffractions
NASA Astrophysics Data System (ADS)
Lin, Peng; Peng, Suping; Zhao, Jingtao; Cui, Xiaoqin; Du, Wenfeng
2018-06-01
Seismic diffractions are the responses of small-scale inhomogeneities or discontinuous geological features, which play a vital role in the exploitation and development of oil and gas reservoirs. However, diffractions are generally ignored and considered as interference noise in conventional data processing. In this paper, a new scheme for velocity analysis and imaging of seismic diffractions is proposed. Two steps compose of this scheme in our application. First, the plane-wave destruction method is used to separate diffractions from specular reflections in the prestack domain. Second, in order to accurately estimate migration velocity of the diffractions, the time-domain dip-angle gathers are derived from a Kirchhoff-based angle prestack time migration using separated diffractions. Diffraction events appear flat in the dip-angle gathers when imaged above the diffraction point with selected accurate migration velocity for diffractions. The selected migration velocity helps to produce the desired prestack imaging of diffractions. Synthetic and field examples are applied to test the validity of the new scheme. The diffraction imaging results indicate that the proposed scheme for velocity analysis and imaging of diffractions can provide more detailed information about small-scale geologic features for seismic interpretation.
Terrain Commander: a next-generation remote surveillance system
NASA Astrophysics Data System (ADS)
Finneral, Henry J.
2003-09-01
Terrain Commander is a fully automated forward observation post that provides the most advanced capability in surveillance and remote situational awareness. The Terrain Commander system was selected by the Australian Government for its NINOX Phase IIB Unattended Ground Sensor Program with the first systems delivered in August of 2002. Terrain Commander offers next generation target detection using multi-spectral peripheral sensors coupled with autonomous day/night image capture and processing. Subsequent intelligence is sent back through satellite communications with unlimited range to a highly sophisticated central monitoring station. The system can "stakeout" remote locations clandestinely for 24 hours a day for months at a time. With its fully integrated SATCOM system, almost any site in the world can be monitored from virtually any other location in the world. Terrain Commander automatically detects and discriminates intruders by precisely cueing its advanced EO subsystem. The system provides target detection capabilities with minimal nuisance alarms combined with the positive visual identification that authorities demand before committing a response. Terrain Commander uses an advanced beamforming acoustic sensor and a distributed array of seismic, magnetic and passive infrared sensors to detect, capture images and accurately track vehicles and personnel. Terrain Commander has a number of emerging military and non-military applications including border control, physical security, homeland defense, force protection and intelligence gathering. This paper reviews the development, capabilities and mission applications of the Terrain Commander system.
Image of the Moho across the continent-ocean transition, US east coast
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holbrook, W.S.; Purdy, G.M.; Reiter, E.C.
1992-03-01
Strong wide-angle reflections from the Moho were recorded by ocean-bottom seismic instruments during the 1988 Carolina Trough multichannel seismic experiment, in an area where the Moho is difficult to detect with vertical-incidence seismic data. Prestack depth migration of these reflections has enabled the construction of a seismic image of the Moho across the continent-ocean transition of a sedimented passive margin. The Moho rises across the margin at a slope of 10{degree}-12{degree}, from a depth of about 33 km beneath the continental shelf to 20 km beneath the outer rise. This zone of crustal thinning defines a distinct, 60-70-km-wide continent-ocean transitionmore » zone. The authors interpret the Moho in the Carolina Trough as a Jurassic feature, formed by magmatic intrusion and underplating during the rifting of Pangea.« less
Seismic Wavefield Imaging of Long-Period Ground Motion in the Tokyo Metropolitan Area, Japan
NASA Astrophysics Data System (ADS)
Nagao, H.; Kano, M.; Nagata, K.; Ito, S. I.; Sakai, S.; Nakagawa, S.; Hori, M.; Hirata, N.
2017-12-01
Long-period ground motions due to large earthquakes can cause devastating disasters, especially in urbanized areas located on sedimentary basins. To assess and mitigate such damage, it is essential to rapidly evaluate seismic hazards for infrastructures, which can be simulated by seismic response analyses that use waveforms at the base of each infrastructure as an input ground motion. The present study reconstructs the seismic wavefield in the Tokyo metropolitan area located on the Kanto sedimentary basin, Japan, from seismograms of the Metropolitan Seismic Observation network (MeSO-net). The obtained wavefield fully explains the observed waveforms in the frequency band of 0.10-0.20 Hz. This is attributed to the seismic wavefield imaging technique proposed by Kano et al. (2017), which implements the replica exchange Monte Carlo method to simultaneously estimate model parameters related to the subsurface structure and source information. Further investigation shows that the reconstructed seismic wavefield lower than 0.30 Hz is of high quality in terms of variance reduction (VR), which quantifies a misfit in waveforms but that the VR rapidly worsens in higher frequencies. Meanwhile, the velocity response spectra show good agreement with observations up to 0.90 Hz in terms of the combined goodness of fit (CGOF), which is a measure of misfit in the velocity response spectra. Inputting the reconstructed wavefield into seismic response analyses, we can rapidly assess the overall damage to infrastructures immediately after a large earthquake.
Reverse-time migration for subsurface imaging using single- and multi- frequency components
NASA Astrophysics Data System (ADS)
Ha, J.; Kim, Y.; Kim, S.; Chung, W.; Shin, S.; Lee, D.
2017-12-01
Reverse-time migration is a seismic data processing method for obtaining accurate subsurface structure images from seismic data. This method has been applied to obtain more precise complex geological structure information, including steep dips, by considering wave propagation characteristics based on two-way traveltime. Recently, various studies have reported the characteristics of acquired datasets from different types of media. In particular, because real subsurface media is comprised of various types of structures, seismic data represent various responses. Among them, frequency characteristics can be used as an important indicator for analyzing wave propagation in subsurface structures. All frequency components are utilized in conventional reverse-time migration, but analyzing each component is required because they contain inherent seismic response characteristics. In this study, we propose a reverse-time migration method that utilizes single- and multi- frequency components for analyzing subsurface imaging. We performed a spectral decomposition to utilize the characteristics of non-stationary seismic data. We propose two types of imaging conditions, in which decomposed signals are applied in complex and envelope traces. The SEG/EAGE Overthrust model was used to demonstrate the proposed method, and the 1st derivative Gaussian function with a 10 Hz cutoff was used as the source signature. The results were more accurate and stable when relatively lower frequency components in the effective frequency range were used. By combining the gradient obtained from various frequency components, we confirmed that the results are clearer than the conventional method using all frequency components. Also, further study is required to effectively combine the multi-frequency components.
NASA Astrophysics Data System (ADS)
Rymer, M. J.; Fuis, G.; Catchings, R. D.; Goldman, M.; Tarnowski, J. M.; Hole, J. A.; Stock, J. M.; Matti, J. C.
2012-12-01
The Salton Seismic Imaging Project (SSIP) is a large-scale, active- and passive-source seismic project designed to image the San Andreas Fault (SAF) and the adjacent basins (Imperial and Coachella Valleys) in southern California. Here, we focus on SSIP Line 5, one of four 2-D NE-SW-oriented seismic profiles that were acquired across the Coachella Valley. The 38-km-long SSIP-Line-5 seismic profile extends from the Santa Rosa Ranges to the Little San Bernardino Mountains and crosses both strands of the SAF, the Mission Creek (MCF) and Banning (BF) strands, near Palm Desert. Data for Line 5 were generated from nine buried explosive sources (most spaced about 2 to 8 km apart) and were recorded on approximately 281 Texan seismographs (average spacing 138 m). First-arrival refractions were used to develop a refraction tomographic velocity image of the upper crust along the seismic profile. The seismic data were also stacked and migrated to develop low-fold reflection images of the crust. From the surface to about 8 km depth, P-wave velocities range from about 2 km/s to more than 7.5 km/s, with the lowest velocities within a well-defined (~2-km-deep, 15-km-wide) basin (< 4 km/s), and the highest velocities below the transition from the Coachella Valley to the Santa Rosa Ranges on the southwest and within the Little San Bernardino Mountains on the northeast. The MCF and BF strands of the SAF bound an approximately 2.5-km-wide horst-type structure on the northeastern side of the Coachella Valley, beneath which the upper crust is characterized by a pronounced low-velocity zone that extends to the bottom of the velocity image. Rocks within the low-velocity zone have significantly lower velocities than those to the northeast and the southwest at the same depths. Conversely, the velocities of rocks on both sides of the Coachella Valley are greater than 7 km/s at depths exceeding about 4 km. The relatively narrow zone of shallow high-velocity rocks between the surface traces of the MCF and BF strands is associated with a zone of uplifted strata. Along SSIP Line 5, we infer that the MCF and BF strands are steeply dipping and merge at about 2 km depth. We base our interpretation on a prominent basement low-velocity zone (fault zone) that is centered southwest of the MCF and BF strands and extends to at least 8 km depth.
NASA Astrophysics Data System (ADS)
Jourdain, A.; Singh, S. C.; Klinger, Y.
2013-12-01
Transform faults are the major discontinuities and define the main segment boundaries along spreading centres but their anatomy is poorly understood because of their complex seafloor morphology, even though they are observed at all types of spreading centres. Here, we present high-resolution seismic reflection images across the sedimented Andaman Sea Transform Fault where the sediments record the faulting and allow studying the evolution of the transform fault both in space and time. Furthermore, sediments allow the imaging of the faults down to the Moho depth that provides insight on the interplay between tectonic and magmatic processes. On the other hand, overlapping spreading centres (OSC) are small-scale discontinuities, possibly transient, and are observed only along fast or intermediate spreading centres. Exceptionally, an overlapping spreading centre is present at the slow spreading Andaman Sea Spreading Centre, which, we suggest, is due to the presence of thick sediments that hamper the efficient hydrothermal circulation allowing magma to stay much longer in the crust at different depths, and up to close to the segment ends, leading to the development of an overlapping spreading. The seismic reflection images across the OSC indicate the presence of large magma bodies in the crust. Seismic images also provide images of active faults allowing to study the link between faulting and magmatism. Interestingly, an earthquake swarm occurred at propagating limb of the OSC in 2006, after the great 2004 Andaman-Sumatra earthquake of Mw=9.3, highlighting the migration of the OSC westward. In this paper, we will show seismic reflection images and interpret these images in the light of bathymetry and earthquake data, and provide the anatomy of the ridge discontinuities along the slow spreading sedimented Andaman Sea Spreading Centre.
NASA Astrophysics Data System (ADS)
Delph, J.; Hole, J. A.; Fuis, G. S.; Stock, J. M.; Rymer, M. J.
2011-12-01
The Salton Trough is an active rift in southern California in a step-over between the plate-bounding Imperial and San Andreas Faults. In March 2011, the Salton Seismic Imaging Project (SSIP) investigated the rift's crustal structure by acquiring several seismic refraction and reflection lines. One of the densely sampled refraction lines crosses the northern-most Imperial Valley, perpendicular to the strike-slip faults and parallel to a line of small Quaternary rhyolitic volcanoes. The line crosses the obliquely extensional Brawley Seismic Zone and goes through one of the most geothermally productive areas in the United States. Well logs indicate the valley is filled by several kilometers of late Pliocene-recent lacustrine, fluvial, and shallow marine sediment. The 42-km long seismic line was comprised of eleven 110-460 kg explosive shots and receivers at a 100 m spacing. First arrival travel times were used to build a tomographic seismic velocity image of the upper crust. Velocity in the valley increases smoothly from <2 km/s to >5 km/s, indicating diagenesis and gradational metamorphism of rift sediments at very shallow depth due to an elevated geotherm. The velocity gradient is much smaller in the relatively low velocity (<6 km/s) crystalline basement comprised of recently metamorphosed sediment reaching greenschist to lower amphibolite facies. The depth of this basement is about 4-km below the aseismic region of the valley west of the Brawley Seismic Zone, but rises sharply to ~2 km depth beneath the seismically, geothermally, and volcanically active area of the Brawley Seismic Zone. The basement deepens to the northeast of the active tectonic zone and then is abruptly offset to shallower depth on the northeast side of the valley. This offset may be the subsurficial expression of a paleofault, most likely an extension of the Sand Hills Fault, which bounds the basin to the east. Basement velocity east of the fault is ~5.7 km/s, consistent with the granitic rocks of the Chocolate Mountains. The tomographic model shows that the shallow metasedimentary basement as well as the geothermal and volcanic activity seem to be bounded by the sharp western and eastern margins of the Brawley Seismic Zone. At this location, strongly fractured crust allows both hydrothermal and magmatic fluids to rise to the surface in the most rapidly extending portion of the rift basin.
NASA Astrophysics Data System (ADS)
Abdelmalak, M. M.; Planke, S.; Millett, J.; Jerram, D. A.; Maharjan, D.; Zastrozhnov, D.; Schmid, D. W.; Faleide, J. I.; Svensen, H.; Myklebust, R.
2017-12-01
The Vøring Margin offshore mid-Norway is a classic volcanic rifted margin, characterized by voluminous Paleogene igneous rocks present on both sides of the continent-ocean boundary. The margin displays (1) thickened transitional crust with a well-defined lower crustal high-velocity body and prominent deep crustal reflections, the so-called T-Reflection, (2) seaward dipping reflector (SDR) wedges and a prominent northeast-trending escarpment on the Vøring Marginal High, and (3) extensive sill complexes in the adjacent Cretaceous Vøring Basin. During the last decade, new 2D and 3D industry seismic data along with improved processing techniques, such as broadband processing and noise reduction processing sequences, have made it possible to image and map the breakup igneous complex in much greater detail than previously possible. Our interpretation includes a combination of (1) seismic horizon picking, (2) integrated seismic-gravity-magnetic (SGM) interpretation, (3) seismic volcanostratigraphy, and (4) igneous seismic geomorphology. The results are integrated with published wide-angle seismic data, re-analyzed borehole data including new geochronology, and new geodynamic modeling of the effects of magmatism on the thermal history and subsidence of the margin. The extensive sill complexes and associated hydrothermal vent complexes in the Vøring Basin have a Paleocene-Eocene boundary age based on high-precision U/Pb dating combined with seismic mapping constraints. On the marginal high, our results show a highly variable crustal structure, with a pre-breakup configuration consisting of large-scale structural highs and sedimentary basins. These structures were in-filled and covered by basalt flows and volcanogenic sediments during the early stages of continental breakup in the earliest Eocene. Subsequently, rift basins developed along the continent-ocean boundary and where infilled by up to ca. 6 km thick basalt sequences, currently imaged as SDRs fed by a dike swarm imaged on seismic data. The addition of magma within the crust had a prominent effect on the thermal history and hydrocarbon maturation of the sedimentary basin, causing uplift, delayed subsidence, and possibly contributing to the triggering of global warming during the Paleocene-Eocene Thermal Maximum (PETM).
Performance of 3-Component Nodes in the IRIS Community Wavefield Demonstration Experiment
NASA Astrophysics Data System (ADS)
Sweet, J. R.; Anderson, K. R.; Woodward, R.
2017-12-01
In June 2016, a field crew of 50 students, faculty, industry personnel, and IRIS staff deployed a total of 390 stations as part of a community seismic experiment above an active seismic lineament in north-central Oklahoma. The goals of the experiment were to test new instrumentation and deployment strategies that record the full seismic wavefield, and to advance understanding of earthquake source processes and regional lithospheric structure. The crew deployed 363 3-component, 5Hz Generation 2 Fairfield Z-Land nodes along three seismic lines and in a seven-layer nested gradiometer array. The seismic lines spanned a region 13 km long by 5 km wide. A broadband, 18 station "Golay 3x6" array with an aperture of approximately 5 km was deployed around the gradiometer and seismic lines to collect waveform data from local and regional events. In addition, 9 infrasound stations were deployed in order to capture and identify acoustic events that might be recorded by the seismic array. The variety and geometry of instrumentation deployed was intended to capture the full seismic wavefield generated by the local and regional seismicity beneath the array and the surrounding region. Additional details on the instrumentation and how it was deployed can be found by visiting our website www.iris.edu/wavefields. We present a detailed analysis of noise across the array—including station performance, as well as noise from nearby sources (wind turbines, automobiles, etc.). We report a clear reduction in noise for buried 3-component nodes compared to co-located surface nodes (see Figure). Using the IRIS DMC's ISPAQ client, we present a variety of metrics to evaluate the network's performance. We also present highlights from student projects at the recently-held IRIS advanced data processing short course, which focused on analyzing the wavefield dataset using array processing techniques.
Imaging using cross-hole seismoelectric tomography
Araji, A.H.; Revil, A.; Jardani, A.; Minsley, B.
2011-01-01
We propose a new cross-hole imaging approach based on seismoelectric conversions associated with the transmission of seismic waves from seismic sources located in a borehole to receivers electrodes located in a second borehole. The seismoelectric seismic-to-electric problem is solved using Biot theory coupled with a generalized Ohm's law with an electrokinetic coupling term. The components of the displacement of the solid phase, the fluid pressure, and the electrical potential are solved using a finite element approach with PML boundary conditions for the seismic waves and boundary conditions mimicking an infinite material for the electrostatic problem. We have developed an inversion algorithm using the electrical disturbances recorded in the second borehole to localize the position of the heterogeneities responsible for the seismoelectric conversions. Because of the ill-posed nature of the inverse problem, regularization is used to constrain the solution at each time in the seismoelectric time window comprised between the time of the seismic shot and the time of the first arrival of the seismic waves in the second borehole. All the inverted volumetric current source densities are stacked to produce an image of the position of the heterogeneities between the two boreholes. Two simple synthetic case studies are presented to test this concept. The first case study corresponds to a vertical discontinuity between two homogeneous sub-domains. The second case study corresponds to a poroelastic inclusion embedded into an homogenous poroelastic formation. In both cases, the position of the heterogeneity is fairly well-recovered using only the electrical disturbances associated with the seismoelectric conversions. ?? 2011 Society of Exploration Geophysicists.
NASA Astrophysics Data System (ADS)
Anselmi, M.; Govoni, A.; De Gori, P.; Chiarabba, C.
2011-12-01
In this paper we show the seismicity and velocity structure of a segment of the Alpine retro-belt front along the continental collision margin of the Venetian Alps (NE Italy). Our goal is to gain insight on the buried structures and deep fault geometry in a "silent" area, i.e., an area with poor instrumental seismicity but high potential for future earthquakes, as indicated by historical earthquakes (1695 Me = 6.7 Asolo and 1936 Ms = 5.8 Bosco del Cansiglio). Local earthquakes recorded by a dense temporary seismic network are used to compute 3-D Vp and Vp/Vs tomographic images, yielding well resolved images of the upper crust underneath the south-Alpine front. We show the presence of two main distinct high Vp S-verging thrust units, the innermost coincides with the piedmont hill and the outermost is buried under a thick pile of sediments in the Po plain. Background seismicity and Vp/Vs anomalies, interpreted as cracked fluid-filled volumes, suggest that the NE portion of the outermost blind thrust and its oblique/lateral ramps may be a zone of high fluid pressure prone to future earthquakes. Three-dimensional focal mechanisms show compressive and transpressive solutions, in agreement with the tectonic setting, stress field maps and geodetic observations. The bulk of the microseismicity is clustered in two different areas, both in correspondence of inherited lateral ramps of the thrust system. Tomographic images highlight the influence of the paleogeographic setting in the tectonic style and seismic activity of the region.
The nature of subslab slow velocity anomalies beneath South America
NASA Astrophysics Data System (ADS)
Portner, Daniel Evan; Beck, Susan; Zandt, George; Scire, Alissa
2017-05-01
Slow seismic velocity anomalies are commonly imaged beneath subducting slabs in tomographic studies, yet a unifying explanation for their distribution has not been agreed upon. In South America two such anomalies have been imaged associated with subduction of the Nazca Ridge in Peru and the Juan Fernández Ridge in Chile. Here we present new seismic images of the subslab slow velocity anomaly beneath Chile, which give a unique view of the nature of such anomalies. Slow seismic velocities within a large hole in the subducted Nazca slab connect with a subslab slow anomaly that appears correlated with the extent of the subducted Juan Fernández Ridge. The hole in the slab may allow the subslab material to rise into the mantle wedge, revealing the positive buoyancy of the slow material. We propose a new model for subslab slow velocity anomalies beneath the Nazca slab related to the entrainment of hot spot material.
Bleibinhaus, F.; Hole, J.A.; Ryberg, T.; Fuis, G.S.
2007-01-01
A seismic reflection and refraction survey across the San Andreas Fault (SAF) near Parkfield provides a detailed characterization of crustal structure across the location of the San Andreas Fault Observatory at Depth (SAFOD). Steep-dip prestack migration and frequency domain acoustic waveform tomography were applied to obtain highly resolved images of the upper 5 km of the crust for 15 km on either side of the SAF. The resulting velocity model constrains the top of the Salinian granite with great detail. Steep-dip reflection seismic images show several strong-amplitude vertical reflectors in the uppermost crust near SAFOD that define an ???2-km-wide zone comprising the main SAF and two or more local faults. Another prominent subvertical reflector at 2-4 km depth ???9 km to the northeast of the SAF marks the boundary between the Franciscan terrane and the Great Valley Sequence. A deep seismic section of low resolution shows several reflectors in the Salinian crust west of the SAF. Two horizontal reflectors around 10 km depth correlate with strains of seismicity observed along-strike of the SAF. They represent midcrustal shear zones partially decoupling the ductile lower crust from the brittle upper crust. The deepest reflections from ???25 km depth are interpreted as crust-mantle boundary. Copyright 2007 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Shinohara, M.; Nakahigashi, K.; Yamashita, Y.; Yamada, T.; Mochizuki, K.; Shiobara, H.
2016-12-01
The Japanese Islands are located at subduction zones where Philippine Sea (PHS) plate subducts from the southeast beneath the Eurasian plate and the Pacific plate descends from the east beneath the PHS and Eurasian plates and have a high density of seismic stations. Many seismic tomography studies using land seismic station data were conducted to reveal the seismic structure. These studies discussed the relationship between heterogeneous structures and the release of fluids from the subducting slab, magma generation and movement in the subduction zone. However, regional tomography using the land station data did not have a sufficient resolution to image a deep structure beneath the Japan Sea.To obtain the deep structure, observations of natural earthquakes within the Japan Sea are essential. Therefore, we started the repeating long-term seismic observations using ocean bottom seismometers(OBSs) in the Yamato Basin from 2013 to 2016. We apply travel-time tomography method to the regional earthquake and teleseismic arrival-data recorded by OBSs and land stations. In this presentation, we will report the P and S wave tomographic images down to a depth of 300 km beneath the southern part of the Japan Sea. This study was supported by "Integrated Research Project on Seismic and Tsunami Hazards around the Sea of Japan" conducted by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan.
Seismic Wave Propagation on the Tablet Computer
NASA Astrophysics Data System (ADS)
Emoto, K.
2015-12-01
Tablet computers widely used in recent years. The performance of the tablet computer is improving year by year. Some of them have performance comparable to the personal computer of a few years ago with respect to the calculation speed and the memory size. The convenience and the intuitive operation are the advantage of the tablet computer compared to the desktop PC. I developed the iPad application of the numerical simulation of the seismic wave propagation. The numerical simulation is based on the 2D finite difference method with the staggered-grid scheme. The number of the grid points is 512 x 384 = 196,608. The grid space is 200m in both horizontal and vertical directions. That is the calculation area is 102km x 77km. The time step is 0.01s. In order to reduce the user waiting time, the image of the wave field is drawn simultaneously with the calculation rather than playing the movie after the whole calculation. P and S wave energies are plotted on the screen every 20 steps (0.2s). There is the trade-off between the smooth simulation and the resolution of the wave field image. In the current setting, it takes about 30s to calculate the 10s wave propagation (50 times image updates). The seismogram at the receiver is displayed below of the wave field updated in real time. The default medium structure consists of 3 layers. The layer boundary is defined by 10 movable points with linear interpolation. Users can intuitively change to the arbitrary boundary shape by moving the point. Also users can easily change the source and the receiver positions. The favorite structure can be saved and loaded. For the advance simulation, users can introduce the random velocity fluctuation whose spectrum can be changed to the arbitrary shape. By using this application, everyone can simulate the seismic wave propagation without the special knowledge of the elastic wave equation. So far, the Japanese version of the application is released on the App Store. Now I am preparing the English version.
NASA Astrophysics Data System (ADS)
Possee, D.; Keir, D.; Harmon, N.; Rychert, C.; Rolandone, F.; Leroy, S. D.; Stuart, G. W.; Calais, E.; Boisson, D.; Ulysse, S. M. J.; Guerrier, K.; Momplaisir, R.; Prepetit, C.
2017-12-01
Oblique convergence of the Caribbean and North American plates has partitioned strain across an extensive transpressional fault system that bisects Haiti. Most recently the 2010, MW7.0 earthquake ruptured multiple thrust faults in southern Haiti. However, while the rupture mechanism has been well studied, how these faults are segmented and link to deformation across the plate boundary is still debated. Understanding the link between strain accumulation and faulting in Haiti is also key to future modelling of seismic hazards. To assess seismic activity and fault structures we used data from 31 broadband seismic stations deployed on Haiti for 16-months. Local earthquakes were recorded and hypocentre locations determined using a 1D velocity model. A high-quality subset of the data was then inverted using travel-time tomography for relocated hypocentres and 2D images of Vp and Vp/Vs crustal structure. Earthquake locations reveal two clusters of seismic activity, the first delineates faults associated with the 2010 earthquake and the second shows activity 100km further east along a thrust fault north of Lake Enriquillo (Dominican Republic). The velocity models show large variations in seismic properties across the plate boundary; shallow low-velocity zones with a 5-8% decrease in Vp and high Vp/Vs ratios of 1.85-1.95 correspond to sedimentary basins that form the low-lying terrain on Haiti. We also image a region with a 4-5% decrease in Vp and an increased Vp/Vs ratio of 1.80-1.85 dipping south to a depth of 20km beneath southern Haiti. This feature matches the location of a major thrust fault and suggests a substantial damage zone around this fault. Beneath northern Haiti a transition to lower Vp/Vs values of 1.70-1.75 reflects a compositional change from mafic facies such as the Caribbean large igneous province in the south, to arc magmatic facies associated with the Greater Antilles arc in the north. Our seismic images are consistent with the fault system across southern Haiti transitioning from a near vertical strike-slip fault in the west to a major south dipping oblique-slip fault in the east. Seismicity in southern Haiti broadly occurs on the thrust/oblique-slip faults. The results show evidence for significant variations in fault zone structure and kinematics along strike of a major transpressional plate boundary.
Advances in Predicting Magnetic Fields on the Far Side of the Sun
NASA Astrophysics Data System (ADS)
Lindsey, C. A.
2016-12-01
Techniques in local solar seismology applied to observations of seismic oscillations in the Sun's near hemisphere allow us to map large magnetic regions in the Sun's far hemisphere. Seismic signatures are not nearly as sensitive to magnetic flux as observations in electromagnetic radiation. However, they clearly identify and locate the 400 or so largest active regions in a typical solar cycle, i.e., those of most concern for space-weather forecasting. By themselves, seismic observations are insensitive to magnetic polarity. However, the Hale polarity law offers tantalizing avenues for guessing polarity distributions from seismic signatures as they evolve. I will review what we presently know about the relationship between seismic signatures of active regions and their magnetic and radiative properties, and offer a preliminary assessment of the potential of far-side seismic maps for space-weather forecasting in the coming decade.
SEGY to ASCII Conversion and Plotting Program 2.0
Goldman, Mark R.
2005-01-01
INTRODUCTION SEGY has long been a standard format for storing seismic data and header information. Almost every seismic processing package can read and write seismic data in SEGY format. In the data processing world, however, ASCII format is the 'universal' standard format. Very few general-purpose plotting or computation programs will accept data in SEGY format. The software presented in this report, referred to as SEGY to ASCII (SAC), converts seismic data written in SEGY format (Barry et al., 1975) to an ASCII data file, and then creates a postscript file of the seismic data using a general plotting package (GMT, Wessel and Smith, 1995). The resulting postscript file may be plotted by any standard postscript plotting program. There are two versions of SAC: one version for plotting a SEGY file that contains a single gather, such as a stacked CDP or migrated section, and a second version for plotting multiple gathers from a SEGY file containing more than one gather, such as a collection of shot gathers. Note that if a SEGY file has multiple gathers, then each gather must have the same number of traces per gather, and each trace must have the same sample interval and number of samples per trace. SAC will read several common standards of SEGY data, including SEGY files with sample values written in either IBM or IEEE floating-point format. In addition, utility programs are present to convert non-standard Seismic Unix (.sux) SEGY files and PASSCAL (.rsy) SEGY files to standard SEGY files. SAC allows complete user control over all plotting parameters including label size and font, tick mark intervals, trace scaling, and the inclusion of a title and descriptive text. SAC shell scripts create a postscript image of the seismic data in vector rather than bitmap format, using GMT's pswiggle command. Although this can produce a very large postscript file, the image quality is generally superior to that of a bitmap image, and commercial programs such as Adobe Illustrator? can manipulate the image more efficiently.
Overview and First Results of an In-situ Stimulation Experiment in Switzerland
NASA Astrophysics Data System (ADS)
Amann, F.; Gischig, V.; Doetsch, J.; Jalali, M.; Valley, B.; Evans, K. F.; Krietsch, H.; Dutler, N.; Villiger, L.
2017-12-01
A decameter-scale in-situ stimulation and circulation (ISC) experiment is currently being conducted at the Grimsel Test Site in Switzerland with the objective of improving our understanding of key seismo-hydro-mechanical coupled processes associated with high pressure fluid injections in a moderately fractured crystalline rock mass. The ISC experiment activities aim to support the development of EGS technology by 1) advancing the understanding of fundamental processes that occur within the rock mass in response to relatively large-volume fluid injections at high pressures, 2) improving the ability to estimate and model induced seismic hazard and risks, 3) assessing the potential of different injection protocols to keep seismic event magnitudes below an acceptable threshold, 4) developing novel monitoring and imaging techniques for pressure, temperature, stress, strain and displacement as well as geophysical methods such as ground penetration radar, passive and active seismic and 5) generating a high-quality benchmark datasets that facilitates the development and validation of numerical modelling tools. The ISC experiment includes six fault slip and five hydraulic fracturing experiments at an intermediate scale (i.e. 20*20*20m) at 480m depth, which allows high resolution monitoring of the evolution of pore pressure in the stimulated fault zone and the surrounding rock matrix, fault dislocations including shear and dilation, and micro-seismicity in an exceptionally well characterized structural setting. In February 2017 we performed the fault-slip experiments on interconnected faults. Subsequently an intense phase of post-stimulation hydraulic characterization was performed. In Mai 2017 we performed hydraulic fracturing tests within test intervals that were free of natural fractures. In this contribution we give an overview and show first results of the above mentioned stimulation tests.
NASA Astrophysics Data System (ADS)
Akinsanpe, Olumuyiwa T.; Adepelumi, Adekunle A.; Benjamin, Uzochukwu K.; Falebita, Dele E.
2017-12-01
Comprehensive qualitative and semi-quantitative seismic analysis was carried out on 3-dimensional seismic data acquired in the deepwater compressional and shale diapiric zone of the Niger Delta Basin using an advanced seismic imaging tool. The main aim of this work is to obtain an understanding of the forming mechanism of the gas hydrate system, and the fluid migration paths associated with this part of the basin. The results showed the presence of pockmarks on the seafloor and bottom simulating reflectors (BSRs) in the field, indicating the active fluid flux and existence of gas hydrate system in the area. In the area of approximately 195 km2 occupying nearly 24% of the entire study field, three major zones with continuous or discontinuous BSRs of 3 to 7 km in length which are in the northeastern, southern and eastern part of the field respectively were delineated. The BSR is interpreted to be the transition between the free gas zone and the gas hydrate zone. The geologic structures including faults (strike-slip and normal faults), chimneys and diapirs were deduced to be the main conduits for gas migration. It is concluded that the biogenic gases generated in the basin were possibly transported via faults and chimneys by advection processes and subsequently accumulated under low temperature and high pressure conditions in the free gas zone below the BSR forming gas hydrate. A plausible explanation for the presence of the ubiquitous pockmarks of different diameters and sizes in the area is the transportation of the excessive gas to the seafloor through these mapped geologic structures.
Analysis of Deep Long-Period Subglacial Seismicity in Marie Byrd Land, Antarctica
NASA Astrophysics Data System (ADS)
McMahon, N. D.; Aster, R. C.; Myers, E. K.; Lough, A. C.
2017-12-01
We utilize subspace detection methodology to extend the detection and analysis of deep, long-period seismic activity associated with the subglacial and lower crust magmatic complex beneath the Executive Committee Range volcanoes of Marie Byrd Land (Lough et al., 2013). The Marie Byrd Land (MBL) volcanic province is a remote continental region that is almost completely covered by the West Antarctic Ice Sheet (WAIS). The southern extent of Marie Byrd Land lies within the West Antarctic Rift System (WARS), which includes the volcanic Executive Committee Range. Lough et al. noted that seismic stations in the POLENET/ANET seismic network detected two swarms of seismic activity during 2010 and 2011. These events have been interpreted as deep, long-period (DLP) earthquakes based on their depth (25-40 km), tectonic context, and low frequency spectra. The DLP events in MBL lie beneath an inferred volcanic edifice that is visible in ice penetrating radar images via subglacial topography and intraglacial ash deposits, and have been interpreted as a present location of Moho-proximal magmatic activity. The magmatic swarm activity in MBL provides a promising target for advanced subspace detection, and for the temporal, spatial, and event size analysis of an extensive deep long period earthquake swarm using a remote and sparse seismographic network. We utilized a catalog of 1370 traditionally identified DLP events to construct subspace detectors for the nine nearest stations using two years of data spanning 2010-2011. Via subspace detection we increase the number of observable detections more than 70 times at the highest signal to noise station while decreasing the overall minimum magnitude of completeness. In addition to the two previously identified swarms during early 2010 and early 2011, we find sustained activity throughout the two years of study that includes several previously unidentified periods of heightened activity. These events have a very high Gutenberg-Richter b-value (>2.0). We also note evidence of continuing seismicity through 2015 examining data from the small number of longer-running POLENET stations in the region.
Direct Imaging of Natural Fractures and Stress Compartments Stimulated by Hydraulic Fracturing
NASA Astrophysics Data System (ADS)
Lacazette, A.; Vermilye, J. M.
2014-12-01
This contribution will present results from passive seismic studies of hydraulic fracture treatments in North American and Asian basins. One of the key data types is a comparatively new surface-based seismic imaging product - "Tomographic Fracture Images®" (TFI®). The procedure is an extension of Seismic Emission Tomography (SET), which is well-established and widely used. Conventional microseismic results - microearthquake hypocenter locations, magnitudes, and focal mechanism solutions - are also obtained from the data via a branch of the processing workflow. TFI is accomplished by summing the individual time steps in a multidimensional SET hypervolume over extended periods of time, such as an entire frac stage. The dimensions of a SET hypervolume are the X, Y, and Z coordinates of the voxels, the time step (typically on the order of 100 milliseconds), and the seismic activity value. The resulting summed volume is skeletonized to produce images of the main fracture surfaces, which are known to occupy the maximum activity surfaces of the high activity clouds from theory, field studies, and experiments. The orientation vs. area of the resulting TFIs can be analyzed in detail and compared with independent data sets such as volumetric structural attributes from reflection seismic data and borehole fracture data. We find that the primary effect of hydraulic fracturing is to stimulate preexisting natural fracture networks and faults. The combination of TFIs with hypocenter distributions and microearthquake focal mechanisms provides detailed information on subsurface stress compartmentalization. Faults are directly imaged which allows discrimination of fault planes from auxiliary planes of focal mechanism solutions. Examples that will be shown include simultaneous movement on a thrust fault and tear fault and examples of radically different stress compartments (e.g. extensional vs. wrench faulting) stimulated during a single hydraulic fracture treatment. The figure shows a TFI of a single frac stage in the Eagle Ford FmFm that is unusually symmetrical and smooth near the perforations. Color shows intensity of cumulative seismic activity (red = high, violet = low). Note that the energy decreases and the complexity increases as the frac quenches in the natural fracture system.
Oklahoma's induced seismicity strongly linked to wastewater injection depth
NASA Astrophysics Data System (ADS)
Hincks, Thea; Aspinall, Willy; Cooke, Roger; Gernon, Thomas
2018-03-01
The sharp rise in Oklahoma seismicity since 2009 is due to wastewater injection. The role of injection depth is an open, complex issue, yet critical for hazard assessment and regulation. We developed an advanced Bayesian network to model joint conditional dependencies between spatial, operational, and seismicity parameters. We found that injection depth relative to crystalline basement most strongly correlates with seismic moment release. The joint effects of depth and volume are critical, as injection rate becomes more influential near the basement interface. Restricting injection depths to 200 to 500 meters above basement could reduce annual seismic moment release by a factor of 1.4 to 2.8. Our approach enables identification of subregions where targeted regulation may mitigate effects of induced earthquakes, aiding operators and regulators in wastewater disposal regions.
NASA Astrophysics Data System (ADS)
Catchings, R. D.; Fuis, G.; Rymer, M. J.; Goldman, M.; Tarnowski, J. M.; Hole, J. A.; Stock, J. M.; Matti, J. C.
2012-12-01
The Salton Seismic Imaging Project (SSIP) is a large-scale, active- and passive-source seismic project designed to image the San Andreas fault (SAF) and adjacent basins (Imperial and Coachella Valleys) in southernmost California. Data and preliminary results from many of the seismic profiles are reported elsewhere (including Fuis et al., Rymer et al., Goldman et al., Langenheim et al., this meeting). Here, we focus on SSIP Line 6, one of four 2-D seismic profiles that were acquired across the Coachella Valley. The 44-km-long, SSIP-Line-6 seismic profile extended from the east flank of Mt. San Jacinto northwest of Palm Springs to the Little San Bernardino Mountains and crossed the SAF (Mission Creek (MCF), Banning (BF), and Garnet Hill (GHF) strands) roughly normal to strike. Data were generated by 10 downhole explosive sources (most spaced about 3 to 5 km apart) and were recorded by approximately 347 Texan seismographs (average spacing 126 m). We used first-arrival refractions to develop a P-wave refraction tomography velocity image of the upper crust along the seismic profile. The seismic data were also stacked and migrated to develop low-fold reflection images of the crust. From the surface to about 7 km depth, P-wave velocities range from about 2.5 km/s to about 7.2 km/s, with the lowest velocities within an ~2-km-deep, ~20-km-wide basin, and the highest velocities below the transition zone from the Coachella Valley to Mt. San Jacinto and within the Little San Bernardino Mountains. The BF and GHF strands bound a shallow sub-basin on the southwestern side of the Coachella Valley, but the underlying shallow-depth (~4 km) basement rocks are P-wave high in velocity (~7.2 km/s). The lack of a low-velocity zone beneath BF and GHF suggests that both faults dip northeastward. In a similar manner, high-velocity basement rocks beneath the Little San Bernardino Mountains suggest that the MCF dips vertically or southwestward. However, there is a pronounced low-velocity zone in basement rocks between about 2 and 7 km depth beneath and southwest of the MCF, suggesting a vertical or slightly southwest-dipping MCF. The apparent northeast dip of the BF and the apparent vertical or southwest dip of the MCF suggests that the two main strands of the SAF (MCF and BF) merge at about 10 km depth. A plot of double-difference earthquake hypocenters (Hauksson, 2000) along the seismic profile shows events that occurred between 1980-2000 (excluding those in 1992, prior to and after the Joshua Tree and Landers earthquakes) are largely confined to the vicinity of the basement low-velocity zone between the MCF and BF. However, a separate alignment of hypocenters occurs southwest of the BF and projects toward the surface beneath Mt. San Jacinto. Collectively, the velocity images and the seismicity data suggest the BF strand of the SAF dips to the northeast at about 50 degrees in the upper 10 km, and the MCF strand is either vertical or dips southwestward about 80 degrees, with both strands merging at about 10 km depth and forming a near-vertical zone of faults to at least 15 km depth. The SSIP Line 6 data are consistent with structures interpreted by Catchings et al. (2009).
Towards Exascale Seismic Imaging and Inversion
NASA Astrophysics Data System (ADS)
Tromp, J.; Bozdag, E.; Lefebvre, M. P.; Smith, J. A.; Lei, W.; Ruan, Y.
2015-12-01
Post-petascale supercomputers are now available to solve complex scientific problems that were thought unreachable a few decades ago. They also bring a cohort of concerns tied to obtaining optimum performance. Several issues are currently being investigated by the HPC community. These include energy consumption, fault resilience, scalability of the current parallel paradigms, workflow management, I/O performance and feature extraction with large datasets. In this presentation, we focus on the last three issues. In the context of seismic imaging and inversion, in particular for simulations based on adjoint methods, workflows are well defined.They consist of a few collective steps (e.g., mesh generation or model updates) and of a large number of independent steps (e.g., forward and adjoint simulations of each seismic event, pre- and postprocessing of seismic traces). The greater goal is to reduce the time to solution, that is, obtaining a more precise representation of the subsurface as fast as possible. This brings us to consider both the workflow in its entirety and the parts comprising it. The usual approach is to speedup the purely computational parts based on code optimization in order to reach higher FLOPS and better memory management. This still remains an important concern, but larger scale experiments show that the imaging workflow suffers from severe I/O bottlenecks. Such limitations occur both for purely computational data and seismic time series. The latter are dealt with by the introduction of a new Adaptable Seismic Data Format (ASDF). Parallel I/O libraries, namely HDF5 and ADIOS, are used to drastically reduce the cost of disk access. Parallel visualization tools, such as VisIt, are able to take advantage of ADIOS metadata to extract features and display massive datasets. Because large parts of the workflow are embarrassingly parallel, we are investigating the possibility of automating the imaging process with the integration of scientific workflow management tools, specifically Pegasus.
Seismic imaging in hardrock environments: The role of heterogeneity?
NASA Astrophysics Data System (ADS)
Bongajum, Emmanuel; Milkereit, Bernd; Adam, Erick; Meng, Yijian
2012-10-01
We investigate the effect of petrophysical scale parameters and structural dips on wave propagation and imaging in heterogeneous media. Seismic wave propagation effects within the heterogeneous media are studied for different velocity models with scale lengths determined via stochastic analysis of petrophysical logs from the Matagami mine, Quebec, Canada. The elastic modeling study reveals that provided certain conditions of the velocity fluctuations are met, strong local distortions of amplitude and arrival times of propagating waves are observed as the degree of scale length anisotropy in the P-wave velocity increases. The location of these local amplitude anomalies is related to the dips characterizing the fabric of the host rocks. This result is different from the elliptical shape of direct waves often defined by effective anisotropic parameters used for layered media. Although estimates of anisotropic parameters suggest weak anisotropy in the investigated models, these effective anisotropic parameters often used in VTI/TTI do not sufficiently describe the effects of scale length anisotropy in heterogeneous media that show such local amplitude, travel time, and phase distortions in the wavefields. Numerical investigations on the implications for reverse time migration (RTM) routines corroborate that mean P-wave velocity of the host rocks produces reliable imaging results. Based on the RTM results, we postulate the following: weak anisotropy in hardrock environments is a sufficient assumption for processing seismic data; and seismic scattering effects due to velocity heterogeneity with a dip component is not sufficient to cause mislocation errors of target structures as observed in the discrepancy between the location of the strong seismic reflections associated to the Matagami sulfide orebody and its true location. Future work will investigate other factors that may provide plausible explanations for these mislocation problems, with the objective of providing a mitigation strategy for incorporation into the seismic data processing sequence when imaging in hardrock settings.
NASA Astrophysics Data System (ADS)
Brodic, Bojan; Malehmir, Alireza; Maries, Georgiana; Ahokangas, Elina; Mäkinen, Joni; Pasanen, Antti
2017-04-01
Higher resolution of S-wave seismic data compared to the P-wave ones are attractive for the researches working with the seismic methods. This is particularly true for near-surface applications due to significantly lower shear-wave velocities of unconsolidated sediments. Shear-wave imaging, however, poses certain restrictions on both source and receiver selections and also processing strategies. With three component (3C) seismic receivers becoming more affordable and used, shear-wave imaging from vertical sources is attracting more attention for near-surface applications. Theoretically, a vertical impact source will always excite both P- and S-waves although the excited S-waves are radially polarized (SV). There is an exchange of seismic energy between the vertical and radial component of the seismic wavefield. Additionally, it is theoretically accepted that there is no energy conversion or exchange from vertical into the transverse (or SH) component of the seismic wavefield, and the SH-waves can only be generated using SH sources. With the objectives of imaging esker structure (glacial sediments), water table and depth to bedrock, we conducted a seismic survey in Virttaankangas, in southwestern Finland. A bobcat-mounted vertical drop hammer (500 kg) was used as the seismic source. To obtain better source coupling, a 75×75×1.5 cm steel plate was mounted at the bottom of the hammer casing and all the hits made on this plate after placing it firmly on the ground at every shot point. For the data recording, we used a state-of-the-art comprising of 100 units, 240 m-long, 3C MEMS (micro electro-mechanical system) based seismic landstreamer developed at Uppsala University. Although the focus of the study was on the vertical component data, careful inspection of the transverse (SH) component of the raw data revealed clear shear wave reflections (normal moveout velocities ranging from 280-350 m/s at 50 m depth) on several shot gathers. This indicated potential for their analysis, hence shear-wave reflection imaging was carried out. Results show an excellent correspondence between the drilled depth to bedrock and the one independently obtained using P-wave first arrivals traveltime tomography with a reflection imaged on the stacked section of the SH component data. Aside from this reflection that follows the undulating bedrock topography, additional reflections are also observed on the stacked section that might be related to the sedimentary structures at the site. The section shows much finer resolution compared to the P-wave stacked section processed independently and reported earlier this year. This study illustrates the importance of 3C data recording and shows the potential of the landstreamer in imaging shallow subsurface using both P- and SH-waves generated from a vertical impact source. Whether the strong SH-wave energy observed is generated immediately at the source-ground contact, possible sliding of the base plate on which the impacts were made, an effect of near-surface heterogeneities or other factors remains to be carefully investigated. Acknowledgments: A contribution from Trust 2.2 project (http://trust-geoinfra.se) sponsored by Formas, BeFo, SBUF, SGU, Skanska, Tyréns, FQM, and NGI. We thank Turku Water Company, GTK and University of Turku, Department of Geography and Geology for supporting the data acquisition.
NASA Astrophysics Data System (ADS)
Klingelhoefer, F.; Aslanian, D.; Sahabi, M.; Moulin, M.; Schnurle, P.; Berglar, K.; Biari, Y.; Feld, A.; Graindorge, D.; Corela, C.; Mehdi, K.; Zourarah, B.; Perrot, J.; Alves Ribeiro, J.; Reichert, C. J.
2011-12-01
The study of conjugate margins is important to test different hypotheses of rifting and initial opening of an ocean. In this scope, seven wide-angle seismic profiles were acquired on the Moroccan Atlantic margin (at the latitudes between 32° and 33° N) together with coincident deep frequency reflection seismic data during the MIRROR cruise in May and June 2011. The main seismic profile is conjugate to an existing wide-angle seismic profile off Nova Scotia (SMART 2). Further objectives of the cruise were to image ocean-continent transition zone, to detect and eventually quantify exhumed upper mantle material present in this zone and to determine the origin of the high amplitude West African Magnetic Anomaly, which is conjugate to the north American East Coast Magnetic Anomaly and can be linked to the opening of the Atlantic. Two of the newly acquired profiles are located perpendicular and five parallel to the Moroccan margin. The seismic profiles are between 130 and 260 km in length and between 28 and 13 ocean-bottom seismometers were deployed on each one. One profile was extended on land by 15 landstations in order to better image the zone of continental thinning. A 4.5 km digital streamer and a 7200 cu inch tuned airgun array were used for the acquisition of the seismic data. Additionally magnetic, bathymetric and high resolution seismic data were acquired in the study region. Preliminary results from tomographic inversion of the first arrivals from the ocean-bottom seismometer data image the zone of crustal thinning from about 25 km to 6 km in the basin along about 70 kilometers of the profiles which are located perpendicular to the margin. The oceanic crust can be divided into 2 regions, based on the lower crustal velocities. Upper mantle velocities are about 8.0 km/s. The coincident reflection seismic data show the fine basement and sedimentary structures including salt tectonics in the basin. The comparative study of the two conjugate profiles on the Moroccan and Nova Scotia margin will give new insights into the original opening of the Atlantic ocean. Further work on this data set will include forward modelling of the wide-angle seismic data, gravity and magnetic modelling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alkan, Engin; DeAngelo, Michael; Hardage, Bob
2012-12-31
Research done in this study showed that P-SV seismic data provide better spatial resolution of geologic targets at our Appalachian Basin study area than do P-P data. This finding is important because the latter data (P-P) are the principal seismic data used to evaluate rock systems considered for CO{sub 2} sequestration. The increase in P-SV{sub 1} resolution over P-P resolution was particularly significant, with P-SV{sub 1} wavelengths being approximately 40-percent shorter than P-P wavelengths. CO{sub 2} sequestration projects across the Appalachian Basin should take advantage of the increased resolution provided by converted-shear seismic modes relative to P-wave seismic data. Inmore » addition to S-wave data providing better resolution of geologic targets, we found S-wave images described reservoir heterogeneities that P-P data could not see. Specifically, a channel-like anomaly was imaged in a key porous sandstone interval by P-SV{sub 1} data, and no indication of the feature existed in P-P data. If any stratigraphic unit is considered for CO{sub 2} storage purposes, it is important to know all heterogeneities internal to the unit to understand reservoir compartmentalization. We conclude it is essential that multicomponent seismic data be used to evaluate all potential reservoir targets whenever a CO{sub 2} storage effort is considered, particularly when sequestration efforts are initiated in the Appalachian Basin. Significant differences were observed between P-wave sequences and S- wave sequences in data windows corresponding to the Oriskany Sandstone, a popular unit considered for CO{sub 2} sequestration. This example demonstrates that S-wave sequences and facies often differ from P-wave sequences and facies and is a principle we have observed in every multicomponent seismic interpretation our research laboratory has done. As a result, we now emphasis elastic wavefield seismic stratigraphy in our reservoir characterization studies, which is a science based on the concept that the same weight must be given to S-wave sequences and facies as is given to P-wave sequences and facies. This philosophy differs from the standard practice of depending on only conventional P-wave seismic stratigraphy to characterize reservoir units. The fundamental physics of elastic wavefield seismic stratigraphy is that S- wave modes sense different sequences and facies across some intervals than does a P-wave mode because S-wave displacement vectors are orthogonal to P- wave displacement vectors and thus react to a different rock fabric than do P waves. Although P and S images are different, both images can still be correct in terms of the rock fabric information they reveal.« less
NASA Astrophysics Data System (ADS)
Magnani, M. B.
2017-12-01
Alluvial rivers, even great rivers such as the Mississippi, respond to hydrologic and geologic controls. Temporal variations of valley gradient can significantly alter channel morphology, as the river responds syntectonically to attain equilibrium. The river will alter its sinuosity, in an attempt to maintain a constant gradient on a surface that changes slope through time. Therefore, changes of river pattern can be the first clue that active tectonics is affecting an area of pattern change. Here I present geomorphological and seismic imaging evidence of a previously unknown fault crossing the Mississippi river south of the New Madrid seismic zone, between Caruthersville, Missouri and Osceola, Arkansas, and show that both datasets support Holocene fault movement, with the latest slip occurring in the last 200 years. High resolution marine seismic reflection data acquired along the Mississippi river imaged a NW-SE striking north-dipping fault displacing the base of the Quaternary alluvium by 15 m with reverse sense of movement. The fault consistently deforms the Tertiary, Cretaceous and Paleozoic formations. Historical river channel planforms dating back to 1765 reveal that the section of the river channel across the fault has been characterized by high sinuosity and steep projected-channel slope compared to adjacent river reaches. In particular, the reach across the fault experienced a cutoff in 1821, resulting in a temporary lowering of sinuosity followed by an increase between the survey of 1880 and 1915. Under the assumption that the change in sinuosity reflects river response to a valley slope change to maintain constant gradient, I use sinuosity through time to calculate the change in valley slope since 1880 and therefore to estimate the vertical displacement of the imaged fault in the past 200 years. Based on calculations so performed, the vertical offset of the fault is estimated to be 0.4 m, accrued since at least 1880. If the base of the river alluvium imaged here is coeval to that of the region just south (which was recently drilled and dated at 14.3 ka), and assuming a uniform slip accumulation through time, then 15 m of vertical offset imaged by the seismic data suggests a return interval of 400 years for this fault, comparable to the one observed for the nearby New Madrid seismic zone fault system.
New ShakeMaps for Georgia Resulting from Collaboration with EMME
NASA Astrophysics Data System (ADS)
Kvavadze, N.; Tsereteli, N. S.; Varazanashvili, O.; Alania, V.
2015-12-01
Correct assessment of probabilistic seismic hazard and risks maps are first step for advance planning and action to reduce seismic risk. Seismic hazard maps for Georgia were calculated based on modern approach that was developed in the frame of EMME (Earthquake Modl for Middle east region) project. EMME was one of GEM's successful endeavors at regional level. With EMME and GEM assistance, regional models were analyzed to identify the information and additional work needed for the preparation national hazard models. Probabilistic seismic hazard map (PSH) provides the critical bases for improved building code and construction. The most serious deficiency in PSH assessment for the territory of Georgia is the lack of high-quality ground motion data. Due to this an initial hybrid empirical ground motion model is developed for PGA and SA at selected periods. An application of these coefficients for ground motion models have been used in probabilistic seismic hazard assessment. Obtained results of seismic hazard maps show evidence that there were gaps in seismic hazard assessment and the present normative seismic hazard map needed a careful recalculation.
Deformation and Quaternary Faulting in Southeast Missouri across the Commerce Geophysical Lineament
Stephenson, W.J.; Odum, J.K.; Williams, R.A.; Pratt, T.L.; Harrison, R.W.; Hoffman, D.
1999-01-01
High-resolution seismic-reflection data acquired at three sites along the surface projection of the Commerce geophysical lineament in southeast Missouri reveal a complex history of post-Cretaceous faulting that has continued into the Quaternary. Near Qulin, Missouri, approximately 20 m of apparent vertical fault displacement has occurred in the Quaternary. Reflection data collected at Idalia Hill, about 45 km to the northeast, reveal a series of reverse and possibly right-lateral strike-slip faults with Quaternary displacement. In the Benton Hills, 45 km northeast of Idalia Hill, seismic data image a complicated series of anticlinal and synclinal fault-bounded blocks immediately north of the Commerce fault. We infer that most of the deformation imaged in the upper 400 m of these three data sets occurred since post-Cretaceous time, and a significant portion of it occurred during Quaternary time. Collectively, these seismic data along with geomorphic and surface-geologic evidence suggest (1) the existence of at least one potential seismogenic structure in southeastern Missouri outside the main zones of New Madrid seismicity, and (2) these structures have been active during the Quaternary. The geographic location of the imaged deformation suggests it is related to structures along with the Commerce geophysical lineament.
Deep Seismic Reflection Images of the Sumatra Seismic and Aseismic Gaps
NASA Astrophysics Data System (ADS)
Singh, S. C.; Hananto, N. D.; Chauhan, A.; Carton, H. D.; Midenet, S.; Djajadihardja, Y.
2009-12-01
The Sumatra subduction zone is seismically most active region on the Earth, and has been the site of three great earthquakes only in the last four years. The first of the series, the 2004 Boxing Day earthquake, broke 1300 km of the plate boundary and produced the devastating tsunami around the Indian Ocean. The second great earthquake occurred three months later in March 2005, about 150 km SE of the 2004 event. The Earth waited for three years, and then broke again in September 2007 at 1300 km SE of the 2004 event producing a twin earthquake of magnitudes of 8.5 and 7.9 at an interval of 12 hours, leaving a seismic gap of about 600 km between the second and third earthquake, the Sumatra Seismic Gap. Seismological and geodetic studies suggest that this gap is fully locked and may break any time. In order to study the seismic and tsunami risk in this locked region, a deep seismic reflection survey (Tsunami Investigation Deep Evaluation Seismic -TIDES) was carried out in May 2009 using the CGGVeritas vessel Geowave Champion towing a 15 long streamer, the longest ever used during a seismic survey, to image the nature of the subducting plate and associated features, including the seismogenic zone, from seafloor down to 50 km depth. A total of 1700 km of deep seismic reflection data were acquired. Three dip lines traverse the Sumatra subduction zone; one going through the Sumatra Seismic Gap, one crossing the region that broke during the 2007 great earthquake, and one going through the aseismic zone. These three dip profiles should provide insight about the locking mechanism and help us to understand why an earthquake occurs in one zone and not in aseismic zone. A strike-line was shot in the forearc basin connecting the locked zone with broken zone profiles, which should provide insight about barriers that might have stopped propagation of 2007 earthquake rupture further northward.
Advance Inspection of NASA Next Mars Landing Site
2017-03-29
This map shows footprints of images taken from Mars orbit by the High Resolution Imaging Science Experiment (HiRISE) camera as part of advance analysis of the area where NASA's InSight mission will land in 2018. The final planned image of the set is targeted to fill in the yellow-outlined rectangle on March 30, 2017. HiRISE is one of six science instruments on NASA's Mars Reconnaissance Orbiter, which reached Mars in 2006 and surpassed 50,000 orbits on March 27, 2017. The map covers an area about 100 miles (160 kilometers) across. HiRISE has been used since 2006 to inspect dozens of candidate landing sites on Mars, including the sites where the Phoenix and Curiosity missions landed in 2008 and 2012. The site selected for InSight's Nov. 26, 2018, landing is on a flat plain in the Elysium Planitia region of Mars, between 4 and 5 degrees north of the equator. HiRISE images are detailed enough to reveal individual boulders big enough to be a landing hazard. The March 30 observation that completes the planned advance imaging of this landing area brings the number of HiRISE images of the area to 73. Some are pairs covering the same ground. Overlapping observations provide stereoscopic, 3-D information for evaluating characteristics such as slopes. On this map, coverage by stereo pairs is coded in pale blue, compared to the gray-green of single HiRISE image footprints. The ellipses on the map are about 81 miles (130 kilometers) west-to-east by about 17 miles (27 kilometers) north-to-south. InSight has about 99 percent odds of landing within the ellipse for which it is targeted. The three ellipses indicate landing expectations for three of the possible InSight launch dates: white outline for launch at the start of the launch period, on May 5, 2018; blue for launch on May 26, 2018; orange for launch on June 8, 2018. InSight -- an acronym for "Interior Exploration using Seismic Investigations, Geodesy and Heat Transport" -- will study the deep interior of Mars to improve understanding about how rocky planets like Earth formed and evolved. http://photojournal.jpl.nasa.gov/catalog/PIA21489
Pratt, Thomas L.; Holmes, Mark; Schweig, Eugene S.; Gomberg, Joan S.; Cowan, Hugh A.
2003-01-01
High-resolution seismic reflection profiles from Limo??n Bay, Republic of Panama, were acquired as part of a seismic hazard investigation of the northern Panama Canal region. The seismic profiles image gently west and northwest dipping strata of upper Miocene Gatu??n Formation, unconformably overlain by a thin (<20 m) sequence of Holocene muds. Numerous faults, which have northeast trends where they can be correlated between seismic profiles, break the upper Miocene strata. Some of the faults have normal displacement, but on many faults, the amount and type of displacement cannot be determined. The age of displacement is constrained to be Late Miocene or younger, and regional geologic considerations suggest Pliocene movement. The faults may be part of a more extensive set of north- to northeast-trending faults and fractures in the canal region of central Panama. Low topography and the faults in the canal area may be the result of the modern regional stress field, bending of the Isthmus of Panama, shearing in eastern Panama, or minor deformation of the Panama Block above the Caribbean subduction zone. For seismic hazard analysis of the northern canal area, these faults led us to include a source zone of shallow faults proximal to northern canal facilities. ?? 2003 Elsevier B.V. All rights reserved.
Visualization of volumetric seismic data
NASA Astrophysics Data System (ADS)
Spickermann, Dela; Böttinger, Michael; Ashfaq Ahmed, Khawar; Gajewski, Dirk
2015-04-01
Mostly driven by demands of high quality subsurface imaging, highly specialized tools and methods have been developed to support the processing, visualization and interpretation of seismic data. 3D seismic data acquisition and 4D time-lapse seismic monitoring are well-established techniques in academia and industry, producing large amounts of data to be processed, visualized and interpreted. In this context, interactive 3D visualization methods proved to be valuable for the analysis of 3D seismic data cubes - especially for sedimentary environments with continuous horizons. In crystalline and hard rock environments, where hydraulic stimulation techniques may be applied to produce geothermal energy, interpretation of the seismic data is a more challenging problem. Instead of continuous reflection horizons, the imaging targets are often steep dipping faults, causing a lot of diffractions. Without further preprocessing these geological structures are often hidden behind the noise in the data. In this PICO presentation we will present a workflow consisting of data processing steps, which enhance the signal-to-noise ratio, followed by a visualization step based on the use the commercially available general purpose 3D visualization system Avizo. Specifically, we have used Avizo Earth, an extension to Avizo, which supports the import of seismic data in SEG-Y format and offers easy access to state-of-the-art 3D visualization methods at interactive frame rates, even for large seismic data cubes. In seismic interpretation using visualization, interactivity is a key requirement for understanding complex 3D structures. In order to enable an easy communication of the insights gained during the interactive visualization process, animations of the visualized data were created which support the spatial understanding of the data.
NASA Astrophysics Data System (ADS)
Bell, Rebecca; Morgan, Joanna; Warner, Michael
2016-04-01
There are many outstanding plate-tectonic scale questions that require us to know information about sub-surface physical properties, for example ascertaining the geometry and location of magma chambers and estimating the effective stress along plate boundary faults. These important scientific targets are often too deep, impractical and expensive for extensive academic drilling. Full-waveform inversion (FWI) is an advanced seismic imaging technique that has recently become feasible in three dimensions, and has been widely adopted by the oil and gas industry to image reservoir-scale targets at shallow-to-moderate depths. In this presentation we explore the potential for 3-D FWI, when combined with appropriate marine seismic acquisition, to recover high-resolution high-fidelity P-wave velocity models for sub-sedimentary targets within the crystalline crust and uppermost mantle. Using existing geological and geophysical models, we construct P-wave velocity models over three potential sub-sedimentary targets: the Soufrière Hills Volcano on Montserrat and its associated crustal magmatic system, the downgoing oceanic plate beneath the Nankai subduction margin, and the oceanic crust-uppermost mantle beneath the East Pacific Rise mid-ocean ridge. We use these models to generate realistic multi-azimuth 3-D synthetic seismic data, and attempt to invert these data to recover the original models. We explore the resolution and accuracy, sensitivity to noise and acquisition geometry, ability to invert elastic data using acoustic inversion codes, and the trade-off between low frequencies and starting velocity model accuracy. We will show that FWI applied to multi-azimuth, refracted, wide-angle, low-frequency data can resolve features in the deep crust and uppermost mantle on scales that are significantly better than can be achieved by any other geophysical technique, and that these results can be obtained using relatively small numbers (60-90) of ocean-bottom receivers combined with large numbers of air-gun shots. We demonstrate that multi-azimuth 3-D FWI is robust in the presence of noise, that acoustic FWI can invert elastic data successfully, and that the typical errors to be expected in starting models derived using travel times will not be problematic for FWI given appropriately designed acquisition. In this presentation we will also discuss a recent field-example of the use of FWI to image the Endeavour spreading centre in the northeastern Pacific. FWI is a rapidly maturing technology; its transfer from the petroleum sector to tackle a broader range of targets now appears entirely achievable.
A seismic search for the paleoshorelines of Lake Otero beneath White Sands Dune Field, New Mexico
NASA Astrophysics Data System (ADS)
Wagner, P. F.; Reece, R.; Ewing, R. C.
2014-12-01
The Tularosa Basin, which now houses White Sands Dune Field, was once occupied by Pleistocene Lake Otero. Several paleoshorelines of Lake Otero have been identified throughout the basin by field surveys and remote sensing using digital elevation models. Up to four shorelines may be buried beneath White Sands Dune Field and it has been posited that the current upwind margin of White Sands coincides with a one of these shorelines. Here we employ a novel geophysical instrument and method to image the subsurface: the seismic land streamer. The land streamer utilizes weighted base plates and one-component vertical geophones in a towed array. With a seisgun acoustic source, we imaged in the Alkali Flats area near the upwind margin, one potential location of paleoshorelines, as well as the Film Lot closer to the center of the dune field. Surfaces in both locations are indurated gypsum playa, which made seismic imaging possible and successful. We collected one SW-NE trending seismic line at each location, which matches the dominant wind and dune migration directions. Based on initial data analysis we find some subsurface structure that may coincide with the paleo lake bed of Lake Otero. The successful demonstration of this new method provides the foundation for an expanded regional subsurface study to image the strata and structure of the Tularosa Basin.
Seismoelectric imaging of shallow targets
Haines, S.S.; Pride, S.R.; Klemperer, S.L.; Biondi, B.
2007-01-01
We have undertaken a series of controlled field experiments to develop seismoelectric experimental methods for near-surface applications and to improve our understanding of seismoelectric phenomena. In a set of off-line geometry surveys (source separated from the receiver line), we place seismic sources and electrode array receivers on opposite sides of a man-made target (two sand-filled trenches) to record separately two previously documented seismoelectric modes: (1) the electromagnetic interface response signal created at the target and (2) the coseismic electric fields located within a compressional seismic wave. With the seismic source point in the center of a linear electrode array, we identify the previously undocumented seismoelectric direct field, and the Lorentz field of the metal hammer plate moving in the earth's magnetic field. We place the seismic source in the center of a circular array of electrodes (radial and circumferential orientations) to analyze the source-related direct and Lorentz fields and to establish that these fields can be understood in terms of simple analytical models. Using an off-line geometry, we create a multifold, 2D image of our trenches as dipping layers, and we also produce a complementary synthetic image through numerical modeling. These images demonstrate that off-line geometry (e.g., crosswell) surveys offer a particularly promising application of the seismoelectric method because they effectively separate the interface response signal from the (generally much stronger) coseismic and source-related fields. ?? 2007 Society of Exploration Geophysicists.
A seismic reflection image for the base of a tectonic plate.
Stern, T A; Henrys, S A; Okaya, D; Louie, J N; Savage, M K; Lamb, S; Sato, H; Sutherland, R; Iwasaki, T
2015-02-05
Plate tectonics successfully describes the surface of Earth as a mosaic of moving lithospheric plates. But it is not clear what happens at the base of the plates, the lithosphere-asthenosphere boundary (LAB). The LAB has been well imaged with converted teleseismic waves, whose 10-40-kilometre wavelength controls the structural resolution. Here we use explosion-generated seismic waves (of about 0.5-kilometre wavelength) to form a high-resolution image for the base of an oceanic plate that is subducting beneath North Island, New Zealand. Our 80-kilometre-wide image is based on P-wave reflections and shows an approximately 15° dipping, abrupt, seismic wave-speed transition (less than 1 kilometre thick) at a depth of about 100 kilometres. The boundary is parallel to the top of the plate and seismic attributes indicate a P-wave speed decrease of at least 8 ± 3 per cent across it. A parallel reflection event approximately 10 kilometres deeper shows that the decrease in P-wave speed is confined to a channel at the base of the plate, which we interpret as a sheared zone of ponded partial melts or volatiles. This is independent, high-resolution evidence for a low-viscosity channel at the LAB that decouples plates from mantle flow beneath, and allows plate tectonics to work.
Global Seismic Monitoring: Past, Present, and Future
NASA Astrophysics Data System (ADS)
Zoback, M.; Benz, H.; Oppenheimer, D.
2007-12-01
Global seismological observations began in April 1889 when an earthquake in Tokyo, Japan was accurately recorded in Germany on two different horizontal pendulum instruments. However, modern global observational seismology really began 46 years ago when the 120-station World Wide Standard Seismograph Network was installed by the US to monitor underground nuclear tests and earthquakes using well-calibrated short- and long- period stations. At the same time rapid advances in computing technology enabled researchers to begin sophisticated analysis of the increasing amount of seismic data, which led to better understanding of earthquake source properties and their use in establishing plate tectonics. Today, global seismic networks are operated by German (Geophon), France (Geoscope), the United States (Global Seismograph Network) and the International Monitoring System. Presently, the Federation of Digital Seismograph Networks registers more than 1,000 broadband stations world-wide, a small percentage of the total number of digital seismic stations around the world. Following the devastating Kobe, Japan and Northridge, California earthquakes, Japan and the US have led the world in the integration of existing seismic sensor systems (weak and strong motion) into development of near-real-time, post-earthquake response products like ShakeMap, detailing the spatial distribution of strong shaking. Future challenges include expanding real-time integration of both seismic and geodetic sensor systems to produce early warning of strong shaking, rapid source determination, as well as near-realtime post- earthquake damage assessment. Seismic network data, hydro-acoustic arrays, deep water tide gauges, and satellite imagery of wave propagation should be integrated in real-time to provide input for hydrodynamic modeling yielding the distribution, timing and size of tsunamis runup--which would then be available instantly on the web, e.g. in a Google Earth format. Dense arrays of strong motion sensors together with deployment of MEMS-type accelerometers in buildings and equipment routinely connected to the Web could potentially provide thousands of measurements of damaging strong ground motion. This technology could ultimately become part of smart building design enabling critical facilities to change their structural response to imminent strong shaking. Looking further forward, it is likely that a continuously observing spaceborne system could image the occurrence of "silent" or "slow" earthquakes as well as the propagation of ground displacement by surface waves at scales of continents.
Seismic maps foster landmark legislation
Borcherdt, Roger D.; Brown, Robert B.; Page, Robert A.; Wentworth, Carl M.; Hendley, James W.
1995-01-01
When a powerful earthquake strikes an urban region, damage concentrates not only near the quake's source. Damage can also occur many miles from the source in areas of soft ground. In recent years, scientists have developed ways to identify and map these areas of high seismic hazard. This advance has spurred pioneering legislation to reduce earthquake losses in areas of greatest hazard.
NASA Astrophysics Data System (ADS)
García-Yeguas, A.; Sánchez-Alzola, A.; De Siena, L.; Prudencio, J.; Díaz-Moreno, A.; Ibáñez, J. M.
2018-03-01
We present a P-wave scattering image of the volcanic structures under Tenerife Island using the autocorrelation functions of P-wave vertical velocity fluctuations. We have applied a cluster analysis to total quality factor attenuation ( {Q}_t^{-1} ) and scattering quality factor attenuation ( {Q}_{PSc}^{-1} ) images to interpret the structures in terms of intrinsic and scattering attenuation variations on a 2D plane, corresponding to a depth of 2000 m, and check the robustness of the scattering imaging. The results show that scattering patterns are similar to total attenuation patterns in the south of the island. There are two main areas where patterns differ: at Cañadas-Teide-Pico Viejo Complex, high total attenuation and average-to-low scattering values are observed. We interpret the difference as induced by intrinsic attenuation. In the Santiago Ridge Zone (SRZ) region, high scattering values correspond to average total attenuation. In our interpretation, the anomaly is induced by an extended scatterer, geometrically related to the surficial traces of Garachico and El Chinyero historical eruptions and the area of highest seismic activity during the 2004-2008 seismic crises.
ConvNetQuake: Convolutional Neural Network for Earthquake Detection and Location
NASA Astrophysics Data System (ADS)
Denolle, M.; Perol, T.; Gharbi, M.
2017-12-01
Over the last decades, the volume of seismic data has increased exponentially, creating a need for efficient algorithms to reliably detect and locate earthquakes. Today's most elaborate methods scan through the plethora of continuous seismic records, searching for repeating seismic signals. In this work, we leverage the recent advances in artificial intelligence and present ConvNetQuake, a highly scalable convolutional neural network for probabilistic earthquake detection and location from single stations. We apply our technique to study two years of induced seismicity in Oklahoma (USA). We detect 20 times more earthquakes than previously cataloged by the Oklahoma Geological Survey. Our algorithm detection performances are at least one order of magnitude faster than other established methods.
NASA Astrophysics Data System (ADS)
DeGrandpre, K.; Pesicek, J. D.; Lu, Z.
2017-12-01
During the summer of 2014 and the early spring of 2015 two notable increases in seismic activity at Semisopochnoi Island in the western Aleutian islands were recorded on AVO seismometers on Semisopochnoi and neighboring islands. These seismic swarms did not lead to an eruption. This study employs interferometric synthetic aperture radar (InSAR) techniques using TerraSAR-X images in conjunction with more accurately relocating the recorded seismic events through simultaneous inversion of event travel times and a three-dimensional velocity model using tomoDD. The InSAR images exhibit surprising coherence and an island wide spatial distribution of inflation that is then used in Mogi, Okada, spheroid, and ellipsoid source models in order to define the three-dimensional location and volume change required for a source at the volcano to produce the observed surface deformation. The tomoDD relocations provide a more accurate and realistic three-dimensional velocity model as well as a tighter clustering of events for both swarms that clearly outline a linear seismic void within the larger group of shallow (<10 km) seismicity. The source models are fit to this void and pressure estimates from geochemical analysis are used to verify the storage depth of magmas at Semisopochnoi. Comparisons of calculated source cavity, magma injection, and surface deformation volumes are made in order to assess the reality behind the various modelling estimates. Incorporating geochemical and seismic data to provide constraints on surface deformation source inversions provides an interdisciplinary approach that can be used to make more accurate interpretations of dynamic observations.
Refraction statics and seismic imaging: 2-D versus 3-D solutions in the Western Desert of Egypt
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Emam, A.; Nessim, M.
1994-12-31
Careful review of old geophysical and geological data from the Western Desert of Egypt led to the decision of shooting a 3-D seismic survey targeted to solve some of the encountered geophysical problems such as difficulty of tracing the very thin pay zone, identifying the stratigraphic plays and the main two problems of the seismic method in the Western Desert which are statics and poor imaging. In a case history form illustrated by examples, the result of the 3-D solutions will be shown. Furthermore, an analytical approach will be undertaken to clarify and highlight the sources of those geophysical problemsmore » and how the 3-D solution helped in resolving them.« less
NASA Astrophysics Data System (ADS)
Haberland, Christian; Gibert, Luis; Jurado, María José; Stiller, Manfred; Baumann-Wilke, Maria; Scott, Gary; Mertz, Dieter F.
2017-07-01
The Baza basin is a large Neogene intramontane basin in the Bétic Cordillera of southern Spain that formed during the Tortonian (late Miocene). The Bétic Cordillera was produced by NW-SE oblique convergence between the Eurasian and African Plates. Three seismic reflection lines (each 18 km long; vibroseis method) were acquired across the Baza basin to reveal the architecture of the sedimentary infill and faulting during basin formation. We applied rather conventional CDP data processing followed by first arrival P-wave tomography to provide complementary structural information and establish velocity models for the post-stack migration. These images show a highly asymmetric structure for the Basin with sediments thickening westward, reaching a maximum observed thickness of > 2200 m near the governing Baza Fault zone (BFZ). Three major seismic units (including several subunits) on top of the acoustic basement could be identified. We use stratigraphic information from the uplifted block of the BFZ and other outcrops at the basin edges together with available information from neighboring Bétic basins to tentatively correlate the seismic units to the known stratigraphy in the area. Until new drilling or surface outcrop data is not available, this interpretation is preliminary. The seismic units could be associated to Tortonian marine deposits, and latest Miocene to Pleistocene continental fluvio-lacustrine sediments. Individual strands of the BFZ truncate the basin sediments. Strong fault reflections imaged in two lines are the product of the large impedance contrast between sedimentary fill and basement. In the central part of the Basin several basement faults document strong deformation related to the early stages of basin formation. Some of these faults can be traced up to the shallowest imaged depth levels indicating activity until recent times.
CMP reflection imaging via interferometry of distributed subsurface sources
NASA Astrophysics Data System (ADS)
Kim, D.; Brown, L. D.; Quiros, D. A.
2015-12-01
The theoretical foundations of recovering body wave energy via seismic interferometry are well established. However in practice, such recovery remains problematic. Here, synthetic seismograms computed for subsurface sources are used to evaluate the geometrical combinations of realistic ambient source and receiver distributions that result in useful recovery of virtual body waves. This study illustrates how surface receiver arrays that span a limited distribution suite of sources, can be processed to reproduce virtual shot gathers that result in CMP gathers which can be effectively stacked with traditional normal moveout corrections. To verify the feasibility of the approach in practice, seismic recordings of 50 aftershocks following the magnitude of 5.8 Virginia earthquake occurred in August, 2011 have been processed using seismic interferometry to produce seismic reflection images of the crustal structure above and beneath the aftershock cluster. Although monotonic noise proved to be problematic by significantly reducing the number of usable recordings, the edited dataset resulted in stacked seismic sections characterized by coherent reflections that resemble those seen on a nearby conventional reflection survey. In particular, "virtual" reflections at travel times of 3 to 4 seconds suggest reflector sat approximately 7 to 12 km depth that would seem to correspond to imbricate thrust structures formed during the Appalachian orogeny. The approach described here represents a promising new means of body wave imaging of 3D structure that can be applied to a wide array of geologic and energy problems. Unlike other imaging techniques using natural sources, this technique does not require precise source locations or times. It can thus exploit aftershocks too small for conventional analyses. This method can be applied to any type of microseismic cloud, whether tectonic, volcanic or man-made.
Yong, A.; Hough, S.E.; Cox, B.R.; Rathje, E.M.; Bachhuber, J.; Dulberg, R.; Hulslander, D.; Christiansen, L.; Abrams, M.J.
2011-01-01
We report about a preliminary study to evaluate the use of semi-automated imaging analysis of remotely-sensed DEM and field geophysical measurements to develop a seismic-zonation map of Port-au-Prince, Haiti. For in situ data, Vs30 values are derived from the MASW technique deployed in and around the city. For satellite imagery, we use an ASTER GDEM of Hispaniola. We apply both pixel- and object-based imaging methods on the ASTER GDEM to explore local topography (absolute elevation values) and classify terrain types such as mountains, alluvial fans and basins/near-shore regions. We assign NEHRP seismic site class ranges based on available Vs30 values. A comparison of results from imagery-based methods to results from traditional geologic-based approaches reveals good overall correspondence. We conclude that image analysis of RS data provides reliable first-order site characterization results in the absence of local data and can be useful to refine detailed site maps with sparse local data. ?? 2011 American Society for Photogrammetry and Remote Sensing.
NASA Astrophysics Data System (ADS)
Rohrer, M.; Harris, J. B.; Cearley, C.; Teague, M.
2017-12-01
Within the past decade or so, paleoseismologic and geophysical studies at the Daytona Beach (DB) site in east-central Arkansas have reported earthquake-induced liquefaction (sand blows) along a prominent NW-trending lineament dated to approximately 5.5 ka. A recent compressional-wave (P-wave) seismic reflection survey acquired by the U. S. Geological Survey (USGS) along Highway 243 in Lee County, Arkansas, across the DB sand blow cluster, identified a previously unknown fault zone that is likely associated with the liquefaction. However, the USGS data were not able to image the Quaternary section (<60 m deep) and show a direct connection between the deeper faulting and the sand blows. In order to investigate the near-surface structure of the fault zone, we acquired an integrated geophysical data set consisting of 430-m-long shear-wave (S-wave) seismic reflection and ground penetrating radar (GPR) profiles above the deformation imaged on the USGS profile. The S-wave reflection data were collected using a 24-channel, towable landstreamer and the seismic energy was generated by a sledgehammer/I-beam source. The GPR data were collected with a cart-mounted 250-MHz system, using a 0.5-m antenna spacing and a 0.10-m step size. The processed seismic profile exhibits coherent reflection energy throughout the Quaternary section. Changes in reflection amplitude and coherency, offset reflections, and abundant diffractions suggest the presence of a complex zone of high-angle faults in the shallow subsurface coincident with the mapped lineament. Folded shallow reflections show that the deformation extends upward to within 10 m of the surface. Furthermore, the GPR profile images a distinct zone of deformation in the very near surface (<1.5 m deep) that is coincident with the upward projection of the deformation imaged on the S-wave seismic reflection profile.
Seismic reflection imaging, accounting for primary and multiple reflections
NASA Astrophysics Data System (ADS)
Wapenaar, Kees; van der Neut, Joost; Thorbecke, Jan; Broggini, Filippo; Slob, Evert; Snieder, Roel
2015-04-01
Imaging of seismic reflection data is usually based on the assumption that the seismic response consists of primary reflections only. Multiple reflections, i.e. waves that have reflected more than once, are treated as primaries and are imaged at wrong positions. There are two classes of multiple reflections, which we will call surface-related multiples and internal multiples. Surface-related multiples are those multiples that contain at least one reflection at the earth's surface, whereas internal multiples consist of waves that have reflected only at subsurface interfaces. Surface-related multiples are the strongest, but also relatively easy to deal with because the reflecting boundary (the earth's surface) is known. Internal multiples constitute a much more difficult problem for seismic imaging, because the positions and properties of the reflecting interfaces are not known. We are developing reflection imaging methodology which deals with internal multiples. Starting with the Marchenko equation for 1D inverse scattering problems, we derived 3D Marchenko-type equations, which relate reflection data at the surface to Green's functions between virtual sources anywhere in the subsurface and receivers at the surface. Based on these equations, we derived an iterative scheme by which these Green's functions can be retrieved from the reflection data at the surface. This iterative scheme requires an estimate of the direct wave of the Green's functions in a background medium. Note that this is precisely the same information that is also required by standard reflection imaging schemes. However, unlike in standard imaging, our iterative Marchenko scheme retrieves the multiple reflections of the Green's functions from the reflection data at the surface. For this, no knowledge of the positions and properties of the reflecting interfaces is required. Once the full Green's functions are retrieved, reflection imaging can be carried out by which the primaries and multiples are mapped to their correct positions, with correct reflection amplitudes. In the presentation we will illustrate this new methodology with numerical examples and discuss its potential and limitations.
NASA Astrophysics Data System (ADS)
Newman, A. V.; Kyriakopoulos, C.
2015-12-01
Unlike most subduction environments that exist mostly or entirely offshore, the Nicoya Peninsula's location allows for unique land-based observations of the entire down-dip extent of coupling and failure along the seismogenic megathrust. Because of this geometry and approximately 50-year repeat cycle of mid-magnitude 7 earthquakes there, numerous geophysical studies were focused on the peninsula. Most notably of these are the dense seismic and GPS networks cooperatively operated by UC Santa Cruz, Georgia Tech, U. South Florida, and OVSICORI, collectively called the Nicoya Seismic Cycle Observatory (NSCO). The megathrust environment beneath Nicoya is additionally characterized by strong along-strike transitions in oceanic crust origin and geometries, including massive subducted seamounts, and a substantial crustal suture well documented in recent work by Kyriakopoulos et al. [JGR, 2015]. Using GPS data collected from campaign and continuous sites going back approximately 20 years, a number of studies have imaged components of the seismic cycle, including late-interseismic coupling, frequent slow-slip events, coseismic rupture of a moment magnitude 7.6 earthquake in 2012, and early postseismic response. The derived images of interface locking and slip behavior published for each of these episodes use different model geometries, different weighting schemes, and modeling algorithms limiting their use for fully characterizing the transitions between zones. Here, we report the first unified analysis of the full continuum of slip using the new locally defined 3D plate interface model. We focus on evaluating how transitions in plate geometry control observed locking, slip, and quantifying how well pre-seismic images of megathrust locking and slow-slip events dictate coseismic and postseismic behavior. Without the long-term and continuous geodetic observations made by the NSCO, this work would not have been possible.
Imaging the Subsurface of the Thuringian Basin (Germany) on Different Spatial Scales
NASA Astrophysics Data System (ADS)
Goepel, A.; Krause, M.; Methe, P.; Kukowski, N.
2014-12-01
Understanding the coupled dynamics of near surface and deep fluid flow patterns is essential to characterize the properties of sedimentary basins, to identify the processes of compaction, diagenesis, and transport of mass and energy. The multidisciplinary project INFLUINS (Integrated FLUid dynamics IN Sedimentary basins) aims for investigating the behavior of fluids in the Thuringian Basin, a small intra-continental sedimentary basin in Germany, at different spatial scales, ranging from the pore scale to the extent of the entire basin. As hydraulic properties often significantly vary with spatial scales, e.g. seismic data using different frequencies are required to gain information about the spatial variability of elastic and hydraulic subsurface properties. For the Thuringian Basin, we use seismic and borehole data acquired in the framework of INFLUINS. Basin-wide structural imaging data are available from 2D reflection seismic profiles as well as 2.5D and 3D seismic travel time tomography. Further, core material from a 1,179 m deep drill hole completed in 2013 is available for laboratory seismic experiments on mm- to cm-scale. The data are complemented with logging data along the entire drill hole. This campaign yielded e.g. sonic and density logs allowing the estimation of in-situ P-velocity and acoustic impedance with a spatial resolution on the cm-scale and provides improved information about petrologic and stratigraphic variability at different scales. Joint interpretation of basin scale structural and elastic properties data with laboratory scale data from ultrasound experiments using core samples enables a detailed and realistic imaging of the subsurface properties on different spatial scales. Combining seismic travel time tomography with stratigraphic interpretation provides useful information of variations in the elastic properties for certain geological units and therefore gives indications for changes in hydraulic properties.
High-resolution seismic reflection surveying with a land streamer
NASA Astrophysics Data System (ADS)
Cengiz Tapırdamaz, Mustafa; Cankurtaranlar, Ali; Ergintav, Semih; Kurt, Levent
2013-04-01
In this study, newly designed seismic reflection data acquisition array (land streamer) is utilized to image the shallow subsurface. Our acquisition system consist of 24 geophones screwed on iron plates with 2 m spacing, moving on the surface of the earth which are connected with fire hose. Completely original, 4.5 Kg weight iron plates provides satisfactory coupling. This land-streamer system enables rapid and cost effective acquisition of seismic reflection data due to its operational facilities. First test studies were performed using various seismic sources such as a mini-vibro truck, buffalo-gun and hammer. The final fieldwork was performed on a landslide area which was studied before. Data acquisition was carried out on the line that was previously measured by the seismic survey using 5 m geophone and shot spacing. This line was chosen in order to re-image known reflection patterns obtained from the previous field study. Taking penetration depth into consideration, a six-cartridge buffalo-gun was selected as a seismic source to achieve high vertical resolution. Each shot-point drilled 50 cm for gunshots to obtain high resolution source signature. In order to avoid surface waves, the offset distance between the source and the first channel was chosen to be 50 m and the shot spacing was 2 m. These acquisition parameters provided 12 folds at each CDP points. Spatial sampling interval was 1 m at the surface. The processing steps included standard stages such as gain recovery, editing, frequency filtering, CDP sorting, NMO correction, static correction and stacking. Furthermore, surface consistent residual static corrections were applied recursively to improve image quality. 2D F-K filter application was performed to suppress air and surface waves at relatively deep part of the seismic section. Results show that, this newly designed, high-resolution land seismic data acquisition equipment (land-streamer) can be successfully used to image subsurface. Likewise, results are and compatible with the results obtained from the previous study. This tool is extremely practical and very effective in imaging the shallow subsurface. Next step, an integrated GPS receiver will be added to recorder to obtain shot and receiver station position information during data acquisition. Also, some mechanical parts will be placed to further improve the stability and durability of the land streamer. In addition, nonlinear geophone layout will be added after completion of test. We are planning to use this land streamer not only in landslide areas but also in archaeological sites, engineering applications such as detection of buried pipelines and faults. This equipment will make it possible to perform these studies both in urban and territory areas.
NASA Astrophysics Data System (ADS)
Simancas, F.; Carbonell, R.; Gonzalez-Lodeiro, F.; Perez-Estaun, A.; Ayarza, P.; Juhlin, C.; Azor, A.; Saez, R.; Martinez-Poyatos, D.; Pascual, E.
The recently acquired IBERSEIS Seismic Reflection Profile runs across major do- mains of the Variscan Orogen in SW Iberia. Geological studies indicate that the seis- mically surveyed region has been built up from three terranes, namely the South Por- tuguese Zone (SPZ), the Ossa-Morena Zone (OMZ) and the Central Iberian Zone (CIZ). These terranes became sutured after a complex, mainly transpressive (left- lateral), collisional history in Devonian-Carboniferous time. The deep seismic reflec- tion profile IBERSEIS has successfully imaged the sutures between these terranes as well as the structure of their crust. The following main features emerge from the pre- liminary integration of seismic and geological data: 1) The suture between the SPZ and OMZ terranes, marked by oceanic amphibolites, appears at present as a north- dipping left-lateral thrust merging in a mid-crustal detachment; the continuity of this suture-contact in the lower crust is not well defined in the seismic image. 2) The OMZ/CIZ suture, a shear zone with eclogites, is clearly imaged in the upper crust as a band of reflectivity dipping to the NE which, after a flat geometry in the middle crust, may continue downwards to the Moho as NE-dipping lower crustal reflections. 3) The SPZ upper crust has an imbricate structure merging into a mid-crustal detachment at constant depth in the surveyed profile. 4) The structure of the OMZ upper crust is dominated by large-scale recumbent folds affected by late upright folds, as fore- seen by geology and fully confirmed by the seismic image. 5) A general mid-crustal detachment exists in the whole surveyed area, whose geometry varies from a sharp detachment-level in the SPZ to a pinching and swelling horizontal band of reflectivity -a melting layer?- in the OMZ; in any case, a strong decoupling between upper and lower crust characterizes this transect of the Variscan orogen. 6) The lower crust of the SPZ has an intense seismic fabric, in accordance with the consideration of this ter- rane as an external orogenic domain with discrete shear bands preserved in the whole crust. 7) The lower crust of the OMZ is much less reflective than the lower crust of the SPZ. 8) The Moho is flat all along the surveyed area, which means that crustal 1 roots formed during the collisional processes were eliminated later on, probably in Late Carboniferous-Permian times. Despite the disturbance due to the generation of a post-orogenic flat Moho, the IBERSEIS seismic image seems to be a good snapshot of the Variscan collision, with very minor reworking by alpine processes. 2
Ocean acoustic reverberation tomography.
Dunn, Robert A
2015-12-01
Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., <10 km), the acoustic wave field densely samples properties of the water column over the width of the receiver array. A method, referred to as ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography.
Haines, Seth S.; Lee, Myung W.; Collett, Timothy S.; Hardage, Bob A.
2011-01-01
In-situ characterization and quantification of natural gas hydrate occurrences remain critical research directions, whether for energy resource, drilling hazard, or climate-related studies. Marine multicomponent seismic data provide the full seismic wavefield including partial redundancy, and provide a promising set of approaches for gas hydrate characterization. Numerous authors have demonstrated the possibilities of multicomponent data at study sites around the world. We expand on this work by investigating the utility of very densely spaced (10’s of meters) multicomponent receivers (ocean-bottom cables, OBC, or ocean-bottom seismometers, OBS) for gas hydrate studies in the Gulf of Mexico and elsewhere. Advanced processing techniques provide high-resolution compressional-wave (PP) and converted shearwave (PS) reflection images of shallow stratigraphy, as well as P-wave and S-wave velocity estimates at each receiver position. Reflection impedance estimates can help constrain velocity and density, and thus gas hydrate saturation. Further constraint on velocity can be determined through identification of the critical angle and associated phase reversal in both PP and PS wideangle data. We demonstrate these concepts with examples from OBC data from the northeast Green Canyon area and numerically simulated OBS data that are based on properties of known gas hydrate occurrences in the southeast (deeper water) Green Canyon area. These multicomponent data capabilities can provide a wealth of characterization and quantification information that is difficult to obtain with other geophysical methods.
NASA Astrophysics Data System (ADS)
Fazio, Marco; De Siena, Luca; Benson, Phillip
2016-04-01
Seismic attenuation and scattering are two attributes that can be linked with porosity and permeability in laboratory experiments. When measuring these two quantities using seismic waveforms recorder at lithospheric and volcanic scales the areas of highest heterogeneity, as batches of melt and zones of high deformation, produce anomalous values of the measured quantities, the seismic quality factor and scattering coefficient. When employed as indicators of heterogeneity and absorption in volcanic areas these anomalous effects become strong indicators of magma accumulation and tectonic boundaries, shaping magmatic chambers and conduit systems. We perform attenuation and scattering measurements and imaging using seismic waveforms produced in laboratory experiments, at frequencies ranging between the kHz and MHz. As attenuation and scattering are measured from the shape of the envelopes, disregarding phases, we are able to connect the observations with the micro fracturing and petrological quantities previously measured on the sample. Connecting the imaging of dry and saturated samples via these novel attributes with the burst of low-period events with increasing saturation and deformation is a challenge. Its solution could plant the seed for better relating attenuation and scattering tomography measurements to the presence of fluids and gas, therefore creating a novel path for reliable porosity and permeability tomography. In particular for volcanoes, being able to relate attenuation/scattering measurements with low-period micro seismicity could deliver new data to settle the debate about if both source and medium can produce seismic resonance.
NASA Astrophysics Data System (ADS)
Gunn, K. L.; White, N. J.; Larter, R. D.; Caulfield, C. P.
2018-04-01
Seismic reflection images of thermohaline circulation from the Bellingshausen Sea, adjacent to the West Antarctica Peninsula, were acquired during February 2015. This survey shows that bright reflectivity occurs throughout the upper 300 m. By calibrating these seismic images with coeval hydrographic measurements, intrusion of warm water features onto the continental shelf at Marguerite and Belgica Troughs is identified and characterized. These features have distinctive lens-shaped patterns of reflectivity with lengths of 0.75-11.00 km and thicknesses of 100-150 m, suggesting that they are small mesoscale to submesoscale eddies. Abundant eddies are observed along a transect that crosses Belgica Trough. Near Alexander Island Drift, a large, of order (O)102 km3, bowl-like feature, that may represent an anticyclonic Taylor column, is imaged on a pair of orthogonal images. A modified iterative procedure is used to convert seismic imagery into maps of temperature that enable the number and size of eddies being transported onto the shelf to be quantified. Finally, analysis of prestack shot records suggests that these eddies are advecting southward at speeds of O>(0.1>) m s-1, consistent with limited legacy hydrographic measurements. Concentration of observed eddies south of the Southern Antarctic Circumpolar Current Front implies they represent both a dominant, and a long-lived, mechanism of warm-water transport, especially across Belgica Trough. Our observations suggest that previous estimates of eddy frequency may have been underestimated by up to 1 order of magnitude, which has significant implications for calculations of ice mass loss on the shelf of the West Antarctic Peninsula.
High temporal resolution mapping of seismic noise sources using heterogeneous supercomputers
NASA Astrophysics Data System (ADS)
Gokhberg, Alexey; Ermert, Laura; Paitz, Patrick; Fichtner, Andreas
2017-04-01
Time- and space-dependent distribution of seismic noise sources is becoming a key ingredient of modern real-time monitoring of various geo-systems. Significant interest in seismic noise source maps with high temporal resolution (days) is expected to come from a number of domains, including natural resources exploration, analysis of active earthquake fault zones and volcanoes, as well as geothermal and hydrocarbon reservoir monitoring. Currently, knowledge of noise sources is insufficient for high-resolution subsurface monitoring applications. Near-real-time seismic data, as well as advanced imaging methods to constrain seismic noise sources have recently become available. These methods are based on the massive cross-correlation of seismic noise records from all available seismic stations in the region of interest and are therefore very computationally intensive. Heterogeneous massively parallel supercomputing systems introduced in the recent years combine conventional multi-core CPU with GPU accelerators and provide an opportunity for manifold increase and computing performance. Therefore, these systems represent an efficient platform for implementation of a noise source mapping solution. We present the first results of an ongoing research project conducted in collaboration with the Swiss National Supercomputing Centre (CSCS). The project aims at building a service that provides seismic noise source maps for Central Europe with high temporal resolution (days to few weeks depending on frequency and data availability). The service is hosted on the CSCS computing infrastructure; all computationally intensive processing is performed on the massively parallel heterogeneous supercomputer "Piz Daint". The solution architecture is based on the Application-as-a-Service concept in order to provide the interested external researchers the regular access to the noise source maps. The solution architecture includes the following sub-systems: (1) data acquisition responsible for collecting, on a periodic basis, raw seismic records from the European seismic networks, (2) high-performance noise source mapping application responsible for generation of source maps using cross-correlation of seismic records, (3) back-end infrastructure for the coordination of various tasks and computations, (4) front-end Web interface providing the service to the end-users and (5) data repository. The noise mapping application is composed of four principal modules: (1) pre-processing of raw data, (2) massive cross-correlation, (3) post-processing of correlation data based on computation of logarithmic energy ratio and (4) generation of source maps from post-processed data. Implementation of the solution posed various challenges, in particular, selection of data sources and transfer protocols, automation and monitoring of daily data downloads, ensuring the required data processing performance, design of a general service oriented architecture for coordination of various sub-systems, and engineering an appropriate data storage solution. The present pilot version of the service implements noise source maps for Switzerland. Extension of the solution to Central Europe is planned for the next project phase.
Tomographic imaging of subducted lithosphere below northwest Pacific island arcs
Van Der Hilst, R.; Engdahl, R.; Spakman, W.; Nolet, G.
1991-01-01
The seismic tomography problem does not have a unique solution, and published tomographic images have been equivocal with regard to the deep structure of subducting slabs. An improved tomographic method, using a more realistic background Earth model and surf ace-reflected as well as direct seismic phases, shows that slabs beneath the Japan and Izu Bonin island arcs are deflected at the boundary between upper and lower mantle, whereas those beneath the northern Kuril and Mariana arcs sink into the lower mantle.
Imaging the Danish Chalk Group with high resolution, 3-component seismics
NASA Astrophysics Data System (ADS)
Kammann, J.; Rasmussen, S. L.; Nielsen, L.; Malehmir, A.; Stemmerik, L.
2016-12-01
The Chalk Group in the Danish Basin forms important reservoirs to hydrocarbons as well as water resources, and it has been subject to several seismic studies to determine e.g. structural elements, deposition and burial history. This study focuses on the high quality seismic response of a survey acquired with an accelerated 45 kg weight drop and 3-component MEMS-based sensors and additional wireless vertical-type sensors. The 500 m long profile was acquired during one day close to a chalk quarry and chalk cliffs of the Stevns peninsula in eastern Denmark where the well-known K-T (Cretaceous-Tertiary) boundary and different chalk lithologies are well-exposed. With this simple and fast procedure we were able to achieve deep P-wave penetration to the base of the Chalk Group at about 900 m depth. Additionally, the CMP-processed seismic image of the vertical component stands out by its high resolution. Sedimentary features are imaged in the near-surface Danian, as well as in the deeper Maastrichtian and Upper Campanian parts of the Chalk Group. Integration with borehole data suggests that changes in composition, in particular clay content, correlate with changes in reflectivity of the seismic data set. While the pure chalk in the Maastrichtian deposits shows rather low reflectivity, succession enriched in clay appear to be more reflective. The integration of the mentioned methods gives the opportunity to connect changes in facies to the elastic response of the Chalk Group in its natural environmental conditions.
NASA Astrophysics Data System (ADS)
Roman, D. C.; Rodgers, M.; Mather, T. A.; Power, J. A.; Pyle, D. M.
2014-12-01
Observations of volcanically induced seismicity are essential for eruption forecasting and for real-time and near-real-time warnings of hazardous volcanic activity. Studies of volcanic seismicity and of seismic wave propagation also provide critical understanding of subsurface magmatic systems and the physical processes associated with magma genesis, transport, and eruption. However, desipite significant advances in recent years, our ability to successfully forecast volcanic eruptions and fully understand subsurface volcanic processes is limited by our current understanding of the source processes of volcano-seismic events, the effects on seismic wave propagation within volcanic structures, limited data, and even the non-standardized terminology used to describe seismic waveforms. Progress in volcano seismology is further hampered by inconsistent data formats and standards, lack of state-of-the-art hardware and professional technical staff, as well as a lack of widely adopted analysis techniques and software. Addressing these challenges will not only advance scientific understanding of volcanoes, but also will lead to more accurate forecasts and warnings of hazardous volcanic eruptions that would ultimately save lives and property world-wide. Two recent workshops held in Anchorage, Alaska, and Oxford, UK, represent important steps towards developing a relationship among members of the academic community and government agencies, focused around a shared, long-term vision for volcano seismology. Recommendations arising from the two workshops fall into six categories: 1) Ongoing and enhanced community-wide discussions, 2) data and code curation and dissemination, 3) code development, 4) development of resources for more comprehensive data mining, 5) enhanced strategic seismic data collection, and 6) enhanced integration of multiple datasets (including seismicity) to understand all states of volcano activity through space and time. As presented sequentially above, these steps can be regarded as a road map for galvanizing and strengthening the volcano seismological community to drive new scientific and technical progress over the next 5-10 years.
Ambient Seismic Noise Interferometry on the Island of Hawai`i
NASA Astrophysics Data System (ADS)
Ballmer, Silke
Ambient seismic noise interferometry has been successfully applied in a variety of tectonic settings to gain information about the subsurface. As a passive seismic technique, it extracts the coherent part of ambient seismic noise in-between pairs of seismic receivers. Measurements of subtle temporal changes in seismic velocities, and high-resolution tomographic imaging are then possible - two applications of particular interest for volcano monitoring. Promising results from other volcanic settings motivate its application in Hawai'i, with this work being the first to explore its potential. The dataset used for this purpose was recorded by the Hawaiian Volcano Observatory's permanent seismic network on the Island of Hawai'i. It spans 2.5 years from 5/2007 to 12/2009 and covers two distinct sources of volcanic tremor. After applying standard processing for ambient seismic noise interferometry, we find that volcanic tremor strongly affects the extracted noise information not only close to the tremor source, but unexpectedly, throughout the island-wide network. Besides demonstrating how this long-range observability of volcanic tremor can be used to monitor volcanic activity in the absence of a dense seismic array, our results suggest that care must be taken when applying ambient seismic noise interferometry in volcanic settings. In a second step, we thus exclude days that show signs of volcanic tremor, reducing the dataset to three months, and perform ambient seismic noise tomography. The resulting two-dimensional Rayleigh wave group velocity maps for 0.1 - 0.9 Hz compare very well with images from previous travel time tomography, both, for the main volcanic structures at low frequencies as well as for smaller features at mid-to-high frequencies - a remarkable observation for the temporally truncated dataset. These robust results suggest that ambient seismic noise tomography in Hawai'i is suitable 1) to provide a three-dimensional S-wave model for the volcanoes and 2) to be used for repeated time-sensitive tomography, even though volcanic tremor frequently obscures ambient noise analyses. However, the noise characteristics and the wavefield in Hawai'i in general remain to be investigated in more detail in order to measure unbiased temporal velocity changes.
Seismogenic structures of the central Apennines and its implication for seismic hazard
NASA Astrophysics Data System (ADS)
Zheng, Y.; Riaz, M. S.; Shan, B.
2017-12-01
The central Apennines belt is formed during the Miocene-to-Pliocene epoch under the environment where the Adriatic Plate collides with and plunges beneath the Eurasian Plate, eventually formed a fold and thrust belt. This active fold and thrust belt has experienced relatively frequent moderate-magnitude earthquakesover, as well as strong destructive earthquakes such as the 1997 Umbira-Marche sequence, the 2009 Mw 6.3 L'Aquila earthquake sequence, and three strong earthquakes occurred in 2016. Such high seismicity makes it one of the most active tectonic zones in the world. Moreover, most of these earthquakes are normal fault events with shallow depths, and most earthquakes occurred in the central Apennines are of lower seismic energy to moment ratio. What seismogenic structure causes such kind of seismic features? and how about the potential seismic hazard in the study region? In order to make in-depth understanding about the seismogenic structures in this reion, we collected seismic data from the INGV, Italy, to model the crustal structure, and to relocate the earthquakes. To improve the spatial resolution of the tomographic images, we collected travel times from 27627 earthquakes with M>1.7 recorded at 387 seismic stations. Double Difference Tomography (hereafter as DDT) is applied to build velocity structures and earthquake locations. Checkerboard test confirms that the spatial resolution between the depths range from 5 20km is better than 10km. The travel time residual is significantly decreased from 1208 ms to 70 ms after the inversion. Horizontal Vp images show that mostly earthquakes occurred in high anomalies zones, especially between 5 10km, whereas at the deeper depths, some of the earthquakes occurred in the low Vp anomalies. For Vs images, shallow earthquakes mainly occurred in low anomalies zone, at depths range of 10 15km, earthquakes are mainly concentrated in normal velocity or relatively lower anomalies zones. Moreover, mostly earthquakes occurred in high Poisson ratio zones, especially at shallower depths. Since high Poisson's ratio anomalies are usually correspondent to weaker zones, and mostly earthquakes are occurred at the shallow depths. Due to this reason, the strength should be lower, so that the seismic energy to moment ratio is also lower.
NASA Astrophysics Data System (ADS)
De Siena, Luca; Sketsiou, Panayiota
2017-04-01
We plan the application of a joint velocity, attenuation, and scattering tomography to the North Sea basins. By using seismic phases and intensities from previous passive and active surveys our aim is to image and monitor fluids under the subsurface. Seismic intensities provide unique solutions to the problem of locating/tracking gas/fluid movements in the volcanoes and depicting sub-basalt and sub-intrusives in volcanic reservoirs. The proposed techniques have been tested in volcanic Islands (Deception Island), continental calderas (Campi Flegrei) and Quaternary Volcanoes (Mount. St. Helens) and have been proved effective at monitoring fracture opening, imaging buried fluid-filled bodies, and tracking water/gas interfaces. These novel seismic attributes are modelled in space and time and connected with the lithology of the sampled medium, specifically density and permeability, with as key output a novel computational code with strong commercial potential. Data are readily available in the framework of the NERC CDT Oil & Gas project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richard D. Miller; Abdelmoneam E. Raef; Alan P. Byrnes
2005-09-01
The objective of this research project is to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data to observe changes in fluid characteristics in an oil field before, during, and after the miscible carbon dioxide (CO{sub 2}) flood that began around December 1, 2003, as part of the DOE-sponsored Class Revisit Project (DOE DE-AC26-00BC15124). Unique and key to this imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900-m-deep test reservoir is located in central Kansas oomoldic limestones of the Lansing-Kansasmore » City Group, deposited on a shallow marine shelf in Pennsylvanian time. After 18 months of seismic monitoring, one baseline and six monitor surveys clearly imaged changes that appear consistent with movement of CO{sub 2} as modeled with fluid simulators.« less
Anatomy of Old Faithful From Subsurface Seismic Imaging of the Yellowstone Upper Geyser Basin
NASA Astrophysics Data System (ADS)
Wu, Sin-Mei; Ward, Kevin M.; Farrell, Jamie; Lin, Fan-Chi; Karplus, Marianne; Smith, Robert B.
2017-10-01
The Upper Geyser Basin in Yellowstone National Park contains one of the highest concentrations of hydrothermal features on Earth including the iconic Old Faithful geyser. Although this system has been the focus of many geological, geochemical, and geophysical studies for decades, the shallow (<200 m) subsurface structure remains poorly characterized. To investigate the detailed subsurface geologic structure including the hydrothermal plumbing of the Upper Geyser Basin, we deployed an array of densely spaced three-component nodal seismographs in November of 2015. In this study, we extract Rayleigh wave seismic signals between 1 and 10 Hz utilizing nondiffusive seismic waves excited by nearby active hydrothermal features with the following results: (1) imaging the shallow subsurface structure by utilizing stationary hydrothermal activity as a seismic source, (2) characterizing how local geologic conditions control the formation and location of the Old Faithful hydrothermal system, and (3) resolving a relatively shallow (10-60 m) and large reservoir located 100 m southwest of Old Faithful geyser.
Correlation of offshore seismic profiles with onshore New Jersey Miocene sediments
Monteverde, D.H.; Miller, K.G.; Mountain, Gregory S.
2000-01-01
The New Jersey passive continental margin records the interaction of sequences and sea-level, although previous studies linking seismically defined sequences, borehole control, and global ??18O records were hindered by a seismic data gap on the inner-shelf. We describe new seismic data from the innermost New Jersey shelf that tie offshore seismic stratigraphy directly to onshore boreholes. These data link the onshore boreholes to existing seismic grids across the outer margin and to boreholes on the continental slope. Surfaces defined by age; facies, and log signature in the onshore boreholes at the base of sequences Kw2b, Kw2a, Kw1c, and Kw0 are now tied to seismic sequence boundaries m5s, m5.2s, m5.4s, and m6s, respectively, defined beneath the inner shelf. Sequence boundaries recognized in onshore boreholes and inner shelf seismic profiles apparently correlate with reflections m5, m5.2, m5.4, and m6, respectively, that were dated at slope boreholes during ODP Leg 150. We now recognize an additional sequence boundary beneath the shelf that we name m5.5s and correlate to the base of the onshore sequence Kw1b. The new seismic data image prograding Oligocene clinoforms beneath the inner shelf, consistent with the results from onshore boreholes. A land-based seismic profile crossing the Island Beach borehole reveals reflector geometries that we tie to Lower Miocene litho- and bio-facies in this borehole. These land-based seismic profiles image well-defined sequence boundaries, onlap and downlap truncations that correlate to Transgressive Systems Tracts (TST) and Highstand Systems Tracts (HST) identified in boreholes. Preliminary analysis of CH0698 data continues these system tract delineations across the inner shelf The CH0698 seismic profiles tie seismically defined sequence boundaries with sequences identified by lithiologic and paleontologic criteria. Both can now be related to global ??18O increases and attendant glacioeustatic lowerings. This integration of core, log, and seismic character of mid-Tertiary sediments across the width of the New Jersey margin is a major step in the long-standing effort to evaluate the impact of glaciouestasy on siliciclastic sediments of a passive continental margin. (C) 2000 Elsevier Science B.V. All rights reserved.
Seismic structure of the central US crust and upper mantle: Uniqueness of the Reelfoot Rift
Pollitz, Fred; Mooney, Walter D.
2014-01-01
Using seismic surface waves recorded with Earthscope's Transportable Array, we apply surface wave imaging to determine 3D seismic velocity in the crust and uppermost mantle. Our images span several Proterozoic and early Cambrian rift zones (Mid-Continent Rift, Rough Creek Graben—Rome trough, Birmingham trough, Southern Oklahoma Aulacogen, and Reelfoot Rift). While ancient rifts are generally associated with low crustal velocity because of the presence of thick sedimentary sequences, the Reelfoot Rift is unique in its association with low mantle seismic velocity. Its mantle low-velocity zone (LVZ) is exceptionally pronounced and extends down to at least 200 km depth. This LVZ is of variable width, being relatively narrow (∼50km">∼50km wide) within the northern Reelfoot Rift, which hosts the New Madrid Seismic Zone (NMSZ). We hypothesize that this mantle volume is weaker than its surroundings and that the Reelfoot Rift consequently has relatively low elastic plate thickness, which would tend to concentrate tectonic stress within this zone. No other intraplate ancient rift zone is known to be associated with such a deep mantle low-velocity anomaly, which suggests that the NMSZ is more susceptible to external stress perturbations than other ancient rift zones.
Velocity Model Using the Large-N Seismic Array from the Source Physics Experiment (SPE)
NASA Astrophysics Data System (ADS)
Chen, T.; Snelson, C. M.
2016-12-01
The Source Physics Experiment (SPE) is a multi-institutional, multi-disciplinary project that consists of a series of chemical explosions conducted at the Nevada National Security Site (NNSS). The goal of SPE is to understand the complicated effect of geological structures on seismic wave propagation and source energy partitioning, develop and validate physics-based modeling, and ultimately better monitor low-yield nuclear explosions. A Large-N seismic array was deployed at the SPE site to image the full 3D wavefield from the most recent SPE-5 explosion on April 26, 2016. The Large-N seismic array consists of 996 geophones (half three-component and half vertical-component sensors), and operated for one month, recording the SPE-5 shot, ambient noise, and additional controlled-sources (a large hammer). This study uses Large-N array recordings of the SPE-5 chemical explosion to develop high resolution images of local geologic structures. We analyze different phases of recorded seismic data and construct a velocity model based on arrival times. The results of this study will be incorporated into the large modeling and simulation efforts as ground-truth further validating the models.
Hazard Monitoring of Growing Lava Flow Fields Using Seismic Tremor
NASA Astrophysics Data System (ADS)
Eibl, E. P. S.; Bean, C. J.; Jónsdottir, I.; Hoskuldsson, A.; Thordarson, T.; Coppola, D.; Witt, T.; Walter, T. R.
2017-12-01
An effusive eruption in 2014/15 created a 85 km2 large lava flow field in a remote location in the Icelandic highlands. The lava flows did not threaten any settlements or paved roads but they were nevertheless interdisciplinarily monitored in detail. Images from satellites and aircraft, ground based video monitoring, GPS and seismic recordings allowed the monitoring and reconstruction of a detailed time series of the growing lava flow field. While the use of satellite images and probabilistic modelling of lava flows are quite common tools to monitor the current and forecast the future growth direction, here we show that seismic recordings can be of use too. We installed a cluster of seismometers at 15 km from the vents and recorded the ground vibrations associated with the eruption. This seismic tremor was not only generated below the vents, but also at the edges of the growing lava flow field and indicated the parts of the lava flow field that were most actively growing. Whilst the time resolution is in the range of days for satellites, seismic stations easily sample continuously at 100 Hz and could therefore provide a much better resolution and estimate of the lava flow hazard in real-time.
NASA Astrophysics Data System (ADS)
Giampiccolo, E.; Brancato, A.; Manuella, F. C.; Carbone, S.; Gresta, S.; Scribano, V.
2017-12-01
In this study, we derived the first 3-D P-wave seismic attenuation images (QP) as well as new 3-D VP and VP/VS models for the crust in southeastern Sicily. We used a large data set of local seismic events occurring in the time span 1994-2013. The results of this tomographic study have important implications on the seismic behaviour of the region. Based on velocity and attenuation images, we identified distinct volumes characterized by different fluid content, which correlate well with seismicity distribution. Moreover, the obtained velocity and attenuation tomographies help us to provide a more complete picture of the crustal structure of the area. High VP, high QP and high VP/VS values have been obtained in the crustal basement, below a depth of 8 km, and may be interpreted as due to the presence of serpentinized peridotites. Accordingly, the new model for the degree of serpentinization, retrieved from VP values, shows that the basement has an average serpentinization value of 96 ± 3 vol.% at 8 km, decreasing to 44 ± 5 vol.% at about 18-20 km.
NASA Astrophysics Data System (ADS)
Neagoe, Cristian; Grecu, Bogdan; Manea, Liviu
2016-04-01
National Institute for Earth Physics (NIEP) operates a real time seismic network which is designed to monitor the seismic activity on the Romanian territory, which is dominated by the intermediate earthquakes (60-200 km) from Vrancea area. The ability to reduce the impact of earthquakes on society depends on the existence of a large number of high-quality observational data. The development of the network in recent years and an advanced seismic acquisition are crucial to achieving this objective. The software package used to perform the automatic real-time locations is Seiscomp3. An accurate choice of the Seiscomp3 setting parameters is necessary to ensure the best performance of the real-time system i.e., the most accurate location for the earthquakes and avoiding any false events. The aim of this study is to optimize the algorithms of the real-time system that detect and locate the earthquakes in the monitored area. This goal is pursued by testing different parameters (e.g., STA/LTA, filters applied to the waveforms) on a data set of representative earthquakes of the local seismicity. The results are compared with the locations from the Romanian Catalogue ROMPLUS.
Technical guidelines for the implementation of the Advanced National Seismic System
Committee, ANSS Technical Integration
2002-01-01
The Advanced National Seismic System (ANSS) is a major national initiative led by the US Geological Survey that serves the needs of the earthquake monitoring, engineering, and research communities as well as national, state, and local governments, emergency response organizations, and the general public. Legislation authorizing the ANSS was passed in 2000, and low levels of funding for planning and initial purchases of new seismic instrumentation have been appropriated beginning in FY2000. When fully operational, the ANSS will be an advanced monitoring system (modern digital seismographs and accelerographs, communications networks, data collection and processing centers, and well-trained personnel) distributed across the United States that operates with high performance standards, gathers critical technical data, and effectively provides timely and reliable earthquake products, information, and services to meet the Nation’s needs. The ANSS will automatically broadcast timely and authoritative products describing the occurrence of earthquakes, earthquake source properties, the distribution of ground shaking, and, where feasible, broadcast early warnings and alerts for the onset of strong ground shaking. Most importantly, the ANSS will provide earthquake data, derived products, and information to the public, emergency responders, officials, engineers, educators, researchers, and other ANSS partners rapidly and in forms that are useful for their needs.
Matrix Approach of Seismic Wave Imaging: Application to Erebus Volcano
NASA Astrophysics Data System (ADS)
Blondel, T.; Chaput, J.; Derode, A.; Campillo, M.; Aubry, A.
2017-12-01
This work aims at extending to seismic imaging a matrix approach of wave propagation in heterogeneous media, previously developed in acoustics and optics. More specifically, we will apply this approach to the imaging of the Erebus volcano in Antarctica. Volcanoes are actually among the most challenging media to explore seismically in light of highly localized and abrupt variations in density and wave velocity, extreme topography, extensive fractures, and the presence of magma. In this strongly scattering regime, conventional imaging methods suffer from the multiple scattering of waves. Our approach experimentally relies on the measurement of a reflection matrix associated with an array of geophones located at the surface of the volcano. Although these sensors are purely passive, a set of Green's functions can be measured between all pairs of geophones from ice-quake coda cross-correlations (1-10 Hz) and forms the reflection matrix. A set of matrix operations can then be applied for imaging purposes. First, the reflection matrix is projected, at each time of flight, in the ballistic focal plane by applying adaptive focusing at emission and reception. It yields a response matrix associated with an array of virtual geophones located at the ballistic depth. This basis allows us to get rid of most of the multiple scattering contribution by applying a confocal filter to seismic data. Iterative time reversal is then applied to detect and image the strongest scatterers. Mathematically, it consists in performing a singular value decomposition of the reflection matrix. The presence of a potential target is assessed from a statistical analysis of the singular values, while the corresponding eigenvectors yield the corresponding target images. When stacked, the results obtained at each depth give a three-dimensional image of the volcano. While conventional imaging methods lead to a speckle image with no connection to the actual medium's reflectivity, our method enables to highlight a chimney-shaped structure inside Erebus volcano with true positive rates ranging from 80% to 95%. Although computed independently, the results at each depth are spatially consistent, substantiating their physical reliability. The identified structure is therefore likely to describe accurately the internal structure of the Erebus volcano.
Deconvolution of the PSF of a seismic lens
NASA Astrophysics Data System (ADS)
Yu, Jianhua; Wang, Yue; Schuster, Gerard T.
2002-12-01
We show that if seismic data d is related to the migration image by mmig = LTd. then mmig is a blurred version of the actual reflectivity distribution m, i.e., mmig = (LTL)m. Here L is the acoustic forward modeling operator under the Born approximation where d = Lm. The blurring operator (LTL), or point spread function, distorts the image because of defects in the seismic lens, i.e., small source-receiver recording aperture and irregular/coarse geophone-source spacing. These distortions can be partly suppressed by applying the deblurring operator (LTL)-1 to the migration image to get m = (LTL)-1mmig. This deblurred image is known as a least squares migration (LSM) image if (LTL)-1LT is applied to the data d using a conjugate gradient method, and is known as a migration deconvolved (MD) image if (LTL)-1 is directly applied to the migration image mmig in (kx, ky, z) space. The MD algorithm is an order-of-magnitude faster than LSM, but it employs more restrictive assumptions. We also show that deblurring can be used to filter out coherent noise in the data such as multiple reflections. The procedure is to, e.g., decompose the forward modeling operator into both primary and multiple reflection operators d = (Lprim + Lmulti)m, invert for m, and find the primary reflection data by dprim = Lprimm. This method is named least squares migration filtering (LSMF). The above three algorithms (LSM, MD and LSMF) might be useful for attacking problems in optical imaging.
A seismic fault recognition method based on ant colony optimization
NASA Astrophysics Data System (ADS)
Chen, Lei; Xiao, Chuangbai; Li, Xueliang; Wang, Zhenli; Huo, Shoudong
2018-05-01
Fault recognition is an important section in seismic interpretation and there are many methods for this technology, but no one can recognize fault exactly enough. For this problem, we proposed a new fault recognition method based on ant colony optimization which can locate fault precisely and extract fault from the seismic section. Firstly, seismic horizons are extracted by the connected component labeling algorithm; secondly, the fault location are decided according to the horizontal endpoints of each horizon; thirdly, the whole seismic section is divided into several rectangular blocks and the top and bottom endpoints of each rectangular block are considered as the nest and food respectively for the ant colony optimization algorithm. Besides that, the positive section is taken as an actual three dimensional terrain by using the seismic amplitude as a height. After that, the optimal route from nest to food calculated by the ant colony in each block is judged as a fault. Finally, extensive comparative tests were performed on the real seismic data. Availability and advancement of the proposed method were validated by the experimental results.
Application of seismic-refraction techniques to hydrologic studies
Haeni, F.P.
1986-01-01
During the past 30 years, seismic-refraction methods have been used extensively in petroleum, mineral, and engineering investigations, and to some extent for hydrologic applications. Recent advances in equipment, sound sources, and computer interpretation techniques make seismic refraction a highly effective and economical means of obtaining subsurface data in hydrologic studies. Aquifers that can be defined by one or more high seismic-velocity surfaces, such as (1) alluvial or glacial deposits in consolidated rock valleys, (2) limestone or sandstone underlain by metamorphic or igneous rock, or (3) saturated unconsolidated deposits overlain by unsaturated unconsolidated deposits,are ideally suited for applying seismic-refraction methods. These methods allow the economical collection of subsurface data, provide the basis for more efficient collection of data by test drilling or aquifer tests, and result in improved hydrologic studies.This manual briefly reviews the basics of seismic-refraction theory and principles. It emphasizes the use of this technique in hydrologic investigations and describes the planning, equipment, field procedures, and intrepretation techniques needed for this type of study.Examples of the use of seismic-refraction techniques in a wide variety of hydrologic studies are presented.
Application of seismic-refraction techniques to hydrologic studies
Haeni, F.P.
1988-01-01
During the past 30 years, seismic-refraction methods have been used extensively in petroleum, mineral, and engineering investigations and to some extent for hydrologic applications. Recent advances in equipment, sound sources, and computer interpretation techniques make seismic refraction a highly effective and economical means of obtaining subsurface data in hydrologic studies. Aquifers that can be defined by one or more high-seismic-velocity surface, such as (1) alluvial or glacial deposits in consolidated rock valleys, (2) limestone or sandstone underlain by metamorphic or igneous rock, or (3) saturated unconsolidated deposits overlain by unsaturated unconsolidated deposits, are ideally suited for seismic-refraction methods. These methods allow economical collection of subsurface data, provide the basis for more efficient collection of data by test drilling or aquifer tests, and result in improved hydrologic studies. This manual briefly reviews the basics of seismic-refraction theory and principles. It emphasizes the use of these techniques in hydrologic investigations and describes the planning, equipment, field procedures, and interpretation techniques needed for this type of study. Further-more, examples of the use of seismic-refraction techniques in a wide variety of hydrologic studies are presented.
Communications for unattended sensor networks
NASA Astrophysics Data System (ADS)
Nemeroff, Jay L.; Angelini, Paul; Orpilla, Mont; Garcia, Luis; DiPierro, Stefano
2004-07-01
The future model of the US Army's Future Combat Systems (FCS) and the Future Force reflects a combat force that utilizes lighter armor protection than the current standard. Survival on the future battlefield will be increased by the use of advanced situational awareness provided by unattended tactical and urban sensors that detect, identify, and track enemy targets and threats. Successful implementation of these critical sensor fields requires the development of advanced sensors, sensor and data-fusion processors, and a specialized communications network. To ensure warfighter and asset survivability, the communications must be capable of near real-time dissemination of the sensor data using robust, secure, stealthy, and jam resistant links so that the proper and decisive action can be taken. Communications will be provided to a wide-array of mission-specific sensors that are capable of processing data from acoustic, magnetic, seismic, and/or Chemical, Biological, Radiological, and Nuclear (CBRN) sensors. Other, more powerful, sensor node configurations will be capable of fusing sensor data and intelligently collect and process data images from infrared or visual imaging cameras. The radio waveform and networking protocols being developed under the Soldier Level Integrated Communications Environment (SLICE) Soldier Radio Waveform (SRW) and the Networked Sensors for the Future Force Advanced Technology Demonstration are part of an effort to develop a common waveform family which will operate across multiple tactical domains including dismounted soldiers, ground sensor, munitions, missiles and robotics. These waveform technologies will ultimately be transitioned to the JTRS library, specifically the Cluster 5 requirement.
A microseismic workflow for managing induced seismicity risk as CO 2 storage projects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matzel, E.; Morency, C.; Pyle, M.
2015-10-27
It is well established that fluid injection has the potential to induce earthquakes—from microseismicity to large, damaging events—by altering state-of-stress conditions in the subsurface. While induced seismicity has not been a major operational issue for carbon storage projects to date, a seismicity hazard exists and must be carefully addressed. Two essential components of effective seismic risk management are (1) sensitive microseismic monitoring and (2) robust data interpretation tools. This report describes a novel workflow, based on advanced processing algorithms applied to microseismic data, to help improve management of seismic risk. This workflow has three main goals: (1) to improve themore » resolution and reliability of passive seismic monitoring, (2) to extract additional, valuable information from continuous waveform data that is often ignored in standard processing, and (3) to minimize the turn-around time between data collection, interpretation, and decision-making. These three objectives can allow for a better-informed and rapid response to changing subsurface conditions.« less
Seismic refraction survey of the ANS preferred site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, R.K.; Hopkins, R.A.; Doll, W.E.
1992-02-01
Between September 19, 1991 and October 8, 1991 personnel from Martin Marietta Energy Systems, Inc. (Energy Systems), Automated Sciences Group, Inc., and Marrich, Inc. performed a seismic refraction survey at the Advanced Neutron Source (ANS) preferred site. The purpose of this survey was to provide estimates of top-of-rock topography, based on seismic velocities, and to delineate variations in rock and soil velocities. Forty-four seismic refraction spreads were shot to determine top-of-rock depths at 42 locations. Nine of the seismic spreads were shot with long offsets to provide 216 top-of-rock depths for 4 seismic refraction profiles. The refraction spread locations weremore » based on the grid for the ANS Phase I drilling program. Interpretation of the seismic refraction data supports the assumption that the top-of-rock surface generally follows the local topography. The shallow top-of-rock interface interpreted from the seismic refraction data is also supported by limited drill information at the site. Some zones of anomalous data are present that could be the result of locally variable weathering, a localized variation in shale content, or depth to top-of-rock greater than the site norm.« less
2017-12-08
In 1968, after state parks had already been established in northern California, the U.S. Congress established Redwood National Park. This new park supplemented protected lands in the region, and in 1994, state and federal authorities agreed to jointly manage the area’s public lands. On February 6, 2003, the Enhanced Thamatic Mapper Plus on NASA’s Landsat 7 satellite captured this true-color image of the southern end of Redwood National Park - a thin coastal corridor connects the northern and southern ends of the park system. Along the coast, sandy beaches appear off-white, and sediments form swirls of pale blue in the darker blue sea. Inland, the park is dominated by green vegetation, with isolated patches of gray-beige rock. This image of the Redwood National Park includes two stands of trees: Lady Bird Johnson Grove and Tall Trees Grove. The first grove was dedicated to the former first lady by President Richard Nixon in August 1969. The second grove became the focus of efforts to protect the surrounding area from logging. Two waterways appear in this image: Redwood Creek and Klamath River. The more conspicuous Klamath River flows through the park system’s midsection (north of the area pictured here). Redwood Creek flows through the southern portion of the park system. Both waterways have carved gorges through the mountainous landscape. Redwood National and State Parks occupy an area considered to be the most seismically active in the United States. The frequent seismic activity has led to shifting waterways, landslides, and rapid erosion along the coastline. Read more: go.nasa.gov/2bRlryv Credit: NASA/Landsat7 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Development of the Multi-Level Seismic Receiver (MLSR)
NASA Astrophysics Data System (ADS)
Sleefe, G. E.; Engler, B. P.; Drozda, P. M.; Franco, R. J.; Morgan, Jeff
1995-02-01
The Advanced Geophysical Technology Department (6114) and the Telemetry Technology Development Department (2664) have, in conjunction with the Oil Recovery Technology Partnership, developed a Multi-Level Seismic Receiver (MLSR) for use in crosswell seismic surveys. The MLSR was designed and evaluated with the significant support of many industry partners in the oil exploration industry. The unit was designed to record and process superior quality seismic data operating in severe borehole environments, including high temperature (up to 200 C) and static pressure (10,000 psi). This development has utilized state-of-the-art technology in transducers, data acquisition, and real-time data communication and data processing. The mechanical design of the receiver has been carefully modeled and evaluated to insure excellent signal coupling into the receiver.
Recent faulting in western Nevada revealed by multi-scale seismic reflection
Frary, Roxanna N.; Louie, John N.; Stephenson, William J.; Odum, Jackson K.; Kell, Annie; Eisses, Amy; Kent, Graham M.; Driscoll, Neal W.; Karlin, Robert; Baskin, Robert L.; Pullammanappallil, Satish; Liberty, Lee M.
2011-01-01
The main goal of this study is to compare different reflection methods used to image subsurface structure within different physical environments in western Nevada. With all the methods employed, the primary goal is fault imaging for structural information toward geothermal exploration and seismic hazard estimation. We use seismic CHIRP (a swept-frequency marine acquisition system), weight drop (an accelerated hammer source), and two different vibroseis systems to characterize fault structure. We focused our efforts in the Reno metropolitan area and the area within and surrounding Pyramid Lake in northern Nevada. These different methods have provided valuable constraints on the fault geometry and activity, as well as associated fluid movement. These are critical in evaluating the potential for large earthquakes in these areas, and geothermal exploration possibilities near these structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richard D. Miller; Abdelmoneam E. Raef; Alan P. Byrnes
2007-06-30
The objective of this research project was to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data in the hopes of observing changes in fluid characteristics in an oil field before, during, and after the miscible carbon dioxide (CO{sub 2}) flood that began around December 1, 2003, as part of the DOE-sponsored Class Revisit Project (DOE No.DE-AC26-00BC15124). Unique and key to this imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900-m-deep test reservoir is located in central Kansas oomoldic limestonesmore » of the Lansing-Kansas City Group, deposited on a shallow marine shelf in Pennsylvanian time. After 30 months of seismic monitoring, one baseline and eight monitor surveys clearly detected changes that appear consistent with movement of CO{sub 2} as modeled with fluid simulators and observed in production data. Attribute analysis was a very useful tool in enhancing changes in seismic character present, but difficult to interpret on time amplitude slices. Lessons learned from and tools/techniques developed during this project will allow high-resolution seismic imaging to be routinely applied to many CO{sub 2} injection programs in a large percentage of shallow carbonate oil fields in the midcontinent.« less
An integrated approach to characterization of fractured reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datta-Gupta, A.; Majer, E.; Vasco, D.
1995-12-31
This paper summarizes an integrated hydrologic and seismic characterization of a fractured limestone formation at the Conoco Borehole Test Facility (CBTF) in Kay County, Oklahoma. Transient response from pressure interference tests were first inverted in order to identify location and orientation of dominant fractures at the CBTF. Subsequently, high resolution (1000 to 10000 Hz) cross-well and single-well seismic surveys were conducted to verify the preferential slow paths indicated by hydrologic analysis. Seismic surveys were conducted before and after an air injection in order to increase the visibility of the fracture zone to seismic imaging. Both Seismic and hydrologic analysis weremore » found to yield consistent results in detecting the location of a major fracture zone.« less
Grossman, Eric E.; Hart, Patrick E.; Field, Michael E.; Triezenberg, Peter
2006-01-01
Seismic reflection data were collected from the Cap de Creus shelf and canyon in the southwest portion of the Gulf of Lions in October 2004. The data were acquired using the U.S. Geological Survey`s (USGS) high-resolution Edgetech CHIRP 512i seismic reflection system aboard the R/V Oceanus. Data from the shipboard 3.5 kHz echosounder were also collected but are not presented here. The seismic reflection data were collected as part of EuroSTRATAFORM funded by the Office of Naval Research. In October 2004, more than 200 km of high resolution seismic reflection data were collected in water depths ranging 30 m - 600 m. All data were recorded with a Delph Seismic PC-based digital recording system and processed with Delph Seismic software. Processed sections were georeferenced into tiff images for digital archive, processing and display. Penetration ranged 20-80 m. The data feature high quality vertical cross-section imagery of numerous sequences of Quaternary seismic stratigraphy. The report includes trackline maps showing the location of the data, as well as both digital data files (SEG-Y) and images of all of the profiles. The data are of high quality and provide new information on the location and thickness of sediment deposits overlying a major erosion surface on the Cap de Creus shelf; they also provide new insight into sediment processes on the walls and in the channel of Cap de Creus Canyon. These data are under study by researchers at the US Geological Survey, the University of Barcelona, and Texas A and M University. Copies of the data are available to all researchers.
NASA Astrophysics Data System (ADS)
Kaip, G.; Harder, S. H.; Karplus, M. S.; Vennemann, A.
2016-12-01
In May 2016, the National Seismic Source Facility (NSSF) located at the University of Texas at El Paso (UTEP) Department of Geological Sciences collected seismic data at the Indio Ranch located 30 km southwest of Van Horn, Texas. Both hammer on an aluminum plate and explosive sources were used. The project objective was to image subsurface structures at the ranch, owned by UTEP. Selecting the appropriate seismic source is important to reach project objectives. We compare seismic sources between explosions and hammer on plate, focusing on amplitude and frequency. The seismic line was 1 km long, trending WSW to ENE, with 200 4.5 Hz geophones at 5m spacing and shot locations at 10m spacing. Clay slurry was used in shot holes to increase shot coupling around booster. Trojan Spartan cast boosters (150g) were used in explosive sources in each shot hole (1 hole per station). The end of line shots had 5 shot holes instead of 1 (750g total). The hammer source utilized a 5.5 kg hammer and an aluminum plate. Five hammer blows were stacked at each location to improve signal-to-noise ratio. Explosive sources yield higher amplitude, but lower frequency content. The explosions exhibit a higher signal-to-noise ratio, allowing us to recognize seismic energy deeper and farther from the source. Hammer sources yield higher frequencies, allowing better resolution at shallower depths but have a lower signal-to-noise ratio and lower amplitudes, even with source stacking. We analyze the details of the shot spectra from the different types of sources. A combination of source types can improve data resolution and amplitude, thereby improving imaging potential. However, cost, logistics, and complexities also have a large influence on source selection.
Role of H2O in Generating Subduction Zone Earthquakes
NASA Astrophysics Data System (ADS)
Hasegawa, A.
2017-03-01
A dense nationwide seismic network and high seismic activity in Japan have provided a large volume of high-quality data, enabling high-resolution imaging of the seismic structures defining the Japanese subduction zones. Here, the role of H2O in generating earthquakes in subduction zones is discussed based mainly on recent seismic studies in Japan using these high-quality data. Locations of intermediate-depth intraslab earthquakes and seismic velocity and attenuation structures within the subducted slab provide evidence that strongly supports intermediate-depth intraslab earthquakes, although the details leading to the earthquake rupture are still poorly understood. Coseismic rotations of the principal stress axes observed after great megathrust earthquakes demonstrate that the plate interface is very weak, which is probably caused by overpressured fluids. Detailed tomographic imaging of the seismic velocity structure in and around plate boundary zones suggests that interplate coupling is affected by local fluid overpressure. Seismic tomography studies also show the presence of inclined sheet-like seismic low-velocity, high-attenuation zones in the mantle wedge. These may correspond to the upwelling flow portion of subduction-induced secondary convection in the mantle wedge. The upwelling flows reach the arc Moho directly beneath the volcanic areas, suggesting a direct relationship. H2O originally liberated from the subducted slab is transported by this upwelling flow to the arc crust. The H2O that reaches the crust is overpressured above hydrostatic values, weakening the surrounding crustal rocks and decreasing the shear strength of faults, thereby inducing shallow inland earthquakes. These observations suggest that H2O expelled from the subducting slab plays an important role in generating subduction zone earthquakes both within the subduction zone itself and within the magmatic arc occupying its hanging wall.
NASA Astrophysics Data System (ADS)
Persaud, P.; Ma, Y.; Stock, J. M.; Hole, J. A.; Fuis, G. S.; Han, L.
2016-12-01
Ongoing oblique slip at the Pacific-North America plate boundary in the Salton Trough produced the Imperial Valley. Deformation in this seismically active area is distributed across a complex network of exposed and buried faults resulting in a largely unmapped seismic hazard beneath the growing population centers of El Centro, Calexico and Mexicali. To better understand the shallow crustal structure in this region and the connectivity of faults and seismicity lineaments, we used data primarily from the Salton Seismic Imaging Project (SSIP) to construct a P-wave velocity profile to 15 km depth, and a 3-D velocity model down to 8 km depth including the Brawley Geothermal area. We obtained detailed images of a complex wedge-shaped basin at the southern end of the San Andreas Fault system. Two deep subbasins (VP <5.65 km/s) are located in the western part of the larger Imperial Valley basin, where seismicity trends and active faults play a significant role in shaping the basin edge. Our 3-D VP model reveals previously unrecognized NE-striking cross faults that are interacting with the dominant NW-striking faults to control deformation. New findings in our profile include localized regions of low VP (thickening of a 5.65-5.85 km/s layer) near faults or seismicity lineaments interpreted as possibly faulting-related. Our 3-D model and basement map reveal velocity highs associated with the geothermal areas in the eastern valley. The improved seismic velocity model from this study, and the identification of important unmapped faults or buried interfaces will help refine the seismic hazard for parts of Imperial County, California.
Incoherent dictionary learning for reducing crosstalk noise in least-squares reverse time migration
NASA Astrophysics Data System (ADS)
Wu, Juan; Bai, Min
2018-05-01
We propose to apply a novel incoherent dictionary learning (IDL) algorithm for regularizing the least-squares inversion in seismic imaging. The IDL is proposed to overcome the drawback of traditional dictionary learning algorithm in losing partial texture information. Firstly, the noisy image is divided into overlapped image patches, and some random patches are extracted for dictionary learning. Then, we apply the IDL technology to minimize the coherency between atoms during dictionary learning. Finally, the sparse representation problem is solved by a sparse coding algorithm, and image is restored by those sparse coefficients. By reducing the correlation among atoms, it is possible to preserve most of the small-scale features in the image while removing much of the long-wavelength noise. The application of the IDL method to regularization of seismic images from least-squares reverse time migration shows successful performance.
Zhang, Yang; Toksöz, M Nafi
2012-08-01
The seismic response of saturated porous rocks is studied numerically using microtomographic images of three-dimensional digitized Berea sandstones. A stress-strain calculation is employed to compute the velocities and attenuations of rock samples whose sizes are much smaller than the seismic wavelength of interest. To compensate for the contributions of small cracks lost in the imaging process to the total velocity and attenuation, a hybrid method is developed to recover the crack distribution, in which the differential effective medium theory, the Kuster-Toksöz model, and a modified squirt-flow model are utilized in a two-step Monte Carlo inversion. In the inversion, the velocities of P- and S-waves measured for the dry and water-saturated cases, and the measured attenuation of P-waves for different fluids are used. By using such a hybrid method, both the velocities of saturated porous rocks and the attenuations are predicted accurately when compared to laboratory data. The hybrid method is a practical way to model numerically the seismic properties of saturated porous rocks until very high resolution digital data are available. Cracks lost in the imaging process are critical for accurately predicting velocities and attenuations of saturated porous rocks.
Crustal Structure of Indonesia from Seismic Ambient Noise Tomography
NASA Astrophysics Data System (ADS)
Saygin, E.; Cummins, P. R.; Suhardjono, S.; Nishida, K.
2012-12-01
We image a region spanning from south Vietnam to north Australia using over 300 seismic stations by using ambient seismic noise cross-correlations. The backbone of the network is formed by using the broadband seismograph network of Indonesia with over 160 stations serving as mid-tie point in the region. The retrieved Green's functions from the cross-correlation of continuously recorded seismic ambient noise at the stations are used to perform surface wave dispersion analysis. We apply a multiple filter approach to measure the phase and group velocity dispersion of Rayleigh wave component of Green's functions. The traveltime information derived from the dispersion is then used in a nonlinear tomographic approach to map the velocity perturbation of the region. The forward problem for the tomographic imaging can accurately track the evolution of a wavefront in highly heterogeneous media. Therefore the highly complex velocity distribution of the region is accurately reflected into the forward calculations used in the inversion. In general, accretionary prisms in the region are marked with quite low group and phase velocities with perturbations up to 50%. Active volcanoes in Sumatra and Java islands are also marked with low velocities. Rajang delta in north-west Kalimantan and thick sediments in South China Sea are imaged with low velocities.
Diverse Seismic Imaging Created by the Seismic Explosion Experiment of the TAIGER Project
NASA Astrophysics Data System (ADS)
Wang, C.; Okaya, D.; Wu, F.; Yen, H.; Huang, B.; Liang, W.
2008-12-01
The TAIGER (TAiwan Integrated GEodynamics Research) project which examines the Taiwan orogeny includes five experiments: natural earthquake recording, man-made explosion recording, Magnetotelluic imaging, marine MCS and sea-land shooting, and deformation evolution modeling. During Feb-Mar 2008, the explosion experiment was carried out. Ten sources with 500~3000kg dynamite were detonated along two transects across northern and southern Taiwan. Over 600 PASSCAL Texans and 40 R-130 instruments record the signals over 100~300 km range. Additional arrays with 100 seismometers were deployed to collect north-south line and fan shoot data for 3D imaging. Furthermore, there are 9 ocean bottom seismometers (OBS) in the Taiwan Strait and two lines with 20 seismometers deployed on the mainland China side. A large volume of qualified data has been created. Except explosion signals, numerous local and regional earthquakes were also recorded even by the Texan instruments. The rich earthquake-explosion dataset now exists at the Institute of Earth Sciences, Academia Sinica operated by the Taiwan Earthquake Center (TEC). Preliminary examination of the data reveal crustal Pg, PmP, Pn and intermediate crustal reflection phases within the transect profiles and in the 3D cross-arrays. These data provide direct seismic imaging of the continental Moho under Taiwan and the sharp Moho root configuration associated with mountain building. Seismic tomography and raytrace methods reveal velocity structure consistent with convergence and vertical exhumation of the Central Ranges.
Shallow seismic reflection profiles and geological structure in the Benton Hills, southeast Missouri
Palmer, J.R.; Hoffman, D.; Stephenson, W.J.; Odum, J.K.; Williams, R.A.
1997-01-01
During late May and early June of 1993, we conducted two shallow, high-resolution seismic reflection surveys (Mini-Sosie method) across the southern escarpment of the Benton Hills segment of Crowleys Ridge. The reflection profiles imaged numerous post-late Cretaceous faults and folds. We believe these faults may represent a significant earthquake source zone. The stratigraphy of the Benton Hills consists of a thin, less than about 130 m, sequence of mostly unconsolidated Cretaceous, Tertiary and Quaternary sediments which unconformably overlie a much thicker section of Paleozoic carbonate rocks. The survey did not resolve reflectors within the upper 75-100 ms of two-way travel time (about 60-100 m), which would include all of the Tertiary and Quaternary and most of the Cretaceous. However, the Paleozoic-Cretaceous unconformity (Pz) produced an excellent reflection, and, locally a shallower reflector within the Cretaceous (K) was resolved. No coherent reflections below about 200 ms of two-way travel time were identified. Numerous faults and folds, which clearly offset the Paleozoic-Cretaceous unconformity reflector, were imaged on both seismic reflection profiles. Many structures imaged by the reflection data are coincident with the surface mapped locations of faults within the Cretaceous and Tertiary succession. Two locations show important structures that are clearly complex fault zones. The English Hill fault zone, striking N30??-35??E, is present along Line 1 and is important because earlier workers indicated it has Pleistocene Loess faulted against Eocene sands. The Commerce fault zone striking N50??E, overlies a major regional basement geophysical lineament, and is present on both seismic lines at the southern margin of the escarpment. The fault zones imaged by these surveys are 30 km from the area of intense microseismicity in the New Madrid seismic zone (NMSZ). If these are northeast and north-northeast oriented fault zones like those at Thebes Gap they are favorably oriented in the modern stress field to be reactivated as right-lateral strike slip faults. Currently, earthquake hazards assessments are most dependent upon historical seismicity, and there are little geological data available to evaluate the earthquake potential of fault zones outside of the NMSZ. We anticipate that future studies will provide evidence that seismicity has migrated between fault zones well beyond the middle Mississippi Valley. The potential earthquake hazards represented by faults outside the NMSZ may be significant.
Then and Now, 25 Years of Progress Using Portable Arrays: The IRIS-PASSCAL Program
NASA Astrophysics Data System (ADS)
Alvarez, M.; Allen, R. M.; Fowler, J. C.; Beaudoin, B. C.
2009-12-01
A new direction was taken back in 1984 when the Program for the Array Seismic Studies of the Continental Lithosphere (PASSCAL) program was formed. A coordinated plan defining the instrumentation, data collection and management structure to support a wide range of research in seismology was proposed to the National Science Foundation (NSF). Now 25 years later, a modern facility hosted at New Mexico Tech exists to support a vibrant community conducting portable seismic experiments around the world. The original PASSCAL goal, lofty as it seemed in 1984, was to acquire 6,000 data acquisition channels. This mark has been largely reached with a combination of instruments designed to image the near surface to the inner core. There is more, however, to the advancement of the program than the shear number of channels placed into service. A new way of conducting seismological field experiments was developed. Here we explore the evolution of the technology, field practices and the support provided by the PASSCAL facility from the formative period in the late 1980’s to the present day. The component of a seismic recording system affected most by technological advances over the last two decades has been the data acquisition system. Early systems were equipped with 16 bit digitizers and had onboard memory that required weekly service runs while recording at low sample rates. Accurate timing was achieved using OMEGA land based radio signals. Today, with the advancement in low power 24 bit digitizers, global positioning satellites, and advent of global communications, a typical broadband seismic station can operate autonomously, transmit high sample rate data, and have accurately timed data in near real-time. Compact single channel systems especially designed for active source crustal scale experiments have also been developed for efficient deployment in large numbers. Field practices have kept pace with the ever increasing need to deploy more higher quality stations for a given experiment. Whereas a 10 element broadband array was the norm in 1990, now it is not unusual for an array to consist of 100 stations. The same phenomena has occurred with active source experiments, where over 2700 single channel stations are deployed in a given deployment. To achieve this, instrumentation and field techniques have vastly improved. Essentially the same number of PI’s and students can install and operate a ten fold increase in equipment. The data archived from over 800 PASSCAL experiments at the IRIS Data Management Center in Seattle holds the legacy of the program. After a two year exclusive period for the PI’s, data are open to the community. Data from these open experiments are mined by seismologist worldwide and add a valuable resource for future researchers.
NASA Astrophysics Data System (ADS)
Diehl, Tobias; Kraft, Toni; Eduard, Kissling; Nicholas, Deichmann; Clinton, John; Wiemer, Stefan
2014-05-01
From July to November 2013 a sequence of more than 850 events, of which more than 340 could be located, was triggered in a planned hydrothermal system below the city of St. Gallen in eastern Switzerland. Seismicity initiated on July 14 and the maximum Ml in the sequence was 3.5, comparable in size with the Ml 3.4 event induced by stimulation below Basel in 2006. To improve absolute locations of the sequence, more than 1000 P and S wave arrivals were inverted for hypocenters and 1D velocity structure. Vp of 5.6-5.8 km/s and a Vp/Vs ratio of 1.82-1.9 in the source region indicate a limestone or shale-type composition and a comparison with a lithological model from a 3D seismic model suggests that the seismically active streak (height up to 400 m) is within the Mesozoic layer. To resolve the fine structure of the induced seismicity, we applied waveform cross-correlation and double-difference algorithms. The results image a NE-SW striking lineament, consistent with a left-lateral fault plane derived from first motion polarities and moment tensor inversions. A spatio-temporal analysis of the relocated seismicity shows that, during first acid jobs on July 17, microseismicity propagated towards southwest over the entire future Ml 3.5 rupture plane. The almost vertical focal plane associated with the Ml 3.5 event of July 20 is well imaged by the seismicity. The area of the ruptured fault is approximately 675x400 m. Seismicity images a change in focal depths along strike, which correlates with a kink or bend in the mapped fault system northeast of the Ml 3.5 event. This change might indicate structural differences or a segmentation of the fault. Following the Ml 3.5 event, seismicity propagated along strike to the northeast, in a region without any mapped faults, indicating a continuation of the fault segment. Seismicity on this segment occurred in September and October. A complete rupture of the NE segment would have the potential to produce a magnitude larger than 3.0. Similarity of waveforms suggests that an Ml 3.2 in 1987 and an Ml 2.2 event in 1993 occurred on a similar structure with a similar slip direction as the Ml 3.5 event. It appears that the fault zone targeted by the geothermal project is not only oriented favourably for rupture relative to the regional stress field, but is also close to failure.
NASA Astrophysics Data System (ADS)
Bina, Craig; Cizkova, Hana
2014-05-01
Subducting slabs may exhibit buckling instabilities and consequent folding behavior in the mantle transition zone for various combinations of dynamical parameters, accompanied by temporal variations in dip angle, plate velocity, and trench retreat. Parameters governing such behavior include both viscous forces (slab and mantle rheology) and buoyancy forces (slab thermal structure and mineral phase relations). 2D numerical experiments show that many parameter sets lead to slab deflection at the base of the transition zone, typically accompanied by quasi-periodic oscillations (consistent with previous scaling analyses) in largely anticorrelated plate and rollback velocities, resulting in undulating stagnant slabs as buckle folds accumulate subhorizontally atop the lower mantle. Slab interactions with mantle phase transitions are important components of this process (Bina and Kawakatsu, 2010; Čížková and Bina, 2013). For terrestrial parameter sets, trench retreat is found to be nearly ubiquitous, and trench advance is quite rare - due to both rheological structure and ridge-push effects (Čížková and Bina, 2013). Recent analyses of global plate motions indicate that significant trench advance is also rare on Earth, being largely restricted to the Izu-Bonin arc (Matthews et al., 2013). Consequently, we explore the conditions necessary for terrestrial trench advance through dynamical models involving the unusual geometry associated with the Philippine Sea region. Detailed images of buckled stagnant slabs are difficult to resolve due to smoothing effects inherent in seismic tomography, but velocity structures computed for compositionally layered slabs, using laboratory data on relevant mineral assemblages, can be spatially low-pass filtered for comparison with tomographic images of corresponding resolution. When applied to P-wave velocity anomalies from stagnant slab material beneath northeast China, model slabs which undulate due to compound buckling fit observations better than a flat-lying slab (Zhang et al., 2013). Earthquake hypocentral distributions and focal mechanisms may provide clearer insights into slab buckling, as they appear to vary systematically across regions of slab stagnation (Fukao and Obayashi, 2013). Stress fields computed from our dynamical models may help to illuminate such observations. References: Bina, C.R., and H. Kawakatsu, Buoyancy, bending, and seismic visibility in deep slab stagnation, Phys. Earth Planet. Inter., 183, 330-340, 2010. Čížková, H., and C.R. Bina, Effects of mantle and subduction-interface rheologies on slab stagnation and trench rollback, Earth Planet. Sci. Lett., 379, 95-103, 2013. Fukao, Y., and M. Obayashi, Deepest hypocentral distributions associated with stagnant slabs and penetrated slabs, Fall Meeting Abstracts, AGU, DI14A-01, 2013. Li, Z.-H., and N.M. Ribe, Dynamics of free subduction from 3-D boundary element modeling, J. Geophys. Res., 117, B06408. Matthews, D.C., L. Zheng, and R.G. Gordon, Do trenches advance? Fall Meeting Abstracts, AGU, T43D-2682, 2013. Zhang, Y., Y. Wang, Y. Wu, C. Bina, Z. Jin, and S. Dong, Phase transitions of harzburgite and buckled slab under eastern China, Geochem. Geophys. Geosys., 14, 1182-1199, 2013.
Earth physicist describes US nuclear test monitoring system
NASA Astrophysics Data System (ADS)
1986-01-01
The U. S. capabilities to monitor underground nuclear weapons tests in the USSR was examined. American methods used in monitoring the underground nuclear tests are enumerated. The U. S. technical means of monitoring Solviet nuclear weapons testing, and whether it is possible to conduct tests that could not be detected by these means are examined. The worldwide seismic station network in 55 countries available to the U. S. for seismic detection and measurement of underground nuclear explosions, and also the systems of seismic research observatories in 15 countries and seismic grouping stations in 12 countries are outlined including the advanced computerized data processing capabilities of these facilities. The level of capability of the U. S. seismic system for monitoring nuclear tests, other, nonseismic means of monitoring, such as hydroacoustic and recording of effects in the atmosphere, ionosphere, and the Earth's magnetic field, are discussed.
Low-frequency seismic events in a wider volcanological context
NASA Astrophysics Data System (ADS)
Neuberg, J. W.; Collombet, M.
2006-12-01
Low-frequency seismic events have been in the centre of attention for several years, particularly on volcanoes with highly viscous magmas. The ultimate aim is to detect changes in volcanic activity by identifying changes in the seismic behaviour in order to forecast an eruption, or in case of an ongoing eruption, forecast the short and longterm behaviour of the volcanic system. A major boost in recent years arose through several attempts of multi-parameter volcanic monitoring and modelling programs, which allowed multi-disciplinary groups of volcanologists to interpret seismic signals together with, e.g. ground deformation, stress field analysis and petrological information. This talk will give several examples of such multi-disciplinary projects, focussing on the joint modelling of seismic source processes for low-frequency events together with advanced magma flow models, and the signs of magma movement in the deformation and stress field at the surface.
Advanced motor driven clamped borehole seismic receiver
Engler, Bruce P.; Sleefe, Gerard E.; Striker, Richard P.
1993-01-01
A borehole seismic tool including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric meter in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.
Lunar Seismic Detector to Advance the Search for Strange Quark Matter
NASA Technical Reports Server (NTRS)
Galitzki, Nicholas B.
2005-01-01
Detection of small seismic signals on the Moon are needed to study lunar internal structure and to detect possible signals from Strange Quark m&er transit events. The immediate objective is to create a prototype seismic detector using a tunnel diode oscillator with a variable capacitor attached to a proof mass. The device is designed to operate effectively on the Moon, which requires a low power consumption to operate through lunar night, while preserving sensitivity. The goal is capacitance resolution of better than 1 part in 10' and power consumption of less than 1 watt.
NASA Astrophysics Data System (ADS)
Valoroso, L.; Chiaraluce, L.
2017-12-01
Low-angle normal faults (dip < 30°) are geologically widely documented and considered responsible for accommodating the crustal extension within the brittle crust although their mechanical behavior and seismogenic potential is enigmatic. We study the anatomy and slip-behavior of the actively slipping Altotiberina low-angle (ATF) normal fault system using a high-resolution 5-years-long (2010-2014) earthquake catalogue composed of 37k events (ML<3.9 and completeness magnitude MC=0.5 ML), recorded by a dense permanent seismic network of the Altotiberina Near Fault Observatory (TABOO). The seismic activity defines the fault system dominated at depth by the low-angle ATF surface (15-20°) coinciding to the ATF geometry imaged through seismic reflection data. The ATF extends for 50km along-strike and between 4-5 to 16km of depth. Seismicity also images the geometry of a set of higher angle faults (35-50°) located in the ATF hanging-wall (HW). The ATF-related seismicity accounts for 10% of the whole seismicity (3,700 events with ML<2.4), occurring at a remarkably constant rate of 2.2 events/day. This seismicity describes an about 1.5-km-thick fault zone composed by multiple sub-parallel slipping planes. The remaining events are instead organized in multiple mainshocks (MW>3) seismic sequences lasting from weeks to months, activating a contiguous network of 3-5-km-long syn- and antithetic fault segments within the ATF-HW. The space-time evolution of these minor sequences is consistent with subsequence failures promoted by fluid flow. The ATF-seismicity pattern includes 97 clusters of repeating events (RE) made of 299 events with ML<1.9. RE are located around locked patches identified by geodetic modeling, suggesting a mixed-mode (stick-slip and stable-sliding) slip-behavior along the fault plane in accommodating most of the NE-trending tectonic deformation with creeping dominating below 5 km depth. Consistently, the seismic moment released by the ATF-seismicity accounts for a small portion (30%) of the geodetic one. The rate of occurrence of RE, mostly composed by doublets with short inter-event time (e.g. hours), appears to modulate the seismic release of the ATF-HW, suggesting that creeping may drive the strain partitioning of the system.
Seismic imaging of slab metamorphism and genesis of intermediate-depth intraslab earthquakes
NASA Astrophysics Data System (ADS)
Hasegawa, Akira; Nakajima, Junichi
2017-12-01
We review studies of intermediate-depth seismicity and seismic imaging of the interior of subducting slabs in relation to slab metamorphism and their implications for the genesis of intermediate-depth earthquakes. Intermediate-depth events form a double seismic zone in the depth range of c. 40-180 km, which occur only at locations where hydrous minerals are present, and are particularly concentrated along dehydration reaction boundaries. Recent studies have revealed detailed spatial distributions of these events and a close relationship with slab metamorphism. Pressure-temperature paths of the crust for cold slabs encounter facies boundaries with large H2O production rates and positive total volume change, which are expected to cause highly active seismicity near the facies boundaries. A belt of upper-plane seismicity in the crust nearly parallel to 80-90 km depth contours of the slab surface has been detected in the cold Pacific slab beneath eastern Japan, and is probably caused by slab crust dehydration with a large H2O production rate. A seismic low-velocity layer in the slab crust persists down to the depth of this upper-plane seismic belt, which provides evidence for phase transformation of dehydration at this depth. Similar low-velocity subducting crust closely related with intraslab seismicity has been detected in several other subduction zones. Seismic tomography studies in NE Japan and northern Chile also revealed the presence of a P-wave low-velocity layer along the lower plane of a double seismic zone. However, in contrast to predictions based on the serpentinized mantle, S-wave velocity along this layer is not low. Seismic anisotropy and pore aspect ratio may play a role in generating this unique structure. Although further validation is required, observations of these distinct low P-wave velocities along the lower seismic plane suggest the presence of hydrated rocks or fluids within that layer. These observations support the hypothesis that dehydration-derived H2O causes intermediate-depth intraslab earthquakes. However, it is possible that dual mechanisms generate these earthquakes; the initiation of earthquake rupture may be caused by local excess pore pressure from H2O, and subsequent ruptures may propagate through thermal shear instability. In either case, slab-derived H2O plays an important role in generating intermediate-depth events.
Seismic velocity estimation from time migration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cameron, Maria Kourkina
2007-01-01
This is concerned with imaging and wave propagation in nonhomogeneous media, and includes a collection of computational techniques, such as level set methods with material transport, Dijkstra-like Hamilton-Jacobi solvers for first arrival Eikonal equations and techniques for data smoothing. The theoretical components include aspects of seismic ray theory, and the results rely on careful comparison with experiment and incorporation as input into large production-style geophysical processing codes. Producing an accurate image of the Earth's interior is a challenging aspect of oil recovery and earthquake analysis. The ultimate computational goal, which is to accurately produce a detailed interior map of themore » Earth's makeup on the basis of external soundings and measurements, is currently out of reach for several reasons. First, although vast amounts of data have been obtained in some regions, this has not been done uniformly, and the data contain noise and artifacts. Simply sifting through the data is a massive computational job. Second, the fundamental inverse problem, namely to deduce the local sound speeds of the earth that give rise to measured reacted signals, is exceedingly difficult: shadow zones and complex structures can make for ill-posed problems, and require vast computational resources. Nonetheless, seismic imaging is a crucial part of the oil and gas industry. Typically, one makes assumptions about the earth's substructure (such as laterally homogeneous layering), and then uses this model as input to an iterative procedure to build perturbations that more closely satisfy the measured data. Such models often break down when the material substructure is significantly complex: not surprisingly, this is often where the most interesting geological features lie. Data often come in a particular, somewhat non-physical coordinate system, known as time migration coordinates. The construction of substructure models from these data is less and less reliable as the earth becomes horizontally nonconstant. Even mild lateral velocity variations can significantly distort subsurface structures on the time migrated images. Conversely, depth migration provides the potential for more accurate reconstructions, since it can handle significant lateral variations. However, this approach requires good input data, known as a 'velocity model'. We address the problem of estimating seismic velocities inside the earth, i.e., the problem of constructing a velocity model, which is necessary for obtaining seismic images in regular Cartesian coordinates. The main goals are to develop algorithms to convert time-migration velocities to true seismic velocities, and to convert time-migrated images to depth images in regular Cartesian coordinates. Our main results are three-fold. First, we establish a theoretical relation between the true seismic velocities and the 'time migration velocities' using the paraxial ray tracing. Second, we formulate an appropriate inverse problem describing the relation between time migration velocities and depth velocities, and show that this problem is mathematically ill-posed, i.e., unstable to small perturbations. Third, we develop numerical algorithms to solve regularized versions of these equations which can be used to recover smoothed velocity variations. Our algorithms consist of efficient time-to-depth conversion algorithms, based on Dijkstra-like Fast Marching Methods, as well as level set and ray tracing algorithms for transforming Dix velocities into seismic velocities. Our algorithms are applied to both two-dimensional and three-dimensional problems, and we test them on a collection of both synthetic examples and field data.« less
NASA Astrophysics Data System (ADS)
Heincke, B.; Moorkamp, M.; Jegen, M.; Hobbs, R. W.
2012-12-01
Imaging of sub-basalt sediments with reflection seismic techniques is limited due to absorption, scattering and transmission effects and the presence of peg-leg multiples. Although many of the difficulties facing conventional seismic profiles can be overcome by recording long offset data resolution of sub-basalt sediments in seismic sections is typically still largely restricted. Therefore multi-parametric approaches in general and joint inversion strategies in particular (e.g. Colombo et al., 2008, Jordan et al., 2012) are considered as alternative to gain additional information from sub-basalt structures. Here, we combine in a 3-D joint inversion first-arrival time tomography, FTG gravity and MT data to identify the base basalt and resolve potential sediments underneath. For sub-basalt exploration the three methods complement each other such that the null space is reduced and significantly better resolved models can be obtained than would be possible by the individual methods: The seismic data gives a robust model for the supra-basalt sediments whilst the gravity field is dominated by the high density basalt and basement features. The MT on the other hand is sensitive to the conductivity in both the supra- and sub-basalt sediments. We will present preliminary individual and joint inversion result for a FTG, seismic and MT data set located in the Faroe-Shetland basin. Because the investigated area is rather large (~75 x 40 km) and the individual data sets are relatively huge, we use a joint inversion framework (see Moorkamp et al., 2011) which is designed to handle large amount of data/model parameters. This program has moreover the options to link the individual parameter models either petrophysically using fixed parameter relationships or structurally using the cross-gradient approach. The seismic data set consists of a pattern of 8 intersecting wide-angle seismic profiles with maximum offsets of up to ~24 km. The 3-D gravity data set (size :~ 30 x 30 km) is collected along parallel lines by a shipborne gradiometer and the marine MT data set is composed of 41 stations that are distributed over the whole investigation area. Logging results from a borehole located in the central part of the investigation area enable us to derive parameter relationships between seismic velocities, resistivities and densities that are adequately describe the rock property behaviors of both the basaltic lava flows and sedimentary layers in this region. In addition, a 3-D reflection seismic survey covering the central part allows us to incorporate the top of basalt and other features as constraints in the joint inversions and to evaluate the quality of the final results. Literature: D. Colombo, M. Mantovani, S. Hallinan, M. Virgilio, 2008. Sub-basalt depth imaging using simultaneous joint inversion of seismic and electromagnetic (MT) data: a CRB field study. SEG Expanded Abstract, Las Vegas, USA, 2674-2678. M. Jordan, J. Ebbing, M. Brönner, J. Kamm , Z. Du, P. Eliasson, 2012. Joint Inversion for Improved Sub-salt and Sub-basalt Imaging with Application to the More Margin. EAGE Expanded Abstracts, Copenhagen, DK. M. Moorkamp, B. Heincke, M. Jegen, A.W.Roberts, R.W. Hobbs, 2011. A framework for 3-D joint inversion of MT, gravity and seismic refraction data. Geophysical Journal International, 184, 477-493.
NASA Astrophysics Data System (ADS)
Livers, A.; Han, L.; Delph, J. R.; White-Gaynor, A. L.; Petit, R.; Hole, J. A.; Stock, J. M.; Fuis, G. S.
2012-12-01
First-arrival refraction data were used to create a seismic velocity model of the upper crust across the actively rifting northern Imperial Valley and its margins. The densely sampled seismic refraction data were acquired by the Salton Seismic Imaging Project (SSIP) , which is investigating rift processes in the northern-most rift segment of the Gulf of California extensional province and earthquake hazards at the southern end of the San Andreas Fault system. A 95-km long seismic line was acquired across the northern Imperial Valley, through the Salton Sea geothermal field, parallel to the five Salton Butte volcanoes and perpendicular to the Brawley Seismic Zone and major strike-slip faults. Nineteen explosive shots were recorded with 100 m seismometer spacing across the valley and with 300-500 m spacing into the adjacent ranges. First-arrival travel times were picked from shot gathers along this line and a seismic velocity model was produced using tomographic inversion. Sedimentary basement and seismic basement in the valley are interpreted to be sediment metamorphosed by the very high heat flow. The velocity model shows that this basement to the west of the Brawley Seismic Zone is at ~4-km depth. The basement shallows to ~2-km depth in the active geothermal field and Salton Buttes volcanic field which locally coincide with the Brawley Seismic Zone. At the eastern edge of the geothermal field, the basement drops off again to ~3.5-km depth. The eastern edge of the valley appears to be fault bounded by the along-strike extension of the Sand Hills Fault, an inactive strike-slip fault. The seismic velocities to the east of the fault correspond to metamorphic rock of the Chocolate Mountains, different from the metamorphosed basement in the valley. The western edge of the valley appears to be fault bounded by the active Superstition Hills Fault. To the west of the valley, >4-km deep valley basement extends to the active Superstition Hills Fault. Basement then shallows westward towards exposures of granitic basement in the Superstition Mountains. The basin between the Superstition Mountains and Coyote Mountains is ~2 km deep.
Pseudospectral reverse time migration based on wavefield decomposition
NASA Astrophysics Data System (ADS)
Du, Zengli; Liu, Jianjun; Xu, Feng; Li, Yongzhang
2017-05-01
The accuracy of seismic numerical simulations and the effectiveness of imaging conditions are important in reverse time migration studies. Using the pseudospectral method, the precision of the calculated spatial derivative of the seismic wavefield can be improved, increasing the vertical resolution of images. Low-frequency background noise, generated by the zero-lag cross-correlation of mismatched forward-propagated and backward-propagated wavefields at the impedance interfaces, can be eliminated effectively by using the imaging condition based on the wavefield decomposition technique. The computation complexity can be reduced when imaging is performed in the frequency domain. Since the Fourier transformation in the z-axis may be derived directly as one of the intermediate results of the spatial derivative calculation, the computation load of the wavefield decomposition can be reduced, improving the computation efficiency of imaging. Comparison of the results for a pulse response in a constant-velocity medium indicates that, compared with the finite difference method, the peak frequency of the Ricker wavelet can be increased by 10-15 Hz for avoiding spatial numerical dispersion, when the second-order spatial derivative of the seismic wavefield is obtained using the pseudospectral method. The results for the SEG/EAGE and Sigsbee2b models show that the signal-to-noise ratio of the profile and the imaging quality of the boundaries of the salt dome migrated using the pseudospectral method are better than those obtained using the finite difference method.
Analysis of marine multi-channel seismic data using a 2D continuous wavelet transform
NASA Astrophysics Data System (ADS)
Vuong, A. K.; Zhang, J.; Gibson, R. L.; Sager, W. W.
2011-12-01
Marine multi-channel seismic (MCS) profiles provide important constraints on crustal structure beneath the sea floor. MCS data usually provide good images of the upper part of the oceanic crust, especially in sedimentary layers. In contrast, it is often difficult to interpret deeper layers, especially those within the igneous basement, which is often nearly seismically transparent. That difference in interpretability occurs because sediments typically have continuous, well-layered and easily-traced structural features, whereas volcanic materials are characterized by smaller features with poorer lateral continuity and often with weak impedance contrasts. Since the basement tends to create weaker reflections, the signal-to-noise ratio decreases, creating additional difficulties that can be exacerbated by the presence of multiples generated by the sea floor and other sources of noise. However, it is still important to characterize the basement accurately to better understand oceanic crust formation and associated basaltic volcanism. We analyzed marine MCS data collected by R/V Marcus G. Langseth across the TAMU Massif of Shatsky Rise in the Northwest Pacific. The seismic data from this experiment display the typical problems in imaging basement features. Therefore, we seek to facilitate interpretation by applying 2-D continuous wavelet transforms to the data. Conventional Fourier methods transform 2-D seismic data from space and time domains to wavenumber and frequency, but the results are global in that there is no knowledge of temporal or spatial variations in frequency or wavenumber content. In contrast, wavelet transforms provide estimates of the local frequency and wavenumber content of the seismic image. The transform achieves this result by utilizing a localized, 2D wavelet function instead of the infinite sines and cosines applied in Fourier transforms. We utilize an anisotropic Mexican hat wavelet, where the horizontal and vertical scales are related to wavelength and period of the data, respectively. When analyzing the Shatsky Rise data set, we find, for example, that much of the noise in the seismic image of the basement is at small wavelengths corresponding to several traces, about 25 m. Using the wavelet transforms, we can extract reflection events at longer wavelengths corresponding to expected features in the subsurface. Observing reflections at a certain wavelength provides an estimate of the size scale of the associated geologic structures. The results at a frequency of 31.25 Hz, near the dominant frequency of the data, provide images of reflectors in the deep part of oceanic crust with scales from 200 m to 2000 m that are much easier to interpret than in the original seismic image. In particular, at scales from 200 m to 1000 m, we can see many reflectors with consistent with sizes and locations for localized magma intrusions into the oceanic crust. However, for spatial scales of about 2000 m, only a few reflectors are observed, suggesting there are fewer intrusions of this dimension. These features can also be examined at a range of frequencies to provide additional insights, and the wavelet transform can also be generalized to estimate dips of reflectors.
Taylor, D.J.
2003-01-01
Late in 1982 and early in 1983, Arco Exploration contracted with Rocky Mountain Geophysical to acquired four high-resolution 2-D multichannel seismic reflection lines in Emery County, Utah. The primary goal in acquiring this data was an attempt to image the Ferron Member of the Upper Cretaceous Mancos Shale. Design of the high-resolution 2-D seismic reflection data acquisition used both a short geophone group interval and a short sample interval. An explosive energy source was used which provided an input pulse with broad frequency content and higher frequencies than typical non-explosive Vibroseis?? sources. Reflections produced by using this high-frequency energy source when sampled at a short interval are usually able to resolve shallow horizons that are relatively thin compared to those that can be resolved using more typical oil and gas exploration seismic reflection methods.The U.S. Geological Survey-Energy Resources Program, Geophysical Processing Group used the processing sequence originally applied by Arco in 1984 as a guide and experimented with processing steps applied in a different order using slightly different parameters in an effort to improve imaging the Ferron Member horizon. As with the Arco processed data there are sections along all four seismic lines where the data quality cannot be improved upon, and in fact the data quality is so poor that the Ferron horizon cannot be imaged at all.Interpretation of the seismic and core hole data indicates that the Ferron Member in the study area represent a deltaic sequence including delta front, lower delta plain, and upper delta plain environments. Correlating the depositional environments for the Ferron Member as indicated in the core holes with the thickness of Ferron Member suggests the presence of a delta lobe running from the northwest to the southeast through the study area. The presence of a deltaic channel system within the delta lobe complex might prove to be an interesting conventional exploration target along with the coal-bed methane production already proven in the area. ?? 2003 Elsevier B.V. All rights reserved.
Toward seismic source imaging using seismo-ionospheric data
NASA Astrophysics Data System (ADS)
Rolland, L.; Larmat, C. S.; Mikesell, D.; Sladen, A.; Khelfi, K.; Astafyeva, E.; Lognonne, P. H.
2014-12-01
The worldwide coverage offered by global navigation space systems (GNSS) such as GPS, GLONASS or Galileo allows seismological measurements of a new kind. GNSS-derived total electron content (TEC) measurements can be especially useful to image seismically active zones that are not covered by conventional instruments. For instance, it has been shown that the Japanese dense GPS network GEONET was able to record images of the ionosphere response to the initial coseismic sea-surface motion induced by the great Mw 9.0 2011 Tohoku-Oki earthquake less than 10 minutes after the rupture initiation (Astafyeva et al., 2013). But earthquakes of lower magnitude, down to about 6.5 would also induce measurable ionospheric perturbations, when GNSS stations are located less than 250 km away from the epicenter. In order to make use of these new data, ionospheric seismology needs to develop accurate forward models so that we can invert for quantitative seismic sources parameters. We will present our current understanding of the coupling mechanisms between the solid Earth, the ocean, the atmosphere and the ionosphere. We will also present the state-of-the-art in the modeling of coseismic ionospheric disturbances using acoustic ray theory and a new 3D modeling method based on the Spectral Element Method (SEM). This latter numerical tool will allow us to incorporate lateral variations in the solid Earth properties, the bathymetry and the atmosphere as well as realistic seismic source parameters. Furthermore, seismo-acoustic waves propagate in the atmosphere at a much slower speed (from 0.3 to ~1 km/s) than seismic waves propagate in the solid Earth. We are exploring the application of back-projection and time-reversal methods to TEC observations in order to retrieve the time and space characteristics of the acoustic emission in the seismic source area. We will first show modeling and inversion results with synthetic data. Finally, we will illustrate the imaging capability of our approach with, among other possible examples, the 2011 Mw 9.0 Tohoku-Oki earthquake, Japan, the 2012 Mw 7.8 Haida Gwaii earthquake, Canada and the 2011 Mw 7.1 Van earthquake, Eastern Turkey.
High-Resolution Seismic Reflection Imaging of the Reelfoot Fault, New Madrid, Missouri
NASA Astrophysics Data System (ADS)
Rosandich, B.; Harris, J. B.; Woolery, E. W.
2017-12-01
Earthquakes in the Lower Mississippi Valley are mainly concentrated in the New Madrid Seismic Zone and are associated with reactivated faults of the Reelfoot Rift. Determining the relationship between the seismogenic faults (in crystalline basement rocks) and deformation at the Earth's surface and in the shallow subsurface has remained an active research topic for decades. An integrated seismic data set, including compressional (P-) wave and shear (S-) wave seismic reflection profiles, was collected in New Madrid, Missouri, across the "New Madrid" segment of the Reelfoot Fault, whose most significant rupture produced the M 7.5, February 7, 1812, New Madrid earthquake. The seismic reflection profiles (215 m long) were centered on the updip projection of the fault, which is associated with a surface drainage feature (Des Cyprie Slough) located at the base of a prominent east-facing escarpment. The seismic reflection profiles were collected using 48-channel (P-wave) and 24-channel (S-wave) towable landsteamer acquisition equipment. Seismic energy was generated by five vertical impacts of a 1.8-kg sledgehammer on a small aluminum plate for the P-wave data and five horizontal impacts of the sledgehammer on a 10-kg steel I-beam for the S-wave data. Interpretation of the profiles shows a west-dipping reverse fault (Reelfoot Fault) that propagates upward from Paleozoic sedimentary rocks (>500 m deep) to near-surface Quaternary sediments (<10 m deep). The hanging wall of the fault is anticlinally folded, a structural setting almost identical to that imaged on the Kentucky Bend and Reelfoot Lake segments (of the Reelfoot Fault) to the south.
Salzer, Jacqueline T.; Thelen, Weston A.; James, Mike R.; Walter, Thomas R.; Moran, Seth C.; Denlinger, Roger P.
2016-01-01
The surface deformation field measured at volcanic domes provides insights into the effects of magmatic processes, gravity- and gas-driven processes, and the development and distribution of internal dome structures. Here we study short-term dome deformation associated with earthquakes at Mount St. Helens, recorded by a permanent optical camera and seismic monitoring network. We use Digital Image Correlation (DIC) to compute the displacement field between successive images and compare the results to the occurrence and characteristics of seismic events during a 6 week period of dome growth in 2006. The results reveal that dome growth at Mount St. Helens was repeatedly interrupted by short-term meter-scale downward displacements at the dome surface, which were associated in time with low-frequency, large-magnitude seismic events followed by a tremor-like signal. The tremor was only recorded by the seismic stations closest to the dome. We find a correlation between the magnitudes of the camera-derived displacements and the spectral amplitudes of the associated tremor. We use the DIC results from two cameras and a high-resolution topographic model to derive full 3-D displacement maps, which reveals internal dome structures and the effect of the seismic activity on daily surface velocities. We postulate that the tremor is recording the gravity-driven response of the upper dome due to mechanical collapse or depressurization and fault-controlled slumping. Our results highlight the different scales and structural expressions during growth and disintegration of lava domes and the relationships between seismic and deformation signals.
NASA Astrophysics Data System (ADS)
Shahrokhi, H.; Malehmir, A.; Sopher, D.
2012-04-01
The BABEL project (Baltic And Bothnian Echoes from the Lithosphere) was a collaboration among British, Danish, Finnish, German and Swedish geoscientists to collect deep-crustal reflection and wide-angle refraction profiles in Baltic Shield and Gulf of Bothnia. The acquisition of 2,268km of deep marine reflection seismic data was carried out in 1989. The BABEL line 7 runs in E-W direction in the Bothnian Sea, north of the Åland islands and east of the city of Gävle. Several authors presented the seismic results but with a main focus of imaging and interpreting deep crustal geological structures and the nature and the depth of Moho discontinuity along line 7. Based on this seismic data, several publications about velocity distributions within the crust, the depth and texture of Moho discontinuity and seismic reflectivity patterns in the crust were presented. Some evidence from the reflection seismic data was also presented to suggest Early Proterozoic plate tectonics in the Baltic Shield. Previous seismic images of the BABEL line 7 reflection data show a dramatic change in the reflectivity pattern from weakly reflective lower crust in the west to a more reflective lower crust in the east, which was attributed to a change from a rigid crust to a plastic crust from the west to the east. The BABEL line 7 reflection data were acquired with a total profile length of 174km, a set of 48 airguns towed at 7.5m depth, and 3000m long streamer with 60 channels spaced with 50m intervals and towed at 15m depth. Seismic data were recorded for 25s using 4ms sampling interval and 75m shot interval. Seismic data is characterized by strong source-generated noise at shallow travel times and strong but randomly distributed spurious spikes at later arrival times. In this study, we have recovered and reprocessed the seismic data along BABEL line 7. Using modern processing and imaging techniques, which were not available at the time, and with a focus on the shallow parts of the seismic data, we have managed to reveal reflections as shallow as 1s in the data. Some of these reflections appear to be a continuation of deeper reflections but now they appear to reach to the surface, allowing correlation with the near-surface geology. At least two major moderately dipping shear zones are visible in the reprocessed data in comparison with the previous results. Deeper reflections are also improved which together with the improvements in the shallow parts of the data should allow small-scale geological structures encounter along the BABEL line 7 to be refined.
Impact-induced seismic activity on asteroid 433 Eros: a surface modification process.
Richardson, James E; Melosh, H Jay; Greenberg, Richard
2004-11-26
High-resolution images of the surface of asteroid 433 Eros revealed evidence of downslope movement of a loose regolith layer, as well as the degradation and erasure of small impact craters (less than approximately 100 meters in diameter). One hypothesis to explain these observations is seismic reverberation after impact events. We used a combination of seismic and geomorphic modeling to analyze the response of regolith-covered topography, particularly craters, to impact-induced seismic shaking. Applying these results to a stochastic cratering model for the surface of Eros produced good agreement with the observed size-frequency distribution of craters, including the paucity of small craters.
Kalkan, Erol; Banga, Krishna; Ulusoy, Hasan S.; Fletcher, Jon Peter B.; Leith, William S.; Reza, Shahneam; Cheng, Timothy
2012-01-01
In collaboration with the U.S. Department of Veterans Affairs (VA), the National Strong Motion Project (NSMP; http://nsmp.wr.usgs.gov/) of the U.S. Geological Survey has been installing sophisticated seismic systems that will monitor the structural integrity of 28 VA hospital buildings located in seismically active regions of the conterminous United States, Alaska, and Puerto Rico during earthquake shaking. These advanced monitoring systems, which combine the use of sensitive accelerometers and real-time computer calculations, are designed to determine the structural health of each hospital building rapidly after an event, helping the VA to ensure the safety of patients and staff. This report presents the instrumentation component of this project by providing details of each hospital building, including a summary of its structural, geotechnical, and seismic hazard information, as well as instrumentation objectives and design. The structural-health monitoring component of the project, including data retrieval and processing, damage detection and localization, automated alerting system, and finally data dissemination, will be presented in a separate report.
a method of gravity and seismic sequential inversion and its GPU implementation
NASA Astrophysics Data System (ADS)
Liu, G.; Meng, X.
2011-12-01
In this abstract, we introduce a gravity and seismic sequential inversion method to invert for density and velocity together. For the gravity inversion, we use an iterative method based on correlation imaging algorithm; for the seismic inversion, we use the full waveform inversion. The link between the density and velocity is an empirical formula called Gardner equation, for large volumes of data, we use the GPU to accelerate the computation. For the gravity inversion method , we introduce a method based on correlation imaging algorithm,it is also a interative method, first we calculate the correlation imaging of the observed gravity anomaly, it is some value between -1 and +1, then we multiply this value with a little density ,this value become the initial density model. We get a forward reuslt with this initial model and also calculate the correaltion imaging of the misfit of observed data and the forward data, also multiply the correaltion imaging result a little density and add it to the initial model, then do the same procedure above , at last ,we can get a inversion density model. For the seismic inveron method ,we use a mothod base on the linearity of acoustic wave equation written in the frequency domain,with a intial velociy model, we can get a good velocity result. In the sequential inversion of gravity and seismic , we need a link formula to convert between density and velocity ,in our method , we use the Gardner equation. Driven by the insatiable market demand for real time, high-definition 3D images, the programmable NVIDIA Graphic Processing Unit (GPU) as co-processor of CPU has been developed for high performance computing. Compute Unified Device Architecture (CUDA) is a parallel programming model and software environment provided by NVIDIA designed to overcome the challenge of using traditional general purpose GPU while maintaining a low learn curve for programmers familiar with standard programming languages such as C. In our inversion processing, we use the GPU to accelerate our gravity and seismic inversion. Taking the gravity inversion as an example, its kernels are gravity forward simulation and correlation imaging, after the parallelization in GPU, in 3D case,the inversion module, the original five CPU loops are reduced to three,the forward module the original five CPU loops are reduced to two. Acknowledgments We acknowledge the financial support of Sinoprobe project (201011039 and 201011049-03), the Fundamental Research Funds for the Central Universities (2010ZY26 and 2011PY0183), the National Natural Science Foundation of China (41074095) and the Open Project of State Key Laboratory of Geological Processes and Mineral Resources (GPMR0945).
NASA Astrophysics Data System (ADS)
Guardo, Roberto; De Siena, Luca
2017-04-01
The timely estimation of short- and long-term volcanic hazard relies on the existence of detailed 3D geophysical images of volcanic structures. High-resolution seismic models of the absorbing uppermost conduit systems and highly-heterogeneous shallowest volcanic layers, while particularly challenging to obtain, provide important data to locate feasible eruptive centers and forecast flank collapses and lava ascending paths. Here, we model the volcanic structures of Mt. Etna (Sicily, Italy) and its outskirts using the Horizontal to Vertical Spectral Ratio method, generally applied to industrial and engineering settings. The integration of this technique with Web-based Geographic Information System improves precision during the acquisition phase. It also integrates geological and geophysical visualization of 3D surface and subsurface structures in a queryable environment representing their exact three-dimensional geographic position, enhancing interpretation. The results show high-resolution 3D images of the shallowest volcanic and feeding systems, which complement (1) deeper seismic tomography imaging and (2) the results of recent remote sensing imaging. The main novelty with respect to previous model is the presence of a vertical structure that divides the pre-existing volcanic complexes of Ellittico and Cuvigghiuni. This could be interpreted as a transitional phase between the two systems. A comparison with recent remote sensing and geological results, however, shows clear connections between the anomaly and dynamic active during the last 15 years. We infer that seismic noise measurements from miniaturized instruments, when combined with remote sensing techniques, represent an important resource when monitoring volcanic media and eruptions, reducing the risk of loss of human lives and instrumentation.
Evolving Concepts and Teaching Approaches In Tectonics and Sedimentation.
ERIC Educational Resources Information Center
Graham, Stephan Alan
1983-01-01
Discusses five recent advances in sedimentary tectonics, noting how they are incorporated into college curricula. Advances discussed include basin type, tectonic setting, facies analysis (in conjunction with basin type/setting), stratigraphic analysis of reflection seismic data, and quantitative analysis of subsidence histories of sedimentary…
2009-02-20
vent). 2500 2600 2700 Distance (m) 2800 2900 3000 1.791 Figure 11. Southeast-northwest seismic section, showing hydrate cap details from DTI 6. The...line DT16 Line DTI 6 continues as a long transit line extending to the north- west. The 1999 COAMS (Canadian Ocean Acoustic Measurement System) grid...inline IN26 is coincident with DTI 6 (Figure 1). A com- bination of the surface-towed seismic data and the deep-towed DTAGS data is needed to provide
The critical angle in seismic interferometry
Van Wijk, K.; Calvert, A.; Haney, M.; Mikesell, D.; Snieder, R.
2008-01-01
Limitations with respect to the characteristics and distribution of sources are inherent to any field seismic experiment, but in seismic interferometry these lead to spurious waves. Instead of trying to eliminate, filter or otherwise suppress spurious waves, crosscorrelation of receivers in a refraction experiment indicate we can take advantage of spurious events for near-surface parameter extraction for static corrections or near-surface imaging. We illustrate this with numerical examples and a field experiment from the CSM/Boise State University Geophysics Field Camp.
Seismic Forecasting of Solar Activity
NASA Technical Reports Server (NTRS)
Braun, Douglas; Lindsey, Charles
2001-01-01
We have developed and improved helioseismic imaging techniques of the far-side of the Sun as part of a synoptic monitor of solar activity. In collaboration with the MIDI team at Stanford University we are routinely applying our analysis to images within 24 hours of their acquisition by SOHO. For the first time, real-time seismic maps of large active regions on the Sun's far surface are publicly available. The synoptic images show examples of active regions persisting for one or more solar rotations, as well as those initially detected forming on the solar far side. Until recently, imaging the far surface of the Sun has been essentially blind to active regions more than about 50 degrees from the antipode of disk center. In a paper recently accepted for publication, we have demonstrated how acoustic travel-time perturbations may be mapped over the entire hemisphere of the Sun facing away from the Earth, including the polar regions. In addition to offering significant improvements to ongoing space weather forecasting efforts, the procedure offers the possibility of local seismic monitoring of both the temporal and spatial variations in the acoustic properties of the Sun over the entire far surface.
Seismic Characterization of EGS Reservoirs
NASA Astrophysics Data System (ADS)
Templeton, D. C.; Pyle, M. L.; Matzel, E.; Myers, S.; Johannesson, G.
2014-12-01
To aid in the seismic characterization of Engineered Geothermal Systems (EGS), we enhance the traditional microearthquake detection and location methodologies at two EGS systems. We apply the Matched Field Processing (MFP) seismic imaging technique to detect new seismic events using known discrete microearthquake sources. Events identified using MFP are typically smaller magnitude events or events that occur within the coda of a larger event. Additionally, we apply a Bayesian multiple-event seismic location algorithm, called MicroBayesLoc, to estimate the 95% probability ellipsoids for events with high signal-to-noise ratios (SNR). Such probability ellipsoid information can provide evidence for determining if a seismic lineation could be real or simply within the anticipated error range. We apply this methodology to the Basel EGS data set and compare it to another EGS dataset. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
What can He II 304 Å tell us about transient seismic emission from solar flares?
NASA Astrophysics Data System (ADS)
Lindsey, C.; Donea, A. C.
2017-10-01
After neary 20 years since their discovery by Kosovichev and Zharkova, the mechanics of the release of seismic transients into the solar interior from some flares remain a mystery. Seismically emissive flares invariably show the signatures of intense chromosphere heating consistent with pressure variations sufficient to drive seismic transients commensurate with helioseismic observations-under certain conditions. Magnetic observations show the signatures of apparent magnetic changes, suggesting Lorentz-force transients that could likewise drive seismic transients-similarly subject to certain conditions. But, the diagnostic signatures of both of these prospective drivers are apparent over vast regions from which no significant seismic emission emanates. What distinguishes the source regions of transient seismic emission from the much vaster regions that show the signatures of both transient heating and magnetic variations but are acoustically unproductive? Observations of acoustically active flares in He II 304 Å by the Atomospheric Imaging Assembly (AIA) aboard the Solar Dynamics Observatory (SDO) offer a promising new resource with which to address this question.
InSAR MSBAS Time-Series Analysis of Induced Seismicity in Colorado and Oklahoma
NASA Astrophysics Data System (ADS)
Barba, M.; Tiampo, K. F.; Samsonov, S. V.
2016-12-01
Since 2009, the number of earthquakes in the central and eastern United States has dramatically increased from an average of 24 M ≥ 3 earthquakes a year (1973-2008) to an average of 193 M ≥ 3 earthquakes a year (2009-2014) (Ellsworth, 2013). Wastewater injection, the deep disposal of fluids, is considered to be the primary reason for this increase in seismicity rate (Weingarten et al., 2015). We use Interferometric Synthetic Aperture Radar (InSAR) to study four potential regions with injection induced seismicity: Greely, CO, Platteville, CO, Edmond, OK, and Jones, OK. Currently, Platteville is not seismically active; however, it serves as a baseline since its high-volume injection wells have the potential to induce future earthquakes. InSAR data complements seismic data by providing insight into the surface deformation potentially correlated with earthquake activity. To study the ground deformation associated with the induced seismicity and injection well activity, we develop full-resolution interferograms using raw radar data from Radarsat-1/2, ERS-1/2, Envisat, ALOS, and Sentinel-1. We pair the SAR images using the small perpendicular baseline approach (Berardino et al., 2002) to minimize spatial decorrelation. The paired SAR images are processed into interferograms using the JPL ISCE software (Gurrola et al., 2010). Using the MSBAS algorithm (Samsonov et al., 2013, Samsonov and d'Oreye, 2012) and the JPL GIAnT software (Agram et al., 2013), we construct a time-series of the cumulative surface displacement, integrating all interferograms for the region. To correlate the relationship between surface deformation and wastewater injection, we compare the well locations, depths, and injection rates with the spatial and temporal signature of the surface deformation before and after induced earthquakes, filling in the spatiotemporal gap lacking from seismicity. By monitoring the surface deformation for wells associated with past and current induced seismicity, we can implement measures to mitigate induced seismicity and its social and economic impact.
Constraining the crustal root geometry beneath Northern Morocco
NASA Astrophysics Data System (ADS)
Díaz, J.; Gil, A.; Carbonell, R.; Gallart, J.; Harnafi, M.
2016-10-01
Consistent constraints of an over-thickened crust beneath the Rif Cordillera (N. Morocco) are inferred from analyses of recently acquired seismic datasets including controlled source wide-angle reflections and receiver functions from teleseismic events. Offline arrivals of Moho-reflected phases recorded in RIFSIS project provide estimations of the crustal thicknesses in 3D. Additional constraints on the onshore-offshore transition are inferred from shots in a coeval experiment in the Alboran Sea recorded at land stations in northern Morocco. A regional crustal thickness map is computed from all these results. In parallel, we use natural seismicity data collected throughout TopoIberia and PICASSO experiments, and from a new RIFSIS deployment, to obtain receiver functions and explore the crustal thickness variations with a H-κ grid-search approach. This larger dataset provides better resolution constraints and reveals a number of abrupt crustal changes. A gridded surface is built up by interpolating the Moho depths inferred for each seismic station, then compared with the map from controlled source experiments. A remarkably consistent image is observed in both maps, derived from completely independent data and methods. Both approaches document a large crustal root, exceeding 50 km depth in the central part of the Rif, in contrast with the rather small topographic elevations. This large crustal thickness, consistent with the available Bouguer anomaly data, favors models proposing that the high velocity slab imaged by seismic tomography beneath the Alboran Sea is still attached to the lithosphere beneath the Rif, hence pulling down the lithosphere and thickening the crust. The thickened area corresponds to a quiet seismic zone located between the western Morocco arcuate seismic zone, the deep seismicity area beneath western Alboran Sea and the superficial seismicity in Alhoceima area. Therefore, the presence of a crustal root seems to play also a major role in the seismicity distribution in northern Morocco.
Time-Lapse Acoustic Impedance Inversion in CO2 Sequestration Study (Weyburn Field, Canada)
NASA Astrophysics Data System (ADS)
Wang, Y.; Morozov, I. B.
2016-12-01
Acoustic-impedance (AI) pseudo-logs are useful for characterising subtle variations of fluid content during seismic monitoring of reservoirs undergoing enhanced oil recovery and/or geologic CO2 sequestration. However, highly accurate AI images are required for time-lapse analysis, which may be difficult to achieve with conventional inversion approaches. In this study, two enhancements of time-lapse AI analysis are proposed. First, a well-known uncertainty of AI inversion is caused by the lack of low-frequency signal in reflection seismic data. To resolve this difficulty, we utilize an integrated AI inversion approach combining seismic data, acoustic well logs and seismic-processing velocities. The use of well logs helps stabilizing the recursive AI inverse, and seismic-processing velocities are used to complement the low-frequency information in seismic records. To derive the low-frequency AI from seismic-processing velocity data, an empirical relation is determined by using the available acoustic logs. This method is simple and does not require subjective choices of parameters and regularization schemes as in the more sophisticated joint inversion methods. The second improvement to accurate time-lapse AI imaging consists in time-variant calibration of reflectivity. Calibration corrections consist of time shifts, amplitude corrections, spectral shaping and phase rotations. Following the calibration, average and differential reflection amplitudes are calculated, from which the average and differential AI are obtained. The approaches are applied to a time-lapse 3-D 3-C dataset from Weyburn CO2 sequestration project in southern Saskatchewan, Canada. High quality time-lapse AI volumes are obtained. Comparisons with traditional recursive and colored AI inversions (obtained without using seismic-processing velocities) show that the new method gives a better representation of spatial AI variations. Although only early stages of monitoring seismic data are available, time-lapse AI variations mapped within and near the reservoir zone suggest correlations with CO2 injection. By extending this procedure to elastic impedances, additional constraints on the variations of physical properties within the reservoir can be obtained.
NASA Astrophysics Data System (ADS)
Uhlemann, S.; Whiteley, J.; Chambers, J. E.; Inauen, C.; Swift, R. T.
2017-12-01
Geophysical monitoring of the internal moisture content and processes of landslides is an increasingly common approach to the characterisation and assessment of the hydrogeological condition of rainfall-triggered landslides. Geoelectrical monitoring methods are sensitive to changes in the subsurface moisture conditions that cause the failure of unstable slopes, typically through the increase of pore water pressures and softening of materials within the landslide system. The application of seismic methods to the monitoring of landslides has not been as extensively applied as geoelectrical approaches, but the seismic method can determine elastic properties of landslide materials that can characterise and identify changes in the geomechanical condition of landslide systems that also lead to slope failure. We present the results of a seismic refraction monitoring campaign undertaken at the Hollin Hill Landslide Observatory in North Yorkshire, UK. This campaign has involved the repeat acquisition of surface acquired high resolution P- and S-wave seismic refraction data. The monitoring profile traverses a 142m long section from the crest to the toe of an active landslide comprising of mudstone and sandstone. Data were acquired at six to nine week intervals between October 2016 and October 2017. This repeat acquisition approach allowed for the imaging of seismically determined property changes of the landslide throughout the annual climatic cycle. Initial results showed that changes in the moisture dynamics of the landslide are reflected by changes in the seismic character of the inverted tomograms. Changes in the seismic properties are linked to the changes in the annual climatic cycle, particularly in relation to effective rainfall. The results indicate that the incorporation of seismic monitoring data into ongoing geoelectrical monitoring programmes can provide complementary geomechanical data to enhance our understanding of the internal condition of landslide systems. Future development of this integrated approach will allow for the imaging and monitoring of these systems at unprecedented spatial and temporal scales.
Azimuthally Anisotropic 3D Velocity Continuation
Burnett, William; Fomel, Sergey
2011-01-01
We extend time-domain velocity continuation to the zero-offset 3D azimuthally anisotropic case. Velocity continuation describes how a seismic image changes given a change in migration velocity. This description turns out to be of a wave propagation process, in which images change along a velocity axis. In the anisotropic case, the velocity model is multiparameter. Therefore, anisotropic image propagation is multidimensional. We use a three-parameter slowness model, which is related to azimuthal variations in velocity, as well as their principal directions. This information is useful for fracture and reservoir characterization from seismic data. We provide synthetic diffraction imaging examples to illustratemore » the concept and potential applications of azimuthal velocity continuation and to analyze the impulse response of the 3D velocity continuation operator.« less
The design of L1-norm visco-acoustic wavefield extrapolators
NASA Astrophysics Data System (ADS)
Salam, Syed Abdul; Mousa, Wail A.
2018-04-01
Explicit depth frequency-space (f - x) prestack imaging is an attractive mechanism for seismic imaging. To date, the main focus of this method was data migration assuming an acoustic medium, but until now very little work assumed visco-acoustic media. Real seismic data usually suffer from attenuation and dispersion effects. To compensate for attenuation in a visco-acoustic medium, new operators are required. We propose using the L1-norm minimization technique to design visco-acoustic f - x extrapolators. To show the accuracy and compensation of the operators, prestack depth migration is performed on the challenging Marmousi model for both acoustic and visco-acoustic datasets. The final migrated images show that the proposed L1-norm extrapolation results in practically stable and improved resolution of the images.
NASA Astrophysics Data System (ADS)
Nawaz, Muhammad Atif; Curtis, Andrew
2018-04-01
We introduce a new Bayesian inversion method that estimates the spatial distribution of geological facies from attributes of seismic data, by showing how the usual probabilistic inverse problem can be solved using an optimization framework still providing full probabilistic results. Our mathematical model consists of seismic attributes as observed data, which are assumed to have been generated by the geological facies. The method infers the post-inversion (posterior) probability density of the facies plus some other unknown model parameters, from the seismic attributes and geological prior information. Most previous research in this domain is based on the localized likelihoods assumption, whereby the seismic attributes at a location are assumed to depend on the facies only at that location. Such an assumption is unrealistic because of imperfect seismic data acquisition and processing, and fundamental limitations of seismic imaging methods. In this paper, we relax this assumption: we allow probabilistic dependence between seismic attributes at a location and the facies in any neighbourhood of that location through a spatial filter. We term such likelihoods quasi-localized.
NASA Astrophysics Data System (ADS)
Enciu, Dana-Mihaela
Integration of active and passive-source seismic data is employed to study the relationships between crustal structures and seismicity in the SE Carpathian foreland of Romania, and the connection with the Vrancea Seismogenic Zone. Relocated crustal epicenters and focal mechanisms are correlated with industry seismic profiles Comanesti, Ramnicu Sarat, Braila and Buzau, the reprocessed DACIA PLAN profile and the DRACULA (Deep Reflection Acquisition Constraining Unusual Lithospheric Activity) II and III profiles in order to understand the link between neo-tectonic foreland deformation and Vrancea mantle seismicity. Projection of crustal foreland hypocenters onto deep seismic profiles identified active crustal faults suggesting a mechanical coupling between sedimentary, crustal and upper mantle structures on the Trotus, Sinaia and newly observed Ialomita Faults. Seismic reflection imaging revealed the absence of west dipping reflectors in the crust and an east dipping to horizontal Moho in the proximity of the Vrancea area. These findings argue against both 'subduction-in-place' and 'slab break-off' as viable mechanisms for generating Vrancea mantle seismicity.
Seismic low-frequency-based calculation of reservoir fluid mobility and its applications
NASA Astrophysics Data System (ADS)
Chen, Xue-Hua; He, Zhen-Hua; Zhu, Si-Xin; Liu, Wei; Zhong, Wen-Li
2012-06-01
Low frequency content of seismic signals contains information related to the reservoir fluid mobility. Based on the asymptotic analysis theory of frequency-dependent reflectivity from a fluid-saturated poroelastic medium, we derive the computational implementation of reservoir fluid mobility and present the determination of optimal frequency in the implementation. We then calculate the reservoir fluid mobility using the optimal frequency instantaneous spectra at the low-frequency end of the seismic spectrum. The methodology is applied to synthetic seismic data from a permeable gas-bearing reservoir model and real land and marine seismic data. The results demonstrate that the fluid mobility shows excellent quality in imaging the gas reservoirs. It is feasible to detect the location and spatial distribution of gas reservoirs and reduce the non-uniqueness and uncertainty in fluid identification.
Deepwater seismic acquisition technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caldwell, J.
1996-09-01
Although truly new technology is not required for successful acquisition of seismic data in deep Gulf of Mexico waters, it is helpful to review some basic aspects of these seismic surveys. Additionally, such surveys are likely to see early use of some emerging new technology which can improve data quality. Because such items as depth imaging, borehole seismic, 4-D and marine 3-component recording were mentioned in the May 1996 issue of World Oil, they are not discussed again here. However, these technologies will also play some role in the deepwater seismic activities. What is covered in this paper are somemore » new considerations for: (1) longer data records needed in deeper water, (2) some pros and cons of very long steamer use, and (3) two new commercial systems for quantifying data quality.« less
NASA Astrophysics Data System (ADS)
Fujihara, S.; Korenaga, M.; Kawaji, K.; Akiyama, S.
2013-12-01
We try to compare and evaluate the nature of tsunami generation and seismic wave generation in occurrence of the 2011 Tohoku-Oki earthquake (hereafter, called as TOH11), in terms of two type of moment rate functions, inferred from finite source imaging of tsunami waveforms and seismic waveforms. Since 1970's, the nature of "tsunami earthquakes" has been discussed in many researches (e.g. Kanamori, 1972; Kanamori and Kikuchi, 1993; Kikuchi and Kanamori, 1995; Ide et al., 1993; Satake, 1994) mostly based on analysis of seismic waveform data , in terms of the "slow" nature of tsunami earthquakes (e.g., the 1992 Nicaragura earthquake). Although TOH11 is not necessarily understood as a tsunami earthquake, TOH11 is one of historical earthquakes that simultaneously generated large seismic waves and tsunami. Also, TOH11 is one of earthquakes which was observed both by seismic observation network and tsunami observation network around the Japanese islands. Therefore, for the purpose of analyzing the nature of tsunami generation, we try to utilize tsunami waveform data as much as possible. In our previous studies of TOH11 (Fujihara et al., 2012a; Fujihara et al., 2012b), we inverted tsunami waveforms at GPS wave gauges of NOWPHAS to image the spatio-temporal slip distribution. The "temporal" nature of our tsunami source model is generally consistent with the other tsunami source models (e.g., Satake et al, 2013). For seismic waveform inversion based on 1-D structure, here we inverted broadband seismograms at GSN stations based on the teleseismic body-wave inversion scheme (Kikuchi and Kanamori, 2003). Also, for seismic waveform inversion considering the inhomogeneous internal structure, we inverted strong motion seismograms at K-NET and KiK-net stations, based on 3-D Green's functions (Fujihara et al., 2013a; Fujihara et al., 2013b). The gross "temporal" nature of our seismic source models are generally consistent with the other seismic source models (e.g., Yoshida et al., 2011; Ide at al., 2011; Yagi and Fukahata, 2011; Suzuki et al., 2011). The comparison of two type of moment rate functions, inferred from finite source imaging of tsunami waveforms and seismic waveforms, suggested that there was the time period common to both seismic wave generation and tsunami generation followed by the time period unique to tsunami generation. At this point, we think that comparison of the absolute values of moment rates is not so meaningful between tsunami waveform inversion and seismic waveform inversion, because of general ambiguity of rigidity values of each subfault in the fault region (assuming the rigidity value of 30 GPa of Yoshida et al (2011)). Considering this, the normalized value of moment rate function was also evaluated and it does not change the general feature of two moment rate functions in terms of duration property. Furthermore, the results suggested that tsunami generation process apparently took more time than seismic wave generation process did. Tsunami can be generated even by "extra" motions resulting from many suggested abnormal mechanisms. These extra motions may be attribute to the relatively larger-scale tsunami generation than expected from the magnitude level from seismic ground motion, and attribute to the longer duration of tsunami generation process.
Digital seismic-reflection data from western Rhode Island Sound, 1980
McMullen, K.Y.; Poppe, L.J.; Soderberg, N.K.
2009-01-01
During 1980, the U.S. Geological Survey (USGS) conducted a seismic-reflection survey in western Rhode Island Sound aboard the Research Vessel Neecho. Data from this survey were recorded in analog form and archived at the USGS Woods Hole Science Center's Data Library. Due to recent interest in the geology of Rhode Island Sound and in an effort to make the data more readily accessible while preserving the original paper records, the seismic data from this cruise were scanned and converted to Tagged Image File Format (TIFF) images and SEG-Y data files. Navigation data were converted from U.S. Coast Guard Long Range Aids to Navigation (LORAN-C) time delays to latitudes and longitudes, which are available in Environmental Systems Research Institute, Inc. (ESRI) shapefile format and as eastings and northings in space-delimited text format.
Recent faulting in western Nevada revealed by multi-scale seismic reflection
Frary, R.N.; Louie, J.N.; Stephenson, W.J.; Odum, J.K.; Kell, A.; Eisses, A.; Kent, G.M.; Driscoll, N.W.; Karlin, R.; Baskin, R.L.; Pullammanappallil, S.; Liberty, L.M.
2011-01-01
The main goal of this study is to compare different reflection methods used to image subsurface structure within different physical environments in western Nevada. With all the methods employed, the primary goal is fault imaging for structural information toward geothermal exploration and seismic hazard estimation. We use seismic CHIRP a swept-frequency marine acquisition system, weight drop an accelerated hammer source, and two different vibroseis systems to characterize fault structure. We focused our efforts in the Reno metropolitan area and the area within and surrounding Pyramid Lake in northern Nevada. These different methods have provided valuable constraints on the fault geometry and activity, as well as associated fluid movement. These are critical in evaluating the potential for large earthquakes in these areas, and geothermal exploration possibilities near these structures. ?? 2011 Society of Exploration Geophysicists.
NASA Astrophysics Data System (ADS)
Reiser, Fabienne; Schmelzbach, Cedric; Maurer, Hansruedi; Greenhalgh, Stewart; Hellwig, Olaf
2017-04-01
A primary focus of geothermal seismic imaging is to map dipping faults and fracture zones that control rock permeability and fluid flow. Vertical seismic profiling (VSP) is therefore a most valuable means to image the immediate surroundings of an existing borehole to guide, for example, the placing of new boreholes to optimize production from known faults and fractures. We simulated 2D and 3D acoustic synthetic seismic data and processed it through to pre-stack depth migration to optimize VSP survey layouts for mapping moderately to steeply dipping fracture zones within possible basement geothermal reservoirs. Our VSP survey optimization procedure for sequentially selecting source locations to define the area where source points are best located for optimal imaging makes use of a cross-correlation statistic, by which a subset of migrated shot gathers is compared with a target or reference image from a comprehensive set of source gathers. In geothermal exploration at established sites, it is reasonable to assume that sufficient à priori information is available to construct such a target image. We generally obtained good results with a relatively small number of optimally chosen source positions distributed over an ideal source location area for different fracture zone scenarios (different dips, azimuths, and distances from the surveying borehole). Adding further sources outside the optimal source area did not necessarily improve the results, but rather resulted in image distortions. It was found that fracture zones located at borehole-receiver depths and laterally offset from the borehole by 300 m can be imaged reliably for a range of the different dips, but more source positions and large offsets between sources and the borehole are required for imaging steeply dipping interfaces. When such features cross-cut the borehole, they are particularly difficult to image. For fracture zones with different azimuths, 3D effects are observed. Far offset source positions contribute less to the image quality as fracture zone azimuth increases. Our optimization methodology is best suited for designing future field surveys with a favorable benefit-cost ratio in areas with significant à priori knowledge. Moreover, our optimization workflow is valuable for selecting useful subsets of acquired data for optimum target-oriented processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaiswal, Priyank
The goal of this project was to determine structural and stratigraphic controls on hydrate occurrence and distribution in Green Canyon (GC) 955 and Walker Ridge (WR) 313 blocks using seismic and well data. Gas hydrate was discovered in these blocks in coarse- and fine-grained sediments during the 2009 Joint Industrial project (JIP) Leg 11 drilling expedition. Although the immediate interest of the exploration community is exclusively hydrate which is present in coarse–grained sediments, factors that control hydrate and free gas distribution in the two blocks and whether coarse and fine-grained hydrate-bearing units are related in any manner, formed the coremore » of this research. The project spanned from 10/01/2012 to 07/31/2016. In the project, in both the leased blocks, the interval spanning the gas hydrate stability zone (GHSZ) was characterized using a joint analysis of sparse Ocean Bottom Seismic (OBS) and dense, surface–towed multichannel seismic (MCS) data. The project team had the luxury of calibrating their results with two well logs. Advance processing methods such as depth migration and full-waveform inversion (FWI) were used for seismic data analysis. Hydrate quantification was achieved through interpretation of the FWI velocity field using appropriate rock physics models at both blocks. The seismic modeling/inversion methodology (common to both GC955 and WR313 blocks) was as follows. First, the MCS data were depth migrated using a P-wave velocity (VP) model constructed using inversion of reflection arrival times of a few (four in both cases) key horizons carefully picked in the OBS data to farthest possible offsets. Then, the resolution of the traveltime VP model was improved to wavelength scale by inverting OBS gathers up to the highest frequency possible (21.75 Hz for GC955 and 17.5 for WR313) using FWI. Finally, the hydrate saturation (or the volume fraction) was estimated at the well location assuming one of the other hydrate morphology (filling the primary or the secondary porosity) was extrapolated out from the wells using the FWI VP as a guide. General outcomes were as follows. First and foremost, an imaging methodology using sparse seismic data, which is easily replicable at other sites with similar datasets, has been demonstrated. The end product of this methodology at both the leased blocks is quantitative estimates of hydrate distribution. Second, at both locations there is strong evidence that the base of the GHSZ, which does not appear as a clear Bottom Simulating Reflection (BSR), manifests in the VP perturbations created by FWI, suggesting that FWI is sensitive to subtle compositional changes in shallow sediments and establishes it as a valuable tool for investigations of hydrate-bearing basins. Third, through joint interpretation of the depth migrated image and the FWI VP model, how structure and stratigraphy jointly determine hydrate and free gas distribution in both blocks could be clearly visualized. The joint interpretation also suggests that the coarse and fine grained hydrate-bearing sediments at both leased are connected. Site specific results, in addition to general results, are as follows. At GC955 the overlying fine-grained hydrate-bearing unit could have been sourced from the underlying hydrate coarse-grained channel-levee complex through a chimney feature. The channel-levee system at GC955 is compartmentalized by faults, of which only a few may be impermeable. Although compartmentalized, the channel-levee system in the GC955 as a whole might be in communication except selected zones. At WR313 the overlying fine-grained fracture-filled hydrate unit appears to be sourced from below the GHSZ. The reason that only a particular fine-grained unit has hydrate, despite having lower porosity that the bounding units, could be the presence of secondary porosity (such as those formed from clay dewatering under compaction). In conclusion, the project was a pioneering effort in in joint analysis of OBS and MCS datasets for advancing the knowledge about a hydrate and free–gas system dynamics using advanced processing methods such as FWI and depth migration. Results obtained in this project can greatly advance the tools and techniques used for delineating specific hydrate prospects. Results obtained in this project can also be seamlessly incorporated into other DOE funded project on modeling the potential productivity and commercial viability of hydrate from sand-dominated reservoirs. The OBS and MCS data in this project were acquired in 2012 (after the JIP II drilling) by the USGS and therefore the results are a posteriori. Nonetheless, the seismic inversion workflow established through this project can be used to generate various what-if quantification scenarios even in absence of logs and serve as a valuable tool for guiding drilling operations. Results from this project can augment other DOE sponsored projects on determining the commercial viability of methane production from the Gulf of Mexico.« less
Is 3D true non linear traveltime tomography reasonable ?
NASA Astrophysics Data System (ADS)
Herrero, A.; Virieux, J.
2003-04-01
The data sets requiring 3D analysis tools in the context of seismic exploration (both onshore and offshore experiments) or natural seismicity (micro seismicity surveys or post event measurements) are more and more numerous. Classical linearized tomographies and also earthquake localisation codes need an accurate 3D background velocity model. However, if the medium is complex and a priori information not available, a 1D analysis is not able to provide an adequate background velocity image. Moreover, the design of the acquisition layouts is often intrinsically 3D and renders difficult even 2D approaches, especially in natural seismicity cases. Thus, the solution relies on the use of a 3D true non linear approach, which allows to explore the model space and to identify an optimal velocity image. The problem becomes then practical and its feasibility depends on the available computing resources (memory and time). In this presentation, we show that facing a 3D traveltime tomography problem with an extensive non-linear approach combining fast travel time estimators based on level set methods and optimisation techniques such as multiscale strategy is feasible. Moreover, because management of inhomogeneous inversion parameters is more friendly in a non linear approach, we describe how to perform a jointly non-linear inversion for the seismic velocities and the sources locations.
Bruno, Pier Paolo G; Maraio, Stefano; Festa, Gaetano
2017-12-12
Two active-source, high-resolution seismic profiles were acquired in the Solfatara tuff cone in May and November 2014, with dense, wide-aperture arrays. Common Receiver Surface processing was crucial in improving signal-to-noise ratio and reflector continuity. These surveys provide, for the first time, high-resolution seismic images of the Solfatara crater, depicting a ~400 m deep asymmetrical crater filled by volcanoclastic sediments and rocks and carved within an overall non-reflective pre-eruptive basement showing features consistent with the emplacement of shallow intrusive bodies. Seismic reflection data were interpreted using the trace complex attributes and clearly display several steep and segmented collapse faults, generally having normal kinematics and dipping toward the crater centre. Fault/fracture planes are imaged as sudden amplitude drops that generate narrow low-similarity and high-dip attributes. Uprising fluids degassed by a magmatic source are the most probable cause of the small-scale amplitude reduction. Seismic data also support the interpretation of the shallow structure of the Solfatara crater as a maar. Our results provides a solid framework to constrain the near-surface geological interpretation of such a complex area, which improves our understanding of the temporal changes of the structure in relation with other geophysical and geochemical measurements.
Surface wave tomography of the European crust and upper mantle from ambient seismic noise
NASA Astrophysics Data System (ADS)
LU, Y.; Stehly, L.; Paul, A.
2017-12-01
We present a high-resolution 3-D Shear wave velocity model of the European crust and upper mantle derived from ambient seismic noise tomography. In this study, we collect 4 years of continuous vertical-component seismic recordings from 1293 broadband stations across Europe (10W-35E, 30N-75N). We analyze group velocity dispersion from 5s to 150s for cross-correlations of more than 0.8 million virtual source-receiver pairs. 2-D group velocity maps are estimated using adaptive parameterization to accommodate the strong heterogeneity of path coverage. 3-D velocity model is obtained by merging 1-D models inverted at each pixel through a two-step data-driven inversion algorithm: a non-linear Bayesian Monte Carlo inversion, followed by a linearized inversion. Resulting S-wave velocity model and Moho depth are compared with previous geophysical studies: 1) The crustal model and Moho depth show striking agreement with active seismic imaging results. Moreover, it even provides new valuable information such as a strong difference of the European Moho along two seismic profiles in the Western Alps (Cifalps and ECORS-CROP). 2) The upper mantle model displays strong similarities with published models even at 150km deep, which is usually imaged using earthquake records.
NASA Astrophysics Data System (ADS)
Jaiswal, Priyank; Dasgupta, Rahul
2010-05-01
We demonstrate that imaging of 2-D multichannel land seismic data can be effectively accomplished by a combination of reflection traveltime tomography and pre-stack depth migration (PSDM); we refer to the combined process as "the unified imaging". The unified imaging comprises cyclic runs of joint reflection and direct arrival inversion and pre-stack depth migration. From one cycle to another, both the inversion and the migration provide mutual feedbacks that are guided by the geological interpretation. The unified imaging is implemented in two broad stages. The first stage is similar to the conventional imaging except that it involves a significant use of velocity model from the inversion of the direct arrivals for both datuming and stacking velocity analysis. The first stage ends with an initial interval velocity model (from the stacking velocity analysis) and a corresponding depth migrated image. The second stage updates the velocity model and the depth image from the first stage in a cyclic manner; a single cycle comprises a single run of reflection traveltime inversion followed by PSDM. Interfaces used in the inversion are interpretations of the PSDM image in the previous cycle and the velocity model used in PSDM is from the joint inversion in the current cycle. Additionally in every cycle interpreted horizons in the stacked data are inverted as zero-offset reflections for constraining the interfaces; the velocity model is maintained stationary for the zero-offset inversion. A congruency factor, j, which measures the discrepancy between interfaces from the interpretation of the PSDM image and their corresponding counterparts from the inversion of the zero-offset reflections within assigned uncertainties, is computed in every cycle. A value of unity for jindicates that images from both the inversion and the migration are equivalent; at this point the unified imaging is said to have converged and is halted. We apply the unified imaging to 2-D multichannel seismic data from the Naga Thrust and Fold Belt (NTFB), India, were several exploratory wells in the last decade targeting sub-thrust leads in the footwall have failed. This failure is speculatively due to incorrect depth images which are in turn attributed to incorrect velocity models that are developed using conventional methods. The 2-D seismic data in this study is acquired perpendicular to the trend of the NTFB where the outcropping hanging wall has a topographic culmination. The acquisition style is split-spread with 30 m shot and receiver spacing and a nominal fold of 90. The data are recorded with a sample interval of 2 ms. Overall the data have a moderate signal-to-noise ratio and a broad frequency bandwidth of 8-80 Hz. The seismic line contains the failed exploratory well in the central part. The final results from unified imaging (both the depth image and the corresponding velocity model) suggest presence of a triangle zone, which was previously undiscovered. Conventional imaging had falsely portrayed the triangle zone as structural high which was interpreted as an anticline. As a result, the exploratory well, meant to target the anticline, met with pressure changes which were neither expected nor explained. The unified imaging results not only explain the observations in the well but also reveal new leads in the region. The velocity model from unified imaging was also found to be adequate for frequency-domain full-waveform imaging of the hanging wall. Results from waveform inversion are further corroborated by the geological interpretation of the exploratory well.
Seismic reflection characteristics of naturally-induced subsidence affecting transportation
Miller, R.D.; Xia, J.; Steeples, D.W.
2009-01-01
High-resolution seismic reflections have been used effectively to investigate sinkholes formed from the dissolution of a bedded salt unit found throughout most of Central Kansas. Surface subsidence can have devastating effects on transportation structures. Roads, rails, bridges, and pipelines can even be dramatically affected by minor ground instability. Areas susceptible to surface subsidence can put public safety at risk. Subsurface expressions significantly larger than surface depressions are consistently observed on seismic images recorded over sinkholes in Kansas. Until subsidence reaches the ground surface, failure appears to be controlled by compressional forces evidenced by faults with reverse orientation. Once a surface depression forms or dissolution of the salt slows or stops, subsidence structures are consistent with a tensional stress environment with prevalent normal faults. Detecting areas of rapid subsidence potential, prior to surface failure, is the ultimate goal of any geotechnical survey where the ground surface is susceptible to settling. Seismic reflection images have helped correlate active subsidence to dormant paleofeatures, project horizontal growth of active sinkholes based on subsurface structures, and appraise the risk of catastrophic failure. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.
Reprocessing of multi-channel seismic-reflection data collected in the Beaufort Sea
Agena, W.F.; Lee, Myung W.; Hart, P.E.
2000-01-01
Contained on this set of two CD-ROMs are stacked and migrated multi-channel seismic-reflection data for 65 lines recorded in the Beaufort Sea by the United States Geological Survey in 1977. All data were reprocessed by the USGS using updated processing methods resulting in improved interpretability. Each of the two CD-ROMs contains the following files: 1) 65 files containing the digital seismic data in standard, SEG-Y format; 2) 1 file containing navigation data for the 65 lines in standard SEG-P1 format; 3) an ASCII text file with cross-reference information for relating the sequential trace numbers on each line to cdp numbers and shotpoint numbers; 4) 2 small scale graphic images (stacked and migrated) of a segment of line 722 in Adobe Acrobat (R) PDF format; 5) a graphic image of the location map, generated from the navigation file; 6) PlotSeis, an MS-DOS Application that allows PC users to interactively view the SEG-Y files; 7) a PlotSeis documentation file; and 8) an explanation of the processing used to create the final seismic sections (this document).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy, D.W.; Schmitt, L.; Woussen, G.
Airborne SAR images provided essential clues to the tectonic setting of (1) the MbLg 6.5 Saguenay earthquake of 25 November 1988, (2) the Charlevoix-Kamouraska seismic source zone, and (3) some of the low *eve* seismic activity in the Eastern seismic background zone of Canada. The event occurred in the southeastern part of the Canadian Shield in an area where the boundary between the Saguenay graben and the Jacques Cartier horst is not well defined. These two tectonic blocks are both associated with the Iapetan St-Lawrence rift. These blocks exhibit several important structural breaks and distinct domains defined by the lineamentmore » orientations, densities, and habits. Outcrop observations confirm that several lineament sets correspond to Precambrian ductile shear zones reactivated as brittle faults during the Phanerozoic. In addition, the northeast and southwest limits of recent seismic activity in the Charlevoix-Kamouraska zone correspond to major elements of the fracture pattern identified on the SAR images. These fractures appear to be related to the interaction of the Charlevoix astrobleme with the tectonic features of the area. 20 refs.« less
Zephyr: Open-source Parallel Seismic Waveform Inversion in an Integrated Python-based Framework
NASA Astrophysics Data System (ADS)
Smithyman, B. R.; Pratt, R. G.; Hadden, S. M.
2015-12-01
Seismic Full-Waveform Inversion (FWI) is an advanced method to reconstruct wave properties of materials in the Earth from a series of seismic measurements. These methods have been developed by researchers since the late 1980s, and now see significant interest from the seismic exploration industry. As researchers move towards implementing advanced numerical modelling (e.g., 3D, multi-component, anisotropic and visco-elastic physics), it is desirable to make use of a modular approach, minimizing the effort developing a new set of tools for each new numerical problem. SimPEG (http://simpeg.xyz) is an open source project aimed at constructing a general framework to enable geophysical inversion in various domains. In this abstract we describe Zephyr (https://github.com/bsmithyman/zephyr), which is a coupled research project focused on parallel FWI in the seismic context. The software is built on top of Python, Numpy and IPython, which enables very flexible testing and implementation of new features. Zephyr is an open source project, and is released freely to enable reproducible research. We currently implement a parallel, distributed seismic forward modelling approach that solves the 2.5D (two-and-one-half dimensional) viscoacoustic Helmholtz equation at a range modelling frequencies, generating forward solutions for a given source behaviour, and gradient solutions for a given set of observed data. Solutions are computed in a distributed manner on a set of heterogeneous workers. The researcher's frontend computer may be separated from the worker cluster by a network link to enable full support for computation on remote clusters from individual workstations or laptops. The present codebase introduces a numerical discretization equivalent to that used by FULLWV, a well-known seismic FWI research codebase. This makes it straightforward to compare results from Zephyr directly with FULLWV. The flexibility introduced by the use of a Python programming environment makes extension of the codebase with new methods much more straightforward. This enables comparison and integration of new efforts with existing results.
Thirty Years Supporting Portable Arrays: The IRIS Passcal Instrument Center
NASA Astrophysics Data System (ADS)
Beaudoin, B. C.; Anderson, K. R.; Bilek, S. L.; Woodward, R.
2014-12-01
Thirty years have passed since establishment of the IRIS Program for the Array Seismic Studies of the Continental Lithosphere (PASSCAL). PASSCAL was part of a coordinated plan proposed to the National Science Foundation (NSF) defining the instrumentation, data collection and management structure to support a wide range of research in seismology. The PASSCAL program has surpassed the early goal of 6000 data acquisition channels with a current inventory of instrumentation capable of imaging from the near surface to the inner core. Here we present the evolution of the PASSCAL program from instrument depot to full service community resource. PASSCAL has supported close to 1100 PI driven seismic experiments since its inception. Instruments from PASSCAL have covered the globe and have contributed over 7400 SEED stations and 242 assembled data sets to the IRIS Data Management Center in Seattle. Since the combination in 1998 of the Stanford and Lamont instrument centers into the single PASSCAL Instrument Center (PIC) at New Mexico Tech, the facility has grown in scope by adding the EarthScope Array Operations Facility in 2005, the incorporation of the EarthScope Flexible Array, and a Polar support group in 2006. The polar support group enhances portable seismic experiments in extremely harsh polar environments and also extends to special projects such as the Greenland Ice Sheet Monitoring Network (GLISN) and the recent development effort for Geophysical Earth Observatory for Ice Covered Environments (GEOICE). Through these support efforts the PIC has established itself as a resource for field practices, engineered solutions for autonomous seismic stations, and a pioneer in successful seismic recording in polar environments. We are on the cusp of a new generation of instrumentation driven in part by the academic community's desire to record unaliased wavefields in multiple frequency bands and industry's interest in utilizing lower frequency data. As part of the recently funded IRIS proposal to NSF for support of Seismological Facilities for the Advancement of Geoscience and EarthScope (SAGE), IRIS is developing plans for this new instrumentation that will ensure that the PASSCAL program continues to provide state-of-the-art observing capabilities into the coming decades.
NASA Astrophysics Data System (ADS)
Custodio, S.; Matos, C.; Grigoli, F.; Cesca, S.; Heimann, S.; Rio, I.
2015-12-01
Seismic data processing is currently undergoing a step change, benefitting from high-volume datasets and advanced computer power. In the last decade, a permanent seismic network of 30 broadband stations, complemented by dense temporary deployments, covered mainland Portugal. This outstanding regional coverage currently enables the computation of a high-resolution image of the seismicity of Portugal, which contributes to fitting together the pieces of the regional seismo-tectonic puzzle. Although traditional manual inspections are valuable to refine automatic results they are impracticable with the big data volumes now available. When conducted alone they are also less objective since the criteria is defined by the analyst. In this work we present CatchPy, a scanning algorithm to detect earthquakes in continuous datasets. Our main goal is to implement an automatic earthquake detection and location routine in order to have a tool to quickly process large data sets, while at the same time detecting low magnitude earthquakes (i.e. lowering the detection threshold). CatchPY is designed to produce an event database that could be easily located using existing location codes (e.g.: Grigoli et al. 2013, 2014). We use CatchPy to perform automatic detection and location of earthquakes that occurred in Alentejo region (South Portugal), taking advantage of a dense seismic network deployed in the region for two years during the DOCTAR experiment. Results show that our automatic procedure is particularly suitable for small aperture networks. The event detection is performed by continuously computing the short-term-average/long-term-average of two different characteristic functions (CFs). For the P phases we used a CF based on the vertical energy trace while for S phases we used a CF based on the maximum eigenvalue of the instantaneous covariance matrix (Vidale 1991). Seismic event location is performed by waveform coherence analysis, scanning different hypocentral coordinates (Grigoli et al. 2013, 2014). The reliability of automatic detections, phase pickings and locations are tested trough the quantitative comparison with manual results. This work is supported by project QuakeLoc, reference: PTDC/GEO-FIQ/3522/2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wayne Pennington; Mohamed Ibrahim; Roger Turpening
Crosswell seismic surveys were conducted at two fields in northern Michigan. One of these, Springdale, included two monitor wells that are located external to the reef, and the other, Coldspring, employed two production wells within the reef. The Springdale wells extended to much greater depths than the reef, and imaging was conducted from above and from beneath the reef. The resulting seismic images provide the best views of pinnacle Niagaran reefs obtained to date. The tops of the reservoirs can be clearly distinguished, and their lateral extent or dipping edges can be observed along the profile. Reflecting events internal tomore » the reef are evident; some of them are fairly continuous across the reef and others are discontinuous. Inversion of the seismic data indicates which events represent zones of higher porosity and which are lower porosity or even anhydrite plugged. The full stacked image includes angles that are beyond critical for many of the interfaces, and some reflections are visible only for a small range of angles, presumably near their critical angle. Stacking these angles in provides an opportunity for these events to be seen on the stacked image, where otherwise they would have been unrecognized. For inversion, however, the complexity associated with phase changes beyond critical can lead to poor results, and elastic inversion of partial angle stacks may be best conducted with restrictions to angles less than critical. Strong apparent attenuation of signals occurs when seismic ray paths pass through the upper part of the Springdale reservoir; this may be due to intrinsic attenuation and/or scattering of events due to the locally strongly varying gas saturation and extremely low fluid pressures. Signal-to-noise limitations become evident far from the source well in the Coldspring study, probably because the raw data were strongly affected by tube-wave noise generated by flow through the perforation of the receiver well. The seismic images obtained, and interpretations of them, as assisted by Amplitude-versus-Angle studies and accompanying inversion, provide additional insight into the internal geometry of these two reefs and provide data that should be useful for reservoir management.« less
Physical Accuracy of Q Models of Seismic Attenuation
NASA Astrophysics Data System (ADS)
Morozov, I. B.
2016-12-01
Accuracy of theoretical models is a required prerequisite for any type of seismic imaging and interpretation. Among all geophysical disciplines, the theory of seismic and tidal attenuation is the least developed, and most practical studies use viscoelastic models based on empirical Q factors. To simplify imaging and inversions, the Qs are often approximated as frequency-independent or following a power law with frequency. However, simplicity of inversion should not outweigh the problematic physical accuracy of such models. Typical images of spatially-variable crustal and mantle Qs are "apparent," analogously to pseudo-depth, apparent-resistivity images in electrical imaging. Problems with Q models can be seen from controversial general observations present in many studies; for example: 1) In global Q models, bulk attenuation is much lower than the shear one throughout the whole Earth. This is considered a fundamental relation for the Earth; nevertheless, it is also very peculiar physically and suggests a negative Q for the Lamé modulus. This relation is also not supported by most first-principle models of materials and laboratory studies. 2) The Q parameterization requires that the entire outer core of the Earth is assigned zero attenuation, despite its large volume, presence of viscosity and shear deformation in free oscillations. 3) In laboratory and surface-wave studies, the bulk and shear Qs can be different for different wave modes, different sample sizes boundary conditions on the surface. Similarly, the Qs measured from body-S, Love, Lg, or ScS waves may not equal each other. 4) In seismic coda studies, the Q is often found to be linearly (or even faster) increasing with frequency. Such character of energy dissipation is controversial physically, but can be readily explained as an artifact of inaccurately-known geometrical spreading. To overcome the physical inaccuracies and apparent character of seismic attenuation models, mechanical theories of materials need to be considered more often instead of the viscoelastic Q. Such theories can be based on methods of theoretical continuum mechanics and include solid/fluid viscosity, Coulomb friction, pore-fluid flows, grain and dislocation movement, and/or thermoelasticity.
Origins of a national seismic system in the United States
Filson, John R.; Arabasz, Walter J.
2016-01-01
This historical review traces the origins of the current national seismic system in the United States, a cooperative effort that unifies national, regional, and local‐scale seismic monitoring within the structure of the Advanced National Seismic System (ANSS). The review covers (1) the history and technological evolution of U.S. seismic networks leading up to the 1990s, (2) factors that made the 1960s and 1970s a watershed period for national attention to seismology, earthquake hazards, and seismic monitoring, (3) genesis of the vision of a national seismic system during 1980–1983, (4) obstacles and breakthroughs during 1984–1989, (5) consensus building and convergence during 1990–1992, and finally (6) the two‐step realization of a national system during 1993–2000. Particular importance is placed on developments during the period between 1980 and 1993 that culminated in the adoption of a charter for the Council of the National Seismic System (CNSS)—the foundation for the later ANSS. Central to this story is how many individuals worked together toward a common goal of a more rational and sustainable approach to national earthquake monitoring in the United States. The review ends with the emergence of ANSS during 1999 and 2000 and its statutory authorization by Congress in November 2000.
NASA Astrophysics Data System (ADS)
Williams, R. A.; Langenheim, V. E.; McLaughlin, R. J.; Stephenson, W. J.; Odum, J. K.
2008-12-01
The USGS in collaboration with the Network for Earthquake Engineering Simulation (NEES) group at the University of Texas, Austin, the Sonoma County Water Agency, the city of Santa Rosa, and with support from NSF, collected 13-km of high-resolution seismic-reflection data in two profiles on the Santa Rosa Plain. The purpose of this survey was to image basin structure and stratigraphy in this seismically-active area and to provide constraints for earthquake hazard assessment. We acquired the data using a 9,990 kg minivib I truck in P-wave mode, which swept from 15 to 120 Hz, along city streets and creek-side roads. The common- midpoint spacing of these data is 2.5 m while nominal fold is 36 traces. The Rodgers Creek fault, a northward extension of the Hayward fault which passes through the city of Santa Rosa, has not been imaged previously by seismic reflection data. The east-west trending Santa Rosa Creek profile images several faults including the steeply dipping Rodgers Creek fault as it passes near Doyle Elementary School. In this vicinity the fault zone appears to consist of at least two strands with a set of arched reflectors between them. West of the Rodgers Creek fault, and in general agreement with preexisting gravity data and geologic mapping, we interpret a sedimentary basin more than 1 km deep that underlies downtown Santa Rosa, which was heavily damaged in the 1906 earthquake. This basin shallows to the west as the profile crosses the southeastern side of Trenton Ridge, a concealed basement high. Reflectors within the basin show a thickening sequence of layered strata and apparent dips of about 10 degrees east in the 400 to 800 m depth range that decrease to about 1 degree at 50 m depth. These new data will help to constrain existing seismic velocity models for this area which currently show only flat-lying basin fill.
NASA Astrophysics Data System (ADS)
Planke, Sverre; Millett, John M.; Maharjan, Dwarika; Jerram, Dougal A.; Mansour Abdelmalak, Mohamed
2017-04-01
Continental breakup between Greenland and NW Europe in the Paleogene was associated with massive basaltic volcanism, forming kilometer-thick sequences of flood basalts along the conjugate rifted margins. This event was temporarily associated with a warm world, the early Eocene greenhouse, and the short-lived Paleocene-Eocene Thermal Maximum (PETM). A 2500 km2 large industry-standard 3D seismic cube has recently been acquired on the Vøring Marginal High offshore mid-Norway to image sub-basalt sedimentary rocks. This cube also provides a unique opportunity for imaging top- and intra-basalt structures. Detailed seismic geomorphological interpretation of the Top basalt horizon reveal new insight into the late-stage development of the lava flow fields and the kilometer high coastal Vøring Escarpment. Subaerial lava flows with compressional ridges and inflated lava lobes cover the marginal high, with comparable structure and size to modern subaerial lava fields. Pitted surfaces, likely formed by lava emplaced in a wet environment, are present in the western part of the study area near the continent-ocean boundary. The prominent Vøring Escarpment formed when eastward-flowing lava reached the coastline. The escarpment morphology is influenced by pre-existing structural highs, and locally these highs are by-passed by the lava flows which are clearly deflected around them. Volcanogenic debris flows are well-imaged on the escarpment horizon along with large-scale slump blocks. Similar features exist in active volcanic environments, e.g. on the south coast of Hawaii. Numerous post-volcanic extensional faults and incised channels cut both into the marginal high and the escarpment, and show that the area was geologically active after the volcanism ceased. In conclusion, igneous seismic geomorphology and seismic volcanostratigraphy are two very powerful methods to understand the volcanic deposits and development of rifted margins, and the association of major volcanic events and global warming.
NASA Astrophysics Data System (ADS)
Bodmer, M.; Toomey, D. R.; Hooft, E. E. E.; Bezada, M.; Schmandt, B.; Byrnes, J. S.
2017-12-01
Amphibious studies of subduction zones promise advances in understanding links between incoming plate structure, the subducting slab, and the upper mantle beneath the slab. However, joint onshore/offshore imaging is challenging due to contrasts between continental and oceanic structure. We present P-wave teleseismic tomography results for the Cascadia subduction zone (CSZ) that utilize existing western US datasets, amphibious seismic data from the Cascadia Initiative, and tomographic algorithms that permit 3D starting models, nonlinear ray tracing, and finite frequency kernels. Relative delay times show systematic onshore/offshore trends, which we attribute to structure in the upper 50 km. Shore-crossing CSZ seismic refraction models predict relative delays >1s, with equal contributions from elevation and crustal thickness. We use synthetic data to test methods of accounting for such shallow structure. Synthetic tests using only station static terms produce margin-wide, sub-slab low-velocity artifacts. Using a more realistic a priori 3D model for the upper 50 km better reproduces known input structures. To invert the observed delays, we use data-constrained starting models of the CSZ. Our preferred models utilize regional surface wave studies to construct a starting model, directly account for elevation, and use 3D nonlinear ray tracing. We image well-documented CSZ features, including the subducted slab down to 350 km, along strike slab variations below 150 km, and deep slab fragmentation. Inclusion of offshore data improves resolution of the sub-slab mantle, where we resolve localized low-velocity anomalies near the edges of the CSZ (beneath the Klamath and Olympic mountains). Our new imaging and resolution tests indicate that previously reported margin-wide, sub-slab low-velocity asthenospheric anomalies are an imaging artifact. Offshore, we observe low-velocity anomalies beneath the Gorda plate consistent with regional deformation and broad upwelling resulting from plate stagnation. At the Juan de Fuca Ridge we observe asymmetric low-velocity anomalies consistent with dynamic upwelling. Our results agree with recent offshore tomography studies using S wave data; however, differences in the recovered relative amplitudes are likely due to anisotropy, which we are exploring.
Albuquerque Seismological Laboratory--50 years of global seismology
Hutt, C.R.; Peterson, Jon; Gee, Lind; Derr, John; Ringler, Adam; Wilson, David
2011-01-01
The U.S. Geological Survey Albuquerque Seismological Laboratory is about 15 miles southeast of Albuquerque on the Pueblo of Isleta, adjacent to Kirtland Air Force Base. The Albuquerque Seismological Laboratory supports the Global Seismographic Network Program and the Advanced National Seismic System through the installation, operation, and maintenance of seismic stations around the world and serves as the premier seismological instrumentation test facility for the U.S. Government.
Seismic Structural Setting of Western Farallon Basin, Southern Gulf of California, Mexico.
NASA Astrophysics Data System (ADS)
Pinero-Lajas, D.; Gonzalez-Fernandez, A.; Lopez-Martinez, M.; Lonsdale, P.
2007-05-01
Data from a number of high resolution 2D multichannel seismic (MCS) lines were used to investigate the structure and stratigraphy of the western Farallon basin in the southern Gulf of California. A Generator-Injector air gun provided a clean seismic source shooting each 12 s at a velocity of 6 kts. Each signal was recorded during 6- 8 s, at a sampling interval of 1 ms, by a 600 m long digital streamer with 48 channels and a spacing of 12.5 m. The MCS system was installed aboard CICESE's (Centro de Investigacion Cientifica y de Educacion Superior de Ensenada) 28 m research vessel Francisco de Ulloa. MCS data were conventionally processed, to obtain post- stack time-migrated seismic sections. The MCS seismic sections show a very detailed image of the sub-bottom structure up to 2-3 s two-way travel time (aprox. 2 km). We present detailed images of faulting based on the high resolution and quality of these data. Our results show distributed faulting with many active and inactive faults. Our study also constrains the depth to basement near the southern Baja California eastern coast. The acoustic basement appears as a continuous feature in the western part of the study area and can be correlated with some granite outcrops located in the southern Gulf of California islands. To the East, near the center of the Farallon basin, the acoustic basement changes, it is more discontinuous, and the seismic sections show a number of diffracted waves.
NASA Astrophysics Data System (ADS)
Newman, A. V.; Yao, D.; Kyriakopoulos, C.; Moore-Driskell, M. M.; Hobbs, T. E.; Peng, Z.; Schwartz, S. Y.; Protti, M.; Gonzalez, V.
2016-12-01
We normally view the subduction megathrust surface as a constant structure throughout the seismic cycle, with the elastic loading, microseismicity, and slip occurring along it. However, using small events recorded from a uniquely dense seismic network directly over the active megathrust below Nicoya, Costa Rica, we find two different seismogenic structures with near exclusive time-dependent behavior immediately in the region of maximum coseismic slip. Microseismicity recorded at intervals between 1999 and 2009 showed an elevated topographic indenter beneath central Nicoya, and associated with a suture marking transition between Cocos-Nazca Spreading Center and East-Pacific Rise crusts [Kyriakopoulos et al., JGR 2015]. This indenter is located as a focus of interseismic locking and coseismic rupture [Feng et al., JGR 2012; Yue et al., JGR 2013; Protti et al., Nat. Geosc. 2014; Xue et al., JGR 2015; Kyriakopoulos & Newman, JGR 2016]. However, aftershocks recorded in the months following an MW 7.6 earthquake in 2012 define an entirely different structure about 5 km deeper and differing only in the area of maximum coseismic slip. The location of seismicity switches entirely between these faults from the shallow indenter structure beforehand to the deeper and near-linear feature after. To improve our imaging of the behavior and associated slab structure, we perform a detailed joint seismic relocation and tomographic inversion using TomoDD [Zhang and Thurber, PAGEOPH 2003]. We analyze the new locations relative to the imaged slab geometry, and compare automated formulations of the interfaces using the Maximum Seismicity Method [Kyriakopoulos et al., 2015], with data existing before and after the earthquake. Lastly, we show the sensitivity of using either surface in models for fault slip from regional GPS. We hypothesize that the bifurcated fault structure signifies either active decapitation of the indenter, possibly along the crust-mantle interface of the downgoing slab, or aftershock activity represents the true plate interface, with prior seismic activity dominantly in the hanging wall along a well-defined fault. Either case has implications for understanding the relationship between interseismic and coseismic fault behavior through the seismic cycle.
From 3D to 4D seismic tomography at El Hierro Island (Canary Islands, Spain)
NASA Astrophysics Data System (ADS)
Garcia-Yeguas, A.; Koulakov, I.; Jakovlev, A.; Ibáñez, J. M.
2012-04-01
In this work we are going to show the advantages of a dynamic tomography 4D, versus a static image 3D related with a volcanic reactivation and eruption at El Hierro island (Canary Islands, Spain). In this process a high number of earthquakes before and during the eruptive processes have been registered. We are going to show a 3D image as an average of the velocity structure and then the characteristics and physical properties on the medium, including the presence or not of magma. This image will be complemented with its evolution along the time, observing its volcanic dynamic and its influence over the medium properties, including its power as an important element on early warnings protocols. After more than forty years of quiet at Canary Islands, since 1971 with Teneguía eruption at La Palma Island, and more than 200 years on El Hierro Island (The last eruption known at El Hierro took place in 1793, volcán de Lomo Negro), on 19th July on 2011 the Spanish seismic national network, administered by IGN (Instituto Geográfico Nacional), detected an increase of local seismic activity below El Hierro island (Canary Islands, Spain). Since this moment an intense swarm took place, with more than 11000 events, until 11th December, with magnitudes (MLg) from 0.2 to 4.4. In this period two eruptive processes have been declared in front of the South coast of El Hierro island, and they have not finished yet. This seismic swarm has allowed carrying out a 3D seismic tomography, using P and S waves traveltimes. It has showed a low velocity from the North to the South. On the other hand, we have performed a 4D seismic tomography, taking the events occurred at different intervals of time. We can observe the evolution of the negative anomaly along the time, from the North to the South, where has taken place La Restinga submarine eruption. 4D seismic tomography is an innovative and powerful tool able to show the evolution in time of a volcanic process.
Imaging Basin Structure with Teleseismic Virtual Source Reflection Profiles
NASA Astrophysics Data System (ADS)
Yang, Z.; Sheehan, A. F.; Yeck, W. L.; Miller, K. C.; Worthington, L. L.; Erslev, E.; Harder, S. H.; Anderson, M. L.; Siddoway, C. S.
2011-12-01
We demonstrate a case of using teleseisms recorded on single channel high frequency geophones to image upper crustal structure across the Bighorn Arch in north-central Wyoming. The dataset was obtained through the EarthScope FlexArray Bighorn Arch Seismic Experiment (BASE). In addition to traditional active and passive source seismic data acquisition, BASE included a 12 day continuous (passive source) deployment of 850 geophones with 'Texan' dataloggers. The geophones were deployed in three E-W lines in north-central Wyoming extending from the Powder River Basin across the Bighorn Mountains and across the Bighorn Basin, and two N-S lines on east and west flanks of the Bighorn Mountains. The station interval is roughly 1.5-2 km, good for imaging coherent shallow structures. The approach used in this study uses the surface reflection as virtual seismic source and reverberated teleseismic P-wave phase (PpPdp) (teleseismic P-wave reflected at receiver side free surface and then reflected off crustal seismic interface) to construct seismic profiles. These profiles are equivalent to conventional active source seismic reflection profiles except that high-frequency (up to 2.4 Hz) transmitted wave fields from distant earthquakes are used as sources. On the constructed seismic profiles, the coherent PpPdp phases beneath Powder River and Bighorn Basins are distinct after the source wavelet is removed from the seismograms by deconvolution. Under the Bighorn Arch, no clear coherent signals are observed. We combine phases PpPdp and Ps to constrain the averaged Vp/Vs: 2.05-2.15 for the Powder River Basin and 1.9-2.0 for the Bighorn Basin. These high Vp/Vs ratios suggest that the layers within which P-wave reverberates are sedimentary. Assuming Vp as 4 km/s under the Powder River Basin, the estimated thickness of sedimentary layer above reflection below the profile is 3-4.5 km, consistent with the depth of the top of the Tensleep Fm. Therefore we interpret the coherent PpPdp phases about 1-3 s after direct P-wave arrival as the reflections off the interface between the Paleozoic carbonates/sandstones and Mesozoic shales.
Big Data and High-Performance Computing in Global Seismology
NASA Astrophysics Data System (ADS)
Bozdag, Ebru; Lefebvre, Matthieu; Lei, Wenjie; Peter, Daniel; Smith, James; Komatitsch, Dimitri; Tromp, Jeroen
2014-05-01
Much of our knowledge of Earth's interior is based on seismic observations and measurements. Adjoint methods provide an efficient way of incorporating 3D full wave propagation in iterative seismic inversions to enhance tomographic images and thus our understanding of processes taking place inside the Earth. Our aim is to take adjoint tomography, which has been successfully applied to regional and continental scale problems, further to image the entire planet. This is one of the extreme imaging challenges in seismology, mainly due to the intense computational requirements and vast amount of high-quality seismic data that can potentially be assimilated. We have started low-resolution inversions (T > 30 s and T > 60 s for body and surface waves, respectively) with a limited data set (253 carefully selected earthquakes and seismic data from permanent and temporary networks) on Oak Ridge National Laboratory's Cray XK7 "Titan" system. Recent improvements in our 3D global wave propagation solvers, such as a GPU version of the SPECFEM3D_GLOBE package, will enable us perform higher-resolution (T > 9 s) and longer duration (~180 m) simulations to take the advantage of high-frequency body waves and major-arc surface waves, thereby improving imbalanced ray coverage as a result of the uneven global distribution of sources and receivers. Our ultimate goal is to use all earthquakes in the global CMT catalogue within the magnitude range of our interest and data from all available seismic networks. To take the full advantage of computational resources, we need a solid framework to manage big data sets during numerical simulations, pre-processing (i.e., data requests and quality checks, processing data, window selection, etc.) and post-processing (i.e., pre-conditioning and smoothing kernels, etc.). We address the bottlenecks in our global seismic workflow, which are mainly coming from heavy I/O traffic during simulations and the pre- and post-processing stages, by defining new data formats for seismograms and outputs of our 3D solvers (i.e., meshes, kernels, seismic models, etc.) based on ORNL's ADIOS libraries. We will discuss our global adjoint tomography workflow on HPC systems as well as the current status of our global inversions.
From Geodesy to Tectonics: Observing Earthquake Processes from Space (Augustus Love Medal Lecture)
NASA Astrophysics Data System (ADS)
Parsons, Barry
2017-04-01
A suite of powerful satellite-based techniques has been developed over the past two decades allowing us to measure and interpret variations in the deformation around active continental faults occurring in earthquakes, before the earthquakes as strain accumulates, and immediately following them. The techniques include radar interferometry and the measurement of vertical and horizontal surface displacements using very high-resolution (VHR) satellite imagery. They provide near-field measurements of earthquake deformation facilitating the association with the corresponding active faults and their topographic expression. The techniques also enable pre- and post-seismic deformation to be determined and hence allow the response of the fault and surrounding medium to changes in stress to be investigated. The talk illustrates both the techniques and the applications with examples from recent earthquakes. These include the 2013 Balochistan earthquake, a predominantly strike-slip event, that occurred on the arcuate Hoshab fault in the eastern Makran linking an area of mainly left-lateral shear in the east to one of shortening in the west. The difficulty of reconciling predominantly strike-slip motion with this shortening has led to a wide range of unconventional kinematic and dynamic models. Using pre-and post-seismic VHR satellite imagery, we are able to determine a 3-dimensional deformation field for the earthquake; Sentinel-1 interferometry shows an increase in the rate of creep on a creeping section bounding the northern end of the rupture in response to the earthquake. In addition, we will look at the 1978 Tabas earthquake for which no measurements of deformation were possible at the time. By combining pre-seismic 'spy' satellite images with modern imagery, and pre-seismic aerial stereo images with post-seismic satellite stereo images, we can determine vertical and horizontal displacements from the earthquake and subsequent post-seismic deformation. These observations suggest post-seismic slip concentrated on a thrust ramp at the end of the likely earthquake fault and, together with new radar measurements, can be modeled with slip rates declining approximately inversely with time from the earthquake. Measurements such as these examples provide the basis for investigating the dynamic response to the earthquakes to changes in stress occurring in them.
Is the Local Seismicity in Haiti Capable of Imaging the Northern Caribbean Subduction?
NASA Astrophysics Data System (ADS)
Corbeau, J.; Clouard, V.; Rolandone, F.; Leroy, S. D.; de Lepinay, B. M.
2017-12-01
The boundary between the Caribbean (CA) and North American (NAM) plates in the Hispaniola region is the western prolongation of the NAM plate subduction evolving from a frontal subduction in the Lesser Antilles to an oblique collision against the Bahamas platform in Cuba. We analyze P-waveforms arriving at 27 broadband seismic temporary stations deployed along a 200 km-long N-S transect across Haiti, during the Trans-Haiti project. We compute teleseismic receiver functions using the ETMTRF method, and determine crustal thickness and bulk composition (Vp/Vs) using the H-k stacking method. Three distinctive crustal domains are imaged. We relate these domains to crustal terranes that have been accreted along the plate boundary during the northeastwards displacement of the CA plate. We propose a N-S crustal profile across Haiti accounting for the surface geology, shallow structural history and these new seismological constraints. Local seismicity recorded by the temporary network from April 2013 to June 2014 is used to relocate the seismicity. A total of 593 events were identified with magnitudes ranging from 1.6 to 4.5. This local seismicity, predominantly shallow (< 20 km) and situated in the southern part of Haiti along the major Enriquillo-Plantain-Garden strike-slip fault zone (EPGFZ) and offshore in Gonâve Bay, helps us to image deep active structures. Moment tensors for earthquakes with magnitudes between 3 and 4 were calculated by full waveform inversion using the ISOLA software. The analysis of the new moment tensors for the Haiti upper lithosphere indicates that normal, thrust and strike-slip faulting are equitably distributed. We found strike-slip events along the EPGFZ, near the location of the January 12th, 2010 earthquake. Most of the normal events are located in the area of Enriquillo and Azuei lakes, while the thrust events are located on both sides of the southern Peninsula of Haiti. The preliminary seismic data of our Haitian network, even noisy, tend to confirm that the North American slab in western Hispaniola is disappearing and that the scarcity of the seismic events could not be only the effect of the lack of a seismic network. Due to the geometry of the plate boundary, the deformation is predominantly strike-slip and there is no accommodation of an important part of convergence in this area.
P-Cable: New High-Resolution 3D Seismic Acquisition Technology
NASA Astrophysics Data System (ADS)
Planke, Sverre; Berndt, Christian; Mienert, Jürgen; Bünz, Stefan; Eriksen, Frode N.; Eriksen, Ola K.
2010-05-01
We have developed a new cost-efficient technology for acquisition of high-resolution 3D seismic data: the P-Cable system. This technology is very well suited for deep water exploration, site surveys, and studies of shallow gas and fluid migration associated with gas hydrates or leaking reservoirs. It delivers unparalleled 3D seismic images of subsurface sediment architectures. The P-Cable system consists of a seismic cable towed perpendicular to a vessel's steaming direction. This configuration allows us to image an up to 150 m wide swath of the sub-surface for each sail line. Conventional 3D seismic technology relies on several very long streamers (up to 10 km long streamers are common), large sources, and costly operations. In contrast, the P-Cable system is light-weight and fast to deploy from small vessels. Only a small source is required as the system is made for relatively shallow imaging, typically above the first water-bottom multiple. The P-Cable system is particularly useful for acquisition of small 3D cubes, 10-50 km2, in focus areas, rather than extensive mapping of large regions. The rapid deployment and recovery of the system makes it possible to acquire several small cubes (10 to 30 km2) with high-resolution (50-250 Hz) seismic data in during one cruise. The first development of the P-Cable system was a cooperative project achieved by Volcanic Basin Petroleum Research (VBPR), University of Tromsø, National Oceanography Centre, Southampton, and industry partners. Field trials using a 12-streamer system were conducted on sites with active fluid-leakage systems on the Norwegian-Barents-Svalbard margin, the Gulf of Cadiz, and the Mediterranean. The second phase of the development introduced digital streamers. The new P-Cable2 system also includes integrated tow and cross cables for power and data transmission and improved doors to spread the larger cross cable. This digital system has been successfully used during six cruises by the University of Tromsø, VBPR, P-Cable 3D Seismic AS (P3S), and IFM-GEOMAR. Presently, a Norwegian national infrastructure consortium (Univ. of Tromsø, P3S, Univ. of Bergen, NGU) assembles a mobile P-Cable2 high-resolution 3D seismic system for fully operational use of the technology for scientific purposes.
NASA Astrophysics Data System (ADS)
Trehu, A. M.
2017-12-01
The 2014 event partially filled a well-recognized seismic gap that had not experienced a large earthquake since a pair of devastating M9 events in 1868 and 1877. The rupture sequence was marked by an unusually long and distinct precursory period that was well recorded by onshore seismic and geodetic instruments of the Integrated Plate Boundary Observatory Chile (IPOC). The pattern of foreshock activity, which defined a "classic" Mogi donut, is correlated with a circular residual gravity high that surrounds the patch of greatest slip during the main shock. Aftershocks generally propagated to the south and stopped in a region of relatively low pre-earthquake coupling. The remaining nearly 300-km long seismic gap is correlated with a distinct forearc residual gravity high. The correlation between the pre-, syn- and post-earthquake deformation patterns and the residual gravity anomalies indicates that crustal structure affects the distribution of seismic and aseismic deformation in response to plate convergence. Because the non-uniqueness inherent in modeling gravity data does not allow for a detailed geologic interpretation of the correlation between structure and slip, we conducted an ambitious seismic experiment using the R/V Marcus Langseth to acquire 5000 km of multichannel seismic seismic data using an 8-12.5-km long streamer and a 6600 cubic inch tuned air-gun array. The 45000 shots were also recorded on 70 ocean-bottom and 50 land-based seismometers. Shipboard analysis of the data indicates that the Moho of the Nazca plate is well imaged west of the trench, that deformation is distributed throughout the outer 10 km of the accretionary wedge as the rough topography of the Nazca plate is subducted, and that a reflection tentatively interpreted to be the plate boundary can be imaged continuously from the trench to the coast on at least one transect across the margin. Post-cruise data analysis is underway to process the MCS data using various techniques to determine along-strike continuity of plate boundary reflectivity and to use OBS and onshore large-aperture data to obtain high-resolution models of the crustal velocity structure of the subducting and overriding plates. The PICTURES Science Team incudes investigators in the US, Chile, Germany, France and the UK.
Elastic Wave Imaging of in-Situ Bio-Alterations in a Contaminated Aquifer
NASA Astrophysics Data System (ADS)
Jaiswal, P.; Raj, R.; Atekwana, E. A.; Briand, B.; Alam, I.
2014-12-01
We present a pioneering report on the utility of seismic methods in imaging bio-induced elastic property changes within a contaminated aquifer. To understand physical properties of contaminated soil, we acquired 48 meters long multichannel seismic profile over the Norman landfill leachate plume in Norman Oklahoma, USA. We estimated both the P- and S- wave velocities respectively using full-waveform inversion of the transmission and the ground-roll coda. The resulting S-wave model showed distinct velocity anomaly (~10% over background) within the water table fluctuation zone bounded by the historical minimum and maximum groundwater table. In comparison, the P-wave velocity anomaly within the same zone was negligible. The Environmental Scanning Electron Microscope (ESEM) images of samples from a core located along the seismic profile clearly shows presence of biofilms in the water table fluctuation zone and their absence both above and below the fluctuation zone. Elemental chemistry further indicates that the sediment composition throughout the core is fairly constant. We conclude that the velocity anomaly in S-wave is due to biofilms. As a next step, we develop mechanistic modeling to gain insights into the petro-physical behavior of biofilm-bearing sediments. Preliminary results suggest that a plausible model could be biofilms acting as contact cement between sediment grains. The biofilm cement can be placed in two ways - (i) superficial non-contact deposition on sediment grains, and (ii) deposition at grain contacts. Both models explain P- and S- wave velocity structure at reasonable (~5-10%) biofilm saturation and are equivocally supported by the ESEM images. Ongoing attenuation modeling from full-waveform inversion and its mechanistic realization, may be able to further discriminate between the two cement models. Our study strongly suggests that as opposed to the traditional P-wave seismic, S-wave acquisition and imaging can be a more powerful tool for in-situ imaging of biofilm formation in field settings with significant implication for bioremediation and microbial enhanced oil recovery monitoring.
NASA Astrophysics Data System (ADS)
Kelly, C. L.; Lawrence, J. F.
2014-12-01
During October 2012, 51 geophones and 6 broadband seismometers were deployed in an ~50x50m region surrounding a periodically erupting columnar geyser in the El Tatio Geyser Field, Chile. The dense array served as the seismic framework for a collaborative project to study the mechanics of complex hydrothermal systems. Contemporaneously, complementary geophysical measurements (including down-hole temperature and pressure, discharge rates, thermal imaging, water chemistry, and video) were also collected. Located on the western flanks of the Andes Mountains at an elevation of 4200m, El Tatio is the third largest geyser field in the world. Its non-pristine condition makes it an ideal location to perform minutely invasive geophysical studies. The El Jefe Geyser was chosen for its easily accessible conduit and extremely periodic eruption cycle (~120s). During approximately 2 weeks of continuous recording, we recorded ~2500 nighttime eruptions which lack cultural noise from tourism. With ample data, we aim to study how the source varies spatially and temporally during each phase of the geyser's eruption cycle. We are developing a new back-projection processing technique to improve source imaging for diffuse signals. Our method was previously applied to the Sierra Negra Volcano system, which also exhibits repeating harmonic and diffuse seismic sources. We back-project correlated seismic signals from the receivers back to their sources, assuming linear source to receiver paths and a known velocity model (obtained from ambient noise tomography). We apply polarization filters to isolate individual and concurrent geyser energy associated with P and S phases. We generate 4D, time-lapsed images of the geyser source field that illustrate how the source distribution changes through the eruption cycle. We compare images for pre-eruption, co-eruption, post-eruption and quiescent periods. We use our images to assess eruption mechanics in the system (i.e. top-down vs. bottom-up) and determine variations in source depth and distribution in the conduit and larger geyser field over many eruption cycles.
Neo-deterministic definition of earthquake hazard scenarios: a multiscale application to India
NASA Astrophysics Data System (ADS)
Peresan, Antonella; Magrin, Andrea; Parvez, Imtiyaz A.; Rastogi, Bal K.; Vaccari, Franco; Cozzini, Stefano; Bisignano, Davide; Romanelli, Fabio; Panza, Giuliano F.; Ashish, Mr; Mir, Ramees R.
2014-05-01
The development of effective mitigation strategies requires scientifically consistent estimates of seismic ground motion; recent analysis, however, showed that the performances of the classical probabilistic approach to seismic hazard assessment (PSHA) are very unsatisfactory in anticipating ground shaking from future large earthquakes. Moreover, due to their basic heuristic limitations, the standard PSHA estimates are by far unsuitable when dealing with the protection of critical structures (e.g. nuclear power plants) and cultural heritage, where it is necessary to consider extremely long time intervals. Nonetheless, the persistence in resorting to PSHA is often explained by the need to deal with uncertainties related with ground shaking and earthquakes recurrence. We show that current computational resources and physical knowledge of the seismic waves generation and propagation processes, along with the improving quantity and quality of geophysical data, allow nowadays for viable numerical and analytical alternatives to the use of PSHA. The advanced approach considered in this study, namely the NDSHA (neo-deterministic seismic hazard assessment), is based on the physically sound definition of a wide set of credible scenario events and accounts for uncertainties and earthquakes recurrence in a substantially different way. The expected ground shaking due to a wide set of potential earthquakes is defined by means of full waveforms modelling, based on the possibility to efficiently compute synthetic seismograms in complex laterally heterogeneous anelastic media. In this way a set of scenarios of ground motion can be defined, either at national and local scale, the latter considering the 2D and 3D heterogeneities of the medium travelled by the seismic waves. The efficiency of the NDSHA computational codes allows for the fast generation of hazard maps at the regional scale even on a modern laptop computer. At the scenario scale, quick parametric studies can be easily performed to understand the influence of the model characteristics on the computed ground shaking scenarios. For massive parametric tests, or for the repeated generation of large scale hazard maps, the methodology can take advantage of more advanced computational platforms, ranging from GRID computing infrastructures to HPC dedicated clusters up to Cloud computing. In such a way, scientists can deal efficiently with the variety and complexity of the potential earthquake sources, and perform parametric studies to characterize the related uncertainties. NDSHA provides realistic time series of expected ground motion readily applicable for seismic engineering analysis and other mitigation actions. The methodology has been successfully applied to strategic buildings, lifelines and cultural heritage sites, and for the purpose of seismic microzoning in several urban areas worldwide. A web application is currently being developed that facilitates the access to the NDSHA methodology and the related outputs by end-users, who are interested in reliable territorial planning and in the design and construction of buildings and infrastructures in seismic areas. At the same, the web application is also shaping up as an advanced educational tool to explore interactively how seismic waves are generated at the source, propagate inside structural models, and build up ground shaking scenarios. We illustrate the preliminary results obtained from a multiscale application of NDSHA approach to the territory of India, zooming from large scale hazard maps of ground shaking at bedrock, to the definition of local scale earthquake scenarios for selected sites in the Gujarat state (NW India). The study aims to provide the community (e.g. authorities and engineers) with advanced information for earthquake risk mitigation, which is particularly relevant to Gujarat in view of the rapid development and urbanization of the region.
Back-Projection Imaging of extended, diffuse seismic sources in volcanic and hydrothermal systems
NASA Astrophysics Data System (ADS)
Kelly, C. L.; Lawrence, J. F.; Beroza, G. C.
2017-12-01
Volcanic and hydrothermal systems exhibit a wide range of seismicity that is directly linked to fluid and volatile activity in the subsurface and that can be indicative of imminent hazardous activity. Seismograms recorded near volcanic and hydrothermal systems typically contain "noisy" records, but in fact, these complex signals are generated by many overlapping low-magnitude displacements and pressure changes at depth. Unfortunately, excluding times of high-magnitude eruptive activity that typically occur infrequently relative to the length of a system's entire eruption cycle, these signals often have very low signal-to-noise ratios and are difficult to identify and study using established seismic analysis techniques (i.e. phase-picking, template matching). Arrays of short-period and broadband seismic sensors are proven tools for monitoring short- and long-term changes in volcanic and hydrothermal systems. Time-reversal techniques (i.e. back-projection) that are improved by additional seismic observations have been successfully applied to locating volcano-seismic sources recorded by dense sensor arrays. We present results from a new computationally efficient back-projection method that allows us to image the evolution of extended, diffuse sources of volcanic and hydrothermal seismicity. We correlate short time-window seismograms from receiver-pairs to find coherent signals and propagate them back in time to potential source locations in a 3D subsurface model. The strength of coherent seismic signal associated with any potential source-receiver-receiver geometry is equal to the correlation of the short time-windows of seismic records at appropriate time lags as determined by the velocity structure and ray paths. We stack (sum) all short time-window correlations from all receiver-pairs to determine the cumulative coherence of signals at each potential source location. Through stacking, coherent signals from extended and/or repeating sources of short-period energy radiation interfere constructively while background noise signals interfere destructively, such that the most likely source locations of the observed seismicity are illuminated. We compile results to analyze changes in the distribution and prevalence of these sources throughout a systems entire eruptive cycle.
NASA Astrophysics Data System (ADS)
Nagai, S.; Wu, Y.; Suppe, J.; Hirata, N.
2009-12-01
The island of Taiwan is located in the site of ongoing arc-continent collision zone between the Philippine Sea Plate and the Eurasian Plate. Numerous geophysical and geological studies are done in and around Taiwan to develop various models to explain the tectonic processes in the Taiwan region. The active and young tectonics and the associated high seismicity in Taiwan provide us with unique opportunity to explore and understand the processes in the region related to the arc-continent collision. Nagai et al. [2009] imaged eastward dipping alternate high- and low-velocity bodies at depths of 5 to 25 km from the western side of the Central Mountain Range to the eastern part of Taiwan, by double-difference tomography [Zhang and Thurber, 2003] using three temporary seismic networks with the Central Weather Bureau Seismic Network(CWBSN). These three temporary networks are the aftershock observation after the 1999 Chi-Chi Taiwan earthquake and two dense linear array observations; one is across central Taiwan in 2001, another is across southern Taiwan in 2005, respectively. We proposed a new orogenic model, ’Upper Crustal Stacking Model’ inferred from our tomographic images. To understand the detailed seismic structure more, we carry on relocating earthquakes more precisely in central and southern Taiwan, using three-dimensional velocity model [Nagai et al., 2009] and P- and S-wave arrival times both from the CWBSN and three temporary networks. We use the double-difference tomography method to improve relative and absolute location accuracy simultaneously. The relocated seismicity is concentrated and limited along the parts of boundaries between low- and high-velocity bodies. Especially, earthquakes occurred beneath the Eastern Central Range, triggered by 1999 Chi-Chi earthquake, delineate subsurface structural boundaries, compared with profiles of estimated seismic velocity. The relocated catalog and 3-D seismic velocity model give us some constraints to reconstruct the orogenic model in Taiwan. We show these relocated seismicity with P- and S-wave velocity profiles, with focal mechanisms [e.g. Wu et al., 2008] and spatio-temporal variation, in central and southern Taiwan and discuss tectonic processes in Taiwan.
NASA Astrophysics Data System (ADS)
Velez Gonzalez, Jose A.
The development of preferred crystal orientation fabrics (COF) within the ice column can have a strong influence on the flow behavior of an ice sheet or glacier. Typically, COF information comes from ice cores. Observations of anisotropic seismic wave propagation and backscatter variation as a function of antenna orientation in GPR measurements have been proposed as methods to detect COF. For this investigation I evaluate the effectiveness of the GPR and seismic methods to detect COF by conducting a seismic and GPR experiment at the North Greenland Eemian Ice Drilling facility (NEEM) ice core location, where COF data is available. The seismic experiment was conducted 6.5 km North West of the NEEM facility and consisted of three multi-offset seismic gathers. The results of the anisotropy analysis conducted at NEEM yielded mean c-axes distributed over a conical region of I angle of 30 to 32 degrees. No internal ice reflectors were imaged. Direct COF measurements collected in the ice core are in agreement with the results from the seismic anisotropy analysis. The GPR experiment covered an area of 100 km2 and consisted of parallel, perpendicular, oblique and circular (radius: 35 m) acquisition patterns. Results show evidence for COF for the entire 100 km2 area. Furthermore, for the first time it was possible to image three different COF (random, disk and single maxima) and their respective transition zones. The interpretation of the GPR experiment showed a strong correlation with the ice core measurements. Glacier basal drag is also an important, and difficult to predict, property that influences glacier flow. For this investigation I re-processed a 10 km-long high-resolution reflection seismic line at Jakobshavn Isbrae, Greenland, using an iterative velocity determination approach for optimizing sub-glacier imaging. The resultant line imaged a sub-glacier sediment layer ranging in thickness between 35 and 200 meters. I interpret three distinct seismic facies based on the geometry of the reflectors as a basal till layer, accreted sediments and re-worked till. The basal till and accreted sediments vary in thickness between 4 and 93 meters and are thought to be water-saturated actively-deforming sub-glacier sediments. A polarity reversal observed at one location along the ice-sediment interface suggests the presence of water saturated sediments or water ponding 2-4 m thick spanning approximately 240 m across. Using information from the seismic line (bed geometry, ice thickness, till thickness) as well as information available for the area of study (ice surface elevation and ice flow velocity) we evaluate the effect of sub-glacier sediment viscosity on the basal drag using a linearly viscous model and the assumption of a deforming bed. Basal drag values estimated for the study area fall within the range of physically acceptable values. However, the analysis revealed that the assumption of a deforming bed might not be compatible for the area of study given the presence of water at the ice/bed interface.
NASA Astrophysics Data System (ADS)
Chang, Yu-Chun; Shih, Ruey-Chyuan; Wang, Chien-Ying; Kuo, Hsuan-Yu; Chen, Wen-Shan
2016-04-01
A prototype deep geothermal power plant is to be constructed at the Ilan plain in northeastern Taiwan. The site will be chosen from one of the two potential areas, one in the west and the other in the eastern side of the plain. The triangle-shaped Ilan plane is bounded by two mountain ranges at the northwest and the south, with argillite and slate outcrops exposed, respectively. The Ilan plane is believed situating in a structure extending area at the southwestern end of the Okinawa Trough. Many studies about subsurface structure of the plain have been conducted for years. The results showed that the thickest sediments, around 900 m, is located at the eastern coast of the plain, at north of the largest river in the plain, the Lanyang river, and then became shallower to the edges of the plain. Since the plane is covered by thick sediments, formations and structures beneath the sediments are barely known. However, the observed high geothermal gradient and the abundant hot spring in the Ilan area indicate that this area is having a high potential of geothermal energy. In order to build up a conceptual model for tracing the possible paths of geothermal water and search for a suitable site for the geothermal well, we used the seismic reflection method to delineate the subsurface structure. The seismic profiles showed a clear unconformity separating the sediments and the metamorphic bedrock, and some events dipping to the east in the bedrock. Seismic images above the unconformity are clear; however, seismic signals in the metamorphic bedrock are sort of ambiguous. There were two models interpreted by using around 10 seismic images that collected by us in the past 3 years by using two mini-vibrators (EnviroVibe) and a 360-channel seismic data acquisition system. In the first model, seismic signals in the bedrock were interpreted as layer boundaries, and a fractured metamorphic layer down the depth of 1200m was thought as the source of geothermal water reservoir. In the other model, a northwestern dipping normal faults system was interpreted, and the normal faults were the paths for guiding the geothermal energy from the depth. Although both models were possible for obtaining a promising geothermal energy in the study area, a clear conceptual structure model is needed for future development of the geothermal energy in this area. Our interpretation favorites the fault dominant structure model; however, since the bedrock was slate or argillite still needed to be identified, more data from core borings and other geophysical, geologic data are needed. In this paper, we will illustrate a 3 dimensional suburface structure model by using the seismic images and integrate with results obtained from other studies to show the possibility of the proposed fault dominant structure model.
Imaging of Heterogeneous Structure beneath the Metropolitan Tokyo Area
NASA Astrophysics Data System (ADS)
Nakagawa, S.; Sakai, S.; Kurashimo, E.; Kato, A.; Hagiwara, H.; Kasahara, K.; Tanada, T.; Obara, K.; Hirata, N.
2009-12-01
Beneath the metropolitan Tokyo area, the Philippine Sea Plate (PSP) subducts and causes damaged mega-thrust earthquakes. The Dai-Dai-Toku Project revealed the geometry of the upper surface of PSP, and estimated a rupture process and a ground motion of the 1923 Kanto earthquake [Sato et al., 2005]. Hagiwara et al. (2006) estimated the velocity structure of Boso peninsula. However, these results are not sufficient for the assessment of the entire picture of the seismic hazards beneath the metropolitan Tokyo area including those due to an intra-slab M7+ earthquake. So, we have carried out a 5-year project since 2007, the Special Project for Earthquake Disaster Mitigation in the Metropolitan Tokyo area. Proving the more detailed geometry and physical properties (e.g. velocities, densities, attenuation) of PSP is very important to attain this issue. The core item of this project is the dense seismic array observation in metropolitan area, which is called the MeSO-net (Metropolitan Seismic Observation network). In order to obtain the high resolution images of a velocity structure, it is requested to construct a seismic network with a spacing of 2-5 km. The total number of seismic stations of the MeSO-net will be about 400 and will be deployed in 4 years. We deployed the 178 seismic stations, which construct 5 seismic arrays such as Tsukuba-Fujisawa (TF) array etc., by 2008, and we are now deploying the 45 seismic stations in this year. The MeSO-net data are quasi-real-time transferred to the data center at ERI [Kasahara et al., 2007; Nakagawa et al., 2007]. In this study, we applied the tomography to image the heterogeneous structure under the metropolitan Tokyo area. We selected events from the catalogue by Hagiwara et al. (2006) and merged the new event data observed by MeSO-net with these data. Around the Kanto region there are several seismic explorations using active sources were carried out [Sato et al., 2005; Oikawa et al., 2007]. Since these data may improve the velocity structure in shallower part, we added the arrival time data of these explorations into the dataset. Then, we applied the double-difference tomography method [Zhang and Thurber, 2003] to this dataset and estimated the fine-scale velocity structure. The initial velocity structure is the same in Hagiwara et al. (2006), and the VP/VS ratio is set to 1.73 for all grid nodes. The TF array passes directory above Tokyo and is parallel to Boso peninsula. The depth section of P-wave velocity structure along the TF array clearly shows that thin low-velocity layer which overlies high-velocity layer subducts towards northeast. This low-velocity layer corresponds to the oceanic crust of the subducting PSP. The increase of MeSO-net stations and event data may improve images of heterogeneous structure and contribute the purpose of this special project. Acknowledgement: This study was supported by the Earthquake Research Institute cooperative research program.
NASA Astrophysics Data System (ADS)
Ghosh, A.; LI, B.
2016-12-01
Alaska-Aleutian subduction zone is one of the most seismically active subduction zones in this planet. It is characterized by remarkable along-strike variations in seismic behavior, more than 50 active volcanoes, and presents a unique opportunity to serve as a natural laboratory to study subduction zone processes including fault dynamics. Yet details of the seismicity pattern, spatiotemporal distribution of slow earthquakes, nature of interaction between slow and fast earthquakes and their implication on the tectonic behavior remain unknown. We use a hybrid seismic network approach and install 3 mini seismic arrays and 5 stand-alone stations to simultaneously image subduction fault and nearby volcanic system (Makushin). The arrays and stations are strategically located in the Unalaska Island, where prolific tremor activity is detected and located by a solo pilot array in summer 2012. The hybrid network is operational between summer 2015 and 2016 in continuous mode. One of the three arrays starts in summer 2014 and provides additional data covering a longer time span. The pilot array in the Akutan Island recorded continuous seismic data for 2 months. An automatic beam-backprojection analysis detects almost daily tremor activity, with an average of more than an hour per day. We imaged two active sources separated by a tremor gap. The western source, right under the Unalaska Island shows the most prolific activity with a hint of steady migration. In addition, we are able to identify more than 10 families of low frequency earthquakes (LFEs) in this area. They are located within the tremor source area as imaged by the bean-backprojection technique. Application of a match filter technique reveals that intervals between LFE activities are shorter during tremor activity and longer during quiet time period. We expect to present new results from freshly obtained data. The experiment A-cubed is illuminating subduction zone processes under Unalaska Island in unprecedented detail.
NASA Astrophysics Data System (ADS)
Barchi, Massimiliano R.; Ciaccio, Maria Grazia
2009-12-01
The study of syntectonic basins, generated at the hangingwall of regional low-angle detachments, can help to gain a better knowledge of these important and mechanically controversial extensional structures, constraining their kinematics and timing of activity. Seismic reflection images constrain the geometry and internal structure of the Sansepolcro Basin (the northernmost portion of the High Tiber Valley). This basin was generated at the hangingwall of the Altotiberina Fault (AtF), an E-dipping low-angle normal fault, active at least since Late Pliocene, affecting the upper crust of this portion of the Northern Apennines. The dataset analysed consists of 5 seismic reflection lines acquired in the 80s' by ENI-Agip for oil exploration and a portion of the NVR deep CROP03 profile. The interpretation of the seismic profiles provides a 3-D reconstruction of the basin's shape and of the sedimentary succession infilling the basin. This consisting of up to 1200 m of fluvial and lacustrine sediments: this succession is much thicker and possibly older than previously hypothesised. The seismic data also image the geometry at depth of the faults driving the basin onset and evolution. The western flank is bordered by a set of E-dipping normal faults, producing the uplifting and tilting of Early to Middle Pleistocene succession along the Anghiari ridge. Along the eastern flank, the sediments are markedly dragged along the SW-dipping Sansepolcro fault. Both NE- and SW-dipping faults splay out from the NE-dipping, low-angle Altotiberina fault. Both AtF and its high-angle splays are still active, as suggested by combined geological and geomorphological evidences: the historical seismicity of the area can be reasonably associated to these faults, however the available data do not constrain an unambiguous association between the single structural elements and the major earthquakes.
Efficient blind search for similar-waveform earthquakes in years of continuous seismic data
NASA Astrophysics Data System (ADS)
Yoon, C. E.; Bergen, K.; Rong, K.; Elezabi, H.; Bailis, P.; Levis, P.; Beroza, G. C.
2017-12-01
Cross-correlating an earthquake waveform template with continuous seismic data has proven to be a sensitive, discriminating detector of small events missing from earthquake catalogs, but a key limitation of this approach is that it requires advance knowledge of the earthquake signals we wish to detect. To overcome this limitation, we can perform a blind search for events with similar waveforms, comparing waveforms from all possible times within the continuous data (Brown et al., 2008). However, the runtime for naive blind search scales quadratically with the duration of continuous data, making it impractical to process years of continuous data. The Fingerprint And Similarity Thresholding (FAST) detection method (Yoon et al., 2015) enables a comprehensive blind search for similar-waveform earthquakes in a fast, scalable manner by adapting data-mining techniques originally developed for audio and image search within massive databases. FAST converts seismic waveforms into compact "fingerprints", which are efficiently organized and searched within a database. In this way, FAST avoids the unnecessary comparison of dissimilar waveforms. To date, the longest duration of continuous data used for event detection with FAST was 3 months at a single station near Guy-Greenbrier, Arkansas, which revealed microearthquakes closely correlated with stages of hydraulic fracturing (Yoon et al., 2017). In this presentation we introduce an optimized, parallel version of the FAST software with improvements to the fingerprinting algorithm and the ability to detect events using continuous data from a network of stations (Bergen et al., 2016). We demonstrate its ability to detect low-magnitude earthquakes within several years of continuous data at locations of interest in California.
NASA Astrophysics Data System (ADS)
Gurrola, H.; Pratt, K. W.; Pulliam, J.; Dunbar, J. A.
2011-12-01
In summer of 2010, 21 broadband seismographs were installed at 16-18 km spacing along a transect running from Johnson City, TX, (on the Edwards Plateau), to Matagorda Island to study the current structure of this rifted passive margin. The large magnetic anomaly that parallels the coast throughout the Gulf region moves on-shore beneath our transect such that we will be able to investigate the source of this anomaly. A second important target that will be imaged in this Balcones fault which is associated with the Ouachita front. This project is funded by a grant from the Norman Hackerman Advanced Research Program (NHARP), a biannual competition among Texas Universities to support research, and makes use of Texas Tech, Baylor, and UT Austin equipment. As a result, the deployment includes a less uniform array of seismic equipment, (10 Trillium compact seismometers and 10 Guralps; including 40Ts, 3Ts and 3ESPs), than projects supported by the IRIS PASSCAL center. Our vault construction was similar to Flexible array vaults, but Gulf Coast provides a more challenging environment for deployment than most encountered in the western US. The shallow water table and loose sediment can become almost fluid when storms deluge the area with rain. In dry periods, mud cracks near the vaults cause the vaults to tilt. As a result, even high quality, shallow seismic vaults can "float" or shift sufficiently to cause one or two components of the seismic stations to drift against their stops in days or weeks. As a result, the only data consistently available from all our stations, are vertical components. Horizontal component data from the summer of 2010 can be hit and miss due to the tilting of the vaults. These issues have been reduced in the summer of 2011 due to the drought. To address the data's shortcomings, we will average the vertical components from our stations and nearby EarthScope TA stations, (up 300 km away), to isolate the cleanest representation of the incoming P-wave, (with local PPp reverberations averaged out). This is essentially beam forming for the optimal teleseismic ray path. The clean P-wave will then be deconvolved from the vertical components at each station to produce a vertical component receiver function that will enable us to model and stack local P-wave reverberations to produce a 2-D image of lithospheric structure. To produce traditional receiver functions from time periods where one component is lost from several stations, we will treat neighboring stations as arrays and recover an "array averaged three-component seismogram" for each loacation. These "beamed" seismograms will allow imaging of the crust, lithospheric mantle, and transition zone beneath the broadband array using traditional receiver function stacking or migration.
NASA Astrophysics Data System (ADS)
Bai, Z. M.; Zhang, Z. Z.; Wang, C. Y.; Klemperer, S. L.
2012-04-01
The weakened lithosphere around eastern syntax of Tibet plateau has been revealed by the Average Pn and Sn velocities, the 3D upper mantle velocity variations of P wave and S wave, and the iimaging results of magnetotelluric data. Tengchong volcanic area is neighboring to core of eastern syntax and famous for its springs, volcanic-geothermal activities and remarkable seismicity in mainland China. To probe the deep environment for the Tengchong volcanic-geothermal activity a deep seismic sounding (DSS) project was carried out across the this area in 1999. In this paper the seismic signature of crustal magma and fluid is explored from the DSS data with the seismic attribute fusion (SAF) technique, hence four possible positions for magma generation together with some locations for porous and fractured fluid beneath the Tengchong volcanic area were disclosed from the final fusion image of multi seismic attributes. The adopted attributes include the Vp, Vs and Vp/Vs results derived from a new inversion method based on the No-Ray-Tomography technique, and the migrated instantaneous attributes of central frequency, bandwidth and high frequency energy of pressure wave. Moreover, the back-projected ones which are mainly consisted by the attenuation factor Qp , the delay-time of shear wave splitting, and the amplitude ratio between S wave and P wave + S wave were also considered in this fusion process. Our fusion image indicates such a mechanism for the surface springs: a large amount of heat and the fluid released by the crystallization of magma were transmitted upward into the fluid-filled rock, and the fluid upwells along some pipeline since the high pressure in deep, thus the widespread springs of Tengchong volcanic area were developed. Moreover, the fusion image, regional volcanic and geothermal activities, and the seismicity suggest that the main risk of volcanic eruption was concentrated to the south of Tengchong city, especially around the shot point (SP) Tuantian. There are typical tectonic and deep origin mechanisms for the moderate-strong earthquakes nearby SP Tuantian, and precaution should be added on this area in case of the potential earthquake. Our fusion image also clearly revealed that there exist two remarkable positions on the Moho discontinuity through which the heat from the upper mantle was transmitted upward, and this is attributed to the widely distributed hot material within the crust and upper mantle. We acknowledge the financial support of the Ministry of Land and Resources of China (SinoProbe-02-02), and the National Nature Science Foundation of China (No. 41074033 and No. 40830315). Key Words: Seismic Signature, Magma, Tengchong Volcanic Area, Deep Seismic Sounding, Seismic Attribute Fusion Li, Chang, van der Hilst, D., Meltzer, A.S., Engdahl, E.R., 2008. Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth Planet. Sci. Lett. 274. doi:10.1016/j.epsl.2008.07.016. Lebedev, S., van der Hilst, R.D., 2008. Global upper-mantle tomography with the automated multi-mode surface and S waveforms. Geophys. J. Int. 173 (2), 505-518. Wang C.Y. and Huangfu G.. 2004. Crustal structure in Tengchong Volcano-Geothermal Area, western Yunnan, China. Tectonophysics, 380: 69-87.
The Krafla International Testbed (KMT): Ground Truth for the New Magma Geophysics
NASA Astrophysics Data System (ADS)
Brown, L. D.; Kim, D.; Malin, P. E.; Eichelberger, J. C.
2017-12-01
Recent developments in geophysics such as large N seismic arrays , 4D (time lapse) subsurface imaging and joint inversion algorithms represent fresh approaches to delineating and monitoring magma in the subsurface. Drilling at Krafla, both past and proposed, are unique opportunities to quantitatively corroborate and calibrate these new technologies. For example, dense seismic arrays are capable of passive imaging of magma systems with resolutions comparable to that achieved by more expensive (and often logistically impractical) controlled source surveys such as those used in oil exploration. Fine details of the geometry of magma lenses, feeders and associated fluid bearing fracture systems on the scale of meters to tens of meters are now realistic targets for surface seismic surveys using ambient energy sources, as are detection of their temporal variations. Joint inversions, for example of seismic and MT measurements, offer the promise of tighter quantitative constraints on the physical properties of the various components of magma and related geothermal systems imaged by geophysics. However, the accuracy of such techniques will remain captive to academic debate without testing against real world targets that have been directly sampled. Thus application of these new techniques to both guide future drilling at Krafla and to be calibrated against the resulting borehole observations of magma are an important step forward in validating geophysics for magma studies in general.
NASA Astrophysics Data System (ADS)
Jiang, Lanlan; Nishizawa, Osamu; Zhang, Yi; Park, Hyuck; Xue, Ziqiu
2016-12-01
Understanding the relationship between seismic wave velocity or attenuation and CO2 saturation is essential for CO2 storage in deep saline formations. In the present study, we describe a novel upright high-pressure vessel that is designed to keep a rock sample under reservoir conditions and simultaneously image the entire sample using a medical X-ray CT scanner. The pressure vessel is composed of low X-ray absorption materials: a carbon-fibre-enhanced polyetheretherketone (PEEK) cylinder and PEEK vessel closures supported by carbon-fibre-reinforced plastic (CFRP) joists. The temperature was controlled by a carbon-coated film heater and an aramid fibre thermal insulator. The assembled sample cell allows us to obtain high-resolution images of rock samples during CO2 drainage and brine imbibition under reservoir conditions. The rock sample was oriented vertical to the rotation axis of the CT scanner, and seismic wave paths were aligned parallel to the rotation axis to avoid shadows from the acoustic transducers. The reconstructed CO2 distribution images allow us to calculate the CO2 saturation in the first Fresnel zone along the ray path between transducers. A robust relationship between the seismic wave velocity or attenuation and the CO2 saturation in porous rock was obtained from experiments using this pressure vessel.
NASA Astrophysics Data System (ADS)
Luehr, B. G.; Koulakov, I.; Kopp, H.; Rabbel, W.; Zschau, J.
2011-12-01
During the last decades many investigations were carried out at active continental margins to understand the link between the subduction of the fluid saturated oceanic plate and the process of ascent of fluids and partial melts forming a magmatic system that leads to volcanism at the earth surface. For this purpose structural information are needed about the slap itself, the part above it, the ascent paths as well as the storage of fluids and partial melts in the mantle and the crust above the down going slap up to the volcanoes on the surface. If we consider statistically the distance between the trench and the volcanic chain as well as the inclination angle of the down going plate, then the mean value of the depth distance down to the Wadati Benioff zone results of approximately 100 kilometers. Surprisingly, this depth range shows pronounced seismicity at most of all subduction zones. Additionally, mineralogical investigations in the lab have shown that the diving plate is maximal dehydrated around 100 km depth because of temperature and pressure conditions at this depth range. However, assuming a vertical fluid ascent there are exceptions. For instance at the Sunda Arc beneath Central Java the vertical distance results in approximately 150 km. But, in this case seismic investigations have shown that the fluids do not ascend vertically, but inclined even from a source area at around the 100 km depth. The ascent of the fluids and the appearance of partial melts as well as the distribution of these materials in the crust can be proved by seismic and seismological methods. With the seismic tomography these areas are imaged by lowered seismic velocities, high Vp/Vs ratios, as well as increased attenuation of seismic shear waves. But, to explore plate boundaries large and complex amphibious experiments are required, in which active and passive seismic investigations should be combined. They have to recover a range from before the trench to far behind the volcanic chain, to provide under favorable conditions information down to a depth of 150 km. In particular the record of the natural seismicity and its distribution allows the three-dimensional imaging of the entire crust and lithosphere structure above the Wadati Benioff zone with the help of tomographic procedures, and therewith the entire ascent path region of the fluids and melts, which are responsible for volcanism. The seismic velocity anomalies detected so far are within a range of a few per cent to more than 30% reduction. In the lecture findings of different subduction zones are compared and discussed.
A Community Seismic Experiment in the ENAM Primary Site
NASA Astrophysics Data System (ADS)
Van Avendonk, H. J.
2012-12-01
Eastern North America (ENAM) was chosen as a GeoPRISMS Rift Initiation and Evolution primary site because it represents a mature continental margin with onshore and offshore rift basins in which the record of extension and continental break-up is preserved. The degree to which syn-rift magmatism and preexisting lithospheric weaknesses controlled the evolution of the margin can be further investigated if we image its 3-D structure at small and large length scales with active-source and earthquake seismic imaging. In the Summer of 2012 we submitted a proposal to the US National Science Foundation for an ambitious plan for data acquisition on a 400 km wide section of the mid-Atlantic East Coast margin around Cape Hatteras, from unextended continental lithosphere onshore to mature oceanic lithosphere offshore. This area includes an important along-strike transition in the morphology of the margin from the Carolina Trough to the Baltimore Canyon Trough, and two major fracture zones that are associated with significant offsets at the modern Mid-Atlantic Ridge. The study area also covers several features representing the post-rift modification of the margin by slope instability and fluid flow. As the Earthscope Transportable Array reaches the East Coast of the US in 2013 and 2014, we will have an unprecedented opportunity to image the detailed structure of the rifted margin. To make effective use of the research infrastructure, including the seismic vessel R/V Marcus Langseth, the Earthscope seismic instrumentation, and US OBS Instrument Pool, we propose to collect a suite of seismic data at the mid-Atlantic margin in the context of a community-driven experiment with completely open data access. This multi-faceted seismic experiment offers an immense opportunity for education of young scientists. We propose an integrated education effort during and after acquisition. The science and field parties for data acquisition will largely consist of young scientists, who will be chosen by application. Following the cruise, we propose to hold two short courses on multi-channel seismic reflection and wide-angle reflection and refraction data processing using the new seismic data. The acquisition of all seismic data, archiving of the data in existing data bases, and distribution to the community will take two years. Afterwards, proposals developed by any member of the science community can be submitted for further data analysis and testing of current scientific hypotheses regarding the evolution and dynamics of the ENAM margin.
ERIC Educational Resources Information Center
Savit, Carl H.
1978-01-01
Expansion of activity and confirmation of new technological directions characterized several fields of exploration geophysics in 1977. Advances in seismic-reflection exploration have been especially important. (Author/MA)
Elastic Velocity Updating through Image-Domain Tomographic Inversion of Passive Seismic Data
NASA Astrophysics Data System (ADS)
Witten, B.; Shragge, J. C.
2014-12-01
Seismic monitoring at injection sites (e.g., CO2sequestration, waste water disposal, hydraulic fracturing) has become an increasingly important tool for hazard identification and avoidance. The information obtained from this data is often limited to seismic event properties (e.g., location, approximate time, moment tensor), the accuracy of which greatly depends on the estimated elastic velocity models. However, creating accurate velocity models from passive array data remains a challenging problem. Common techniques rely on picking arrivals or matching waveforms requiring high signal-to-noise data that is often not available for the magnitude earthquakes observed over injection sites. We present a new method for obtaining elastic velocity information from earthquakes though full-wavefield wave-equation imaging and adjoint-state tomography. The technique exploits images of the earthquake source using various imaging conditions based upon the P- and S-wavefield data. We generate image volumes by back propagating data through initial models and then applying a correlation-based imaging condition. We use the P-wavefield autocorrelation, S-wavefield autocorrelation, and P-S wavefield cross-correlation images. Inconsistencies in the images form the residuals, which are used to update the P- and S-wave velocity models through adjoint-state tomography. Because the image volumes are constructed from all trace data, the signal-to-noise in this space is increased when compared to the individual traces. Moreover, it eliminates the need for picking and does not require any estimation of the source location and timing. Initial tests show that with reasonable source distribution and acquisition array, velocity anomalies can be recovered. Future tests will apply this methodology to other scales from laboratory to global.
NASA Astrophysics Data System (ADS)
Boss, Stephen K.
1996-11-01
A mosaic image of the northern Great Bahama Bank was created from separate gray-scale Landsat images using photo-editing and image analysis software that is commercially available for desktop computers. Measurements of pixel gray levels (relative scale from 0 to 255 referred to as digital number, DN) on the mosaic image were compared to bank-top bathymetry (determined from a network of single-channel, high-resolution seismic profiles), bottom type (coarse sand, sandy mud, barren rock, or reef determined from seismic profiles and diver observations), and vegetative cover (presence and/or absence and relative density of the marine angiosperm Thalassia testudinum determined from diver observations). Results of these analyses indicate that bank-top bathymetry is a primary control on observed pixel DN, bottom type is a secondary control on pixel DN, and vegetative cover is a tertiary influence on pixel DN. Consequently, processing of the gray-scale Landsat mosaic with a directional gradient edge-detection filter generated a physiographic shaded relief image resembling bank-top bathymetric patterns related to submerged physiographic features across the platform. The visibility of submerged karst landforms, Pleistocene eolianite ridges, islands, and possible paleo-drainage patterns created during sea-level lowstands is significantly enhanced on processed images relative to the original mosaic. Bank-margin ooid shoals, platform interior sand bodies, reef edifices, and bidirectional sand waves are features resulting from Holocene carbonate deposition that are also more clearly visible on the new physiographic images. Combined with observational data (single-channel, high-resolution seismic profiles, bottom observations by SCUBA divers, sediment and rock cores) across the northern Great Bahama Bank, these physiographic images facilitate comprehension of areal relations among antecedent platform topography, physical processes, and ensuing depositional patterns during sea-level rise.
HFT events - Shallow moonquakes. [High-Frequency Teleseismic
NASA Technical Reports Server (NTRS)
Nakamura, Y.
1977-01-01
A few large distant seismic events of distinctly high signal frequency, designated HFT (high-frequency teleseismic) events, are observed yearly by the Apollo lunar seismic network. Their sources are located on or near the surface of the moon, leaving a large gap in seismic activity between the zones of HFT sources and deep moonquakes. No strong regularities are found in either their spatial or temporal distributions. Several working hypotheses for the identity of these sources have advanced, but many characteristics of the events seem to favor a hypothesis that they are shallow moonquakes. Simultaneous observations of other lunar phenomena may eventually enable the determination of their true identity.
Advanced motor driven clamped borehole seismic receiver
Engler, B.P.; Sleefe, G.E.; Striker, R.P.
1993-02-23
A borehole seismic tool is described including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric motor in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.
ANZA Seismic Network- From Monitoring to Science
NASA Astrophysics Data System (ADS)
Vernon, F.; Eakin, J.; Martynov, V.; Newman, R.; Offield, G.; Hindley, A.; Astiz, L.
2007-05-01
The ANZA Seismic Network (http:eqinfo.ucsd.edu) utilizes broadband and strong motion sensors with 24-bit dataloggers combined with real-time telemetry to monitor local and regional seismicity in southernmost California. The ANZA network provides real-time data to the IRIS DMC, California Integrated Seismic Network (CISN), other regional networks, and the Advanced National Seismic System (ANSS), in addition to providing near real-time information and monitoring to the greater San Diego community. Twelve high dynamic range broadband and strong motion sensors adjacent to the San Jacinto Fault zone contribute data for earthquake source studies and continue the monitoring of the seismic activity of the San Jacinto fault initiated 24 years ago. Five additional stations are located in the San Diego region with one more station on San Clemente Island. The ANZA network uses the advance wireless networking capabilities of the NSF High Performance Wireless Research and Education Network (http:hpwren.ucsd.edu) to provide the communication infrastructure for the real-time telemetry of Anza seismic stations. The ANZA network uses the Antelope data acquisition software. The combination of high quality hardware, communications, and software allow for an annual network uptime in excess of 99.5% with a median annual station real-time data return rate of 99.3%. Approximately 90,000 events, dominantly local sources but including regional and teleseismic events, comprise the ANZA network waveform database. All waveform data and event data are managed using the Datascope relational database. The ANZA network data has been used in a variety of scientific research including detailed structure of the San Jacinto Fault Zone, earthquake source physics, spatial and temporal studies of aftershocks, array studies of teleseismic body waves, and array studies on the source of microseisms. To augment the location, detection, and high frequency observations of the seismic source spectrum from local earthquakes, the ANZA network is receiving real-time data from borehole arrays located at the UCSD Thornton Hospital, and from UCSB's Borrego Valley and Garner Valley Downhole Arrays. Finally the ANZA network is acquiring data from seven PBO sites each with 300 meter deep MEMs accelerometers, passive seismometers, and a borehole strainmeter.
A method of directly extracting multiwave angle-domain common-image gathers
NASA Astrophysics Data System (ADS)
Han, Jianguang; Wang, Yun
2017-10-01
Angle-domain common-image gathers (ADCIGs) can provide an effective way for migration velocity analysis and amplitude versus angle analysis in oil-gas seismic exploration. On the basis of multi-component Gaussian beam prestack depth migration (GB-PSDM), an alternative method of directly extracting multiwave ADCIGs is presented in this paper. We first introduce multi-component GB-PSDM, where a wavefield separation is proceeded to obtain the separated PP- and PS-wave seismic records before migration imaging for multiwave seismic data. Then, the principle of extracting PP- and PS-ADCIGs using GB-PSDM is presented. The propagation angle can be obtained using the real-value travel time of Gaussian beam in the course of GB-PSDM, which can be used to calculate the incidence and reflection angles. Two kinds of ADCIGs can be extracted for the PS-wave, one of which is P-wave incidence ADCIGs and the other one is S-wave reflection ADCIGs. In this paper, we use the incident angle to plot the ADCIGs for both PP- and PS-waves. Finally, tests of synthetic examples show that the method introduced here is accurate and effective.
Sparseness- and continuity-constrained seismic imaging
NASA Astrophysics Data System (ADS)
Herrmann, Felix J.
2005-04-01
Non-linear solution strategies to the least-squares seismic inverse-scattering problem with sparseness and continuity constraints are proposed. Our approach is designed to (i) deal with substantial amounts of additive noise (SNR < 0 dB); (ii) use the sparseness and locality (both in position and angle) of directional basis functions (such as curvelets and contourlets) on the model: the reflectivity; and (iii) exploit the near invariance of these basis functions under the normal operator, i.e., the scattering-followed-by-imaging operator. Signal-to-noise ratio and the continuity along the imaged reflectors are significantly enhanced by formulating the solution of the seismic inverse problem in terms of an optimization problem. During the optimization, sparseness on the basis and continuity along the reflectors are imposed by jointly minimizing the l1- and anisotropic diffusion/total-variation norms on the coefficients and reflectivity, respectively. [Joint work with Peyman P. Moghaddam was carried out as part of the SINBAD project, with financial support secured through ITF (the Industry Technology Facilitator) from the following organizations: BG Group, BP, ExxonMobil, and SHELL. Additional funding came from the NSERC Discovery Grants 22R81254.
Pratt, Thomas L.; Horton, J. Wright; Spear, D.B.; Gilmer, A.K.; McNamara, Daniel E.
2015-01-01
The Mineral, Virginia (USA), earthquake of 23 August 2011 occurred at 6– 8 km depth within the allochthonous terranes of the Appalachian Piedmont Province, rupturing an ~N36°E striking reverse fault dipping ~50° southeast. This study used the Interstate Highway 64 seismic refl ection profi le acquired ~6 km southwest of the hypocenter to examine the structural setting of the earthquake. The profi le shows that the 2011 earthquake and its aftershocks are almost entirely within the early Paleozoic Chopawamsic volcanic arc terrane, which is bounded by listric thrust faults dipping 30°–40° southeast that sole out into an ~2-km-thick, strongly refl ective zone at 7– 12 km depth. Refl ectors above and below the southward projection of the 2011 earthquake focal plane do not show evidence for large displacement, and the updip projection of the fault plane does not match either the location or trend of a previously mapped fault or lithologic boundary. The 2011 earthquake thus does not appear to be a simple reactivation of a known Paleozoic thrust fault or a major Mesozoic rift basin-boundary fault. The fault that ruptured appears to be a new fault, a fault with only minor displacement, or to not extend the ~3 km from the aftershock zone to the seismic profi le. Although the Paleozoic structures appear to infl uence the general distribution of seismicity in the area, Central Virginia seismic zone earthquakes have yet to be tied directly to specifi c fault systems mapped at the surface or imaged on seismic profiles.
NASA Astrophysics Data System (ADS)
Panea, I.; Stephenson, R.; Knapp, C.; Mocanu, V.; Drijkoningen, G.; Matenco, L.; Knapp, J.; Prodehl, K.
2005-12-01
The DACIA PLAN (Danube and Carpathian Integrated Action on Process in the Lithosphere and Neotectonics) deep seismic sounding survey was performed in August-September 2001 in south-eastern Romania, at the same time as the regional deep refraction seismic survey VRANCEA 2001. The main goal of the experiment was to obtain new information on the deep structure of the external Carpathians nappes and the architecture of Tertiary/Quaternary basins developed within and adjacent to the seismically-active Vrancea zone, including the Focsani Basin. The seismic reflection line had a WNW-ESE orientation, running from internal East Carpathians units, across the mountainous south-eastern Carpathians, and the foreland Focsani Basin towards the Danube Delta. There were 131 shot points along the profile, with about 1 km spacing, and data were recorded with stand-alone RefTek-125s (also known as "Texans"), supplied by the University Texas at El Paso and the PASSCAL Institute. The entire line was recorded in three deployments, using about 340 receivers in the first deployment and 640 receivers in each of the other two deployments. The resulting deep seismic reflection stacks, processed to 20 s along the entire profile and to 10 s in the eastern Focsani Basin, are presented here. The regional architecture of the latter, interpreted in the context of abundant independent constraint from exploration seismic and subsurface data, is well imaged. Image quality within and beneath the thrust belt is of much poorer quality. Nevertheless, there is good evidence to suggest that a thick (˜10 km) sedimentary basin having the structure of a graben and of indeterminate age underlies the westernmost part of the Focsani Basin, in the depth range 10-25 km. Most of the crustal depth seismicity observed in the Vrancea zone (as opposed to the more intense upper mantle seismicity) appears to be associated with this sedimentary basin. The sedimentary successions within this basin and other horizons visible further to the west, beneath the Carpathian nappes, suggest that the geometry of the Neogene and recent uplift observed in the Vrancea zone, likely coupled with contemporaneous rapid subsidence in the foreland, is detached from deeper levels of the crust at about 10 km depth. The Moho lies at a depth of about 40 km along the profile, its poor expression in the reflection stack being strengthened by independent estimates from the refraction data. Given the apparent thickness of the (meta)sedimentary supracrustal units, the crystalline crust beneath this area is quite thin (< 20 km) supporting the hypothesis that there may have been delamination of (lower) continental crust in this area involved in the evolution of the seismic Vrancea zone.
NASA Astrophysics Data System (ADS)
Kurashimo, E.; Sato, H.; Abe, S.; Mizohata, S.; Hirata, N.
2011-12-01
The 2011 Tohoku-Oki Earthquake (Mw9.0) occurred on the Japan Trench off the eastern shore of northern Honshu, Japan. The southward expansion of the afterslip area has reached the Kanto region, central Japan (Ozawa et al., 2011). The Philippine Sea Plate (PHS) subducts beneath the Kanto region. The bottom of the PHS is in contact with the upper surface of the Pacific Plate (PAC) beneath northeastern Kanto. Detailed structure of the PHS-PAC contact zone is important to constrain the southward rupture process of the Tohoku-Oki Earthquake and provide new insight into the process of future earthquake occurrence beneath the Kanto region. Active and passive seismic experiments were conducted to obtain a structural image beneath northeastern Kanto in 2010 (Sato et al., 2010). The geometry of upper surface of the PHS has been revealed by seismic reflection profiling (Sato et al., 2010). Passive seismic data set is useful to obtain a deep structural image. Two passive seismic array observations were conducted to obtain a detailed structure image of the PHS-PAC contact zone beneath northeastern Kanto. One was carried out along a 50-km-long seismic line trending NE-SW (KT-line) and the other was carried out along a 65-km-long seismic line trending NW-SE (TM-line). Sixty-five 3-component portable seismographs were deployed on KT-line with 500 to 700 m interval and waveforms were continuously recorded during a four-month period from June, 2010. Forty-five 3-component portable seismographs were deployed on TM-line with about 1-2 km spacing and waveforms were continuously recorded during the seven-month period from June, 2010. Arrival times of earthquakes were used in a joint inversion for earthquake locations and velocity structure, using the iterative damped least-squares algorithm, simul2000 (Thurber and Eberhart-Phillips, 1999). The relocated hypocenter distribution shows that the seismicity along the upper surface of the PAC is located at depths of 45-75 km beneath northeastern Kanto. The seismicity associated with the northwestward subducting PHS can be traced to a depth of 60 km. The depth section of Vp/Vs structure shows the lateral variation of the Vp/Vs values along the top of the PHS. Clustered earthquakes are located in and around the high Vp/Vs zone. High Vp/Vs ratio and low Vp zone with low seismicity is observed in the slab-slab contact zone beneath northeastern Kanto. The heterogeneity of the slab-slab contact zone beneath northeastern Kanto may affect the southward expansion of the afterslip of the Tohoku-Oki Earthquake. Acknowledgments: This study was supported by the Earthquake Research Institute cooperative research program.
NASA Astrophysics Data System (ADS)
Liu, Y.-S.; Kuo, B.-Y.
2009-04-01
Taiwan is located in the convergent plate boundary zone where the Philippine Sea plate has obliquely collided on the Asian continental margin, initiating the arc-continent collision and subsequent mountain-building in Taiwan. Receiver function has been a powerful tool to image seismic velocity discontinuity structure in the crust and upper mantle which can help illuminate the deep dynamic process of active Taiwan orogeny. In this study, we adopt backprojection migration processing of teleseismic receiver functions to investigate the crust and upper mantle discontinuities beneath southern Taiwan, using the data from Southern Taiwan Transect Seismic Array (STTA), broadband stations of Central Weather Bureau (CWB), Broadband Array in Taiwan for Seismology (BATS), and Taiwan Integrated Geodynamics Research (TAIGER). This composite east-west trending linear array has the aperture of about 150 km with the station spacing of ~5-10 km. Superior to the common midpoint (CMP) stack approach, the migration can properly image the dipping, curved, or laterally-varying topography of discontinuous interfaces which very likely exist under the complicated tectonic setting of Taiwan. We first conduct synthetic experiments to test the depth and lateral resolution of migration images based on the WKBJ synthetic waveforms calculated from available source and receiver distributions. We will next construct the 2-D migration image under the array to reveal the topographic variation of the Moho and lithosphere discontinuities beneath southern Taiwan.
NASA Astrophysics Data System (ADS)
Simmons, Nathan; Myers, Steve
2017-04-01
We continue to develop more advanced models of Earth's global seismic structure with specific focus on improving predictive capabilities for future seismic events. Our most recent version of the model combines high-quality P and S wave body wave travel times and surface-wave group and phase velocities into a joint (simultaneous) inversion process to tomographically image Earth's crust and mantle. The new model adds anisotropy (known as vertical transverse isotropy) to the model, which is necessitated by the addition of surface waves to the tomographic data set. Like previous versions of the model the new model consists of 59 surfaces and 1.6 million model nodes from the surface to the core-mantle boundary, overlaying a 1-D outer and inner core model. The model architecture is aspherical and we directly incorporate Earth's expected hydrostatic shape (ellipticity and mantle stretching). We also explicitly honor surface undulations including the Moho, several internal crustal units, and the upper mantle transition zone undulations as predicated by previous studies. The explicit Earth model design allows for accurate travel time computation using our unique 3-D ray tracing algorithms, capable of 3-D ray tracing more than 20 distinct seismic phases including crustal, regional, teleseismic, and core phases. Thus, we can now incorporate certain secondary (and sometimes exotic) phases into source location determination and other analyses. New work on model uncertainty quantification assesses the error covariance of the model, which when completed will enable calculation of path-specific estimates of uncertainty for travel times computed using our previous model (LLNL-G3D-JPS) which is available to the monitoring and broader research community and we encourage external evaluation and validation. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Simon, H.; Buske, S.
2017-12-01
The Eger Rift zone (Czech Republic) is a intra-continental non-volcanic region and is characterized by outstanding geodynamic activities, which result in earthquake swarms and significant CO2 emanations. Because fluid-induced stress can trigger earthquake swarms, both natural phenomena are probably related to each other. The epicentres of the earthquake swarms cluster at the northern edge of the Cheb Basin. Although the location of the cluster coincides with the major Mariánské-Lázně Fault Zone (MLFZ) the strike of the focal plane indicates another fault zone, the N-S trending Počátky-Plesná Zone (PPZ). Isotopic analysis of the CO2-rich fluids revealed a significant portion of upper mantle derived components, hence a magmatic fluid source in the upper mantle was postulated. Because of these phenomena, the Eger Rift area is a unique site for interdisciplinary drilling programs to study the fluid-earthquake interaction. The ICDP project PIER (Probing of Intra-continental magmatic activity: drilling the Eger Rift) will set up an observatory, consisting of five monitoring boreholes. In preparation for the drilling, the goal of the seismic survey is the characterization of the projected fluid-monitoring drill site at the CO2 degassing mofette field near Hartoušov. This will be achieved by a 6 km long profile with dense source and receiver spacing. The W-E trending profile will cross the proposed drill site and the surface traces of MLFZ and PPZ. The outcome of the seismic survey will be a high-resolution structural image of potential reflectors related to these fault zones. This will be achieved by the application of advanced pre-stack depth migration methods and a detailed P-wave velocity distribution of the area obtained from first arrival tomography. During interpretation of the seismic data, a geoelectrical resistivity model, acquired along the same profile line, will provide important constraints, especially with respect to fluid pathways.
Using Receiver Functions to Image the Montana Crust and Upper Mantle
NASA Astrophysics Data System (ADS)
Sirianni, R. T.; Russo, R. M.
2008-12-01
We determined receiver functions (RFs) at six permanent Advanced National Seismic System (ANSS) stations to examine crust and upper mantle structure of the Wyoming craton (WC) and Medicine Hat block (MHB). The Deep Probe & SAREX projects (Henstock et al., 1998; Clowes et al., 2002; Gorman et al., 2002) used active source seismics to model a high velocity crustal layer (the so-called 7x layer) beneath the WC. This layer exhibits P wave velocities that are high for lower continental crust (~7+ km/s) and extends from 30-55 km below the surface. Interpretations of the active source data indicate that this layer may represent wide scale crustal underplating of the WC, implying post-Archean craton modification with implications for Laurentia assembly. We used 43 earthquakes from a wide azimuthal distribution recorded at the Montana ANSS stations; high signal-to-noise ratios of 25 of these RFs were acceptable for further analysis. Receiver functions constrain crustal velocity structure beneath a seismometer by using P-to-S wave conversions at sharp velocity contrast boundaries. Preliminary results for seismic stations DGMT, EGMT, and LAO, located to the east of the Deep Probe and SAREX seismic line on the Wyoming craton/Medicine Hat block show the influence of sedimentary cover and a strong Ps phase at approximately four seconds after P. At BOZ and MSO, located in the Rocky mountains, the sedimentary cover signal previously noted is absent, and instead we observe a sharp Ps phase at about four and a half seconds after P. RFs at station RLMT (on the WC) are highly anomalous, probably reflecting complex conversions from two differently oriented dipping layers. We will use the RFs to produce suites of acceptable structural models to test for the presence and lateral extent of the 7x layer and other structural features of the Rocky Mountains-craton transition.
Sweetwater, Texas Large N Experiment
NASA Astrophysics Data System (ADS)
Sumy, D. F.; Woodward, R.; Barklage, M.; Hollis, D.; Spriggs, N.; Gridley, J. M.; Parker, T.
2015-12-01
From 7 March to 30 April 2014, NodalSeismic, Nanometrics, and IRIS PASSCAL conducted a collaborative, spatially-dense seismic survey with several thousand nodal short-period geophones complemented by a backbone array of broadband sensors near Sweetwater, Texas. This pilot project demonstrates the efficacy of industry and academic partnerships, and leveraged a larger, commercial 3D survey to collect passive source seismic recordings to image the subsurface. This innovative deployment of a large-N mixed-mode array allows industry to explore array geometries and investigate the value of broadband recordings, while affording academics a dense wavefield imaging capability and an operational model for high volume instrument deployment. The broadband array consists of 25 continuously-recording stations from IRIS PASSCAL and Nanometrics, with an array design that maximized recording of horizontal-traveling seismic energy for surface wave analysis over the primary target area with sufficient offset for imaging objectives at depth. In addition, 2639 FairfieldNodal Zland nodes from NodalSeismic were deployed in three sub-arrays: the outlier, backbone, and active source arrays. The backbone array consisted of 292 nodes that covered the entire survey area, while the outlier array consisted of 25 continuously-recording nodes distributed at a ~3 km distance away from the survey perimeter. Both the backbone and outlier array provide valuable constraints for the passive source portion of the analysis. This project serves as a learning platform to develop best practices in the support of large-N arrays with joint industry and academic expertise. Here we investigate lessons learned from a facility perspective, and present examples of data from the various sensors and array geometries. We will explore first-order results from local and teleseismic earthquakes, and show visualizations of the data across the array. Data are archived at the IRIS DMC under stations codes XB and 1B.
NASA Astrophysics Data System (ADS)
Raef, Abdelmoneam; Gad, Sabreen; Tucker-Kulesza, Stacey
2015-10-01
Seismic site characteristics, as pertaining to earthquake hazard reduction, are a function of the subsurface elastic moduli and the geologic structures. This study explores how multiscale (surface, downhole, and laboratory) datasets can be utilized to improve "constrained" average Vs30 (shear-wave velocity to a 30-meter depth). We integrate borehole, surface and laboratory measurements for a seismic site classification based on the standards of the National Earthquake Hazard Reduction Program (NEHRP). The seismic shear-wave velocity (Vs30) was derived from a geophysical inversion workflow that utilized multichannel analysis of surface-waves (MASW) and downhole acoustic televiewer imaging (DATI). P-wave and S-wave velocities, based on laboratory measurements of arrival times of ultrasonic-frequency signals, supported the workflow by enabling us to calculate Poisson's ratio, which was incorporated in building an initial model for the geophysical inversion of MASW. Extraction of core samples from two boreholes provided lithology and thickness calibration of the amplitudes of the acoustic televiewer imaging for each layer. The MASW inversion, for calculating Vs sections, was constrained with both ultrasonic laboratory measurements (from first arrivals of Vs and Vp waveforms at simulated in situ overburden stress conditions) and the downhole acoustic televiewer (DATV) amplitude logs. The Vs30 calculations enabled categorizing the studied site as NEHRP-class "C" - very dense soil and soft rock. Unlike shallow fractured carbonates in the studied area, S-wave and P-wave velocities at ultrasonic frequency for the deeper intact shale core-samples from two boreholes were in better agreement with the corresponding velocities from both a zero-offset vertical seismic profiling (VSP) and inversion of Rayleigh-wave velocity dispersion curves.
NASA Astrophysics Data System (ADS)
Gao, H.
2017-12-01
The crust and upper mantle seismic structure, spanning from the Juan de Fuca and Gorda spreading centers to the Cascade arc, is imaged with full-wave propagation simulation and ambient noise tomography. To retrieve Rayleigh-wave Empirical Green's Functions between station pairs, we process the vertical component of continuous seismic data recorded between 2004 and 2015 by about 800 stations, including three offshore seismic networks (the Cascadia Initiative Amphibious Array, the Blanco Transform OBS experiment, and the Gorda Deformation Zone OBS experiment) and all available broadband inland stations. The spreading centers have anomalously low shear-wave velocity beneath the oceanic lithosphere. Around the Cobb axial seamount, we observe a low velocity anomaly underlying a relatively thin oceanic lithosphere, indicating its influence on the Juan de Fuca ridge. The tomographic imaging reveals great details of the seismic feature of the oceanic lithosphere prior to and after subduction, which varies significantly along strike and along dip. On average, the thickness of the oceanic lithosphere is about 30-45 km. The Juan de Fuca lithosphere appears to be relatively thin around the ridge, especially beneath the Cobb axial seamount, and then gradually thickens with increasing distance from the ridge. The thickness of the Gorda plate appears to be constant, which is probably due to the small size of the subduction system from formation to subduction. It is noteworthy that the oceanic plate is imaged relatively weaker beneath the trench compared to other parts of the plate. We suggest that in addition to the possible hydration of the oceanic mantle lithosphere, other mechanisms must be considered to explain the observed seismic feature around the trench. Further landward, very low velocity anomalies are observed above the plate interface along the Cascade forearc, indicative of subducted sediments.
Zhang, Wenlu; Chen, Fengyi; Ma, Wenwen; Rong, Qiangzhou; Qiao, Xueguang; Wang, Ruohui
2018-04-16
A fringe visibility enhanced fiber-optic Fabry-Perot interferometer based ultrasonic sensor is proposed and experimentally demonstrated for seismic physical model imaging. The sensor consists of a graded index multimode fiber collimator and a PTFE (polytetrafluoroethylene) diaphragm to form a Fabry-Perot interferometer. Owing to the increase of the sensor's spectral sideband slope and the smaller Young's modulus of the PTFE diaphragm, a high response to both continuous and pulsed ultrasound with a high SNR of 42.92 dB in 300 kHz is achieved when the spectral sideband filter technique is used to interrogate the sensor. The ultrasonic reconstructed images can clearly differentiate the shape of models with a high resolution.
An image of the Columbia Plateau from inversion of high-resolution seismic data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lutter, W.J.; Catchings, R.D.; Jarchow, C.M.
1994-08-01
The authors use a method of traveltime inversion of high-resolution seismic data to provide the first reliable images of internal details of the Columbia River Basalt Group (CRBG), the subsurface basalt/sediment interface, and the deeper sediment/basement interface. Velocity structure within the basalts, delineated on the order of 1 km horizontally and 0.2 km vertically, is constrained to within [plus minus]0.1 km/s for most of the seismic profile. Over 5,000 observed traveltimes fit their model with an rms error of 0.018 s. The maximum depth of penetration of the basalt diving waves (truncated by underlying low-velocity sediments) provides a reliable estimatemore » of the depth to the base of the basalt, which agrees with well-log measurements to within 0.05 km (165 ft). The authors use image blurring, calculated from the resolution matrix, to estimate the aspect ratio of images velocity anomaly widths to true widths for velocity features within the basalt. From their calculations of image blurring, they interpret low velocity zones (LVZ) within the basalts at Boylston Mountain and the Whiskey Dick anticline to have widths of 4.5 and 3 km, respectively, within the upper 1.5 km of the model. At greater depth, the widths of these imaged LVZs thin to approximately 2 km or less. They interpret these linear, subparallel, low-velocity zones imaged adjacent to anticlines of the Yakima Fold Belt to be brecciated fault zones. These fault zones dip to the south at angles between 15 to 45 degrees.« less
Seismic hazard assessment based on the Unified Scaling Law for Earthquakes: the Greater Caucasus
NASA Astrophysics Data System (ADS)
Nekrasova, A.; Kossobokov, V. G.
2015-12-01
Losses from natural disasters continue to increase mainly due to poor understanding by majority of scientific community, decision makers and public, the three components of Risk, i.e., Hazard, Exposure, and Vulnerability. Contemporary Science is responsible for not coping with challenging changes of Exposures and their Vulnerability inflicted by growing population, its concentration, etc., which result in a steady increase of Losses from Natural Hazards. Scientists owe to Society for lack of knowledge, education, and communication. In fact, Contemporary Science can do a better job in disclosing Natural Hazards, assessing Risks, and delivering such knowledge in advance catastrophic events. We continue applying the general concept of seismic risk analysis in a number of seismic regions worldwide by constructing regional seismic hazard maps based on the Unified Scaling Law for Earthquakes (USLE), i.e. log N(M,L) = A - B•(M-6) + C•log L, where N(M,L) is the expected annual number of earthquakes of a certain magnitude M within an seismically prone area of linear dimension L. The parameters A, B, and C of USLE are used to estimate, first, the expected maximum magnitude in a time interval at a seismically prone cell of a uniform grid that cover the region of interest, and then the corresponding expected ground shaking parameters including macro-seismic intensity. After a rigorous testing against the available seismic evidences in the past (e.g., the historically reported macro-seismic intensity), such a seismic hazard map is used to generate maps of specific earthquake risks (e.g., those based on the density of exposed population). The methodology of seismic hazard and risks assessment based on USLE is illustrated by application to the seismic region of Greater Caucasus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernest A. Mancini
Characterization of stratigraphic sequences (T-R cycles or sequences) included outcrop studies, well log analysis and seismic reflection interpretation. These studies were performed by researchers at the University of Alabama, Wichita State University and McGill University. The outcrop, well log and seismic characterization studies were used to develop a depositional sequence model, a T-R cycle (sequence) model, and a sequence stratigraphy predictive model. The sequence stratigraphy predictive model developed in this study is based primarily on the modified T-R cycle (sequence) model. The T-R cycle (sequence) model using transgressive and regressive systems tracts and aggrading, backstepping, and infilling intervals or sectionsmore » was found to be the most appropriate sequence stratigraphy model for the strata in the onshore interior salt basins of the Gulf of Mexico to improve petroleum stratigraphic trap and specific reservoir facies imaging, detection and delineation. The known petroleum reservoirs of the Mississippi Interior and North Louisiana Salt Basins were classified using T-R cycle (sequence) terminology. The transgressive backstepping reservoirs have been the most productive of oil, and the transgressive backstepping and regressive infilling reservoirs have been the most productive of gas. Exploration strategies were formulated using the sequence stratigraphy predictive model and the classification of the known petroleum reservoirs utilizing T-R cycle (sequence) terminology. The well log signatures and seismic reflector patterns were determined to be distinctive for the aggrading, backstepping and infilling sections of the T-R cycle (sequence) and as such, well log and seismic data are useful for recognizing and defining potential reservoir facies. The use of the sequence stratigraphy predictive model, in combination with the knowledge of how the distinctive characteristics of the T-R system tracts and their subdivisions are expressed in well log patterns and seismic reflection configurations and terminations, improves the ability to identify and define the limits of potential stratigraphic traps and the stratigraphic component of combination stratigraphic and structural traps and the associated continental, coastal plain and marine potential reservoir facies. The assessment of the underdeveloped and undiscovered reservoirs and resources in the Mississippi Interior and North Louisiana Salt Basins resulted in the confirmation of the Monroe Uplift as a feature characterized by a major regional unconformity, which serves as a combination stratigraphic and structural trap with a significant stratigraphic component, and the characterization of a developing play in southwest Alabama, which involves a stratigraphic trap, located updip near the pinchout of the potential reservoir facies. Potential undiscovered and underdeveloped reservoirs in the onshore interior salt basins are identified as Jurassic and Cretaceous aggrading continental and coastal, backstepping nearshore marine and marine shelf, and infilling fluvial, deltaic, coastal plain and marine shelf.« less
Monotoring of CO2 Sequestration at Sleipner Using Full Waveform Inversion in Time-lapse Mode.
NASA Astrophysics Data System (ADS)
Gosselet, A.; Singh, S. C.
2007-12-01
It is now widely admitted that recent increase of CO2 in the atmosphere is due to human activities. The consecutive greenhouse effect is a major ecological concern. Geological storage is one proposed way to reduce atmosphere CO2 emissions. The Sleipner methane field, North Sea, is the very first site where CO2 has been injected back into a deep saline aquifer. In 1996, the Norwegian company Statoil and its partners began the production of the methane. The extracted methane contains a relatively high ratio of CO2, between 4% and 9%, that has to be reduced below 2.5% before delivering into the pipeline. An environmental tax introduced in Norway as early as 1991 prompted the company to store the separated CO2 instead of releasing it into the atmosphere as usually done. The CO2 is injected at the base of the Utsira sands. This water bearing formation lies at a depth between 800 and 1000m and is sealed by a thick shale layer. Seismic monitoring is a key tool in this strategy from a security standpoint and for sequestration optimization itself. Consequently, 3D seismic data were acquired before injection in 1994 and after injection in 1999, 2001, 2002, 2004 and 2006. Well-log revealed that the reservoir is crossed by thin shale layers that are 1 to 10m thick. CO2 rises up and is confined vertically by the shale layers, favouring horizontal gas migration and creating gas bearing thin beds. Seismic imaging of the gas pockets is therefore a challenging problem because large velocity variations occur on very short distance. Classical processing of time-lapse data consists in subtracting repeated survey seismic traces from the pre- injection baseline traces to exhibit changes within the reservoir. This approach remains qualitative, providing only the shape and extent of the gas cloud. Instead, we propose to compare elastic models of the subsurface computed through 2D full wave form inversion, an advanced seismic imaging technique. This method is based on the wave equation numerical simulation and can account for complex propagation effects as encountered in the Sleipner time-lapse data. This makes possible quantitative estimation of P and S-wave velocities on the meter scale. We applied the technique to 2D lines from the 1994, 1999 and 2006 vintages. The resulting post- injection models were subtracted to the pre-injection model to determine both the geometry and the velocity structure of the gas bearing areas which will be used to quantify the amount of CO2 in different forms (free versus dissolved).
On the validation of seismic imaging methods: Finite frequency or ray theory?
Maceira, Monica; Larmat, Carene; Porritt, Robert W.; ...
2015-01-23
We investigate the merits of the more recently developed finite-frequency approach to tomography against the more traditional and approximate ray theoretical approach for state of the art seismic models developed for western North America. To this end, we employ the spectral element method to assess the agreement between observations on real data and measurements made on synthetic seismograms predicted by the models under consideration. We check for phase delay agreement as well as waveform cross-correlation values. Based on statistical analyses on S wave phase delay measurements, finite frequency shows an improvement over ray theory. Random sampling using cross-correlation values identifiesmore » regions where synthetic seismograms computed with ray theory and finite-frequency models differ the most. Our study suggests that finite-frequency approaches to seismic imaging exhibit measurable improvement for pronounced low-velocity anomalies such as mantle plumes.« less
Seismic monitoring in the oceans by autonomous floats.
Sukhovich, Alexey; Bonnieux, Sébastien; Hello, Yann; Irisson, Jean-Olivier; Simons, Frederik J; Nolet, Guust
2015-08-20
Our understanding of the internal dynamics of the Earth is largely based on images of seismic velocity variations in the mantle obtained with global tomography. However, our ability to image the mantle is severely hampered by a lack of seismic data collected in marine areas. Here we report observations made under different noise conditions (in the Mediterranean Sea, the Indian and Pacific Oceans) by a submarine floating seismograph, and show that such floats are able to fill the oceanic data gap. Depending on the ambient noise level, the floats can record between 35 and 63% of distant earthquakes with a moment magnitude M≥6.5. Even magnitudes <6.0 can be successfully observed under favourable noise conditions. The serendipitous recording of an earthquake swarm near the Indian Ocean triple junction enabled us to establish a threshold magnitude between 2.7 and 3.4 for local earthquakes in the noisiest of the three environments.
Shallow seismic imaging of folds above the Puente Hills blind-thrust fault, Los Angeles, California
Pratt, T.L.; Shaw, J.H.; Dolan, J.F.; Christofferson, S.A.; Williams, R.A.; Odum, J.K.; Plesch, A.
2002-01-01
High-resolution seismic reflection profiles image discrete folds in the shallow subsurface (<600 m) above two segments of the Puente Hills blind-thrust fault system, Los Angeles basin, California. The profiles demonstrate late Quaternary activity at the fault tip, precisely locate the axial surfaces of folds within the upper 100 m, and constrain the geometry and kinematics of recent folding. The Santa Fe Springs segment of the Puente Hills fault zone shows an upward-narrowing kink band with an active anticlinal axial surface, consistent with fault-bend folding above an active thrust ramp. The Coyote Hills segment shows an active synclinal axial surface that coincides with the base of a 9-m-high scarp, consistent with tip-line folding or the presence of a backthrust. The seismic profiles pinpoint targets for future geologic work to constrain slip rates and ages of past events on this important fault system.
Seismic monitoring in the oceans by autonomous floats
Sukhovich, Alexey; Bonnieux, Sébastien; Hello, Yann; Irisson, Jean-Olivier; Simons, Frederik J.; Nolet, Guust
2015-01-01
Our understanding of the internal dynamics of the Earth is largely based on images of seismic velocity variations in the mantle obtained with global tomography. However, our ability to image the mantle is severely hampered by a lack of seismic data collected in marine areas. Here we report observations made under different noise conditions (in the Mediterranean Sea, the Indian and Pacific Oceans) by a submarine floating seismograph, and show that such floats are able to fill the oceanic data gap. Depending on the ambient noise level, the floats can record between 35 and 63% of distant earthquakes with a moment magnitude M≥6.5. Even magnitudes <6.0 can be successfully observed under favourable noise conditions. The serendipitous recording of an earthquake swarm near the Indian Ocean triple junction enabled us to establish a threshold magnitude between 2.7 and 3.4 for local earthquakes in the noisiest of the three environments. PMID:26289598
Bananas, Doughnuts and Seismic Traveltimes
NASA Astrophysics Data System (ADS)
Dahlen, F. A.
2002-12-01
Most of what we know about the 3-D seismic heterogeneity of the mantle is based upon ray-theoretical traveltime tomography. In this infinite-frequency approximation, a measured traveltime anomaly depends only upon the wavespeed along an infinitesimally thin geometrical ray between a seismic source and a seismographic station. In this lecture I shall describe a new formulation of the seismic traveltime inverse problem which accounts for the ability of a finite-frequency wave to ``feel'' 3-D structure off of the source-receiver ray. Finite-frequency diffraction effects associated with this off-ray sensitivity act to ``heal'' the corrugations that develop in a wavefront propagating through a heterogeneous medium. Ray-theoretical tomography is based upon the premise that a seismic wave ``remembers'' all of the traveltime advances or delays that it accrues along its path, whereas actual finite-frequency waves ``forget''. I shall describe a number of recent analytical and numerical investigations, which have led to an improved theoretical understanding of this phenomenon.
Hydraulic fracturing volume is associated with induced earthquake productivity in the Duvernay play.
Schultz, R; Atkinson, G; Eaton, D W; Gu, Y J; Kao, H
2018-01-19
A sharp increase in the frequency of earthquakes near Fox Creek, Alberta, began in December 2013 in response to hydraulic fracturing. Using a hydraulic fracturing database, we explore relationships between injection parameters and seismicity response. We show that induced earthquakes are associated with completions that used larger injection volumes (10 4 to 10 5 cubic meters) and that seismic productivity scales linearly with injection volume. Injection pressure and rate have an insignificant association with seismic response. Further findings suggest that geological factors play a prominent role in seismic productivity, as evidenced by spatial correlations. Together, volume and geological factors account for ~96% of the variability in the induced earthquake rate near Fox Creek. This result is quantified by a seismogenic index-modified frequency-magnitude distribution, providing a framework to forecast induced seismicity. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.