Science.gov

Sample records for advanced semiconductor device

  1. Advanced Semiconductor Devices

    NASA Astrophysics Data System (ADS)

    Shur, Michael S.; Maki, Paul A.; Kolodzey, James

    2007-06-01

    I. Wide band gap devices. Wide-Bandgap Semiconductor devices for automotive applications / M. Sugimoto ... [et al.]. A GaN on SiC HFET device technology for wireless infrastructure applications / B. Green ... [et al.]. Drift velocity limitation in GaN HEMT channels / A. Matulionis. Simulations of field-plated and recessed gate gallium nitride-based heterojunction field-effect transistors / V. O. Turin, M. S. Shur and D. B. Veksler. Low temperature electroluminescence of green and deep green GaInN/GaN light emitting diodes / Y. Li ... [et al.]. Spatial spectral analysis in high brightness GaInN/GaN light emitting diodes / T. Detchprohm ... [et al.]. Self-induced surface texturing of Al2O3 by means of inductively coupled plasma reactive ion etching in Cl2 chemistry / P. Batoni ... [et al.]. Field and termionic field transport in aluminium gallium arsenide heterojunction barriers / D. V. Morgan and A. Porch. Electrical characteristics and carrier lifetime measurements in high voltage 4H-SiC PiN diodes / P. A. Losee ... [et al.]. Geometry and short channel effects on enhancement-mode n-Channel GaN MOSFETs on p and n- GaN/sapphire substrates / W. Huang, T. Khan and T. P. Chow. 4H-SiC Vertical RESURF Schottky Rectifiers and MOSFETs / Y. Wang, P. A. Losee and T. P. Chow. Present status and future Directions of SiGe HBT technology / M. H. Khater ... [et al.]Optical properties of GaInN/GaN multi-quantum Wells structure and light emitting diode grown by metalorganic chemical vapor phase epitaxy / J. Senawiratne ... [et al.]. Electrical comparison of Ta/Ti/Al/Mo/Au and Ti/Al/Mo/Au Ohmic contacts on undoped GaN HEMTs structure with AlN interlayer / Y. Sun and L. F. Eastman. Above 2 A/mm drain current density of GaN HEMTs grown on sapphire / F. Medjdoub ... [et al.]. Focused thermal beam direct patterning on InGaN during molecular beam epitaxy / X. Chen, W. J. Schaff and L. F. Eastman -- II. Terahertz and millimeter wave devices. Temperature-dependent microwave performance of

  2. Improved Thermoelectric Devices: Advanced Semiconductor Materials for Thermoelectric Devices

    SciTech Connect

    2009-12-11

    Broad Funding Opportunity Announcement Project: Phononic Devices is working to recapture waste heat and convert it into usable electric power. To do this, the company is using thermoelectric devices, which are made from advanced semiconductor materials that convert heat into electricity or actively remove heat for refrigeration and cooling purposes. Thermoelectric devices resemble computer chips, and they manage heat by manipulating the direction of electrons at the nanoscale. These devices aren’t new, but they are currently too inefficient and expensive for widespread use. Phononic Devices is using a high-performance, cost-effective thermoelectric design that will improve the device’s efficiency and enable electronics manufacturers to more easily integrate them into their products.

  3. Advanced numerical methods and software approaches for semiconductor device simulation

    SciTech Connect

    CAREY,GRAHAM F.; PARDHANANI,A.L.; BOVA,STEVEN W.

    2000-03-23

    In this article the authors concisely present several modern strategies that are applicable to drift-dominated carrier transport in higher-order deterministic models such as the drift-diffusion, hydrodynamic, and quantum hydrodynamic systems. The approaches include extensions of upwind and artificial dissipation schemes, generalization of the traditional Scharfetter-Gummel approach, Petrov-Galerkin and streamline-upwind Petrov Galerkin (SUPG), entropy variables, transformations, least-squares mixed methods and other stabilized Galerkin schemes such as Galerkin least squares and discontinuous Galerkin schemes. The treatment is representative rather than an exhaustive review and several schemes are mentioned only briefly with appropriate reference to the literature. Some of the methods have been applied to the semiconductor device problem while others are still in the early stages of development for this class of applications. They have included numerical examples from the recent research tests with some of the methods. A second aspect of the work deals with algorithms that employ unstructured grids in conjunction with adaptive refinement strategies. The full benefits of such approaches have not yet been developed in this application area and they emphasize the need for further work on analysis, data structures and software to support adaptivity. Finally, they briefly consider some aspects of software frameworks. These include dial-an-operator approaches such as that used in the industrial simulator PROPHET, and object-oriented software support such as those in the SANDIA National Laboratory framework SIERRA.

  4. Advanced Numerical Methods and Software Approaches for Semiconductor Device Simulation

    DOE PAGES

    Carey, Graham F.; Pardhanani, A. L.; Bova, S. W.

    2000-01-01

    In this article we concisely present several modern strategies that are applicable to driftdominated carrier transport in higher-order deterministic models such as the driftdiffusion, hydrodynamic, and quantum hydrodynamic systems. The approaches include extensions of “upwind” and artificial dissipation schemes, generalization of the traditional Scharfetter – Gummel approach, Petrov – Galerkin and streamline-upwind Petrov Galerkin (SUPG), “entropy” variables, transformations, least-squares mixed methods and other stabilized Galerkin schemes such as Galerkin least squares and discontinuous Galerkin schemes. The treatment is representative rather than an exhaustive review and several schemes are mentioned only briefly with appropriate reference to the literature. Some of themore » methods have been applied to the semiconductor device problem while others are still in the early stages of development for this class of applications. We have included numerical examples from our recent research tests with some of the methods. A second aspect of the work deals with algorithms that employ unstructured grids in conjunction with adaptive refinement strategies. The full benefits of such approaches have not yet been developed in this application area and we emphasize the need for further work on analysis, data structures and software to support adaptivity. Finally, we briefly consider some aspects of software frameworks. These include dial-an-operator approaches such as that used in the industrial simulator PROPHET, and object-oriented software support such as those in the SANDIA National Laboratory framework SIERRA.« less

  5. Stretchable Organic Semiconductor Devices.

    PubMed

    Qian, Yan; Zhang, Xinwen; Xie, Linghai; Qi, Dianpeng; Chandran, Bevita K; Chen, Xiaodong; Huang, Wei

    2016-11-01

    Stretchable electronics are essential for the development of intensely packed collapsible and portable electronics, wearable electronics, epidermal and bioimplanted electronics, 3D surface compliable devices, bionics, prosthesis, and robotics. However, most stretchable devices are currently based on inorganic electronics, whose high cost of fabrication and limited processing area make it difficult to produce inexpensive, large-area devices. Therefore, organic stretchable electronics are highly attractive due to many advantages over their inorganic counterparts, such as their light weight, flexibility, low cost and large-area solution-processing, the reproducible semiconductor resources, and the easy tuning of their properties via molecular tailoring. Among them, stretchable organic semiconductor devices have become a hot and fast-growing research field, in which great advances have been made in recent years. These fantastic advances are summarized here, focusing on stretchable organic field-effect transistors, light-emitting devices, solar cells, and memory devices.

  6. Characterization of organic and inorganic optoelectronic semiconductor devices using advanced spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Schroeder, Raoul

    In this thesis, advanced spectroscopy methods are discussed and applied to gain understanding of the physical properties of organic conjugated molecules, II-VI thin film semiconductors, and vertical cavity surface emitting lasers (VCSEL). Experiments include single photon and two-photon excitation with lasers, with subsequent measurements of the absorption and photoluminescence, as well as photocurrent measurements using tungsten and xenon lamps, measuring the direct current and the alternating current of the devices. The materials are investigated in dissolved form (conjugated polymers), thin films (polymers, II-VI semiconductors), and complex layer structures (hybrid device, VCSEL). The experiments are analyzed and interpreted by newly developed or applied theories for two-photon saturation processes in semiconductors, bandgap shrinkage due to optically induced electron hole pairs, and the principle of detailed balance to describe the photoluminescence in thin film cadmium sulfide.

  7. Advanced semiconductor quantum well devices for infrared applications

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Vladimir V.

    High performance mid-wavelength infrared (MWIR) light emitting diodes (LEDs) are needed for chemical sensing, analysis and medical imaging. Efficient long wavelength infrared (LWIR) photodetectors are highly desirable for remote sensing and space exploration. The goal of this work is to investigate new mid-infrared LEDs and to optimize existing LWIR quantum well infrared photodetectors (QWIPs). Type-II "W" InAs/InGaSb/AlGaAsSb quantum wells were incorporated as optically active layers in MWIR LEDs. Influence of MBE crystal growth conditions on the density of Shockley-Read-Hall centers in the "W" quantum wells was studied and the optimal growth conditions were identified. A qualitative physical model was developed to describe relative importance of the radiative and non-radiative processes for various temperature ranges. MWIR LED structures lattice-matched to InAs and GaSb substrates were grown. Devices on InAs substrates were found to be at least twice as efficient as devices grown on GaSb. LEDs on InAs had 4.5 mum emission wavelength and 26.5 muW/A external efficiency. Possibility to operate GaAs/AIGaAs QWIP under normal-to-surface light incidence was studied. Metal nano-particle surface coating was developed and processes responsible for, light coupling into the QWIP were investigated. QWIP structure itself was optimized to eliminate Si-diffusion-assisted dark current enhancement by employing a new doping profile in the quantum wells. Devices with the new doping profile had an order of magnitude lower dark current and 20% higher photoresponse than commercially available QWIPs.

  8. Unitary lens semiconductor device

    DOEpatents

    Lear, K.L.

    1997-05-27

    A unitary lens semiconductor device and method are disclosed. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors. 9 figs.

  9. Unitary lens semiconductor device

    DOEpatents

    Lear, Kevin L.

    1997-01-01

    A unitary lens semiconductor device and method. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors.

  10. New Semiconductor Devices

    NASA Astrophysics Data System (ADS)

    Balestra, F.

    2008-11-01

    A review of recently emerging semiconductor devices for nanoelectronic applications is given. For the end of the international technology roadmap for semiconductors, very innovative materials, technologies and nanodevice architectures will be needed. Silicon on insulator-based devices seem to be the best candidates for the ultimate integration of integrated circuits on silicon. The flexibility of the silicon on insulator-based structure and the possibility to realize new device architectures allow to obtain optimum electrical properties for low power and high performance circuits. These transistors are also very interesting for high frequency and memory applications. The performance and physical mechanisms are addressed in single- and multi-gate thin film Si, SiGe and Ge metal-oxide-semiconductor field-effect-transistors. The impact of tensile or compressive uniaxial and biaxial strains in the channel, of high k materials and metal gates as well as metallic Schottky source-drain architectures are discussed. Finally, the interest of advanced beyond-CMOS (complementary MOS) nanodevices for long term applications, based on nanowires, carbon electronics or small slope switch structures are presented.

  11. Interconnected semiconductor devices

    DOEpatents

    Grimmer, Derrick P.; Paulson, Kenneth R.; Gilbert, James R.

    1990-10-23

    Semiconductor layer and conductive layer formed on a flexible substrate, divided into individual devices and interconnected with one another in series by interconnection layers and penetrating terminals.

  12. New unorthodox semiconductor devices

    NASA Astrophysics Data System (ADS)

    Board, K.

    1985-12-01

    A range of new semiconductor devices, including a number of structures which rely entirely upon new phenomena, are discussed. Unipolar two-terminal devices, including impurity-controlled barriers and graded composition barriers, are considered, as are new transistor structures, including the hot-electron camel transistor, the planar-doped barrier transistor, the thermionic emission transistor, and the permeable base transistor. Regenerative switching devices are addressed, including the metal-tunnel insulator-semiconductor switch, the polysilicon switch, MIS, and MISIM switching structures, and the triangular-barrier switch. Heterostructure devices are covered, including the heterojunction bipolar transistor, the selectively doped heterojunction transistor, heterojunction lasers, and quantum-well structures.

  13. Scalable Iterative Solvers Applied to 3D Parallel Simulation of Advanced Semiconductor Devices

    NASA Astrophysics Data System (ADS)

    García-Loureiro, A. J.; Aldegunde, M.; Seoane, N.

    2009-08-01

    We have studied the performance of a preconditioned iterative solver to speed up a 3D semiconductor device simulator. Since 3D simulations necessitate large computing resources, the choice of algorithms and their parameters become of utmost importance. This code uses a density gradient drift-diffusion semiconductor transport model based on the finite element method which is one of the most general and complex discretisation techniques. It has been implemented for a distributed memory multiprocessor environment using the Message Passing Interface (MPI) library. We have applied this simulator to a 67 nm effective gate length Si MOSFET.

  14. Challenges of Electrical Measurements of Advanced Gate Dielectrics in Metal-Oxide-Semiconductor Devices

    NASA Astrophysics Data System (ADS)

    Vogel, Eric M.; Brown, George A.

    2003-09-01

    Experimental measurements and simulations are used to provide an overview of key issues with the electrical characterization of metal-oxide-semiconductor (MOS) devices with ultra-thin oxide and alternate gate dielectrics. Experimental issues associated with the most common electrical characterization method, capacitance-voltage (C-V), are first described. Issues associated with equivalent oxide thickness extraction and comparison, interface state measurement, extrinsic defects, and defect generation are then overviewed.

  15. Kansas Advanced Semiconductor Project

    SciTech Connect

    Baringer, P.; Bean, A.; Bolton, T.; Horton-Smith, G.; Maravin, Y.; Ratra, B.; Stanton, N.; von Toerne, E.; Wilson, G.

    2007-09-21

    KASP (Kansas Advanced Semiconductor Project) completed the new Layer 0 upgrade for D0, assumed key electronics projects for the US CMS project, finished important new physics measurements with the D0 experiment at Fermilab, made substantial contributions to detector studies for the proposed e+e- international linear collider (ILC), and advanced key initiatives in non-accelerator-based neutrino physics.

  16. Microwave semiconductor devices

    NASA Astrophysics Data System (ADS)

    Sitch, J. E.

    1985-03-01

    The state of the art of microwave semiconductor design is reviewed, with emphasis on developments of the past 10-12 years. Consideration is given to: varistor diodes; varactor diodes; and transit time negative diodes. The design principles of bipolar and unipolar transistors are discussed, with reference to power FETs, traveling-wave FETs, and camel or planar-doped barrier transistors. Recent innovations in the field of fabrication technology are also considered, including: crystal growth; doping; and packaging. Several schematic drawings and photographs of the different devices are provided.

  17. Improvement of process control using wafer geometry for enhanced manufacturability of advanced semiconductor devices

    NASA Astrophysics Data System (ADS)

    Lee, Honggoo; Lee, Jongsu; Kim, Sang Min; Lee, Changhwan; Han, Sangjun; Kim, Myoungsoo; Kwon, Wontaik; Park, Sung-Ki; Vukkadala, Pradeep; Awasthi, Amartya; Kim, J. H.; Veeraraghavan, Sathish; Choi, DongSub; Huang, Kevin; Dighe, Prasanna; Lee, Cheouljung; Byeon, Jungho; Dey, Soham; Sinha, Jaydeep

    2015-03-01

    Aggressive advancements in semiconductor technology have resulted in integrated chip (IC) manufacturing capability at sub-20nm half-pitch nodes. With this, lithography overlay error budgets are becoming increasingly stringent. The delay in EUV lithography readiness for high volume manufacturing (HVM) and the need for multiple-patterning lithography with 193i technology has further amplified the overlay issue. Thus there exists a need for technologies that can improve overlay errors in HVM. The traditional method for reducing overlay errors predominantly focused on improving lithography scanner printability performance. However, processes outside of the lithography sector known as processinduced overlay errors can contribute significantly to the total overlay at the current requirements. Monitoring and characterizing process-induced overlay has become critical for advanced node patterning. Recently a relatively new technique for overlay control that uses high-resolution wafer geometry measurements has gained significance. In this work we present the implementation of this technique in an IC fabrication environment to monitor wafer geometry changes induced across several points in the process flow, of multiple product layers with critical overlay performance requirement. Several production wafer lots were measured and analyzed on a patterned wafer geometry tool. Changes induced in wafer geometry as a result of wafer processing were related to down-stream overlay error contribution using the analytical in-plane distortion (IPD) calculation model. Through this segmentation, process steps that are major contributors to down-stream overlay were identified. Subsequent process optimization was then isolated to those process steps where maximum benefit might be realized. Root-cause for the within-wafer, wafer-to-wafer, tool-to-tool, and station-to-station variations observed were further investigated using local shape curvature changes - which is directly related to

  18. A review of recent advances in the spherical harmonics expansion method for semiconductor device simulation.

    PubMed

    Rupp, K; Jungemann, C; Hong, S-M; Bina, M; Grasser, T; Jüngel, A

    The Boltzmann transport equation is commonly considered to be the best semi-classical description of carrier transport in semiconductors, providing precise information about the distribution of carriers with respect to time (one dimension), location (three dimensions), and momentum (three dimensions). However, numerical solutions for the seven-dimensional carrier distribution functions are very demanding. The most common solution approach is the stochastic Monte Carlo method, because the gigabytes of memory requirements of deterministic direct solution approaches has not been available until recently. As a remedy, the higher accuracy provided by solutions of the Boltzmann transport equation is often exchanged for lower computational expense by using simpler models based on macroscopic quantities such as carrier density and mean carrier velocity. Recent developments for the deterministic spherical harmonics expansion method have reduced the computational cost for solving the Boltzmann transport equation, enabling the computation of carrier distribution functions even for spatially three-dimensional device simulations within minutes to hours. We summarize recent progress for the spherical harmonics expansion method and show that small currents, reasonable execution times, and rare events such as low-frequency noise, which are all hard or even impossible to simulate with the established Monte Carlo method, can be handled in a straight-forward manner. The applicability of the method for important practical applications is demonstrated for noise simulation, small-signal analysis, hot-carrier degradation, and avalanche breakdown.

  19. Stress-induced Effects Caused by 3D IC TSV Packaging in Advanced Semiconductor Device Performance

    NASA Astrophysics Data System (ADS)

    Sukharev, V.; Kteyan, A.; Choy, J.-H.; Hovsepyan, H.; Markosian, A.; Zschech, E.; Huebner, R.

    2011-11-01

    Potential challenges with managing mechanical stress and the consequent effects on device performance for advanced 3D through-silicon-via (TSV) based technologies are outlined. The paper addresses the growing need in a simulation-based design verification flow capable to analyze a design of 3D IC stacks and to determine across-die out-of-spec variations in device electrical characteristics caused by the layout and through-silicon-via (TSV)/package-induced mechanical stress. The limited characterization/measurement capabilities for 3D IC stacks and a strict "good die" requirement make this type of analysis critical for the achievement of an acceptable level of functional and parametric yield and reliability. The paper focuses on the development of a design-for-manufacturability (DFM) type of methodology for managing mechanical stresses during a sequence of designs of 3D TSV-based dies, stacks and packages. A set of physics-based compact models for a multi-scale simulation to assess the mechanical stress across the device layers in silicon chips stacked and packaged with the 3D TSV technology is proposed. A calibration technique based on fitting to measured stress components and electrical characteristics of the test-chip devices is presented. A strategy for generation of a simulation feeding data and respective materials characterization approach are proposed, with the goal to generate a database for multi-scale material parameters of wafer-level and package-level structures. For model validation, high-resolution strain measurements in Si channels of the test-chip devices are needed. At the nanoscale, the transmission electron microscopy (TEM) is the only technique available for sub-10 nm strain measurements so far.

  20. Survey of cryogenic semiconductor devices

    SciTech Connect

    Talarico, L.J.; McKeever, J.W.

    1996-04-01

    Improved reliability and electronic performance can be achieved in a system operated at cryogenic temperatures because of the reduction in mechanical insult and in disruptive effects of thermal energy on electronic devices. Continuing discoveries of new superconductors with ever increasing values of T{sub c} above that of liquid nitrogen temperature (LNT) have provided incentive for developing semiconductor electronic systems that may also operate in the superconductor`s liquid nitrogen bath. Because of the interest in high-temperature superconductor (HTS) devices, liquid nitrogen is the cryogen of choice and LNT is the temperature on which this review is focused. The purpose of this survey is to locate and assemble published information comparing the room temperature (298 K), performance of commercially available conventional and hybrid semiconductor device with their performance at LNT (77K), to help establish their candidacy as cryogenic electronic devices specifically for use at LNT. The approach to gathering information for this survey included the following activities. Periodicals and proceedings were searched for information on the behavior of semiconductor devices at LNT. Telephone calls were made to representatives of semiconductor industries, to semiconductor subcontractors, to university faculty members prominent for their research in the area of cryogenic semiconductors, and to representatives of the National Aeronautics and Space Administration (NASA) and NASA subcontractors. The sources and contacts are listed with their responses in the introduction, and a list of references appears at the end of the survey.

  1. Nanoscale Semiconductor Devices as New Biomaterials

    PubMed Central

    Zimmerman, John; Parameswaran, Ramya; Tian, Bozhi

    2016-01-01

    Research on nanoscale semiconductor devices will elicit a novel understanding of biological systems. First, we discuss why it is necessary to build interfaces between cells and semiconductor nanoelectronics. Second, we describe some recent molecular biophysics studies with nanowire field effect transistor sensors. Third, we present the use of nanowire transistors as electrical recording devices that can be integrated into synthetic tissues and targeted intra- or extracellularly to study single cells. Lastly, we discuss future directions and challenges in further developing this area of research, which will advance biology and medicine. PMID:27213041

  2. Nanoscale Semiconductor Devices as New Biomaterials.

    PubMed

    Zimmerman, John; Parameswaran, Ramya; Tian, Bozhi

    2014-05-01

    Research on nanoscale semiconductor devices will elicit a novel understanding of biological systems. First, we discuss why it is necessary to build interfaces between cells and semiconductor nanoelectronics. Second, we describe some recent molecular biophysics studies with nanowire field effect transistor sensors. Third, we present the use of nanowire transistors as electrical recording devices that can be integrated into synthetic tissues and targeted intra- or extracellularly to study single cells. Lastly, we discuss future directions and challenges in further developing this area of research, which will advance biology and medicine.

  3. Quantum Transport in Semiconductor Devices

    DTIC Science & Technology

    1994-06-30

    TITLE AND SUBTITLE S. FUNDING NUMBERS " Quantum Transport in Semiconductor Devices" 6. AUTHOR(S) ,DftftLo3-91-6-oo 7 David K. Ferry 7. PERFORMING...OF ABSTRACT UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL NZIN 1540-01-280-5500 Standard Form 298 (Rev 2-89) PrinCrlt>• oy ANSI SIC Z39-18 QUANTUM ... TRANSPORT IN SEMICONDUCTOR DEVICES Final Report on DAAL03-91-G-0067 (28461-EL) David K. Ferry, Principal Investigator Department of Electrical Engineering

  4. Semiconductor metafilms devices (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Brongersma, Mark L.

    2016-09-01

    Many conventional optoelectronic devices consist of thin, stacked films of metals and semiconductors. In this presentation, I will demonstrate how one can improve the performance of such devices by nano-structuring the constituent layers at length scales below the wavelength of light. The resulting metafilms and metasurfaces offer opportunities to dramatically modify the optical transmission, absorption, reflection, and refraction properties of device layers. This is accomplished by encoding the optical response of nanoscale resonant building blocks into the effective properties of the films and surfaces. To illustrate these points, I will show how nanopatterned metal and semiconductor layers may be used to enhance the performance of solar cells, photodetectors, and enable new imaging technologies. I will also demonstrate how the use of active nanoscale building blocks can facilitate the creation of active metafilm devices.

  5. Mechanical scriber for semiconductor devices

    DOEpatents

    Lin, P.T.

    1985-03-05

    A mechanical scriber using a scribing tip, such as a diamond, provides controlled scriber forces with a spring-loaded compound lever arrangement. The scribing force and range of scribing depth are adjusted by a pair of adjustable micrometer heads. A semiconductor device, such as a multilayer solar cell, can be formed into scribed strips at each layer. 5 figs.

  6. Mechanical scriber for semiconductor devices

    DOEpatents

    Lin, Peter T.

    1985-01-01

    A mechanical scriber using a scribing tip, such as a diamond, provides controlled scriber forces with a spring-loaded compound lever arrangement. The scribing force and range of scribing depth are adjusted by a pair of adjustable micrometer heads. A semiconductor device, such as a multilayer solar cell, can be formed into scribed strips at each layer.

  7. Architectures for Improved Organic Semiconductor Devices

    NASA Astrophysics Data System (ADS)

    Beck, Jonathan H.

    Advancements in the microelectronics industry have brought increasing performance and decreasing prices to a wide range of users. Conventional silicon-based electronics have followed Moore's law to provide an ever-increasing integrated circuit transistor density, which drives processing power, solid-state memory density, and sensor technologies. As shrinking conventional integrated circuits became more challenging, researchers began exploring electronics with the potential to penetrate new applications with a low price of entry: "Electronics everywhere." The new generation of electronics is thin, light, flexible, and inexpensive. Organic electronics are part of the new generation of thin-film electronics, relying on the synthetic flexibility of carbon molecules to create organic semiconductors, absorbers, and emitters which perform useful tasks. Organic electronics can be fabricated with low energy input on a variety of novel substrates, including inexpensive plastic sheets. The potential ease of synthesis and fabrication of organic-based devices means that organic electronics can be made at very low cost. Successfully demonstrated organic semiconductor devices include photovoltaics, photodetectors, transistors, and light emitting diodes. Several challenges that face organic semiconductor devices are low performance relative to conventional devices, long-term device stability, and development of new organic-compatible processes and materials. While the absorption and emission performance of organic materials in photovoltaics and light emitting diodes is extraordinarily high for thin films, the charge conduction mobilities are generally low. Building highly efficient devices with low-mobility materials is one challenge. Many organic semiconductor films are unstable during fabrication, storage, and operation due to reactions with water, oxygen and hydroxide. A final challenge facing organic electronics is the need for new processes and materials for electrodes

  8. Electrical Characterization of Semiconductor Materials and Devices

    NASA Astrophysics Data System (ADS)

    Deen, M.; Pascal, Fabien

    Semiconductor materials and devices continue to occupy a preeminent technological position due to their importance when building integrated electronic systems used in a wide range of applications from computers, cell-phones, personal digital assistants, digital cameras and electronic entertainment systems, to electronic instrumentation for medical diagnositics and environmental monitoring. Key ingredients of this technological dominance have been the rapid advances made in the quality and processing of materials - semiconductors, conductors and dielectrics - which have given metal oxide semiconductor device technology its important characteristics of negligible standby power dissipation, good input-output isolation, surface potential control and reliable operation. However, when assessing material quality and device reliability, it is important to have fast, nondestructive, accurate and easy-to-use electrical characterization techniques available, so that important parameters such as carrier doping density, type and mobility of carriers, interface quality, oxide trap density, semiconductor bulk defect density, contact and other parasitic resistances and oxide electrical integrity can be determined. This chapter describes some of the more widely employed and popular techniques that are used to determine these important parameters. The techniques presented in this chapter range in both complexity and test structure requirements from simple current-voltage measurements to more sophisticated low-frequency noise, charge pumping and deep-level transient spectroscopy techniques.

  9. Quality Control On Strained Semiconductor Devices

    SciTech Connect

    Dommann, Alex; Neels, Antonia

    2010-11-24

    New semiconductor devices are based very often on strained silicon which promises to squeeze more device performance out of current devices. With strained silicon it is possible to get the same device performance using less power. The technique is using strain as a 'design element' for silicon to improve the device performance and has become a hot topic in semiconductor research in the past years. However in the same time topics like 'System in Package'(SiP) on thin wafers are getting more and more important. The chips of thin wafers in advanced packaging are extremely sensitive to induced stresses due to packaging issues. If we are using now strain as a design element for improving device performance we increase the sensitivity again and therefore also the risk of aging of such SiP's. High Resolution X-ray diffraction (HRXRD) techniques such as Rocking Curves (RC's) and Reciprocal Space Mapping (RSM) are therefore very powerful tools to study the stresses in packaged devices.

  10. Semiconductor devices having a recessed electrode structure

    DOEpatents

    Palacios, Tomas Apostol; Lu, Bin; Matioli, Elison de Nazareth

    2015-05-26

    An electrode structure is described in which conductive regions are recessed into a semiconductor region. Trenches may be formed in a semiconductor region, such that conductive regions can be formed in the trenches. The electrode structure may be used in semiconductor devices such as field effect transistors or diodes. Nitride-based power semiconductor devices are described including such an electrode structure, which can reduce leakage current and otherwise improve performance.

  11. Silicon Carbide Semiconductor Device Fabrication and Characterization

    DTIC Science & Technology

    1990-02-08

    SPACE ADMINISTRATION For Grant NAG 3-782 S- 1 entitled SILICON CARBIDE SEMICONDUCTOR DEVICE FABRICATION AND CHARACTERIZATION For the Period 10 February...NUMBERS Silicon Carbide ..Semiconductor Device Fabrication and PR# 335820 Characterization __________________________________________________ APP# 505-62-01...also been demonstrated. _________ 14. SUBJECT TERMS 15. NuMBER OF PACiES -~- Silicon carbide , Ysemiconductor devices, ion implantation aseeI4i

  12. Method for fabricating semiconductor devices

    NASA Technical Reports Server (NTRS)

    Kaiser, William J. (Inventor); Grunthaner, Frank J. (Inventor); Hecht, Michael H. (Inventor); Bell, Lloyd D. (Inventor)

    1995-01-01

    A process for fabricating gold/gallium arsenide structures, in situ, on molecular beam epitaxially grown gallium arsenide. The resulting interface proves to be Ohmic, an unexpected result which is interpreted in terms of increased electrode interdiffusion. More importantly, the present invention surprisingly permits the fabrication of Ohmic contacts in a III-V semiconductor material at room temperature. Although it may be desireable to heat the Ohmic contact to a temperature of, for example, 200 degrees Centigrade if one wishes to further decrease the resistance of the contact, such low temperature annealing is much less likely to have any deleterious affect on the underlying substrate. The use of the term in situ herein, contemplates continuously maintaining an ultra-high vacuum, that is a vacuum which is at least 10.sup.-8 Torr, until after the metallization has been completed. An alternative embodiment of the present invention comprising an additional step, namely the termination of the gallium arsenide by a two monolayer thickness of epitaxial aluminum arsenide as a diffusion barrier, enables the recovery of Schottky barrier behavior, namely a rectified I-V characteristic. The present invention provides a significant breakthrough in the fabrication of III-V semiconductor devices wherein excellent Ohmic contact and Schottky barrier interfaces to such devices can be achieved simply and inexpensively and without requiring the high temperature processing of the prior art and also without requiring the use of exotic high temperature refractory materials as substitutes for those preferred contact metals such as gold, aluminum and the like.

  13. Heating device for semiconductor wafers

    DOEpatents

    Vosen, Steven R.

    1999-01-01

    An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly of light energy sources for emitting light energy onto a wafer. In particular, the light energy sources are positioned such that many different radial heating zones are created on a wafer being heated. For instance, in one embodiment, the light energy sources form a spiral configuration. In an alternative embodiment, the light energy sources appear to be randomly dispersed with respect to each other so that no discernable pattern is present. In a third alternative embodiment of the present invention, the light energy sources form concentric rings. Tuning light sources are then placed in between the concentric rings of light.

  14. Heating device for semiconductor wafers

    DOEpatents

    Vosen, S.R.

    1999-07-27

    An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly of light energy sources for emitting light energy onto a wafer. In particular, the light energy sources are positioned such that many different radial heating zones are created on a wafer being heated. For instance, in one embodiment, the light energy sources form a spiral configuration. In an alternative embodiment, the light energy sources appear to be randomly dispersed with respect to each other so that no discernible pattern is present. In a third alternative embodiment of the present invention, the light energy sources form concentric rings. Tuning light sources are then placed in between the concentric rings of light. 4 figs.

  15. Advanced 3-V semiconductor technology assessment

    NASA Technical Reports Server (NTRS)

    Nowogrodzki, M.

    1983-01-01

    Components required for extensions of currently planned space communications systems are discussed for large antennas, crosslink systems, single sideband systems, Aerostat systems, and digital signal processing. Systems using advanced modulation concepts and new concepts in communications satellites are included. The current status and trends in materials technology are examined with emphasis on bulk growth of semi-insulating GaAs and InP, epitaxial growth, and ion implantation. Microwave solid state discrete active devices, multigigabit rate GaAs digital integrated circuits, microwave integrated circuits, and the exploratory development of GaInAs devices, heterojunction devices, and quasi-ballistic devices is considered. Competing technologies such as RF power generation, filter structures, and microwave circuit fabrication are discussed. The fundamental limits of semiconductor devices and problems in implementation are explored.

  16. Quantum functional devices for advanced electronics

    NASA Astrophysics Data System (ADS)

    Yokoyama, N.; Muto, S.; Imamura, K.; Takatsu, M.; Mori, T.; Sugiyama, Y.; Sakuma, Y.; Nakao, H.; Adachihara, T.

    Recent research in semiconductor device technology seems to be focused on reducing the cost and power dissipation of traditional Si CMOS integrated circuits, rather than developing new and advanced semiconductor devices. We believe however, that devices enter the nanometer-scale regime in the next century, where quantum mechanical effects play an important role in the device's function; therefore, it is important to continue basic research into the physics and technology of nanometer scale structures and device applications in order to cultivate "nanoelectronics". This paper reviews our research activities on quantum functional devices and discusses our future research direction.

  17. Radiation-Hardness Data For Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Price, W. E.; Nichols, D. K.; Brown, S. F.; Gauthier, M. K.; Martin, K. E.

    1984-01-01

    Document presents data on and analysis of radiation hardness of various semiconductor devices. Data specifies total-dose radiation tolerance of devices. Volume 1 of report covers diodes, bipolar transistors, field effect transistors, silicon controlled rectifiers and optical devices. Volume 2 covers integrated circuits. Volume 3 provides detailed analysis of data in volumes 1 and 2.

  18. Library Analog Semiconductor Devices SPICE Simulators

    SciTech Connect

    Deveney, Michael F.; Archer, Wendel; Bogdan, Carolyn W.

    1996-07-23

    SPICE-SANDIA.LIB is a library of parameter sets and macromodels of semiconductor devices. They are used with Spice-based (SPICE is a program for electronic circuit analysis) simulators to simulate electronic circuits.

  19. Modeling of ferromagnetic semiconductor devices for spintronics

    NASA Astrophysics Data System (ADS)

    Lebedeva, N.; Kuivalainen, P.

    2003-06-01

    We develop physical models for magnetic semiconductor devices, where a part of the device structure consists of a ferromagnetic semiconductor layer. First we calculate the effect of the exchange interaction between the charge carrier spins and the spins of the localized magnetic electrons on the electronic states, recombination processes, and charge transport in ferromagnetic semiconductors such as (Ga,Mn)As. Taking into account, e.g., the splitting of the conduction and valence bands due to the exchange interaction, we model the electrical characteristics of the basic magnetic semiconductor devices such as Schottky diodes consisting of a nonmagnetic metal/ferromagnetic semiconductor interface, pn diodes consisting of a ferromagnetic/nonmagnetic junction and bipolar transistors having a ferromagnetic emitter. The models predict that at temperatures close to the Curie temperature TC the electrical properties of the magnetic semiconductor devices become strongly dependent on the average spin polarization of the magnetic atoms. A feature in the models is that many device parameters such as diffusion lengths or potential barriers become spin dependent in magnetic semiconductor devices. In a ferromagnetic Schottky diode the sensitivity of the device current I to the external magnetic field may be as large as (∂I/∂B)I-1≈1/T at temperatures close to TC. In a ferromagnetic pn diode both the ideal and recombination currents become magnetic field dependent. In a ferromagnetic bipolar transistor the current gain shows the same sensitivity to the spin polarization as the dc current in the ferromagnetic pn diodes. According to our model calculations optimal structures showing the largest magnetization dependence of the electrical characteristics in III-V ferromagnetic semiconductor devices would be those where the magnetic side of the junction is of n type.

  20. Device Technologies for Semiconductor Spintronic Circuits

    DTIC Science & Technology

    2012-04-20

    Technical Report 3. DATES COVERED (From - To) 15 Apr 08-30 Dec 11 4. TITLE AND SUBTITLE Device Technologies for Semiconductor Spintronic ...shallow impurity traps. These results helped to significantly improve the understanding of spin transport in silicon. 15. SUBJECT TERMS Spintronics ...Include area code) (302)831-1164 Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std Z39.18 Device Technologies for Semiconductor Spintronic

  1. Laser Assisted Semiconductor Device Processing

    DTIC Science & Technology

    1980-11-30

    In strongly absorbing semiconductors, the dominant absorption mechanism at frequencies higher than the bandgap frequency is interband transitions. The...current). The solution for miconductors. In strongly absorbing semiconductors, the n(x,t ) is a closed-form expression consisting of complemen- dominant 0...representative profles are shown in Fis. $-12. o -- For Nd: YAG in silicon. E, _0.99hv and the profiks are therefore and-gap recombination dominated

  2. Optical processing for semiconductor device fabrication

    NASA Technical Reports Server (NTRS)

    Sopori, Bhushan L.

    1994-01-01

    A new technique for semiconductor device processing is described that uses optical energy to produce local heating/melting in the vicinity of a preselected interface of the device. This process, called optical processing, invokes assistance of photons to enhance interface reactions such as diffusion and melting, as compared to the use of thermal heating alone. Optical processing is performed in a 'cold wall' furnace, and requires considerably lower energies than furnace or rapid thermal annealing. This technique can produce some device structures with unique properties that cannot be produced by conventional thermal processing. Some applications of optical processing involving semiconductor-metal interfaces are described.

  3. Methods for dry etching semiconductor devices

    DOEpatents

    Bauer, Todd; Gross, Andrew John; Clews, Peggy J.; Olsson, Roy H.

    2016-11-01

    The present invention provides methods for etching semiconductor devices, such aluminum nitride resonators. The methods herein allow for devices having improved etch profiles, such that nearly vertical sidewalls can be obtained. In some examples, the method employs a dry etch step with a primary etchant gas that omits BCl.sub.3, a common additive.

  4. Conductive Container for Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Rice, J. T.

    1986-01-01

    Container for semiconductor components not only protects them against mechanical damage but ensures they are not harmed by electrostatic discharges. Container holds components in fixed positions so they can be serialized and identified from their locations. Suitable for holding components during both storing and shipping. Originally developed for microwave diodes, container concept readily adaptable to transistors and integrated circuits.

  5. Optical devices featuring nonpolar textured semiconductor layers

    DOEpatents

    Moustakas, Theodore D; Moldawer, Adam; Bhattacharyya, Anirban; Abell, Joshua

    2013-11-26

    A semiconductor emitter, or precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate in a nonpolar orientation. The textured layers enhance light extraction, and the use of nonpolar orientation greatly enhances internal quantum efficiency compared to conventional devices. Both the internal and external quantum efficiencies of emitters of the invention can be 70-80% or higher. The invention provides highly efficient light emitting diodes suitable for solid state lighting.

  6. Thermovoltaic semiconductor device including a plasma filter

    DOEpatents

    Baldasaro, Paul F.

    1999-01-01

    A thermovoltaic energy conversion device and related method for converting thermal energy into an electrical potential. An interference filter is provided on a semiconductor thermovoltaic cell to pre-filter black body radiation. The semiconductor thermovoltaic cell includes a P/N junction supported on a substrate which converts incident thermal energy below the semiconductor junction band gap into electrical potential. The semiconductor substrate is doped to provide a plasma filter which reflects back energy having a wavelength which is above the band gap and which is ineffectively filtered by the interference filter, through the P/N junction to the source of radiation thereby avoiding parasitic absorption of the unusable portion of the thermal radiation energy.

  7. Semiconductor device PN junction fabrication using optical processing of amorphous semiconductor material

    SciTech Connect

    Sopori, Bhushan; Rangappan, Anikara

    2014-11-25

    Systems and methods for semiconductor device PN junction fabrication are provided. In one embodiment, a method for fabricating an electrical device having a P-N junction comprises: depositing a layer of amorphous semiconductor material onto a crystalline semiconductor base, wherein the crystalline semiconductor base comprises a crystalline phase of a same semiconductor as the amorphous layer; and growing the layer of amorphous semiconductor material into a layer of crystalline semiconductor material that is epitaxially matched to the lattice structure of the crystalline semiconductor base by applying an optical energy that penetrates at least the amorphous semiconductor material.

  8. General Electronics Technician: Semiconductor Devices and Circuits.

    ERIC Educational Resources Information Center

    Hilley, Robert

    These instructional materials include a teacher's guide designed to assist instructors in organizing and presenting an introductory course in general electronics focusing on semiconductor devices and circuits and a student guide. The materials are based on the curriculum-alignment concept of first stating the objectives, developing instructional…

  9. Semiconductors: In Situ Processing of Photovoltaic Devices

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A.

    1998-01-01

    The possible processing of semiconductor photovoltaic devices is discussed. The requirements for lunar PV cells is reviewed, and the key challenges involved in their manufacturing are investigated. A schematic diagram of a passivated emitter and rear cell (PERC) is presented. The possible fabrication of large photovoltaic arrays in space from lunar materials is also discussed.

  10. Strain mapping with nm-scale resolution for the silicon-on-insulator generation of semiconductor devices by advanced electron microscopy

    SciTech Connect

    Cooper, David; Denneulin, Thibaud; Barnes, Jean-Paul; Hartmann, Jean-Michel; Hutin, Louis; Le Royer, Cyrille; Beche, Armand; Rouviere, Jean-Luc

    2012-12-15

    Strain engineering in the conduction channel is a cost effective method of boosting the performance in state-of-the-art semiconductor devices. However, given the small dimensions of these devices, it is difficult to quantitatively measure the strain with the required spatial resolution. Three different transmission electron microscopy techniques, high-angle annular dark field scanning transmission electron microscopy, dark field electron holography, and nanobeam electron diffraction have been applied to measure the strain in simple bulk and SOI calibration specimens. These techniques are then applied to different gate length SiGe SOI pFET devices in order to measure the strain in the conduction channel. For these devices, improved spatial resolution is required, and strain maps with spatial resolutions as good as 1 nm have been achieved. Finally, we discuss the relative advantages and disadvantages of using these three different techniques when used for strain measurement.

  11. Microwave Semiconductor Materials and Devices

    DTIC Science & Technology

    1981-01-01

    characterization. The first is the development of an accurate characterization of the local microscopic fluctuations which create the noise. The second is a...of these steps. 4.2 Work Done During the Past Year. There are four main microscopic noise sources in transit-time devices. These are avalanche noise...very important in TUNNETTs. Since this noise is caused by the scattering induced microscopic fluctuations in the carrier velocity, it is possible to

  12. Automated S/TEM metrology on advanced semiconductor gate structures

    NASA Astrophysics Data System (ADS)

    Strauss, M.; Arjavac, J.; Horspool, D. N.; Nakahara, K.; Deeb, C.; Hobbs, C.

    2012-03-01

    Alternate techniques for obatining metrology data from advanced semiconductor device structures may be required. Automated STEM-based dimensional metrology (CD-STEM) was developed for complex 3D geometries in read/write head metrology in teh hard disk drive industry. It has been widely adopted, and is the process of record for metrology. Fully automated S/TEM metrology on advanced semiconductor gate structures is viable, with good repeatability and robustness. Consistent automated throughput of 10 samples per hour was achieved. Automated sample preparation was developed with sufficient throughput and quality to support the automated CD-STEM.

  13. Methods and devices for fabricating and assembling printable semiconductor elements

    DOEpatents

    Nuzzo, Ralph G; Rogers, John A; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao

    2013-05-14

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  14. Methods and devices for fabricating and assembling printable semiconductor elements

    DOEpatents

    Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao

    2011-07-19

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  15. Methods and devices for fabricating and assembling printable semiconductor elements

    DOEpatents

    Nuzzo, Ralph G; Rogers, John A; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao

    2014-03-04

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  16. Methods and devices for fabricating and assembling printable semiconductor elements

    DOEpatents

    Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao

    2009-11-24

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  17. EDITORIAL: Frontiers in semiconductor-based devices Frontiers in semiconductor-based devices

    NASA Astrophysics Data System (ADS)

    Krishna, Sanjay; Phillips, Jamie; Ghosh, Siddhartha; Ma, Jack; Sabarinanthan, Jayshri; Stiff-Roberts, Adrienne; Xu, Jian; Zhou, Weidong

    2009-12-01

    This special cluster of Journal of Physics D: Applied Physics reports proceedings from the Frontiers in Semiconductor-Based Devices Symposium, held in honor of the 60th birthday of Professor Pallab Bhattacharya by his former doctoral students. The symposium took place at the University of Michigan, Ann Arbor on 6-7 December 2009. Pallab Bhattacharya has served on the faculty of the Electrical Engineering and Computer Science Department at the University of Michigan, Ann Arbor for 25 years. During this time, he has made pioneering contributions to semiconductor epitaxy, characterization of strained heterostructures, self-organized quantum dots, quantum-dot optoelectronic devices, and integrated optoelectronics. Professor Bhattacharya has been recognized for his accomplishments by membership of the National Academy of Engineering, by chaired professorships (Charles M Vest Distinguished University Professor and James R Mellor Professor of Engineering), and by selection as a Fellow of the IEEE, among numerous other honors and awards. Professor Bhattacharya has also made remarkable contributions in education, including authorship of the textbook Semiconductor Optoelectronic Devices (Prentice Hall, 2nd edition) and the production of 60 PhD students (and counting). In fact, this development of critical human resources is one of the biggest impacts of Professor Bhattacharya's career. His guidance and dedication have shaped the varied professional paths of his students, many of whom currently enjoy successful careers in academia, industry, and government around the world. This special cluster acknowledges the importance of Professor Bhattacharya's influence as all of the contributions are from his former doctoral students. The symposium reflects the significant impact of Professor Bhattacharya's research in that the topics span diverse, critical research areas, including: semiconductor lasers and modulators, nanoscale quantum structure-based devices, flexible CMOS

  18. Molecular engineering of semiconductor surfaces and devices.

    PubMed

    Ashkenasy, Gonen; Cahen, David; Cohen, Rami; Shanzer, Abraham; Vilan, Ayelet

    2002-02-01

    Grafting organic molecules onto solid surfaces can transfer molecular properties to the solid. We describe how modifications of semiconductor or metal surfaces by molecules with systematically varying properties can lead to corresponding trends in the (electronic) properties of the resulting hybrid (molecule + solid) materials and devices made with them. Examples include molecule-controlled diodes and sensors, where the electrons need not to go through the molecules (action at a distance), suggesting a new approach to molecule-based electronics.

  19. Amphoteric oxide semiconductors for energy conversion devices: a tutorial review.

    PubMed

    Singh, Kalpana; Nowotny, Janusz; Thangadurai, Venkataraman

    2013-03-07

    In this tutorial review, we discuss the defect chemistry of selected amphoteric oxide semiconductors in conjunction with their significant impact on the development of renewable and sustainable solid state energy conversion devices. The effect of electronic defect disorders in semiconductors appears to control the overall performance of several solid-state ionic devices that include oxide ion conducting solid oxide fuel cells (O-SOFCs), proton conducting solid oxide fuel cells (H-SOFCs), batteries, solar cells, and chemical (gas) sensors. Thus, the present study aims to assess the advances made in typical n- and p-type metal oxide semiconductors with respect to their use in ionic devices. The present paper briefly outlines the key challenges in the development of n- and p-type materials for various applications and also tries to present the state-of-the-art of defect disorders in technologically related semiconductors such as TiO(2), and perovskite-like and fluorite-type structure metal oxides.

  20. Compound Semiconductor Materials, Devices and Circuits

    DTIC Science & Technology

    1988-06-01

    Semiconductors", L.A. Coldren, J.G. Mendoza - Alvarez and R.H. Yan, Aopl. Phys. Lett., 51, 792-794 (1987). JSEP PUBLICATIONS AND PRESENTATIONS 1. "Room...self-consistent Monte Carlo transport formulation and its applicat... to small graded heterostructure devices; (e) optical modulation based on the...L.F. Eastman 1 0 TASK 3 FUNDAMENTAL PHENOMENON IN ULTRASHORT DEVICES E.D. Wolf, L.F. Eastman and P.J. Tasker 1 9 TASK 4 ENSEMBLE MONTE CARLO

  1. A Framework to Simulate Semiconductor Devices Using Parallel Computer Architecture

    NASA Astrophysics Data System (ADS)

    Kumar, Gaurav; Singh, Mandeep; Bulusu, Anand; Trivedi, Gaurav

    2016-10-01

    Device simulations have become an integral part of semiconductor technology to address many issues (short channel effects, narrow width effects, hot-electron effect) as it goes into nano regime, helping us to continue further with the Moore's Law. TCAD provides a simulation environment to design and develop novel devices, thus a leap forward to study their electrical behaviour in advance. In this paper, a parallel 2D simulator for semiconductor devices using Discontinuous Galerkin Finite Element Method (DG-FEM) is presented. Discontinuous Galerkin (DG) method is used to discretize essential device equations and later these equations are analyzed by using a suitable methodology to find the solution. DG method is characterized to provide more accurate solution as it efficiently conserve the flux and easily handles complex geometries. OpenMP is used to parallelize solution of device equations on manycore processors and a speed of 1.4x is achieved during assembly process of discretization. This study is important for more accurate analysis of novel devices (such as FinFET, GAAFET etc.) on a parallel computing platform and will help us to develop a parallel device simulator which will be able to address this issue efficiently. A case study of PN junction diode is presented to show the effectiveness of proposed approach.

  2. Semiconductor-based, large-area, flexible, electronic devices

    DOEpatents

    Goyal, Amit

    2011-03-15

    Novel articles and methods to fabricate the same resulting in flexible, large-area, triaxially textured, single-crystal or single-crystal-like, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  3. High voltage semiconductor devices and methods of making the devices

    DOEpatents

    Matocha, Kevin; Chatty, Kiran; Banerjee, Sujit

    2017-02-28

    A multi-cell MOSFET device including a MOSFET cell with an integrated Schottky diode is provided. The MOSFET includes n-type source regions formed in p-type well regions which are formed in an n-type drift layer. A p-type body contact region is formed on the periphery of the MOSFET. The source metallization of the device forms a Schottky contact with an n-type semiconductor region adjacent the p-type body contact region of the device. Vias can be formed through a dielectric material covering the source ohmic contacts and/or Schottky region of the device and the source metallization can be formed in the vias. The n-type semiconductor region forming the Schottky contact and/or the n-type source regions can be a single continuous region or a plurality of discontinuous regions alternating with discontinuous p-type body contact regions. The device can be a SiC device. Methods of making the device are also provided.

  4. Thin films in silicon carbide semiconductor devices

    NASA Astrophysics Data System (ADS)

    Ostling, Mikael; Koo, Sang-Mo; Lee, Sang-Kwon; Zetterling, Carl-Mikael; Grishin, Alexander

    2004-12-01

    Silicon carbide (SiC) semiconductor devices have been established during the last decade as very useful high power, high speed and high temperature devices because of their inherent outstanding semiconductor materials properties. Due to its large band gap, SiC possesses a very high breakdown field and low intrinsic carrier concentration, which accordingly makes high voltage and high temperature operation possible. SiC is also suitable for high frequency device applications, because of the high saturation drift velocity and low permittivity. Thin film technology for various functions in the devices has been heavily researched. Suitable thin film technologies for Ohmic and low-resistive contact formation, passivation and new functionality utilizing ferroelectric materials have been developed. In ferroelectrics, the spontaneous polarization can be switched by an externally applied electric field, and thus are attractive for non-volatile memory and sensor applications. A novel integration of Junction-MOSFETs (JMOSFETs) and Nonvolatile FETs (NVFETs) on a single 4H-SiC substrate is realized. SiC JMOSFET controls the drain current effectively from the buried junction gate thereby allowing for a constant current level at elevated temperatures. SiC NVFET has similar functions with non-volatile memory capability due to ferroelectric gate stack, which operated up to 300°C with memory function retained up to 200°C.

  5. ZnCdMgSe as a Materials Platform for Advanced Photonic Devices: Broadband Quantum Cascade Detectors and Green Semiconductor Disk Lasers

    NASA Astrophysics Data System (ADS)

    De Jesus, Joel

    The ZnCdMgSe family of II-VI materials has unique and promising characteristics that may be useful in practical applications. For example they can be grown lattice matched to InP substrates with lattice matched bandgaps that span from 2.1 to 3.5 eV, they can be successfully doped n-type, have a large conduction band offset (CBO) with no intervalley scattering present when strained, they have lower average phonon energies, and the InP lattice constant lies in the middle of the ZnSe and CdSe binaries compounds giving room to experiment with tensile and compressive stress. However they have not been studied in detail for use in practical devices. Here we have identified two types of devices that are being currently developed that benefit from the ZnCdMgSe-based material properties. These are the intersubband (ISB) quantum cascade (QC) detectors and optically pumped semiconductor lasers that emit in the visible range. The paucity for semiconductor lasers operating in the green-orange portion of the visible spectrum can be easily overcome with the ZnCdMgSe materials system developed in our research. The non-strain limited, large CBO available allows to expand the operating wavelength of ISB devices providing shorter and longer wavelengths than the currently commercially available devices. This property can also be exploited to develop broadband room temperature operation ISB detectors. The work presented here focused first on using the ZnCdMgSe-based material properties and parameter to understand and predict the interband and intersubband transitions of its heterostructures. We did this by studying an active region of a QC device by contactless electroreflectance, photoluminescence, FTIR transmittance and correlating the measurements to the quantum well structure by transfer matrix modeling. Then we worked on optimizing the ZnCdMgSe material heterostructures quality by studying the effects of growth interruptions on their optical and optoelectronic properties of

  6. SPM system for semiconductor device applications.

    PubMed

    Itoh, Hiroshi; Odaka, Takahiro; Niitsuma, Junichi

    2014-11-01

    Recently, scanning probe microscopy (SPM) is widely used for development of semiconductor devices. One of the important functions of SPM is high resolution topography, such as shape of the nanoscale devices and surface roughness of the films. Additionally, SPM can measure the electronic structure of the nanoscale-devices. SPM system for thin films was developed to characterize the thin films for device applications.First, SPM system which can be apply short pulses to the sample holder is constructed to evaluate the electronic response of the thin film without using complex patterning on the Si wafer as shown in Fig. 1. Current design rule of the semiconductor devices is around 20 nm. The dimension of the devices are close to the probe radius of conductive SPM probes. The instrument was designed to characterize not only the static properties of nanoscale devices, but also the dynamic electronic properties. Shortest pulses which can be applied to the sample without destroying waveform were less than 50 nS. Time response of the current amplifier is ranging from 50 nS to 200 nS depending on the trans-impedance gains. The conditions (time and dimension) are similar to the active devices on the chip in the circuit. Thus, dynamic electronic properties of the thin films can be tested on a film without fabricating to the nanoscale devices. It is very helpful to optimizing the depositing conditions, such as sputtering parameters, of the thin film for semiconductor devices. For example, the system is used to optimize the film qualities for resistive memories [1].jmicro;63/suppl_1/i13-a/DFU091F1F1DFU091F1Fig. 1.Conductive probe microscopy, which is compatible to the pulse signals ranging to 50nS. The second function of the SPM system is the reproducible roughness measurement. Roughness of the film is also important for optimizing the depositing conditions of the thin film. Virtual reference probe method was developed for removing the variations of the SPM probes [2]. One of

  7. III-V semiconductor devices integrated with silicon III-V semiconductor devices integrated with silicon

    NASA Astrophysics Data System (ADS)

    Hopkinson, Mark; Martin, Trevor; Smowton, Peter

    2013-09-01

    The integration of III-V semiconductor devices with silicon is one of the most topical challenges in current electronic materials research. The combination has the potential to exploit the unique optical and electronic functionality of III-V technology with the signal processing capabilities and advanced low-cost volume production techniques associated with silicon. Key industrial drivers include the use of high mobility III-V channel materials (InGaAs, InAs, InSb) to extend the performance of Si CMOS, the unification of electronics and photonics by combining photonic components (GaAs, InP) with a silicon platform for next-generation optical interconnects and the exploitation of large-area silicon substrates and high-volume Si processing capabilities to meet the challenges of low-cost production, a challenge which is particularly important for GaN-based devices in both power management and lighting applications. The diverse nature of the III-V and Si device approaches, materials technologies and the distinct differences between industrial Si and III-V processing have provided a major barrier to integration in the past. However, advances over the last decade in areas such as die transfer, wafer fusion and epitaxial growth have promoted widespread renewed interest. It is now timely to bring some of these topics together in a special issue covering a range of approaches and materials providing a snapshot of recent progress across the field. The issue opens a paper describing a strategy for the epitaxial integration of photonic devices where Kataria et al describe progress in the lateral overgrowth of InP/Si. As an alternative, Benjoucef and Reithmaier report on the potential of InAs quantum dots grown direct onto Si surfaces whilst Sandall et al describe the properties of similar InAs quantum dots as an optical modulator device. As an alternative to epitaxial integration approaches, Yokoyama et al describe a wafer bonding approach using a buried oxide concept, Corbett

  8. Neutron hardness of silicon-based semiconductor devices

    SciTech Connect

    Baratta, A.J.; Kenney, E.S.

    1988-01-01

    The effects of radiation on silicon-based semiconductor devices have been the subject of research for many years. In an effort to understand these effects, a series of experiments was conducted on gamma-hardened MOSFETs. Experiments concentrated on MOSFETs in rad-hard form and on off-the-shelf items. Because of the need to maintain bias voltages at set levels to enhance damage and because of concerns over possible rapid annealing, active testing during irradiation was performed. In general, MOSFETs are expected to perform well in fast neutron environments. With the advances in rad-hard technologies, exposures to several-megarad gamma rays can be tolerated. In nuclear systems, the normal concurrent neutron fluence can reach over 10{sup 16} n/cm{sup 2}. At these levels, current research indicates that the devices fail. Such failure is not altogether unexpected, although the degree of induced structural disorder in the semiconductor's crystalline makeup is still small. However, the damage done appears to carry the silicon back to a nearly intrinsic state. Knowing that each primary knock-on atom causes 10 to 6000 secondary atomic dislocations, the fluences of 10{sup 16}/cm{sup 2} are clearly at a level able to markedly change semiconductor dopant-induced behavior. Thus, one can conclude that for current devices, the gamma dose in a mixed neutron gamma field may no longer be limiting.

  9. Advanced Resistive Exercise Device

    NASA Technical Reports Server (NTRS)

    Raboin, Jasen; Niebuhr, Jason; Cruz, Santana; Lamoreaux, chris

    2007-01-01

    The advanced resistive exercise device (ARED), now at the prototype stage of development, is a versatile machine that can be used to perform different customized exercises for which, heretofore, it has been necessary to use different machines. Conceived as a means of helping astronauts and others to maintain muscle and bone strength and endurance in low-gravity environments, the ARED could also prove advantageous in terrestrial settings (e.g., health clubs and military training facilities) in which many users are exercising simultaneously and there is heavy demand for use of exercise machines.

  10. Semiconductor devices incorporating multilayer interference regions

    DOEpatents

    Biefeld, R.M.; Drummond, T.J.; Gourley, P.L.; Zipperian, T.E.

    1987-08-31

    A semiconductor high reflector comprising a number of thin alternating layers of semiconductor materials is electrically tunable and may be used as a temperature insensitive semiconductor laser in a Fabry-Perot configuration. 8 figs.

  11. Semiconductor devices incorporating multilayer interference regions

    DOEpatents

    Biefeld, Robert M.; Drummond, Timothy J.; Gourley, Paul L.; Zipperian, Thomas E.

    1990-01-01

    A semiconductor high reflector comprising a number of thin alternating layers of semiconductor materials is electrically tunable and may be used as a temperature insensitive semiconductor laser in a Fabry-Perot configuration.

  12. Raman Imaging in Semiconductor Physics: Applications to Microelectronic Materials and Devices

    NASA Astrophysics Data System (ADS)

    Tiberj, Antoine; Camassel, Jean

    The unique versatility of micro-Raman spectroscopy (\\upmu RS) in semiconductor physics remains in Raman imaging. Numerous applications cover the whole development of modern electronic and optoelectronic devices: from semiconductor growth to advanced device inspection tools. In this chapter, a wide variety of semiconductors (SiC, graphene, GaN, GaAs, SiGe, strained Si, sSOI, SGOI) and devices (FETs, lasers, MEMS) are addressed. First, it will be shown how Raman mapping enables to check the crystalline quality, the composition, the doping, and the uniformity of as-grown semiconductors. Then, we will focus on the most popular application in microelectronics: strain measurements either at the device or at the full wafer scale. Finally, we will show how \\upmu RS imaging can be used for final device inspection through the temperature mapping of operating devices (FETs, lasers, actuators).

  13. Method for fabricating an interconnected array of semiconductor devices

    DOEpatents

    Grimmer, Derrick P.; Paulson, Kenneth R.; Gilbert, James R.

    1989-10-10

    Semiconductor layer and conductive layer formed on a flexible substrate, divided into individual devices and interconnected with one another in series by interconnection layers and penetrating terminals.

  14. Physics and performance of nanoscale semiconductor devices at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Balestra, F.; Ghibaudo, G.

    2017-02-01

    The physics and performance of various advanced semiconductor devices, which are the most promising for the end of the ITRS roadmap, are investigated in a wide temperature range down to 20 K. The transport parameters in front and/or back channels in fully depleted ultrathin film SOI devices, Trigate, FinFET, Omega-gate nanowire FET and 3D-stacked SiGe nanowire FETs, fabricated with high-k dielectrics/metal gate, elevated source/drain, different channel orientations, shapes and strains, are addressed. The impacts of the gate length, Si film and wire diameter down to 10 nm, are also shown. The variations of the phonon, Coulomb, neutral defects and surface roughness scattering as a function of temperature and device architecture are highlighted. An overview of the influence of temperature on other main electrical parameters of MOSFETs, nanowires FETs and tunnel FETs, such as threshold voltage, subthreshold swing, leakage and driving currents is also given.

  15. Coated semiconductor devices for neutron detection

    DOEpatents

    Klann, Raymond T.; McGregor, Douglas S.

    2002-01-01

    A device for detecting neutrons includes a semi-insulated bulk semiconductor substrate having opposed polished surfaces. A blocking Schottky contact comprised of a series of metals such as Ti, Pt, Au, Ge, Pd, and Ni is formed on a first polished surface of the semiconductor substrate, while a low resistivity ("ohmic") contact comprised of metals such as Au, Ge, and Ni is formed on a second, opposed polished surface of the substrate. In one embodiment, n-type low resistivity pinout contacts comprised of an Au/Ge based eutectic alloy or multi-layered Pd/Ge/Ti/Au are also formed on the opposed polished surfaces and in contact with the Schottky and ohmic contacts. Disposed on the Schottky contact is a neutron reactive film, or coating, for detecting neutrons. The coating is comprised of a hydrogen rich polymer, such as a polyolefin or paraffin; lithium or lithium fluoride; or a heavy metal fissionable material. By varying the coating thickness and electrical settings, neutrons at specific energies can be detected. The coated neutron detector is capable of performing real-time neutron radiography in high gamma fields, digital fast neutron radiography, fissile material identification, and basic neutron detection particularly in high radiation fields.

  16. Silicon Metal-Oxide-Semiconductor Quantum Devices

    NASA Astrophysics Data System (ADS)

    Nordberg, Eric

    This thesis presents stable quantum dots in a double gated silicon metal-oxide-semiconductor (MOS) system with an open-lateral geometry. In recent years, semiconductor lateral quantum dots have emerged as an appealing approach to quantum computing. Silicon offers the potential for very long electron spin decoherence times in these dots. Several important steps toward a functioning silicon-based electron spin qubit are presented, including stable Coulomb blockade within a quantum dot, a tunable double quantum dot, and integrated charge sensing. A fabrication process has been created to make low-disorder constrictions on relatively high mobility Si-MOS material and to facilitate essentially arbitrary gate geometries. Within this process, changes in mobility and charge defect densities are measured for critical process steps. This data was used to guide the fabrication of devices culminating, in this work, with a clean, stable quantum dot in a double-gated MOS system. Stable Coulomb-blockade behavior showing single-period conductance oscillations was observed in MOS quantum dots. Measured capacitances within each device and capacitances calculated via modeling are compared, showing that the measured Coulomb-blockade is consistent with a lithographically defined quantum dot, as opposed to a disorder dot within a single constriction. A tunable double dot is also observed. Laterally coupled charge sensing of quantum dots is highly desirable because it enables measurement even when conduction through the quantum dot itself is suppressed. Such charge sensing is demonstrated in this system. The current through a point contact constriction located near a quantum dot shows sharp 2% changes corresponding to charge transitions between the dot and a nearby lead. The coupling capacitance between the charge sensor and the quantum dot is extracted and agrees well with a capacitance model of the integrated sensor and quantum dot system.

  17. Graphene-semiconductor heterojunctions and devices

    NASA Astrophysics Data System (ADS)

    Ou, Tzu-Min

    on a semiconductor, resulting in a depletion region inside the semiconductor that induces a complementary charge in the graphene. Changing the reverse bias across the graphene-semiconductor junction modulates the depletion region width and thereby changes the total charge in graphene. The charge density of the graphene is also modulated by the doping density of the semiconductor substrate. The GJFET structure provides a solution for Dirac voltage tuning and back gate isolation by location-specific doping on a single device wafer. A detailed understanding of the device is obtained through the design, fabrication, and analysis of GJFETs with atmospheric pressure chemical-vapor deposited graphene on n-type Si and 4H-SiC substrates of various doping densities. A variable depletion width model is built to numerically simulate the performance. A representative n-Si (4.5x10 15 cm-3) GJFET exhibits an on-off ratio of 3.8, an intrinsic hole density of 8x1011 cm-2, and a Dirac voltage of 14.1 V. Fitting the transfer characteristic of the Si GJFET with our device model yields an electron and hole mobility of 300 and 1300 cm2/Vs respectively. The tunability of the threshold voltage by varying the substrate doping density is also demonstrated. With an increasing substrate doping from 8x1014 to 2x10 16 cm-3, the threshold of the Si GJFET decreases from 24.9 V to 3.8 V. With even higher doping density (5x1018 cm-3) in n+4H-SiC, the Dirac voltage of the GJFET is further reduced to 1.5 V. These results also demonstrate the feasibility of integrating GJFET with semiconductor substrates other than Si, widening their potential for use in high-frequency electronics.

  18. Semiconductor device modeling on a workstation

    SciTech Connect

    Diegert, C.

    1985-09-01

    We choose to move from large mainframe computers to workstations to gain the interactive graphics we need to prepare and to analyze semiconductor device modeling problems. Given this much on a workstation, it is convenient to attempt to solve the entire problem there. We find that a top-of-the-line Apollo 660 workstation, with bit-slice processor, pipelined arithmetic processor, and 4 megabytes of real memory, is surprisingly effective in finding solutions when running the Pisces II device modeling code. In our experiment we find where the workstation bogs down when running these problems. We both analyze the Pisces CPU time log and we sample the executing program to accumulate a histogram of execution time as distributed over the source code. Results suggest how Pisces could be adapted to solve somewhat larger problems entirely on the workstation. Evolution of a trusted derivative of Pisces, to be used on supercomputers without interactivity, is suggested to complement our success with Pisces on workstations. 4 refs.

  19. Photovoltaic healing of non-uniformities in semiconductor devices

    DOEpatents

    Karpov, Victor G.; Roussillon, Yann; Shvydka, Diana; Compaan, Alvin D.; Giolando, Dean M.

    2006-08-29

    A method of making a photovoltaic device using light energy and a solution to normalize electric potential variations in the device. A semiconductor layer having nonuniformities comprising areas of aberrant electric potential deviating from the electric potential of the top surface of the semiconductor is deposited onto a substrate layer. A solution containing an electrolyte, at least one bonding material, and positive and negative ions is applied over the top surface of the semiconductor. Light energy is applied to generate photovoltage in the semiconductor, causing a redistribution of the ions and the bonding material to the areas of aberrant electric potential. The bonding material selectively bonds to the nonuniformities in a manner such that the electric potential of the nonuniformities is normalized relative to the electric potential of the top surface of the semiconductor layer. A conductive electrode layer is then deposited over the top surface of the semiconductor layer.

  20. Contributive research in compound semiconductor material and related devices

    NASA Astrophysics Data System (ADS)

    Twist, James R.

    1988-05-01

    The objective of this program was to provide the Electronic Device Branch (AFWAL/AADR) with the support needed to perform state of the art electronic device research. In the process of managing and performing on the project, UES has provided a wide variety of scientific and engineering talent who worked in-house for the Avionics Laboratory. These personnel worked on many different types of research programs from gas phase microwave driven lasers, CVD and MOCVD of electronic materials to Electronic Device Technology for new devices. The fields of research included MBE and theoretical research in this novel growth technique. Much of the work was slanted towards the rapidly developing technology of GaAs and the general thrust of the research that these tasks started has remained constant. This work was started because the Avionics Laboratory saw a chance to advance the knowledge and level of the current device technology by working in the compounds semiconductor field. UES is pleased to have had the opportunity to perform on this program and is looking forward to future efforts with the Avionics Laboratory.

  1. Iterative solution of the semiconductor device equations

    SciTech Connect

    Bova, S.W.; Carey, G.F.

    1996-12-31

    Most semiconductor device models can be described by a nonlinear Poisson equation for the electrostatic potential coupled to a system of convection-reaction-diffusion equations for the transport of charge and energy. These equations are typically solved in a decoupled fashion and e.g. Newton`s method is used to obtain the resulting sequences of linear systems. The Poisson problem leads to a symmetric, positive definite system which we solve iteratively using conjugate gradient. The transport equations lead to nonsymmetric, indefinite systems, thereby complicating the selection of an appropriate iterative method. Moreover, their solutions exhibit steep layers and are subject to numerical oscillations and instabilities if standard Galerkin-type discretization strategies are used. In the present study, we use an upwind finite element technique for the transport equations. We also evaluate the performance of different iterative methods for the transport equations and investigate various preconditioners for a few generalized gradient methods. Numerical examples are given for a representative two-dimensional depletion MOSFET.

  2. Optical devices featuring textured semiconductor layers

    DOEpatents

    Moustakas, Theodore D [Dover, MA; Cabalu, Jasper S [Cary, NC

    2012-08-07

    A semiconductor sensor, solar cell or emitter, or a precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate. The textured layers enhance light extraction or absorption. Texturing in the region of multiple quantum wells greatly enhances internal quantum efficiency if the semiconductor is polar and the quantum wells are grown along the polar direction. Electroluminescence of LEDs of the invention is dichromatic, and results in variable color LEDs, including white LEDs, without the use of phosphor.

  3. Optical devices featuring textured semiconductor layers

    DOEpatents

    Moustakas, Theodore D [Dover, MA; Cabalu, Jasper S [Cary, NC

    2011-10-11

    A semiconductor sensor, solar cell or emitter, or a precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate. The textured layers enhance light extraction or absorption. Texturing in the region of multiple quantum wells greatly enhances internal quantum efficiency if the semiconductor is polar and the quantum wells are grown along the polar direction. Electroluminescence of LEDs of the invention is dichromatic, and results in variable color LEDs, including white LEDs, without the use of phosphor.

  4. Advances in high power semiconductor diode lasers

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoyu; Zhong, Li

    2008-03-01

    High power semiconductor lasers have broad applications in the fields of military and industry. Recent advances in high power semiconductor lasers are reviewed mainly in two aspects: improvements of diode lasers performance and optimization of packaging architectures of diode laser bars. Factors which determine the performance of diode lasers, such as power conversion efficiency, temperature of operation, reliability, wavelength stabilization etc., result from a combination of new semiconductor materials, new diode structures, careful material processing of bars. The latest progress of today's high-power diode lasers at home and abroad is briefly discussed and typical data are presented. The packaging process is of decisive importance for the applicability of high-power diode laser bars, not only technically but also economically. The packaging techniques include the material choosing and the structure optimizing of heat-sinks, the bonding between the array and the heat-sink, the cooling and the fiber coupling, etc. The status of packaging techniques is stressed. There are basically three different diode package architectural options according to the integration grade. Since the package design is dominated by the cooling aspect, different effective cooling techniques are promoted by different package architectures and specific demands. The benefit and utility of each package are strongly dependent upon the fundamental optoelectronic properties of the individual diode laser bars. Factors which influence these properties are outlined and comparisons of packaging approaches for these materials are made. Modularity of package for special application requirements is an important developing tendency for high power diode lasers.

  5. EDITORIAL: Focus on Advanced Semiconductor Heterostructures for Optoelectronics

    NASA Astrophysics Data System (ADS)

    Amann, Markus C.; Capasso, Federico; Larsson, Anders; Pessa, Markus

    2009-12-01

    Semiconductor heterostructures are the basic materials underlying optoelectronic devices, particularly lasers and light-emitting diodes (LEDs). Made from various III-V-, II-VI-, SiGe- and other compound semiconductors, modern semiconductor devices are available for the generation, detection and modulation of light covering the entire ultra-violet to far-infrared spectral region. Recent approaches that introduced multilayer heterostructures tailored on the lower nanometre scale made possible artificial semiconductors with new properties, such as extended wavelength coverage, that enabled new applications. Together with ongoing progress on wide-gap semiconductors, the optical wavelengths accessible by semiconductor devices are steadily expanding towards the short-wavelength ultra-violet regime, as well as further into the far-infrared and terahertz spectral regions. It is the aim of this focus issue to present cutting-edge research topics on the most recent optoelectronic material and device developments in this field using advanced semiconductor heterostructures. Focus on Advanced Semiconductor Heterostructures for Optoelectronics Contents Theoretical and experimental investigations of the limits to the maximum output power of laser diodes H Wenzel, P Crump, A Pietrzak, X Wang, G Erbert and G Tränkle GaN/AlGaN intersubband optoelectronic devices H Machhadani, P Kandaswamy, S Sakr, A Vardi, A Wirtmüller, L Nevou, F Guillot, G Pozzovivo, M Tchernycheva, A Lupu, L Vivien, P Crozat, E Warde, C Bougerol, S Schacham, G Strasser, G Bahir, E Monroy and F H Julien Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage Maria I Amanti, Giacomo Scalari, Romain Terazzi, Milan Fischer, Mattias Beck, Jérôme Faist, Alok Rudra, Pascal Gallo and Eli Kapon Structural and optical characteristics of GaN/ZnO coaxial nanotube heterostructure arrays for light-emitting device applications Young Joon Hong, Jong-Myeong Jeon, Miyoung

  6. Advanced resistive exercise device

    NASA Technical Reports Server (NTRS)

    Raboin, Jasen L. (Inventor); Niebuhr, Jason (Inventor); Cruz, Santana F. (Inventor); Lamoreaux, Christopher D. (Inventor)

    2008-01-01

    The present invention relates to an exercise device, which includes a vacuum cylinder and a flywheel. The flywheel provides an inertial component to the load, which is particularly well suited for use in space as it simulates exercising under normal gravity conditions. Also, the present invention relates to an exercise device, which has a vacuum cylinder and a load adjusting armbase assembly.

  7. SPICE-SANDIA.LIB. Library Analog Semiconductor Devices SPICE Simulators

    SciTech Connect

    Deveney, M.F.; Archer, W.; Bogdan, C.

    1996-06-06

    SPICE-SANDIA.LIB is a library of parameter sets and macromodels of semiconductor devices. They are used with Spice-based (SPICE is a program for electronic circuit analysis) simulators to simulate electronic circuits.

  8. Efficient semiconductor light-emitting device and method

    DOEpatents

    Choquette, Kent D.; Lear, Kevin L.; Schneider, Jr., Richard P.

    1996-01-01

    A semiconductor light-emitting device and method. The semiconductor light-emitting device is provided with at least one control layer or control region which includes an annular oxidized portion thereof to channel an injection current into the active region, and to provide a lateral refractive index profile for index guiding the light generated within the device. A periodic composition grading of at least one of the mirror stacks in the device provides a reduced operating voltage of the device. The semiconductor light-emitting device has a high efficiency for light generation, and may be formed either as a resonant-cavity light-emitting diode (RCLED) or as a vertical-cavity surface-emitting laser (VCSEL).

  9. Efficient semiconductor light-emitting device and method

    DOEpatents

    Choquette, K.D.; Lear, K.L.; Schneider, R.P. Jr.

    1996-02-20

    A semiconductor light-emitting device and method are disclosed. The semiconductor light-emitting device is provided with at least one control layer or control region which includes an annular oxidized portion thereof to channel an injection current into the active region, and to provide a lateral refractive index profile for index guiding the light generated within the device. A periodic composition grading of at least one of the mirror stacks in the device provides a reduced operating voltage of the device. The semiconductor light-emitting device has a high efficiency for light generation, and may be formed either as a resonant-cavity light-emitting diode (RCLED) or as a vertical-cavity surface-emitting laser (VCSEL). 12 figs.

  10. Advanced underwater lift device

    NASA Technical Reports Server (NTRS)

    Flanagan, David T.; Hopkins, Robert C.

    1993-01-01

    Flexible underwater lift devices ('lift bags') are used in underwater operations to provide buoyancy to submerged objects. Commercially available designs are heavy, bulky, and awkward to handle, and thus are limited in size and useful lifting capacity. An underwater lift device having less than 20 percent of the bulk and less than 10 percent of the weight of commercially available models was developed. The design features a dual membrane envelope, a nearly homogeneous envelope membrane stress distribution, and a minimum surface-to-volume ratio. A proof-of-concept model of 50 kg capacity was built and tested. Originally designed to provide buoyancy to mock-ups submerged in NASA's weightlessness simulators, the device may have application to water-landed spacecraft which must deploy flotation upon impact, and where launch weight and volume penalties are significant. The device may also be useful for the automated recovery of ocean floor probes or in marine salvage applications.

  11. Separating semiconductor devices from substrate by etching graded composition release layer disposed between semiconductor devices and substrate including forming protuberances that reduce stiction

    DOEpatents

    Tauke-Pedretti, Anna; Nielson, Gregory N; Cederberg, Jeffrey G; Cruz-Campa, Jose Luis

    2015-05-12

    A method includes etching a release layer that is coupled between a plurality of semiconductor devices and a substrate with an etch. The etching includes etching the release layer between the semiconductor devices and the substrate until the semiconductor devices are at least substantially released from the substrate. The etching also includes etching a protuberance in the release layer between each of the semiconductor devices and the substrate. The etch is stopped while the protuberances remain between each of the semiconductor devices and the substrate. The method also includes separating the semiconductor devices from the substrate. Other methods and apparatus are also disclosed.

  12. 77 FR 19032 - Certain Semiconductor Integrated Circuit Devices and Products Containing Same Notice of Receipt...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-29

    ... Certain Semiconductor Integrated Circuit Devices and Products Containing Same, DN 2888; the Commission is... importation of certain semiconductor integrated circuit devices and products containing same. The complaint...] [FR Doc No: 2012-7567] INTERNATIONAL TRADE COMMISSION [DN 2888] Certain Semiconductor...

  13. Simulation of neutron radiation damage in silicon semiconductor devices.

    SciTech Connect

    Shadid, John Nicolas; Hoekstra, Robert John; Hennigan, Gary Lee; Castro, Joseph Pete Jr.; Fixel, Deborah A.

    2007-10-01

    A code, Charon, is described which simulates the effects that neutron damage has on silicon semiconductor devices. The code uses a stabilized, finite-element discretization of the semiconductor drift-diffusion equations. The mathematical model used to simulate semiconductor devices in both normal and radiation environments will be described. Modeling of defect complexes is accomplished by adding an additional drift-diffusion equation for each of the defect species. Additionally, details are given describing how Charon can efficiently solve very large problems using modern parallel computers. Comparison between Charon and experiment will be given, as well as comparison with results from commercially-available TCAD codes.

  14. Apparatus for measuring semiconductor device resistance

    NASA Technical Reports Server (NTRS)

    Matzen, W. J. (Inventor)

    1980-01-01

    A test structure is described for enabling the accurate measurement of the resistance characteristics of a semiconductor material and includes one or more pairs of electrical terminals disposed on the surface of the material to enable measurements of the resistance encountered by currents passed between the terminals. A pair of terminals includes a first terminal extending in a closed path, such as a circle, around a second terminal, so that all currents flowing between the terminals flow along a region of known width and length. Two or more pairs of concentric terminals can be utilized, wherein the ratio of radii of each pair of terminals is the same as the ratio for all other pairs of terminals, to facilitate the calculation of the contact resistance between each terminal and the semiconductor surface, as well as the calculation of the resistance of the semiconductor material apart from the effect of the terminal to semiconductor contact resistances.

  15. Novel High-Performance Analog Devices for Advanced Low-Power High-k Metal Gate Complementary Metal-Oxide-Semiconductor Technology

    NASA Astrophysics Data System (ADS)

    Han, Jin-Ping; Shimizu, Takashi; Pan, Li-Hong; Voelker, Moritz; Bernicot, Christophe; Arnaud, Franck; Mocuta, Anda; Stahrenberg, Knut; Azuma, Atsushi; Eller, Manfred; Yang, Guoyong; Jaeger, Daniel; Zhuang, Haoren; Miyashita, Katsura; Stein, Kenneth; Nair, Deleep; Hoo Park, Jae; Kohler, Sabrina; Hamaguchi, Masafumi; Li, Weipeng; Kim, Kisang; Chanemougame, Daniel; Kim, Nam Sung; Uchimura, Sadaharu; Tsutsui, Gen; Wiedholz, Christian; Miyake, Shinich; van Meer, Hans; Liang, Jewel; Ostermayr, Martin; Lian, Jenny; Celik, Muhsin; Donaton, Ricardo; Barla, Kathy; Na, MyungHee; Goto, Yoshiro; Sherony, Melanie; Johnson, Frank S.; Wachnik, Richard; Sudijono, John; Kaste, Ed; Sampson, Ron; Ku, Ja-Hum; Steegen, An; Neumueller, Walter

    2011-04-01

    High performance analog (HPA) devices in high-k metal gate (HKMG) scheme with innovative halo engineering have been successfully demonstrated to produce superior analog and digital performance for low power applications. HPA device was processed “freely” with no extra mask, no extra litho, and no extra process step. This paper details a comprehensive study of the analog and digital characteristics of these HPA devices in comparison with analog control (conventional digital devices with matched geometry). Analog properties such as output voltage gain (also called self-gain), trans-conductance Gm, conductance Gds, Gm/Id, mismatching (MM) behavior, flicker noise (1/f noise) and current linearity have clearly reflected the advantage of HPA devices over analog control, while DC performance (e.g., Ion-Ioff, Ioff-Vtsat, DIBL, Cjswg) and reliability (HCI) have also shown the comparability of HPA devices over control.

  16. Method for fabricating an interconnected array of semiconductor devices

    NASA Technical Reports Server (NTRS)

    Grimmer, Derrick P. (Inventor)

    1995-01-01

    A method of forming an array of interconnected solar cells. A flexible substrate carrying semiconductor and conductive layers is divided into individual devices by slitting the substrate along the web length. The individual devices are then connected with one another in series by laminating the substrate onto an insulating backing and by depositing conducting interconnection layers which join the lower conductor of one device with the top conductor of the adjoining device.

  17. 75 FR 44015 - Certain Semiconductor Products Made by Advanced Lithography Techniques and Products Containing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... COMMISSION Certain Semiconductor Products Made by Advanced Lithography Techniques and Products Containing... importation of certain semiconductor products made by advanced lithography techniques and products containing... certain semiconductor products made by advanced lithography techniques or products containing same...

  18. The use of semiconductors in nonreciprocal devices for submillimeter wavelengths.

    NASA Technical Reports Server (NTRS)

    Hayes, R. E.; May, W. G.

    1971-01-01

    This paper reviews the use of anisotropic effects in a passive semiconductor magnetoplasma for the development of submillimeter isolators and circulators. The emphasis is on two schemes that are applicable over the far infrared portion of the spectrum. The theory of transmission devices depending on Faraday rotation is described, and experiments are discussed. At far infrared wavelengths it is not necessary to cool the semiconductor in order to achieve low forward loss. Some experimental results are available in this frequency range, and a theoretical evaluation of device performance is given. Reflection devices in which the desired signal does not propagate through the semiconductor, but is reflected off of its surface, are also discussed. Experimental results show that these devices can have a low forward loss; a variety of novel geometrical arrangements are able to improve isolator performance. Theoretical results indicating satisfactory performance for a far infrared isolator using InSb at room temperature are presented.

  19. Tapered rib fiber coupler for semiconductor optical devices

    DOEpatents

    Vawter, Gregory A.; Smith, Robert Edward

    2001-01-01

    A monolithic tapered rib waveguide for transformation of the spot size of light between a semiconductor optical device and an optical fiber or from the fiber into the optical device. The tapered rib waveguide is integrated into the guiding rib atop a cutoff mesa type semiconductor device such as an expanded mode optical modulator or and expanded mode laser. The tapered rib acts to force the guided light down into the mesa structure of the semiconductor optical device instead of being bound to the interface between the bottom of the guiding rib and the top of the cutoff mesa. The single mode light leaving or entering the output face of the mesa structure then can couple to the optical fiber at coupling losses of 1.0 dB or less.

  20. A Thermal and Electrical Analysis of Power Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Vafai, Kambiz

    1997-01-01

    The state-of-art power semiconductor devices require a thorough understanding of the thermal behavior for these devices. Traditional thermal analysis have (1) failed to account for the thermo-electrical interaction which is significant for power semiconductor devices operating at high temperature, and (2) failed to account for the thermal interactions among all the levels involved in, from the entire device to the gate micro-structure. Furthermore there is a lack of quantitative studies of the thermal breakdown phenomenon which is one of the major failure mechanisms for power electronics. This research work is directed towards addressing. Using a coupled thermal and electrical simulation, in which the drift-diffusion equations for the semiconductor and the energy equation for temperature are solved simultaneously, the thermo-electrical interactions at the micron scale of various junction structures are thoroughly investigated. The optimization of gate structure designs and doping designs is then addressed. An iterative numerical procedure which incorporates the thermal analysis at the device, chip and junction levels of the power device is proposed for the first time and utilized in a BJT power semiconductor device. In this procedure, interactions of different levels are fully considered. The thermal stability issue is studied both analytically and numerically in this research work in order to understand the mechanism for thermal breakdown.

  1. Fabrication of optically reflecting ohmic contacts for semiconductor devices

    DOEpatents

    Sopori, Bhushan L.

    1995-01-01

    A method is provided to produce a low-resistivity ohmic contact having high optical reflectivity on one side of a semiconductor device. The contact is formed by coating the semiconductor substrate with a thin metal film on the back reflecting side and then optically processing the wafer by illuminating it with electromagnetic radiation of a predetermined wavelength and energy level through the front side of the wafer for a predetermined period of time. This method produces a thin epitaxial alloy layer between the semiconductor substrate and the metal layer when a crystalline substrate is used. The alloy layer provides both a low-resistivity ohmic contact and high optical reflectance.

  2. Fabrication of optically reflecting ohmic contacts for semiconductor devices

    DOEpatents

    Sopori, B.L.

    1995-07-04

    A method is provided to produce a low-resistivity ohmic contact having high optical reflectivity on one side of a semiconductor device. The contact is formed by coating the semiconductor substrate with a thin metal film on the back reflecting side and then optically processing the wafer by illuminating it with electromagnetic radiation of a predetermined wavelength and energy level through the front side of the wafer for a predetermined period of time. This method produces a thin epitaxial alloy layer between the semiconductor substrate and the metal layer when a crystalline substrate is used. The alloy layer provides both a low-resistivity ohmic contact and high optical reflectance. 5 figs.

  3. Method of producing strained-layer semiconductor devices via subsurface-patterning

    DOEpatents

    Dodson, Brian W.

    1993-01-01

    A method is described for patterning subsurface features in a semiconductor device, wherein the semiconductor device includes an internal strained layer. The method comprises creating a pattern of semiconductor material over the semiconductor device, the semiconductor material having a predetermined thickness which stabilizes areas of the strained semiconductor layer that lie beneath the pattern. Subsequently, a heating step is applied to the semiconductor device to cause a relaxation in areas of the strained layer which do not lie beneath the semiconductor material pattern, whereby dislocations result in the relaxed areas and impair electrical transport therethrough.

  4. Quantum Mechanical Balance Equation Approach to Semiconductor Device Simulation

    DTIC Science & Technology

    2007-11-02

    inexpensive way to analyze and design the semiconductor devices before expensive device processing. Since traditional equivalent circuit models and...are described, along with representative simulation results for various devices, such as Si- MESFET , Si-MOSFET and GaAs- MESFET . ^CQTJM^1^^0^ 8... determined by how accurately carrier transport is described. Generally, the more sophisticated the approach, the heavier the computational burden

  5. Nanostructured Semiconductor Device Design in Solar Cells

    NASA Astrophysics Data System (ADS)

    Dang, Hongmei

    We demonstrate the use of embedded CdS nanowires in improving spectral transmission loss and the low mechanical and electrical robustness of planar CdS window layer and thus enhancing the quantum efficiency and the reliability of the CdS-CdTe solar cells. CdS nanowire window layer enables light transmission gain at 300nm-550nm. A nearly ideal spectral response of quantum efficiency at a wide spectrum range provides an evidence for improving light transmission in the window layer and enhancing absorption and carrier generation in absorber. Nanowire CdS/CdTe solar cells with Cu/graphite/silver paste as back contacts, on SnO2/ITO-soda lime glass substrates, yield the highest efficiency of 12% in nanostructured CdS-CdTe solar cells. Reliability is improved by approximately 3 times over the cells with the traditional planar CdS counterpart. Junction transport mechanisms are delineated for advancing the basic understanding of device physics at the interface. Our results prove the efficacy of this nanowire approach for enhancing the quantum efficiency and the reliability in windowabsorber type solar cells (CdS-CdTe, CdS-CIGS and CdS-CZTSSe etc) and other optoelectronic devices. We further introduce MoO3-x as a transparent, low barrier back contact. We design nanowire CdS-CdTe solar cells on flexible foils of metals in a superstrate device structure, which makes low-cost roll-to-roll manufacturing process feasible and greatly reduces the complexity of fabrication. The MoO3 layer reduces the valence band offset relative to the CdTe, and creates improved cell performance. Annealing as-deposited MoO3 in N 2 reduces series resistance from 9.98 O/cm2 to 7.72 O/cm2, and hence efficiency of the nanowire solar cell is improved from 9.9% to 11%, which efficiency comparable to efficiency of planar counterparts. When the nanowire solar cell is illuminated from MoO 3-x /Au side, it yields an efficiency of 8.7%. This reduction in efficiency is attributed to decrease in Jsc from 25.5m

  6. Silicon superlattices: Theory and application to semiconductor devices

    NASA Technical Reports Server (NTRS)

    Moriarty, J. A.

    1981-01-01

    Silicon superlattices and their applicability to improved semiconductor devices were studied. The device application potential of the atomic like dimension of III-V semiconductor superlattices fabricated in the form of ultrathin periodically layered heterostructures was examined. Whether this leads to quantum size effects and creates the possibility to alter familiar transport and optical properties over broad physical ranges was studied. Applications to improved semiconductor lasers and electrondevices were achieved. Possible application of silicon sperlattices to faster high speed computing devices was examined. It was found that the silicon lattices show features of smaller fundamental energyband gaps and reduced effective masses. The effects correlate strongly with both the chemical and geometrical nature of the superlattice.

  7. Excitons and the lifetime of organic semiconductor devices

    PubMed Central

    Forrest, Stephen R.

    2015-01-01

    While excitons are responsible for the many beneficial optical properties of organic semiconductors, their non-radiative recombination within the material can result in material degradation due to the dumping of energy onto localized molecular bonds. This presents a challenge in developing strategies to exploit the benefits of excitons without negatively impacting the device operational stability. Here, we will briefly review the fundamental mechanisms leading to excitonic energy-driven device ageing in two example devices: blue emitting electrophosphorescent organic light emitting devices (PHOLEDs) and organic photovoltaic (OPV) cells. We describe strategies used to minimize or even eliminate this fundamental device degradation pathway. PMID:25987572

  8. Excitons and the lifetime of organic semiconductor devices.

    PubMed

    Forrest, Stephen R

    2015-06-28

    While excitons are responsible for the many beneficial optical properties of organic semiconductors, their non-radiative recombination within the material can result in material degradation due to the dumping of energy onto localized molecular bonds. This presents a challenge in developing strategies to exploit the benefits of excitons without negatively impacting the device operational stability. Here, we will briefly review the fundamental mechanisms leading to excitonic energy-driven device ageing in two example devices: blue emitting electrophosphorescent organic light emitting devices (PHOLEDs) and organic photovoltaic (OPV) cells. We describe strategies used to minimize or even eliminate this fundamental device degradation pathway.

  9. Advanced Modeling of Micromirror Devices

    NASA Technical Reports Server (NTRS)

    Michalicek, M. Adrian; Sene, Darren E.; Bright, Victor M.

    1995-01-01

    The flexure-beam micromirror device (FBMD) is a phase only piston style spatial light modulator demonstrating properties which can be used for phase adaptive corrective optics. This paper presents a complete study of a square FBMD, from advanced model development through final device testing and model verification. The model relates the electrical and mechanical properties of the device by equating the electrostatic force of a parallel-plate capacitor with the counter-acting spring force of the device's support flexures. The capacitor solution is derived via the Schwartz-Christoffel transformation such that the final solution accounts for non-ideal electric fields. The complete model describes the behavior of any piston-style device, given its design geometry and material properties. It includes operational parameters such as drive frequency and temperature, as well as fringing effects, mirror surface deformations, and cross-talk from neighboring devices. The steps taken to develop this model can be applied to other micromirrors, such as the cantilever and torsion-beam designs, to produce an advanced model for any given device. The micromirror devices studied in this paper were commercially fabricated in a surface micromachining process. A microscope-based laser interferometer is used to test the device in which a beam reflected from the device modulates a fixed reference beam. The mirror displacement is determined from the relative phase which generates a continuous set of data for each selected position on the mirror surface. Plots of this data describe the localized deflection as a function of drive voltage.

  10. Anodic bonded 2D semiconductors: from synthesis to device fabrication.

    PubMed

    Chen, Zhesheng; Gacem, Karim; Boukhicha, Mohamed; Biscaras, Johan; Shukla, Abhay

    2013-10-18

    Two-dimensional semiconductors are increasingly relevant for emergent applications and devices, notably for hybrid heterostructures with graphene. We fabricate few-layer, large-area (a few tens of microns across) samples of the III-VI semiconductors GaS, GaSe and InSe using the anodic bonding method and characterize them by simultaneous use of optical microscopy, atomic force microscopy and Raman spectroscopy. Two-terminal devices with a gate are constructed to show the feasibility of applications based on these.

  11. Anodic bonded 2D semiconductors: from synthesis to device fabrication

    NASA Astrophysics Data System (ADS)

    Chen, Zhesheng; Gacem, Karim; Boukhicha, Mohamed; Biscaras, Johan; Shukla, Abhay

    2013-10-01

    Two-dimensional semiconductors are increasingly relevant for emergent applications and devices, notably for hybrid heterostructures with graphene. We fabricate few-layer, large-area (a few tens of microns across) samples of the III-VI semiconductors GaS, GaSe and InSe using the anodic bonding method and characterize them by simultaneous use of optical microscopy, atomic force microscopy and Raman spectroscopy. Two-terminal devices with a gate are constructed to show the feasibility of applications based on these.

  12. Deep impurity trapping concepts for power semiconductor devices

    NASA Technical Reports Server (NTRS)

    Sundberg, G. R.

    1982-01-01

    High voltage semiconductor switches using deep impurity doped silicon now appear feasible for high voltage (1-100 kV), high power (10 Kw) switching and protection functions for future space power applications. Recent discoveries have demonstrated several practical ways of gating deep impurity doped silicon devices in planar configurations and of electrically controlling their characteristics, leading to a vast array of possible circuit applications. A new family of semiconductor switching devices and transducers are possible based on this technology. New deep impurity devices could be simpler than conventional p-n junction devices and yet use the same basic materials and processing techniques. In addition, multiple functions may be possible on a single device as well as increased ratings.

  13. Methods of forming semiconductor devices and devices formed using such methods

    DOEpatents

    Fox, Robert V; Rodriguez, Rene G; Pak, Joshua

    2013-05-21

    Single source precursors are subjected to carbon dioxide to form particles of material. The carbon dioxide may be in a supercritical state. Single source precursors also may be subjected to supercritical fluids other than supercritical carbon dioxide to form particles of material. The methods may be used to form nanoparticles. In some embodiments, the methods are used to form chalcopyrite materials. Devices such as, for example, semiconductor devices may be fabricated that include such particles. Methods of forming semiconductor devices include subjecting single source precursors to carbon dioxide to form particles of semiconductor material, and establishing electrical contact between the particles and an electrode.

  14. 78 FR 3319 - Amendments to Existing Validated End User Authorizations: Advanced Micro Devices China, Inc., Lam...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-16

    ... Authorizations: Advanced Micro Devices China, Inc., Lam Research Corporation, SK hynix Semiconductor (China) Ltd... Advanced Micro Devices China Inc.'s (AMD China) current list of eligible destinations. BIS also amends the...-User Authorizations in the PRC Revisions to the List of Eligible Destinations for Advanced...

  15. Optoelectronic semiconductor device and method of fabrication

    SciTech Connect

    Cui, Yi; Zhu, Jia; Hsu, Ching-Mei; Fan, Shanhui; Yu, Zongfu

    2014-11-25

    An optoelectronic device comprising an optically active layer that includes a plurality of domes is presented. The plurality of domes is arrayed in two dimensions having a periodicity in each dimension that is less than or comparable with the shortest wavelength in a spectral range of interest. By virtue of the plurality of domes, the optoelectronic device achieves high performance. A solar cell having high energy-conversion efficiency, improved absorption over the spectral range of interest, and an improved acceptance angle is presented as an exemplary device.

  16. Plasma etching for advanced polymer optical devices

    NASA Astrophysics Data System (ADS)

    Bitting, Donald S.

    Plasma etching is a common microfabrication technique which can be applied to polymers as well as glasses, metals, and semiconductors. The fabrication of low loss and reliable polymer optical devices commonly makes use of advanced microfabrication processing techniques similar in nature to those utilized in standard semiconductor fabrication technology. Among these techniques, plasma/reactive ion etching is commonly used in the formation of waveguiding core structures. Plasma etching is a powerful processing technique with many potential applications in the emerging field of polymer optical device fabrication. One such promising application explored in this study is in the area of thin film-substrate adhesion enhancement. Two approaches involving plasma processing were evaluated to improve substrate-thin film adhesion in the production of polymer waveguide optical devices. Plasma treatment of polymer substrates such as polycarbonate has been studied to promote the adhesion of fluoropolymer thin film coatings for waveguide device fabrication. The effects of blanket oxygen plasma etchback on substrate, microstructural substrate feature formation, and the long term performance and reliability of these methods were investigated. Use of a blanket oxygen plasma to alter the polycarbonate surface prior to fluoropolymer casting was found to have positive but limited capability to improve the adhesive strength between these polymers. Experiments show a strong correlation between surface roughness and adhesion strength. The formation of small scale surface features using microlithography and plasma etching on the polycarbonate surface proved to provide outstanding adhesion strength when compared to any other known treatment methods. Long term environmental performance testing of these surface treatment methods provided validating data. Test results showed these process approaches to be effective solutions to the problem of adhesion between hydrocarbon based polymer

  17. Porous silicon carbide (SiC) semiconductor device

    NASA Technical Reports Server (NTRS)

    Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)

    1994-01-01

    A semiconductor device employs at least one layer of semiconducting porous silicon carbide (SiC). The porous SiC layer has a monocrystalline structure wherein the pore sizes, shapes, and spacing are determined by the processing conditions. In one embodiment, the semiconductor device is a p-n junction diode in which a layer of n-type SiC is positioned on a p-type layer of SiC, with the p-type layer positioned on a layer of silicon dioxide. Because of the UV luminescent properties of the semiconducting porous SiC layer, it may also be utilized for other devices such as LEDs and optoelectronic devices.

  18. The Quantum Hydrodynamic Model for Semiconductor Devices: Theory and Computations

    DTIC Science & Technology

    2007-11-02

    Quantum transport effects including electron or hole tunneling through potential barriers and buildup in quantum wells are important in predicting...semiconductor device. A new extension of the classical hydrodynamic model to include quantum transport effects was derived. This "smooth" quantum

  19. Multilevel metallization method for fabricating a metal oxide semiconductor device

    NASA Technical Reports Server (NTRS)

    Hollis, B. R., Jr.; Feltner, W. R.; Bouldin, D. L.; Routh, D. E. (Inventor)

    1978-01-01

    An improved method is described of constructing a metal oxide semiconductor device having multiple layers of metal deposited by dc magnetron sputtering at low dc voltages and low substrate temperatures. The method provides multilevel interconnections and cross over between individual circuit elements in integrated circuits without significantly reducing the reliability or seriously affecting the yield.

  20. Release strategies for making transferable semiconductor structures, devices and device components

    SciTech Connect

    Rogers, John A.; Nuzzo, Ralph G.; Meitl, Matthew; Ko, Heung Cho; Yoon, Jongseung; Menard, Etienne; Baca, Alfred J.

    2016-05-24

    Provided are methods for making a device or device component by providing a multi layer structure having a plurality of functional layers and a plurality of release layers and releasing the functional layers from the multilayer structure by separating one or more of the release layers to generate a plurality of transferable structures. The transferable structures are printed onto a device substrate or device component supported by a device substrate. The methods and systems provide means for making high-quality and low-cost photovoltaic devices, transferable semiconductor structures, (opto-)electronic devices and device components.

  1. Release strategies for making transferable semiconductor structures, devices and device components

    DOEpatents

    Rogers, John A; Nuzzo, Ralph G; Meitl, Matthew; Ko, Heung Cho; Yoon, Jongseung; Menard, Etienne; Baca, Alfred J

    2014-11-25

    Provided are methods for making a device or device component by providing a multilayer structure having a plurality of functional layers and a plurality of release layers and releasing the functional layers from the multilayer structure by separating one or more of the release layers to generate a plurality of transferable structures. The transferable structures are printed onto a device substrate or device component supported by a device substrate. The methods and systems provide means for making high-quality and low-cost photovoltaic devices, transferable semiconductor structures, (opto-)electronic devices and device components.

  2. Release strategies for making transferable semiconductor structures, devices and device components

    DOEpatents

    Rogers, John A.; Nuzzo, Ralph G.; Meitl, Matthew; Ko, Heung Cho; Yoon, Jongseung; Menard, Etienne; Baca, Alfred J.

    2011-04-26

    Provided are methods for making a device or device component by providing a multilayer structure having a plurality of functional layers and a plurality of release layers and releasing the functional layers from the multilayer structure by separating one or more of the release layers to generate a plurality of transferable structures. The transferable structures are printed onto a device substrate or device component supported by a device substrate. The methods and systems provide means for making high-quality and low-cost photovoltaic devices, transferable semiconductor structures, (opto-)electronic devices and device components.

  3. Implanted contacts for diamond semiconductor devices

    NASA Astrophysics Data System (ADS)

    Tan, Soo-Hee; Beetz, C. P., Jr.

    1992-01-01

    The key to future diamond semiconductor development are ohmic and Schottky contacts that are stable at high temperatures. Wide bandgap materials, such as diamond (5.5 eV), pose special problems and demand ingenious solutions. Prior to our work, recent research into stable ohmic and Schottky contacts had been primarily limited to e-beam evaporation of carbide forming metals such as Ti, Ta, and Mo. These approaches have been relatively successful at decreasing the specific contact resistivity to as low as 10(exp -5) ohm sq cm on natural semiconducting diamond with about 10(exp 16) boron atoms/cubic cm. In our Phase 1 SBIR program we investigated metal systems coupled with a shallow Si implant that would form low resistivity, high temperature stable metal silicides. We showed in our Phase 1 results that the barrier height of metals such as Pt, Ti and Mo were reduced when deposited on shallow Si implants and given a heat treatment at 500 C. The barrier height of Pt on diamond was reduced from 1.89 to 0.97 eV by annealing of a sputtered Pt contact on a Si implanted dose of 10(exp 15) cm(exp -2) sq A into the diamond surface. Using the same approach, the barrier height of Ti on diamond was reduced from 2.00 to 1.29 eV.

  4. Optoelectronic Devices Based on Novel Semiconductor Structures

    DTIC Science & Technology

    2006-06-14

    Force. 15. SUBJECT TERMS Terahertz devices, spectrometers, and systems; nanostructures and nanodevices 16. SECURITY CLASSIFICATION OF: 17. LIMITATION...Y. J. Ding and I. B. Zotova, "Coherent and tunable terahertz oscillators, generators, and amplifiers," J. Nonlinear Opt. Phys. & Mats. 11, 75-97...GaSe crystal," Opt. Left. 27, 1454-1456 (2002). 2. W. Shi and Y. J. Ding, "Continuously tunable and coherent terahertz radiation by means of phase

  5. Electromagnetic radiation screening of semiconductor devices for long life applications

    NASA Technical Reports Server (NTRS)

    Hall, T. C.; Brammer, W. G.

    1972-01-01

    A review is presented of the mechanism of interaction of electromagnetic radiation in various spectral ranges, with various semiconductor device defects. Previous work conducted in this area was analyzed as to its pertinence to the current problem. The task was studied of implementing electromagnetic screening methods in the wavelength region determined to be most effective. Both scanning and flooding type stimulation techniques are discussed. While the scanning technique offers a considerably higher yield of useful information, a preliminary investigation utilizing the flooding approach is first recommended because of the ease of implementation, lower cost and ability to provide go-no-go information in semiconductor screening.

  6. Silicon carbide semiconductor device fabrication and characterization

    NASA Technical Reports Server (NTRS)

    Davis, R. F.; Das, K.

    1990-01-01

    A number of basic building blocks i.e., rectifying and ohmic contacts, implanted junctions, MOS capacitors, pnpn diodes and devices, such as, MESFETs on both alpha and beta SiC films were fabricated and characterized. Gold forms a rectifying contact on beta SiC. Since Au contacts degrade at high temperatures, these are not considered to be suitable for high temperature device applications. However, it was possible to utilize Au contact diodes for electrically characterizing SiC films. Preliminary work indicates that sputtered Pt or Pt/Si contacts on beta SiC films are someways superior to Au contacts. Sputtered Pt layers on alpha SiC films form excellent rectifying contacts, whereas Ni layers following anneal at approximately 1050 C provide an ohmic contact. It has demonstrated that ion implantation of Al in substrates held at 550 C can be successfully employed for the fabrication of rectifying junction diodes. Feasibility of fabricating pnpn diodes and platinum gated MESFETs on alpha SiC films was also demonstrated.

  7. Screenable contact structure and method for semiconductor devices

    DOEpatents

    Ross, Bernd

    1980-08-26

    An ink composition for deposition upon the surface of a semiconductor device to provide a contact area for connection to external circuitry is disclosed, the composition comprising an ink system containing a metal powder, a binder and vehicle, and a metal frit. The ink is screened onto the semiconductor surface in the desired pattern and is heated to a temperature sufficient to cause the metal frit to become liquid. The metal frit dissolves some of the metal powder and densifies the structure by transporting the dissolved metal powder in a liquid sintering process. The sintering process typically may be carried out in any type of atmosphere. A small amount of dopant or semiconductor material may be added to the ink systems to achieve particular results if desired.

  8. Semiconductor optoelectronic devices for free-space optical communications

    NASA Technical Reports Server (NTRS)

    Katz, J.

    1983-01-01

    The properties of individual injection lasers are reviewed, and devices of greater complexity are described. These either include or are relevant to monolithic integration configurations of the lasers with their electronic driving circuitry, power combining methods of semiconductor lasers, and electronic methods of steering the radiation patterns of semiconductor lasers and laser arrays. The potential of AlGaAs laser technology for free-space optical communications systems is demonstrated. These solid-state components, which can generate and modulate light, combine the power of a number of sources and perform at least part of the beam pointing functions. Methods are proposed for overcoming the main drawback of semiconductor lasers, that is, their inability to emit the needed amount of optical power in a single-mode operation.

  9. Porous silicon carbide (SIC) semiconductor device

    NASA Technical Reports Server (NTRS)

    Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)

    1996-01-01

    Porous silicon carbide is fabricated according to techniques which result in a significant portion of nanocrystallites within the material in a sub 10 nanometer regime. There is described techniques for passivating porous silicon carbide which result in the fabrication of optoelectronic devices which exhibit brighter blue luminescence and exhibit improved qualities. Based on certain of the techniques described porous silicon carbide is used as a sacrificial layer for the patterning of silicon carbide. Porous silicon carbide is then removed from the bulk substrate by oxidation and other methods. The techniques described employ a two-step process which is used to pattern bulk silicon carbide where selected areas of the wafer are then made porous and then the porous layer is subsequently removed. The process to form porous silicon carbide exhibits dopant selectivity and a two-step etching procedure is implemented for silicon carbide multilayers.

  10. Microwave impedance imaging on semiconductor memory devices

    NASA Astrophysics Data System (ADS)

    Kundhikanjana, Worasom; Lai, Keji; Yang, Yongliang; Kelly, Michael; Shen, Zhi-Xun

    2011-03-01

    Microwave impedance microscopy (MIM) maps out the real and imaginary components of the tip-sample impedance, from which the local conductivity and dielectric constant distribution can be derived. The stray field contribution is minimized in our shielded cantilever design, enabling quantitative analysis of nano-materials and device structures. We demonstrate here that the MIM can spatially resolve the conductivity variation in a dynamic random access memory (DRAM) sample. With DC or low-frequency AC bias applied to the tip, contrast between n-doped and p-doped regions in the dC/dV images is observed, and p-n junctions are highlighted in the dR/dV images. The results can be directly compared with data taken by scanning capacitance microscope (SCM), which uses unshielded cantilevers and resonant electronics, and the MIM reveals more information of the local dopant concentration than SCM.

  11. Methods of measurement for semiconductor materials, process control, and devices

    NASA Technical Reports Server (NTRS)

    Bullis, W. M. (Editor)

    1972-01-01

    Significant accomplishments include development of a procedure to correct for the substantial differences of transistor delay time as measured with different instruments or with the same instrument at different frequencies; association of infrared response spectra of poor quality germanium gamma ray detectors with spectra of detectors fabricated from portions of a good crystal that had been degraded in known ways; and confirmation of the excellent quality and cosmetic appearance of ultrasonic bonds made with aluminum ribbon wire. Work is continuing on measurement of resistivity of semiconductor crystals; study of gold-doped silicon, development of the infrared response technique; evaluation of wire bonds and die attachment; and measurement of thermal properties of semiconductor devices, delay time and related carrier transport properties in junction devices, and noise properties of microwave diodes.

  12. Selective etchant for oxide sacrificial material in semiconductor device fabrication

    SciTech Connect

    Clews, Peggy J.; Mani, Seethambal S.

    2005-05-17

    An etching composition and method is disclosed for removing an oxide sacrificial material during manufacture of semiconductor devices including micromechanical, microelectromechanical or microfluidic devices. The etching composition and method are based on the combination of hydrofluoric acid (HF) and sulfuric acid (H.sub.2 SO.sub.4). These acids can be used in the ratio of 1:3 to 3:1 HF:H.sub.2 SO.sub.4 to remove all or part of the oxide sacrificial material while providing a high etch selectivity for non-oxide materials including polysilicon, silicon nitride and metals comprising aluminum. Both the HF and H.sub.2 SO.sub.4 can be provided as "semiconductor grade" acids in concentrations of generally 40-50% by weight HF, and at least 90% by weight H.sub.2 SO.sub.4.

  13. Low-dimensional electron transport in mesoscopic semiconductor devices

    NASA Astrophysics Data System (ADS)

    Martin, Theodore Peyton

    Recent advances in solid state materials engineering have led to mesoscopic devices with feature sizes that approach the fundamental quantum wavelength of charge carriers in the solid, allowing for the experimental observation of quantum interference. By confining carriers to a single quantum state in one or more dimensions, the degrees of freedom for charge transport can be reduced to achieve new device functionality. This dissertation focuses on mesoscopic electron billiards that combine the aspects of zero, one, and two-dimensional transport into one system. Low-temperature measurement of billiards fabricated within a relatively defect-free semiconductor heterostructure results in ballistic transport, where the electron waves follow classical trajectories and the confining walls play a major role in determining the electron interference. Billiards have been traditionally formed by applying a bias to patterned surface gates atop an AlGaAs/GaAs heterostructure. Within this system, fractal fluctuations in the billiard conductance are observed as a function of an applied external magnetic field. These fluctuations are tied to quantum interference via an empirical parameter that describes the resolution of energy levels within the billiard. To investigate whether fractal fluctuations are a robust phenomenon intrinsic to billiard-like structures, this study centers on billiards defined by etching walls into a GaInAs/InP heterostructure, departing from the traditional system in both the type of confinement and material system used. It is expected that etched walls will provide a steeper confinement profile leading to well-defined device shapes. Conductance measurements through the one-dimensional leads that couple electrons into the billiard are utilized in combination with a self-consistent Schrodinger/Poisson solution to demonstrate a steeper confinement potential. Experiments are also carried out to determine whether fractal fluctuations persist when billiards are

  14. Zinc Alloys for the Fabrication of Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Ryu, Yungryel; Lee, Tae S.

    2009-01-01

    ZnBeO and ZnCdSeO alloys have been disclosed as materials for the improvement in performance, function, and capability of semiconductor devices. The alloys can be used alone or in combination to form active photonic layers that can emit over a range of wavelength values. Materials with both larger and smaller band gaps would allow for the fabrication of semiconductor heterostructures that have increased function in the ultraviolet (UV) region of the spectrum. ZnO is a wide band-gap material possessing good radiation-resistance properties. It is desirable to modify the energy band gap of ZnO to smaller values than that for ZnO and to larger values than that for ZnO for use in semiconductor devices. A material with band gap energy larger than that of ZnO would allow for the emission at shorter wavelengths for LED (light emitting diode) and LD (laser diode) devices, while a material with band gap energy smaller than that of ZnO would allow for emission at longer wavelengths for LED and LD devices. The amount of Be in the ZnBeO alloy system can be varied to increase the energy bandgap of ZnO to values larger than that of ZnO. The amount of Cd and Se in the ZnCdSeO alloy system can be varied to decrease the energy band gap of ZnO to values smaller than that of ZnO. Each alloy formed can be undoped or can be p-type doped using selected dopant elements, or can be n-type doped using selected dopant elements. The layers and structures formed with both the ZnBeO and ZnCdSeO semiconductor alloys - including undoped, p-type-doped, and n-type-doped types - can be used for fabricating photonic and electronic semiconductor devices for use in photonic and electronic applications. These devices can be used in LEDs, LDs, FETs (field effect transistors), PN junctions, PIN junctions, Schottky barrier diodes, UV detectors and transmitters, and transistors and transparent transistors. They also can be used in applications for lightemitting display, backlighting for displays, UV and

  15. Strategies for Radiation Hardness Testing of Power Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Soltis, James V. (Technical Monitor); Patton, Martin O.; Harris, Richard D.; Rohal, Robert G.; Blue, Thomas E.; Kauffman, Andrew C.; Frasca, Albert J.

    2005-01-01

    Plans on the drawing board for future space missions call for much larger power systems than have been flown in the past. These systems would employ much higher voltages and currents to enable more powerful electric propulsion engines and other improvements on what will also be much larger spacecraft. Long term human outposts on the moon and planets would also require high voltage, high current and long life power sources. Only hundreds of watts are produced and controlled on a typical robotic exploration spacecraft today. Megawatt systems are required for tomorrow. Semiconductor devices used to control and convert electrical energy in large space power systems will be exposed to electromagnetic and particle radiation of many types, depending on the trajectory and duration of the mission and on the power source. It is necessary to understand the often very different effects of the radiations on the control and conversion systems. Power semiconductor test strategies that we have developed and employed will be presented, along with selected results. The early results that we have obtained in testing large power semiconductor devices give a good indication of the degradation in electrical performance that can be expected in response to a given dose. We are also able to highlight differences in radiation hardness that may be device or material specific.

  16. Better Ohmic Contacts For InP Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.

    1995-01-01

    Four design modifications enable fabrication of improved ohmic contacts on InP-based semiconductor devices. First modification consists of insertion of layer of gold phosphide between n-doped InP and metal or other overlayer of contact material. Second, includes first modification plus use of particular metal overlayer to achieve very low contact resistivities. Third, also involves deposition of Au(2)P(3) interlayer; in addition, refractory metal (W or Ta) deposited to form contact overlayer. In fourth, contact layer of Auln alloy deposited directly on InP. Improved contacts exhibit low electrical resistances and fabricated without exposing devices to destructive predeposition or postdeposition treatments.

  17. Simulating charge transport in organic semiconductors and devices: a review

    NASA Astrophysics Data System (ADS)

    Groves, C.

    2017-02-01

    Charge transport simulation can be a valuable tool to better understand, optimise and design organic transistors (OTFTs), photovoltaics (OPVs), and light-emitting diodes (OLEDs). This review presents an overview of common charge transport and device models; namely drift-diffusion, master equation, mesoscale kinetic Monte Carlo and quantum chemical Monte Carlo, and a discussion of the relative merits of each. This is followed by a review of the application of these models as applied to charge transport in organic semiconductors and devices, highlighting in particular the insights made possible by modelling. The review concludes with an outlook for charge transport modelling in organic electronics.

  18. Method of making high breakdown voltage semiconductor device

    DOEpatents

    Arthur, Stephen D.; Temple, Victor A. K.

    1990-01-01

    A semiconductor device having at least one P-N junction and a multiple-zone junction termination extension (JTE) region which uniformly merges with the reverse blocking junction is disclosed. The blocking junction is graded into multiple zones of lower concentration dopant adjacent termination to facilitate merging of the JTE to the blocking junction and placing of the JTE at or near the high field point of the blocking junction. Preferably, the JTE region substantially overlaps the graded blocking junction region. A novel device fabrication method is also provided which eliminates the prior art step of separately diffusing the JTE region.

  19. Molecular detection via hybrid peptide-semiconductor photonic devices

    NASA Astrophysics Data System (ADS)

    Estephan, E.; Saab, M.-b.; Martin, M.; Cloitre, T.; Larroque, C.; Cuisinier, F. J. G.; Malvezzi, A. M.; Gergely, C.

    2011-03-01

    The aim of this work was to investigate the possibilities to support device functionality that includes strongly confined and localized light emission and detection processes within nano/micro-structured semiconductors for biosensing applications. The interface between biological molecules and semiconductor surfaces, yet still under-explored is a key issue for improving biomolecular recognition in devices. We report on the use of adhesion peptides, elaborated via combinatorial phage-display libraries for controlled placement of biomolecules, leading to user-tailored hybrid photonic systems for molecular detection. An M13 bacteriophage library has been used to screen 1010 different peptides against various semiconductors to finally isolate specific peptides presenting a high binding capacity for the target surfaces. When used to functionalize porous silicon microcavities (PSiM) and GaAs/AlGaAs photonic crystals, we observe the formation of extremely thin (<1nm) peptide layers, hereby preserving the nanostructuration of the crystals. This is important to assure the photonic response of these tiny structures when they are functionalized by a biotinylated peptide layer and then used to capture streptavidin. Molecular detection was monitored via both linear and nonlinear optical measurements. Our linear reflectance spectra demonstrate an enhanced detection resolution via PSiM devices, when functionalized with the Si-specific peptide. Molecular capture at even lower concentrations (femtomols) is possible via the second harmonic generation of GaAs/AlGaAs photonic crystals when functionalized with GaAs-specific peptides. Our work demonstrates the outstanding value of adhesion peptides as interface linkers between semiconductors and biological molecules. They assure an enhanced molecular detection via both linear and nonlinear answers of photonic crystals.

  20. 77 FR 25747 - Certain Semiconductor Integrated Circuit Devices and Products Containing Same; Institution of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-01

    ... COMMISSION Certain Semiconductor Integrated Circuit Devices and Products Containing Same; Institution of... the sale within the United States after importation of certain semiconductor integrated circuit... semiconductor integrated circuit devices and products containing same that infringe one or more of claims 1,...

  1. Semiconductor-based, large-area, flexible, electronic devices on {110}<100> oriented substrates

    SciTech Connect

    Goyal, Amit

    2014-08-05

    Novel articles and methods to fabricate the same resulting in flexible, oriented, semiconductor-based, electronic devices on {110}<100> textured substrates are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  2. [100] or [110] aligned, semiconductor-based, large-area, flexible, electronic devices

    DOEpatents

    Goyal, Amit

    2015-03-24

    Novel articles and methods to fabricate the same resulting in flexible, large-area, [100] or [110] textured, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  3. Hybrid magnetic/semiconductor spintronic materials and devices

    NASA Astrophysics Data System (ADS)

    Xu, Y. B.; Ahmad, E.; Claydon, J. S.; Lu, Y. X.; Hassan, S. S. A.; Will, I. G.; Cantor, B.

    2006-09-01

    We report our experimental studies of different kinds of magnetic/semiconductor hybrid materials and devices highly promising for the next generation spintronics. The epitaxial Fe films on three III-V Semiconductor surfaces, In xGa 1-xAs(1 0 0), x=0, 1, 0.2, show a uniaxial magnetic anisotropy in the ultrathin region. This suggests that both interface bonding and the magnetoelastic effect control magnetic anisotropy. We demonstrate the epitaxial growth of new hybrid spintronic structures, namely, Fe 3O 4/GaAs and Fe 3O 4/MgO/GaAs, where the magnetic oxide has both high Curie temperature and high spin polarisation. Both the magnetisation loops and magneto-resistance curves of Fe 3O 4/GaAs were found to be dominated by a strong uniaxial magnetic anisotropy. We have also fabricated a novel vertical hybrid spin device, i.e. Co(15 ML)/GaAs(50 nm, n-type)/Al 0.3Ga 0.7As(200 nm, n-type)/FeNi(30 nm) and observed for the first time a change of the magneto-resistance up to 12% by direct transport measurements, which demonstrated large spin injection and the feasibility to fabricate the spin-transistors capable of operating at room temperatures by using magnetic/semiconductor hybrid materials.

  4. Semiconductor ferroelectric compositions and their use in photovoltaic devices

    DOEpatents

    Rappe, Andrew M; Davies, Peter K; Spanier, Jonathan E; Grinberg, Ilya; West, Don Vincent

    2016-11-01

    Disclosed herein are ferroelectric perovskites characterized as having a band gap, Egap, of less than 2.5 eV. Also disclosed are compounds comprising a solid solution of KNbO3 and BaNi1/2Nb1/2O3-delta, wherein delta is in the range of from 0 to about 1. The specification also discloses photovoltaic devices comprising one or more solar absorbing layers, wherein at least one of the solar absorbing layers comprises a semiconducting ferroelectric layer. Finally, this patent application provides solar cell, comprising: a heterojunction of n- and p-type semiconductors characterized as comprising an interface layer disposed between the n- and p-type semiconductors, the interface layer comprising a semiconducting ferroelectric absorber layer capable of enhancing light absorption and carrier separation.

  5. Investigations of semiconductor devices using SIMS; diffusion, contamination, process control

    NASA Astrophysics Data System (ADS)

    Lee, Jae Cheol; Won, Jeongyeon; Chung, Youngsu; Lee, Hyungik; Lee, Eunha; Kang, Donghun; Kim, Changjung; Choi, Jinhak; Kim, Jeomsik

    2008-12-01

    We have surveyed 22,155 analyses issues to know the portion of surface analysis at the total analyses activities. According to the survey result, the contribution of SIMS in the total analyses issues was about 7%. The portions of semiconductor process control, composition and contamination in the SIMS analyses issues are 25%, 29% and 16%, respectively. In this article, some examples of the semiconductor device process control, identification of contaminants, and failure analyses have been reviewed. The behavior of H, O, and Ti at the Pt/Ti/GaInZnO interfaces and their influences on the electrical property of thin film transistor are demonstrated. Also discolor issues including organic material contamination problem on Au pad are discussed in detail.

  6. 77 FR 39510 - Certain Semiconductor Integrated Circuit Devices and Products Containing Same; Determination Not...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-03

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Semiconductor Integrated Circuit Devices and Products Containing Same; Determination Not... the sale within the United States after importation of certain semiconductor integrated...

  7. Radiation hardening of metal-oxide semi-conductor (MOS) devices by boron

    NASA Technical Reports Server (NTRS)

    Danchenko, V.

    1974-01-01

    Technique using boron effectively protects metal-oxide semiconductor devices from ionizing radiation without using shielding materials. Boron is introduced into insulating gate oxide layer at semiconductor-insulator interface.

  8. Contact formation and gettering of precipitated impurities by multiple firing during semiconductor device fabrication

    DOEpatents

    Sopori, Bhushan

    2014-05-27

    Methods for contact formation and gettering of precipitated impurities by multiple firing during semiconductor device fabrication are provided. In one embodiment, a method for fabricating an electrical semiconductor device comprises: a first step that includes gettering of impurities from a semiconductor wafer and forming a backsurface field; and a second step that includes forming a front contact for the semiconductor wafer, wherein the second step is performed after completion of the first step.

  9. Interface study of insertion layers in organic semiconductor devices

    NASA Astrophysics Data System (ADS)

    Ding, Huanjun; Irfan, "; So, Franky; Gao, Yongli

    2009-08-01

    Inserting an ultra-thin interlayer has been an important means in modifying the performance of organic semiconductor devices. Using photoemission and inverse photoemission spectroscopy (UPS, XPS and IPES), we have investigated the electronic structure of a number of insertion layers widely used in organic semiconductor devices. We found that inserting alkali metal compound thin layers such as LiF between the electron transport layer (ETL) and the cathode can induce energy level shift in the ETL that reduces the electron injection barrier. The reduction is attributed to the release of the alkali metal that n-doped the ETL, and as such it depends on the cathode material deposited on top of the insertion layer. For thin metal oxide insertion layers, such as MoO3, between the anode and the hole transport layer (HTL), reduction of the hole injection barrier is also observed. This reduction, however, is due to the large workfunction of the oxide that subsequently moves the highest occupied molecular orbital (HOMO) toward the anode Fermi level. Effects of other insertion layers, such as metal insertion layer in organic bistable device (OBD) and organic insertion layer in bipolar organic thin film transistors (OTFT) will also be discussed.

  10. Accelerated Neutron Testing of Semiconductor Devices at the LANSCE

    NASA Astrophysics Data System (ADS)

    Wender, S. A.; Bateman, F. B.; Haight, R. C.; Ullmann, J. L.

    1998-04-01

    The high-energy neutron source at the Los Alamos Neutron Science Center (LANSCE) produces beams of neutrons for accelerated testing of integrated circuit devices. Neutrons produced in the atmosphere by cosmic-rays are thought to be a significant threat to integrated circuits both at aircraft altitudes as well as at lower elevations. Neutrons have been shown to cause single event upsets, multiple event upsets, latchup and burnout in semiconductor devices. Neutrons are produced at LANSCE via spallation reactions with the 800 MeV pulsed proton beam. Proton beam currents of about 2 microamperes strike a tungsten target and produce a spectrum of neutrons whose energy and intensity can be precisely measured by time-of-flight techniques. The neutron spectrum produced in this manner has energies up to approximately 600 MeV and is very similar in shape to the atmospheric neutron spectrum at 40,000 ft. A flight path located at 20 m from the neutron production target is dedicated to accelerated testing of semiconductor devices. The integrated neutron flux above 1 MeV is about 10^6 n/cm^2/sec over an area about 10 cm in diameter. This intensity is about 10^5 (10^7) times greater than the cosmic-ray neutron flux at 40,000 ft (sea level).

  11. Methods of measurement for semiconductor materials, process control, and devices

    NASA Technical Reports Server (NTRS)

    Bullis, W. M. (Editor)

    1972-01-01

    Activities directed toward the development of methods of measurement for semiconductor materials, process control, and devices are described. Topics investigated include: measurements of transistor delay time; application of the infrared response technique to the study of radiation-damaged, lithium-drifted silicon detectors; and identification of a condition that minimizes wire flexure and reduces the failure rate of wire bonds in transistors and integrated circuits under slow thermal cycling conditions. Supplementary data concerning staff, standards committee activities, technical services, and publications are included as appendixes.

  12. Methods of measurement for semiconductor materials, process control, and devices

    NASA Technical Reports Server (NTRS)

    Bullis, W. M. (Editor)

    1971-01-01

    The development of methods of measurement for semiconductor materials, process control, and devices is discussed. The following subjects are also presented: (1) demonstration of the high sensitivity of the infrared response technique by the identification of gold in a germanium diode, (2) verification that transient thermal response is significantly more sensitive to the presence of voids in die attachment than steady-state thermal resistance, and (3) development of equipment for determining susceptibility of transistors to hot spot formation by the current-gain technique.

  13. Microscopy needs for next generation devices characterization in the semiconductor industry

    NASA Astrophysics Data System (ADS)

    Clement, L.; Borowiak, C.; Galand, R.; Lepinay, K.; Lorut, F.; Pantel, R.; Servanton, G.; Thomas, R.; Vannier, P.; Bicais, N.

    2011-11-01

    In this paper we present the different imaging based techniques used in the semiconductor industry to support both manufacturing and R&D platforms at STMicroelectronics. Focus is on fully processed devices characterization from large structure (3DI, Imager sensors) to advanced MOS technologies (28-20 nm). Classical SEM and TEM (mainly EFTEM) based techniques are now commonly used to characterize each step of the semiconductor devices' process flow in terms of morphology and chemical analysis. However to address specific issues, dedicated imaging techniques are currently being investigated. With the "High-k Metal Gate" stack involved in the more advanced MOS devices (28-20 nm), new challenges occur and therefore advanced characterization is mandatory. Some relevant examples are pointed out through (STEM) EELS and EDX experiments. Analysis of stressors mainly used to improve carrier mobility in next generation devices, is also presented with different approaches (NBD, CBED and Dark-field holography). Advanced STEM and AFM based techniques applied to characterize dopants and junction in MOS devices and also in more relaxed structure such as imager sensors is discussed too. Concerning back-end (interconnects) and 3D integration (3DI) issues, focus is on nano-characterization of defects by classical techniques (EFTEM, STEM EELS-EDX) and with dedicated ones still in development. To illustrate this topic some 3D FD3/SEM and E-beam tomography experiments are presented. Examples of microstructure and texture determination in poly-crystalline materials such as copper line by coupling SEM/EBSD and TEM techniques are also shown.

  14. Development of silicon carbide semiconductor devices for high temperature applications

    NASA Technical Reports Server (NTRS)

    Matus, Lawrence G.; Powell, J. Anthony; Petit, Jeremy B.

    1991-01-01

    The semiconducting properties of electronic grade silicon carbide crystals, such as wide energy bandgap, make it particularly attractive for high temperature applications. Applications for high temperature electronic devices include instrumentation for engines under development, engine control and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Discrete prototype SiC devices were fabricated and tested at elevated temperatures. Grown p-n junction diodes demonstrated very good rectification characteristics at 870 K. A depletion-mode metal-oxide-semiconductor field-effect transistor was also successfully fabricated and tested at 770 K. While optimization of SiC fabrication processes remain, it is believed that SiC is an enabling high temperature electronic technology.

  15. Comparison of Non-Parabolic Hydrodynamic Simulations for Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Smith, A. W.; Brennan, K. F.

    1996-01-01

    Parabolic drift-diffusion simulators are common engineering level design tools for semiconductor devices. Hydrodynamic simulators, based on the parabolic band approximation, are becoming more prevalent as device dimensions shrink and energy transport effects begin to dominate device characteristic. However, band structure effects present in state-of-the-art devices necessitate relaxing the parabolic band approximation. This paper presents simulations of ballistic diodes, a benchmark device, of Si and GaAs using two different non-parabolic hydrodynamic formulations. The first formulation uses the Kane dispersion relationship in the derivation of the conservation equations. The second model uses a power law dispersion relation {(hk)(exp 2)/2m = xW(exp Y)}. Current-voltage relations show that for the ballistic diodes considered. the non-parabolic formulations predict less current than the parabolic case. Explanations of this will be provided by examination of velocity and energy profiles. At low bias, the simulations based on the Kane formulation predict greater current flow than the power law formulation. As the bias is increased this trend changes and the power law predicts greater current than the Kane formulation. It will be shown that the non-parabolicity and energy range of the hydrodynamic model based on the Kane dispersion relation are limited due to the binomial approximation which was utilized in the derivation.

  16. Simulations of Plasma Sources for Semiconductor Device Manufacturing

    NASA Astrophysics Data System (ADS)

    Ventzek, Peter

    2012-10-01

    First being applied to etching [1] and deposition [2] more than four decades ago, plasma unit processes are now ubiquitous in the semiconductor industry. However, in many cases the use of plasma discharges for semiconductor process development has far outpaced our fundamental understanding of plasma unit processes. Fortunately, state-of-the-art modeling and simulation is now applied both in the capitol equipment and device manufacturing sectors fortified by close relationships with academic institutions and national laboratories globally. The simulation tableau, modeling and simulation for semiconductor device manufacturing community may be broken into the following categories: new concept development, new process development, equipment physics and equipment engineering. This presentation will focus on simulation modalities that highlight how the physics of production equipment result in beneficial processes. Two classes of examples with be provided. [3] The first will illustrate the behavior of microwave plasma source; the second will explore the electron kinetics associated of capacitively coupled plasma sources. The common thread linking these topics is the importance of the frequency dependence of the electron energy distribution function (eedf) to the fidelity of the simulation results. With respect to the microwave driven plasma sources, in addition to comparing predictions of different modeling approaches to experimental data, the relationship between the microwave network and the plasma dynamics in addition will be highlighted. While the criticality of the eedf to all of capacitively coupled systems will be discussed, particular focus is paid to dc augmented capacitively coupled sources where management of how the ballistic electron population reaches the substrate is critical to process results. Fluid, test particle and full particle-in-cell Monte Carlo simulations will be used to illustrate different discharge behavior.[4pt] [1] H. Abe et al. Jpn. J. Appl

  17. Flexible non-volatile memory devices based on organic semiconductors

    NASA Astrophysics Data System (ADS)

    Cosseddu, Piero; Casula, Giulia; Lai, Stefano; Bonfiglio, Annalisa

    2015-09-01

    The possibility of developing fully organic electronic circuits is critically dependent on the ability to realize a full set of electronic functionalities based on organic devices. In order to complete the scene, a fundamental element is still missing, i.e. reliable data storage. Over the past few years, a considerable effort has been spent on the development and optimization of organic polymer based memory elements. Among several possible solutions, transistor-based memories and resistive switching-based memories are attracting a great interest in the scientific community. In this paper, a route for the fabrication of organic semiconductor-based memory devices with performances beyond the state of the art is reported. Both the families of organic memories will be considered. A flexible resistive memory based on a novel combination of materials is presented. In particular, high retention time in ambient conditions are reported. Complementary, a low voltage transistor-based memory is presented. Low voltage operation is allowed by an hybrid, nano-sized dielectric, which is also responsible for the memory effect in the device. Thanks to the possibility of reproducibly fabricating such device on ultra-thin substrates, high mechanical stability is reported.

  18. Linear semiconductor optical amplifiers for amplification of advanced modulation formats.

    PubMed

    Bonk, R; Huber, G; Vallaitis, T; Koenig, S; Schmogrow, R; Hillerkuss, D; Brenot, R; Lelarge, F; Duan, G-H; Sygletos, S; Koos, C; Freude, W; Leuthold, J

    2012-04-23

    The capability of semiconductor optical amplifiers (SOA) to amplify advanced optical modulation format signals is investigated. The input power dynamic range is studied and especially the impact of the SOA alpha factor is addressed. Our results show that the advantage of a lower alpha-factor SOA decreases for higher-order modulation formats. Experiments at 20 GBd BPSK, QPSK and 16QAM with two SOAs with different alpha factors are performed. Simulations for various modulation formats support the experimental findings.

  19. Trace explosive sensor devices based on semiconductor nanomaterials

    NASA Astrophysics Data System (ADS)

    Wang, Danling

    This dissertation discusses an explosive sensing device based on semiconductor nanomaterials. Here, we mainly focus on two kinds of materials: titanium dioxide nanowires and silicon nanowires to detect explosive trace vapor. Herein, methods for the synthesis, fabrication, design of nanostructured sensing materials using low-cost hydrothermal process are present. In addition, the nanomaterials have been systemically tested on different explosive. The first part of dissertation is focused on the fabrication of TiO2(B) dominant nanowires and testing the response to explosives. It was found that the high porous TiO2(B) nanowires when mixed anatase TiO2, exhibit a very fast and highly sensitive response to nitro-containing explosives. The second part of dissertation has studied the basic sensing mechanism of TiO2(B) nanowire sensor to detect explosives. It shows the specific surface characteristics of TiO2 responsible for the nitro-containing explosives. This information is then used to propose a method using UV illumination to reduce the effect of water vapor on TiO2(B) nanowires. The third part discussed an explosive sensor based on silicon nanowires. We analyzed the mechanism of silicon nanowires to detect nitro-related explosive compounds. In order to further investigate the sensing mechanism of TiO2, the fourth part of dissertation studies the effect on sensor performance by using different crystal phases of TiO2, different microstructure of TiO2, surface modification of TiO2, and different kinds of nanostructured semiconductors such as ZnO nanowires, TiO2 coated ZnO nanowires, V2O5 nanowires, and CdS nanowires to detect explosives. It is found that only TiO2 related semiconductor shows good response to explosives.

  20. Semiconductor devices for entangled photon pair generation: a review.

    PubMed

    Orieux, Adeline; Versteegh, Marijn A M; Jöns, Klaus; Ducci, Sara

    2017-03-27

    Entanglement is one of the most fascinating properties of quantum mechanical systems; when two particles are entangled the measurement of the properties of one of the two allows to instantaneously know the properties of the other, whatever the distance separating them. In parallel with fundamental research on the foundations of quantum mechanics performed on complex experimental set-ups, we assist today to a bourgeoning of quantum information technologies bound to exploit entanglement for a large variety of applications such as secure communications, metrology and computation. Among the different physical systems under investigation, those involving photonic components are likely to play a central role and in this context semiconductor materials exhibit a huge potential in terms of integration of several quantum components in miniature chips. In this article we review the recent progress in the development of semiconductor devices emitting entangled photons. We will present the physical processes allowing to generate entanglement and the tools to characterize it; we will give an overview of major recent results of the last years and highlight perspectives for future developments.

  1. Interfaces of electrical contacts in organic semiconductor devices

    NASA Astrophysics Data System (ADS)

    Demirkan, Korhan

    Progress in organic semiconductor devices relies on better understanding of interfaces as well as material development. The engineering of interfaces that exhibit low resistance, low operating voltage and long-term stability to minimize device degradation is one of the crucial requirements. Photoelectron spectroscopy is a powerful technique to study the metal-semiconductor interfaces, allowing: (i) elucidation of the energy levels of the semiconductor and the contacts that determine Schottky barrier height, (ii) inspection of electrical interactions (such as charge transfer, dipole formation, formation of induced density of states or formation of polaron/bi-polaron states) that effect the energy level alignment, (iii) determination of interfacial chemistry, and (iv) estimation of interface morphology. In this thesis, we have used photoelectron spectroscopy extensively for detailed analysis of the metal organic semiconductor interfaces. In this study, we demonstrate the use of photoelectron spectroscopy for construction of energy level diagrams and display some results related to chemical tailoring of materials for engineering interfaces with lowered Schottky barriers. Following our work on the energy level alignment of poly(p-phenyene vinylene) based organic semiconductors on various substrates [Au, indium tin oxide, Si (with native oxide) and Al (with native oxide)], we tested controlling the energy level alignment by using polar self assembled molecules (SAMs). Photoelectron spectroscopy showed that, by introducing SAMs on the Au surface, we successfully changed the effective work function of Au surface. We found that in this case, the change in the effective work function of the metal surface was not reflected as a shift in the energy levels of the organic semiconductor, as opposed to the results achieved with different substrate materials. To investigate the chemical interactions at the metal/organic interface, we studied the metallization of poly(2-methoxy-5

  2. Subbanding, Charge Transport and Related Applications in Semiconductor Devices.

    DTIC Science & Technology

    1977-10-01

    These devices use a p-n homo -junction to confine the free electronic charge in the semiconductor to conducting regions so narrow as to exhibit...27.172 Table 6A ~0 ENERGY IN MILLI-ELECTRON VOLTS WC IN ANGSTROMS WC EC(6) ECC 7) EC(8) EC(9) ECC 10) 1.2 3669047 432.986 499.951 566.937 633.941 1.5...VC IN ANGSTROMS (6 ECC ) ECC7) EC(s) EC(9) ECCIS) 3t 236.132 279.167 322.269 365.257 418.319 1,’ 235;907 275;922 321� 364;976 408.013 I. 235,;635

  3. Conductance matrix of multiterminal semiconductor devices with edge channels

    SciTech Connect

    Danilovskii, E. Yu. Bagraev, N. T.

    2014-12-15

    A method for determining the conductance matrix of multiterminal semiconductor structures with edge channels is proposed. The method is based on the solution of a system of linear algebraic equations based on Kirchhoff equations, made up of potential differences U{sub ij} measured at stabilized currents I{sub kl}, where i, j, k, l are terminal numbers. The matrix obtained by solving the system of equations completely describes the structure under study, reflecting its configuration and homogeneity. This method can find wide application when using the known Landauer-Buttiker formalism to analyze carrier transport in the quantum Hall effect and quantum spin Hall effect modes. Within the proposed method, the contribution of the contact area resistances R{sub c} to the formation of conductance matrix elements is taken into account. The possibilities of practical application of the results obtained in developing analog cryptographic devices are considered.

  4. Semiconductor Devices Inspired By and Integrated With Biology

    SciTech Connect

    Rogers, John

    2012-04-25

    Biology is curved, soft and elastic; silicon wafers are not. Semiconductor technologies that can bridge this gap in form and mechanics will create new opportunities in devices that adopt biologically inspired designs or require intimate integration with the human body. This talk describes the development of ideas for electronics that offer the performance of state-of-the-art, wafer- based systems but with the mechanical properties of a rubber band. We explain the underlying materials science and mechanics of these approaches, and illustrate their use in (1) bio- integrated, ‘tissue-like’ electronics with unique capabilities for mapping cardiac and neural electrophysiology, and (2) bio-inspired, ‘eyeball’ cameras with exceptional imaging properties enabled by curvilinear, Petzval designs.

  5. Amorphous metallizations for high-temperature semiconductor device applications

    NASA Technical Reports Server (NTRS)

    Wiley, J. D.; Perepezko, J. H.; Nordman, J. E.; Kang-Jin, G.

    1981-01-01

    The initial results of work on a class of semiconductor metallizations which appear to hold promise as primary metallizations and diffusion barriers for high temperature device applications are presented. These metallizations consist of sputter-deposited films of high T sub g amorphous-metal alloys which (primarily because of the absence of grain boundaries) exhibit exceptionally good corrosion-resistance and low diffusion coefficients. Amorphous films of the alloys Ni-Nb, Ni-Mo, W-Si, and Mo-Si were deposited on Si, GaAs, GaP, and various insulating substrates. The films adhere extremely well to the substrates and remain amorphous during thermal cycling to at least 500 C. Rutherford backscattering and Auger electron spectroscopy measurements indicate atomic diffussivities in the 10 to the -19th power sq cm/S range at 450 C.

  6. System for characterizing semiconductor materials and photovoltaic devices through calibration

    DOEpatents

    Sopori, Bhushan L.; Allen, Larry C.; Marshall, Craig; Murphy, Robert C.; Marshall, Todd

    1998-01-01

    A method and apparatus for measuring characteristics of a piece of material, typically semiconductor materials including photovoltaic devices. The characteristics may include dislocation defect density, grain boundaries, reflectance, external LBIC, internal LBIC, and minority carrier diffusion length. The apparatus includes a light source, an integrating sphere, and a detector communicating with a computer. The measurement or calculation of the characteristics is calibrated to provide accurate, absolute values. The calibration is performed by substituting a standard sample for the piece of material, the sample having a known quantity of one or more of the relevant characteristics. The quantity measured by the system of the relevant characteristic is compared to the known quantity and a calibration constant is created thereby.

  7. System for characterizing semiconductor materials and photovoltaic devices through calibration

    DOEpatents

    Sopori, B.L.; Allen, L.C.; Marshall, C.; Murphy, R.C.; Marshall, T.

    1998-05-26

    A method and apparatus are disclosed for measuring characteristics of a piece of material, typically semiconductor materials including photovoltaic devices. The characteristics may include dislocation defect density, grain boundaries, reflectance, external LBIC, internal LBIC, and minority carrier diffusion length. The apparatus includes a light source, an integrating sphere, and a detector communicating with a computer. The measurement or calculation of the characteristics is calibrated to provide accurate, absolute values. The calibration is performed by substituting a standard sample for the piece of material, the sample having a known quantity of one or more of the relevant characteristics. The quantity measured by the system of the relevant characteristic is compared to the known quantity and a calibration constant is created thereby. 44 figs.

  8. Visible scintillation photodetector device incorporating chalcopyrite semiconductor crystals

    DOEpatents

    Stowe, Ashley C.; Burger, Arnold

    2017-04-04

    A photodetector device, including: a scintillator material operable for receiving incident radiation and emitting photons in response; a photodetector material coupled to the scintillator material operable for receiving the photons emitted by the scintillator material and generating a current in response, wherein the photodetector material includes a chalcopyrite semiconductor crystal; and a circuit coupled to the photodetector material operable for characterizing the incident radiation based on the current generated by the photodetector material. Optionally, the scintillator material includes a gamma scintillator material and the incident radiation received includes gamma rays. Optionally, the photodetector material is further operable for receiving thermal neutrons and generating a current in response. The circuit is further operable for characterizing the thermal neutrons based on the current generated by the photodetector material.

  9. Materials Science and Device Physics of 2-Dimensional Semiconductors

    NASA Astrophysics Data System (ADS)

    Fang, Hui

    Materials and device innovations are the keys to future technology revolution. For MOSFET scaling in particular, semiconductors with ultra-thin thickness on insulator platform is currently of great interest, due to the potential of integrating excellent channel materials with the industrially mature Si processing. Meanwhile, ultra-thin thickness also induces strong quantum confinement which in turn affect most of the material properties of these 2-dimensional (2-D) semiconductors, providing unprecedented opportunities for emerging technologies. In this thesis, multiple novel 2-D material systems are explored. Chapter one introduces the present challenges faced by MOSFET scaling. Chapter two covers the integration of ultrathin III V membranes with Si. Free standing ultrathin III-V is studied to enable high performance III-V on Si MOSFETs with strain engineering and alloying. Chapter three studies the light absorption in 2-D membranes. Experimental results and theoretical analysis reveal that light absorption in the 2-D quantum membranes is quantized into a fundamental physical constant, where we call it the quantum unit of light absorption, irrelevant of most of the material dependent parameters. Chapter four starts to focus on another 2-D system, atomic thin layered chalcogenides. Single and few layered chalcogenides are first explored as channel materials, with focuses in engineering the contacts for high performance MOSFETs. Contact treatment by molecular doping methods reveals that many layered chalcogenides other than MoS2 exhibit good transport properties at single layer limit. Finally, Chapter five investigated 2-D van der Waals heterostructures built from different single layer chalcogenides. The investigation in a WSe2/MoS2 hetero-bilayer shows a large Stokes like shift between photoluminescence peak and lowest absorption peak, as well as strong photoluminescence intensity, consistent with spatially indirect transition in a type II band alignment in this

  10. 77 FR 60721 - Certain Semiconductor Integrated Circuit Devices and Products Containing Same; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-04

    ... COMMISSION Certain Semiconductor Integrated Circuit Devices and Products Containing Same; Notice of... importation, and the sale within the United States after importation of certain semiconductor integrated circuit devices and products containing same by reason of infringement of certain claims of U.S....

  11. Thermoelectric Devices Advance Thermal Management

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Thermoelectric (TE) devices heat, cool, and generate electricity when a temperature differential is provided between the two module faces. In cooperation with NASA, Chico, California-based United States Thermoelectric Consortium Inc. (USTC) built a gas emissions analyzer (GEA) for combustion research. The GEA precipitated hydrocarbon particles, preventing contamination that would hinder precise rocket fuel analysis. The USTC research and design team uses patent-pending dimple, pin-fin, microchannel and microjet structures to develop and design heat dissipation devices on the mini-scale level, which not only guarantee high performance of products, but also scale device size from 1 centimeter to 10 centimeters. USTC continues to integrate the benefits of TE devices in its current line of thermal management solutions and has found the accessibility of NASA technical research to be a valuable, sustainable resource that has continued to positively influence its product design and manufacturing

  12. Center for advanced microstructures and devices (CAMD)

    NASA Astrophysics Data System (ADS)

    Craft, B. C.; Feldman, M.; Morikawa, E.; Poliakoff, E. D.; Saile, V.; Scott, J. D.; Stockbauer, R. L.

    1992-01-01

    The new synchrotron-radiation facility, Center for Advanced Microstructures and Devices, at Louisiana State University is described with regard to the status of installation of the storage ring, implementation of the various programs, and construction of the first beamlines.

  13. Oxide semiconductors for organic opto-electronic devices

    NASA Astrophysics Data System (ADS)

    Sigdel, Ajaya K.

    In this dissertation, I have introduced various concepts on the modulations of various surface, interface and bulk opto-electronic properties of ZnO based semiconductor for charge transport, charge selectivity and optimal device performance. I have categorized transparent semiconductors into two sub groups depending upon their role in a device. Electrodes, usually 200 to 500 nm thick, optimized for good transparency and transporting the charges to the external circuit. Here, the electrical conductivity in parallel direction to thin film, i.e bulk conductivity is important. And contacts, usually 5 to 50 nm thick, are optimized in case of solar cells for providing charge selectivity and asymmetry to manipulate the built in field inside the device for charge separation and collection. Whereas in Organic LEDs (OLEDs), contacts provide optimum energy level alignment at organic oxide interface for improved charge injections. For an optimal solar cell performance, transparent electrodes are designed with maximum transparency in the region of interest to maximize the light to pass through to the absorber layer for photo-generation, plus they are designed for minimum sheet resistance for efficient charge collection and transport. As such there is need for material with high conductivity and transparency. Doping ZnO with some common elements such as B, Al, Ga, In, Ge, Si, and F result in n-type doping with increase in carriers resulting in high conductivity electrode, with better or comparable opto-electronic properties compared to current industry-standard indium tin oxide (ITO). Furthermore, improvement in mobility due to improvement on crystallographic structure also provide alternative path for high conductivity ZnO TCOs. Implementing these two aspects, various studies were done on gallium doped zinc oxide (GZO) transparent electrode, a very promising indium free electrode. The dynamics of the superimposed RF and DC power sputtering was utilized to improve the

  14. III-V aresenide-nitride semiconductor materials and devices

    NASA Technical Reports Server (NTRS)

    Major, Jo S. (Inventor); Welch, David F. (Inventor); Scifres, Donald R. (Inventor)

    1997-01-01

    III-V arsenide-nitride semiconductor crystals, methods for producing such crystals and devices employing such crystals. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V crystals varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V crystals can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.

  15. Insertion devices at the advanced photon source

    SciTech Connect

    Moog, E.R.

    1996-07-01

    The insertion devices being installed at the Advanced Photon Source cause the stored particle beam to wiggle, emitting x-rays with each wiggle. These x-rays combine to make an intense beam of radiation. Both wiggler and undulator types of insertion devices are being installed; the characteristics of the radiation produced by these two types of insertion devices are discussed, along with the reasons for those characteristics.

  16. Lorentz factor determination for local electric fields in semiconductor devices utilizing hyper-thin dielectrics

    SciTech Connect

    McPherson, J. W.

    2015-11-28

    The local electric field (the field that distorts, polarizes, and weakens polar molecular bonds in dielectrics) has been investigated for hyper-thin dielectrics. Hyper-thin dielectrics are currently required for advanced semiconductor devices. In the work presented, it is shown that the common practice of using a Lorentz factor of L = 1/3, to describe the local electric field in a dielectric layer, remains valid for hyper-thin dielectrics. However, at the very edge of device structures, a rise in the macroscopic/Maxwell electric field E{sub diel} occurs and this causes a sharp rise in the effective Lorentz factor L{sub eff}. At capacitor and transistor edges, L{sub eff} is found to increase to a value 2/3 < L{sub eff} < 1. The increase in L{sub eff} results in a local electric field, at device edge, that is 50%–100% greater than in the bulk of the dielectric. This increase in local electric field serves to weaken polar bonds thus making them more susceptible to breakage by standard Boltzmann and/or current-driven processes. This has important time-dependent dielectric breakdown (TDDB) implications for all electronic devices utilizing polar materials, including GaN devices that suffer from device-edge TDDB.

  17. An investigation of corrosion in semiconductor bridge explosive devices.

    SciTech Connect

    Klassen, Sandra Ellen; Sorensen, Neil Robert

    2007-05-01

    In the course of a failure investigation, corrosion of the lands was occasionally found in developmental lots of semiconductor bridge (SCB) detonators and igniters. Evidence was found in both detonators and igniters of the gold layer being deposited on top of a corroded aluminum layer, but inspection of additional dies from the same wafer did not reveal any more corroded parts. In some detonators, evidence was found that corrosion of the aluminum layer also happened after the gold was deposited. Moisture and chloride must both be present for aluminum to corrode. A likely source for chloride is the adhesive used to bond the die to the header. Inspection of other SCB devices, both recently manufactured and manufactured about ten years ago, found no evidence for corrosion even in devices that contained SCBs with aluminum lands and no gold. Several manufacturing defects were noted such as stains, gouges in the gold layer due to tooling, and porosity of the gold layer. Results of atmospheric corrosion experiments confirmed that devices with a porous gold layer over the aluminum layer are susceptible to extensive corrosion when both moisture and chlorine are present. The extent of corrosion depends on the level of chlorine contamination, and corrosion did not occur when only moisture was present. Elimination of the gold plating on the lands eliminated corrosion of the lands in these experiments. Some questions remain unanswered, but enough information was gathered to recommend changes to materials and procedures. A second lot of detonators was successfully built using aluminum SCBs, limiting the use of Ablebond{trademark} adhesive, increasing the rigor in controlling exposure to moisture, and adding inspection steps.

  18. Atomically Flat Surfaces Developed for Improved Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Powell, J. Anthony

    2001-01-01

    New wide bandgap semiconductor materials are being developed to meet the diverse high temperature, -power, and -frequency demands of the aerospace industry. Two of the most promising emerging materials are silicon carbide (SiC) for high-temperature and high power applications and gallium nitride (GaN) for high-frequency and optical (blue-light-emitting diodes and lasers) applications. This past year Glenn scientists implemented a NASA-patented crystal growth process for producing arrays of device-size mesas whose tops are atomically flat (i.e., step-free). It is expected that these mesas can be used for fabricating SiC and GaN devices with major improvements in performance and lifetime. The promising new SiC and GaN devices are fabricated in thin-crystal films (known as epi films) that are grown on commercial single-crystal SiC wafers. At this time, no commercial GaN wafers exist. Crystal defects, known as screw defects and micropipes, that are present in the commercial SiC wafers propagate into the epi films and degrade the performance and lifetime of subsequently fabricated devices. The new technology isolates the screw defects in a small percentage of small device-size mesas on the surface of commercial SiC wafers. This enables atomically flat surfaces to be grown on the remaining defect-free mesas. We believe that the atomically flat mesas can also be used to grow GaN epi films with a much lower defect density than in the GaN epi films currently being grown. Much improved devices are expected from these improved low-defect epi films. Surface-sensitive SiC devices such as Schottky diodes and field effect transistors should benefit from atomically flat substrates. Also, we believe that the atomically flat SiC surface will be an ideal surface on which to fabricate nanoscale sensors and devices. The process for achieving atomically flat surfaces is illustrated. The surface steps present on the "as-received" commercial SiC wafer is also illustrated. because of the

  19. Electrical and Optical Characterization of Nanowire based Semiconductor Devices

    NASA Astrophysics Data System (ADS)

    Ayvazian, Talin

    This research project is focused on a new strategy for the creation of nanowire based semiconductor devices. The main goal is to understand and optimize the electrical and optical properties of two types of nanoscale devices; in first type lithographically patterned nanowire electrodeposition (LPNE) method has been utilized to fabricate nanowire field effect transistors (NWFET) and second type involved the development of light emitting semiconductor nanowire arrays (NWLED). Field effect transistors (NWFETs) have been prepared from arrays of polycrystalline cadmium selenide (pc-CdSe) nanowires using a back gate configuration. pc-CdSe nanowires were fabricated using the lithographically patterned nanowire electrode- position (LPNE) process on SiO2 /Si substrates. After electrodeposition, pc-CdSe nanowires were thermally annealed at 300 °C x 4 h either with or without exposure to CdCl 2 in methanol a grain growth promoter. The influence of CdCl2 treatment was to increase the mean grain diameter as determined by X-ray diffraction pattern and to convert the crystal structure from cubic to wurtzite. Transfer characteristics showed an increase of the field effect mobility (mu eff) by an order of magnitude and increase of the Ion/I off ratio by a factor of 3-4. Light emitting devices (NW-LED) based on lithographically patterned pc-CdSe nanowire arrays have been investigated. Electroluminescence (EL) spectra of CdSe nanowires under various biases exhibited broad emission spectra centered at 750 nm close to the band gap of CdSe (1.7eV). To enhance the intensity of the emitted light and the external quantum efficiency (EQE), the distance between the contacts were reduced from 5 mum to less than 1 mum which increased the efficiency by an order of magnitude. Also, increasing the annealing temperature of nanowires from 300 °C x4 h to 450 This research project is focused on a new strategy for the creation of nanowire based semiconductor devices. The main goal is to understand

  20. Electroluminescent devices formed using semiconductor nanocrystals as an electron transport media and method of making such electroluminescent devices

    DOEpatents

    Alivisatos, A. Paul; Colvin, Vickie

    1996-01-01

    An electroluminescent device is described, as well as a method of making same, wherein the device is characterized by a semiconductor nanocrystal electron transport layer capable of emitting visible light in response to a voltage applied to the device. The wavelength of the light emitted by the device may be changed by changing either the size or the type of semiconductor nanocrystals used in forming the electron transport layer. In a preferred embodiment the device is further characterized by the capability of emitting visible light of varying wavelengths in response to changes in the voltage applied to the device. The device comprises a hole processing structure capable of injecting and transporting holes, and usually comprising a hole injecting layer and a hole transporting layer; an electron transport layer in contact with the hole processing structure and comprising one or more layers of semiconductor nanocrystals; and an electron injecting layer in contact with the electron transport layer for injecting electrons into the electron transport layer. The capability of emitting visible light of various wavelengths is principally based on the variations in voltage applied thereto, but the type of semiconductor nanocrystals used and the size of the semiconductor nanocrystals in the layers of semiconductor nanometer crystals may also play a role in color change, in combination with the change in voltage.

  1. Modeling of Electronic Properties in Organic Semiconductor Device Structures

    NASA Astrophysics Data System (ADS)

    Chang, Hsiu-Chuang

    Organic semiconductors (OSCs) have recently become viable for a wide range of electronic devices, some of which have already been commercialized. With the mechanical flexibility of organic materials and promising performance of organic field effect transistors (OFETs) and organic bulk heterojunction devices, OSCs have been demonstrated in applications such as radio frequency identification tags, flexible displays, and photovoltaic cells. Transient phenomena play decisive roles in the performance of electronic devices and OFETs in particular. The dynamics of the establishment and depletion of the conducting channel in OFETs are investigated theoretically. The device structures explored resemble typical organic thin-film transistors with one of the channel contacts removed. By calculating the displacement current associated with charging and discharging of the channel in these capacitors, transient effects on the carrier transport in OSCs may be studied. In terms of the relevant models it is shown that the non-linearity of the process plays a key role. The non-linearity arises in the simplest case from the fact that channel resistance varies during the charging and discharging phases. Traps can be introduced into the models and their effects examined in some detail. When carriers are injected into the device, a conducting channel is established with traps that are initially empty. Gradual filling of the traps then modifies the transport characteristics of the injected charge carriers. In contrast, dc measurements as they are typically performed to characterize the transport properties of organic semiconductor channels investigate a steady state with traps partially filled. Numerical and approximate analytical models of the formation of the conducting channel and the resulting displacement currents are presented. For the process of transient carrier extraction, it is shown that if the channel capacitance is partially or completely discharged through the channel

  2. EDITORIAL: Semiconductor nanotechnology: novel materials and devices for electronics, photonics and renewable energy applications Semiconductor nanotechnology: novel materials and devices for electronics, photonics and renewable energy applications

    NASA Astrophysics Data System (ADS)

    Goodnick, Stephen; Korkin, Anatoli; Krstic, Predrag; Mascher, Peter; Preston, John; Zaslavsky, Alex

    2010-04-01

    Electronic and photonic information technology and renewable energy alternatives, such as solar energy, fuel cells and batteries, have now reached an advanced stage in their development. Cost-effective improvements to current technological approaches have made great progress, but certain challenges remain. As feature sizes of the latest generations of electronic devices are approaching atomic dimensions, circuit speeds are now being limited by interconnect bottlenecks. This has prompted innovations such as the introduction of new materials into microelectronics manufacturing at an unprecedented rate and alternative technologies to silicon CMOS architectures. Despite the environmental impact of conventional fossil fuel consumption, the low cost of these energy sources has been a long-standing economic barrier to the development of alternative and more efficient renewable energy sources, fuel cells and batteries. In the face of mounting environmental concerns, interest in such alternative energy sources has grown. It is now widely accepted that nanotechnology offers potential solutions for securing future progress in information and energy technologies. The Canadian Semiconductor Technology Conference (CSTC) forum was established 25 years ago in Ottawa as an important symbol of the intrinsic strength of the Canadian semiconductor research and development community, and the Canadian semiconductor industry as a whole. In 2007, the 13th CSTC was held in Montreal, moving for the first time outside the national capital region. The first three meetings in the series of 'Nano and Giga Challenges in Electronics and Photonics'— NGCM2002 in Moscow, NGCM2004 in Krakow, and NGC2007 in Phoenix— were focused on interdisciplinary research from the fundamentals of materials science to the development of new system architectures. In 2009 NGC2009 and the 14th Canadian Semiconductor Technology Conference (CSTC2009) were held as a joint event, hosted by McMaster University (10

  3. Evolution of corundum-structured III-oxide semiconductors: Growth, properties, and devices

    NASA Astrophysics Data System (ADS)

    Fujita, Shizuo; Oda, Masaya; Kaneko, Kentaro; Hitora, Toshimi

    2016-12-01

    The recent progress and development of corundum-structured III-oxide semiconductors are reviewed. They allow bandgap engineering from 3.7 to ∼9 eV and function engineering, leading to highly durable electronic devices and deep ultraviolet optical devices as well as multifunctional devices. Mist chemical vapor deposition can be a simple and safe growth technology and is advantageous for reducing energy and cost for the growth. This is favorable for the wide commercial use of devices at low cost. The III-oxide semiconductors are promising candidates for new devices contributing to sustainable social, economic, and technological development for the future.

  4. Ultrafast laser trimming for reduced device leakage in high performance OTFT semiconductors for flexible displays

    NASA Astrophysics Data System (ADS)

    Karnakis, Dimitris; Cooke, Michael D.; Chan, Y. F.; Ogier, Simon D.

    2013-03-01

    Organic semiconductors (OSC) are solution processable synthetic materials with high carrier mobility that promise to revolutionise flexible electronics manufacturing due to their low cost, lightweight and high volume low temperature printing in reel-to-reel (R2R) [1] for applications such as flexible display backplanes (Fig.1), RFID tags, and logic/memory devices. Despite several recent technological advances, organic thin film transistor (OTFT) printing is still not production-ready due to limitations mainly with printing resolution on dimensionally unstable substrates and device leakage that reduces dramatically electrical performance. OTFTs have the source-drain in ohmic contact with the OSC material to lower contact resistance. If they are unpatterned, a leakage pathway from source to drain develops which results in non-optimum on/off currents and not controllable device uniformity (Fig.2). DPSS lasers offer several key advantages for OTFT patterning including maskless, non-contact, dry patterning, scalable large area operation with precision registration, well-suited to R2R manufacturing at overall μm size resolutions. But the thermal management of laser processing is very important as the devices are very sensitive to heat and thermomechanical damage [2]. This paper discusses 343nm picosecond laser ablation trimming of 50nm thick PTAA, TIPS pentacene and other semiconductor compounds on thin 50nm thick metal gold electrodes in a top gate configuration. It is shown that with careful optimisation, a suitable process window exists resulting in clean laser structuring without damage to the underlying layers while also containing laser debris. Several order of magnitude improvements were recorded in on/off currents up to 106 with OSC mobilities of 1 cm2/Vsec, albeit at slightly higher than optimum threshold voltages which support demanding flexible display backplane applications.

  5. Electrical contacts for a thin-film semiconductor device

    DOEpatents

    Carlson, David E.; Dickson, Charles R.; D'Aiello, Robert V.

    1989-08-08

    A method of fabricating spaced-apart back contacts on a thin film of semiconductor material by forming strips of buffer material on top of the semiconductor material in locations corresponding to the desired dividing lines between back contacts, forming a film of metal substantially covering the semiconductor material and buffer strips, and scribing portions of the metal film overlying the buffer strips with a laser without contacting the underlying semiconductor material to separate the metal layer into a plurality of back contacts. The buffer material serves to protect the underlying semiconductor material from being damaged during the laser scribing. Back contacts and multi-cell photovoltaic modules incorporating such back contacts also are disclosed.

  6. George E. Pake Prize: A Few Challenges in the Evolution of Semiconductor Device/Manufacturing Technology

    NASA Astrophysics Data System (ADS)

    Doering, Robert

    In the early 1980s, the semiconductor industry faced the related challenges of ``scaling through the one-micron barrier'' and converting single-level-metal NMOS integrated circuits to multi-level-metal CMOS. Multiple advances in lithography technology and device materials/process integration led the way toward the deep-sub-micron transistors and interconnects that characterize today's electronic chips. In the 1990s, CMOS scaling advanced at an accelerated pace enabled by rapid advances in many aspects of optical lithography. However, the industry also needed to continue the progress in manufacturing on ever-larger silicon wafers to maintain economy-of-scale trends. Simultaneously, the increasing complexity and absolute-precision requirements of manufacturing compounded the necessity for new processes, tools, and control methodologies. This talk presents a personal perspective on some of the approaches that addressed the aforementioned challenges. In particular, early work on integrating silicides, lightly-doped-drain FETs, shallow recessed isolation, and double-level metal will be discussed. In addition, some pioneering efforts in deep-UV lithography and single-wafer processing will be covered. The latter will be mainly based on results from the MMST Program - a 100 M +, 5-year R&D effort, funded by DARPA, the U.S. Air Force, and Texas Instruments, that developed a wide range of new technologies for advanced semiconductor manufacturing. The major highlight of the program was the demonstration of sub-3-day cycle time for manufacturing 350-nm CMOS integrated circuits in 1993. This was principally enabled by the development of: (1) 100% single-wafer processing, including rapid-thermal processing (RTP), and (2) computer-integrated-manufacturing (CIM), including real-time, in-situ process control.

  7. Monolayer-Mediated Growth of Organic Semiconductor Films with Improved Device Performance.

    PubMed

    Huang, Lizhen; Hu, Xiaorong; Chi, Lifeng

    2015-09-15

    Increased interest in wearable and smart electronics is driving numerous research works on organic electronics. The control of film growth and patterning is of great importance when targeting high-performance organic semiconductor devices. In this Feature Article, we summarize our recent work focusing on the growth, crystallization, and device operation of organic semiconductors intermediated by ultrathin organic films (in most cases, only a monolayer). The site-selective growth, modified crystallization and morphology, and improved device performance of organic semiconductor films are demonstrated with the help of the inducing layers, including patterned and uniform Langmuir-Blodgett monolayers, crystalline ultrathin organic films, and self-assembled polymer brush films. The introduction of the inducing layers could dramatically change the diffusion of the organic semiconductors on the surface and the interactions between the active layer with the inducing layer, leading to improved aggregation/crystallization behavior and device performance.

  8. Investigation of Surface Breakdown on Semiconductor Devices Using Optical Probing Techniques.

    DTIC Science & Technology

    1990-01-01

    18] L. Bovino , T. Burke, R. Youmans, M. Weiner, and J. Car, r, "Recent Advances in Optically C’ntrolled Bulk Semiconductor Switches," Digest of...Comp. Simul. 5 (3), 175 (1988). [321 M. Weiner, L. Bovino , R. Youmans, and T. Burke, "Modeling of the Optically Conrolled Semiconductor Switch," J

  9. All optical logic operations using semiconductor optical amplifier based devices

    NASA Astrophysics Data System (ADS)

    Wang, Qiang

    High-speed optical processing technologies are essential for the construction of all-optical networks in the information era. In this Ph. D. thesis dissertation, essential mechanisms related to the semiconductor optical amplifier (SOA) based device such as the gain and phase dynamics when a short pulse in propagating inside SOA, and, all-optical Boolean function, XOR, AND and OR have been studied. In order to realize the all-optical logic using SOA, the nonlinear gain and phase dynamics in SOA need to be studied first. The experimental results of 10--90% gain recovery curve have been presented. The recovery time is related to the carrier lifetime of the SOA and it varies with gain compression and bias current. For pulse width of a few picosecond, intraband effects need to be considered. In the SOA, phase change is also induced when a short pulse is propagating inside SOA. Unlike the conventional way of estimating the phase shift using alpha factor, the maximum phase shift is obtained first, then the effective alpha factor is calculated. The experimental results of all optical Boolean function XOR and OR at 80 Gb/s are presented using SOA-MZI-DI and SOA-DI respectively. These are the highest operating speed that has been reported. The all optical AND operation at 40 Gb/s using SOA-MZI have also been reported here. The numerical simulation shows that the performance of these all-optical Boolean operations is limited by the carrier lifetime of the SOA. The Boolean functions are the first step towards all optical circuits. The designs of a parity checker and a pseudo-random binary sequence (PRBS) generator are demonstrated. The error analysis using quality factor and eye-diagram is also presented.

  10. Production of films and powders for semiconductor device applications

    DOEpatents

    Bhattacharya, Raghu Nath; Noufi, Rommel; Wang, Li

    1998-01-01

    A process for chemical bath deposition of selenide and sulfide salts as films and powders employable as precursors for the fabrication of solar cell devices. The films and powders include (1) Cu.sub.x Se.sub.n, wherein x=1-2 and n=1-3; (2) Cu.sub.x Ga.sub.y Se.sub.n, wherein x=1-2, y=0-1 and n=1-3; (3) Cu.sub.x In.sub.y Se.sub.n, wherein x=1-2.27, y=0.72-2 and n=1-3; (4) Cu.sub.x (InGa).sub.y Se.sub.n, wherein x=1-2.17, y=0.96-2 and n=1-3; (5) In.sub.y Se.sub.n, wherein y=1-2.3 and n=1-3; (6) Cu.sub.x S.sub.n, wherein x=1-2 and n=1-3; and (7) Cu.sub.x (InGa).sub.y (SeS).sub.n, wherein x=1-2, y=0.07-2 and n=0.663-3. A reaction vessel containing therein a substrate upon which will form one or more layers of semiconductor material is provided, and relevant solution mixtures are introduced in a sufficient quantity for a sufficient time and under favorable conditions into the vessel to react with each other to produce the resultant salt being prepared and deposited as one or more layers on the substrate and as a powder on the floor of the vessel. Hydrazine is present during all reaction processes producing non-gallium containing products and optionally present during reaction processes producing gallium-containing products to function as a strong reducing agent and thereby enhance reaction processes.

  11. Production of films and powders for semiconductor device applications

    DOEpatents

    Bhattacharya, R.N.; Noufi, R.; Li Wang

    1998-03-24

    A process is described for chemical bath deposition of selenide and sulfide salts as films and powders employable as precursors for the fabrication of solar cell devices. The films and powders include (1) Cu{sub x}Se{sub n}, wherein x=1--2 and n=1--3; (2) Cu{sub x}Ga{sub y}Se{sub n}, wherein x=1--2, y=0--1 and n=1--3; (3) Cu{sub x}In{sub y}Se{sub n}, wherein x=1--2.27, y=0.72--2 and n=1--3; (4) Cu{sub x}(InGa){sub y}Se{sub n}, wherein x=1--2.17, y=0.96--2 and n=1--3; (5) In{sub y}Se{sub n}, wherein y=1--2.3 and n=1--3; (6) Cu{sub x}S{sub n}, wherein x=1--2 and n=1--3; and (7) Cu{sub x}(InGa){sub y}(SeS){sub n}, wherein x=1--2, y=0.07--2 and n=0.663--3. A reaction vessel containing therein a substrate upon which will form one or more layers of semiconductor material is provided, and relevant solution mixtures are introduced in a sufficient quantity for a sufficient time and under favorable conditions into the vessel to react with each other to produce the resultant salt being prepared and deposited as one or more layers on the substrate and as a powder on the floor of the vessel. Hydrazine is present during all reaction processes producing non-gallium containing products and optionally present during reaction processes producing gallium-containing products to function as a strong reducing agent and thereby enhance reaction processes. 4 figs.

  12. Design-Dependent Variability of Pulse Hardness of Types of Discrete Semiconductor Devices (Intervendor Variations).

    DTIC Science & Technology

    1982-12-01

    7 D-125 776 DESIGN-DEPENDENT VARIABILITY OF PULSE HARDNESS OF TYPES 1/1 OF DISCRETE SEMICONDUCTOR DEVICES (INTERVENDOR YARIATIONS)(U) HARRY DIAMOND...TYPE OF REPORT & PERIOD COVERED Design-Dependent Variability of Pulse Hardness of Technical Report Types of Discrete Semiconductor Devices (Intervendor...Identify by block number) Transistor design variations Nuclear survivability EMP analysis Pulse damage to transistors 2N1613 2N4237 JAN2N 1613 JAN2N2222

  13. Determination of Surface Recombination Velocities at Contacts in Organic Semiconductor Devices Using Injected Carrier Reservoirs

    NASA Astrophysics Data System (ADS)

    Sandberg, Oskar J.; Sandén, Simon; Sundqvist, Anton; Smâtt, Jan-Henrik; Österbacka, Ronald

    2017-02-01

    A method to determine surface recombination velocities at collecting contacts in interface-limited organic semiconductor devices, based on the extraction of injected carrier reservoirs in a single-carrier sandwich-type structure, is presented. The analytical framework is derived and verified with drift-diffusion simulations. The method is demonstrated on solution-processed organic semiconductor devices with hole-blocking TiO2/organic and SiO2/organic interfaces, relevant for solar cell and transistor applications, respectively.

  14. Fabrication and performance of pressure-sensing device consisting of electret film and organic semiconductor

    NASA Astrophysics Data System (ADS)

    Kodzasa, Takehito; Nobeshima, Daiki; Kuribara, Kazunori; Uemura, Sei; Yoshida, Manabu

    2017-04-01

    We propose a new concept of a pressure-sensitive device that consists of an organic electret film and an organic semiconductor. This device exhibits high sensitivity and selectivity against various types of pressure. The sensing mechanism of this device originates from a modulation of the electric conductivity of the organic semiconductor film induced by the interaction between the semiconductor film and the charged electret film placed face to face. It is expected that a complicated sensor array will be fabricated by using a roll-to-roll manufacturing system, because this device can be prepared by an all-printing and simple lamination process without high-level positional adjustment for printing processes. This also shows that this device with a simple structure is suitable for application to a highly flexible device array sheet for an Internet of Things (IoT) or wearable sensing system.

  15. Controlled assembly and electronics in semiconductor nanocrystal-based devices

    NASA Astrophysics Data System (ADS)

    Drndic, Marija

    2006-03-01

    I will discuss the assembly of semiconductor nanocrystals (CdSe and PbSe) into electronic devices and the basic mechanisms of charge transport in nanocrystal arrays [1-4]. Spherical CdSe nanocrystals show robust memory effects that can be exploited for memory applications [1]. Nanocrystal memory can be erased electrically or optically and is rewritable. In PbSe nanocrystal arrays, as the interdot coupling is increased, the system evolves from an insulating regime dominated by Coulomb blockade to a semiconducting regime, where hopping conduction is the dominant transport mechanism [2]. Two-dimensional CdSe nanorod arrays show striking and anomalous transport properties, including strong and reproducible non-linearities and current oscillations with dc-voltage [4]. I will also discuss imaging of the charge transport in nanocrystal-based electronic devices. Nanocrystal arrays were investigated using electrostatic force microscopy (EFM) and transmission electron microscopy (TEM) [3]. Changes in lattice and transport properties upon annealing in vacuum were revealed. Local charge transport was directly imaged by EFM and correlated to nanopatterns observed with TEM. This work shows how charge transport in complex nanocrystal networks can be identified with nm resolution [3]. This work was supported by the ONR grant N000140410489, the NSF grants DMR-0449553 and MRSEC DMR00-79909, and the ACS PRF grant 41256-G10. References:1) Fischbein M. D. and Drndic M., ``CdSe nanocrystal quantum-dot memory,'' Applied Physics Letters, 86 (19), 193106, 2005.2) H. E. Romero and Drndic M., ``Coulomb blockade and hopping conduction in PbSe quantum dots,'' Physical Review Letters 95, 156801, 2005.3) Hu Z., Fischbein M. D. and Drndic M., ``Local charge transport in two-dimensional PbSe nanocrystal arrays studied by electrostatic force microscopy",'' Nano Letters 5 (7), 1463, 2005.4) Romero H.E., Calusine G. and Drndic M., ``Current oscillations, switching and hysteresis in CdSe nanorod

  16. An Assessment of Critical Dimension Small Angle X-ray Scattering Metrology for Advanced Semiconductor Manufacturing

    SciTech Connect

    Settens, Charles M.

    2015-01-01

    Simultaneous migration of planar transistors to FinFET architectures, the introduction of a plurality of materials to ensure suitable electrical characteristics, and the establishment of reliable multiple patterning lithography schemes to pattern sub-10 nm feature sizes imposes formidable challenges to current in-line dimensional metrologies. Because the shape of a FinFET channel cross-section immediately influences the electrical characteristics, the evaluation of 3D device structures requires measurement of parameters beyond traditional critical dimension (CD), including their sidewall angles, top corner rounding and footing, roughness, recesses and undercuts at single nanometer dimensions; thus, metrologies require sub-nm and approaching atomic level measurement uncertainty. Synchrotron critical dimension small angle X-ray scattering (CD-SAXS) has unique capabilities to non-destructively monitor the cross-section shape of surface structures with single nanometer uncertainty and can perform overlay metrology to sub-nm uncertainty. In this dissertation, we perform a systematic experimental investigation using CD-SAXS metrology on a hierarchy of semiconductor 3D device architectures including, high-aspect-ratio contact holes, H2 annealed Si fins, and a series of grating type samples at multiple points along a FinFET fabrication process increasing in structural intricacy and ending with fully fabricated FinFET. Comparative studies between CD-SAXS metrology and other relevant semiconductor dimensional metrologies, particularly CDSEM, CD-AFM and TEM are used to determine physical limits of CD-SAXS approach for advanced semiconductor samples. CD-SAXS experimental tradeoffs, advice for model-dependent analysis and thoughts on the compatibility with a semiconductor manufacturing environment are discussed.

  17. Thin Semiconductor/Metal Films For Infrared Devices

    NASA Technical Reports Server (NTRS)

    Lamb, James L.; Nagendra, Channamallappa L.

    1995-01-01

    Spectral responses of absorbers and reflectors tailored. Thin cermet films composites of metals and semiconductors undergoing development for use as broadband infrared reflectors and absorbers. Development extends concepts of semiconductor and dielectric films used as interference filters for infrared light and visible light. Composite films offer advantages over semiconductor films. Addition of metal particles contributes additional thermal conductivity, reducing thermal gradients and associated thermal stresses, with resultant enhancements of thermal stability. Because values of n in composite films made large, same optical effects achieved with lesser thicknesses. By decreasing thicknesses of films, one not only decreases weights but also contributes further to reductions of thermal stresses.

  18. Temperature control of power semiconductor devices in traction applications

    NASA Astrophysics Data System (ADS)

    Pugachev, A. A.; Strekalov, N. N.

    2017-02-01

    The peculiarity of thermal management of traction frequency converters of a railway rolling stock is highlighted. The topology and the operation principle of the automatic temperature control system of power semiconductor modules of the traction frequency converter are designed and discussed. The features of semiconductors as an object of temperature control are considered; the equivalent circuit of thermal processes in the semiconductors is suggested, the power losses in the two-level voltage source inverters are evaluated and analyzed. The dynamic properties and characteristics of the cooling fan induction motor electric drive with the scalar control are presented. The results of simulation in Matlab are shown for the steady state of thermal processes.

  19. Recent Advances in Conjugated Polymers for Light Emitting Devices

    PubMed Central

    AlSalhi, Mohamad Saleh; Alam, Javed; Dass, Lawrence Arockiasamy; Raja, Mohan

    2011-01-01

    A recent advance in the field of light emitting polymers has been the discovery of electroluminescent conjugated polymers, that is, kind of fluorescent polymers that emit light when excited by the flow of an electric current. These new generation fluorescent materials may now challenge the domination by inorganic semiconductor materials of the commercial market in light-emitting devices such as light-emitting diodes (LED) and polymer laser devices. This review provides information on unique properties of conjugated polymers and how they have been optimized to generate these properties. The review is organized in three sections focusing on the major advances in light emitting materials, recent literature survey and understanding the desirable properties as well as modern solid state lighting and displays. Recently, developed conjugated polymers are also functioning as roll-up displays for computers and mobile phones, flexible solar panels for power portable equipment as well as organic light emitting diodes in displays, in which television screens, luminous traffic, information signs, and light-emitting wallpaper in homes are also expected to broaden the use of conjugated polymers as light emitting polymers. The purpose of this review paper is to examine conjugated polymers in light emitting diodes (LEDs) in addition to organic solid state laser. Furthermore, since conjugated polymers have been approved as light-emitting organic materials similar to inorganic semiconductors, it is clear to motivate these organic light-emitting devices (OLEDs) and organic lasers for modern lighting in terms of energy saving ability. In addition, future aspects of conjugated polymers in LEDs were also highlighted in this review. PMID:21673938

  20. {100}<100> or 45.degree.-rotated {100}<100>, semiconductor-based, large-area, flexible, electronic devices

    SciTech Connect

    Goyal, Amit

    2012-05-15

    Novel articles and methods to fabricate the same resulting in flexible, {100}<100> or 45.degree.-rotated {100}<100> oriented, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  1. Investigation of quantum confinement in silicon and germanium semiconductor nanocrystals and their application in photonic devices

    NASA Astrophysics Data System (ADS)

    Delgado, Gildardo Rios

    1997-09-01

    A series of coordinated optical experiments were instrumental in developing a fundamental understanding of the optical and electronic properties of indirect energy gap nanocrystals. This dissertation points out critical interpretations in this new field. Nanocrystals represent a novel form of crystalline materials which have captured much attention due to their enhanced optical and electronic properties. Most commonly used semiconductors have band gap energies in the infrared to near infrared regions which make them undesirable for many optoelectronic devices. However, in nanocrystals theoretical models confirm that quantum confinement effects provide energy levels which allow for visible photoluminescence (PL). Quantum confinement effects enable indirect band gap semiconductors to become efficient visible light emitters. Optical results presented in this dissertation indicate that in the case of Si and Ge nanocrystals when the structures are on the order of 2 and 2-10 nanometers respectively, quantum confined energy levels become available that allow for efficient blue luminescence. Furthermore, results on nanocrystalline Si and Ge and comparison with theoretical models clearly demonstrate that efficient photoluminescence (PL) results from quantum confinement effects where the critical features are the size and the shape of nanostructures, and the surface termination. Silicon and germanium nanocrystals enable many advanced optoelectronic devices such as flat panel displays and optical memories. In this dissertation, I will discuss how Si and Ge nanocrystals were used to fabricate low-cost and easily processed blue electroluminescent devices. The active EL material consists of Si or Ge nanocrystals embedded in various host matrices such as polyvinylcarbazole (PVK) and other organic polymers. Major advantages of this composite material system are the ease of producing high quality, thin, conformal EL films. Several device configurations were used that rely on

  2. Biasing, operation and parasitic current limitation in single device equivalent to CMOS, and other semiconductor systems

    DOEpatents

    Welch, James D.

    2003-09-23

    Disclosed are semiconductor devices including at least one junction which is rectifying whether the semiconductor is caused to be N or P-type, by the presence of applied gate voltage field induced carriers in essentially intrinsic, essentially homogeneously simultaneously containing both N and P-type metallurgical dopants at substantially equal doping levels, essentially homogeneously simultaneously containing both N and P-type metallurgical dopants at different doping levels, and containing a single metallurgical doping type, and functional combinations thereof. In particular, inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to conventional multiple device CMOS systems, which can be operated as modulators, are disclosed as are a non-latching SCR and an approach to blocking parasitic currents utilizing material(s) which form rectifying junctions with both N and P-type semiconductor whether metallurigically or field induced.

  3. Exploring graphene field effect transistor devices to improve spectral resolution of semiconductor radiation detectors

    SciTech Connect

    Harrison, Richard Karl; Howell, Stephen Wayne; Martin, Jeffrey B.; Hamilton, Allister B.

    2013-12-01

    Graphene, a planar, atomically thin form of carbon, has unique electrical and material properties that could enable new high performance semiconductor devices. Graphene could be of specific interest in the development of room-temperature, high-resolution semiconductor radiation spectrometers. Incorporating graphene into a field-effect transistor architecture could provide an extremely high sensitivity readout mechanism for sensing charge carriers in a semiconductor detector, thus enabling the fabrication of a sensitive radiation sensor. In addition, the field effect transistor architecture allows us to sense only a single charge carrier type, such as electrons. This is an advantage for room-temperature semiconductor radiation detectors, which often suffer from significant hole trapping. Here we report on initial efforts towards device fabrication and proof-of-concept testing. This work investigates the use of graphene transferred onto silicon and silicon carbide, and the response of these fabricated graphene field effect transistor devices to stimuli such as light and alpha radiation.

  4. More Efficient Power Conversion for EVs: Gallium-Nitride Advanced Power Semiconductor and Packaging

    SciTech Connect

    2010-02-01

    Broad Funding Opportunity Announcement Project: Delphi is developing power converters that are smaller and more energy efficient, reliable, and cost-effective than current power converters. Power converters rely on power transistors which act like a very precisely controlled on-off switch, controlling the electrical energy flowing through an electrical circuit. Most power transistors today use silicon (Si) semiconductors. However, Delphi is using semiconductors made with a thin layer of gallium-nitride (GaN) applied on top of the more conventional Si material. The GaN layer increases the energy efficiency of the power transistor and also enables the transistor to operate at much higher temperatures, voltages, and power-density levels compared to its Si counterpart. Delphi is packaging these high-performance GaN semiconductors with advanced electrical connections and a cooling system that extracts waste heat from both sides of the device to further increase the device’s efficiency and allow more electrical current to flow through it. When combined with other electronic components on a circuit board, Delphi’s GaN power transistor package will help improve the overall performance and cost-effectiveness of HEVs and EVs.

  5. Oxide semiconductor thin-film transistors: a review of recent advances.

    PubMed

    Fortunato, E; Barquinha, P; Martins, R

    2012-06-12

    Transparent electronics is today one of the most advanced topics for a wide range of device applications. The key components are wide bandgap semiconductors, where oxides of different origins play an important role, not only as passive component but also as active component, similar to what is observed in conventional semiconductors like silicon. Transparent electronics has gained special attention during the last few years and is today established as one of the most promising technologies for leading the next generation of flat panel display due to its excellent electronic performance. In this paper the recent progress in n- and p-type oxide based thin-film transistors (TFT) is reviewed, with special emphasis on solution-processed and p-type, and the major milestones already achieved with this emerging and very promising technology are summarizeed. After a short introduction where the main advantages of these semiconductors are presented, as well as the industry expectations, the beautiful history of TFTs is revisited, including the main landmarks in the last 80 years, finishing by referring to some papers that have played an important role in shaping transparent electronics. Then, an overview is presented of state of the art n-type TFTs processed by physical vapour deposition methods, and finally one of the most exciting, promising, and low cost but powerful technologies is discussed: solution-processed oxide TFTs. Moreover, a more detailed focus analysis will be given concerning p-type oxide TFTs, mainly centred on two of the most promising semiconductor candidates: copper oxide and tin oxide. The most recent data related to the production of complementary metal oxide semiconductor (CMOS) devices based on n- and p-type oxide TFT is also be presented. The last topic of this review is devoted to some emerging applications, finalizing with the main conclusions. Related work that originated at CENIMAT|I3N during the last six years is included in more detail, which

  6. Hybrid method of making an amorphous silicon P-I-N semiconductor device

    DOEpatents

    Moustakas, Theodore D.; Morel, Don L.; Abeles, Benjamin

    1983-10-04

    The invention is directed to a hydrogenated amorphous silicon PIN semiconductor device of hybrid glow discharge/reactive sputtering fabrication. The hybrid fabrication method is of advantage in providing an ability to control the optical band gap of the P and N layers, resulting in increased photogeneration of charge carriers and device output.

  7. Sputtered pin amorphous silicon semi-conductor device and method therefor

    DOEpatents

    Moustakas, Theodore D.; Friedman, Robert A.

    1983-11-22

    A high efficiency amorphous silicon PIN semi-conductor device is constructed by the sequential sputtering of N, I and P layers of amorphous silicon and at least one semi-transparent ohmic electrode. A method of construction produces a PIN device, exhibiting enhanced physical integrity and facilitates ease of construction in a singular vacuum system and vacuum pump down procedure.

  8. Advanced Electro-Optic Surety Devices

    SciTech Connect

    Watterson, C.E.

    1997-05-01

    The Advanced Electro-Optic Surety Devices project was initiated in march 1991 to support design laboratory guidance on electro-optic device packaging and evaluation. Sandia National Laboratory requested AlliedSignal Inc., Kansas City Division (KCD), to prepare for future packaging efforts in electro-optic integrated circuits. Los Alamos National Laboratory requested the evaluation of electro-optic waveguide devices for nuclear surety applications. New packaging techniques involving multiple fiber optic alignment and attachment, binary lens array development, silicon V-groove etching, and flip chip bonding were requested. Hermetic sealing of the electro-optic hybrid and submicron alignment of optical components present new challenges to be resolved. A 10-channel electro-optic modulator and laser amplifier were evaluated for potential surety applications.

  9. Semiconductor Devices and Applications. Electronics Module 5. Instructor's Guide.

    ERIC Educational Resources Information Center

    Chappell, John; And Others

    This module is the fifth of 10 modules in the competency-based electronics series. Introductory materials include a listing of competencies addressed in the module, a parts/equipment list, and a cross-reference table of instructional materials. Sixteen instructional units cover: semiconductor materials; diodes; diode applications and…

  10. Memory effect in semiconductor gas discharge electronic devices

    NASA Astrophysics Data System (ADS)

    Sadiq, Y.; Kurt, H.; Salamov, B. G. Yücel

    2008-11-01

    The memory effect in the planar semiconductor gas discharge system at different pressures (15-760 Torr) and interelectrode distances (60-445 µm) was experimentally studied. The study was performed on the basis of current-voltage characteristic (CVC) measurements with a time lag of several hours of afterglow periods. The influence of the active space charge remaining from the previous discharge on the breakdown voltage (UB) has been analysed using the CVC method for different conductivities of semiconductor GaAs photocathode. CVC showed that even a measurement taken 96 h after the first breakdown was influenced by accumulated active particles deposited from the previous discharge. Such phenomena based on metastable atoms surviving from the previous discharge and recombined on the cathode to create initial electrons in the avalanche mechanism are shown to be fully consistent with CVC data for both pre-breakdown and post-breakdown regions. However, in the post-breakdown region pronounced negative differential conductivity was observed. Such nonlinear electrical property of GaAs is attributed to the existence of deep electronic defect called EL2 in the semiconductor cathode material. On the other hand, the CVC data for subsequent dates present a correlation of memory effect and hysteresis behaviour. The explanation for such a relation is based on the influence of long lived active charges on the electronic transport mechanism of semiconductor material.

  11. High Temperature Superconductor/Semiconductor Hybrid Microwave Devices and Circuits

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.; Miranda, Felix A.

    1999-01-01

    Contents include following: film deposition technique; laser ablation; magnetron sputtering; sequential evaporation; microwave substrates; film characterization at microwave frequencies; complex conductivity; magnetic penetration depth; surface impedance; planar single-mode filters; small antennas; antenna arrays phase noise; tunable oscillations; hybrid superconductor/semiconductor receiver front ends; and noise modeling.

  12. Electronic-carrier-controlled photochemical etching process in semiconductor device fabrication

    DOEpatents

    Ashby, C.I.H.; Myers, D.R.; Vook, F.L.

    1988-06-16

    An electronic-carrier-controlled photochemical etching process for carrying out patterning and selective removing of material in semiconductor device fabrication includes the steps of selective ion implanting, photochemical dry etching, and thermal annealing, in that order. In the selective ion implanting step, regions of the semiconductor material in a desired pattern are damaged and the remainder of the regions of the material not implanted are left undamaged. The rate of recombination of electrons and holes is increased in the damaged regions of the pattern compared to undamaged regions. In the photochemical dry etching step which follows ion implanting step, the material in the undamaged regions of the semiconductor are removed substantially faster than in the damaged regions representing the pattern, leaving the ion-implanted, damaged regions as raised surface structures on the semiconductor material. After completion of photochemical dry etching step, the thermal annealing step is used to restore the electrical conductivity of the damaged regions of the semiconductor material.

  13. Electronic-carrier-controlled photochemical etching process in semiconductor device fabrication

    DOEpatents

    Ashby, Carol I. H.; Myers, David R.; Vook, Frederick L.

    1989-01-01

    An electronic-carrier-controlled photochemical etching process for carrying out patterning and selective removing of material in semiconductor device fabrication includes the steps of selective ion implanting, photochemical dry etching, and thermal annealing, in that order. In the selective ion implanting step, regions of the semiconductor material in a desired pattern are damaged and the remainder of the regions of the material not implanted are left undamaged. The rate of recombination of electrons and holes is increased in the damaged regions of the pattern compared to undamaged regions. In the photochemical dry etching step which follows ion implanting step, the material in the undamaged regions of the semiconductor are removed substantially faster than in the damaged regions representing the pattern, leaving the ion-implanted, damaged regions as raised surface structures on the semiconductor material. After completion of photochemical dry etching step, the thermal annealing step is used to restore the electrical conductivity of the damaged regions of the semiconductor material.

  14. Growth of coincident site lattice matched semiconductor layers and devices on crystalline substrates

    DOEpatents

    Norman, Andrew G; Ptak, Aaron J

    2013-08-13

    Methods of fabricating a semiconductor layer or device and said devices are disclosed. The methods include but are not limited to providing a substrate having a crystalline surface with a known lattice parameter (a). The method further includes growing a crystalline semiconductor layer on the crystalline substrate surface by coincident site lattice matched epitaxy, without any buffer layer between the crystalline semiconductor layer and the crystalline surface of the substrate. The crystalline semiconductor layer will be prepared to have a lattice parameter (a') that is related to the substrate lattice parameter (a). The lattice parameter (a') maybe related to the lattice parameter (a) by a scaling factor derived from a geometric relationship between the respective crystal lattices.

  15. Transmission line pulse system for avalanche characterization of high power semiconductor devices

    NASA Astrophysics Data System (ADS)

    Riccio, Michele; Ascione, Giovanni; De Falco, Giuseppe; Maresca, Luca; De Laurentis, Martina; Irace, Andrea; Breglio, Giovanni

    2013-05-01

    Because of the increasing in power density of electronic devices for medium and high power application, reliabilty of these devices is of great interest. Understanding the avalanche behaviour of a power device has become very important in these last years because it gives an indication of the maximum energy ratings which can be seen as an index of the device ruggedness. A good description of this behaviour is given by the static IV blocking characteristc. In order to avoid self heating, very relevant in high power devices, very short pulses of current have to be used, whose value can change from few milliamps up to tens of amps. The most used method to generate short pulses is the TLP (Transmission Line Pulse) test, which is based on charging the equivalent capacitance of a transmission line to high value of voltage and subsequently discharging it onto a load. This circuit let to obtain very short square pulses but it is mostly used for evaluate the ESD capability of semiconductor and, in this environment, it generates pulses of low amplitude which are not high enough to characterize the avalanche behaviour of high power devices . Advanced TLP circuit able to generate high current are usually very expensive and often suffer of distorption of the output pulse. In this article is proposed a simple, low cost circuit, based on a boosted-TLP configuration, which is capable to produce very square pulses of about one hundreds of nanosecond with amplitude up to some tens of amps. A prototype is implemented which can produce pulses up to 20A of amplitude with 200 ns of duration which can characterize power devices up to 1600V of breakdown voltage. Usage of microcontroller based logic make the circuit very flexible. Results of SPICE simulation are provided, together with experimental results. To prove the effectiveness of the circuit, the I-V blocking characteristics of two commercial devices, namely a 600V PowerMOS and a 1200V Trench-IGBT, are measured at different

  16. Device Concepts Based on Spin-dependent Transmission in Semiconductor Heterostructures

    NASA Technical Reports Server (NTRS)

    Ting, David Z. - Y.; Cartoixa, X.

    2004-01-01

    We examine zero-magnetic-field spin-dependent transmission in nonmagnetic semiconductor heterostructures with structural inversion asymmetry (SIA) and bulk inversion asymmetry (BIA), and report spin devices concepts that exploit their properties. Our modeling results show that several design strategies could be used to achieve high spin filtering efficiencies. The current spin polarization of these devices is electrically controllable, and potentially amenable to highspeed spin modulation, and could be integrated in optoelectronic devices for added functionality.

  17. Semiconductor laser devices having lateral refractive index tailoring

    DOEpatents

    Ashby, Carol I. H.; Hadley, G. Ronald; Hohimer, John P.; Owyoung, Adelbert

    1990-01-01

    A broad-area semiconductor laser diode includes an active lasing region interposed between an upper and a lower cladding layer, the laser diode further comprising structure for controllably varying a lateral refractive index profile of the diode to substantially compensate for an effect of junction heating during operation. In embodiments disclosed the controlling structure comprises resistive heating strips or non-radiative linear junctions disposed parallel to the active region. Another embodiment discloses a multi-layered upper cladding region selectively disordered by implanted or diffused dopant impurities. Still another embodiment discloses an upper cladding layer of variable thickness that is convex in shape and symmetrically disposed about a central axis of the active region. The teaching of the invention is also shown to be applicable to arrays of semiconductor laser diodes.

  18. Simulation of Electronic Transport in Semiconductor Heterolayer Devices

    DTIC Science & Technology

    1992-10-01

    Mesoscopic Systems With Open Boundaries Using the Multidimensional Time - Dependent Schr • dinger Equation ," J. Appl. Phys. 69 (10), pp. 7153-7158 (1991...Conference on Computational Physics, University of Colorado at Boulder, Boulder, Colorado, June 11-15, 1990. " Approaches to Transport in Semiconductor...Work in the three years of the grant was aimed at both improving and generalizing the full band Monte Carlo approach and at developing numerical

  19. 2D Crystal Semiconductors New Materials for GHz-THz Devices

    DTIC Science & Technology

    2015-10-02

    frequency operation. 4) Identify methods to improve carrier transport in 2D Crystal semiconductors. 5) Compare FETs made from naturally occuring and... chemically synthesized 2D Crystal semic???ductors. 6) Elucidate the effect of contact resistance, and gauge the challenges for GHz-THz electronics by... chemical doping, which involved replac- ing a small number of atoms of the 3-D semiconductor by those with higher or lower valence. The next advance

  20. Nonlinear fibre-optic devices pumped by semiconductor disk lasers

    SciTech Connect

    Chamorovskiy, A Yu; Okhotnikov, Oleg G

    2012-11-30

    Semiconductor disk lasers offer a unique combination of characteristics that are particularly attractive for pumping Raman lasers and amplifiers. The advantages of disk lasers include a low relative noise intensity (-150 dB Hz{sup -1}), scalable (on the order of several watts) output power, and nearly diffraction-limited beam quality resulting in a high ({approx}70 % - 90 %) coupling efficiency into a single-mode fibre. Using this technology, low-noise fibre Raman amplifiers operating at 1.3 {mu}m in co-propagation configuration are developed. A hybrid Raman-bismuth doped fibre amplifier is proposed to further increase the pump conversion efficiency. The possibility of fabricating mode-locked picosecond fibre lasers operating under both normal and anomalous dispersion is shown experimentally. We demonstrate the operation of 1.38-{mu}m and 1.6-{mu}m passively mode-locked Raman fibre lasers pumped by 1.29-{mu}m and 1.48-{mu}m semiconductor disk lasers and producing 1.97- and 2.7-ps pulses, respectively. Using a picosecond semiconductor disk laser amplified with an ytterbium-erbium fibre amplifier, the supercontinuum generation spanning from 1.35 {mu}m to 2 {mu}m is achieved with an average power of 3.5 W. (invited paper)

  1. Modeling of Quantum Transport in Semiconductor Devices (The Physics and Operation of Ultra-Submicron Length Semiconductor Devices).

    DTIC Science & Technology

    1994-05-01

    folded into Landau orbits, in which the essentially one-dimensional transport along the orbit hinders the scattering process." Only those trajectories...tunneling, which can also occur in semiconductors under very high electric fields (where it is often referred to as Zener tunneling) has been worked out over...quantum mechanical effect is the dynamic change of the den- sity of states, such as in Landau quantization, and this can be incorporated within (1) by

  2. Charge transport in nanoscale vertical organic semiconductor pillar devices

    PubMed Central

    Wilbers, Janine G. E.; Xu, Bojian; Bobbert, Peter A.; de Jong, Michel P.; van der Wiel, Wilfred G.

    2017-01-01

    We report charge transport measurements in nanoscale vertical pillar structures incorporating ultrathin layers of the organic semiconductor poly(3-hexylthiophene) (P3HT). P3HT layers with thickness down to 5 nm are gently top-contacted using wedging transfer, yielding highly reproducible, robust nanoscale junctions carrying high current densities (up to 106 A/m2). Current-voltage data modeling demonstrates excellent hole injection. This work opens up the pathway towards nanoscale, ultrashort-channel organic transistors for high-frequency and high-current-density operation. PMID:28117371

  3. Optoelectronic device simulation: Optical modeling for semiconductor optical amplifiers and solid state lighting

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Xue (Michael)

    2006-07-01

    Recent advances in optoelectronic devices require sophisticated optical simulation and modeling. These tiny semiconductor device structures, such as semiconductor lasers and light emitting diodes (LED), not only need detailed electrical computation, such as band structure, carrier transportation, and electron-hole recombination under different external voltages, but also require comprehensive optical modeling, such as photon generation and propagation. Optical modeling also includes waveguide structure calculations, guided mode and leakage mode identification, as well far-field pattern prediction using optical ray tracing. In modeling semiconductor lasers, light emission and propagation can be treated using the single mode of wave optics, the so-called photon propagation equation coupled with carrier transport equations. These differential equations can be numerically solved using the Finite Difference Method (FDM). In the LED modeling, the main tools are based on optical ray tracing, and photons are treated as light emissions with random directions and polarizations. Optical waveguide theory is used to qualitatively analyze photon emissions inside a LED chip, and helps to design the LED device structure. One important area of semiconductor laser modeling is the optical simulation of the wavelength converter based on semiconductor optical amplifiers (SOA). This wavelength converter is a critical device in optical communication, and it can copy information from one wavelength to anther through cross-gain modulation. Some numerical methods have been developed to model the wavelength conversion. In these methods, solutions are found by solving differential equations in the time domain using FDM. In all previous models, the waveguide internal loss is assumed uniform across the cavity of the SOA, or the gain coefficient is based on the polynomial approximation method, i.e., the gain coefficient is assumed proportional to the difference between the carrier and

  4. Dynamic detection of electron spin accumulation in ferromagnet–semiconductor devices by ferromagnetic resonance

    PubMed Central

    Liu, Changjiang; Patel, Sahil J.; Peterson, Timothy A.; Geppert, Chad C.; Christie, Kevin D.; Stecklein, Gordon; Palmstrøm, Chris J.; Crowell, Paul A.

    2016-01-01

    A distinguishing feature of spin accumulation in ferromagnet–semiconductor devices is its precession in a magnetic field. This is the basis for detection techniques such as the Hanle effect, but these approaches become ineffective as the spin lifetime in the semiconductor decreases. For this reason, no electrical Hanle measurement has been demonstrated in GaAs at room temperature. We show here that by forcing the magnetization in the ferromagnet to precess at resonance instead of relying only on the Larmor precession of the spin accumulation in the semiconductor, an electrically generated spin accumulation can be detected up to 300 K. The injection bias and temperature dependence of the measured spin signal agree with those obtained using traditional methods. We further show that this approach enables a measurement of short spin lifetimes (<100 ps), a regime that is not accessible in semiconductors using traditional Hanle techniques. PMID:26777243

  5. Technological and organizational diversity and technical advance in the early history of the American semiconductor industry

    NASA Astrophysics Data System (ADS)

    Cohen, W.; Holbrook, D.; Klepper, S.

    1994-06-01

    This study examines the early years of the semiconductor industry and focuses on the roles played by different size firms in technologically innovative processes. A large and diverse pool of firms participated in the growth of the industry. Three related technological areas were chosen for in-depth analysis: integrated circuits, materials technology, and device packaging. Large business producing vacuum tubes dominated the early production of semiconductor devices. As the market for new devices grew during the 1950's, new firms were founded and existing firms from other industries, e.g. aircraft builders and instrument makers, began to pursue semiconductor electronics. Small firms began to cater to the emerging industry by supplying materials and equipment. These firms contributed to the development of certain aspects of one thousand firms that were playing some part in the semiconductor industry.

  6. Interface Design Principles for High-Performance Organic Semiconductor Devices.

    PubMed

    Nie, Wanyi; Gupta, Gautam; Crone, Brian K; Liu, Feilong; Smith, Darryl L; Ruden, P Paul; Kuo, Cheng-Yu; Tsai, Hsinhan; Wang, Hsing-Lin; Li, Hao; Tretiak, Sergei; Mohite, Aditya D

    2015-06-01

    Precise manipulation of organic donor-acceptor interfaces using spacer layers is demonstrated to suppress interface recombination in an organic photo-voltaic device. These strategies lead to a dramatic improvement in a model bilayer system and bulk-heterojunction system. These interface strategies are applicable to a wide variety of donor-acceptor systems, making them both fundamentally interesting and technologically relevant for achieving high efficiency organic electronic devices.

  7. Functionalization of Semiconductor Nanomaterials for Optoelectronic Devices And Components

    DTIC Science & Technology

    2015-03-04

    alternative for single quarter wavelength coating . Previous investigations on Ta2O5 include corrosion protection coating , electrochromic devices...conversion efficiency of InAs quantum dot solar cell by using a single layer anatase TiO2 anti-reflection coating ,” R. Vasan, Y. F. Makableh, J. C...Sarker, and M. O. Manasreh, IEEE Electron Device Letters. (Submitted). 2. “Broadband Nanostructured Antireflection Coating for Enhancing InAs/GaAs

  8. Center for Semiconductor Materials and Device Modeling: expanding collaborative research opportunities between government, academia, and industry

    NASA Astrophysics Data System (ADS)

    Perconti, Philip; Bedair, Sarah S.; Bajaj, Jagmohan; Schuster, Jonathan; Reed, Meredith

    2016-09-01

    To increase Soldier readiness and enhance situational understanding in ever-changing and complex environments, there is a need for rapid development and deployment of Army technologies utilizing sensors, photonics, and electronics. Fundamental aspects of these technologies include the research and development of semiconductor materials and devices which are ubiquitous in numerous applications. Since many Army technologies are considered niche, there is a lack of significant industry investment in the fundamental research and understanding of semiconductor technologies relevant to the Army. To address this issue, the US Army Research Laboratory is establishing a Center for Semiconductor Materials and Device Modeling and seeks to leverage expertise and resources across academia, government and industry. Several key research areas—highlighted and addressed in this paper—have been identified by ARL and external partners and will be pursued in a collaborative fashion by this Center. This paper will also address the mechanisms by which the Center is being established and will operate.

  9. Total-dose radiation effects data for semiconductor devices (1989 supplement)

    NASA Technical Reports Server (NTRS)

    Martin, Keith E.; Coss, James R.; Goben, Charles A.; Shaw, David C.; Farmanesh, Sam; Davarpanah, Michael M.; Craft, Leroy H.; Price, William E.

    1990-01-01

    Steady state, total dose radiation test data are provided for electronic designers and other personnel using semiconductor devices in a radiation environment. The data are presented in graphic and narrative formats. Two primary radiation source types were used: Cobalt-60 gamma rays and a Dynamitron electron accelerator capable of delivering 2.5 MeV electrons at a steady rate.

  10. Wide-Bandgap Semiconductor Devices for Automotive Applications

    NASA Astrophysics Data System (ADS)

    Sugimoto, M.; Ueda, H.; Uesugi, T.; Kachi, T.

    2007-06-01

    In this paper, we discuss requirements of power devices for automotive applications, especially hybrid vehicles and the development of GaN power devices at Toyota. We fabricated AlGaN/GaN HEMTs and measured their characteristics. The maximum breakdown voltage was over 600V. The drain current with a gate width of 31mm was over 8A. A thermograph image of the HEMT under high current operation shows the AlGaN/GaN HEMT operated at more than 300°C. And we confirmed the operation of a vertical GaN device. All the results of the GaN HEMTs are really promising to realize high performance and small size inverters for future automobiles.

  11. Crystal Phases in Hybrid Metal-Semiconductor Nanowire Devices.

    PubMed

    David, J; Rossella, F; Rocci, M; Ercolani, D; Sorba, L; Beltram, F; Gemmi, M; Roddaro, S

    2017-04-12

    We investigate the metallic phases observed in hybrid metal-GaAs nanowire devices obtained by controlled thermal annealing of Ni/Au electrodes. Devices are fabricated onto a SiN membrane compatible with transmission electron microscopy studies. Energy dispersive X-ray spectroscopy allows us to show that the nanowire body includes two Ni-rich phases that thanks to an innovative use of electron diffraction tomography can be unambiguously identified as Ni3GaAs and Ni5As2 crystals. The mechanisms of Ni incorporation leading to the observed phenomenology are discussed.

  12. Novel compound semiconductor devices based on III-V nitrides

    SciTech Connect

    Pearton, S.J.; Abernathy, C.R.; Ren, F.

    1995-10-01

    New developments in dry and wet etching, ohmic contacts and epitaxial growth of Ill-V nitrides are reported. These make possible devices such as microdisk laser structures and GaAs/AlGaAs heterojunction bipolar transistors with improved InN ohmic contacts.

  13. Charge transport and device physics of layered-crystalline organic semiconductors (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Hasegawa, Tatsuo

    2015-10-01

    Here we present and discuss our recent investigations into the understanding of microscopic charge transport, novel film processing technologies, and a development of layered-crystalline organic semiconductors for high performance OTFTs. We first discuss the microscopic charge transport in the OTFTs, as investigated by field-induced electron spin resonance spectroscopy. The technique can detect signals due to tiny amount of field-induced carriers, accumulated at the semiconductor-insulator interfaces. Following aspects are presented and discussed; 1) Carrier motion within the crystalline domains can be understood in terms of the trap-and-release transport, 2) charge trap states are spatially extended over several sites depending on the trap levels, and 3) the intra- and inter-domain transport can be discriminated by anisotropic electron spin resonance measurements. Next we discuss novel print production technologies for organic semiconductors showing high layered crystallinity. The concept of "printed electronics" is now regarded as a realistic paradigm to manufacture light-weight, thin, and impact-resistant electronics devices, although production of highly crystalline semiconductor films may be incompatible with conventional printing process. We here present printing techniques for manufacturing high performance OTFTs; 1) double-shot inkjet printing for small-molecule-based semiconductors, and 2) push-coating for semiconducting polymers. We demonstrate that both processes are useful to manufacture high quality semiconductor layers with the high layered crystallinity.

  14. System for characterizing semiconductor materials and photovoltaic device

    DOEpatents

    Sopori, B.L.

    1996-12-03

    Apparatus for detecting and mapping defects in the surfaces of polycrystalline material in a manner that distinguishes dislocation pits from grain boundaries includes a first laser of a first wavelength for illuminating a wide spot on the surface of the material, a second laser of a second relatively shorter wavelength for illuminating a relatively narrower spot on the surface of the material, a light integrating sphere with apertures for capturing light scattered by etched dislocation pits in an intermediate range away from specular reflection while allowing light scattered by etched grain boundaries in a near range from specular reflection to pass through, and optical detection devices for detecting and measuring intensities of the respective intermediate scattered light and near specular scattered light. A center blocking aperture or filter can be used to screen out specular reflected light, which would be reflected by nondefect portions of the polycrystalline material surface. An X-Y translation stage for mounting the polycrystalline material and signal processing and computer equipment accommodate raster mapping, recording, and displaying of respective dislocation and grain boundary defect densities. A special etch procedure is included, which prepares the polycrystalline material surface to produce distinguishable intermediate and near specular light scattering in patterns that have statistical relevance to the dislocation and grain boundary defect densities. A reflectance measurement of the piece of material is obtained by adding together the signals from the optical detection devices. In the case where the piece of material includes a photovoltaic device, the current induced in the device by the illuminating light can be measured with a current sensing amplifier after the light integrating sphere is moved away from the device. 22 figs.

  15. System for characterizing semiconductor materials and photovoltaic device

    DOEpatents

    Sopori, Bhushan L.

    1996-01-01

    Apparatus for detecting and mapping defects in the surfaces of polycrystalline material in a manner that distinguishes dislocation pits from grain boundaries includes a first laser of a first wavelength for illuminating a wide spot on the surface of the material, a second laser of a second relatively shorter wavelength for illuminating a relatively narrower spot on the surface of the material, a light integrating sphere with apertures for capturing light scattered by etched dislocation pits in an intermediate range away from specular reflection while allowing light scattered by etched grain boundaries in a near range from specular reflection to pass through, and optical detection devices for detecting and measuring intensities of the respective intermediate scattered light and near specular scattered light. A center blocking aperture or filter can be used to screen out specular reflected light, which would be reflected by nondefect portions of the polycrystalline material surface. An X-Y translation stage for mounting the polycrystalline material and signal processing and computer equipment accommodate raster mapping, recording, and displaying of respective dislocation and grain boundary defect densities. A special etch procedure is included, which prepares the polycrystalline material surface to produce distinguishable intermediate and near specular light scattering in patterns that have statistical relevance to the dislocation and grain boundary defect densities. A reflectance measurement of the piece of material is obtained by adding together the signals from the optical detection devices. In the case where the piece of material includes a photovoltaic device, the current induced in the device by the illuminating light can be measured with a current sensing amplifier after the light integrating sphere is moved away from the device.

  16. Transport properties in semiconductor-gas discharge electronic devices

    NASA Astrophysics Data System (ADS)

    Sadiq, Y.; (Yücel) Kurt, H.; Albarzanji, A. O.; Alekperov, S. D.; Salamov, B. G.

    2009-09-01

    Nonlinear electrical transport of semi-insulating (SI) GaAs detector in semiconductor-gas discharge IR image converter (SGDIC) are studied experimentally for a wide range of the gas pressures ( p = 28-55 Torr), interelectrode distances ( d = 445-525 μm) and inner electrode diameters ( D = 12-22 mm) of photocathode. The destabilization of homogeneous state observed in a planar dc-driven structure is due to nonlinear transport properties of GaAs photocathode. Experimental investigation of electrical instability in SGDIC structure was analyzed using hysteresis, N-shaped negative differential conductivity (NDC) current voltage characteristics (CVC) and dynamic behavior of current in a wide range of feeding voltage ( U = 590-1000 V) under different IR light intensities incident on cathode material. It is established that hysteresis are related to electron capture and emission from EL2 deep center on the detector substrate. We have experimentally investigated domain velocity and electron mobility based on well-understood transferred electron effect (TEE) for abovementioned nonlinear electrical characteristics of SI GaAs. The experimental findings are in good agreement with estimated results reported by other independent authors.

  17. Characteristics of III-V Semiconductor Devices at High Temperature

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Young, Paul G.; Taub, Susan R.; Alterovitz, Samuel A.

    1994-01-01

    This paper presents the development of III-V based pseudomorphic high electron mobility transistors (PHEMT's) designed to operate over the temperature range 77 to 473 K (-196 to 200 C). These devices have a pseudomorphic undoped InGaAs channel that is sandwiched between an AlGaAs spacer and a buffer layer; gate widths of 200, 400, 1600, and 3200 micrometers; and a gate length of 2 micrometers. Measurements were performed at both room temperature and 473 K (200 C) and show that the drain current decreases by 30 percent and the gate current increases to about 9 microns A (at a reverse bias of -1.5 V) at the higher temperature. These devices have a maximum DC power dissipation of about 4.5 W and a breakdown voltage of about 16 V.

  18. Antimonide-Based Compound Semiconductors for Electronic Devices: A Review

    DTIC Science & Technology

    2005-04-01

    currents, apparently due to exten- sive interface recombination [137]. Dodd et al. fabricated npn InAs bipolar transistors on InP in an attempt to achieve...Demonstration of npn InAs bipolar transistors with inverted base doping. IEEE Electron Dev Lett 1996;17(4):166–8. [139] Moran PD, Chow D, Hunter A, Kuech TF...based electronic devices: high electron mobility transistors (HEMTs), resonant tunneling diodes (RTDs), and heterojunction bipolar transistors (HBTs

  19. Accelerated Aging System for Prognostics of Power Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Vashchenko, Vladislav; Wysocki, Philip; Saha, Sankalita

    2010-01-01

    Prognostics is an engineering discipline that focuses on estimation of the health state of a component and the prediction of its remaining useful life (RUL) before failure. Health state estimation is based on actual conditions and it is fundamental for the prediction of RUL under anticipated future usage. Failure of electronic devices is of great concern as future aircraft will see an increase of electronics to drive and control safety-critical equipment throughout the aircraft. Therefore, development of prognostics solutions for electronics is of key importance. This paper presents an accelerated aging system for gate-controlled power transistors. This system allows for the understanding of the effects of failure mechanisms, and the identification of leading indicators of failure which are essential in the development of physics-based degradation models and RUL prediction. In particular, this system isolates electrical overstress from thermal overstress. Also, this system allows for a precise control of internal temperatures, enabling the exploration of intrinsic failure mechanisms not related to the device packaging. By controlling the temperature within safe operation levels of the device, accelerated aging is induced by electrical overstress only, avoiding the generation of thermal cycles. The temperature is controlled by active thermal-electric units. Several electrical and thermal signals are measured in-situ and recorded for further analysis in the identification of leading indicators of failures. This system, therefore, provides a unique capability in the exploration of different failure mechanisms and the identification of precursors of failure that can be used to provide a health management solution for electronic devices.

  20. Ferroelectric HfO2 for Emerging Ferroelectric Semiconductor Devices

    NASA Astrophysics Data System (ADS)

    Florent, Karine

    The spontaneous polarization in ferroelectrics (FE) makes them particularly attractive for non-volatile memory and logic applications. Non-volatile FRAM memories using perovskite structure materials, such as Lead Zirconate Titanate (PZT) and Strontium Bismuth Tantalate (SBT) have been studied for many years. However, because of their scaling limit and incompatibility with CMOS beyond 130 nm node, floating gate Flash memory technology has been preferred for manufacturing. The recent discovery of ferroelectricity in doped HfO2 in 2011 has opened the door for new ferroelectric based devices compatible with CMOS technology, such as Ferroelectric Field Effect Transistor (FeFET) and Ferroelectric Tunnel Junctions (FTJ). This work began with developing ferroelectric hysteresis characterization capabilities at RIT. Initially reactively sputtered aluminum doped HfO 2 films were investigated. It was observed that the composition control using co-sputtering was not achievable within the existing capabilities. During the course of this study, collaboration was established with the NaMLab group in Germany to investigate Si doped HfO2 deposited by Atomic Layer Deposition (ALD). Metal Ferroelectric Metal (MFM) devices were fabricated using TiN as the top and bottom electrode with Si:HfO2 thickness ranging from 6.4 nm to 22.9 nm. The devices were electrically tested for P-E, C-V and I-V characteristics. Structural characterizations included TEM, EELS, XRR, XRD and XPS/Auger spectroscopy. Higher remanant polarization (Pr) was observed for films of 9.3 nm and 13.1 nm thickness. Thicker film (22.9 nm) showed smaller Pr. Devices with 6.4 nm thick films exhibit tunneling behavior showing a memristor like I-V characteristics. The tunnel current and ferroelectricity showed decrease with cycling indicating a possible change in either the structure or the domain configurations. Theoretical simulations using the improved FE model were carried out to model the ferroelectric behavior of

  1. Passivation of III-V Compound Semiconductor Based Devices

    DTIC Science & Technology

    1993-11-29

    approximately 60 A/s. The AES, Rutherford Backscattering, FIIR and stress measurements were also carried out. This work was done in collaboration with Dr ...begun to collaborate with us on the project. A brief description of these projects are listed below: 8 a) HP Research Laboratory ( Drs . S. Camnitz, K. L...DC characterization of devices. b) University of California. Santa Barbara ( Drs . B. Young, L. A. Coldren and V. Malhotra): Passivation of GaAs-based

  2. Using Deep Level Transient Spectroscopy (DLTS) to characterize defects in semiconductor devices

    NASA Astrophysics Data System (ADS)

    Lang, David

    2012-02-01

    Deep Level Transient Spectroscopy (DLTS) is a member of the class of instrumentation methods that utilizes the detection of trapped electronic charge to characterize defects in solids. Such methods detect this charge either directly, e.g. via capacitance measurements, or indirectly, e.g. via the current associated with the release of trapped charge. These types of instrumentation have been widely used since the dawn of solid-state physics, particularly for nonradiative defects in semiconductors and insulators. In the case of semiconductor devices, the highly sensitive capacitive detection of trapped charge in the junction depletion layer makes these methods particularly powerful. The DLTS method introduced the concept of time-domain filtering (the so-called ``rate window'') to create a defect spectrum from the transient response of the device versus temperature. This talk will give an overview of DLTS, with particular emphasis on the correlation between defects and device performance.

  3. ZnO wide bandgap semiconductors preparation for optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Ramelan, A. H.; Wahyuningsih, S.; Munawaroh, H.; Narayan, R.

    2017-02-01

    ZnO nanoparticles were successfully synthesized by sol-gel method. According to unique structural and optical properties of ZnO semiconductor material, there are many potential important applications based on that material, including as an anti-reflection coating (ARC) in solar cells. Antireflective coatings (ARC) made of ZnO on top to improve the optical properties of the coating. TiO2 layer have been coated on a ZnO nanoparticle layer. ZnO nanoparticle was characterized by X-ray diffraction (XRD), Scanning electron Microscopy (SEM) and UV-Vis spectroscopy. ZnO annealed at a temperature of 600 °C have the greatest crystalinity and crystal size than that at a temperature of 400 °C and 500 °C. SEM images of ZnO shown agglomeration and grain size increases with increasing annealed temperature. While, the optical properties of ZnO increase with increasing annealed temperature. The optical transmittance spectra of the ZnO are shown that the increasing annealing temperature had effectively improved the optical transmittance of the films. While, reflectance (%R) properties shows that, the higher annealing temperature of ZnO preparations can decrease of %R value of ZnO thin layer. The difference properties of ZnO are due to differences of light scattering resulting from the crystal size effect. The ZnO prepared by annealed at 600 °C gain a good performance of the lowest reflectance value and highest size crystal. By the addition of ARC ZnO 600 °C we have been capable improve cell performance so that that cells achieve an efficiency of 0.27%.

  4. Advanced Technology for Improved Quantum Device Properties Using Highly Strained Materials

    DTIC Science & Technology

    1991-03-01

    Improved Quantum PE 61153N Device Properties Using Highly Strained Materials PE 1401N~R&T 414s 001-02 IN G. AUTHOR(S) (William J. Schaff , S.D. Offsey and...DECEMBER 15, 1989 CORNELL UNIVERSITY.......................... ITHACA, NY 14853-5401 PREPARED BY: WJ. Schaff ........ S.D. Offsey I - L.F. Eastman D ’’. i...Mandeville, R. Saito, P.J. Tasker, W.J. Schaff and L.F. Eastman, 12th IEEE/Comell Conference on’Advanced Concepts in High Speed Semiconductor Devices

  5. Development of advanced electron holographic techniques and application to industrial materials and devices.

    PubMed

    Yamamoto, Kazuo; Hirayama, Tsukasa; Tanji, Takayoshi

    2013-06-01

    The development of a transmission electron microscope equipped with a field emission gun paved the way for electron holography to be put to practical use in various fields. In this paper, we review three advanced electron holography techniques: on-line real-time electron holography, three-dimensional (3D) tomographic holography and phase-shifting electron holography, which are becoming important techniques for materials science and device engineering. We also describe some applications of electron holography to the analysis of industrial materials and devices: GaAs compound semiconductors, solid oxide fuel cells and all-solid-state lithium ion batteries.

  6. Advances in defect characterizations of semiconductors using positrons

    SciTech Connect

    Lynn, K.G.; Asoka-Kumar, P.

    1996-12-31

    Positron Annihilation Spectroscopy (PAS) is a sensitive probe for studying the electronic structure of defects in solids. The authors summarize recent developments in defect characterization of semiconductors using depth-resolved PAS. The progress achieved in extending the capabilities of the PAS method is also described.

  7. High conductance ohmic junction for monolithic semiconductor devices

    NASA Technical Reports Server (NTRS)

    Lewis, Carol R. (Inventor)

    1988-01-01

    In order to increase the efficiency of solar cells, a monolithic stacked device is constructed comprising a plurality of solar sub-cells adjusted for different bands of radiation. The interconnection between these sub-cells has been a significant technical problem. The invention provides an interconnection which is a thin layer of high ohmic conductance material formed between the sub-cells. Such a layer tends to form beads which serve as a shorting interconnect while passing a large fraction of the radiation to the lower sub-cells and permitting lattice-matching between the sub-cells to be preserved.

  8. Wide Bandgap Semiconductor Nanowires for Electronic, Photonic and Sensing Devices

    DTIC Science & Technology

    2012-01-05

    variety of wide bandgap nanowires using GaN and ZnO and made functional devices from them for sensing,electronics and photonics.These included a very...showed highly stable operation.This effort grew out of the work on ZnO nanowires ,where we noticed severe segregation effects when we tried to grow...AND ADDRESSES U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS GaN, ZnO , nanowires S.Pearton

  9. Degradation, Reliability, and Failure of Semiconductor Electronic Devices

    DTIC Science & Technology

    2006-11-01

    determines its ability to conduct heat away that is generated by the operation of the device and therefore its operating temperature. The temperature...an AlN cap heated to (a) 1650ºC or (b) 1700ºC for 30 min. Though we are now able to anneal the implanted SiC up to temperatures as high as...outweighed the negative effects of th stent defects. Thus, as shown in Fig. 12b, the regio anted near the junctions was implanted with 1019 cm Al, while

  10. Method of making suspended thin-film semiconductor piezoelectric devices

    DOEpatents

    Casalnuovo, Stephen A.; Frye-Mason, Gregory C.

    2001-01-01

    A process for forming a very thin suspended layer of piezoelectric material of thickness less than 10 microns. The device is made from a combination of GaAs and AlGaAs layers to form either a sensor or an electronic filter. Onto a GaAs substrate is epitaxially deposited a thin (1-5 micron) sacrificial AlGaAs layer, followed by a thin GaAs top layer. In one embodiment the substrate is selectively etched away from below until the AlGaAs layer is reached. Then a second selective etch removes the sacrificial AlGaAs layer, that has acted here as an etch stop, leaving the thin suspended layer of piezoelectric GaAs. In another embodiment, a pattern of small openings is etched through the thin layer of GaAs on top of the device to expose the sacrificial AlGaAs layer. A second selective etch is done through these openings to remove the sacrificial AlGaAs layer, leaving the top GaAs layer suspended over the GaAs substrate. A novel etchant solution containing a surface tension reducing agent is utilized to remove the AlGaAs while preventing buildup of gas bubbles that would otherwise break the thin GaAs layer.

  11. ZnCdMgSe-Based Semiconductors for Intersubband Devices

    SciTech Connect

    Tamargo, Maria C.

    2008-11-13

    This paper presents a review of recent results on the application of ZnCdMgSe-based wide bandgap II-VI compounds to intersubband devices such as quantum cascade lasers and quantum well infrared photodetectors operating in the mid-infrared region. The conduction band offset of ZnCdSe/ZnCdMgSe quantum well structures was determined from contactless electroreflectance measurements to be as high as 1.12 eV. FT-IR was used to measure intersubband absorption in multi-quantum well structures in the mid-IR range. Electroluminescence at 4.8 {mu}m was observed from a quantum cascade emitter structure made from these materials. Preliminary results are also presented on self assembled quantum dots of CdSe on ZnCdMgSe, and novel quantum well structures with metastable binary MgSe barriers.

  12. Separating Positive and Negative Magnetoresistance in Organic Semiconductor Devices

    NASA Astrophysics Data System (ADS)

    Bloom, F. L.; Wagemans, W.; Kemerink, M.; Koopmans, B.

    2007-12-01

    We study the transition between positive and negative organic magnetoresistance (OMAR) in tris-(8 hydroxyquinoline) aluminium (Alq3), in order to identify the elementary mechanisms governing this phenomenon. We show how the sign of OMAR changes as function of the applied voltage and temperature. The transition from negative to positive magnetoresistance (MR) is found to be accompanied by an increase in slope of log⁡(I) versus log⁡(V). ac admittance measurements show this transition coincides with the onset of minority charge (hole) injection in the device. All these observations are consistent with two simultaneous contributions with opposite sign of MR, which may be assigned to holes and electrons having different magnetic field responses.

  13. Dynamic detection of spin accumulation in ferromagnet-semiconductor devices by ferromagnetic resonance (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Crowell, Paul A.; Liu, Changjiang; Patel, Sahil; Peterson, Tim; Geppert, Chad C.; Christie, Kevin; Stecklein, Gordon; Palmstrøm, Chris J.

    2016-10-01

    A distinguishing feature of spin accumulation in ferromagnet-semiconductor devices is its precession in a magnetic field. This is the basis for detection techniques such as the Hanle effect, but these approaches become ineffective as the spin lifetime in the semiconductor decreases. For this reason, no electrical Hanle measurement has been demonstrated in GaAs at room temperature. We show here that by forcing the magnetization in the ferromagnet to precess at resonance instead of relying only on the Larmor precession of the spin accumulation in the semiconductor, an electrically generated spin accumulation can be detected up to 300 K. The injection bias and temperature dependence of the measured spin signal agree with those obtained using traditional methods. We further show that this new approach enables a measurement of short spin lifetimes (< 100 psec), a regime that is not accessible in semiconductors using traditional Hanle techniques. The measurements were carried out on epitaxial Heusler alloy (Co2FeSi or Co2MnSi)/n-GaAs heterostructures. Lateral spin valve devices were fabricated by electron beam and photolithography. We compare measurements carried out by the new FMR-based technique with traditional non-local and three-terminal Hanle measurements. A full model appropriate for the measurements will be introduced, and a broader discussion in the context of spin pumping experimenments will be included in the talk. The new technique provides a simple and powerful means for detecting spin accumulation at high temperatures. Reference: C. Liu, S. J. Patel, T. A. Peterson, C. C. Geppert, K. D. Christie, C. J. Palmstrøm, and P. A. Crowell, "Dynamic detection of electron spin accumulation in ferromagnet-semiconductor devices by ferromagnetic resonance," Nature Communications 7, 10296 (2016). http://dx.doi.org/10.1038/ncomms10296

  14. Theoretical discovery of stable structures of group III-V monolayers: The materials for semiconductor devices

    SciTech Connect

    Suzuki, Tatsuo

    2015-11-23

    Group III-V compounds are very important as the materials of semiconductor devices. Stable structures of the monolayers of group III-V binary compounds have been discovered by using first-principles calculations. The primitive unit cell of the discovered structures is a rectangle, which includes four group-III atoms and four group-V atoms. A group-III atom and its three nearest-neighbor group-V atoms are placed on the same plane; however, these connections are not the sp{sup 2} hybridization. The bond angles around the group-V atoms are less than the bond angle of sp{sup 3} hybridization. The discovered structure of GaP is an indirect transition semiconductor, while the discovered structures of GaAs, InP, and InAs are direct transition semiconductors. Therefore, the discovered structures of these compounds have the potential of the materials for semiconductor devices, for example, water splitting photocatalysts. The discovered structures may become the most stable structures of monolayers which consist of other materials.

  15. Proceedings of defect engineering in semiconductor growth, processing and device technology

    SciTech Connect

    Ashok, S.; Chevallier, J.; Sumino, K.; Weber, E.

    1992-01-01

    This volume results from a symposium that was part of the 1992 Spring Meeting of the Materials Research Society, held in San Francisco from April 26 to May 1, 1992. The symposium, entitled Defect Engineering in Semiconductor Growth, Processing and Device Technology, was the first of its kind at MRS and brought together academic and industrial researchers with varying perspectives on defects in semiconductors. Its aim was to go beyond defect control, and focus instead on deliberate and controlled introduction and manipulation of defects in order to engineer some desired properties in semiconductor materials and devices. While the concept of defect engineering has at least a vague perception in techniques such as impurity/defect gettering and the use of the EL2 level in GaAs, more extensive as well as subtle uses of defects are emerging to augment the field. This symposium was intended principally to encourage creative new applications of defects in all aspects of semiconductor technology. The organization of this proceedings volume closely follows the topics around which the sessions were built. The papers on grown-in defects in bulk crystals deal with overviews of intrinsic and impurity-related defects, their influence on electrical, optical and mechanical properties, as well as the use of impurities to arrest certain types of defects during growth and defects to control growth. The issues addressed by the papers on defects in thin films include impurity and stoichiometry control, defects created by plasmas and the use of electron/ion irradiation for doping control.

  16. Device processing of wide bandgap semiconductors - challenges and directions

    SciTech Connect

    Pearton, S.J.; Shul, R.J.; Zolper, J.C.

    1997-10-01

    The wide gap materials SiC, GaN and to a lesser extent diamond are attracting great interest for high power/high temperature electronics. There are a host of device processing challenges presented by these materials because of their physical and chemical stability, including difficulty in achieving stable, low contact resistances, especially for one conductivity type, absence of convenient wet etch recipes, generally slow dry etch rates, the high temperatures needed for implant activation, control of suitable gate dielectrics and the lack of cheap, large diameter conducting and semi-insulating substrates. The relatively deep ionization levels of some of the common dopants (Mg, in GaN; B, Al in SiC; P in diamond) means that carrier densities may be low at room temperature even if the impurity is electrically active - this problem will be reduced at elevated temperature, and thus contact resistances will be greatly improved provided the metallization is stable and reliable. Some recent work with CoSi{sub x} on SiC and W-alloys on GaN show promise for improved ohmic contacts. The issue of unintentional hydrogen passivation of dopants will also be covered - this leads to strong increases in resistivity of p-SiC and GaN, but to large decreases in resistivity of diamond. Recent work on development of wet etches has found recipes for AlN (KOH), while photochemical etching of SiC and GaN has been reported. In the latter cases p-type materials is not etched, which can be a major liability in some devices. The dry etch results obtained with various novel reactors, including ICP, ECR and LE4 will be compared - the high ion densities in the former techniques produce the highest etch rates for strongly-bonded materials, but can lead to preferential loss of N from the nitrides and therefore to a highly conducting surface. This is potentially a major problem for fabrication of dry etched, recessed gate FET structures.

  17. Gate tunneling current and quantum capacitance in metal-oxide-semiconductor devices with graphene gate electrodes

    NASA Astrophysics Data System (ADS)

    An, Yanbin; Shekhawat, Aniruddh; Behnam, Ashkan; Pop, Eric; Ural, Ant

    2016-11-01

    Metal-oxide-semiconductor (MOS) devices with graphene as the metal gate electrode, silicon dioxide with thicknesses ranging from 5 to 20 nm as the dielectric, and p-type silicon as the semiconductor are fabricated and characterized. It is found that Fowler-Nordheim (F-N) tunneling dominates the gate tunneling current in these devices for oxide thicknesses of 10 nm and larger, whereas for devices with 5 nm oxide, direct tunneling starts to play a role in determining the total gate current. Furthermore, the temperature dependences of the F-N tunneling current for the 10 nm devices are characterized in the temperature range 77-300 K. The F-N coefficients and the effective tunneling barrier height are extracted as a function of temperature. It is found that the effective barrier height decreases with increasing temperature, which is in agreement with the results previously reported for conventional MOS devices with polysilicon or metal gate electrodes. In addition, high frequency capacitance-voltage measurements of these MOS devices are performed, which depict a local capacitance minimum under accumulation for thin oxides. By analyzing the data using numerical calculations based on the modified density of states of graphene in the presence of charged impurities, it is shown that this local minimum is due to the contribution of the quantum capacitance of graphene. Finally, the workfunction of the graphene gate electrode is extracted by determining the flat-band voltage as a function of oxide thickness. These results show that graphene is a promising candidate as the gate electrode in metal-oxide-semiconductor devices.

  18. Accelerator-based electron beam technologies for modification of bipolar semiconductor devices

    NASA Astrophysics Data System (ADS)

    Pavlov, Y. S.; Surma, A. M.; Lagov, P. B.; Fomenko, Y. L.; Geifman, E. M.

    2016-09-01

    Radiation processing technologies for static and dynamic parameters modification of silicon bipolar semiconductor devices implemented. Devices of different classes with wide range of operating currents (from a few mA to tens kA) and voltages (from a few volts to 8 kV) were processed in large scale including power diodes and thyristors, high-frequency bipolar and IGBT transistors, fast recovery diodes, pulsed switching diodes, precise temperature- compensated Zener diodes (in general more than fifty 50 device types), produced by different enterprises. The necessary changes in electrical parameters and characteristics of devices caused by formation in the device structures of electrically active and stable in the operating temperature range sub-nanoscale recombination centres. Technologies implemented in the air with high efficiency and controllability, and are an alternative to diffusion doping of Au or Pt, γ-ray, proton and low-Z ion irradiation.

  19. Energy Models for One-Carrier Transport in Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Jerome, Joseph W.; Shu, Chi-Wang

    1991-01-01

    Moment models of carrier transport, derived from the Boltzmann equation, made possible the simulation of certain key effects through such realistic assumptions as energy dependent mobility functions. This type of global dependence permits the observation of velocity overshoot in the vicinity of device junctions, not discerned via classical drift-diffusion models, which are primarily local in nature. It was found that a critical role is played in the hydrodynamic model by the heat conduction term. When ignored, the overshoot is inappropriately damped. When the standard choice of the Wiedemann-Franz law is made for the conductivity, spurious overshoot is observed. Agreement with Monte-Carlo simulation in this regime required empirical modification of this law, or nonstandard choices. Simulations of the hydrodynamic model in one and two dimensions, as well as simulations of a newly developed energy model, the RT model, are presented. The RT model, intermediate between the hydrodynamic and drift-diffusion model, was developed to eliminate the parabolic energy band and Maxwellian distribution assumptions, and to reduce the spurious overshoot with physically consistent assumptions. The algorithms employed for both models are the essentially non-oscillatory shock capturing algorithms. Some mathematical results are presented and contrasted with the highly developed state of the drift-diffusion model.

  20. Direct Nanoscale Sensing of the Internal Electric Field in Operating Semiconductor Devices Using Single Electron Spins.

    PubMed

    Iwasaki, Takayuki; Naruki, Wataru; Tahara, Kosuke; Makino, Toshiharu; Kato, Hiromitsu; Ogura, Masahiko; Takeuchi, Daisuke; Yamasaki, Satoshi; Hatano, Mutsuko

    2017-02-28

    The electric field inside semiconductor devices is a key physical parameter that determines the properties of the devices. However, techniques based on scanning probe microscopy are limited to sensing at the surface only. Here, we demonstrate the direct sensing of the internal electric field in diamond power devices using single nitrogen-vacancy (NV) centers. The NV center embedded inside the device acts as a nanoscale electric field sensor. We fabricated vertical diamond p-i-n diodes containing the single NV centers. By performing optically detected magnetic resonance measurements under reverse-biased conditions with an applied voltage of up to 150 V, we found a large splitting in the magnetic resonance frequencies. This indicated that the NV center senses the transverse electric field in the space-charge region formed in the i-layer. The experimentally obtained electric field values are in good agreement with those calculated by a device simulator. Furthermore, we demonstrate the sensing of the electric field in different directions by utilizing NV centers with different N-V axes. This direct and quantitative sensing method using an electron spin in a wide-band-gap material provides a way to monitor the electric field in operating semiconductor devices.

  1. Design of Contact Electrodes for Semiconductor Nanowire Solar Energy Harvesting Devices.

    PubMed

    Lin, Tzuging; Ramadurgam, Sarath; Yang, Chen

    2017-04-12

    Transparent, low-resistive contacts are critical for efficient solar energy harvesting devices. It is important to reconsider the material choices and electrode design as devices move from 2D films to 1D nanostructures. In this paper, we study the effectiveness of indium tin oxide (ITO) and metals, such as Ag and Cu, as contacts in 2D and 1D systems. Although ITO has been studied extensively and developed into an effective transparent contact for 2D devices, our results show that effectiveness does not translate to 1D systems. Particularly with consideration of resistance requirement, nanowires with metal shells as contacts enable better absorption within the semiconductor as compared to ITO. Furthermore, there is a strong dependence of contact performance on the semiconductor band gap and diameter of nanowires. We found that metal contacts outperform ITO for nanowire devices, regardless of the sheet resistance constraint, in the regime of diameters less than 100 nm and band-gaps greater than 1 eV. These metal shells optimized for best absorption are significantly thinner than ITO, which enables for the design of devices with high nanowire number density and consequently higher device efficiencies.

  2. Development of molecular beam epitaxy technology for III–V compound semiconductor heterostructure devices

    SciTech Connect

    Cheng, K. Y.

    2013-09-15

    Molecular beam epitaxy (MBE) is a versatile ultrahigh vacuum technique for growing multiple epitaxial layers of semiconductor crystals with high precision. The extreme control of the MBE technique over composition variation, interface sharpness, impurity doping profiles, and epitaxial layer thickness to the atomic level makes it possible to demonstrate a wide variety of novel semiconductor structures. Since its invention nearly 40 years ago, the MBE technique has evolved from a laboratory apparatus for exploring new materials and novel devices to a favored tool for the mass production of III–V high-speed devices. This paper will review some of the past developments in this technology and propose an outlook of future developments.

  3. Exact solution of three-dimensional transport problems using one-dimensional models. [in semiconductor devices

    NASA Technical Reports Server (NTRS)

    Misiakos, K.; Lindholm, F. A.

    1986-01-01

    Several parameters of certain three-dimensional semiconductor devices including diodes, transistors, and solar cells can be determined without solving the actual boundary-value problem. The recombination current, transit time, and open-circuit voltage of planar diodes are emphasized here. The resulting analytical expressions enable determination of the surface recombination velocity of shallow planar diodes. The method involves introducing corresponding one-dimensional models having the same values of these parameters.

  4. Evaluation of semiconductor devices for Electric and Hybrid Vehicle (EHV) ac-drive applications, volume 1

    NASA Technical Reports Server (NTRS)

    Lee, F. C.; Chen, D. Y.; Jovanovic, M.; Hopkins, D. C.

    1985-01-01

    The results of evaluation of power semiconductor devices for electric hybrid vehicle ac drive applications are summarized. Three types of power devices are evaluated in the effort: high power bipolar or Darlington transistors, power MOSFETs, and asymmetric silicon control rectifiers (ASCR). The Bipolar transistors, including discrete device and Darlington devices, range from 100 A to 400 A and from 400 V to 900 V. These devices are currently used as key switching elements inverters for ac motor drive applications. Power MOSFETs, on the other hand, are much smaller in current rating. For the 400 V device, the current rating is limited to 25 A. For the main drive of an electric vehicle, device paralleling is normally needed to achieve practical power level. For other electric vehicle (EV) related applications such as battery charger circuit, however, MOSFET is advantageous to other devices because of drive circuit simplicity and high frequency capability. Asymmetrical SCR is basically a SCR device and needs commutation circuit for turn off. However, the device poses several advantages, i.e., low conduction drop and low cost.

  5. P and n-type microcrystalline semiconductor alloy material including band gap widening elements, devices utilizing same

    DOEpatents

    Guha, Subhendu; Ovshinsky, Stanford R.

    1988-10-04

    An n-type microcrystalline semiconductor alloy material including a band gap widening element; a method of fabricating p-type microcrystalline semiconductor alloy material including a band gap widening element; and electronic and photovoltaic devices incorporating said n-type and p-type materials.

  6. Gene Detection in Complex Biological Media Using Semiconductor Nanorods within an Integrated Microfluidic Device.

    PubMed

    Bi, Xinyan; Adriani, Giulia; Xu, Yang; Chakrabortty, Sabyasachi; Pastorin, Giorgia; Ho, Han Kiat; Ang, Wee Han; Chan, Yinthai

    2015-10-20

    The salient optical properties of highly luminescent semiconductor nanocrystals render them ideal fluorophores for clinical diagnostics, therapeutics, and highly sensitive biochip applications. Microfluidic systems allow miniaturization and integration of multiple biochemical processes in a single device and do not require sophisticated diagnostic tools. Herein, we describe a microfluidic system that integrates RNA extraction, reverse transcription to cDNA, amplification and detection within one integrated device to detect histidine decarboxylase (HDC) gene directly from human white blood cells samples. When anisotropic semiconductor nanorods (NRs) were used as the fluorescent probes, the detection limit was found to be 0.4 ng of total RNA, which was much lower than that obtained using spherical quantum dots (QDs) or organic dyes. This was attributed to the large action cross-section of NRs and their high probability of target capture in a pull-down detection scheme. The combination of large scale integrated microfluidics with highly fluorescent semiconductor NRs may find widespread utility in point-of-care devices and multitarget diagnostics.

  7. Semiconductor-free hot carrier devices for energy harvesting and photodetection

    NASA Astrophysics Data System (ADS)

    Gong, Tao; Munday, Jeremy

    The maximum efficiency for a single-junction solar cell is around 30% by the Shockley-Queisser (SQ) limit. The energy loss is typically through a thermalization process between the excited high-energy carriers, e.g. hot carriers, and the lattice. Therefore, the collection of the hot carriers before thermalization would allow for reduced power loss. Recently, photodetectors based on metal-semiconductor Schottky junctions have been exploiting hot electron effects to allow sub-bandgap absorption and hence show promise as near IR wavelength detectors. Here we present a simple, semiconductor-free hot carrier device based on transparent conducting oxides (TCO) electrodes. We experimentally demonstrate the hot carrier generation and extraction under monochromatic and broadband light illumination of normal and oblique incidence. Under optimized conditions, a power conversion efficiency >10% is predicted for high-energy photon excitation. The performance of the device shows further improvement by employing nanostructures, which couple the incident light into surface plasmons, leading to absorption enhancement. This semiconductor-free device provides an alternative way of energy harvesting and photodetection.

  8. Semiconductor heterostructure

    NASA Technical Reports Server (NTRS)

    Hovel, Harold John (Inventor); Woodall, Jerry MacPherson (Inventor)

    1978-01-01

    A technique for fabricating a semiconductor heterostructure by growth of a ternary semiconductor on a binary semiconductor substrate from a melt of the ternary semiconductor containing less than saturation of at least one common ingredient of both the binary and ternary semiconductors wherein in a single temperature step the binary semiconductor substrate is etched, a p-n junction with specific device characteristics is produced in the binary semiconductor substrate by diffusion of a dopant from the melt and a region of the ternary semiconductor of precise conductivity type and thickness is grown by virtue of a change in the melt characteristics when the etched binary semiconductor enters the melt.

  9. Semiconductor structure

    NASA Technical Reports Server (NTRS)

    Hovel, Harold J. (Inventor); Woodall, Jerry M. (Inventor)

    1979-01-01

    A technique for fabricating a semiconductor heterostructure by growth of a ternary semiconductor on a binary semiconductor substrate from a melt of the ternary semiconductor containing less than saturation of at least one common ingredient of both the binary and ternary semiconductors wherein in a single temperature step the binary semiconductor substrate is etched, a p-n junction with specific device characteristics is produced in the binary semiconductor substrate by diffusion of a dopant from the melt and a region of the ternary semiconductor of precise conductivity type and thickness is grown by virtue of a change in the melt characteristics when the etched binary semiconductor enters the melt.

  10. Procedure for pressure contact on high-power semiconductor devices free of thermal fatigue

    NASA Technical Reports Server (NTRS)

    Knobloch, J.

    1979-01-01

    To eliminate thermal fatigue, a procedure for manufacturing semiconductor power devices with pure pressure contact without solid binding was developed. Pressure contact without the use of a solid binding to avoid a limitation of the maximum surface in the contact was examined. A silicon wafer covered with a relatively thick metal layer is imbedded with the aid of a soft silver foil between two identically sized hard contact discs (molybdenum or tungsten) which are rotationally symmetrical. The advantages of this concept are shown for large diameters. The pressure contact was tested successfully in many devices in a large variety of applications.

  11. Mercuric iodide (HgI/sub 2/) semiconductor devices as charged-particle detectors

    SciTech Connect

    Becchetti, F.D.; Raymond, R.S.; Ristinen, R.A.; Schnepple, W.F.; Ortale, C.

    1981-01-01

    The properties of HgI/sub 2/ semiconductor devices as charged particle detectors have been investigated. Nearly linear energy response with FWHM resolution of 5 to 15% is observed for /sup 1/ /sup 2/H and /sup 3/ /sup 4/He ions, E < 40 MeV. Fast proton damage is observed for > 10/sup 10/ protons/cm/sup 2/. However, based on measurements with two HgI/sub 2/ detectors, little fast neutron damage is apparent at fluences up to 10/sup 15/ neutrons/cm/sup 2/. This suggests considerably greater resistance to radiation damage than is observed for Si and other solid state devices.

  12. Advanced development of double-injection, deep-impurity semiconductor switches

    NASA Technical Reports Server (NTRS)

    Hanes, M. H.

    1987-01-01

    Deep-impurity, double-injection devices, commonly refered to as (DI) squared devices, represent a class of semiconductor switches possessing a very high degree of tolerance to electron and neutron irradiation and to elevated temperature operation. These properties have caused them to be considered as attractive candidates for space power applications. The design, fabrication, and testing of several varieties of (DI) squared devices intended for power switching are described. All of these designs were based upon gold-doped silicon material. Test results, along with results of computer simulations of device operation, other calculations based upon the assumed mode of operation of (DI) squared devices, and empirical information regarding power semiconductor device operation and limitations, have led to the conculsion that these devices are not well suited to high-power applications. When operated in power circuitry configurations, they exhibit high-power losses in both the off-state and on-state modes. These losses are caused by phenomena inherent to the physics and material of the devices and cannot be much reduced by device design optimizations. The (DI) squared technology may, however, find application in low-power functions such as sensing, logic, and memory, when tolerance to radiation and temperature are desirable (especially is device performance is improved by incorporation of deep-level impurities other than gold.

  13. Spin polarized state filter based on semiconductor–dielectric–iron–semiconductor multi-nanolayer device

    SciTech Connect

    Makarov, Vladimir I.; Khmelinskii, Igor

    2015-04-15

    Highlights: • Development of a new spintronics device. • Development of quantum spin polarized filters. • Development of theory of quantum spin polarized filter. - Abstract: Presently we report spin-polarized state transport in semiconductor–dielectric–iron–semiconductor (SDIS) four-nanolayer sandwich devices. The exchange-resonance spectra in such devices are quite specific, differing also from spectra observed earlier in other three-nanolayer devices. The theoretical model developed earlier is extended and used to interpret the available experimental results. A detailed ab initio analysis of the magnetic-field dependence of the output magnetic moment is also performed. The model predicts an exchange spectrum comprising a series of peaks, with the spectral structure determined by several factors, discussed in the paper.

  14. 2D Semiconductor Device Simulations by WENO-Boltzmann Schemes: Efficiency, Boundary Conditions and Comparison to Monte Carlo Methods

    DTIC Science & Technology

    2006-01-01

    choice is asymptotically equivalent to have fixed V on the MESFET gate region depending on Vgate and the oxide thickness δ in such a way that ∆y = κ̃ δ...the Poisson equation modeling semiconductor devices such as the MESFET and MOSFET. We compare the simulation results with those obtained by a direct...Essentially Non-Oscillatory (WENO) schemes; Boltzmann Tran- sport Equation (BTE); semiconductor device simulation; MESFET ; MOSFET; Direct Sim

  15. Theory of Current Transients in Planar Semiconductor Devices: Insights and Applications to Organic Solar Cells

    NASA Astrophysics Data System (ADS)

    Hawks, Steven A.; Finck, Benjamin Y.; Schwartz, Benjamin J.

    2015-04-01

    Time-domain current measurements are widely used to characterize semiconductor material properties, such as carrier mobility, doping concentration, carrier lifetime, and the static dielectric constant. It is therefore critical that these measurements be theoretically understood if they are to be successfully applied to assess the properties of materials and devices. In this paper, we derive generalized relations for describing current-density transients in planar semiconductor devices at uniform temperature. By spatially averaging the charge densities inside the semiconductor, we are able to provide a rigorous, straightforward, and experimentally relevant way to interpret these measurements. The formalism details several subtle aspects of current transients, including how the electrode charge relates to applied bias and internal space charge, how the displacement current can alter the apparent free-carrier current, and how to understand the integral of a charge-extraction transient. We also demonstrate how the formalism can be employed to derive the current transients arising from simple physical models, like those used to describe charge extraction by linearly increasing voltage (CELIV) and time-of-flight experiments. In doing so, we find that there is a nonintuitive factor-of-2 reduction in the apparent free-carrier concentration that can be easily missed, for example, in the application of charge-extraction models. Finally, to validate our theory and better understand the different current contributions, we perform a full time-domain drift-diffusion simulation of a CELIV trace and compare the results to our formalism. As expected, our analytic equations match precisely with the numerical solutions to the drift-diffusion, Poisson, and continuity equations. Thus, overall, our formalism provides a straightforward and general way to think about how the internal space-charge distribution, the electrode charge, and the externally applied bias translate into a measured

  16. Developing high mobility emissive organic semiconductors towards integrated optoelectronic devices (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dong, Huanli; Hu, Wenping; Heeger, Alan J.

    2016-09-01

    The achievement of organic semiconductors with both high mobility and strong fluorescence emission remains a challenge. High mobility requires molecules which pack densely and periodically, while serious fluorescence quenching typically occurs when fluorescent materials begin to aggregate (aggregation-induced quenching (AIQ)). Indeed, classical materials with strong fluorescent emission always exhibit low mobility, for example, tris(8-hydroxyquinoline) aluminium (ALQ) and phenylenevinylene-based polymers with mobility only 10-6-10-5 cm2V-1s-1, and benchmark organic semiconductors with high mobility demonstrate very weak emission, for example, rubrene exhibits a quantum yield 1% in crystalline state and pentacene shows very weak fluorescence in the solid state. However, organic semiconductors with high mobility and strong fluorescence are necessary for the achievement of high efficiency organic light-emitting transistors (OLETs) and electrically pumped organic lasers. Therefore, it is necessary for developing high mobility emissive organic/polymeric semiconductors towards a fast mover for the organic optoelectronic integrated devices and circuits.

  17. Low-temperature optical processing of semiconductor devices using photon effects

    SciTech Connect

    Sopori, B.L.; Cudzinovic, M.; Symko, M.

    1995-08-01

    In an RTA process the primary purpose of the optical energy incident on the semiconductor sample is to increase its temperature rapidly. The activation of reactions involved in processes such as the formation of junctions, metal contacts, deposition of oxides or nitrides, takes place purely by the temperature effects. We describe the observation of a number of new photonic effects that take place within the bulk and at the interfaces of a semiconductor when a semiconductor device is illuminated with a spectrally broad-band light. Such effects include changes in the diffusion properties of impurities in the semiconductor, increased diffusivity of impurities across interfaces, and generation of electric fields that can alter physical and chemical properties of the interface. These phenomena lead to certain unique effects in an RTA process that do not occur during conventional furnace annealing under the same temperature conditions. Of particular interest are observations of low-temperature alloying of Si-Al interfaces, enhanced activation of phosphorus in Si during drive-in, low-temperature oxidation of Si, and gettering of impurities at low-temperatures under optical illumination. These optically induced effects, in general, diminish with an increase in the temperature, thus allowing thermally activated reaction rates to dominate at higher temperatures.

  18. Advanced Microstructured Semiconductor Neutron Detectors: Design, Fabrication, and Performance

    NASA Astrophysics Data System (ADS)

    Bellinger, Steven Lawrence

    The microstructured semiconductor neutron detector (MSND) was investigated and previous designs were improved and optimized. In the present work, fabrication techniques have been refined and improved to produce three-dimensional microstructured semiconductor neutron detectors with reduced leakage current, reduced capacitance, highly anisotropic deep etched trenches, and increased signal-to-noise ratios. As a result of these improvements, new MSND detection systems function with better gamma-ray discrimination and are easier to fabricate than previous designs. In addition to the microstructured diode fabrication improvement, a superior batch processing backfill-method for 6LiF neutron reactive material, resulting in a nearly-solid backfill, was developed. This method incorporates a LiF nano-sizing process and a centrifugal batch process for backfilling the nanoparticle LiF material. To better transition the MSND detector to commercialization, the fabrication process was studied and enhanced to better facilitate low cost and batch process MSND production. The research and development of the MSND technology described in this work includes fabrication of variant microstructured diode designs, which have been simulated through MSND physics models to predict performance and neutron detection efficiency, and testing the operational performance of these designs in regards to neutron detection efficiency, gamma-ray rejection, and silicon fabrication methodology. The highest thermal-neutron detection efficiency reported to date for a solid-state semiconductor detector is presented in this work. MSNDs show excellent neutron to gamma-ray (n/γ) rejection ratios, which are on the order of 106, without significant loss in thermal-neutron detection efficiency. Individually, the MSND is intrinsically highly sensitive to thermal neutrons, but not extrinsically sensitive because of their small size. To improve upon this, individual MSNDs were tiled together into a 6x6-element array

  19. Novel planarization and passivation in the integration of III-V semiconductor devices

    NASA Astrophysics Data System (ADS)

    Zheng, Jun-Fei; Hanberg, Peter J.; Demir, Hilmi V.; Sabnis, Vijit A.; Fidaner, Onur; Harris, James S., Jr.; Miller, David A. B.

    2004-06-01

    III-V semiconductor devices typically use structures grown layer-by-layer and require passivation of sidewalls by vertical etching to reduce leakage current. The passivation is conventionally achieved by sealing the sidewalls using polymer and the polymer needs to be planarized by polymer etch-back method to device top for metal interconnection. It is very challenging to achieve perfect planarization needed for sidewalls of all the device layers including the top layer to be completely sealed. We introduce a novel hard-mask-assisted self-aligned planarization process that allows the polymer in 1-3 μm vicinity of the devices to be planarized perfectly to the top of devices. The hard-mask-assisted process also allows self-aligned via formation for metal interconnection to device top of μm size. The hard mask is removed to expose a very clean device top surface for depositing metals for low ohmic contact resistance metal interconnection. The process is robust because it is insensitive to device height difference, spin-on polymer thickness variation, and polymer etch non-uniformity. We have demonstrated high yield fabrication of monolithically integrated optical switch arrays with mesa diodes and waveguide electroabsorption modulators on InP substrate with yield > 90%, high breakdown voltage of > 15 Volts, and low ohmic contact resistance of 10-20 Ω.

  20. Crystal growth of hexaferrite architecture for magnetoelectrically tunable microwave semiconductor integrated devices

    NASA Astrophysics Data System (ADS)

    Hu, Bolin

    Hexaferrites (i.e., hexagonal ferrites), discovered in 1950s, exist as any one of six crystallographic structural variants (i.e., M-, X-, Y-, W-, U-, and Z-type). Over the past six decades, the hexaferrites have received much attention owing to their important properties that lend use as permanent magnets, magnetic data storage materials, as well as components in electrical devices, particularly those operating at RF frequencies. Moreover, there has been increasing interest in hexaferrites for new fundamental and emerging applications. Among those, electronic components for mobile and wireless communications especially incorporated with semiconductor integrated circuits at microwave frequencies, electromagnetic wave absorbers for electromagnetic compatibility, random-access memory (RAM) and low observable technology, and as composite materials having low dimensions. However, of particular interest is the magnetoelectric (ME) effect discovered recently in the hexaferrites such as SrScxFe12-xO19 (SrScM), Ba2--xSrxZn 2Fe12O22 (Zn2Y), Sr4Co2Fe 36O60 (Co2U) and Sr3Co2Fe 24O41 (Co2Z), demonstrating ferroelectricity induced by the complex internal alignment of magnetic moments. Further, both Co 2Z and Co2U have revealed observable magnetoelectric effects at room temperature, representing a step toward practical applications using the ME effect. These materials hold great potential for applications, since strong magnetoelectric coupling allows switching of the FE polarization with a magnetic field (H) and vice versa. These features could lead to a new type of storage devices, such as an electric field-controlled magnetic memory. A nanoscale-driven crystal growth of magnetic hexaferrites was successfully demonstrated at low growth temperatures (25--40% lower than the temperatures required often for crystal growth). This outcome exhibits thermodynamic processes of crystal growth, allowing ease in fabrication of advanced multifunctional materials. Most importantly, the

  1. Novel engineered compound semiconductor heterostructures for advanced electronics applications

    NASA Astrophysics Data System (ADS)

    Stillman, Gregory E.; Holonyak, Nick, Jr.; Coleman, James J.

    1992-06-01

    To provide the technology base that will enable SDIO capitalization on the performance advantages offered through novel engineered multiple-lavered compound semiconductor structures, this project has focussed on three specific areas: (1) carbon doping of AlGaAs/GaAs and InP/InGaAs materials for reliable high frequency heterojunction bipolar transistors; (2) impurity induced layer disordering and the environmental degradation of AlxGal-xAs-GaAs quantum-well heterostructures and the native oxide stabilization of AlxGal-xAs-GaAs quantum well heterostructure lasers; and (3) non-planar and strained-layer quantum well heterostructure lasers and laser arrays. The accomplishments in this three year research are reported in fifty-six publications and the abstracts included in this report.

  2. Ionic Liquid Activation of Amorphous Metal-Oxide Semiconductors for Flexible Transparent Electronic Devices

    DOE PAGES

    Pudasaini, Pushpa Raj; Noh, Joo Hyon; Wong, Anthony T.; ...

    2016-02-09

    To begin this abstract, amorphous metal-oxide semiconductors offer the high carrier mobilities and excellent large-area uniformity required for high performance, transparent, flexible electronic devices; however, a critical bottleneck to their widespread implementation is the need to activate these materials at high temperatures which are not compatible with flexible polymer substrates. The highly controllable activation of amorphous indium gallium zinc oxide semiconductor channels using ionic liquid gating at room temperature is reported. Activation is controlled by electric field-induced oxygen migration across the ionic liquid-semiconductor interface. In addition to activation of unannealed devices, it is shown that threshold voltages of a transistormore » can be linearly tuned between the enhancement and depletion modes. Finally, the first ever example of transparent flexible thin film metal oxide transistor on a polyamide substrate created using this simple technique is demonstrated. Finally, this study demonstrates the potential of field-induced activation as a promising alternative to traditional postdeposition thermal annealing which opens the door to wide scale implementation into flexible electronic applications.« less

  3. Ionic Liquid Activation of Amorphous Metal-Oxide Semiconductors for Flexible Transparent Electronic Devices

    SciTech Connect

    Pudasaini, Pushpa Raj; Noh, Joo Hyon; Wong, Anthony T.; Ovchinnikova, Olga S.; Haglund, Amanda V.; Dai, Sheng; Ward, Thomas Zac; Mandrus, David; Rack, Philip D.

    2016-02-09

    To begin this abstract, amorphous metal-oxide semiconductors offer the high carrier mobilities and excellent large-area uniformity required for high performance, transparent, flexible electronic devices; however, a critical bottleneck to their widespread implementation is the need to activate these materials at high temperatures which are not compatible with flexible polymer substrates. The highly controllable activation of amorphous indium gallium zinc oxide semiconductor channels using ionic liquid gating at room temperature is reported. Activation is controlled by electric field-induced oxygen migration across the ionic liquid-semiconductor interface. In addition to activation of unannealed devices, it is shown that threshold voltages of a transistor can be linearly tuned between the enhancement and depletion modes. Finally, the first ever example of transparent flexible thin film metal oxide transistor on a polyamide substrate created using this simple technique is demonstrated. Finally, this study demonstrates the potential of field-induced activation as a promising alternative to traditional postdeposition thermal annealing which opens the door to wide scale implementation into flexible electronic applications.

  4. Field-induced activation of metal oxide semiconductor for low temperature flexible transparent electronic device applications

    NASA Astrophysics Data System (ADS)

    Pudasaini, Pushpa Raj; Noh, Joo Hyon; Wong, Anthony; Haglund, Amada; Ward, Thomas Zac; Mandrus, David; Rack, Philip

    Amorphous metal-oxide semiconductors have been extensively studied as an active channel material in thin film transistors due to their high carrier mobility, and excellent large-area uniformity. Here, we report the athermal activation of amorphous indium gallium zinc oxide semiconductor channels by an electric field-induced oxygen migration via gating through an ionic liquid. Using field-induced activation, a transparent flexible thin film transistor is demonstrated on a polyamide substrate with transistor characteristics having a current ON-OFF ratio exceeding 108, and saturation field effect mobility of 8.32 cm2/(V.s) without a post-deposition thermal treatment. This study demonstrates the potential of field-induced activation as an athermal alternative to traditional post-deposition thermal annealing for metal oxide electronic devices suitable for transparent and flexible polymer substrates. Materials Science and Technology Division, ORBL, Oak Ridge, TN 37831, USA.

  5. Total-dose radiation effects data for semiconductor devices: 1985 supplement, volume 1

    NASA Technical Reports Server (NTRS)

    Martin, K. E.; Gauthier, M. K.; Coss, J. R.; Dantas, A. R. V.; Price, W. E.

    1985-01-01

    Steady-state, total-dose radiation test data are provided, in graphic format, for use by electronic designers and other personnel using semiconductor devices in a radiation environment. The data were generated by JPL for various NASA space programs. The document is in two volumes: Volume 1 provides data on diodes, bipolar transistors, field effect transistors, and miscellaneous semiconductor types, and Volume 2 provides total-dose radiation test data on integrated circuits. Volume 1 of this 1985 Supplement contains new total-dose radiation test data generated since the August 1, 1981 release date of the original Volume 1. Publication of Volume 2 of the 1985 Supplement will follow that of Volume 1 by approximately three months.

  6. H+-type and OH- -type biological protonic semiconductors and complementary devices.

    PubMed

    Deng, Yingxin; Josberger, Erik; Jin, Jungho; Roudsari, Anita Fadavi; Rousdari, Anita Fadavi; Helms, Brett A; Zhong, Chao; Anantram, M P; Rolandi, Marco

    2013-10-03

    Proton conduction is essential in biological systems. Oxidative phosphorylation in mitochondria, proton pumping in bacteriorhodopsin, and uncoupling membrane potentials by the antibiotic Gramicidin are examples. In these systems, H(+) hop along chains of hydrogen bonds between water molecules and hydrophilic residues - proton wires. These wires also support the transport of OH(-) as proton holes. Discriminating between H(+) and OH(-) transport has been elusive. Here, H(+) and OH(-) transport is achieved in polysaccharide- based proton wires and devices. A H(+)- OH(-) junction with rectifying behaviour and H(+)-type and OH(-)-type complementary field effect transistors are demonstrated. We describe these devices with a model that relates H(+) and OH(-) to electron and hole transport in semiconductors. In turn, the model developed for these devices may provide additional insights into proton conduction in biological systems.

  7. ARED (Advanced-Resistive Exercise Device) Update

    NASA Technical Reports Server (NTRS)

    Ploutz-Snyder, Lori

    2009-01-01

    This viewgraph presentation describes ARED which is a new hardware exercise device for use on the International Space Station. Astronaut physiological adaptations, muscle parameters, and cardiovascular parameters are also reviewed.

  8. Recent Advances in Organic Photovoltaics: Device Structure and Optical Engineering Optimization on the Nanoscale.

    PubMed

    Luo, Guoping; Ren, Xingang; Zhang, Su; Wu, Hongbin; Choy, Wallace C H; He, Zhicai; Cao, Yong

    2016-03-23

    Organic photovoltaic (OPV) devices, which can directly convert absorbed sunlight to electricity, are stacked thin films of tens to hundreds of nanometers. They have emerged as a promising candidate for affordable, clean, and renewable energy. In the past few years, a rapid increase has been seen in the power conversion efficiency of OPV devices toward 10% and above, through comprehensive optimizations via novel photoactive donor and acceptor materials, control of thin-film morphology on the nanoscale, device structure developments, and interfacial and optical engineering. The intrinsic problems of short exciton diffusion length and low carrier mobility in organic semiconductors creates a challenge for OPV designs for achieving optically thick and electrically thin device structures to achieve sufficient light absorption and efficient electron/hole extraction. Recent advances in the field of OPV devices are reviewed, with a focus on the progress in device architecture and optical engineering approaches that lead to improved electrical and optical characteristics in OPV devices. Successful strategies are highlighted for light wave distribution, modulation, and absorption promotion inside the active layer of OPV devices by incorporating periodic nanopatterns/nanostructures or incorporating metallic nanomaterials and nanostructures.

  9. Fault localization and analysis in semiconductor devices with optical-feedback infrared confocal microscopy

    SciTech Connect

    Sarmiento, Raymund; Cemine, Vernon Julius; Tagaca, Imee Rose; Salvador, Arnel; Mar Blanca, Carlo; Saloma, Caesar

    2007-11-01

    We report on a cost-effective optical setup for characterizing light-emitting semiconductor devices with optical-feedback confocal infrared microscopy and optical beam-induced resistance change.We utilize the focused beam from an infrared laser diode to induce local thermal resistance changes across the surface of a biased integrated circuit (IC) sample. Variations in the multiple current paths are mapped by scanning the IC across the focused beam. The high-contrast current maps allow accurate differentiation of the functional and defective sites, or the isolation of the surface-emittingp-i-n devices in the IC. Optical beam-induced current (OBIC) is not generated since the incident beam energy is lower than the bandgap energy of the p-i-n device. Inhomogeneous current distributions in the IC become apparent without the strong OBIC background. They are located at a diffraction-limited resolution by referencing the current maps against the confocal reflectance image that is simultaneously acquired via optical-feedback detection. Our technique permits the accurate identification of metal and semiconductor sites as well as the classification of different metallic structures according to thickness, composition, or spatial inhomogeneity.

  10. Inhibiting device degradation induced by surface damages during top-down fabrication of semiconductor devices with micro/nano-scale pillars and holes

    NASA Astrophysics Data System (ADS)

    Mayet, Ahmed S.; Cansizoglu, Hilal; Gao, Yang; Kaya, Ahmet; Ghandiparsi, Soroush; Yamada, Toshishige; Wang, Shih-Yuan; Islam, M. Saif

    2016-09-01

    High-aspect ratio semiconductor pillar- and hole-based structures are being investigated for photovoltaics, energy harvesting devices, transistors, and sensors. The fabrication of pillars and holes frequently involves top-down fabrication (such as dry etching) of semiconductors. Such a process contributes to different types of crystalline defects including vacancies, interstitials, dislocations, stacking faults, surface roughness, impurities, and charging effects. These defects contribute to degraded device characteristics impacting detection sensitivity, energy conversion efficiency, etc. In this presentation, we review dry-etched semiconductor devices and demonstrate several possible methods to inhibit device degradation induced by surface damage. These methods include hydrogen passivation, the growth of oxide passivating thin films using wet furnace growth, and low-ion energy etching. These methods contributed to a leakage current reduction by as much as four orders of magnitude.

  11. Advanced excimer laser technologies enable green semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Fukuda, Hitomi; Yoo, Youngsun; Minegishi, Yuji; Hisanaga, Naoto; Enami, Tatsuo

    2014-03-01

    "Green" has fast become an important and pervasive topic throughout many industries worldwide. Many companies, especially in the manufacturing industries, have taken steps to integrate green initiatives into their high-level corporate strategies. Governments have also been active in implementing various initiatives designed to increase corporate responsibility and accountability towards environmental issues. In the semiconductor manufacturing industry, there are growing concerns over future environmental impact as enormous fabs expand and new generation of equipments become larger and more powerful. To address these concerns, Gigaphoton has implemented various green initiatives for many years under the EcoPhoton™ program. The objective of this program is to drive innovations in technology and services that enable manufacturers to significantly reduce both the financial and environmental "green cost" of laser operations in high-volume manufacturing environment (HVM) - primarily focusing on electricity, gas and heat management costs. One example of such innovation is Gigaphoton's Injection-Lock system, which reduces electricity and gas utilization costs of the laser by up to 50%. Furthermore, to support the industry's transition from 300mm to the next generation 450mm wafers, technologies are being developed to create lasers that offer double the output power from 60W to 120W, but reducing electricity and gas consumption by another 50%. This means that the efficiency of lasers can be improve by up to 4 times in 450mm wafer production environments. Other future innovations include the introduction of totally Heliumfree Excimer lasers that utilize Nitrogen gas as its replacement for optical module purging. This paper discusses these and other innovations by Gigaphoton to enable green manufacturing.

  12. An alternative treatment of heat flow for charge transport in semiconductor devices

    SciTech Connect

    Grupen, Matt

    2009-12-15

    A unique thermodynamic model of Fermi gases suitable for semiconductor device simulation is presented. Like other models, such as drift diffusion and hydrodynamics, it employs moments of the Boltzmann transport equation derived using the Fermi-Dirac distribution function. However, unlike other approaches, it replaces the concept of an electron thermal conductivity with the heat capacity of an ideal Fermi gas to determine heat flow. The model is used to simulate a field-effect transistor and show that the external current-voltage characteristics are strong functions of the state space available to the heated Fermi distribution.

  13. Optimal convolution SOR acceleration of waveform relaxation with application to semiconductor device simulation

    NASA Technical Reports Server (NTRS)

    Reichelt, Mark

    1993-01-01

    In this paper we describe a novel generalized SOR (successive overrelaxation) algorithm for accelerating the convergence of the dynamic iteration method known as waveform relaxation. A new convolution SOR algorithm is presented, along with a theorem for determining the optimal convolution SOR parameter. Both analytic and experimental results are given to demonstrate that the convergence of the convolution SOR algorithm is substantially faster than that of the more obvious frequency-independent waveform SOR algorithm. Finally, to demonstrate the general applicability of this new method, it is used to solve the differential-algebraic system generated by spatial discretization of the time-dependent semiconductor device equations.

  14. Evaluation of pelletron accelerator facility to study radiation effects on semiconductor devices

    SciTech Connect

    Prakash, A. P. Gnana; Pushpa, N.; Praveen, K. C.; Naik, P. S.; Revannasiddaiah, D.

    2012-06-05

    In this paper we present the comprehensive results on the effects of different radiation on the electrical characteristics of different semiconductor devices like Si BJT, n-channel MOSFETs, 50 GHz and 200 GHz silicon-germanium heterojunction bipolar transistor (SiGe HBTs). The total dose effects of different radiation are compared in the same total dose ranging from 100 krad to 100 Mrad. We show that the irradiation time needed to reach very high total dose can be reduced by using Pelletron accelerator facilities instead of conventional irradiation facilities.

  15. Wide-band-gap, alkaline-earth-oxide semiconductor and devices utilizing same

    DOEpatents

    Abraham, Marvin M.; Chen, Yok; Kernohan, Robert H.

    1981-01-01

    This invention relates to novel and comparatively inexpensive semiconductor devices utilizing semiconducting alkaline-earth-oxide crystals doped with alkali metal. The semiconducting crystals are produced by a simple and relatively inexpensive process. As a specific example, a high-purity lithium-doped MgO crystal is grown by conventional techniques. The crystal then is heated in an oxygen-containing atmosphere to form many [Li].degree. defects therein, and the resulting defect-rich hot crystal is promptly quenched to render the defects stable at room temperature and temperatures well above the same. Quenching can be effected conveniently by contacting the hot crystal with room-temperature air.

  16. Excitability in optically injected semiconductor lasers: Contrasting quantum- well- and quantum-dot-based devices

    NASA Astrophysics Data System (ADS)

    Kelleher, B.; Bonatto, C.; Huyet, G.; Hegarty, S. P.

    2011-02-01

    Excitability is a generic prediction for an optically injected semiconductor laser. However, the details of the phenomenon differ depending on the type of device in question. For quantum-well lasers very complicated multipulse trajectories can be found, while for quantum-dot lasers the situation is much simpler. Experimental observations show the marked differences in the pulse shapes while theoretical considerations reveal the underlying mechanism responsible for the contrast, identifying the increased stability of quantum-dot lasers to perturbations as the root.

  17. Excitability in optically injected semiconductor lasers: contrasting quantum-well- and quantum-dot-based devices.

    PubMed

    Kelleher, B; Bonatto, C; Huyet, G; Hegarty, S P

    2011-02-01

    Excitability is a generic prediction for an optically injected semiconductor laser. However, the details of the phenomenon differ depending on the type of device in question. For quantum-well lasers very complicated multipulse trajectories can be found, while for quantum-dot lasers the situation is much simpler. Experimental observations show the marked differences in the pulse shapes while theoretical considerations reveal the underlying mechanism responsible for the contrast, identifying the increased stability of quantum-dot lasers to perturbations as the root.

  18. Non-parabolic hydrodynamic formulations for the simulation of inhomogeneous semiconductor devices

    NASA Technical Reports Server (NTRS)

    Smith, Arlynn W.; Brennan, Kevin F.

    1995-01-01

    Hydrodynamic models are becoming prevalent design tools for small scale devices and other devices in which high energy effects can dominate transport. Most current hydrodynamic models use a parabolic band approximation to obtain fairly simple conservation equations. Interest in accounting for band structure effects in hydrodynamic device simulation has begun to grow since parabolic models can not fully describe the transport in state of the art devices due to the distribution populating non-parabolic states within the band. This paper presents two different non-parabolic formulations of the hydrodynamic model suitable for the simulation of inhomogeneous semiconductor devices. The first formulation uses the Kane dispersion relationship (hk)(exp 2)/2m = W(1 + alpha(W)). The second formulation makes use of a power law ((hk)(exp 2)/2m = xW(sup y)) for the dispersion relation. Hydrodynamic models which use the first formulation rely on the binomial expansion to obtain moment equations with closed form coefficients. This limits the energy range over which the model is valid. The power law formulation readily produces closed form coefficients similar to those obtained using the parabolic band approximation. However, the fitting parameters (x,y) are only valid over a limited energy range. The physical significance of the band non-parabolicity is discussed as well as the advantages/disadvantages and approximations of the two non-parabolic models. A companion paper describes device simulations based on the three dispersion relationships: parabolic, Kane dispersion, and power low dispersion.

  19. Non-Parabolic Hydrodynamic Formulations for the Simulation of Inhomogeneous Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Smith, A. W.; Brennan, K. F.

    1996-01-01

    Hydrodynamic models are becoming prevalent design tools for small scale devices and other devices in which high energy effects can dominate transport. Most current hydrodynamic models use a parabolic band approximation to obtain fairly simple conservation equations. Interest in accounting for band structure effects in hydrodynamic device simulation has begun to grow since parabolic models cannot fully describe the transport in state of the art devices due to the distribution populating non-parabolic states within the band. This paper presents two different non-parabolic formulations or the hydrodynamic model suitable for the simulation of inhomogeneous semiconductor devices. The first formulation uses the Kane dispersion relationship ((hk)(exp 2)/2m = W(1 + alphaW). The second formulation makes use of a power law ((hk)(exp 2)/2m = xW(exp y)) for the dispersion relation. Hydrodynamic models which use the first formulation rely on the binomial expansion to obtain moment equations with closed form coefficients. This limits the energy range over which the model is valid. The power law formulation readily produces closed form coefficients similar to those obtained using the parabolic band approximation. However, the fitting parameters (x,y) are only valid over a limited energy range. The physical significance of the band non-parabolicity is discussed as well as the advantages/disadvantages and approximations of the two non-parabolic models. A companion paper describes device simulations based on the three dispersion relationships; parabolic, Kane dispersion and power law dispersion.

  20. SILICON CARBIDE FOR SEMICONDUCTORS

    DTIC Science & Technology

    This state-of-the-art survey on silicon carbide for semiconductors includes a bibliography of the most important references published as of the end...of 1964. The various methods used for growing silicon carbide single crystals are reviewed, as well as their properties and devices fabricated from...them. The fact that the state of-the-art of silicon carbide semiconductors is not further advanced may be attributed to the difficulties of growing

  1. Advances in nonlinear optical materials and devices

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1991-01-01

    The recent progress in the application of nonlinear techniques to extend the frequency of laser sources has come from the joint progress in laser sources and in nonlinear materials. A brief summary of the progress in diode pumped solid state lasers is followed by an overview of progress in nonlinear frequency extension by harmonic generation and parametric processes. Improved nonlinear materials including bulk crystals, quasiphasematched interactions, guided wave devices, and quantum well intersubband studies are discussed with the idea of identifying areas of future progress in nonlinear materials and devices.

  2. Design and fabrication of 6.1-.ANG. family semiconductor devices using semi-insulating A1Sb substrate

    DOEpatents

    Sherohman, John W.; Coombs, III, Arthur W.; Yee, Jick Hong; Wu, Kuang Jen J.

    2007-05-29

    For the first time, an aluminum antimonide (AlSb) single crystal substrate is utilized to lattice-match to overlying semiconductor layers. The AlSb substrate establishes a new design and fabrication approach to construct high-speed, low-power electronic devices while establishing inter-device isolation. Such lattice matching between the substrate and overlying semiconductor layers minimizes the formation of defects, such as threaded dislocations, which can decrease the production yield and operational life-time of 6.1-.ANG. family heterostructure devices.

  3. Energetic semiconductor bridge device incorporating Al/MoOx multilayer nanofilms and negative temperature coefficient thermistor chip

    NASA Astrophysics Data System (ADS)

    Zhu, Peng; Jiao, Jianshe; Shen, Ruiqi; Ye, Yinghua; Fu, Shuai; Li, Dongle

    2014-05-01

    The design, fabrication, and characterization of an energetic semiconductor bridge device are presented. The device consists of a semiconductor bridge heating element, which has been selectively coated with Al/MoOx multilayer nanofilms to enhance ignition of a conventional pyrotechnics. Integrated negative temperature coefficient thermistor chip provides protection against electromagnetic and electrostatic discharge events. The device was specifically configured to allow ease of interconnection by wire bonds and silver-filled conductive epoxy. Extensive design validation testing was performed. The device has demonstrated low, predictable firing energy and insensitivity. Al/MoOx multilayer nanofilms have no distinct influence on the electrical properties of semiconductor bridge. Nanothermite reaction provides reliable ignition by being able to ignite across a gap.

  4. Guidewire-Controlled Advancement of the Amplatz Thrombectomy Device

    SciTech Connect

    Mueller-Huelsbeck, Stefan; Schwarzenberg, Helmut; Heller, Martin

    1998-01-15

    The Amplatz Thrombectomy Device (ATD) is a percutaneous rotational catheter proven to homogenize thrombus. The catheter design allows neither application over a coaxial running guidewire nor the use of the device as a monorail system. We report a technical modification that provides guided advancement of the catheter over a wire in order to prevent failure of application and to facilitate the interventional procedure.

  5. Femtosecond Optics: Advanced Devices and Ultrafast Phenomena

    DTIC Science & Technology

    2007-05-31

    periodically poled lithium niobate (PPLN), which already represents a significant advance . Gain is given by G=0.25(1+ exp(gl)), where for 7 t2 PPLN, g...H. Sotobayashi, J.T. Gopinath, and E.P. Ippen, ൟ cm long Bi20 3-based EDFA for picosecond pulse amplification with 80 nm gain bandwidth," IEEE...will be minimized by keeping the data in the optical domain. Such all- optical networks require advanced photonic technologies for a variety of

  6. Advanced silicon device technologies for optical interconnects

    NASA Astrophysics Data System (ADS)

    Wosinski, Lech; Wang, Zhechao; Lou, Fei; Dai, Daoxin; Lourdudoss, Sebastian; Thylen, Lars

    2012-01-01

    Silicon photonics is an emerging technology offering novel solutions in different areas requiring highly integrated communication systems for optical networking, sensing, bio-applications and computer interconnects. Silicon photonicsbased communication has many advantages over electric wires for multiprocessor and multicore macro-chip architectures including high bandwidth data transmission, high speed and low power consumption. Following the INTEL's concept to "siliconize" photonics, silicon device technologies should be able to solve the fabrication problems for six main building blocks for realization of optical interconnects: light generation, guiding of light including wavelength selectivity, light modulation for signal encoding, detection, low cost assembly including optical connecting of the devices to the real world and finally the electronic control systems.

  7. Atomic origin of high-temperature electron trapping in metal-oxide-semiconductor devices

    SciTech Connect

    Shen, Xiao; Dhar, Sarit; Pantelides, Sokrates T.

    2015-04-06

    MOSFETs based on wide-band-gap semiconductors are suitable for operation at high temperature, at which additional atomic-scale processes that are benign at lower temperatures can get activated, resulting in device degradation. Recently, significant enhancement of electron trapping was observed under positive bias in SiC MOSFETs at temperatures higher than 150 °C. Here, we report first-principles calculations showing that the enhanced electron trapping is associated with thermally activated capturing of a second electron by an oxygen vacancy in SiO{sub 2} by which the vacancy transforms into a structure that comprises one Si dangling bond and a bond between a five-fold and a four-fold Si atoms. The results suggest a key role of oxygen vacancies and their structural reconfigurations in the reliability of high-temperature MOS devices.

  8. Optical devices combining an organic semiconductor crystal with a two-dimensional inorganic diffraction grating

    SciTech Connect

    Kitazawa, Takenori; Yamao, Takeshi Hotta, Shu

    2016-02-01

    We have fabricated optical devices using an organic semiconductor crystal as an emission layer in combination with a two-dimensional (2D) inorganic diffraction grating used as an optical cavity. We formed the inorganic diffraction grating by wet etching of aluminum-doped zinc oxide (AZO) under a 2D cyclic olefin copolymer (COC) diffraction grating used as a mask. The COC diffraction grating was fabricated by nanoimprint lithography. The AZO diffraction grating was composed of convex prominences arranged in a triangular lattice. The organic crystal placed on the AZO diffraction grating indicated narrowed peaks in its emission spectrum under ultraviolet light excitation. These are detected parallel to the crystal plane. The peaks were shifted by rotating the optical devices around the normal to the crystal plane, which reflected the rotational symmetries of the triangular lattice through 60°.

  9. Practical photoluminescence and photoreflectance spectroscopic system for optical characterization of semiconductor devices.

    PubMed

    Ho, Ching-Hwa; Huang, Kuo-Wei; Lin, Yu-Shyan; Lin, Der-Yuh

    2005-05-30

    We present a practical experimental design for performing photoluminescence (PL) and photoreflectance (PR) measurements of semiconductors with only one PL spectroscopic system. The measurement setup is more cost efficient than typical PL-plus-PR systems. The design of the experimental setup of the PL-PR system is described in detail. Measurements of two actual device structures, a high-electron-mobility transistor (HEMT) and a double heterojunction-bipolar transistor (DHBT), are carried out by using this design. The experimental PL and PR spectra of the HEMT device, as well as polarized-photoreflectance (PPR) spectra of the DHBT structure, are analyzed in detailed and discussed. The experimental analyses demonstrate the well-behaved performance of this PL-PR design.

  10. Mixed-RKDG Finite Element Methods for the 2-D Hydrodynamic Model for Semiconductor Device Simulation

    DOE PAGES

    Chen, Zhangxin; Cockburn, Bernardo; Jerome, Joseph W.; ...

    1995-01-01

    In this paper we introduce a new method for numerically solving the equations of the hydrodynamic model for semiconductor devices in two space dimensions. The method combines a standard mixed finite element method, used to obtain directly an approximation to the electric field, with the so-called Runge-Kutta Discontinuous Galerkin (RKDG) method, originally devised for numerically solving multi-dimensional hyperbolic systems of conservation laws, which is applied here to the convective part of the equations. Numerical simulations showing the performance of the new method are displayed, and the results compared with those obtained by using Essentially Nonoscillatory (ENO) finite difference schemes. Frommore » the perspective of device modeling, these methods are robust, since they are capable of encompassing broad parameter ranges, including those for which shock formation is possible. The simulations presented here are for Gallium Arsenide at room temperature, but we have tested them much more generally with considerable success.« less

  11. Ultraviolet random lasing from asymmetrically contacted MgZnO metal-semiconductor-metal device

    SciTech Connect

    Morshed, Muhammad M.; Suja, Mohammad; Zuo, Zheng; Liu, Jianlin

    2014-11-24

    Nitrogen-doped Mg{sub 0.12}Zn{sub 0.88}O nanocrystalline thin film was grown on c-plane sapphire substrate. Asymmetric Ni/Au and Ti/Au Schottky contacts and symmetric Ni/Au contacts were deposited on the thin film to form metal-semiconductor-metal (MSM) laser devices. Current-voltage, photocurrent, and electroluminescence characterizations were performed. Evident random lasing with a threshold current of ∼36 mA is demonstrated only from the asymmetric MSM device. Random lasing peaks are mostly distributed between 340 and 360 nm and an output power of 15 nW is measured at 43 mA injection current. The electron affinity difference between the contact metal and Mg{sub 0.12}Zn{sub 0.88}O:N layer plays an important role for electron and hole injection and subsequent stimulated random lasing.

  12. Quantum-corrected drift-diffusion models for transport in semiconductor devices

    SciTech Connect

    De Falco, Carlo; Gatti, Emilio; Lacaita, Andrea L.; Sacco, Riccardo . E-mail: riccardo.sacco@mate.polimi.it

    2005-04-10

    In this paper, we propose a unified framework for Quantum-corrected drift-diffusion (QCDD) models in nanoscale semiconductor device simulation. QCDD models are presented as a suitable generalization of the classical drift-diffusion (DD) system, each particular model being identified by the constitutive relation for the quantum-correction to the electric potential. We examine two special, and relevant, examples of QCDD models; the first one is the modified DD model named Schroedinger-Poisson-drift-diffusion, and the second one is the quantum-drift-diffusion (QDD) model. For the decoupled solution of the two models, we introduce a functional iteration technique that extends the classical Gummel algorithm widely used in the iterative solution of the DD system. We discuss the finite element discretization of the various differential subsystems, with special emphasis on their stability properties, and illustrate the performance of the proposed algorithms and models on the numerical simulation of nanoscale devices in two spatial dimensions.

  13. The world's first high voltage GaN-on-Diamond power semiconductor devices

    NASA Astrophysics Data System (ADS)

    Baltynov, Turar; Unni, Vineet; Narayanan, E. M. Sankara

    2016-11-01

    This paper presents the detailed fabrication method and extensive electrical characterisation results of the first-ever demonstrated high voltage GaN power semiconductor devices on CVD Diamond substrate. Fabricated circular GaN-on-Diamond HEMTs with gate-to-drain drift length of 17 μm and source field plate length of 3 μm show an off-state breakdown voltage of ∼1100 V. Temperature characterisation of capacitance-voltage characteristics and on-state characteristics provides insight on the temperature dependence of key parameters such as threshold voltage, 2DEG sheet carrier concentration, specific on-state resistance, and drain saturation current in the fabricated devices.

  14. Characterization of an oxygen plasma process for cleaning packaged semiconductor devices. Final report

    SciTech Connect

    Adams, B.E.

    1996-11-01

    The purpose of this research was to experimentally determine the operating {open_quotes}window{close_quotes} for an oxygen plasma cleaning process to be used on microelectronics components just prior to wire bonding. The process was being developed to replace one that used vapor degreasing with trichlorotrifluoroethane, an ozone-depleting substance. A Box-Behnken experimental design was used to generate data from which the oxygen plasma cleaning process could be characterized. Auger electron spectrophotometry was used to measure the contamination thickness on the dice after cleaning. An empirical equation correlating the contamination thickness on the die surface with the operating parameters of the plasma system was developed from the collected Auger data, and optimum settings for cleaning semiconductor devices were determined. Devices were also tested for undesirable changes in electrical parameters resulting from cleaning in the plasma system. An increase in leakage current occurred for bipolar transistors and diodes after exposure to the oxygen plasma. Although an increase in leakage current occurred, each device`s parameter remained well below the acceptable specification limit. Based upon the experimental results, the optimum settings for the plasma cleaning process were determined to be 200 watts of power applied for five minutes in an enclosure maintained at 0.7 torr. At these settings, all measurable contamination was removed without compromising the reliability of the devices.

  15. Technology development of high-quality semiconductor devices using solution-processed crystallization of pentacene

    NASA Astrophysics Data System (ADS)

    Liu, Hung-Wei

    Organic electronic materials and processing techniques have attracted considerable attention for developing organic thin-film transistors (OTFTs), since they may be patterned on flexible substrates which may be bent into a variety of shapes for applications such as displays, smart cards, solar devices and sensors Various fabrication methods for building pentacene-based OTFTs have been demonstrated. Traditional vacuum deposition and vapor deposition methods have been studied for deposition on plastic and paper, but these are unlikely to scale well to large area printing. Researchers have developed methods for processing OTFTs from solution because of the potential for low-cost and large area device manufacturing, such as through inkjet or offset printing. Most methods require the use of precursors which are used to make pentacene soluble, and these methods have typically produced much lower carrier mobility than the best vacuum deposited devices. We have investigated devices built from solution-processed pentacene that is locally crystallized at room temperature on the polymer substrates. Pentacene crystals grown in this manner are highly localized at pre-determined sites, have good crystallinity and show good carrier mobility, making this an attractive method for large area manufacturing of semiconductor devices.

  16. Variations in semiconductor device response in a medium-energy x-ray dose-enhancing environment

    SciTech Connect

    Beutler, D.E.; Fleetwood, D.M.; Beezhold, W.; Knott, D.; Lorence, L.J. Jr.; Draper, B.L.

    1987-01-01

    A series of experiments was performed to investigate the response of semiconductor devices to medium-energy x-ray irradiation under conditions in which dose-enhancement effects are very important. The response of MOS capacitors to ''dose-enhanced'' radiation can depend on incident radiation spectra, temperature of the device, and oxide electric field. Indeed, the amount of enhanced response can vary by as much as a factor of 10 as these conditions are changed. In such cases, it appears that changes in electron-hole recombination and hole trapping as a function of radiation energy are very important to the interpretation of the results. Therefore, coupled electron/photon transport codes such as the Monte Carlo integrated TIGER series (ITS), which consider only changes in the dose deposited in the device active region, are inadequate, at least in some cases, for predictions of dose-enhancement effects in semiconductor devices. In addition, the response of semiconductor diodes to dose-enhanced radiation appears to be qualitatively different from that of capacitors, and differs markedly in value from code predictions. Hence, an understanding of the modification of incident radiation by its interactions with dose-enhancing materials alone is insufficient to predict the response of semiconductor devices. The dependence of the device response on radiation spectra, electron-hole recombination, and hole transport and trapping, must also be included to assure good simulation fidelity of tests for devices to be used in dose-enhancing environments.

  17. Superlattice of stress domains in nanometer-size semiconductor devices predicted from atomistic simulations

    NASA Astrophysics Data System (ADS)

    Bachlechner, Martina E.; Ebbsjö, Ingvar; Kalia, Rajiv K.; Kodiyalam, Sanjay; Madhukar, Anupam; Nakano, Aiichiro; Omeltchenko, Andrey; Walsh, Phillip; Vashishta, Priya

    2001-03-01

    Semiconductor industry association estimates pixel sizes in next generation devices to be on the order of 70 nm by the year of 2008. Although recent measurements of local strain distributions2 and strain relaxation in nano wires have reached 100-nm spatial resolution, experimental tools for determining stresses for sub 100 nm, feature sizes are still to be developed4. On the other hand, recent developments in efficient simulation algorithms on state-of-the-art parallel computers5 enable us to gain valuable information on interface structure and atomic level stresses in nanopixels of < 100 nm size. Here, we present results for a 27.5-million atom molecular-dynamics simulations of a 70 nm x 70 nm crystalline silicon nanopixel covered with amorphous silicon nitride and placed on a 140 nm x 140 nm crystalline silicon substrate. The stresses parallel to the silicon/silicon nitride interface exhibit a hexagonal superlattice of stress domains with a lattice constant of 12.8 (±1.8) nm. From our analysis of the 70 nm x 70 nm pixel and on comparing with a smaller 25 nm x 25 nm nanopixel, we conclude that for square pixels the superlattice constant is independent of the pixel size and is entirely determined by the mismatch between silicon and silicon nitride. Such stress inhomogeneity with values of up to ±2 GPa will have a significant impact on the performance of semiconductor devices with sub 100 nm features.

  18. Prospects of IMPATT devices based on wide bandgap semiconductors as potential terahertz sources

    NASA Astrophysics Data System (ADS)

    Acharyya, Aritra; Banerjee, J. P.

    2014-01-01

    In this paper the potentiality of impact avalanche transit time (IMPATT) devices based on different semiconductor materials such as GaAs, Si, InP, 4H-SiC and Wurtzite-GaN (Wz-GaN) has been explored for operation at terahertz frequencies. Drift-diffusion model is used to design double-drift region (DDR) IMPATTs based on different materials at millimeter-wave (mm-wave) and terahertz (THz) frequencies. The performance limitations of these devices are studied from the avalanche response times at different mm-wave and THz frequencies. Results show that the upper cut-off frequency limits of GaAs and Si DDR IMPATTs are 220 GHz and 0.5 THz, respectively, whereas the same for InP and 4H-SiC DDR IMPATTs is 1.0 THz. Wz-GaN DDR IMPATTs are found to be excellent candidate for generation of RF power at THz frequencies of the order of 5.0 THz with appreciable DC to RF conversion efficiency. Further, it is observed that up to 1.0 THz, 4H-SiC DDR IMPATTs excel Wz-GaN DDR IMPATTs as regards their RF power outputs. Thus, the wide bandgap semiconductors such as Wz-GaN and 4H-SiC are highly suitable materials for DDR IMPATTs at both mm-wave and THz frequency ranges.

  19. Active photonic devices based on colloidal semiconductor nanocrystals and organometallic halide perovskites

    NASA Astrophysics Data System (ADS)

    Suárez Alvarez, Isaac

    2016-10-01

    Semiconductor nanocrystals have arisen as outstanding materials to develop a new generation of optoelectronic devices. Their fabrication under simple and low cost colloidal chemistry methods results in cheap nanostructures able to provide a wide range of optical functionalities. Their attractive optical properties include a high absorption cross section below the band gap, a high quantum yield emission at room temperature, or the capability of tuning the band-gap with the size or the base material. In addition, their solution process nature enables an easy integration on several substrates and photonic structures. As a consequence, these nanoparticles have been extensively proposed to develop several photonic applications, such as detection of light, optical gain, generation of light or sensing. This manuscript reviews the great effort undertaken by the scientific community to construct active photonic devices based on these nanoparticles. The conditions to demonstrate stimulated emission are carefully studied by comparing the dependence of the optical properties of the nanocrystals with their size, shape and composition. In addition, this paper describes the design of different photonic architectures (waveguides and cavities) to enhance the generation of photoluminescence, and hence to reduce the threshold of optical gain. Finally, semiconductor nanocrystals are compared to organometallic halide perovskites, as this novel material has emerged as an alternative to colloidal nanoparticles.

  20. Charge collection efficiency degradation induced by MeV ions in semiconductor devices: Model and experiment

    DOE PAGES

    Vittone, Ettore; Pastuovic, Zeljko; Breese, Mark B. H.; ...

    2016-02-08

    This study investigates both theoretically and experimentally the charge collection efficiency (CCE) degradation in silicon diodes induced by energetic ions. Ion Beam Induced Charge (IBIC) measurements carried out on n- and p-type silicon diodes which were previously irradiated with MeV He ions show evidence that the CCE degradation does not only depend on the mass, energy and fluence of the damaging ion, but also depends on the ion probe species and on the polarization state of the device. A general one-dimensional model is derived, which accounts for the ion-induced defect distribution, the ionization profile of the probing ion and themore » charge induction mechanism. Using the ionizing and non-ionizing energy loss profiles resulting from simulations based on the binary collision approximation and on the electrostatic/transport parameters of the diode under study as input, the model is able to accurately reproduce the experimental CCE degradation curves without introducing any phenomenological additional term or formula. Although limited to low level of damage, the model is quite general, including the displacement damage approach as a special case and can be applied to any semiconductor device. It provides a method to measure the capture coefficients of the radiation induced recombination centres. They can be considered indexes, which can contribute to assessing the relative radiation hardness of semiconductor materials.« less

  1. Charge collection efficiency degradation induced by MeV ions in semiconductor devices: Model and experiment

    SciTech Connect

    Vittone, Ettore; Pastuovic, Zeljko; Breese, Mark B. H.; Lopez, Javier Garicia; Jaksic, Milko; Raisanen, Jyrki; Siegele, Rainer; Simon, Aliz; Vizkelethy, Gyorgy

    2016-02-08

    This study investigates both theoretically and experimentally the charge collection efficiency (CCE) degradation in silicon diodes induced by energetic ions. Ion Beam Induced Charge (IBIC) measurements carried out on n- and p-type silicon diodes which were previously irradiated with MeV He ions show evidence that the CCE degradation does not only depend on the mass, energy and fluence of the damaging ion, but also depends on the ion probe species and on the polarization state of the device. A general one-dimensional model is derived, which accounts for the ion-induced defect distribution, the ionization profile of the probing ion and the charge induction mechanism. Using the ionizing and non-ionizing energy loss profiles resulting from simulations based on the binary collision approximation and on the electrostatic/transport parameters of the diode under study as input, the model is able to accurately reproduce the experimental CCE degradation curves without introducing any phenomenological additional term or formula. Although limited to low level of damage, the model is quite general, including the displacement damage approach as a special case and can be applied to any semiconductor device. It provides a method to measure the capture coefficients of the radiation induced recombination centres. They can be considered indexes, which can contribute to assessing the relative radiation hardness of semiconductor materials.

  2. Device fabrication, characterization, and thermal neutron detection response of LiZnP and LiZnAs semiconductor devices

    NASA Astrophysics Data System (ADS)

    Montag, Benjamin W.; Ugorowski, Philip B.; Nelson, Kyle A.; Edwards, Nathaniel S.; McGregor, Douglas S.

    2016-11-01

    Nowotny-Juza compounds continue to be explored as candidates for solid-state neutron detectors. Such a device would have greater efficiency, in a compact form, than present day gas-filled 3He and 10BF3 detectors. The 6Li(n,t)4He reaction yields a total Q-value of 4.78 MeV, larger than 10B, an energy easily identified above background radiations. Hence, devices fabricated from semiconductor compounds having either natural Li (nominally 7.5% 6Li) or enriched 6Li (usually 95% 6Li) as constituent atoms may provide a material for compact high efficiency neutron detectors. Starting material was synthesized by preparing equimolar portions of Li, Zn, and As sealed under vacuum (10-6 Torr) in quartz ampoules lined with boron nitride and subsequently reacted in a compounding furnace [1]. The raw synthesized material indicated the presence high impurity levels (material and electrical property characterizations). A static vacuum sublimation in quartz was performed to help purify the synthesized material [2,3]. Bulk crystalline samples were grown from the purified material [4,5]. Samples were cut using a diamond wire saw, and processed into devices. Bulk resistivity was determined from I-V curve measurements, ranging from 106-1011 Ω cm. Devices were characterized for sensitivity to 5.48 MeV alpha particles, 337 nm laser light, and neutron sensitivity in a thermal neutron diffracted beam at the Kansas State University TRIGA Mark II nuclear reactor. Thermal neutron reaction product charge induction was measured with a LiZnP device, and the reaction product spectral response was observed.

  3. Advanced Interconnect and Device-Field Modeling

    DTIC Science & Technology

    2007-01-15

    Essaaidi NATO Advanced Research Workshop : Bianisotropics 2002, 99th Conference on Electromagnetics of Complex Media 8-11May, 2002, Marrakech , Morocco...Bianisotropics 2002, 99th Conference on Electromagnetics of Complex Media 8-11May, 2002, Marrakech , Morocco. Study of Substrates Bi-anisotropy Effects on...Conference on Electromagnetics of Complex Media 8-11May, 2002, Marrakech , Morocco. Dielectric Substrates Anisotropic Effects on The Characteristics of

  4. Advances and Promises of Layered Halide Hybrid Perovskite Semiconductors.

    PubMed

    Pedesseau, Laurent; Sapori, Daniel; Traore, Boubacar; Robles, Roberto; Fang, Hong-Hua; Loi, Maria Antonietta; Tsai, Hsinhan; Nie, Wanyi; Blancon, Jean-Christophe; Neukirch, Amanda; Tretiak, Sergei; Mohite, Aditya D; Katan, Claudine; Even, Jacky; Kepenekian, Mikaël

    2016-11-22

    Layered halide hybrid organic-inorganic perovskites (HOP) have been the subject of intense investigation before the rise of three-dimensional (3D) HOP and their impressive performance in solar cells. Recently, layered HOP have also been proposed as attractive alternatives for photostable solar cells and revisited for light-emitting devices. In this review, we combine classical solid-state physics concepts with simulation tools based on density functional theory to overview the main features of the optoelectronic properties of layered HOP. A detailed comparison between layered and 3D HOP is performed to highlight differences and similarities. In the same way as the cubic phase was established for 3D HOP, here we introduce the tetragonal phase with D4h symmetry as the reference phase for 2D monolayered HOP. It allows for detailed analysis of the spin-orbit coupling effects and structural transitions with corresponding electronic band folding. We further investigate the effects of octahedral tilting on the band gap, loss of inversion symmetry and possible Rashba effect, quantum confinement, and dielectric confinement related to the organic barrier, up to excitonic properties. Altogether, this paper aims to provide an interpretive and predictive framework for 3D and 2D layered HOP optoelectronic properties.

  5. Advanced colour processing for mobile devices

    NASA Astrophysics Data System (ADS)

    Gillich, Eugen; Dörksen, Helene; Lohweg, Volker

    2015-02-01

    Mobile devices such as smartphones are going to play an important role in professionally image processing tasks. However, mobile systems were not designed for such applications, especially in terms of image processing requirements like stability and robustness. One major drawback is the automatic white balance, which comes with the devices. It is necessary for many applications, but of no use when applied to shiny surfaces. Such an issue appears when image acquisition takes place in differently coloured illuminations caused by different environments. This results in inhomogeneous appearances of the same subject. In our paper we show a new approach for handling the complex task of generating a low-noise and sharp image without spatial filtering. Our method is based on the fact that we analyze the spectral and saturation distribution of the channels. Furthermore, the RGB space is transformed into a more convenient space, a particular HSI space. We generate the greyscale image by a control procedure that takes into account the colour channels. This leads in an adaptive colour mixing model with reduced noise. The results of the optimized images are used to show how, e. g., image classification benefits from our colour adaptation approach.

  6. SEMICONDUCTOR DEVICES: Off-state avalanche breakdown induced degradation in 20 V NLDMOS devices

    NASA Astrophysics Data System (ADS)

    Shifeng, Zhang; Koubao, Ding; Yan, Han; Chenggong, Han; Jiaxian, Hu; Bin, Zhang

    2010-09-01

    Degradation behaviors of 20 V NLDMOS operated under off-state avalanche breakdown conditions are presented. A constant current pulse stressing test is applied to the device. Two different degradation mechanisms are identified by analysis of electrical data, technology computer-aided design (TCAD) simulations and charge pumping measurements. The first mechanism is attributed to positive oxide-trapped charges in the N-type drift region, and the second one is due to decreased electron mobility upon interface state formation in the drift region. Both of the mechanisms are enhanced with increasing avalanche breakdown current.

  7. Microscopy imaging device with advanced imaging properties

    DOEpatents

    Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei

    2016-10-25

    Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.

  8. Microscopy imaging device with advanced imaging properties

    DOEpatents

    Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei

    2016-11-22

    Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.

  9. Microscopy imaging device with advanced imaging properties

    DOEpatents

    Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei

    2015-11-24

    Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.

  10. III-antimonide/nitride based semiconductors for optoelectronic materials and device studies : LDRD 26518 final report.

    SciTech Connect

    Kurtz, Steven Ross; Hargett, Terry W.; Serkland, Darwin Keith; Waldrip, Karen Elizabeth; Modine, Normand Arthur; Klem, John Frederick; Jones, Eric Daniel; Cich, Michael Joseph; Allerman, Andrew Alan; Peake, Gregory Merwin

    2003-12-01

    The goal of this LDRD was to investigate III-antimonide/nitride based materials for unique semiconductor properties and applications. Previous to this study, lack of basic information concerning these alloys restricted their use in semiconductor devices. Long wavelength emission on GaAs substrates is of critical importance to telecommunication applications for cost reduction and integration into microsystems. Currently InGaAsN, on a GaAs substrate, is being commercially pursued for the important 1.3 micrometer dispersion minima of silica-glass optical fiber; due, in large part, to previous research at Sandia National Laboratories. However, InGaAsN has not shown great promise for 1.55 micrometer emission which is the low-loss window of single mode optical fiber used in transatlantic fiber. Other important applications for the antimonide/nitride based materials include the base junction of an HBT to reduce the operating voltage which is important for wireless communication links, and for improving the efficiency of a multijunction solar cell. We have undertaken the first comprehensive theoretical, experimental and device study of this material with promising results. Theoretical modeling has identified GaAsSbN to be a similar or potentially superior candidate to InGaAsN for long wavelength emission on GaAs. We have confirmed these predictions by producing emission out to 1.66 micrometers and have achieved edge emitting and VCSEL electroluminescence at 1.3 micrometers. We have also done the first study of the transport properties of this material including mobility, electron/hole mass, and exciton reduced mass. This study has increased the understanding of the III-antimonide/nitride materials enough to warrant consideration for all of the target device applications.

  11. Pulsed Laser System to Simulate Effects of Cosmic Rays in Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Aveline, David C.; Adell, Philippe C.; Allen, Gregory R.; Guertin, Steven M.; McClure, Steven S.

    2011-01-01

    Spaceflight system electronic devices must survive a wide range of radiation environments with various particle types including energetic protons, electrons, gamma rays, x-rays, and heavy ions. High-energy charged particles such as heavy ions can pass straight through a semiconductor material and interact with a charge-sensitive region, generating a significant amount of charge (electron-hole pairs) along their tracks. These excess charges can damage the device, and the response can range from temporary perturbations to permanent changes in the state or performance. These phenomena are called single event effects (SEE). Before application in flight systems, electronic parts need to be qualified and tested for performance and radiation sensitivity. Typically, their susceptibility to SEE is tested by exposure to an ion beam from a particle accelerator. At such facilities, the device under test (DUT) is irradiated with large beams so there is no fine resolution to investigate particular regions of sensitivity on the parts. While it is the most reliable approach for radiation qualification, these evaluations are time consuming and costly. There is always a need for new cost-efficient strategies to complement accelerator testing: pulsed lasers provide such a solution. Pulsed laser light can be utilized to simulate heavy ion effects with the advantage of being able to localize the sensitive region of an integrated circuit. Generally, a focused laser beam of approximately picosecond pulse duration is used to generate carrier density in the semiconductor device. During irradiation, the laser pulse is absorbed by the electronic medium with a wavelength selected accordingly by the user, and the laser energy can ionize and simulate SEE as would occur in space. With a tightly focused near infrared (NIR) laser beam, the beam waist of about a micrometer can be achieved, and additional scanning techniques are able to yield submicron resolution. This feature allows mapping of all

  12. Quantum filter of spin polarized states: Metal–dielectric–ferromagnetic/semiconductor device

    SciTech Connect

    Makarov, Vladimir I.; Khmelinskii, Igor

    2014-02-01

    Highlights: • Development of a new spintronics device. • Development of quantum spin polarized filters. • Development of theory of quantum spin polarized filter. - Abstract: Recently we proposed a model for the Quantum Spin-Polarized State Filter (QSPSF). The magnetic moments are transported selectively in this model, detached from the electric charge carriers. Thus, transfer of a spin-polarized state between two conductors was predicted in a system of two levels coupled by exchange interaction. The strength of the exchange interaction between the two conductive layers depends on the thickness of the dielectric layer separating them. External magnetic fields modulate spin-polarized state transfer, due to Zeeman level shift. Therefore, a linearly growing magnetic field generates a series of current peaks in a nearby coil. Thus, our spin-state filter should contain as least three nanolayers: (1) conductive or ferromagnetic; (2) dielectric; and (3) conductive or semiconductive. The spectrum of spin-polarized states generated by the filter device consists of a series of resonance peaks. In a simple case the number of lines equals S, the total spin angular momentum of discrete states in one of the coupled nanolayers. Presently we report spin-polarized state transport in metal–dielectric–ferromagnetic (MDF) and metal–dielectric–semiconductor (MDS) three-layer sandwich devices. The exchange-resonance spectra in such devices are quite specific, differing also from spectra observed earlier in other three-layer devices. The theoretical model is used to interpret the available experimental results. A detailed ab initio analysis of the magnetic-field dependence of the output magnetic moment averaged over the surface of the device was carried out. The model predicts the resonance structure of the signal, although at its present accuracy it cannot predict the positions of the spectral peaks.

  13. Raman spectroscopy as an advanced structural nanoprobe for conjugated molecular semiconductors

    NASA Astrophysics Data System (ADS)

    Wood, Sebastian; Razzell Hollis, Joseph; Kim, Ji-Seon

    2017-02-01

    Raman spectroscopy has emerged as a powerful and important characterisation tool for probing molecular semiconducting materials. The useful optoelectronic properties of these materials arise from the delocalised π-electron density in the conjugated core of the molecule, which also results in large Raman scattering cross-sections and a strong coupling between its electronic states and vibrational modes. For this reason, Raman spectroscopy offers a unique insight into the properties of molecular semiconductors, including: chemical structure, molecular conformation, molecular orientation, and fundamental photo- and electro-chemical processes—all of which are critically important to the performance of a wide range of optical and electronic organic semiconductor devices. Experimentally, Raman spectroscopy is non-intrusive, non-destructive, and requires no special sample preparation, and so is suitable for a wide range of in situ measurements, which are particularly relevant to issues of thermal and photochemical stability. Here we review the development of the family of Raman spectroscopic techniques, which have been applied to the study of conjugated molecular semiconductors. We consider the suitability of each technique for particular circumstances, and the unique insights it can offer, with a particular focus on the significance of these measurements for the continuing development of stable, high performance organic electronic devices.

  14. Dense Plasma Focus-Based Nanofabrication of III–V Semiconductors: Unique Features and Recent Advances

    PubMed Central

    Mangla, Onkar; Roy, Savita; Ostrikov, Kostya (Ken)

    2015-01-01

    The hot and dense plasma formed in modified dense plasma focus (DPF) device has been used worldwide for the nanofabrication of several materials. In this paper, we summarize the fabrication of III–V semiconductor nanostructures using the high fluence material ions produced by hot, dense and extremely non-equilibrium plasma generated in a modified DPF device. In addition, we present the recent results on the fabrication of porous nano-gallium arsenide (GaAs). The details of morphological, structural and optical properties of the fabricated nano-GaAs are provided. The effect of rapid thermal annealing on the above properties of porous nano-GaAs is studied. The study reveals that it is possible to tailor the size of pores with annealing temperature. The optical properties of these porous nano-GaAs also confirm the possibility to tailor the pore sizes upon annealing. Possible applications of the fabricated and subsequently annealed porous nano-GaAs in transmission-type photo-cathodes and visible optoelectronic devices are discussed. These results suggest that the modified DPF is an effective tool for nanofabrication of continuous and porous III–V semiconductor nanomaterials. Further opportunities for using the modified DPF device for the fabrication of novel nanostructures are discussed as well.

  15. Future opportunities for advancing glucose test device electronics.

    PubMed

    Young, Brian R; Young, Teresa L; Joyce, Margaret K; Kennedy, Spencer I; Atashbar, Massood Z

    2011-09-01

    Advancements in the field of printed electronics can be applied to the field of diabetes testing. A brief history and some new developments in printed electronics components applicable to personal test devices, including circuitry, batteries, transmission devices, displays, and sensors, are presented. Low-cost, thin, and lightweight materials containing printed circuits with energy storage or harvest capability and reactive/display centers, made using new printing/imaging technologies, are ideal for incorporation into personal-use medical devices such as glucose test meters. Semicontinuous rotogravure printing, which utilizes flexible substrates and polymeric, metallic, and/or nano "ink" composite materials to effect rapidly produced, lower-cost printed electronics, is showing promise. Continuing research advancing substrate, "ink," and continuous processing development presents the opportunity for research collaboration with medical device designers.

  16. Future Opportunities for Advancing Glucose Test Device Electronics

    PubMed Central

    Young, Brian R; Young, Teresa L; Joyce, Margaret K; Kennedy, Spencer I; Atashbar, Massood Z

    2011-01-01

    Advancements in the field of printed electronics can be applied to the field of diabetes testing. A brief history and some new developments in printed electronics components applicable to personal test devices, including circuitry, batteries, transmission devices, displays, and sensors, are presented. Low-cost, thin, and lightweight materials containing printed circuits with energy storage or harvest capability and reactive/display centers, made using new printing/imaging technologies, are ideal for incorporation into personal-use medical devices such as glucose test meters. Semicontinuous rotogravure printing, which utilizes flexible substrates and polymeric, metallic, and/or nano “ink” composite materials to effect rapidly produced, lower-cost printed electronics, is showing promise. Continuing research advancing substrate, “ink,” and continuous processing development presents the opportunity for research collaboration with medical device designers. PMID:22027300

  17. Hydrogen-Bonded Organic Semiconductor Micro- And Nanocrystals: From Colloidal Syntheses to (Opto-)Electronic Devices

    PubMed Central

    2014-01-01

    Organic pigments such as indigos, quinacridones, and phthalocyanines are widely produced industrially as colorants for everyday products as various as cosmetics and printing inks. Herein we introduce a general procedure to transform commercially available insoluble microcrystalline pigment powders into colloidal solutions of variously sized and shaped semiconductor micro- and nanocrystals. The synthesis is based on the transformation of the pigments into soluble dyes by introducing transient protecting groups on the secondary amine moieties, followed by controlled deprotection in solution. Three deprotection methods are demonstrated: thermal cleavage, acid-catalyzed deprotection, and amine-induced deprotection. During these processes, ligands are introduced to afford colloidal stability and to provide dedicated surface functionality and for size and shape control. The resulting micro- and nanocrystals exhibit a wide range of optical absorption and photoluminescence over spectral regions from the visible to the near-infrared. Due to excellent colloidal solubility offered by the ligands, the achieved organic nanocrystals are suitable for solution processing of (opto)electronic devices. As examples, phthalocyanine nanowire transistors as well as quinacridone nanocrystal photodetectors, with photoresponsivity values by far outperforming those of vacuum deposited reference samples, are demonstrated. The high responsivity is enabled by photoinduced charge transfer between the nanocrystals and the directly attached electron-accepting vitamin B2 ligands. The semiconducting nanocrystals described here offer a cheap, nontoxic, and environmentally friendly alternative to inorganic nanocrystals as well as a new paradigm for obtaining organic semiconductor materials from commercial colorants. PMID:25253644

  18. Total-dose radiation effects data for semiconductor devices. 1985 Supplement. Volume 2, part B

    NASA Technical Reports Server (NTRS)

    Martin, K. E.; Gauthier, M. K.; Coss, J. R.; Dantas, A. R. V.; Price, W. E.

    1986-01-01

    Steady-state, total-dose radiation test data are provided in graphic format, for use by electronic designers and other personnel using semiconductor devices in a radiation environment. The data were generated by JPL for various NASA space programs. The document is in two volumes: Volume 1 provides data on diodes, bipolar transistors, field effect transistors, and miscellaneous semiconductor types, and Volume 2 (Parts A and B) provides data on integrated circuits. The data are presented in graphic, tabular, and/or narrative format, depending on the complexity of the integrated circuit. Most tests were done steady-state 2.5-MeV electron beam. However, some radiation exposures were made with a Cobalt-60 gamma ray source, the results of which should be regarded as only an approximate measure of the radiation damage that would be incurred by an equivalent electron dose. All data were generated in support of NASA space programs by the JPL Radiation Effects and Testing Group (514).

  19. Ultra-compact silicon photonic devices reconfigured by an optically induced semiconductor-to-metal transition.

    PubMed

    Ryckman, Judson D; Hallman, Kent A; Marvel, Robert E; Haglund, Richard F; Weiss, Sharon M

    2013-05-06

    Vanadium dioxide (VO(2)) is a promising reconfigurable optical material and has long been a focus of condensed matter research owing to its distinctive semiconductor-to-metal phase transition (SMT), a feature that has stimulated recent development of thermally reconfigurable photonic, plasmonic, and metamaterial structures. Here, we integrate VO(2) onto silicon photonic devices and demonstrate all-optical switching and reconfiguration of ultra-compact broadband Si-VO(2) absorption modulators (L < 1 μm) and ring-resonators (R ~ λ(0)). Optically inducing the SMT in a small, ~0.275 μm(2), active area of polycrystalline VO(2) enables Si-VO(2) structures to achieve record values of absorption modulation, ~4 dB μm(-1), and intracavity phase modulation, ~π/5 rad μm(-1). This in turn yields large, tunable changes to resonant wavelength, |Δλ(SMT)| ~ 3 nm, approximately 60 times larger than Si-only control devices, and enables reconfigurable filtering and optical modulation in excess of 7 dB from modest Q-factor (~10(3)), high-bandwidth ring resonators (>100 GHz). All-optical integrated Si-VO(2) devices thus constitute platforms for reconfigurable photonics, bringing new opportunities to realize dynamic on-chip networks and ultrafast optical shutters and modulators.

  20. Heterodyne mixing of millimetre electromagnetic waves and sub-THz sound in a semiconductor device.

    PubMed

    Heywood, Sarah L; Glavin, Boris A; Beardsley, Ryan P; Akimov, Andrey V; Carr, Michael W; Norman, James; Norton, Philip C; Prime, Brian; Priestley, Nigel; Kent, Anthony J

    2016-08-01

    We demonstrate heterodyne mixing of a 94 GHz millimetre wave photonic signal, supplied by a Gunn diode oscillator, with coherent acoustic waves of frequency ~100 GHz, generated by pulsed laser excitation of a semiconductor surface. The mixing takes place in a millimetre wave Schottky diode, and the intermediate frequency electrical signal is in the 1-12 GHz range. The mixing process preserves all the spectral content in the acoustic signal that falls within the intermediate frequency bandwidth. Therefore this technique may find application in high-frequency acoustic spectroscopy measurements, exploiting the nanometre wavelength of sub-THz sound. The result also points the way to exploiting acoustoelectric effects in photonic devices working at sub-THz and THz frequencies, which could provide functionalities at these frequencies, e.g. acoustic wave filtering, that are currently in widespread use at lower (GHz) frequencies.

  1. Total-dose radiation effects data for semiconductor devices. 1985 supplement. Volume 2, part A

    NASA Technical Reports Server (NTRS)

    Martin, K. E.; Gauthier, M. K.; Coss, J. R.; Dantas, A. R. V.; Price, W. E.

    1986-01-01

    Steady-state, total-dose radiation test data, are provided in graphic format for use by electronic designers and other personnel using semiconductor devices in a radiation environment. The data were generated by JPL for various NASA space programs. This volume provides data on integrated circuits. The data are presented in graphic, tabular, and/or narrative format, depending on the complexity of the integrated circuit. Most tests were done using the JPL or Boeing electron accelerator (Dynamitron) which provides a steady-state 2.5 MeV electron beam. However, some radiation exposures were made with a Cobalt-60 gamma ray source, the results of which should be regarded as only an approximate measure of the radiation damage that would be incurred by an equivalent electron dose.

  2. Low Temperature Processed Complementary Metal Oxide Semiconductor (CMOS) Device by Oxidation Effect from Capping Layer

    PubMed Central

    Wang, Zhenwei; Al-Jawhari, Hala A.; Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Wei, Nini; Hedhili, M. N.; Alshareef, H. N.

    2015-01-01

    In this report, both p- and n-type tin oxide thin-film transistors (TFTs) were simultaneously achieved using single-step deposition of the tin oxide channel layer. The tuning of charge carrier polarity in the tin oxide channel is achieved by selectively depositing a copper oxide capping layer on top of tin oxide, which serves as an oxygen source, providing additional oxygen to form an n-type tin dioxide phase. The oxidation process can be realized by annealing at temperature as low as 190°C in air, which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin dioxide phase, which facilitates the application of this transparent oxide semiconductor in emerging electronic devices field. PMID:25892711

  3. Semiconductor devices as track detectors in high energy colliding beam experiments

    SciTech Connect

    Ludlam, T

    1980-01-01

    In considering the design of experiments for high energy colliding beam facilities one quickly sees the need for better detectors. The full exploitation of machines like ISABELLE will call for detector capabilities beyond what can be expected from refinements of the conventional approaches to particle detection in high energy physics experiments. Over the past year or so there has been a general realization that semiconductor device technology offers the possibility of position sensing detectors having resolution elements with dimensions of the order of 10 microns or smaller. Such a detector could offer enormous advantages in the design of experiments, and the purpose of this paper is to discuss some of the possibilities and some of the problems.

  4. Heterodyne mixing of millimetre electromagnetic waves and sub-THz sound in a semiconductor device

    PubMed Central

    Heywood, Sarah L.; Glavin, Boris A.; Beardsley, Ryan P.; Akimov, Andrey V.; Carr, Michael W.; Norman, James; Norton, Philip C.; Prime, Brian; Priestley, Nigel; Kent, Anthony J.

    2016-01-01

    We demonstrate heterodyne mixing of a 94 GHz millimetre wave photonic signal, supplied by a Gunn diode oscillator, with coherent acoustic waves of frequency ~100 GHz, generated by pulsed laser excitation of a semiconductor surface. The mixing takes place in a millimetre wave Schottky diode, and the intermediate frequency electrical signal is in the 1–12 GHz range. The mixing process preserves all the spectral content in the acoustic signal that falls within the intermediate frequency bandwidth. Therefore this technique may find application in high-frequency acoustic spectroscopy measurements, exploiting the nanometre wavelength of sub-THz sound. The result also points the way to exploiting acoustoelectric effects in photonic devices working at sub-THz and THz frequencies, which could provide functionalities at these frequencies, e.g. acoustic wave filtering, that are currently in widespread use at lower (GHz) frequencies. PMID:27477841

  5. Heterodyne mixing of millimetre electromagnetic waves and sub-THz sound in a semiconductor device

    NASA Astrophysics Data System (ADS)

    Heywood, Sarah L.; Glavin, Boris A.; Beardsley, Ryan P.; Akimov, Andrey V.; Carr, Michael W.; Norman, James; Norton, Philip C.; Prime, Brian; Priestley, Nigel; Kent, Anthony J.

    2016-08-01

    We demonstrate heterodyne mixing of a 94 GHz millimetre wave photonic signal, supplied by a Gunn diode oscillator, with coherent acoustic waves of frequency ~100 GHz, generated by pulsed laser excitation of a semiconductor surface. The mixing takes place in a millimetre wave Schottky diode, and the intermediate frequency electrical signal is in the 1–12 GHz range. The mixing process preserves all the spectral content in the acoustic signal that falls within the intermediate frequency bandwidth. Therefore this technique may find application in high-frequency acoustic spectroscopy measurements, exploiting the nanometre wavelength of sub-THz sound. The result also points the way to exploiting acoustoelectric effects in photonic devices working at sub-THz and THz frequencies, which could provide functionalities at these frequencies, e.g. acoustic wave filtering, that are currently in widespread use at lower (GHz) frequencies.

  6. Fabrication and characterization of compound semiconductor devices and their electrical and thermal simulation

    NASA Astrophysics Data System (ADS)

    Mehandru, Rishabh

    Scandium Oxide (Sc2O3) and Magnesium Oxide (MgO) were demonstrated as promising gate dielectrics for GaN-based Metal Oxide Semiconductor High Electron Mobility Transistors (MOSHEMTs) and Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) along with being very good passivation layers for GaN/AlGaN HEMTs. I-V and C-V, G-V measurements were used to characterize the interface between oxide and GaN. Interface state density and breakdown field were extracted from these measurements (experimental data). These results of MOS diodes led to the first demonstration of GaN/AlGaN MOSHEMT using Sc2O3 as gate dielectric. The MOSHEMTs showed ˜40% more saturation drain-source current than that of HEMTs and gate of MOSHEMTs can be biased to +6 V as compared to max +2 V for HEMT. Use of Sc2O3 and MgO as surface passivation layer enhanced RF and microwave performance of these devices. Temperature simulations on bulk GaN power diodes were performed using Finite Element analysis to compare the junction temperature of power diodes packaged with conventional wire bonding and flip-chip bonding technology. Superior heat dissipation was obtained for the flip chip bonded device. Finite difference thermal analysis of 850 nm VCSELs was carried out by writing a code in MATLAB. Thermal characteristics of 1550 nm VCSEL were also studied by using finite element analysis software called FlexPDE. W-based Schottky contacts on GaN are attractive for applications requiring long-term thermal stability, such as combustion gas monitoring. The effect of deposition conditions on the electrical properties of W/Pt/Au Schottky contacts on n-GaN was studied.

  7. Empirical study of the metal-nitride-oxide-semiconductor device characteristics deduced from a microscopic model of memory traps

    SciTech Connect

    Ngai, K.L.; Hsia, Y.

    1982-07-15

    A graded-nitride gate dielectric metal-nitride-oxide-semiconductor (MNOS) memory transistor exhibiting superior device characteristics is presented and analyzed based on a qualitative microscopic model of the memory traps. The model is further reviewed to interpret some generic properties of the MNOS memory transistors including memory window, erase-write speed, and the retention-endurance characteristic features.

  8. Empirical study of the metal-nitride-oxide-semiconductor device characteristics deduced from a microscopic model of memory traps

    NASA Astrophysics Data System (ADS)

    Ngai, Kia L.; Hsia, Yukun

    1982-07-01

    A graded-nitride gate dielectric metal-nitride-oxide-semiconductor (MNOS) memory transistor exhibiting superior device characteristics is presented and analyzed based on a qualitative microscopic model of the memory traps. The model is further reviewed to interpret some generic properties of the MNOS memory transistors including memory window, erase-write speed, and the retention-endurance characteristic features.

  9. Development of a Handmade Conductivity Measurement Device for a Thin-Film Semiconductor and Its Application to Polypyrrole

    ERIC Educational Resources Information Center

    Seng, Set; Shinpei, Tomita; Yoshihiko, Inada; Masakazu, Kita

    2014-01-01

    The precise measurement of conductivity of a semiconductor film such as polypyrrole (Ppy) should be carried out by the four-point probe method; however, this is difficult for classroom application. This article describes the development of a new, convenient, handmade conductivity device from inexpensive materials that can measure the conductivity…

  10. Method for sputtering a PIN amorphous silicon semi-conductor device having partially crystallized P and N-layers

    DOEpatents

    Moustakas, Theodore D.; Maruska, H. Paul

    1985-07-09

    A high efficiency amorphous silicon PIN semiconductor device having partially crystallized (microcrystalline) P and N layers is constructed by the sequential sputtering of N, I and P layers and at least one semi-transparent ohmic electrode. The method of construction produces a PIN device, exhibiting enhanced electrical and optical properties, improved physical integrity, and facilitates the preparation in a singular vacuum system and vacuum pump down procedure.

  11. NCD Diamond Semiconductor System for Advanced Power Electronics Systems Integration : CRADA report

    SciTech Connect

    Sumant, Anirudha

    2016-07-22

    The integration of 2D materials such as molybdenum disulphide (MoS2) with diamond (3D) was achieved by forming an heterojunction between these two materials and its electrical performance was studied experimentally. The device charactertics did show good rectifying nature when p-type single crystal diamond was integrated with n-type MoS2. These results are very encouraging indicating possible applications in semiconductor electronics, however further studies are required for a detailed understanding of the transport phenomena at the MoS2/diamond interface.

  12. Multifunctional semiconductor micro-Hall devices for magnetic, electric, and photo-detection

    SciTech Connect

    Gilbertson, A. M.; Cohen, L. F.; Sadeghi, Hatef; Lambert, C. J.; Panchal, V.; Kazakova, O.; Solin, S. A.

    2015-12-07

    We report the real-space voltage response of InSb/AlInSb micro-Hall devices to local photo-excitation, electric, and magnetic fields at room temperature using scanning probe microscopy. We show that the ultrafast generation of localised photocarriers results in conductance perturbations analogous to those produced by local electric fields. Experimental results are in good agreement with tight-binding transport calculations in the diffusive regime. The magnetic, photo, and charge sensitivity of a 2 μm wide probe are evaluated at a 10 μA bias current in the Johnson noise limit (valid at measurement frequencies > 10 kHz) to be, respectively, 500 nT/√Hz; 20 pW/√Hz (λ = 635 nm) comparable to commercial photoconductive detectors; and 0.05 e/√Hz comparable to that of single electron transistors. These results demonstrate the remarkably versatile sensing attributes of simple semiconductor micro-Hall devices that can be applied to a host of imaging and sensing applications.

  13. Analysis of Interface Charge Densities for High-k Dielectric Materials based Metal Oxide Semiconductor Devices

    NASA Astrophysics Data System (ADS)

    Maity, N. P.; Thakur, R. R.; Maity, Reshmi; Thapa, R. K.; Baishya, S.

    2016-10-01

    In this paper, the interface charge densities (Dit) are studied and analyzed for ultra thin dielectric metal oxide semiconductor (MOS) devices using different high-k dielectric materials such as Al2O3, ZrO2 and HfO2. The Dit have been calculated by a new approach using conductance method and it indicates that by reducing the thickness of the oxide, the Dit increases and similar increase is also found by replacing SiO2 with high-k. For the same oxide thickness, SiO2 has the lowest Dit and found to be the order of 1011cm-2eV-1. Linear increase in Dit has been observed as the dielectric constant of the oxide increases. The Dit is found to be in good agreement with published fabrication results at p-type doping level of 1×1017cm-3. Numerical calculations and solutions are performed by MATLAB and device simulation is done by ATLAS.

  14. Multifunctional semiconductor micro-Hall devices for magnetic, electric, and photo-detection

    NASA Astrophysics Data System (ADS)

    Gilbertson, A. M.; Sadeghi, Hatef; Panchal, V.; Kazakova, O.; Lambert, C. J.; Solin, S. A.; Cohen, L. F.

    2015-12-01

    We report the real-space voltage response of InSb/AlInSb micro-Hall devices to local photo-excitation, electric, and magnetic fields at room temperature using scanning probe microscopy. We show that the ultrafast generation of localised photocarriers results in conductance perturbations analogous to those produced by local electric fields. Experimental results are in good agreement with tight-binding transport calculations in the diffusive regime. The magnetic, photo, and charge sensitivity of a 2 μm wide probe are evaluated at a 10 μA bias current in the Johnson noise limit (valid at measurement frequencies > 10 kHz) to be, respectively, 500 nT/√Hz; 20 pW/√Hz (λ = 635 nm) comparable to commercial photoconductive detectors; and 0.05 e/√Hz comparable to that of single electron transistors. These results demonstrate the remarkably versatile sensing attributes of simple semiconductor micro-Hall devices that can be applied to a host of imaging and sensing applications.

  15. Growth and Characterization of III-V Semiconductors for Device Applications

    NASA Technical Reports Server (NTRS)

    Williams, Michael D.

    2000-01-01

    The research goal was to achieve a fundamental understanding of the physical processes occurring at the surfaces and interfaces of epitaxially grown InGaAs/GaAs (100) heterostructures. This will facilitate the development of quantum well devices for infrared optical applications and provide quantitative descriptions of key phenomena which impact their performance. Devices impacted include high-speed laser diodes and modulators for fiber optic communications at 1.55 micron wavelengths and intersub-band lasers for longer infrared wavelengths. The phenomenon of interest studied was the migration of indium in InGaAs structures. This work centered on the molecular beam epitaxy reactor and characterization apparatus donated to CAU by AT&T Bell Laboratories. The material characterization tool employed was secondary ion mass spectrometry. The training of graduate and undergraduate students was an integral part of this program. The graduate students received a thorough exposure to state-of-the-art techniques and equipment for semiconductor materials analysis as part of the Master''s degree requirement in physics. The undergraduates were exposed to a minority scientist who has an excellent track record in this area. They also had the opportunity to explore surface physics as a career option. The results of the scientific work was published in a refereed journal and several talks were presented professional conferences and academic seminars.

  16. Intersubband transitions in III-V semiconductors for novel infrared optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Hossain, Mohammed Imrul

    Intersubband transitions (ISBTs) in the conduction band (CB) of semiconductor multiple quantum wells (QW) have led to devices, like quantum-well infrared photodetectors and quantum cascade lasers (QCL). Due to the complexities related to the valence band (VB), hole ISBTs have not been explored as intensively as their electronic counterparts. Absorption and photoluminescence due to ISBT in the VB have been reported for p-type Si-SiGe QWs but this material system suffers from significant challenges associated with the built-in strain of these lattice mismatched materials. The GaAs/AlGaAs material system is virtually strain-free and quite mature. We are investigating the properties of bound-to-bound inter-valence subband transitions in GaAs QWs with high Al composition barriers for mid-infrared emitters. Hole ISBTs are interesting because the polarization of the light emitted in heavy-to-light hole transitions is not restricted to the perpendicular of the quantum wells (unlike electron ISBTs in the CB due to selection rules), therefore surface emitting QCLs and ultimately vertical-cavity surface emitting devices are possible using these transitions. Moreover the valence-band offset for pure GaAs and AlAs is comparable with the conduction-band offset in the traditional InGaAs/InAlAs lattice matched to InP system. Very recently we have observed strong heavy to light hole absorption and heavy to heavy hole electroluminescence from ridge waveguide structures in the mid infra-red range. We are also investigating dual wavelength mid infra-red QCLs in the InGaAs/InAlAs system lattice matched to InP. This device may be useful in applications like differential absorption lidar where light has to be evaluated and compared at two different frequencies for environmental sensing application. Most approaches to multi-wavelength QCL operation involve the use of heterogeneous cascades. Our design involves a single type of active region, emitting at two widely different wavelengths in

  17. Variations in semiconductor device response in a medium-energy x-ray dose-enhancing environment

    SciTech Connect

    Beutler, D.E.; Fleetwood, D.M.; Beezhold, W.; Knott, D.; Lorence, L.J. Jr.; Draper, B.L.

    1987-12-01

    The authors performed a series of experiments to investigate the response of semiconductor devices to medium-energy x-ray irradiation under conditions in which dose-enhancement effects are very important. They find that the response of MOS capacitors to the same ''dose-enhanced'' radiation depends not only on the increased dose, but also on the incident radiation spectra, device temperature and processing, and/or oxide thickness and electric field. In many cases, these dependencies cannot be explained simply in terms of existing knowledge of basic mechanisms of radiation effects on MOS devices (for example, electron-hole recombination and hole transport and trapping), or by present Monte Carlo electron/photon transport codes such as the Integrated Tiger Series (ITS). In addition, the response of semiconductor diodes to the ''dose-enhanced'' radiation appears to be qualitatively different from that of MOS capacitors, and differs markedly in value from the ITS code predictions. These results demonstrate that an improved understanding of semiconductor device response to ''enhanced'' radiation is needed to assure simulation fidelity of tests of devices to be used in dose-enhancing environments.

  18. Field-effect and frequency dependent transport in semiconductor-enriched single-wall carbon nanotube network device.

    PubMed

    Jaiswal, Manu; Sangeeth, C S Suchand; Wang, Wei; Sun, Ya-Ping; Menon, Reghu

    2009-11-01

    The electrical and optical response of a field-effect device comprising a network of semiconductor-enriched single-wall carbon nanotubes, gated with sodium chloride solution is investigated. Field-effect is demonstrated in a device that uses facile fabrication techniques along with a small-ion as the gate electrolyte-and this is accomplished as a result of the semiconductor enhancement of the tubes. The optical transparency and electrical resistance of the device are modulated with gate voltage. A time-response study of the modulation of optical transparency and electrical resistance upon application of gate voltage suggests the percolative charge transport in the network. Also the ac response in the network is investigated as a function of frequency and temperature down to 5 K. An empirical relation between onset frequency and temperature is determined.

  19. Method to determine the position-dependant metal correction factor for dose-rate equivalent laser testing of semiconductor devices

    DOEpatents

    Horn, Kevin M.

    2013-07-09

    A method reconstructs the charge collection from regions beneath opaque metallization of a semiconductor device, as determined from focused laser charge collection response images, and thereby derives a dose-rate dependent correction factor for subsequent broad-area, dose-rate equivalent, laser measurements. The position- and dose-rate dependencies of the charge-collection magnitude of the device are determined empirically and can be combined with a digital reconstruction methodology to derive an accurate metal-correction factor that permits subsequent absolute dose-rate response measurements to be derived from laser measurements alone. Broad-area laser dose-rate testing can thereby be used to accurately determine the peak transient current, dose-rate response of semiconductor devices to penetrating electron, gamma- and x-ray irradiation.

  20. Effects of oxide traps, interface traps, and border traps'' on metal-oxide-semiconductor devices

    SciTech Connect

    Fleetwood, D.M.; Winokur, P.S.; Reber, R.A. Jr.; Meisenheimer, T.L.; Schwank, J.R.; Shaneyfelt, M.R.; Riewe, L.C. )

    1993-05-15

    We have identified several features of the 1/[ital f] noise and radiation response of metal-oxide-semiconductor (MOS) devices that are difficult to explain with standard defect models. To address this issue, and in response to ambiguities in the literature, we have developed a revised nomenclature for defects in MOS devices that clearly distinguishes the language used to describe the physical location of defects from that used to describe their electrical response. In this nomenclature, oxide traps'' are simply defects in the SiO[sub 2] layer of the MOS structure, and interface traps'' are defects at the Si/SiO[sub 2] interface. Nothing is presumed about how either type of defect communicates with the underlying Si. Electrically, fixed states'' are defined as trap levels that do not communicate with the Si on the time scale of the measurements, but switching states'' can exchange charge with the Si. Fixed states presumably are oxide traps in most types of measurements, but switching states can either be interface traps or near-interfacial oxide traps that can communicate with the Si, i.e., border traps'' [D. M. Fleetwood, IEEE Trans. Nucl. Sci. [bold NS]-[bold 39], 269 (1992)]. The effective density of border traps depends on the time scale and bias conditions of the measurements. We show the revised nomenclature can provide focus to discussions of the buildup and annealing of radiation-induced charge in non-radiation-hardened MOS transistors, and to changes in the 1/[ital f] noise of MOS devices through irradiation and elevated-temperature annealing.

  1. Integrated Semiconductor/Optical Information Processors

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen

    1989-01-01

    Optical information processors made of integrated three-dimensional devices which include optical, electro-optical, and electronic devices. Integration achieved by combination and extension of advanced semiconductor (integrated-circuit) and integrated-optics technology. In integrated device, spatial light modulator fabricated on surface of chip. Leads to miniaturization of sophisticated optical information-processing systems.

  2. Are bioresorbable polylactate devices comparable to titanium devices for stabilizing Le Fort I advancement?

    PubMed

    Blakey, G H; Rossouw, E; Turvey, T A; Phillips, C; Proffit, W R; White, R P

    2014-04-01

    The purpose of this study was to evaluate whether skeletal and dental outcomes following Le Fort I surgery differed when stabilization was performed with polylactate bioresorbable devices or titanium devices. Fifty-seven patients with preoperative records and at least 1 year postoperative records were identified and grouped according to the stabilization method. All cephalometric X-rays were traced and digitized by a single operator. Analysis of covariance was used to compare the postsurgical change between the two stabilization methods. Twenty-seven patients received bioresorbable devices (group R), while 30 received titanium devices (group M). There were no statistically significant differences between the two groups with respect to gender, race/ethnicity, age, or dental and skeletal movements during surgery. Subtle postsurgical differences were noted, but were not statistically significant. Stabilization of Le Fort I advancement with polylactate bioresorbable and titanium devices produced similar clinical outcomes at 1 year following surgery.

  3. Advanced photon source experience with vacuum chambers for insertion devices

    SciTech Connect

    Hartog, P.D.; Grimmer, J.; Xu, S.; Trakhtenberg, E.; Wiemerslage, G.

    1997-08-01

    During the last five years, a new approach to the design and fabrication of extruded aluminum vacuum chambers for insertion devices was developed at the Advanced Photon Source (APS). With this approach, three different versions of the vacuum chamber, with vertical apertures of 12 mm, 8 mm, and 5 mm, were manufactured and tested. Twenty chambers were installed into the APS vacuum system. All have operated with beam, and 16 have been coupled with insertion devices. Two different vacuum chambers with vertical apertures of 16 mm and 11 mm were developed for the BESSY-II storage ring and 3 of 16 mm chambers were manufactured.

  4. Advanced Sensor Fish Device for ImprovedTurbine Design

    SciTech Connect

    Carlson, Thomas J.

    2009-09-14

    Juvenile salmon (smolts) passing through hydroelectric turbines are subjected to environmental conditions that can potentially kill or injure them. Many turbines are reaching the end of their operational life expectancies and will be replaced with new turbines that incorporate advanced “fish friendly” designs devised to prevent injury and death to fish. To design a fish friendly turbine, it is first necessary to define the current conditions fish encounter. One such device used by biologists at Pacific Northwest National Laboratory was the sensor fish device to collect data that measures the forces fish experience during passage through hydroelectric projects.

  5. Magnetic field effect in non-magnetic organic semiconductor thin film devices and its applications

    NASA Astrophysics Data System (ADS)

    Mermer, Omer

    Organic pi-conjugated materials have been used to manufacture devices such as organic light-emitting diodes (OLEDs), photovoltaic cells and field-effect transistors. Recently there has been growing interest in spin and magnetic field effects in these materials. In this thesis, I report on the discovery and experimental characterization of a large and intriguing magnetoresistance effect, which we dubbed organic magnetoresistance (OMAR), in various pi-conjugated polymer and small molecular OLEDs. OMAR may find application in magnetic field sensors in OLED interactive displays (patent pending). We discovered OMAR originally in devices made from the pi-conjugated polymer polyfluorene. We found ≈ 10% magnetoresistance at 10 mT fields at room temperature. The effect is independent of the field direction, and is only weakly temperature dependent. We show that OMAR is a bulk effect related to the majority carrier transport. Studying polymer films with different amount of disorder we found that low disorder/large mobility is not a necessary prerequisite for large OMAR response. We also studied a possible interrelation between spin-orbit coupling and the OMAR effect in platinum-containing polymers. We found that spin-orbit coupling has apparently little effect on OMAR. A large OMAR effect was also observed in devices made from the prototypical small molecule, Alq3 that is similar in size to that in the polyfluorene devices. Our study shows that the basic properties are equivalent to polymer devices. To the best of our knowledge, OMAR is not adequately described by any of the magnetoresistance mechanisms known to date. A future explanation for this effect may lead to a breakthrough in the scientific understanding of organic semiconductors. In a largely unrelated effort, we also modelled spin-dependent exciton formation in OLEDs. Our work leads to the following picture of exciton formation: Since the triplet exciton states lie lower in energy than singlets, more phonons must

  6. Laser-based irradiation apparatus and method to measure the functional dose-rate response of semiconductor devices

    DOEpatents

    Horn, Kevin M.

    2008-05-20

    A broad-beam laser irradiation apparatus can measure the parametric or functional response of a semiconductor device to exposure to dose-rate equivalent infrared laser light. Comparisons of dose-rate response from before, during, and after accelerated aging of a device, or from periodic sampling of devices from fielded operational systems can determine if aging has affected the device's overall functionality. The dependence of these changes on equivalent dose-rate pulse intensity and/or duration can be measured with the apparatus. The synchronized introduction of external electrical transients into the device under test can be used to simulate the electrical effects of the surrounding circuitry's response to a radiation exposure while exposing the device to dose-rate equivalent infrared laser light.

  7. Nonlinear current-voltage characteristics based on semiconductor nanowire networks enable a new concept in thermoelectric device optimization

    NASA Astrophysics Data System (ADS)

    Diaz Leon, Juan J.; Norris, Kate J.; Hartnett, Ryan J.; Garrett, Matthew P.; Tompa, Gary S.; Kobayashi, Nobuhiko P.

    2016-08-01

    Thermoelectric (TE) devices that produce electric power from heat are driven by a temperature gradient (Δ T = T_{{hot}} - T_{{cold}}, T hot: hot side temperature, T cold: cold side temperature) with respect to the average temperature ( T). While the resistance of TE devices changes as Δ T and/or T change, the current-voltage ( I- V) characteristics have consistently been shown to remain linear, which clips generated electric power ( P gen) within the given open-circuit voltage ( V OC) and short-circuit current ( I SC). This P gen clipping is altered when an appropriate nonlinearity is introduced to the I- V characteristics—increasing P gen. By analogy, photovoltaic cells with a large fill factor exhibit nonlinear I- V characteristics. In this paper, the concept of a unique TE device with nonlinear I- V characteristics is proposed and experimentally demonstrated. A single TE device with nonlinear I- V characteristics is fabricated by combining indium phosphide (InP) and silicon (Si) semiconductor nanowire networks. These TE devices show P gen that is more than 25 times larger than those of comparable devices with linear I- V characteristics. The plausible causes of the nonlinear I- V characteristics are discussed. The demonstrated concept suggests that there exists a new pathway to increase P gen of TE devices made of semiconductors.

  8. Mandibular Advancing Positive Pressure Apnea Remediation Device (MAPPARD)

    DTIC Science & Technology

    2014-06-01

    wiki/Starling_resistor Lankford, D. A., Proctor, C. D., & Richard, R. (2005). Continuous positive airway pressure (CPAP) changes in bariatric surgery ...Mandibular Advancing Device (after Schlaflabor-Saletu, n.d.). ............ 8  Figure 4.  Uvulopalatopharyngoplasty (before and after surgery ) (from...Lastly, when behavioral and medical techniques have been exhausted the last OSA reduction technique is surgery . Within the last 25 years, the

  9. Investigations of quantum effect semiconductor devices: The tunnel switch diode and the velocity modulation transistor

    NASA Astrophysics Data System (ADS)

    Daniel, Erik Stephen

    In this thesis we present the results of experimental and theoretical studies of two quantum effect devices--the Tunnel Switch Diode (TSD) and the Velocity Modulation Transistor (VMT). We show that TSD devices can be fabricated such that they behave (semi-quantitatively) as predicted by simple analytical models and more advanced drift-diffusion simulations. These devices possess characteristics, such as on-state currents which range over nearly five orders of magnitude, and on/off current ratios which are even larger, which may allow for a practical implementation of a very dense transistorless SRAM architecture and possibly other novel circuit designs. We demonstrate that many TSD properties can be explained by analogy to a thyristor. In particular, we show that the thin oxide layer in the TSD plays a critical role, and that this can be understood in terms of current injection through the oxide, analogous to transport through the "current limiting" layer in a thyristor. As this oxide layer can be subjected to extreme stress during device operation, we have studied the effect of this stress on device behavior. We demonstrate many significant stress-dependent effects, and identify structures and operation modes which minimize these effects. We propose an InAs/GaSb/AlSb VMT which may allow for larger conductance modulation and higher temperature operation than has been demonstrated in similar GaAs/AlAs structures. Fundamental differences in device operation in the two materials systems and unusual transport mechanisms in the InAs/GaSb/AlSb system are identified as a result of the band lineups in the two systems. Boltzmann transport simulations are developed and presented, allowing a qualitative description of the transport in the InAs/GaSb/AlSb structure. Band structure calculations are carried out, allowing for device design. While no working VMT devices were produced, this is believed to be due to processing and crystal growth problems. We present methods used to

  10. Insertion devices for the Advanced Light Source at LBL

    SciTech Connect

    Hassenzahl, W.; Chin, J.; Halbach, K.; Hoyer, E.; Humphries, D.; Kincaid, B.; Savoy, R.

    1989-03-01

    The Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory will be the first of the new generation of dedicated synchrotron light sources to be put into operation. Specially designed insertion devices will be required to realize the high brightness photon beams made possible by the low emittance of the electron beam. The complement of insertion devices on the ALS will include undulators with periods as short as 3.9 cm and one or more high field wigglers. The first device to be designed is a 5 m long, 5 cm period, hybrid undulator. The goal of very high brightness and high harmonic output imposes unusually tight tolerances on the magnetic field quality and thus on the mechanical structure. The design process, using a generic structure for all undulators, is described. 5 refs., 4 figs., 1 tab.

  11. Materials Advances for Next-Generation Ingestible Electronic Medical Devices.

    PubMed

    Bettinger, Christopher J

    2015-10-01

    Electronic medical implants have collectively transformed the diagnosis and treatment of many diseases, but have many inherent limitations. Electronic implants require invasive surgeries, operate in challenging microenvironments, and are susceptible to bacterial infection and persistent inflammation. Novel materials and nonconventional device fabrication strategies may revolutionize the way electronic devices are integrated with the body. Ingestible electronic devices offer many advantages compared with implantable counterparts that may improve the diagnosis and treatment of pathologies ranging from gastrointestinal infections to diabetes. This review summarizes current technologies and highlights recent materials advances. Specific focus is dedicated to next-generation materials for packaging, circuit design, and on-board power supplies that are benign, nontoxic, and even biodegradable. Future challenges and opportunities are also highlighted.

  12. High resolution infrared ``vision'' of dynamic electron processes in semiconductor devices (abstract)

    NASA Astrophysics Data System (ADS)

    Malyutenko, V. K.

    2003-01-01

    Infrared cameras have been traditionally used in semiconductor industry for noncontact measurements of printed circuit boards (PCBs) local overheating. While an effective way to prevent defective PCB application in a "find-problems-before-your-customer-do" manner, this conventional static (25-50 frames/s) and small spatial resolution (>100 μm) approach is incapable, in principle, of explaining the physical reason for the PCB failure. What follows in this report is the demonstration of an IR camera based new approach in high-resolution dynamic study of electron processes responsible for single device performance. More specifically, time resolved two-dimensional visualization of current carrier drift and diffusion processes across the device base that happen in microsecond scale is of prime concern in the work. Thus, contrary to the conventional visualization-through-heating measurements, objective is mapping of electron processes in a device base through negative and positive luminescence (provoked by band-to-band electron transitions) and nonequilibrium thermal emission (provoked by intraband electron transitions) studies inside the region in which current flows. Therefore, the parameters of interest are not only a device thermal mass and thermal conductance, but also free carrier lifetime, surface recombination velocity, diffusion length, and contact properties. The micro-mapping system developed consists of reflective type IR microscope coaxially attached to calibrated scanning IR thermal imaging cameras (3-5 and 8-12 μm spectral ranges, HgCdTe cooled photodetectors, scene spatial resolution of some 20 μm, minimum time resolved interval of 10 μs, and temperature resolution of about 0.5 °C at 30 °C). Data acquisition and image processing (emissivity equalization, noise reduction by image averaging, and external triggering) are computer controlled. Parallel video channel equipped with a CCD camera permits easy positioning and focusing of <1×1 mm2 object

  13. Local lattice strain measurements in semiconductor devices by using convergent-beam electron diffraction

    NASA Astrophysics Data System (ADS)

    Toda, Akio; Ikarashi, Nobuyuki; Ono, Haruhiko

    2000-03-01

    We examined the lattice strain distribution around local oxidation of silicon (LOCOS) in a semiconductor device by using highly accurate (1.8×10 -4 standard deviation) convergent-beam electron diffraction (CBED) at a nanometer-scale spatial resolution (10 nm in diameter). The nanometer-scale measurement was done by reducing the elastic relaxation using a thick (about 600 nm) sample and by removing the inelastically scattered electrons by means of an electron energy filter. A highly accurate measurement was achieved through the analysis of higher-order Laue zone (HOLZ) patterns using the least-squares fitting of HOLZ line intersection distances between the observations and calculations. Our examination showed that the LOCOS structure gave singularities in strain distributions at the field edge. That is, compressive strain exists in both the vertical and horizontal directions of the substrate, and the shear strain increased there. Most notably, two-dimensional measurements revealed that the singularity of the normal strain in the horizontal direction of the substrate generated at the field edge propagated into the substrate.

  14. Performance of a parallel algebraic multilevel preconditioner for stabilized finite element semiconductor device modeling

    NASA Astrophysics Data System (ADS)

    Lin, Paul T.; Shadid, John N.; Sala, Marzio; Tuminaro, Raymond S.; Hennigan, Gary L.; Hoekstra, Robert J.

    2009-09-01

    In this study results are presented for the large-scale parallel performance of an algebraic multilevel preconditioner for solution of the drift-diffusion model for semiconductor devices. The preconditioner is the key numerical procedure determining the robustness, efficiency and scalability of the fully-coupled Newton-Krylov based, nonlinear solution method that is employed for this system of equations. The coupled system is comprised of a source term dominated Poisson equation for the electric potential, and two convection-diffusion-reaction type equations for the electron and hole concentration. The governing PDEs are discretized in space by a stabilized finite element method. Solution of the discrete system is obtained through a fully-implicit time integrator, a fully-coupled Newton-based nonlinear solver, and a restarted GMRES Krylov linear system solver. The algebraic multilevel preconditioner is based on an aggressive coarsening graph partitioning of the nonzero block structure of the Jacobian matrix. Representative performance results are presented for various choices of multigrid V-cycles and W-cycles and parameter variations for smoothers based on incomplete factorizations. Parallel scalability results are presented for solution of up to 108 unknowns on 4096 processors of a Cray XT3/4 and an IBM POWER eServer system.

  15. Exploiting the interaction between a semiconductor nanosphere and a thin metal film for nanoscale plasmonic devices.

    PubMed

    Li, H; Xu, Y; Xiang, J; Li, X F; Zhang, C Y; Tie, S L; Lan, S

    2016-12-07

    The interaction of silicon (Si) nanospheres (NSs) with a thin metal film is investigated numerically and experimentally by characterizing their forward scattering properties. A sharp resonant mode and a zero-scattering dip are found to be introduced in the forward scattering spectrum of a Si NS by putting it on a 50-nm-thick gold film. It is revealed that the sharp resonant mode arises from a new magnetic dipole induced by the electric dipole and its mirror image while the zero-scattering dip originates from the destructive interference between the new magnetic dipole and the original one together with its mirror image. A significant enhancement in both electric and magnetic fields is achieved at the contact point between the Si NS and the metal film. More interestingly, the use of a thin silver film can lead to vivid scattering light with different color indices. It is demonstrated that a small change in the surrounding environment of Si NSs results in the broadening of the resonant mode and the disappearance of the zero-scattering dip. Our findings indicate that dielectric-metal hybrid systems composed of semiconductor NSs and thin metal films act as attractive platforms on which novel nanoscale plasmonic devices can be realized.

  16. Measurement of Radiation Induced Damages in Semiconductor Materials Useful as Photovoltaic and Nuclear Detection Devices

    NASA Astrophysics Data System (ADS)

    Gul, Rubi; Keeter, Kara; Rodriguez, Rene

    2007-05-01

    Radiation interactions with materials cause a change in electronic and physical properties of the material, which affect the performance of the devices. It is a key issue in the employment of these materials in medical, space, security and other scientific applications. In our research we have determined the defects and their generation rate induced by gamma rays of energy 0.11-22 MeV, in CuInS2. We have used a simple model consisting of classical physics principles and Monte Carlo simulation software. The simulation results are in agreement with other published results done for other semiconductor materials. Our collaborators at INL will investigate different techniques for fabrication of thin films of CdZnTe and CuInS2 by using Radiofrequency Pulsed Plasma Enhanced Chemical Vapor Deposition and Pressurized Solvent techniques. Next, defects will be induced in the thin-film samples by exposure to a bremsstrahlung gamma-ray beam. The radiation dose will range from 5 to 25 kGy. Qualitative and quantitative measurements of the defects in the crystals will be done by gamma-ray spectroscopy and PICTS (Photo induced current transient spectroscopy). To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.NWS07.C1.5

  17. Quantum interference measurement of spin interactions in a bio-organic/semiconductor device structure

    DOE PAGES

    Deo, Vincent; Zhang, Yao; Soghomonian, Victoria; ...

    2015-03-30

    Quantum interference is used to measure the spin interactions between an InAs surface electron system and the iron center in the biomolecule hemin in nanometer proximity in a bio-organic/semiconductor device structure. The interference quantifies the influence of hemin on the spin decoherence properties of the surface electrons. The decoherence times of the electrons serve to characterize the biomolecule, in an electronic complement to the use of spin decoherence times in magnetic resonance. Hemin, prototypical for the heme group in hemoglobin, is used to demonstrate the method, as a representative biomolecule where the spin state of a metal ion affects biologicalmore » functions. The electronic determination of spin decoherence properties relies on the quantum correction of antilocalization, a result of quantum interference in the electron system. Spin-flip scattering is found to increase with temperature due to hemin, signifying a spin exchange between the iron center and the electrons, thus implying interactions between a biomolecule and a solid-state system in the hemin/InAs hybrid structure. The results also indicate the feasibility of artificial bioinspired materials using tunable carrier systems to mediate interactions between biological entities.« less

  18. Quantum interference measurement of spin interactions in a bio-organic/semiconductor device structure

    SciTech Connect

    Deo, Vincent; Zhang, Yao; Soghomonian, Victoria; Heremans, Jean J.

    2015-03-30

    Quantum interference is used to measure the spin interactions between an InAs surface electron system and the iron center in the biomolecule hemin in nanometer proximity in a bio-organic/semiconductor device structure. The interference quantifies the influence of hemin on the spin decoherence properties of the surface electrons. The decoherence times of the electrons serve to characterize the biomolecule, in an electronic complement to the use of spin decoherence times in magnetic resonance. Hemin, prototypical for the heme group in hemoglobin, is used to demonstrate the method, as a representative biomolecule where the spin state of a metal ion affects biological functions. The electronic determination of spin decoherence properties relies on the quantum correction of antilocalization, a result of quantum interference in the electron system. Spin-flip scattering is found to increase with temperature due to hemin, signifying a spin exchange between the iron center and the electrons, thus implying interactions between a biomolecule and a solid-state system in the hemin/InAs hybrid structure. The results also indicate the feasibility of artificial bioinspired materials using tunable carrier systems to mediate interactions between biological entities.

  19. Enabling Earth-Abundant Pyrite (FeS2) Semiconductor Nanostructures for High Performance Photovoltaic Devices

    SciTech Connect

    Jin, Song

    2014-11-18

    This project seeks to develop nanostructures of iron pyrite, an earth-abundant semiconductor, to enable their applications in high-performance photovoltaic (PV) devices. Growth of high purity iron pyrite nanostructures (nanowires, nanorods, and nanoplates), as well as iron pyrite thin films and single crystals, has been developed and their structures characterized. These structures have been fundamentally investigated to understand the origin of the low solar energy conversion efficiency of iron pyrite and various passivation strategies and doping approaches have been explored in order to improve it. By taking advantage of the high surface-to-bulk ratio in nanostructures and effective electrolyte gating, we fully characterized both the surface inversion and bulk electrical transport properties for the first time through electrolyte-gated Hall measurements of pyrite nanoplate devices and show that pyrite is n-type in the bulk and p-type near the surface due to strong inversion, which has important consequences to using nanocrystalline pyrite for efficient solar energy conversion. Furthermore, through a comprehensive investigation on n-type iron pyrite single crystals, we found the ionization of high-density bulk deep donor states, likely resulting from bulk sulfur vacancies, creates a non-constant charge distribution and a very narrow surface space charge region that limits the total barrier height, thus satisfactorily explains the limited photovoltage and poor photoconversion efficiency of iron pyrite single crystals. These findings suggest new ideas on how to improve single crystal pyrite and nanocrystalline or polycrystalline pyrite films to enable them for high performance solar applications.

  20. Nonvolatile Memory Effect in Indium Gallium Arsenide-Based Metal-Oxide-Semiconductor Devices Using II-VI Tunnel Insulators

    NASA Astrophysics Data System (ADS)

    Chan, P.-Y.; Gogna, M.; Suarez, E.; Karmakar, S.; Al-Amoody, F.; Miller, B. I.; Jain, F. C.

    2011-08-01

    This paper reports the successful use of ZnSe/ZnS/ZnMgS/ZnS/ZnSe as a gate insulator stack for an InGaAs-based metal-oxide-semiconductor (MOS) device, and demonstrates the threshold voltage shift required in nonvolatile memory devices using a floating gate quantum dot layer. An InGaAs-based nonvolatile memory MOS device was fabricated using a high- κ II-VI tunnel insulator stack and self-assembled GeO x -cladded Ge quantum dots as the charge storage units. A Si3N4 layer was used as the control gate insulator. Capacitance-voltage data showed that, after applying a positive voltage to the gate of a MOS device, charges were being stored in the quantum dots. This was shown by the shift in the flat-band/threshold voltage, simulating the write process of a nonvolatile memory device.

  1. Nanoscale-driven crystal growth of hexaferrite heterostructures for magnetoelectric tuning of microwave semiconductor integrated devices.

    PubMed

    Hu, Bolin; Chen, Zhaohui; Su, Zhijuan; Wang, Xian; Daigle, Andrew; Andalib, Parisa; Wolf, Jason; McHenry, Michael E; Chen, Yajie; Harris, Vincent G

    2014-11-25

    A nanoscale-driven crystal growth of magnetic hexaferrites was successfully demonstrated at low growth temperatures (25-40% lower than the temperatures required often for crystal growth). This outcome exhibits thermodynamic processes of crystal growth, allowing ease in fabrication of advanced multifunctional materials. Most importantly, the crystal growth technique is considered theoretically and experimentally to be universal and suitable for the growth of a wide range of diverse crystals. In the present experiment, the conical spin structure of Co2Y ferrite crystals was found to give rise to an intrinsic magnetoelectric effect. Our experiment reveals a remarkable increase in the conical phase transition temperature by ∼150 K for Co2Y ferrite, compared to 5-10 K of Zn2Y ferrites recently reported. The high quality Co2Y ferrite crystals, having low microwave loss and magnetoelectricity, were successfully grown on a wide bandgap semiconductor GaN. The demonstration of the nanostructure materials-based "system on a wafer" architecture is a critical milestone to next generation microwave integrated systems. It is also practical that future microwave integrated systems and their magnetic performances could be tuned by an electric field because of the magnetoelectricity of hexaferrites.

  2. Integration of isothermal amplification methods in microfluidic devices: Recent advances.

    PubMed

    Giuffrida, Maria Chiara; Spoto, Giuseppe

    2017-04-15

    The integration of nucleic acids detection assays in microfluidic devices represents a highly promising approach for the development of convenient, cheap and efficient diagnostic tools for clinical, food safety and environmental monitoring applications. Such tools are expected to operate at the point-of-care and in resource-limited settings. The amplification of the target nucleic acid sequence represents a key step for the development of sensitive detection protocols. The integration in microfluidic devices of the most popular technology for nucleic acids amplifications, polymerase chain reaction (PCR), is significantly limited by the thermal cycling needed to obtain the target sequence amplification. This review provides an overview of recent advances in integration of isothermal amplification methods in microfluidic devices. Isothermal methods, that operate at constant temperature, have emerged as promising alternative to PCR and greatly simplify the implementation of amplification methods in point-of-care diagnostic devices and devices to be used in resource-limited settings. Possibilities offered by isothermal methods for digital droplet amplification are discussed.

  3. Heteroepitaxial growth of 3-5 semiconductor compounds by metal-organic chemical vapor deposition for device applications

    NASA Technical Reports Server (NTRS)

    Collis, Ward J.; Abul-Fadl, Ali

    1988-01-01

    The purpose of this research is to design, install and operate a metal-organic chemical vapor deposition system which is to be used for the epitaxial growth of 3-5 semiconductor binary compounds, and ternary and quaternary alloys. The long-term goal is to utilize this vapor phase deposition in conjunction with existing current controlled liquid phase epitaxy facilities to perform hybrid growth sequences for fabricating integrated optoelectronic devices.

  4. Recent Advances in Photonic Devices for Optical Computing and the Role of Nonlinear Optics-Part II

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossin; Frazier, Donald O.; Witherow, William K.; Banks, Curtis E.; Paley, Mark S.

    2007-01-01

    The twentieth century has been the era of semiconductor materials and electronic technology while this millennium is expected to be the age of photonic materials and all-optical technology. Optical technology has led to countless optical devices that have become indispensable in our daily lives in storage area networks, parallel processing, optical switches, all-optical data networks, holographic storage devices, and biometric devices at airports. This chapters intends to bring some awareness to the state-of-the-art of optical technologies, which have potential for optical computing and demonstrate the role of nonlinear optics in many of these components. Our intent, in this Chapter, is to present an overview of the current status of optical computing, and a brief evaluation of the recent advances and performance of the following key components necessary to build an optical computing system: all-optical logic gates, adders, optical processors, optical storage, holographic storage, optical interconnects, spatial light modulators and optical materials.

  5. Method for manufacturing electrical contacts for a thin-film semiconductor device

    DOEpatents

    Carlson, David E.; Dickson, Charles R.; D'Aiello, Robert V.

    1988-11-08

    A method of fabricating spaced-apart back contacts on a thin film of semiconductor material by forming strips of buffer material on top of the semiconductor material in locations corresponding to the desired dividing lines between back contacts, forming a film of metal substantially covering the semiconductor material and buffer strips, and scribing portions of the metal film overlying the buffer strips with a laser without contacting the underlying semiconductor material to separate the metal layer into a plurality of back contacts. The buffer material serves to protect the underlying semiconductor material from being damaged during the laser scribing. Back contacts and multi-cell photovoltaic modules incorporating such back contacts also are disclosed.

  6. A novel measuring method of clamping force for electrostatic chuck in semiconductor devices

    NASA Astrophysics Data System (ADS)

    Kesheng, Wang; Jia, Cheng; Yin, Zhong; Linhong, Ji

    2016-04-01

    Electrostatic chucks are one of the core components of semiconductor devices. As a key index of electrostatic chucks, the clamping force must be controlled within a reasonable range. Therefore, it is essential to accurately measure the clamping force. To reduce the negative factors influencing measurement precision and repeatability, this article presents a novel method to measure the clamping force and we elaborate both the principle and the key procedure. A micro-force probe component is introduced to monitor, adjust, and eliminate the gap between the wafer and the electrostatic chuck. The contact force between the ruby probe and the wafer is selected as an important parameter to characterize de-chucking, and we have found that the moment of de-chucking can be exactly judged. Moreover, this article derives the formula calibrating equivalent action area of backside gas pressure under real working conditions, which can effectively connect the backside gas pressure at the moment of de-chucking and the clamping force. The experiments were then performed on a self-designed measuring platform. The de-chucking mechanism is discussed in light of our analysis of the experimental data. Determination criteria for de-chucking point are summed up. It is found that the relationship between de-chucking pressure and applied voltage conforms well to quadratic equation. Meanwhile, the result reveals that actual de-chucking behavior is much more complicated than the description given in the classical empirical formula. Project supported by No. 02 National Science and Technology Major Project of China (No. 2011ZX02403-004).

  7. TID Simulation of Advanced CMOS Devices for Space Applications

    NASA Astrophysics Data System (ADS)

    Sajid, Muhammad

    2016-07-01

    This paper focuses on Total Ionizing Dose (TID) effects caused by accumulation of charges at silicon dioxide, substrate/silicon dioxide interface, Shallow Trench Isolation (STI) for scaled CMOS bulk devices as well as at Buried Oxide (BOX) layer in devices based on Silicon-On-Insulator (SOI) technology to be operated in space radiation environment. The radiation induced leakage current and corresponding density/concentration electrons in leakage current path was presented/depicted for 180nm, 130nm and 65nm NMOS, PMOS transistors based on CMOS bulk as well as SOI process technologies on-board LEO and GEO satellites. On the basis of simulation results, the TID robustness analysis for advanced deep sub-micron technologies was accomplished up to 500 Krad. The correlation between the impact of technology scaling and magnitude of leakage current with corresponding total dose was established utilizing Visual TCAD Genius program.

  8. Advanced Measurement Devices for the Microgravity Electromagnetic Levitation Facility EML

    NASA Technical Reports Server (NTRS)

    Brillo, Jurgen; Fritze, Holger; Lohofer, Georg; Schulz, Michal; Stenzel, Christian

    2012-01-01

    This paper reports on two advanced measurement devices for the microgravity electromagnetic levitation facility (EML), which is currently under construction for the use onboard the "International Space Station (ISS)": the "Sample Coupling Electronics (SCE)" and the "Oxygen Sensing and Control Unit (OSC)". The SCE measures by a contactless, inductive method the electrical resistivity and the diameter of a spherical levitated metallic droplet by evaluating the voltage and electrical current applied to the levitation coil. The necessity of the OSC comes from the insight that properties like surface tension or, eventually, viscosity cannot seriously be determined by the oscillating drop method in the EML facility without knowing the conditions of the surrounding atmosphere. In the following both measurement devices are explained and laboratory test results are presented.

  9. Characterization of the electronic properties of magnetic and semiconductor devices using scanning probe techniques

    NASA Astrophysics Data System (ADS)

    Schaadt, Daniel Maria

    In the first part of this dissertation, scanning probe techniques are used in the study of localized charge deposition and subsequent transport in Co nanoclusters embedded in a SiO2 matrix are presented, and the application of this material in a hybrid magneto-electronic device for magnetic field sensing is described. Co nanoclusters are charged by applying a bias voltage pulse between a conductive tip and the sample, and electrostatic force microscopy is used to image charged areas. An exponential decay in the peak charge density is observed with decay times dependent on the nominal Co film thickness and on the sign of the deposited charge. The results are interpreted as a consequence of Coulomb-blockade effects. This study leads to the design of a hybrid magneto-electronic device, in which Co nanoclusters embedded in SiO2 are incorporated into the gate of a Si metal-oxide-semiconductor field-effect transistor. Current flow through the Co nanoclusters leads to a buildup of electronic charge within the gate, and consequently to a transistor threshold voltage shift that varies with applied external magnetic field. The shift in threshold voltage results in an exponential change in subthreshold current and a quadratic change in saturation current. A detailed analysis of the device operation is presented. The second part of this dissertation focuses on the characterization of electronic properties of GaN-based heterostructure devices. Scanning capacitance microscopy (SCM) and spectroscopy (SCS) are used to investigate lateral variations in the transistor threshold voltage and the frequency-dependent response of surface charges and of charge in the two-dimensional electron gas (2DEG). The technique is described in detail, electrostatic simulations performed to study the influence of the probe tip geometry on the measured dC/dV spectra are presented, and the limitations of the SCS technique in a variety of applications are evaluated. Features in SCM images and maps of

  10. Density-Gradient Theory: A Macroscopic Approach to Quantum Confinement and Tunneling in Semiconductor Devices

    DTIC Science & Technology

    2011-01-01

    flow of electrons and holes in Germanium and other semiconductors. Bell Syst. Tech. J. 29, 560 (1950) 4. Maxwell, J.C.: On stresses in rarefied gases...especially by the phenomena of quantum confinement and quantum tunneling. The various mathematical descriptions of electron flow in biased semiconductors...patently inappropriate. 1.2 Quantum transport The three main “quantum” behaviors of an electron gas in a semiconductor—all of course well known—that

  11. Nonpolar Nitride Semiconductor Optoelectronic Devices: A Disruptive Technology for Next Generation Army Applications

    DTIC Science & Technology

    2008-12-01

    emission from SF-free m- GaN . 3. THZ EMISSION FROM NONPOLAR NITRIDE SEMICONDUCTORS Terahertz (THz) radiation from semiconductors illuminated...defects are studied. High quality InGaN quantum wells grown on bulk stacking fault (SF) -free GaN substrates show larger PL intensity and shorter PL...visible light emitters. We have also demonstrated enhanced THz emission from nonpolar GaN due to carrier transport in internal in-plane electric fields

  12. Extension of the characteristic potential method for noise calculation and its application to shot noise in semiconductor devices

    NASA Astrophysics Data System (ADS)

    Hong, Sung-Min; Min, Hong S.; Park, Chan H.; Park, Young J.

    2004-05-01

    Characteristic potential method (CPM) for noise calculation has been developed for multi-terminal semiconductor devices under the drift-diffusion scheme. Merit of the CPM is that clear cut definitions of the terminal thermal noise currents and the terminal excess noise currents can be made for unipolar devices and homogeneous resistors. We prove that the terminal thermal noise currents and the terminal excess noise currents are uncorrelated for unipolar devices even when they come from the same local noise sources. We also suggest a way to define thermal noise and excess noise in bipolar devices using the derived formulas from the CPM. As applications of the CPM, we show that the high frequency excess noise observed in homogenous semiconductor resistors is really shot noise whose noise generating mechanism is just the same as that of vacuum diodes. We also show that the dominant high frequency noise in long-channel MOSFETs is thermal noise in the linear region, but the excess noise is getting more significant as the drain bias increases, and is important in the saturation region. The excess noise in the saturation region of the long-channel MOSFETs is shown to be shot noise. Finally, we try to explain the shot noise-like behaviors observed in forward-biased pn junction diodes by the conventional corpuscular theory of shot noise even though the impedance field method confirms that the shot noise behaviors are caused by the local noise sources in the neutral regions, not in the depletion regions.

  13. Nanoscale Copper and Copper Compounds for Advanced Device Applications

    NASA Astrophysics Data System (ADS)

    Chen, Lih-Juann

    2016-12-01

    Copper has been in use for at least 10,000 years. Copper alloys, such as bronze and brass, have played important roles in advancing civilization in human history. Bronze artifacts date at least 6500 years. On the other hand, discovery of intriguing properties and new applications in contemporary technology for copper and its compounds, particularly on nanoscale, have continued. In this paper, examples for the applications of Cu and Cu alloys for advanced device applications will be given on Cu metallization in microelectronics devices, Cu nanobats as field emitters, Cu2S nanowire array as high-rate capability and high-capacity cathodes for lithium-ion batteries, Cu-Te nanostructures for field-effect transistor, Cu3Si nanowires as high-performance field emitters and efficient anti-reflective layers, single-crystal Cu(In,Ga)Se2 nanotip arrays for high-efficiency solar cell, multilevel Cu2S resistive memory, superlattice Cu2S-Ag2S heterojunction diodes, and facet-dependent Cu2O diode.

  14. [Device-aided therapies in advanced Parkinson's disease].

    PubMed

    Timofeeva, A A

    2016-01-01

    Advanced stages of Parkinson's disease (PD) is a consequence of the severe neurodegenerative process and are characterized by the development of motor fluctuations and dyskinesia, aggravation of non-motor symptoms. Treatment with peroral and transdermal drugs can't provide an adequate control of PD symptoms and quality-of-life of the patients at this stage of disease. Currently, three device-aided therapies: deep brain stimulation (DBS), intrajejunal infusion of duodopa, subcutaneous infusion of apomorphine can be used in treatment of patients with advanced stages of PD. Timely administration of device-aided therapies and right choice of the method determine, to a large extent, the efficacy and safety of their use. Despite the high efficacy of all three methods with respect to the fluctuation of separate symptoms, each method has its own peculiarities. The authors reviewed the data on the expediency of using each method according to the severity of motor and non-motor symptoms, patient's age, PD duration, concomitant pathology and social support of the patients.

  15. Tunable and reconfigurable THz devices for advanced imaging and adaptive wireless communication

    NASA Astrophysics Data System (ADS)

    Liu, L.; Shams, M. I. B.; Jiang, Z.; Rahman, S.; Hesler, J. L.; Cheng, L.-J.; Fay, P.

    2016-09-01

    In this paper, we report on two different approaches that have been explored to realize tunable and reconfigurable THz devices for advanced imaging and adaptive wireless communication. The first approach makes use of electronically tunable varactor diodes. Frequency tunable THz antennas based on this approach have been successfully demonstrated for the first time in G-band, enabling the development of spectroscopic THz detectors and focal-plane imaging arrays. The second approach takes advantages of optical THz spatial modulation based on photo-induced free carriers in semiconductors. Using this approach, high-performance tunable THz modulators/attenuators, reconfigurable masks for THz coded aperture imaging, and photo-induced Fresnel-zone-plate antennas for dynamic THz beam steering and forming have been successfully demonstrated. Our recent study also shows that by employing the so-called mesa array technique, sub-wavelength spatial resolution and higher than 100 dB modulation depth can be achieved, making it possible to develop tunable THz devices (e.g., tunable filters) with performance and versatility far beyond those realized by conventional approaches. On the basis of the above investigation, the prospects of high-speed near-field THz imaging, real-time ultra-sensitive heterodyne imaging and prototype adaptive THz wireless communication links will be discussed.

  16. Intravital fluorescence imaging of mouse brain using implantable semiconductor devices and epi-illumination of biological tissue.

    PubMed

    Takehara, Hiroaki; Ohta, Yasumi; Motoyama, Mayumi; Haruta, Makito; Nagasaki, Mizuki; Takehara, Hironari; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Ohta, Jun

    2015-05-01

    The application of the fluorescence imaging method to living animals, together with the use of genetically engineered animals and synthesized photo-responsive compounds, is a powerful method for investigating brain functions. Here, we report a fluorescence imaging method for the brain surface and deep brain tissue that uses compact and mass-producible semiconductor imaging devices based on complementary metal-oxide semiconductor (CMOS) technology. An image sensor chip was designed to be inserted into brain tissue, and its size was 1500 × 450 μm. Sample illumination is also a key issue for intravital fluorescence imaging. Hence, for the uniform illumination of the imaging area, we propose a new method involving the epi-illumination of living biological tissues, and we performed investigations using optical simulations and experimental evaluation.

  17. Complex-envelope alternating-direction-implicit FDTD method for simulating active photonic devices with semiconductor/solid-state media.

    PubMed

    Singh, Gurpreet; Ravi, Koustuban; Wang, Qian; Ho, Seng-Tiong

    2012-06-15

    A complex-envelope (CE) alternating-direction-implicit (ADI) finite-difference time-domain (FDTD) approach to treat light-matter interaction self-consistently with electromagnetic field evolution for efficient simulations of active photonic devices is presented for the first time (to our best knowledge). The active medium (AM) is modeled using an efficient multilevel system of carrier rate equations to yield the correct carrier distributions, suitable for modeling semiconductor/solid-state media accurately. To include the AM in the CE-ADI-FDTD method, a first-order differential system involving CE fields in the AM is first set up. The system matrix that includes AM parameters is then split into two time-dependent submatrices that are then used in an efficient ADI splitting formula. The proposed CE-ADI-FDTD approach with AM takes 22% of the time as the approach of the corresponding explicit FDTD, as validated by semiconductor microdisk laser simulations.

  18. Intravital fluorescence imaging of mouse brain using implantable semiconductor devices and epi-illumination of biological tissue

    PubMed Central

    Takehara, Hiroaki; Ohta, Yasumi; Motoyama, Mayumi; Haruta, Makito; Nagasaki, Mizuki; Takehara, Hironari; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Ohta, Jun

    2015-01-01

    The application of the fluorescence imaging method to living animals, together with the use of genetically engineered animals and synthesized photo-responsive compounds, is a powerful method for investigating brain functions. Here, we report a fluorescence imaging method for the brain surface and deep brain tissue that uses compact and mass-producible semiconductor imaging devices based on complementary metal-oxide semiconductor (CMOS) technology. An image sensor chip was designed to be inserted into brain tissue, and its size was 1500 × 450 μm. Sample illumination is also a key issue for intravital fluorescence imaging. Hence, for the uniform illumination of the imaging area, we propose a new method involving the epi-illumination of living biological tissues, and we performed investigations using optical simulations and experimental evaluation. PMID:26137364

  19. Analytical procedure for experimental quantification of carrier concentration in semiconductor devices by using electric scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Fujita, Takaya; Matsumura, Koji; Itoh, Hiroshi; Fujita, Daisuke

    2014-04-01

    Scanning capacitance microscopy (SCM) is based on a contact-mode variant of atomic force microscopy, which is used for imaging two-dimensional carrier (electrons and holes) distributions in semiconductor devices. We introduced a method of quantification of the carrier concentration by experimentally deduced calibration curves, which were prepared for semiconductor materials such as silicon and silicon carbide. The analytical procedure was circulated to research organizations in a round-robin test. The effectiveness of the method was confirmed for practical analysis and for what is expected for industrial pre-standardization from the viewpoint of comparability among users. It was also applied to other electric scanning probe microscopy techniques such as scanning spreading resistance microscopy and scanning nonlinear dielectric microscopy. Their depth profiles of carrier concentration were found to be in good agreement with those characterized by SCM. These results suggest that our proposed method will be compatible with future next-generation microscopy.

  20. Silicon high speed modulator for advanced modulation: device structures and exemplary modulator performance

    NASA Astrophysics Data System (ADS)

    Milivojevic, Biljana; Wiese, Stefan; Whiteaway, James; Raabe, Christian; Shastri, Anujit; Webster, Mark; Metz, Peter; Sunder, Sanjay; Chattin, Bill; Anderson, Sean P.; Dama, Bipin; Shastri, Kal

    2014-03-01

    Fiber optics is well established today due to the high capacity and speed, unrivaled flexibility and quality of service. However, state of the art optical elements and components are hardly scalable in terms of cost and size required to achieve competitive port density and cost per bit. Next-generation high-speed coherent optical communication systems targeting a data rate of 100-Gb/s and beyond goes along with innovations in component and subsystem areas. Consequently, by leveraging the advanced silicon micro and nano-fabrication technologies, significant progress in developing CMOS platform-based silicon photonic devices has been made all over the world. These achievements include the demonstration of high-speed IQ modulators, which are important building blocks in coherent optical communication systems. In this paper, we demonstrate silicon photonic QPSK modulator based on a metal-oxide-semiconductor (MOS) capacitor structure, address different modulator configuration structures and report our progress and research associated with highspeed advanced optical modulation in silicon photonics

  1. Insertion device operating experience at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Grimmer, John; Ramanathan, Mohan; Smith, Martin; Merritt, Michael

    2002-03-01

    The Advanced Photon Source has 29 insertion devices (IDs) installed in the 7 GeV electron storage ring; 28 of these devices, most of which are 3.3 cm period undulators, use two horizontal permanent magnet structures positioned over a straight vacuum chamber. A support and drive mechanism allows the vertical gap between the magnet structures to be varied, thus changing the x-ray energy produced by the ID [J. Viccaro, Proc. SPIE 1345, 28 (1990); E. Gluskin, J. Synchrotron Radiat. 5, 189 (1998)]. Most of these IDs use a drive scheme with two stepper motors, one driving each end through a mechanism synchronizing the upper and lower magnet structures. Our experience in almost 5 yr of operating this system will be discussed. All of the IDs are in continuous operation for approximately 10 weeks at a time. Reliability of operation is of paramount importance, as access to the storage ring for servicing of a single ID inhibits operation for all users. Our experience in achieving highly reliable ID operation is reviewed. Accuracy of operation and repeatability over time are also vital. To this end, these devices use absolute optical linear encoders with submicron resolution for primary position feedback. Absolute rotary encoders are used as a backup to the linear encoders. The benefits and limitations of each type of encoder, and our experience dealing with radiation and electrical noise are reviewed. The insertion devices operate down to gaps as small as 8.5 mm, with clearance over the vacuum chamber as small as 200 μm. The vacuum chamber has a minimum wall thickness of only 1 mm. A number of levels of safeguards are used to prevent contact between the magnet structure and the vacuum chamber. These safeguards and their evolution after gaining operational experience are presented.

  2. Final LDRD report : design and fabrication of advanced device structures for ultra high efficiency solid state lighting.

    SciTech Connect

    Koleske, Daniel David; Bogart, Katherine Huderle Andersen; Shul, Randy John; Wendt, Joel Robert; Crawford, Mary Hagerott; Allerman, Andrew Alan; Fischer, Arthur Joseph

    2005-04-01

    The goal of this one year LDRD was to improve the overall efficiency of InGaN LEDs by improving the extraction of light from the semiconductor chip. InGaN LEDs are currently the most promising technology for producing high efficiency blue and green semiconductor light emitters. Improving the efficiency of InGaN LEDs will enable a more rapid adoption of semiconductor based lighting. In this LDRD, we proposed to develop photonic structures to improve light extraction from nitride-based light emitting diodes (LEDs). While many advanced device geometries were considered for this work, we focused on the use of a photonic crystal for improved light extraction. Although resonant cavity LEDs and other advanced structures certainly have the potential to improve light extraction, the photonic crystal approach showed the most promise in the early stages of this short program. The photonic crystal (PX)-LED developed here incorporates a two dimensional photonic crystal, or photonic lattice, into a nitride-based LED. The dimensions of the photonic crystal are selected such that there are very few or no optical modes in the plane of the LED ('lateral' modes). This will reduce or eliminate any radiation in the lateral direction so that the majority of the LED radiation will be in vertical modes that escape the semiconductor, which will improve the light-extraction efficiency. PX-LEDs were fabricated using a range of hole diameters and lattice constants and compared to control LEDs without a photonic crystal. The far field patterns from the PX-LEDs were dramatically modified by the presence of the photonic crystal. An increase in LED brightness of 1.75X was observed for light measured into a 40 degree emission cone with a total increase in power of 1.5X for an unencapsulated LED.

  3. Group III nitride semiconductors for short wavelength light-emitting devices

    NASA Astrophysics Data System (ADS)

    Orton, J. W.; Foxon, C. T.

    1998-01-01

    The group III nitrides (AlN, GaN and InN) represent an important trio of semiconductors because of their direct band gaps which span the range 1.95-6.2 eV, including the whole of the visible region and extending well out into the ultraviolet (UV) range. They form a complete series of ternary alloys which, in principle, makes available any band gap within this range and the fact that they also generate efficient luminescence has been the main driving force for their recent technological development. High brightness visible light-emitting diodes (LEDs) are now commercially available, a development which has transformed the market for LED-based full colour displays and which has opened the way to many other applications, such as in traffic lights and efficient low voltage, flat panel white light sources. Continuously operating UV laser diodes have also been demonstrated in the laboratory, exciting tremendous interest for high-density optical storage systems, UV lithography and projection displays. In a remarkably short space of time, the nitrides have therefore caught up with and, in some ways, surpassed the wide band gap II-VI compounds (ZnCdSSe) as materials for short wavelength optoelectronic devices. The purpose of this paper is to review these developments and to provide essential background material in the form of the structural, electronic and optical properties of the nitrides, relevant to these applications. We have been guided by the fact that the devices so far available are based on the binary compound GaN (which is relatively well developed at the present time), together with the ternary alloys AlGaN and InGaN, containing modest amounts of Al or In. We therefore concentrate, to a considerable extent, on the properties of GaN, then introduce those of the alloys as appropriate, emphasizing their use in the formation of the heterostructures employed in devices. The nitrides crystallize preferentially in the hexagonal wurtzite structure and devices have so

  4. Full-band structure modeling of the radiative and non-radiative properties of semiconductor materials and devices (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Bellotti, Enrico; Wen, Hanqing; Pinkie, Benjamin; Matsubara, Masahiko; Bertazzi, Francesco

    2015-08-01

    Understanding the radiative and non-radiative properties of semiconductor materials is a prerequisite for optimizing the performance of existing light emitters and detectors and for developing new device architectures based on novel materials. Due to the ever increasing complexity of novel semiconductor systems and their relative technological immaturity, it is essential to have design tools and simulation strategies that include the details of the microscopic physics and their dependence on the macroscopic (continuum) variables in the macroscopic device models. Towards this end, we have developed a robust full-band structure based approach that can be used to study the intrinsic material radiative and non-radiative properties and evaluate the same characteristics of low-dimensional device structures. A parallel effort is being carried out to model the effect of substrate driven stress/strain and material quality (dislocations and defects) on microscopic quantities such as non-radiative recombination rate. Using this modeling approach, we have extensively studied the radiative and non-radiative properties of both elemental (Si and Ge) and compound semiconductors (HgCdTe, InGaAs, InAsSb and InGaN). In this work we outline the details of the modelling approach, specifically the challenges and advantages related to the use of the full-band description of the material electronic structure. We will present a detailed comparison of the radiative and Auger recombination rates as a function of temperature and doping for HgCdTe and InAsSb that are two important materials for infrared detectors and emitters. Furthermore we will discuss the role of non-radiatiave Auger recombination processes in explaining the performance of light emitter diodes. Finally we will present the extension of the model to low dimensional structures employed in a number of light emitter and detector structures.

  5. Radiation doses to insertion devices at the Advanced Photon Source

    SciTech Connect

    Moog, E.R.; Den Hartog, P.K.; Semones, E.J.; Job, P.K.

    1997-09-01

    Dose measurements made on and around the insertion devices (IDs) at the Advanced Photon Source are reported. Attempts are made to compare these dose rates to dose rates that have been reported to cause radiation-induced demagnetization, but comparisons are complicated by such factors as the particular magnet material and the techniques used in its manufacture, the spectrum and type of radiation, and the demagnetizing field seen by the magnet. The spectrum of radiation at the IDs. It has almost no effect on the dose to the downstream ends of the IDs, however, since much of the radiation travels through the ID vacuum chamber and cannot be readily shielded. Opening the gaps of the IDs during injection and at other times also helps decrease the radiation exposure.

  6. Influence of material quality and process-induced defects on semiconductor device performance and yield

    NASA Technical Reports Server (NTRS)

    Porter, W. A.; Mckee, W. R.

    1974-01-01

    An overview of major causes of device yield degradation is presented. The relationships of device types to critical processes and typical defects are discussed, and the influence of the defect on device yield and performance is demonstrated. Various defect characterization techniques are described and applied. A correlation of device failure, defect type, and cause of defect is presented in tabular form with accompanying illustrations.

  7. Air-gating and chemical-gating in transistors and sensing devices made from hollow TiO2 semiconductor nanotubes.

    PubMed

    Alivov, Yahya; Funke, Hans; Nagpal, Prashant

    2015-07-24

    Rapid miniaturization of electronic devices down to the nanoscale, according to Moore's law, has led to some undesirable effects like high leakage current in transistors, which can offset additional benefits from scaling down. Development of three-dimensional transistors, by spatial extension in the third dimension, has allowed higher contact area with a gate electrode and better control over conductivity in the semiconductor channel. However, these devices do not utilize the large surface area and interfaces for new electronic functionality. Here, we demonstrate air gating and chemical gating in hollow semiconductor nanotube devices and highlight the potential for development of novel transistors that can be modulated using channel bias, gate voltage, chemical composition, and concentration. Using chemical gating, we reversibly altered the conductivity of nanoscaled semiconductor nanotubes (10-500 nm TiO2 nanotubes) by six orders of magnitude, with a tunable rectification factor (ON/OFF ratio) ranging from 1-10(6). While demonstrated air- and chemical-gating speeds were slow here (∼seconds) due to the mechanical-evacuation rate and size of our chamber, the small nanoscale volume of these hollow semiconductors can enable much higher switching speeds, limited by the rate of adsorption/desorption of molecules at semiconductor interfaces. These chemical-gating effects are completely reversible, additive between different chemical compositions, and can enable semiconductor nanoelectronic devices for 'chemical transistors', 'chemical diodes', and very high-efficiency sensing applications.

  8. Wet Oxidation of High-Al-Content III-V Semiconductors: Important Materials Considerations for Device Applications

    SciTech Connect

    Ashby, Carol I.H.

    1999-05-19

    Wet oxidation of high-Al-content AIGaAs semiconductor layers in vertical cavity surface emitting lasers (VCSELS) has produced devices with record low threshold currents and voltages and with wall-plug efficiencies greater than 50%. Wet oxidation of buried AlGaAs layers has been employed to reduce the problems associated with substrate current leakage in GaAs-on- insulator (GOI) MESFETS. Wet oxidation of high-Al-content AlGaAs semiconductor layers in vertical cavity surface emitting lasers (VCSELS) has produced devices with record low threshold currents and voltages and with wall-plug efficiencies greater than 50%. Wet oxidation of buried AlGaAs layers has been employed to reduce the problems associated with substrate current leakage in GaAs-on- insulator (GOI) MESFETS. Wet oxidation has also been considered as a route to the long-sought goal of a IH-V MIS technology. To continue improving device designs for even higher performance and to establish a truly manufacturable technology based on wet oxidation, the effect of oxidation of a given layer on the properties of the entire device structure must be understood. The oxidation of a given layer can strongly affect the electrical and chemical properties of adjacent layers. Many of these effects are derived from the production of large amounts of elemental As during the oxidation reaction, the resultant generation of point defects, and the diffusion of these defects into adjacent regions. This can modify the chemical and electrical properties of these regions in ways that can impact device design, fabrication, and performance. Current understanding of the problem is discussed here.

  9. Growth and Defect Characterization of Quantum Dot-Embedded III-V Semiconductors for Advanced Space Photovoltaics

    DTIC Science & Technology

    2014-05-15

    provide, which could be useful in the future development of intermediate band solar cell (IBSC) devices. Defect spectroscopy was also performed on OMVPE...grown InAs/GaAs QD-embedded solar cells . A large increase in mid-gap trap density surrounding the embedded QDs was found and points to a potentially... cell calibration, high altitude solar cell calibration, high altitude balloon solar cell calibration, III-V compound semiconductors, solar cells

  10. Optical logic and signal processing using a semiconductor laser diode-based optical bistability device

    NASA Astrophysics Data System (ADS)

    Zhang, Yuancheng; Song, Qian; He, Shaowei

    1995-02-01

    Using an optical fibre-coupled semiconductor laser diode OBD with output feedback pumping operation in 5 modes (differential gain, bistability, zero-bias, inverted differential gain, and inverted bistability) has been realized respectively, and 5 elementary optical logic functions (AND, OR, NOT, NAND, and NOR) and some optical signal processing such as limiting, reshaping, and triggering have been implemented.

  11. Semiconductor nanowire thermoelectric materials and devices, and processes for producing same

    DOEpatents

    Lagally, Max G.; Evans, Paul G.; Ritz, Clark S.

    2015-11-17

    The present invention provides nanowires and nanoribbons that are well suited for use in thermoelectric applications. The nanowires and nanoribbons are characterized by a periodic compositional longitudinal modulation. The nanowires are constructed using lithographic techniques from thin semiconductor membranes, or "nanomembranes."

  12. Semiconductor nanowire thermoelectric materials and devices, and processes for producing same

    DOEpatents

    Lagally, Max G [Madison, WI; Evans, Paul G [Madison, WI; Ritz, Clark S [Middleton, WI

    2011-02-15

    The present invention provides nanowires and nanoribbons that are well suited for use in thermoelectric applications. The nanowires and nanoribbons are characterized by a periodic longitudinal modulation, which may be a compositional modulation or a strain-induced modulation. The nanowires are constructed using lithographic techniques from thin semiconductor membranes, or "nanomembranes."

  13. Semiconductor nanowire thermoelectric materials and devices, and processes for producing same

    DOEpatents

    Lagally, Max G; Evans, Paul G; Ritz, Clark S

    2013-09-17

    The present invention provides nanowires and nanoribbons that are well suited for use in thermoelectric applications. The nanowires and nanoribbons are characterized by a periodic compositional longitudinal modulation. The nanowires are constructed using lithographic techniques from thin semiconductor membranes, or "nanomembranes."

  14. A comprehensive study of charge trapping in organic field-effect devices with promising semiconductors and different contact metals by displacement current measurements

    NASA Astrophysics Data System (ADS)

    Bisoyi, Sibani; Rödel, Reinhold; Zschieschang, Ute; Kang, Myeong Jin; Takimiya, Kazuo; Klauk, Hagen; Tiwari, Shree Prakash

    2016-02-01

    A systematic and comprehensive study on the charge-carrier injection and trapping behavior was performed using displacement current measurements in long-channel capacitors based on four promising small-molecule organic semiconductors (pentacene, DNTT, C10-DNTT and DPh-DNTT). In thin-film transistors, these semiconductors showed charge-carrier mobilities ranging from 1.0 to 7.8 cm2 V-1 s-1. The number of charges injected into and extracted from the semiconductor and the density of charges trapped in the device during each measurement were calculated from the displacement current characteristics and it was found that the density of trapped charges is very similar in all devices and of the order 1012 cm-2, despite the fact that the four semiconductors show significantly different charge-carrier mobilities. The choice of the contact metal (Au, Ag, Cu, Pd) was also found to have no significant effect on the trapping behavior.

  15. Semiconductor nanowires for future electronics: Growth, characterization, device fabrication, and integration

    NASA Astrophysics Data System (ADS)

    Dayeh, Shadi A.

    This dissertation concerns with fundamental aspects of organo-metallic vapor phase epitaxy (OMVPE) of III-V semiconductor nanowires (NWs), and their structural and electrical properties inferred from a variety of device schemes. An historical perspective on the NW growth techniques and mechanisms, and an overview of demonstrated NW devices and their performance is summarized in chapter 1. In part I of the dissertation, OMVPE synthesis of InAs NWs on SiO 2/Si and InAs (111)B surfaces is discussed and their growth mechanism is resolved. Nucleation, evolution, and the role of Au nanoparticles in the growth of InAs NWs on SiO2/Si surfaces are presented in chapter 2. Our results indicate that In droplets can lead to InAs NW growth and that Au nanoparticles are necessary for efficient AsH3 pyrolysis. Chapter 3 discusses the key thermodynamic and kinetic processes that contribute to the InAs NW growth on InAs (111)B surfaces. Controversy in the interpretation of III-V NW growth is overviewed. Experimental evidence on the nucleation of InAs NWs from In droplets as well as the catalytic effect of Au nanoparticles on the InAs (111)B surfaces are described. NW cessation at high growth temperatures or at increased input molar V/III ratios is explained via a switch-over from vapor-liquid-solid (VLS) NW growth to vapor-solid thin film growth, in contrast to previous interpretation of vapor-solid-solid growth of III-V NWs. The substrate-NW adatom exchange is also treated, and experimental distinction of two NW growth regimes depending on this exchange is demonstrated for the first time. Our results indicate that when growing extremely uniform InAs NWs, solid-phase diffusion of In adatoms on the NW sidewalls is the dominant material incorporation process with surface diffusion lengths of ˜ 1 mum. This understanding was further utilized for the growth of axial and radial InAs-InP heterostructure NWs. Polymorphism in III-V NW crystal structure is also discussed and growth

  16. Ultraviolet-visible electroluminescence from metal-oxide-semiconductor devices with CeO{sub 2} films on silicon

    SciTech Connect

    Lv, Chunyan; Zhu, Chen; Wang, Canxing; Li, Dongsheng; Ma, Xiangyang Yang, Deren

    2015-03-15

    We report on ultraviolet-visible (UV-Vis) electroluminescence (EL) from metal-oxide-semiconductor (MOS) devices with the CeO{sub 2} films annealed at low temperatures. At the same injection current, the UV-Vis EL from the MOS device with the 550 °C-annealed CeO{sub 2} film is much stronger than that from the counterpart with the 450 °C-annealed CeO{sub 2} film. This is due to that the 550 °C-annealed CeO{sub 2} film contains more Ce{sup 3+} ions and oxygen vacancies. It is tentatively proposed that the recombination of the electrons in multiple oxygen-vacancy–related energy levels with the holes in Ce 4f{sup 1} energy band pertaining to Ce{sup 3+} ions leads to the UV-Vis EL.

  17. Capability of tip-enhanced Raman spectroscopy about nanoscale analysis of strained silicon for semiconductor devices production

    NASA Astrophysics Data System (ADS)

    Lucia, Arianna; Cacioppo, Onofrio Antonino; Iulianella, Enrico; Latessa, Luca; Moccia, Giuseppe; Passeri, Daniele; Rossi, Marco

    2017-03-01

    Localized strained silicon was observed with a suitable resolution in a real semiconductor device by tip-enhanced Raman spectroscopy (TERS). The device was made via a standard industrial process and its silicon trench isolation structures were used for the silicon strain analysis obtaining results according to finite element method-based simulation data. We have achieved a reliable and repeatable enhancement factor obtaining a trace of strained silicon along the structure with suitable nanometer spatial resolution compatible with IC industry requirements. We demonstrate that the complexity to analyze a real 3D structure, directly from the production lines and not ad hoc realized, entails the challenges to individuate the optimal tip shape, tip contact angle, tip composition, tip positioning system, laser power, and wavelength to achieve an appropriate plasmon resonance inducing a relevant signal to noise ratio. This work gives the base to address the development in TERS optimization for real industrial applications.

  18. The Application of Iii-V Semiconductor Heterojunction Structures Grown by Molecular Beam Epitaxy to Microwave Devices

    NASA Astrophysics Data System (ADS)

    Schaff, William Joseph

    Semiconductor devices capable of higher speeds and higher frequency operation have been a subject of great interest for many years. New fabrication techniques have provided the tools for pushing conventional device performance to new limits. These new techniques have also made possible entirely new clases of devices such as inverted High Electron Mobility Transistors and AlGaAs buffered GaAs MESFETs. The production of such state of the art devices invariably leads to a discovery of materials and process limitations that need to be eliminated. The requirement for achieving changes in composition in semiconductor materials within a single atomic layer is central to the above devices as well as many proposed devices. Molecular Beam Epitaxy has already produced materials with atomic monolayer abruptness in some structures. There are however, some desirable structures that have not been successfully produced by this technique. The fundamental problem is that good quality AlGaAs/GaAs interfaces for GaAs on AlGaAs have not been obtained when the thickness of the AlGaAs is comparable to that needed for inverted High Electron Mobility Transistors or AlGaAs buffered power Field Effect Transistors. It has been found that impurity contamination of GaAs grown on top of AlGaAs can be a severe problem. The purpose of this work is to understand the difficulties which occur and demonstrate the successful application of some techniques which minimize, or eliminate, some of the limitations on current and anticipated device performance. The concept of impurity gettering by an interface and a form of strained layer superlattice effected lattice matching are explored for GaAs and AlGaAs structures. A GaAs MESFET has been fabricated on a superlattice buffer for the first time. It has superior performance to devices with simpler structures. The improved material properties obtained by substitution of a superlattice buffer for the homogeneous GaAs buffer are measured, as a final test, by

  19. 76 FR 48169 - Advancing Regulatory Science for Highly Multiplexed Microbiology/Medical Countermeasure Devices...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-08

    ... Microbiology/ Medical Countermeasure Devices; Public Meeting AGENCY: Food and Drug Administration, HHS. ACTION... following public meeting: ``Advancing Regulatory Science for Highly Multiplexed Microbiology/Medical... multiplexed microbiology/medical countermeasure (MCM) devices, their clinical application and public...

  20. Performance of an MPI-only semiconductor device simulator on a quad socket/quad core InfiniBand platform.

    SciTech Connect

    Shadid, John Nicolas; Lin, Paul Tinphone

    2009-01-01

    This preliminary study considers the scaling and performance of a finite element (FE) semiconductor device simulator on a capacity cluster with 272 compute nodes based on a homogeneous multicore node architecture utilizing 16 cores. The inter-node communication backbone for this Tri-Lab Linux Capacity Cluster (TLCC) machine is comprised of an InfiniBand interconnect. The nonuniform memory access (NUMA) nodes consist of 2.2 GHz quad socket/quad core AMD Opteron processors. The performance results for this study are obtained with a FE semiconductor device simulation code (Charon) that is based on a fully-coupled Newton-Krylov solver with domain decomposition and multilevel preconditioners. Scaling and multicore performance results are presented for large-scale problems of 100+ million unknowns on up to 4096 cores. A parallel scaling comparison is also presented with the Cray XT3/4 Red Storm capability platform. The results indicate that an MPI-only programming model for utilizing the multicore nodes is reasonably efficient on all 16 cores per compute node. However, the results also indicated that the multilevel preconditioner, which is critical for large-scale capability type simulations, scales better on the Red Storm machine than the TLCC machine.

  1. Development of an electronic device quality aluminum antimonide (AlSb) semiconductor for solar cell applications

    SciTech Connect

    Sherohman, John W; Yee, Jick Hong; Combs, III, Arthur W

    2014-11-11

    Electronic device quality Aluminum Antimonide (AlSb)-based single crystals produced by controlled atmospheric annealing are utilized in various configurations for solar cell applications. Like that of a GaAs-based solar cell devices, the AlSb-based solar cell devices as disclosed herein provides direct conversion of solar energy to electrical power.

  2. Device Processing of II-VI Semiconductor Films and Quantum Well Structures

    DTIC Science & Technology

    1991-03-07

    The objectives of this program is to develop a device processing technology necessary for proper utilization of Hg-based heterostructures and...superlattices in device applications. The specific focus or long term goal guiding the direction of the program is to develop the devices and processing ... technology required for an IR focal plane integrated with on-board signal processing electronics.

  3. The 1.7 kilogram microchip: energy and material use in the production of semiconductor devices.

    PubMed

    Williams, Eric D; Ayres, Robert U; Heller, Miriam

    2002-12-15

    The scale of environmental impacts associated with the manufacture of microchips is characterized through analysis of material and energy inputs into processes in the production chain. The total weight of secondary fossil fuel and chemical inputs to produce and use a single 2-gram 32MB DRAM chip are estimated at 1600 g and 72 g, respectively. Use of water and elemental gases (mainly N2) in the fabrication stage are 32,000 and 700 g per chip, respectively. The production chain yielding silicon wafers from quartz uses 160 times the energy required for typical silicon, indicating that purification to semiconductor grade materials is energy intensive. Due to its extremely low-entropy, organized structure, the materials intensity of a microchip is orders of magnitude higher than that of "traditional" goods. Future analysis of semiconductor and other low entropy high-tech goods needs to include the use of secondary materials, especially for purification.

  4. Methods of producing strain in a semiconductor waveguide and related devices

    DOEpatents

    Cox, Johathan Albert; Rakich, Peter Thomas

    2016-02-16

    Quasi-phase matched (QPM), semiconductor photonic waveguides include periodically-poled alternating first and second sections. The first sections exhibit a high degree of optical coupling (abbreviated "X.sup.2"), while the second sections have a low X.sup.2. The alternating first and second sections may comprise high-strain and low-strain sections made of different material states (such as crystalline and amorphous material states) that exhibit high and low X.sup.2 properties when formed on a particular substrate, and/or strained corrugated sections of different widths. The QPM semiconductor waveguides may be implemented as silicon-on-insulator (SOI), or germanium-on-silicon structures compatible with standard CMOS processes, or as silicon-on-sapphire (SOS) structures.

  5. Methods and devices for optimizing the operation of a semiconductor optical modulator

    DOEpatents

    Zortman, William A.

    2015-07-14

    A semiconductor-based optical modulator includes a control loop to control and optimize the modulator's operation for relatively high data rates (above 1 GHz) and/or relatively high voltage levels. Both the amplitude of the modulator's driving voltage and the bias of the driving voltage may be adjusted using the control loop. Such adjustments help to optimize the operation of the modulator by reducing the number of errors present in a modulated data stream.

  6. Near net shape forming of advanced structural ceramic devices

    NASA Astrophysics Data System (ADS)

    Liu, Hao-Chih

    This research applied a combination of rapid prototyping techniques and ceramic gelcasting processes in the design and manufacturing of advanced structural ceramic components that cannot be fabricated by other shape-forming processes. An Assembly Mold SDM process, a derivative process of Shape Deposition Manufacturing, was adopted along with modified gelcasting with great success. The fabricated gas turbine rotors, inlet nozzles, and mesoscale burner arrays have demonstrated superior shape accuracy, mechanical strength, and surface smoothness with a feature size of 200 mum. The design concepts and functionalities of the ceramic devices were verified with performance tests. The shape complexity and surface quality of ceramic parts have been further improved by the use of a mold assembly made of a low melting temperature metal alloy. The introduction of metal alloy required modifications in the mold design, machining procedure, and ceramic processing. A complete shape forming process (from slurry to final parts) was developed for the low melting temperature metal alloy. In addition, the choice of ceramic material now includes SiC, which is critical to the development of micro heat exchangers. Forty-channel, high-aspect-ratio structured SiC heat exchangers were fabricated, and the thermal conductivity value of SiC was found to be comparable to that of steel. The catalyst deposition and ceramic precursor impregnation processes were proposed to enable use of the SiC heat exchangers as micro reactors. Micro-electro-mechanical-systems (MEMS)-related techniques such as SU-8 deep photolithography and polydimethylsiloxane (PDMS) soft lithography were combined with gelcasting to make micro patterns on structural ceramics. A feature size of 125 mum and aspect ratio of 8 have been achieved in the preliminary experiments. Based on the fabricated ceramic devices, a graphical method to characterize the shape attributes of complex-shaped components was proposed and used to compare

  7. Comparison of Wide-Bandgap Semiconductors for Power Electronics Applications

    SciTech Connect

    Ozpineci, B.

    2004-01-02

    Recent developmental advances have allowed silicon (Si) semiconductor technology to approach the theoretical limits of the Si material; however, power device requirements for many applications are at a point that the present Si-based power devices cannot handle. The requirements include higher blocking voltages, switching frequencies, efficiency, and reliability. To overcome these limitations, new semiconductor materials for power device applications are needed. For high power requirements, wide-bandgap semiconductors like silicon carbide (SiC), gallium nitride (GaN), and diamond, with their superior electrical properties, are likely candidates to replace Si in the near future. This report compares wide-bandgap semiconductors with respect to their promise and applicability for power applications and predicts the future of power device semiconductor materials.

  8. Analytical investigation of the junction space-charge region properties of heterojunction semiconductor devices: Application to n-AlzGa1 - zAs/p-GaAs system

    NASA Astrophysics Data System (ADS)

    Mohammad, S. Noor

    1988-06-01

    An analytical investigation of the space-charge region junction properties of heterojunction semiconductor devices from heavily doped and degenerate semiconductors has been carried out. On the basis of a new formula for Fermi-Dirac integral of order (1)/(2) theoretical formulas for junction boundary conditions, minority-carrier concentrations at the edges of space-charge region and excess minority-carrier concentrations at the edges of space-charge region have been derived. All of these formulas take the spatial dependence of band structures, carrier degeneracy, and band-gap narrowing into account. Under special conditions the formulas reduce to the well-known standard formulas for homojunction devices from both degenerate and nondegenerate semiconductors. The new relation for Fermi-Dirac integral is very highly accurate. Numerical calculations performed on an n-AlzGa1-zAs/p-GaAs (z=0.1) diode indicate that all these parameters significantly influence the junction properties of heterojunction semiconductor devices, and without which theoretical modeling of heterojunction devices with spatially dependent and heavily doped semiconductor regions are likely to involve errors.

  9. Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells

    NASA Astrophysics Data System (ADS)

    Minemoto, Takashi; Murata, Masashi

    2014-08-01

    Device modeling of CH3NH3PbI3-xCl3 perovskite-based solar cells was performed. The perovskite solar cells employ a similar structure with inorganic semiconductor solar cells, such as Cu(In,Ga)Se2, and the exciton in the perovskite is Wannier-type. We, therefore, applied one-dimensional device simulator widely used in the Cu(In,Ga)Se2 solar cells. A high open-circuit voltage of 1.0 V reported experimentally was successfully reproduced in the simulation, and also other solar cell parameters well consistent with real devices were obtained. In addition, the effect of carrier diffusion length of the absorber and interface defect densities at front and back sides and the optimum thickness of the absorber were analyzed. The results revealed that the diffusion length experimentally reported is long enough for high efficiency, and the defect density at the front interface is critical for high efficiency. Also, the optimum absorber thickness well consistent with the thickness range of real devices was derived.

  10. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    SciTech Connect

    Mekhiche, Mike; Dufera, Hiz; Montagna, Deb

    2012-10-29

    The project conducted under DOE contract DE‐EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven‐stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy technology to deliver a device with much increased power delivery. Scaling‐up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke‐ unlimited Power Take‐Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

  11. Defect state passivation at III-V oxide interfaces for complementary metal–oxide–semiconductor devices

    SciTech Connect

    Robertson, J.; Guo, Y.; Lin, L.

    2015-03-21

    The paper describes the reasons for the greater difficulty in the passivation of interface defects of III–V semiconductors like GaAs. These include the more complex reconstructions of the starting surface which already possess defect configurations, the possibility of injecting As antisites into the substrate which give rise to gap states, and the need to avoid As-As bonds and As dangling bonds which give rise to gap states. The nature of likely defect configurations in terms of their electronic structure is described. The benefits of diffusion barriers and surface nitridation are discussed.

  12. 3D-profile measurement of advanced semiconductor features by reference metrology

    NASA Astrophysics Data System (ADS)

    Takamasu, Kiyoshi; Iwaki, Yuuki; Takahashi, Satoru; Kawada, Hiroki; Ikota, Masami; Lorusso, Gian F.; Horiguchi, Naoto

    2016-03-01

    A method of sub-nanometer uncertainty for the 3D-profile measurement using TEM (Transmission Electron Microscope) images is proposed to standardize 3D-profile measurement through reference metrology. The proposed method has been validated for profiles of Si lines, photoresist features and advanced-FinFET (Fin-shaped Field-Effect Transistor) features in our previous investigations. However, efficiency of 3D-profile measurement using TEM is limited by measurement time including processing of the sample. In this article, we demonstrate a novel on-wafer 3D-profile metrology as "FIB-to-CDSEM method" with FIB (Focused Ion Beam) slope cut and CD-SEM (Critical Dimension Secondary Electron Microscope) measuring. Using the method, a few micrometer wide on a wafer is coated and cut by 45 degree slope using FIB tool. Then, the wafer is transferred to CD-SEM to measure the cross section image by top down CD-SEM measurement. We apply FIB-to-CDSEM method to CMOS sensor device. 3D-profile and 3D-profile parameters such as top line width and side wall angles of CMOS sensor device are evaluated. The 3D-profile parameters also are measured by TEM images as reference metrology. We compare the 3D-profile parameters by TEM method and FIB-to-CDSEM method. The average values and correlations on the wafer are agreed well between TEM and FIB-to- CDSEM methods.

  13. Gated Hall effect of nanoplate devices reveals surface-state-induced surface inversion in iron pyrite semiconductor.

    PubMed

    Liang, Dong; Cabán-Acevedo, Miguel; Kaiser, Nicholas S; Jin, Song

    2014-12-10

    Understanding semiconductor surface states is critical for their applications, but fully characterizing surface electrical properties is challenging. Such a challenge is especially crippling for semiconducting iron pyrite (FeS2), whose potential for solar energy conversion has been suggested to be held back by rich surface states. Here, by taking advantage of the high surface-to-bulk ratio in nanostructures and effective electrolyte gating, we develop a general method to fully characterize both the surface inversion and bulk electrical transport properties for the first time through electrolyte-gated Hall measurements of pyrite nanoplate devices. Our study shows that pyrite is n-type in the bulk and p-type near the surface due to strong inversion and yields the concentrations and mobilities of both bulk electrons and surface holes. Further, solutions of the Poisson equation reveal a high-density of surface holes accumulated in a 1.3 nm thick strong inversion layer and an upward band bending of 0.9-1.0 eV. This work presents a general methodology for using transport measurements of nanostructures to study both bulk and surface transport properties of semiconductors. It also suggests that high-density of surface states are present on surface of pyrite, which partially explains the universal p-type conductivity and lack of photovoltage in polycrystalline pyrite.

  14. Processing and packaging of semiconductor lasers and optoelectronic devices; Proceedings of the Meeting, Los Angeles, CA, Jan. 20, 21, 1993

    NASA Astrophysics Data System (ADS)

    Temkin, Henryk

    1993-06-01

    Various papers on processing and packaging of semiconductor laser and optoelectronic devices are presented. Individual topics addressed include: buried heterostructure lasers based on InGaAsP/InP, fabrication processes for GaAs-based high-power diode lasers, fast and reliable processing of high-performance InGaAs 0.98 micron laser diodes, 1.3 micron InGaAsP/InP buried-crescent lasers with narrow spread of threshold currents, Si-based laser subassembly for telecommunications, inexpensive packaging techniques of fiber pigtailed laser diodes, high-performance packaging of gigabit data communication optical modules, applications of diamond made by chemical-vapor deposition for semiconductor laser submounts. Also discussed are: packaging of optical interconnect arrays for optical signal processing and computing, coupling 4 W cw from a diode-pumped Nd:YAG laser through a 5-micron-core single-mode fiber, microoptic and microelectronic infrared packaging of vertical-cavity laser arrays, vertical-cavity surface-emitting laser technology, direct contact-type image sensor unit.

  15. Modeling direct band-to-band tunneling: From bulk to quantum-confined semiconductor devices

    SciTech Connect

    Carrillo-Nuñez, H.; Ziegler, A.; Luisier, M.; Schenk, A.

    2015-06-21

    A rigorous framework to study direct band-to-band tunneling (BTBT) in homo- and hetero-junction semiconductor nanodevices is introduced. An interaction Hamiltonian coupling conduction and valence bands (CVBs) is derived using a multiband envelope method. A general form of the BTBT probability is then obtained from the linear response to the “CVBs interaction” that drives the system out of equilibrium. Simple expressions in terms of the one-electron spectral function are developed to compute the BTBT current in two- and three-dimensional semiconductor structures. Additionally, a two-band envelope equation based on the Flietner model of imaginary dispersion is proposed for the same purpose. In order to characterize their accuracy and differences, both approaches are compared with full-band, atomistic quantum transport simulations of Ge, InAs, and InAs-Si Esaki diodes. As another numerical application, the BTBT current in InAs-Si nanowire tunnel field-effect transistors is computed. It is found that both approaches agree with high accuracy. The first one is considerably easier to conceive and could be implemented straightforwardly in existing quantum transport tools based on the effective mass approximation to account for BTBT in nanodevices.

  16. Using advanced mobile devices in nursing practice--the views of nurses and nursing students.

    PubMed

    Johansson, Pauline; Petersson, Göran; Saveman, Britt-Inger; Nilsson, Gunilla

    2014-09-01

    Advanced mobile devices allow registered nurses and nursing students to keep up-to-date with expanding health-related knowledge but are rarely used in nursing in Sweden. This study aims at describing registered nurses' and nursing students' views regarding the use of advanced mobile devices in nursing practice. A cross-sectional study was completed in 2012; a total of 398 participants replied to a questionnaire, and descriptive statistics were applied. Results showed that the majority of the participants regarded an advanced mobile device to be useful, giving access to necessary information and also being useful in making notes, planning their work and saving time. Furthermore, the advanced mobile device was regarded to improve patient safety and the quality of care and to increase confidence. In order to continuously improve the safety and quality of health care, advanced mobile devices adjusted for nursing practice should be further developed, implemented and evaluated in research.

  17. CdSe Nanowire-Based Flexible Devices: Schottky Diodes, Metal-Semiconductor Field-Effect Transistors, and Inverters.

    PubMed

    Jin, Weifeng; Zhang, Kun; Gao, Zhiwei; Li, Yanping; Yao, Li; Wang, Yilun; Dai, Lun

    2015-06-24

    Novel CdSe nanowire (NW)-based flexible devices, including Schottky diodes, metal-semiconductor field-effect transistors (MESFETs), and inverters, have been fabricated and investigated. The turn-on voltage of a typical Schottky diode is about 0.7 V, and the rectification ratio is larger than 1 × 10(7). The threshold voltage, on/off current ratio, subthreshold swing, and peak transconductance of a typical MESFET are about -0.3 V, 4 × 10(5), 78 mV/dec, and 2.7 μS, respectively. The inverter, constructed with two MESFETs, exhibits clear inverting behavior with the gain to be about 28, 34, and 38, at the supply voltages (V(DD)) of 3, 5, and 7 V, respectively. The inverter also shows good dynamic behavior. The rising and falling times of the output signals are about 0.18 and 0.09 ms, respectively, under 1000 Hz square wave signals input. The performances of the flexible devices are stable and reliable under different bending conditions. Our work demonstrates these flexible NW-based Schottky diodes, MESFETs, and inverters are promising candidate components for future portable transparent nanoelectronic devices.

  18. Characterization of solution structure and its importance in thin film ordering of conjugated block copolymers for organic semiconductor devices

    NASA Astrophysics Data System (ADS)

    Brady, Michael; Ku, Sung-Yu; Cochran, Justin; Wang, Cheng; Hawker, Craig; Kramer, Edward; Chabinyc, Michael

    2014-03-01

    Fully conjugated diblock copolymers (CBCPs) form intriguing materials alternatives to polymer-small molecule blends for their control of mesoscopic order in low-cost organic semiconductor devices. In both bulk heterojunction (BHJ) photovoltaics, consisting of an interpenetrating network with high donor-acceptor interfacial area, and ambipolar transistors, the transport of charge carriers through continuous p- and n-type paths in thin films is a controlling factor in device performance. AFM, GIWAXS, NEXAFS spectroscopy, and RSoXS are used to probe the structure of films of CBCPs with a p-type P3HT block and an n-type DPP block. Thermal annealing in the P3HT melt after casting creates ordered domains with ~ 50 nm in-plane lamellar spacings, as confirmed with GISAXS and RSoXS. GIWAXS diffraction from the (h00) alkyl-stacking and (010) pi-stacking planes shows primarily edge-on orientation for crystals of both P3HT and DPP blocks. In addition, temperature-dependent solution SAXS and UV-Vis spectroscopy are used to probe the size and conformation of casting solution aggregates. Fibrillar DPP aggregates direct the crystallization of P3HT- b-DPP following film casting and enable the formation of wormlike domains after annealing and thus ideal morphologies for transport in organic devices.

  19. Electroluminescence from metal-oxide-semiconductor devices with erbium-doped CeO{sub 2} films on silicon

    SciTech Connect

    Lv, Chunyan; Zhu, Chen; Wang, Canxing; Gao, Yuhan; Ma, Xiangyang Yang, Deren

    2015-04-06

    We report on erbium (Er)-related electroluminescence (EL) in the visible and near-infrared (NIR) from metal-oxide-semiconductor (MOS) devices with Er-doped CeO{sub 2} (CeO{sub 2}:Er) films on silicon. The onset voltage of such EL under either forward or reverse bias is smaller than 10 V. Moreover, the EL quenching can be avoidable for the CeO{sub 2}:Er-based MOS devices. Analysis on the current-voltage characteristic of the device indicates that the electron transportation at the EL-enabling voltages under either forward or reverse bias is dominated by trap-assisted tunneling mechanism. Namely, electrons in n{sup +}-Si/ITO can tunnel into the conduction band of CeO{sub 2} host via defect states at sufficiently high forward/reverse bias voltages. Then, a fraction of such electrons are accelerated by electric field to become hot electrons, which impact-excite the Er{sup 3+} ions, thus leading to characteristic emissions. It is believed that this work has laid the foundation for developing viable silicon-based emitters using CeO{sub 2}:Er films.

  20. Irradiate-anneal screening of total dose effects in semiconductor devices. [radiation hardening of spacecraft components of Mariner spacecraft

    NASA Technical Reports Server (NTRS)

    Stanley, A. G.; Price, W. E.

    1976-01-01

    An extensive investigation of irradiate-anneal (IRAN) screening against total dose radiation effects was carried out as part of a program to harden the Mariner Jupiter/Saturn 1977 (MJS'77) spacecraft to survive the Jupiter radiation belts. The method consists of irradiating semiconductor devices with Cobalt-60 to a suitable total dose under representative bias conditions and of separating the parts in the undesired tail of the distribution from the bulk of the parts by means of a predetermined acceptance limit. The acceptable devices are then restored close to their preirradiation condition by annealing them at an elevated temperature. IRAN was used when lot screen methods were impracticable due to lack of time, and when members of a lot showed a diversity of radiation response. The feasibility of the technique was determined by testing of a number of types of linear bipolar integrated circuits, analog switches, n-channel JFETS and bipolar transistors. Based on the results of these experiments a number of device types were selected for IRAN of flight parts in the MJS'77 spacecraft systems. The part types, screening doses, acceptance criteria, number of parts tested and rejected as well as the program steps are detailed.

  1. Development and fabrication of improved power transistor switches. [fabrication and manufacturing of semiconductor devices

    NASA Technical Reports Server (NTRS)

    Hower, P. L.; Chu, C. K.

    1976-01-01

    A new class of high-voltage power transistors has been achieved by adapting present interdigitated thyristor processing techniques to the fabrication of NPN Si transistors. Present devices are 2.3 cm in diameter. The electrical performance obtained is consistent with the predictions of an optimum design theory specifically developed for power switching transistors. The forward safe operating area of the experimental transistors shows a significant improvement over commercially available devices. The report describes device design, wafer processing, and various measurements which include dc characteristics, forward and reverse second breakdown limits, and switching times.

  2. A bio-inspired memory device based on interfacing Physarum polycephalum with an organic semiconductor

    SciTech Connect

    Romeo, Agostino; Dimonte, Alice; Tarabella, Giuseppe; D’Angelo, Pasquale E-mail: iannotta@imem.cnr.it; Erokhin, Victor; Iannotta, Salvatore E-mail: iannotta@imem.cnr.it

    2015-01-01

    The development of devices able to detect and record ion fluxes is a crucial point in order to understand the mechanisms that regulate communication and life of organisms. Here, we take advantage of the combined electronic and ionic conduction properties of a conducting polymer to develop a hybrid organic/living device with a three-terminal configuration, using the Physarum polycephalum Cell (PPC) slime mould as a living bio-electrolyte. An over-oxidation process induces a conductivity switch in the polymer, due to the ionic flux taking place at the PPC/polymer interface. This behaviour endows a current-depending memory effect to the device.

  3. Advanced Energy Harvesting Control Schemes for Marine Renewable Energy Devices

    SciTech Connect

    McEntee, Jarlath; Polagye, Brian; Fabien, Brian; Thomson, Jim; Kilcher, Levi; Marnagh, Cian; Donegan, James

    2016-03-31

    The Advanced Energy Harvesting Control Schemes for Marine Renewable Energy Devices (Project) investigated, analyzed and modeled advanced turbine control schemes with the objective of increasing the energy harvested by hydrokinetic turbines in turbulent flow. Ocean Renewable Power Company (ORPC) implemented and validated a feedforward controller to increase power capture; and applied and tested the controls on ORPC’s RivGen® Power Systems in Igiugig, Alaska. Assessments of performance improvements were made for the RivGen® in the Igiugig environment and for ORPC’s TidGen® Power System in a reference tidal environment. Annualized Energy Production (AEP) and Levelized Cost of Energy (LCOE) improvements associated with implementation of the recommended control methodology were made for the TidGen® Power System in the DOE reference tidal environment. System Performance Advancement (SPA) goals were selected for the project. SPA targets were to improve Power to Weight Ratio (PWR) and system Availability, with the intention of reducing Levelized Cost of Electricity (LCOE). This project focused primarily reducing in PWR. Reductions in PWR of 25.5% were achieved. Reductions of 20.3% in LCOE were achieved. This project evaluated four types of controllers which were tested in simulation, emulation, a laboratory flume, and the field. The adaptive Kω2 controller performs similarly to the non-adaptive version of the same controller and may be useful in tidal channels where the mean velocity is continually evolving. Trends in simulation were largely verified through experiments, which also provided the opportunity to test assumptions about turbine responsiveness and control resilience to varying scales of turbulence. Laboratory experiments provided an essential stepping stone between simulation and implementation on a field-scale turbine. Experiments also demonstrated that using “energy loss” as a metric to differentiate between well-designed controllers operating at

  4. Advanced fiber lasers and related all-fiber devices

    NASA Astrophysics Data System (ADS)

    Srinivasan, Balaji

    2000-11-01

    :ZBLAN. The demonstration of substantial second order nonlinearities (~1 pm/V) at UNM using thermal- assisted poling in normally symmetry forbidden silica glass has inspired worldwide research efforts aimed at achieving similar nonlinearities in fibers. All-fiber electro-optic devices based on such poled fibers are anticipated to enhance the performance of various lasers, including modelocked and tunable fiber lasers. This dissertation presents the first demonstration of stable, electro-optically tunable fiber Bragg gratings (FBGs) with a tuning range of 20 pm (2.5 GHz), which should enable applications such as reconfigurable add/drop filters and actively modelocked all-fiber lasers. Two key steps in the fabrication of the tunable FBGs viz. the fabrication of thermally stable FBGs, and a novel method for in-situ monitoring of fiber polishing are also demonstrated. Finally, this dissertation discusses issues related to the demonstration of all-fiber electro- optically tunable polarization rotators and their possible impact on future advanced fiber lasers.

  5. Point-of-Care (POC) Devices by Means of Advanced MEMS

    PubMed Central

    Karsten, Stanislav L.; Tarhan, Mehmet C.; Kudo, Lili C.; Collard, Dominique; Fujita, Hiroyuki

    2015-01-01

    Microelectromechanical systems (MEMS) have become an invaluable technology to advance the development of point-of-care (POC) devices for diagnostics and sample analyses. MEMS can transform sophisticated methods into compact and cost-effective microdevices that offer numerous advantages at many levels. Such devices include microchannels, microsensors, etc., that have been applied to various miniaturized POC products. Here we discuss some of the recent advances made in the use of MEMS devices for POC applications. PMID:26459443

  6. Durable left ventricular assist device therapy in advanced heart failure: Patient selection and clinical outcomes

    PubMed Central

    Shah, Sachin P.; Mehra, Mandeep R.

    2016-01-01

    The increasing adoption of left ventricular assist devices (LVADs) into clinical practice is related to a combination of engineering advances in pump technology and improvements in understanding the appropriate clinical use of these devices in the management of patients with advanced heart failure. This review intends to assist the clinician in identifying candidates for LVAD implantation, to examine long-term outcomes and provide an overview of the common complications related to use of these devices. PMID:27056652

  7. Chirp-enhanced fast light in semiconductor optical amplifiers.

    PubMed

    Sedgwick, F G; Pesala, Bala; Uskov, Alexander V; Chang-Hasnain, C J

    2007-12-24

    We present a novel scheme to increase the THz-bandwidth fast light effect in semiconductor optical amplifiers and increase the number of advanced pulses. By introducing a linear chirp to the input pulses before the SOA and recompressing at the output with an opposite chirp, the advance-bandwidth product reached 3.5 at room temperature, 1.55 microm wavelength. This is the largest number reported, to the best of our knowledge, for a semiconductor slow/fast light device.

  8. Characterization of structural and electronic properties of nanoscale semiconductor device structures using cross-sectional scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Rosenthal, Paul Arthur

    Scanning probe microscopy (SPM) offers numerous advantages over metrology tools traditionally used for semiconductor materials and device characterization including high lateral spatial resolution, and relative ease of use. Cross-sectional SPM allows material and device measurements including layer thickness metrology and p-n junction delineation on actual nanoscale device structures. Site-specific SPM allows measurements to be performed on modern devices with real, non-arbitrary geometries including deep-submicron Si device structures. In Chapter II we present theoretical analysis and experimental results of capacitive force microscopy studies of AlxGa1-xAs/GaAs heterojunction bipolar transistor structures. The contrast obtained yields clear delineation of individual device layers based on doping, and enables a precise determination of the difference in basewidth between the two HBT samples examined. We experimentally determine a charged surface state density on the GaAs {110} surface that is consistent with published values. In Chapter III we present cross-sectional scanning capacitance microscopy (SCM) of nanoscale group IV Si device structures. Sample preparation techniques are discussed in context with recent experimental results from the literature. We then presented a theoretical calculation of the flat-band and threshold voltage of Si-MOSFETs as a function of doping including error analysis due to oxide thickness variations. Application to nanoscale FIB implanted Si is presented. The SCM contrast evolves as a function of applied bias as expected based on theoretical modeling of the tip-sample system as an MOS-capacitor. In Chapter IV we apply cross-sectional SCM to directly measure the electronic properties of a 120 nm gate length p-MOSFET including super-halo implants. Bias-dependent SCM images allow us to delineate the individual device regions and image the n+ super-halo implants. We have demonstrated the specific SCM bias conditions necessary for

  9. Demonstration of Y1Ba2Cu3O(7-delta) and complementary metal-oxide-semiconductor device fabrication on the same sapphire substrate

    NASA Technical Reports Server (NTRS)

    Burns, M. J.; De La Houssaye, P. R.; Russell, S. D.; Garcia, G. A.; Clayton, S. R.; Ruby, W. S.; Lee, L. P.

    1993-01-01

    We report the first fabrication of active semiconductor and high-temperature superconducting devices on the same substrate. Test structures of complementary MOS transistors were fabricated on the same sapphire substrate as test structures of Y1Ba2Cu3O(7-delta) flux-flow transistors, and separately, Y1Ba2Cu3O(7-delta) superconducting quantum interference devices utilizing both biepitaxial and step-edge Josephson junctions. Both semiconductor and superconductor devices were operated at 77 K. The cofabrication of devices using these disparate yet complementary electronic technologies on the same substrate opens the door for the fabrication of true semiconductive/superconductive hybrid integrated circuits capable of exploiting the best features of each of these technologies.

  10. Boron Arsenide and Boron Phosphide for High Temperature and Luminescent Devices. [semiconductor devices - crystal growth/crystal structure

    NASA Technical Reports Server (NTRS)

    Chu, T. L.

    1975-01-01

    The crystal growth of boron arsenide and boron phosphide in the form of bulk crystals and epitaxial layers on suitable substrates is discussed. The physical, chemical, and electrical properties of the crystals and epitaxial layers are examined. Bulk crystals of boron arsenide were prepared by the chemical transport technique, and their carrier concentration and Hall mobility were measured. The growth of boron arsenide crystals from high temperature solutions was attempted without success. Bulk crystals of boron phosphide were also prepared by chemical transport and solution growth techniques. Techniques required for the fabrication of boron phosphide devices such as junction shaping, diffusion, and contact formation were investigated. Alloying techniques were developed for the formation of low-resistance ohmic contacts to boron phosphide. Four types of boron phosphide devices were fabricated: (1) metal-insulator-boron phosphide structures, (2) Schottky barriers; (3) boron phosphide-silicon carbide heterojunctions; and (4) p-n homojunctions. Easily visible red electroluminescence was observed from both epitaxial and solution grown p-n junctions.

  11. Influence of the microstructure on the charge transport in semiconductor gas discharge electronic devices

    NASA Astrophysics Data System (ADS)

    Sadiq, Y.; Aktas, K.; Acar, S.; Salamov, B. G.

    2010-06-01

    Experimental results with nonlinear features and hysteresis characteristics in the pre-breakdown Townsend discharge regime is studied experimentally for a planar microstructure with a GaAs photocathode, an interelectrode gap thickness of 445 μm and gas pressure in the range 28-66 Torr. An investigation of the effect of the voltage amplitude on the dynamics of transient processes in the semiconductor gas discharge microstructure was made to explain the mechanism of the current decay. A linearly increasing voltage (i.e. 3 V s and 5 V s voltage rate) was applied to the system to study current instability. The nonlinear transport mechanism of carriers through the cross-section of the discharge gap i.e. the appearance of the spatio-temporal self-organization of a nonlinear dissipative system, non-equilibrium electron motion and autocatalytic effect of carrier accumulation in the gas layer attributed to decrease of current with the increase of applied voltage. It is established that the pre-breakdown current decreases anomalously with increase of the feeding voltage and illumination intensity on the photocathode. The current density change through the cross-section of the discharge gap, i.e. the appearance of the spatio-temporal self-organization of nonlinear dissipative systems, causes these observed effects. On the other hand, the oscillatory current with non-monotonic N-shaped and hysteresis peculiarities in post-breakdown region is known to be related to a nonlinear mechanism of carrier transport in the semiconductor material caused by EL2 defect centres.

  12. Synthesis and Characterization of Novel Magnetic Heusler Semiconductors for Device and Materials Applications

    NASA Astrophysics Data System (ADS)

    Jamer, Michelle E.

    Spintronic devices for magnetic memory applications control the magnetic properties of the materials by manipulating the spin and magnetic moment of the electrons. Present devices use ferromagnetic materials that have magnetic fringing fields that interfere with other components of the device. The main focus of this research is investigating low-moment ferrimagnetic inverse Heusler materials that could be used in spintronic devices thereby eliminating the external fringing magnetic field. The challenge of this research is that while hundreds of inverse Heusler materials have been predicted for possible uses in devices, many of these compounds have a positive formation energy indicating that they are not likely to form and will decompose into other compounds. The magnetic and structural properties of several inverse Heusler systems were studied. X-ray diffraction was used to determine the phase and ordering of the crystal structure. SQUID magnetometry and X-ray magnetic circular dichroism determined the bulk magnetic properties and the atom-specific magnetic moments. This thesis outlines the first synthesis of Heusler-type V3Al, which was discovered to be an antiferromagnet. Cr2CoAl was found to exist in a Heusler phase with antiferromagnetically coupled Cr and Co atomic moments. In addition, Mn2CoAl, Cr2CoGa, and Mn3Al were grown as thin films on desorbed GaAs substrates by molecular beam epitaxy. This thesis demonstrated the successful synthesis and characterization of several Heusler compounds that could be used in future devices. These are the seminal results of inverse Heusler synthesis, which are proposed in devices such as spin-FETs and nonvolatile magnetic memory.

  13. Method for sputtering a PIN microcrystalline/amorphous silicon semiconductor device with the P and N-layers sputtered from boron and phosphorous heavily doped targets

    DOEpatents

    Moustakas, Theodore D.; Maruska, H. Paul

    1985-04-02

    A silicon PIN microcrystalline/amorphous silicon semiconductor device is constructed by the sputtering of N, and P layers of silicon from silicon doped targets and the I layer from an undoped target, and at least one semi-transparent ohmic electrode.

  14. JESD57 Test Standard, Procedures for the Measurement of Single-Event Effects in Semiconductor Devices from Heavy-Ion Irradiation Revision Update

    NASA Technical Reports Server (NTRS)

    Lauenstein, Jean-Marie

    2016-01-01

    The JEDEC JESD57 test standard, Procedures for the Measurement of Single-Event Effects in Semiconductor Devices from Heavy-Ion Irradiation, is undergoing its first revision since 1996. This presentation will provide an overview of some of the key proposed updates to the document.

  15. Theoretical Analyses of Oxide-Bypassed Superjunction Power Metal Oxide Semiconductor Field Effect Transistor Devices

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Liang, Yung C.; Samudra, Ganesh S.

    2005-02-01

    The performance merit of silicon unipolar power devices is best described by a trade-off relationship between specific on-state resistance (Ron,sp) and breakdown voltage (Vbr), which leads to the establishment of an ideal unipolar limit on device performance. Recently, engineering the electric field in the device drift region to break this unipolar silicon limit for superior performance has become an important research topic. The superjunction (SJ) structure achieves this by paralleling precisely matched higher doping alternate p--n layers to replace the typically low doping drift region. Alternatively, for fabrication simplicity in an oxide-bypassed (OB) structure, an oxide layer of predetermined thickness together with a polycontact is used to replace the p-column of the SJ structure to modulate the electric field. The further improved gradient OB (GOB) structure with slanted oxide sidewalls delivers a performance similar to ideal SJ devices. In this paper, detailed theoretical analyses in closed-form equations on OB and GOB devices are made for the first time to model the performance in various operating regions. The theoretical analyses were also carefully verified through two-dimensional numerical simulations.

  16. Single event upset (SEU) of semiconductor devices - A summary of JPL test data

    NASA Technical Reports Server (NTRS)

    Nichols, D. K.; Price, W. E.; Malone, C. J.

    1983-01-01

    The data summarized describe single event upset (bit-flips) for 60 device types having data storage elements. The data are from 15 acceleration tests with both protons and heavier ions. Tables are included summarizing the upset threshold data and listing the devices tested for heavy ion induced bit-flip and the devices tested with protons. With regard to the proton data, it is noted that the data are often limited to one proton energy, since the tests were usually motivated by the engineering requirement of comparing similar candidate devices for a system. It is noted that many of the devices exhibited no upset for the given test conditions (the maximum fluence and the maximum proton energy Ep are given for these cases). It is believed, however, that some possibility of upset usually exists because there is a slight chance that the recoil atom may receive up to 10 to 20 MeV of recoil energy (with more energy at higher Ep).

  17. Device applications and structural and optical properties of Indigo - A biodegradable, low-cost organic semiconductor

    NASA Astrophysics Data System (ADS)

    Wang, Zhengjun; Pisane, Kelly L.; Sierros, Konstantinos; Seehra, Mohindar S.; Korakakis, Dimitris

    2015-03-01

    Currently, memory devices based on organic materials are attracting great attention due to their simplicity in device structure, mechanical flexibility, potential for scalability, low-cost potential, low-power operation, and large capacity for data storage. In a recent paper from our group, Indigo-based nonvolatile organic write-once-read-many-times (WORM) memory device, consisting of a 100nm layer of indigo sandwiched between an indium tin oxide (ITO) cathode and an Al anode, has been reported. This device is found to be at its low resistance state (ON state) and can be switched to high resistance state (OFF state) by applying a positive bias with ON/OFF current ratio of the device being up to 1.02 × e6. A summary of these results along with the structural and optical properties of indigo powder will be reported. Analysis of x-ray diffraction shows a monoclinic structure with lattice parameters a(b)[c] = 0.924(0.577)[0.1222]nm and β =117° . Optical absorption shows a band edge at 1.70 eV with peak of absorption occurring at 1.90 eV. These results will be interpreted in terms of the HOMO-LUMO bands of Indigo.

  18. Determination of the Unstable States of the Solid State Plasma in Semiconductor Devices

    DTIC Science & Technology

    1988-05-01

    electrical stress applied to the device. By the early iSBOs it was clear that second breakdown was the precursor of device failure. However, no model was... Barkhausen [353 had detected these waves as early as World War I and coined the term by which they are pre- sently called: whistlers. In 192 Alfv~n [36...notation ((xB)B x a ’BBk> B 47r 4~<~ 7r I ark~ (87r 6,k) The Mlaxwell stress tensor is defined in Jackson 168] as T k E, L’ -13 B k k ( 47r C89) 103

  19. Advanced Materials for Use in Soft Self-Healing Devices.

    PubMed

    Huynh, Tan-Phat; Sonar, Prashant; Haick, Hossam

    2017-02-23

    Devices integrated with self-healing ability can benefit from long-term use as well as enhanced reliability, maintenance and durability. This progress report reviews the developments in the field of self-healing polymers/composites and wearable devices thereof. One part of the progress report presents and discusses several aspects of the self-healing materials chemistry (from non-covalent to reversible covalent-based mechanisms), as well as the required main approaches used for functionalizing the composites to enhance their electrical conductivity, magnetic, dielectric, electroactive and/or photoactive properties. The second and complementary part of the progress report links the self-healing materials with partially or fully self-healing device technologies, including wearable sensors, supercapacitors, solar cells and fabrics. Some of the strong and weak points in the development of each self-healing device are clearly highlighted and criticized, respectively. Several ideas regarding further improvement of soft self-healing devices are proposed.

  20. Semiconductor diode laser material and devices with emission in visible region of the spectrum

    NASA Technical Reports Server (NTRS)

    Ladany, I.; Kressel, H.

    1975-01-01

    Two alloy systems, (AlGa)As and (InGa)P, were studied for their properties relevant to obtaining laser diode operation in the visible region of the spectrum. (AlGa)As was prepared by liquid-phase epitaxy (LPE) and (InGa)P was prepared both by vapor-phase epitaxy and by liquid-phase epitaxy. Various schemes for LPE growth were applied to (InGa)P, one of which was found to be capable of producing device material. All the InGaP device work was done using vapor-phase epitaxy. The most successful devices were fabricated in (AlGa)As using heterojunction structures. At room temperature, the large optical cavity design yielded devices lasing in the red (7000 A). Because of the relatively high threshold due to the basic band structure limitation in this alloy, practical laser diode operation is presently limited to about 7300 A. At liquid-nitrogen temperature, practical continuous-wave operation was obtained at a wavelength of 6500 to 6600 A, with power emission in excess of 50 mW. The lowest pulsed lasing wavelength is 6280 A. At 223 K, lasing was obtained at 6770 A, but with high threshold currents. The work dealing with CW operation at room temperature was successful with practical operation having been achieved to about 7800 A.

  1. Total-dose radiation effects data for semiconductor devices, volume 3

    NASA Technical Reports Server (NTRS)

    Price, W. E.; Martin, K. E.; Nichols, D. K.; Gauthier, M. K.; Brown, S. F.

    1982-01-01

    Volume 3 of this three-volume set provides a detailed analysis of the data in Volumes 1 and 2, most of which was generated for the Galileo Orbiter Program in support of NASA space programs. Volume 1 includes total ionizing dose radiation test data on diodes, bipolar transistors, field effect transistors, and miscellaneous discrete solid-state devices. Volume 2 includes similar data on integrated circuits and a few large-scale integrated circuits. The data of Volumes 1 and 2 are combined in graphic format in Volume 3 to provide a comparison of radiation sensitivities of devices of a given type and different manufacturer, a comparison of multiple tests for a single data code, a comparison of multiple tests for a single lot, and a comparison of radiation sensitivities vs time (date codes). All data were generated using a steady-state 2.5-MeV electron source (Dynamitron) or a Cobalt-60 gamma ray source. The data that compose Volume 3 represent 26 different device types, 224 tests, and a total of 1040 devices. A comparison of the effects of steady-state electrons and Cobat-60 gamma rays is also presented.

  2. Three-dimensional integration (3DI) of semiconductor circuit layers: New devices and fabrication process

    NASA Astrophysics Data System (ADS)

    Sehari, Babak E.

    1998-12-01

    The device density of Integrated Circuits (ICs) manufactured by current VLSI technology is reaching its theoretical limit. Nevertheless, the demand for integration of more devices per chip is growing. To accommodate this need three main possibilities can be explored: Wafer Scale Integration (WSI), Ultra Large Scale Integration (ULSI), and Three Dimensional Integration (3DI). A brief review of these techniques along with their comparative advantages and disadvantages is presented. It has been concluded that 3DI technology is superior to others. Therefore, an attempt is made to develop a viable fabrication process for this technology. This is done by first reviewing the current technologies that are utilized for fabrication of Integrated Circuits (ICs) and their compatibility with 3DI stringent requirements. Based on this review, a set of fabrication procedure for realization of 3DI technology, are presented in chapter 3. In Chapter 1 the compatibility of the currently used devices, such as BJTs and FETs, with 3DI technology is examined. Moreover, a new active device is developed for 3DI technology to replace BJTs and FETs in circuits. This new device is more compatible to the constrains of 3DI technology. Chapter 2 is devoted to solving the overall problems of 3DI circuits. The problem of heat and power dispassion and signal coupling (Cross-Talk) between the layers are reviewed, and an inter-layer shield is proposed to overcome these problems. The effectiveness of such a thin shield is considered theoretically. In Chapter 3 a fabrication process for 3DI technology is proposed. This is done after a short analysis of previous attempts in developing 3DI technologies. Chapter 4 focuses on analog extension of 3DI technology. Moreover, in this chapter microwave 3DI circuits or 3DI MMIC is investigated. Practical considerations in choice of material for the proposed device is the subject of study in Chapter 5. Low temperature ohmic contact and utilization of metal

  3. Semiconductor photoelectrochemistry

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.; Byvik, C. E.

    1983-01-01

    Semiconductor photoelectrochemical reactions are investigated. A model of the charge transport processes in the semiconductor, based on semiconductor device theory, is presented. It incorporates the nonlinear processes characterizing the diffusion and reaction of charge carriers in the semiconductor. The model is used to study conditions limiting useful energy conversion, specifically the saturation of current flow due to high light intensity. Numerical results describing charge distributions in the semiconductor and its effects on the electrolyte are obtained. Experimental results include: an estimate rate at which a semiconductor photoelectrode is capable of converting electromagnetic energy into chemical energy; the effect of cell temperature on the efficiency; a method for determining the point of zero zeta potential for macroscopic semiconductor samples; a technique using platinized titanium dioxide powders and ultraviolet radiation to produce chlorine, bromine, and iodine from solutions containing their respective ions; the photoelectrochemical properties of a class of layered compounds called transition metal thiophosphates; and a technique used to produce high conversion efficiency from laser radiation to chemical energy.

  4. Screening of inorganic wide-bandgap p-type semiconductors for high performance hole transport layers in organic photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Ginley, David; Zakutayev, Andriy; Garcia, Andreas; Widjonarko, Nicodemus; Ndione, Paul; Sigdel, Ajaya; Parilla, Phillip; Olson, Dana; Perkins, John; Berry, Joseph

    2011-03-01

    We will report on the development of novel inorganic hole transport layers (HTL) for organic photovoltaics (OPV). All the studied materials belong to the general class of wide-bandgap p-type oxide semiconductors. Potential candidates suitable for HTL applications include SnO, NiO, Cu2O (and related CuAlO2, CuCrO2, SrCu2O4 etc) and Co3O4 (and related ZnCo2O4, NiCo2O4, MgCo2O4 etc.). Materials have been optimized by high-throughput combinatorial approaches. The thin films were deposited by RF sputtering and pulsed laser deposition at ambient and elevated temperatures. Performance of the inorganic HTLs and that of the reference organic PEDOT:PSS HTL were compared by measuring the power conversion efficiencies and spectral responses of the P3HT/PCBM- and PCDTBT/PCBM-based OPV devices. Preliminary results indicate that Co3O4-based HTLs have performance comparable to that of our previously reported NiOs and PEDOT:PSS HTLs, leading to a power conversion efficiency of about 4 percent. The effect of composition and work function of the ternary materials on their performance in OPV devices is under investigation.

  5. Reactively-sputtered zinc semiconductor films of high conductivity for heterojunction devices

    NASA Technical Reports Server (NTRS)

    Stirn, Richard J. (Inventor)

    1986-01-01

    A high conductivity, n-doped semiconductor film is produced from zinc, or Zn and Cd, and group VI elements selected from Se, S and Te in a reactive magnetron sputtering system having a chamber with one or two targets, a substrate holder, means for heating the substrate holder, and an electric field for ionizing gases in the chamber. Zinc or a compound of Zn and Cd is placed in the position of one of the two targets and doping material in the position of the other of the two targets. Zn and Cd may be placed in separate targets while a dopant is placed in the third target. Another possibility is to place an alloy of Zn and dopant, or Zn, Cd and dopant in one target, thus using only one target. A flow of the inert gas is ionized and directed toward said targets, while a flow of a reactant gas consisting of hydrides of the group VI elements is directed toward a substrate on the holder. The targets are biased to attract negatively ionized inert gas. The desired stochiometry for high conductivity is achieved by controlling the temperature of the substrate, and partial pressures of the gases, and the target power and total pressure of the gases in the chamber.

  6. Single-crystal cubic silicon carbide: an in vivo biocompatible semiconductor for brain machine interface devices.

    PubMed

    Frewin, Christopher L; Locke, Christopher; Saddow, Stephen E; Weeber, Edwin J

    2011-01-01

    Single crystal silicon carbide (SiC) is a wide band-gap semiconductor which has shown both bio- and hemo-compatibility [1-5]. Although single crystalline SiC has appealing bio-sensing potential, the material has not been extensively characterized. Cubic silicon carbide (3C-SiC) has superior in vitro biocompatibility compared to its hexagonal counterparts [3, 5]. Brain machine interface (BMI) systems using implantable neuronal prosthetics offer the possibility of bi-directional signaling, which allow sensory feedback and closed loop control. Existing implantable neural interfaces have limited long-term reliability, and 3C-SiC may be a material that may improve that reliability. In the present study, we investigated in vivo 3C-SiC biocompatibility in the CNS of C56BL/6 mice. 3C-SiC was compared against the known immunoreactive response of silicon (Si) at 5, 10, and 35 days. The material was examined to detect CD45, a protein tyrosine phosphatase (PTP) expressed by activated microglia and macrophages. The 3C-SiC surface revealed limited immunoresponse and significantly reduced microglia compared to Si substrate.

  7. Kelvin Force Microscopy and corona charging for semiconductor material and device characterization

    NASA Astrophysics Data System (ADS)

    Marinskiy, Dmitriy; Edelman, Piotr; Lagowski, Jacek; Loy, Thye Chong; Almeida, Carlos; Savtchouk, Alexandre

    2016-11-01

    Novel developments in this review relate to μcorona-Kelvin, realized by miniaturization of corona charging spot and adaptation of Kelvin Force Microscopy, KFM. Resolution improvement has opened possibilities of non-contact characterization of miniature scribe line test sites on processed semiconductor wafers. Surface diffusion of corona ions can be quantified with μcorona-KFM leading to the development of the kinetic C-V method. The quantified decrease of charge due to diffusion creates a "charge-bias sweep". Application examples illustrate the determination of dielectric capacitance; flatband voltage; and effective gate metal work function indicators. Applications to SiC demonstrate doping density determination with kinetic CV. Non-Visible Defect, NVD, inspection benefits from micro-resolution characterization in two ways: 1) defects revealed by whole wafer mapping can now be examined in high resolution; illustrated using an example of Na contamination; and 2) detailed characterization can be performed within small defective areas providing a means for better understanding of a specific NVD.

  8. Low-frequency noise in AlN/AlGaN/GaN metal-insulator-semiconductor devices: A comparison with Schottky devices

    SciTech Connect

    Le, Son Phuong; Nguyen, Tuan Quy; Shih, Hong-An; Kudo, Masahiro; Suzuki, Toshi-kazu

    2014-08-07

    We have systematically investigated low-frequency noise (LFN) in AlN/AlGaN/GaN metal-insulator-semiconductor (MIS) devices, where the AlN gate insulator layer was sputtering-deposited on the AlGaN surface, in comparison with LFN in AlGaN/GaN Schottky devices. By measuring LFN in ungated two-terminal devices and heterojunction field-effect transistors (HFETs), we extracted LFN characteristics in the intrinsic gated region of the HFETs. Although there is a bias regime of the Schottky-HFETs in which LFN is dominated by the gate leakage current, LFN in the MIS-HFETs is always dominated by only the channel current. Analyzing the channel-current-dominated LFN, we obtained Hooge parameters α for the gated region as a function of the sheet electron concentration n{sub s} under the gate. In a regime of small n{sub s}, both the MIS- and Schottky-HFETs exhibit α∝n{sub s}{sup −1}. On the other hand, in a middle n{sub s} regime of the MIS-HFETs, α decreases rapidly like n{sub s}{sup −ξ} with ξ ∼ 2-3, which is not observed for the Schottky-HFETs. In addition, we observe strong increase in α∝n{sub s}{sup 3} in a large n{sub s} regime for both the MIS- and Schottky-HFETs.

  9. Physical Modeling of Activation Energy in Organic Semiconductor Devices based on Energy and Momentum Conservations.

    PubMed

    Mao, Ling-Feng; Ning, H; Hu, Changjun; Lu, Zhaolin; Wang, Gaofeng

    2016-04-22

    Field effect mobility in an organic device is determined by the activation energy. A new physical model of the activation energy is proposed by virtue of the energy and momentum conservation equations. The dependencies of the activation energy on the gate voltage and the drain voltage, which were observed in the experiments in the previous independent literature, can be well explained using the proposed model. Moreover, the expression in the proposed model, which has clear physical meanings in all parameters, can have the same mathematical form as the well-known Meyer-Neldel relation, which lacks of clear physical meanings in some of its parameters since it is a phenomenological model. Thus it not only describes a physical mechanism but also offers a possibility to design the next generation of high-performance optoelectronics and integrated flexible circuits by optimizing device physical parameter.

  10. Physical Modeling of Activation Energy in Organic Semiconductor Devices based on Energy and Momentum Conservations

    PubMed Central

    Mao, Ling-Feng; Ning, H.; Hu, Changjun; Lu, Zhaolin; Wang, Gaofeng

    2016-01-01

    Field effect mobility in an organic device is determined by the activation energy. A new physical model of the activation energy is proposed by virtue of the energy and momentum conservation equations. The dependencies of the activation energy on the gate voltage and the drain voltage, which were observed in the experiments in the previous independent literature, can be well explained using the proposed model. Moreover, the expression in the proposed model, which has clear physical meanings in all parameters, can have the same mathematical form as the well-known Meyer-Neldel relation, which lacks of clear physical meanings in some of its parameters since it is a phenomenological model. Thus it not only describes a physical mechanism but also offers a possibility to design the next generation of high-performance optoelectronics and integrated flexible circuits by optimizing device physical parameter. PMID:27103586

  11. Physical Modeling of Activation Energy in Organic Semiconductor Devices based on Energy and Momentum Conservations

    NASA Astrophysics Data System (ADS)

    Mao, Ling-Feng; Ning, H.; Hu, Changjun; Lu, Zhaolin; Wang, Gaofeng

    2016-04-01

    Field effect mobility in an organic device is determined by the activation energy. A new physical model of the activation energy is proposed by virtue of the energy and momentum conservation equations. The dependencies of the activation energy on the gate voltage and the drain voltage, which were observed in the experiments in the previous independent literature, can be well explained using the proposed model. Moreover, the expression in the proposed model, which has clear physical meanings in all parameters, can have the same mathematical form as the well-known Meyer-Neldel relation, which lacks of clear physical meanings in some of its parameters since it is a phenomenological model. Thus it not only describes a physical mechanism but also offers a possibility to design the next generation of high-performance optoelectronics and integrated flexible circuits by optimizing device physical parameter.

  12. A feasibility study of a single event spectrometer based on semiconductor devices.

    PubMed

    Agosteo, S; Castoldi, A; Castellani, L; Colautti, P; D'Angelo, G; De Nardo, L; Favalli, A; Lippi, I; Martinelli, R; Tornielli, G; Zotto, P

    2002-01-01

    The electronics employed around particle accelerators can be disturbed or damaged because of single event effects (SEE). The most likely effect is the single event upset (SEU) which may affect all memory devices. In the case of high energy accelerators, SEUs are mostly produced by secondary charged particles generated by neutron interactions. The measurement of the energy and the lineal energy distribution of these neutron-induced charged particles was proposed. As a first approach, a commercial p-i-n photodiode was employed. This device was irradiated with thermal and monoenergetic fast neutrons. Some effects limiting the use of such a detector as a SEE spectrometer were observed, giving guidelines for the design of an application specific integrated circuit (ASIC). The possibility of creating a solid state microdosemeter by coupling the ASIC with a tissue-equivalent radiator is discussed. Moreover, the p-i-n photodiode covered with a hydrogenated plastic radiator may be employed as a proton-recoil spectrometer.

  13. Heavy ion induced Single Event Phenomena (SEP) data for semiconductor devices from engineering testing

    NASA Technical Reports Server (NTRS)

    Nichols, Donald K.; Huebner, Mark A.; Price, William E.; Smith, L. S.; Coss, James R.

    1988-01-01

    The accumulation of JPL data on Single Event Phenomena (SEP), from 1979 to August 1986, is presented in full report format. It is expected that every two years a supplement report will be issued for the follow-on period. This data for 135 devices expands on the abbreviated test data presented as part of Refs. (1) and (3) by including figures of Single Event Upset (SEU) cross sections as a function of beam Linear Energy Transfer (LET) when available. It also includes some of the data complied in the JPL computer in RADATA and the SPACERAD data bank. This volume encompasses bipolar and MOS (CMOS and MHNOS) device data as two broad categories for both upsets (bit-flips) and latchup. It also includes comments on less well known phenomena, such as transient upsets and permanent damage modes.

  14. Reliability study of opto-coupled semiconductor devices and Light Emitting Diodes (LED)

    NASA Technical Reports Server (NTRS)

    Maurer, R. C.; Weissflug, V. A.; Sisul, E. V.

    1977-01-01

    Opto-coupler and light emitting diode (LED) failure mechanisms and associated activation energies were determind from the results of environmental and accelerated lift tests of over 2,400 devices. The evaluation program included LED phototransistor opto-couplers from three sources, LED photoamplifier opto-couplers from a single source, and discrete infrared emitting LEDs from two sources. Environmental tests to evaluate device mechanical integrity included power cycling (10,000 cycles), temperature cycling (500 cycles) and a sequence of monitored shock, monitored vibration and constant acceleration. Multiple temperature operating life tests were conducted at ambient temperatures between 25 C and 200 C. Opto-couplers were operated in both the 'on' and 'off' states during life testing.

  15. The Effects of Thermal Cycling on Gallium Nitride and Silicon Carbide Semiconductor Devices for Aerospace Use

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2012-01-01

    Electronics designed for use in NASA space missions are required to work efficiently and reliably under harsh environment conditions. These Include radiation, extreme temperatures, thermal cycling, to name a few. Preliminary data obtained on new Gallium Nitride and Silicon Carbide power devices under exposure to radiation followed by long term thermal cycling are presented. This work was done in collaboration with GSFC and JPL in support of the NASA Electronic Parts and Packaging (NEPP) Program

  16. Spin-orbit assisted chiral-tunneling at semiconductor tunnel junctions: study with advanced 30-band k • p methods

    NASA Astrophysics Data System (ADS)

    Dang, Huong T.; Erina, E.; L. Nguyen, Hoai T.; Jaffrès, H.; Drouhin, H.-J.

    2016-10-01

    In this paper, we report on theoretical investigations and advanced k • p calculations of carrier forward scattering asymmetry (or transmission asymmetry in tunnel junction) vs. their incidence through magnetic tunnel junctions (MTJ) made of semiconductors involving spin-orbit interactions (SOI). This study represents an extension to our previous contribution1 dealing with the role, on the electronic forward and backward transmission-reflection asymmetry, of the Dresselhaus interaction in the conduction band (CB) of MTJs with antiparallel magnetized electrodes. The role of the atomic-SOI in the p-type valence band (VB) of semiconductors is investigated in a second step. We first developed a perturbative scattering method based on Green's function formalism and applied to both the orbitally non-degenerated CB and degenerated VB to explain the calculated asymmetry in terms of orbital-moment tunneling branching and chirality arguments. This particular asymmetry features are perfectly reproduced by advanced k • p tunneling approaches (30-band) in rather close agreement with the Green's function methods at the first perturbation order in the SOI strength parameter. This forward scattering asymmetry leads to skew-tunneling effects involving the branching of evanescent states within the barrier. Recent experiments involving non-linear resistance variations vs. the transverse magnetization direction or current direction in the in-plane current geometry may be invoked by the phenomenon we discuss.

  17. Advanced integrated safeguards using front-end-triggering devices

    SciTech Connect

    Howell, J.A.; Whitty, W.J.

    1995-12-01

    This report addresses potential uses of front-end-triggering devices for enhanced safeguards. Such systems incorporate video surveillance as well as radiation and other sensors. Also covered in the report are integration issues and analysis techniques.

  18. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    SciTech Connect

    Hart, Philip R.

    2011-09-27

    This presentation from the Water Peer Review highlights one of the program's marine and hyrokinetics device design projects to scale up the current Ocean Power Technology PowerBuoy from 150kW to 500kW.

  19. Molecular-beam heteroepitaxial growth and characterization of wide-band-gap semiconductor films and devices

    NASA Astrophysics Data System (ADS)

    Piquette, Eric Charles

    The thesis consists of two parts. Part I describes work on the molecular beam epitaxial (MBE) growth of GaN, AlN, and AlxGa 1-xN alloys, as well as efforts in the initial technical development and demonstration of nitride-based high power electronic devices. The major issues pertaining to MBE growth are discussed, including special requirements of the growth system, substrates, film nucleation, n - and p-type doping, and the dependence of film quality on growth parameters. The GaN films were characterized by a variety of methods, including high resolution x-ray diffraction, photoluminescence, and Hall effect measurement. It is found that the film polarity and extended defect density as well as quality of photoluminescence and electrical transport properties depend crucially on how the nitride layer is nucleated on the substrate and how the subsequent film surface morphology evolves, which can be controlled by the growth conditions. A technique is proposed and demonstrated that utilizes the control of morphology evolution to reduce defect density and improve the structural quality of MBE GaN films. In addition to growth, the design and processing of high voltage GaN Schottky diodes is presented, as well as an experimental study of sputter-deposited ohmic and rectifying metal contacts to GaN. Simple models for high power devices, based on materials properties such as minority carrier diffusion length and critical electric breakdown field, are used to estimate the voltage standoff capability, current carrying capacity, and maximum operating frequency of unipolar and bipolar GaN power devices. The materials and transport properties of GaN pertinent to high power device design were measured experimentally. High voltage Schottky rectifiers were fabricated which verify the impressive electric breakdown field of GaN (2--5 MV/cm). Electron beam induced current (EBIC) experiments were also conducted to measure the minority carrier diffusion length for both electrons and

  20. Recipient luminophoric mediums having narrow spectrum luminescent materials and related semiconductor light emitting devices and methods

    DOEpatents

    LeToquin, Ronan P; Tong, Tao; Glass, Robert C

    2014-12-30

    Light emitting devices include a light emitting diode ("LED") and a recipient luminophoric medium that is configured to down-convert at least some of the light emitted by the LED. In some embodiments, the recipient luminophoric medium includes a first broad-spectrum luminescent material and a narrow-spectrum luminescent material. The broad-spectrum luminescent material may down-convert radiation emitted by the LED to radiation having a peak wavelength in the red color range. The narrow-spectrum luminescent material may also down-convert radiation emitted by the LED into the cyan, green or red color range.

  1. Method of making a high conductance ohmic junction for monolithic semiconductor devices

    NASA Technical Reports Server (NTRS)

    Lewis, Carol R. (Inventor)

    1988-01-01

    In order to increase the efficiency of solar cells, a monolithic stacked device is constructed comprising a plurality of solar sub-cells adjusted for different bands of radiation. The interconnection between these sub-cells has been a significant technical problem. The invention provides an interconnection which is a thin layer of high ohmic conductance material formed between the sub-cells. Such a layer tends to form beads which serve as a shorting interconnect while passing a large fraction of the radiation to the lower sub-cells and permitting lattice-matching between the sub-cells to be preserved.

  2. Damage correlations in semiconductor devices exposed to gamma and high energy swift heavy ions

    NASA Astrophysics Data System (ADS)

    Pushpa, N.; Prakash, A. P. Gnana

    2015-05-01

    NPN rf power transistors and N-channel depletion MOSFETs are irradiated by different high energy swift heavy ions and 60Co gamma radiation in the dose range of 100 krad to 100 Mrad. The damage created by different heavy ions and 60Co gamma radiation in NPN rf power transistors and N-channel depletion MOSFETs have been correlated and studied in the same dose range. The recoveries in the electrical characteristics of different swift heavy ions and 60Co gamma irradiated devices have been studied after annihilation.

  3. Damage correlations in semiconductor devices exposed to gamma and high energy swift heavy ions

    SciTech Connect

    Pushpa, N.; Prakash, A. P. Gnana

    2015-05-15

    NPN rf power transistors and N-channel depletion MOSFETs are irradiated by different high energy swift heavy ions and {sup 60}Co gamma radiation in the dose range of 100 krad to 100 Mrad. The damage created by different heavy ions and {sup 60}Co gamma radiation in NPN rf power transistors and N-channel depletion MOSFETs have been correlated and studied in the same dose range. The recoveries in the electrical characteristics of different swift heavy ions and {sup 60}Co gamma irradiated devices have been studied after annihilation.

  4. To ventricular assist devices or not: When is implantation of a ventricular assist device appropriate in advanced ambulatory heart failure?

    PubMed Central

    Cerier, Emily; Lampert, Brent C; Kilic, Arman; McDavid, Asia; Deo, Salil V; Kilic, Ahmet

    2016-01-01

    Advanced heart failure has been traditionally treated via either heart transplantation, continuous inotropes, consideration for hospice and more recently via left ventricular assist devices (LVAD). Heart transplantation has been limited by organ availability and the futility of other options has thrust LVAD therapy into the mainstream of therapy for end stage heart failure. Improvements in technology and survival combined with improvements in the quality of life have made LVADs a viable option for many patients suffering from heart failure. The question of when to implant these devices in those patients with advanced, yet still ambulatory heart failure remains a controversial topic. We discuss the current state of LVAD therapy and the risk vs benefit of these devices in the treatment of heart failure. PMID:28070237

  5. Devices in the management of advanced, chronic heart failure

    PubMed Central

    Abraham, William T.; Smith, Sakima A.

    2013-01-01

    Heart failure (HF) is a global phenomenon, and the overall incidence and prevalence of the condition are steadily increasing. Medical therapies have proven efficacious, but only a small number of pharmacological options are in development. When patients cease to respond adequately to optimal medical therapy, cardiac resynchronization therapy has been shown to improve symptoms, reduce hospitalizations, promote reverse remodelling, and decrease mortality. However, challenges remain in identifying the ideal recipients for this therapy. The field of mechanical circulatory support has seen immense growth since the early 2000s, and left ventricular assist devices (LVADs) have transitioned over the past decade from large, pulsatile devices to smaller, more-compact, continuous-flow devices. Infections and haematological issues are still important areas that need to be addressed. Whereas LVADs were once approved only for ‘bridge to transplantation’, these devices are now used as destination therapy for critically ill patients with HF, allowing these individuals to return to the community. A host of novel strategies, including cardiac contractility modulation, implantable haemodynamic-monitoring devices, and phrenic and vagus nerve stimulation, are under investigation and might have an impact on the future care of patients with chronic HF. PMID:23229137

  6. a Study of Electron Transport in Small Semiconductor Devices: the Monte Carlo Trajectory Integral Method

    NASA Astrophysics Data System (ADS)

    Socha, John Bronn

    The first part of this thesis contains a historical perspective on the last five years of research in hot-electron transport in semiconductors. This perspective serves two purposes. First, it provides a motivation for the second part of this thesis, which deals with calculating the full velocity distribution function of hot electrons. And second, it points out many of the unsolved theoretical problems that might be solved with the techniques developed in the second part. The second part of this thesis contains a derivation of a new method for calculating velocity distribution functions. This method, the Monte Carlo trajectory integral, is well suited for calculating the time evolution of a distribution function in the presence of complicated scattering mechanisms, like scattering with acoustic and optical phonons, inter-valley scattering, Bragg reflections, and even electron-electron scattering. This method uses many of the techniques develped for Monte Carlo transport calculations, but unlike other Monte Carlo methods, the Monte Carlo trajectory integral has very good control over the variance of the calculated distribution function across the entire distribution function. Since the Monte Carlo trajectory integral only needs information on the distribution function at previous times, it is well suited to electron-electron scattering where the distribution function must be known before the scattering rate can be calculated. Finally, this thesis ends with an application of the Monte Carlo trajectory integral to electron transport in SiO(,2) in the presence of electric fields up to 12 MV/cm, and it includes a number of suggestions for applying the Monte Carlo trajectory integral to other experiments in both SiO(,2) and GaAs. The Monte Carlo trajectory integral should be of special interest when super-computers are more common since then there will be the computing resources to include electron-electron scattering. The high-field distribution functions calculated when

  7. Aircrew Training Devices: Utility and Utilization of Advanced Instructional Features. Phase 4. Summary Report.

    DTIC Science & Technology

    1987-11-01

    the automated instructional system on the Advanced Simulator for Pilot Training ( ASPT ) at Williams AF8, Arizona (Faconti & Epps, 1975; Faconti...Nortimer, & Simpson, 1970; Fuller, Waag, & Martin, 1980; Knoop, 1973). The ASPT is a sophisticated research device that incorporates advanced visual and...potential of the ASPT , Gray, Chun, Warner, and Eubanks (1981) found that SIs tended to use the device in a fairly conventional manner. with few

  8. Special Issue featuring invited articles arising from UK Semiconductors 2012

    NASA Astrophysics Data System (ADS)

    Clarke, Edmund; Wada, Osamu

    2013-07-01

    Semiconductor research has formed the basis of many technological advances over the past 50 years, and the field is still highly active, as new material systems and device concepts are developed to address new applications or operating conditions. In addition to the development of traditional semiconductor devices, the wealth of experience with these materials also allows their use as an ideal environment for testing new physics, leading to new classes of devices exploiting quantum mechanical effects that can also benefit from the advantages of existing semiconductor technology in scalability, compactness and ease of mass production. This special issue features papers arising from the UK Semiconductors 2012 Conference, held at the University of Sheffield. The annual conference covers all aspects of semiconductor research, from crystal growth, through investigations of the physics of semiconductor structures to realization of semiconductor devices and their application in emerging technologies. The 2012 conference featured over 150 presentations, including plenary sessions on interband cascade lasers for the 3-6 µm spectral band, efficient single photon sources based on InAs quantum dots embedded in GaAs photonic nanowires, nitride-based quantum dot visible lasers and single photon sources, and engineering of organic light-emitting diodes. The seven papers collected here highlight current research advances, taken from across the scope of the conference. The papers feature growth of novel nitride-antimonide material systems for mid-infrared sources and detectors, use of semiconductor nanostructures for charge-based memory and visible lasers, optimization of device structures either to reduce losses in solar cells or achieve low noise amplification in transistors, design considerations for surface-emitting lasers incorporating photonic crystals and an assessment of laser power convertors for power transfer. The editors of this special issue and the conference

  9. Ferrite-superconductor devices for advanced microwave applications

    SciTech Connect

    Dionne, G.F.; Oates, D.E.; Temme, D.H.; Weiss, J.A.

    1996-07-01

    Microwave devices comprising magnetized ferrite in contact with superconductor circuits designed to eliminate magnetic field penetration of the superconductor have demonstrated phase shift without significant conduction losses. The device structures are adaptable to low- or high-{Tc} superconductors. A nonoptimized design of a ferrite phase shifter that employs niobium or YBCO meanderlines has produced over 1,000 degrees of differential phase shift with a figure of merit exceeding 1,000 degrees/dB at X band. By combining superconductor meanderline sections with alternating T junctions on a ferrite substrate in a configuration with three-fold symmetry, a low-loss three-port switching circulator has been demonstrated.

  10. Physical understanding and technological control of carrier lifetimes in semiconductor materials and devices: A critique of conceptual development, state of the art and applications

    NASA Astrophysics Data System (ADS)

    Khanna, Vinod Kumar

    This paper surveys the current understanding of the diverse types of carrier lifetime in semiconductor physics, a fundamental physical parameter determining different terminal properties of semiconductor devices and a vital performance index of the degree of cleanliness of a semiconductor material or fabrication line. According as a recombination or generation mechanism is involved, two primary categories of carrier lifetime have been distinguished, namely, recombination and generation lifetimes. Depending on the recombination process, the recombination lifetime has been sub classified as phonon-assisted Shockley-Read-Hall recombination lifetime, photon-assisted radiative recombination lifetime and Auger recombination lifetime. Further from the viewpoint of injection level, lifetime has been divided into low-level and high-level types. Also, a demarcation has been made between lifetime in bulk semiconductor and lifetime in a region of semiconductor device. Both recombination and generation lifetimes or any of their classes, has been associated with a surface recombination/generation velocity and hence a surface lifetime; the measured lifetime value is the combined effect of the bulk and surface components. Quantum-mechanical theories of lifetime have been reviewed. After introduction of the Shockley-Read-Hall (SRH) theory of recombination-generation statistics, the Dhariwal-Kothari-Jain modification, Dhariwal-Landsberg generalization and Landsberg's extension of SRH theory have been dealt with. Landsberg-Kousik model of dependence of carrier lifetime on doping concentration has been outlined. Beattie-Landsberg Auger recombination lifetime theory has been briefly treated followed by Auger recombination theory for non-interacting free-particle approximation and then Coulomb-enhanced Auger recombination theory based on the Hangleiter and Häcker quantum-mechanical approach. The correlation of lifetime with device properties such as the current gain of bipolar

  11. Large-signal characterizations of DDR IMPATT devices based on group III-V semiconductors at millimeter-wave and terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Acharyya, Aritra; Mallik, Aliva; Banerjee, Debopriya; Ganguli, Suman; Das, Arindam; Dasgupta, Sudeepto; Banerjee, J. P.

    2014-08-01

    Large-signal (L-S) characterizations of double-drift region (DDR) impact avalanche transit time (IMPATT) devices based on group III-V semiconductors such as wurtzite (Wz) GaN, GaAs and InP have been carried out at both millimeter-wave (mm-wave) and terahertz (THz) frequency bands. A L-S simulation technique based on a non-sinusoidal voltage excitation (NSVE) model developed by the authors has been used to obtain the high frequency properties of the above mentioned devices. The effect of band-to-band tunneling on the L-S properties of the device at different mm-wave and THz frequencies are also investigated. Similar studies are also carried out for DDR IMPATTs based on the most popular semiconductor material, i.e. Si, for the sake of comparison. A comparative study of the devices based on conventional semiconductor materials (i.e. GaAs, InP and Si) with those based on Wz-GaN shows significantly better performance capabilities of the latter at both mm-wave and THz frequencies.

  12. A Comprehensive Microfluidics Device Construction and Characterization Module for the Advanced Undergraduate Analytical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Piunno, Paul A. E.; Zetina, Adrian; Chu, Norman; Tavares, Anthony J.; Noor, M. Omair; Petryayeva, Eleonora; Uddayasankar, Uvaraj; Veglio, Andrew

    2014-01-01

    An advanced analytical chemistry undergraduate laboratory module on microfluidics that spans 4 weeks (4 h per week) is presented. The laboratory module focuses on comprehensive experiential learning of microfluidic device fabrication and the core characteristics of microfluidic devices as they pertain to fluid flow and the manipulation of samples.…

  13. 25th anniversary article: materials for high-performance biodegradable semiconductor devices.

    PubMed

    Hwang, Suk-Won; Park, Gayoung; Cheng, Huanyu; Song, Jun-Kyul; Kang, Seung-Kyun; Yin, Lan; Kim, Jae-Hwan; Omenetto, Fiorenzo G; Huang, Yonggang; Lee, Kyung-Mi; Rogers, John A

    2014-04-02

    We review recent progress in a class of silicon-based electronics that is capable of complete, controlled dissolution when immersed in water or bio-fluids. This type of technology, referred to in a broader sense as transient electronics, has potential applications in resorbable biomedical devices, eco-friendly electronics, environmental sensors, secure hardware systems and others. New results reported here include studies of the kinetics of hydrolysis of nanomembranes of single crystalline silicon in bio-fluids and aqueous solutions at various pH levels and temperatures. Evaluations of toxicity using live animal models and test coupons of transient electronic materials provide some evidence of their biocompatibility, thereby suggesting potential for use in bioresorbable electronic implants.

  14. Synthesis Methods, Microscopy Characterization and Device Integration of Nanoscale Metal Oxide Semiconductors for Gas Sensing

    PubMed Central

    Vander Wal, Randy L.; Berger, Gordon M.; Kulis, Michael J.; Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura

    2009-01-01

    A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. Both nanostructures possess a one-dimensional morphology. Different synthesis methods are used to produce these materials: thermal evaporation-condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed. Practical issues associated with harvesting, purification, and integration of these materials into sensing devices are detailed. For comparison to the nascent form, these sensing materials are surface coated with Pd and Pt nanoparticles. Gas sensing tests, with respect to H2, are conducted at ambient and elevated temperatures. Comparative normalized responses and time constants for the catalyst and noncatalyst systems provide a basis for identification of the superior metal-oxide nanostructure and catalyst combination. With temperature-dependent data, Arrhenius analyses are made to determine activation energies for the catalyst-assisted systems. PMID:22408484

  15. Optical wafer metrology sensors for process-robust CD and overlay control in semiconductor device manufacturing

    NASA Astrophysics Data System (ADS)

    den Boef, Arie J.

    2016-06-01

    This paper presents three optical wafer metrology sensors that are used in lithography for robustly measuring the shape and position of wafers and device patterns on these wafers. The first two sensors are a level sensor and an alignment sensor that measure, respectively, a wafer height map and a wafer position before a new pattern is printed on the wafer. The third sensor is an optical scatterometer that measures critical dimension-variations and overlay after the resist has been exposed and developed. These sensors have different optical concepts but they share the same challenge that sub-nm precision is required at high throughput on a large variety of processed wafers and in the presence of unknown wafer processing variations. It is the purpose of this paper to explain these challenges in more detail and give an overview of the various solutions that have been introduced over the years to come to process-robust optical wafer metrology.

  16. Semiconductor quantum well lasers and related optoelectronic devices on silicon, III-V

    NASA Astrophysics Data System (ADS)

    Holonyak, N., Jr.; Hsieh, K. C.; Stillman, G. E.

    1989-06-01

    Although an ultimate goal of this work is to achieve long term reliable laser operation of Al(x)Ga(1-x)As-GaAs quantum well heterostructures (QWH's), or similar III-V QWH's, grown on Si, this has proven to be a formidable enough problem that to the best of our knowledge no one has exceeded the results we reported in 1987 and 1988. This problem is of such dimensions that it may not be solved for as much as 10 years, or even more. All we know so far is that continuous (CW) 300 K Al(x)Ga(1-x)As-GaAs QWH lasers can be grown on Si, and that, indeed, the heat sinking of an Al(x)Ga(1-x)As-GaAs QWH laser on Si is better than a similar laser on a GaAs substrate. Nevertheless, the problem of growing better versions of these devices (i.e., long-lived high performance CW 300 K lasers on Si) has run into the fundamental issue of the large GaAs-Si lattice and thermal expansion mismatch, and hence the built-in difficulty in reducing the defects guaranteed by mismatch. Accordingly, and as much as we have worked further on the problem of Al(x)Ga(1-x)As-GaAs QWH lasers on Si, we have worked as hard on other QWH laser problems, as well as a impurity-induced layer disordering (or layer intermixing, IILD) and its application in laser devices. We briefly describe this work below and append the titles and abstracts of the papers we have published on laser studies and IILD.

  17. Orientation and morphology of self-assembled oligothiophene semiconductors and development of hybrid nanostructures for photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Tevis, Ian David

    stability and improved photovoltaic devices were synthesized using titanium tetrafluoride hydrolysis. Straight perpendicular pores in titanium dioxide were produced by a pattern transfer method from porous anodic aluminum oxide. Films embossed on fluorine-doped tin oxide had pores 30 nm in diameter and 500 nm deep to give a stable structure for housing a p-type organic semiconductor with efficient exciton splitting and light adsorption. Hybrid films could be produced in one step by mineralizing cationic surfactants with titanium dioxide to produce interpenetrating domains of organic and anatase titanium dioxide perpendicular to a transparent conducting electrode.

  18. Novel device-based interventional strategies for advanced heart failure

    PubMed Central

    Vanderheyden, Marc; Bartunek, Jozef

    2016-01-01

    While heart failure is one of the leading causes of mortality and morbidity, our tools to provide ultimate treatment solutions are still limited. Recent developments in new devices are designed to fill this therapeutic gap. The scope of this review is to focus on two particular targets, namely (1) left ventricular geometric restoration and (2) atrial depressurization. (1) Reduction of the wall stress by shrinking the ventricular cavity has been traditionally attempted surgically. Recently, the Parachute device (CardioKinetix Inc., Menlo Park, CA, USA) has been introduced to restore ventricular geometry and cardiac mechanics. The intervention aims to partition distal dysfunctional segments that are non-contributory to the ventricular mechanics and forward cardiac output. (2) Diastolic heart failure is characterized by abnormal relaxation and chamber stiffness. The main therapeutic goal achieved should be the reduction of afterload and diastolic pressure load. Recently, new catheter-based approaches were proposed to reduce left atrial pressure and ventricular decompression: the InterAtrial Shunt Device (IASD™) (Corvia Medical Inc., Tewksbury, MA, USA) and the V-Wave Shunt (V-Wave Ltd, Or Akiva, Israel). Both are designed to create a controlled atrial septal defect in symptomatic patients with heart failure. While the assist devices are aimed at end-stage heart failure, emerging device-based percutaneous or minimal invasive techniques comprise a wide spectrum of innovative concepts that target ventricular remodeling, cardiac contractility or neuro-humoral modulation. The clinical adoption is in the early stages of the initial feasibility and safety studies, and clinical evidence needs to be gathered in appropriately designed clinical trials. PMID:26966444

  19. Enhanced quality thin film Cu(In,Ga)Se.sub.2 for semiconductor device applications by vapor-phase recrystallization

    DOEpatents

    Tuttle, John R.; Contreras, Miguel A.; Noufi, Rommel; Albin, David S.

    1994-01-01

    Enhanced quality thin films of Cu.sub.w (In,Ga.sub.y)Se.sub.z for semiconductor device applications are fabricated by initially forming a Cu-rich, phase-separated compound mixture comprising Cu(In,Ga):Cu.sub.x Se on a substrate to form a large-grain precursor and then converting the excess Cu.sub.x Se to Cu(In,Ga)Se.sub.2 by exposing it to an activity of In and/or Ga, either in vapor In and/or Ga form or in solid (In,Ga).sub.y Se.sub.z. Alternatively, the conversion can be made by sequential deposition of In and/or Ga and Se onto the phase-separated precursor. The conversion process is preferably performed in the temperature range of about 300.degree.-600.degree. C., where the Cu(In,Ga)Se.sub.2 remains solid, while the excess Cu.sub.x Se is in a liquid flux. The characteristic of the resulting Cu.sub.w (In,Ga).sub.y Se.sub.z can be controlled by the temperature. Higher temperatures, such as 500.degree.-600.degree. C., result in a nearly stoichiometric Cu(In,Ga)Se.sub.2, whereas lower temperatures, such as 300.degree.-400.degree. C., result in a more Cu-poor compound, such as the Cu.sub.z (In,Ga).sub.4 Se.sub.7 phase.

  20. Enhanced quality thin film Cu(In,Ga)Se[sub 2] for semiconductor device applications by vapor-phase recrystallization

    DOEpatents

    Tuttle, J.R.; Contreras, M.A.; Noufi, R.; Albin, D.S.

    1994-10-18

    Enhanced quality thin films of Cu[sub w](In,Ga[sub y])Se[sub z] for semiconductor device applications are fabricated by initially forming a Cu-rich, phase-separated compound mixture comprising Cu(In,Ga):Cu[sub x]Se on a substrate to form a large-grain precursor and then converting the excess Cu[sub x]Se to Cu(In,Ga)Se[sub 2] by exposing it to an activity of In and/or Ga, either in vapor In and/or Ga form or in solid (In,Ga)[sub y]Se[sub z]. Alternatively, the conversion can be made by sequential deposition of In and/or Ga and Se onto the phase-separated precursor. The conversion process is preferably performed in the temperature range of about 300--600 C, where the Cu(In,Ga)Se[sub 2] remains solid, while the excess Cu[sub x]Se is in a liquid flux. The characteristic of the resulting Cu[sub w](In,Ga)[sub y]Se[sub z] can be controlled by the temperature. Higher temperatures, such as 500--600 C, result in a nearly stoichiometric Cu(In,Ga)Se[sub 2], whereas lower temperatures, such as 300--400 C, result in a more Cu-poor compound, such as the Cu[sub z](In,Ga)[sub 4]Se[sub 7] phase. 7 figs.