Science.gov

Sample records for advanced semiconductor materials

  1. Improved Thermoelectric Devices: Advanced Semiconductor Materials for Thermoelectric Devices

    SciTech Connect

    2009-12-11

    Broad Funding Opportunity Announcement Project: Phononic Devices is working to recapture waste heat and convert it into usable electric power. To do this, the company is using thermoelectric devices, which are made from advanced semiconductor materials that convert heat into electricity or actively remove heat for refrigeration and cooling purposes. Thermoelectric devices resemble computer chips, and they manage heat by manipulating the direction of electrons at the nanoscale. These devices aren’t new, but they are currently too inefficient and expensive for widespread use. Phononic Devices is using a high-performance, cost-effective thermoelectric design that will improve the device’s efficiency and enable electronics manufacturers to more easily integrate them into their products.

  2. Kansas Advanced Semiconductor Project

    SciTech Connect

    Baringer, P.; Bean, A.; Bolton, T.; Horton-Smith, G.; Maravin, Y.; Ratra, B.; Stanton, N.; von Toerne, E.; Wilson, G.

    2007-09-21

    KASP (Kansas Advanced Semiconductor Project) completed the new Layer 0 upgrade for D0, assumed key electronics projects for the US CMS project, finished important new physics measurements with the D0 experiment at Fermilab, made substantial contributions to detector studies for the proposed e+e- international linear collider (ILC), and advanced key initiatives in non-accelerator-based neutrino physics.

  3. Semiconductor surface protection material

    NASA Technical Reports Server (NTRS)

    Packard, R. D. (Inventor)

    1973-01-01

    A method and a product for protecting semiconductor surfaces is disclosed. The protective coating material is prepared by heating a suitable protective resin with an organic solvent which is solid at room temperature and converting the resulting solution into sheets by a conventional casting operation. Pieces of such sheets of suitable shape and thickness are placed on the semiconductor areas to be coated and heat and vacuum are then applied to melt the sheet and to drive off the solvent and cure the resin. A uniform adherent coating, free of bubbles and other defects, is thus obtained exactly where it is desired.

  4. Advanced Semiconductor Devices

    NASA Astrophysics Data System (ADS)

    Shur, Michael S.; Maki, Paul A.; Kolodzey, James

    2007-06-01

    I. Wide band gap devices. Wide-Bandgap Semiconductor devices for automotive applications / M. Sugimoto ... [et al.]. A GaN on SiC HFET device technology for wireless infrastructure applications / B. Green ... [et al.]. Drift velocity limitation in GaN HEMT channels / A. Matulionis. Simulations of field-plated and recessed gate gallium nitride-based heterojunction field-effect transistors / V. O. Turin, M. S. Shur and D. B. Veksler. Low temperature electroluminescence of green and deep green GaInN/GaN light emitting diodes / Y. Li ... [et al.]. Spatial spectral analysis in high brightness GaInN/GaN light emitting diodes / T. Detchprohm ... [et al.]. Self-induced surface texturing of Al2O3 by means of inductively coupled plasma reactive ion etching in Cl2 chemistry / P. Batoni ... [et al.]. Field and termionic field transport in aluminium gallium arsenide heterojunction barriers / D. V. Morgan and A. Porch. Electrical characteristics and carrier lifetime measurements in high voltage 4H-SiC PiN diodes / P. A. Losee ... [et al.]. Geometry and short channel effects on enhancement-mode n-Channel GaN MOSFETs on p and n- GaN/sapphire substrates / W. Huang, T. Khan and T. P. Chow. 4H-SiC Vertical RESURF Schottky Rectifiers and MOSFETs / Y. Wang, P. A. Losee and T. P. Chow. Present status and future Directions of SiGe HBT technology / M. H. Khater ... [et al.]Optical properties of GaInN/GaN multi-quantum Wells structure and light emitting diode grown by metalorganic chemical vapor phase epitaxy / J. Senawiratne ... [et al.]. Electrical comparison of Ta/Ti/Al/Mo/Au and Ti/Al/Mo/Au Ohmic contacts on undoped GaN HEMTs structure with AlN interlayer / Y. Sun and L. F. Eastman. Above 2 A/mm drain current density of GaN HEMTs grown on sapphire / F. Medjdoub ... [et al.]. Focused thermal beam direct patterning on InGaN during molecular beam epitaxy / X. Chen, W. J. Schaff and L. F. Eastman -- II. Terahertz and millimeter wave devices. Temperature-dependent microwave performance of

  5. Advances in high power semiconductor diode lasers

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoyu; Zhong, Li

    2008-03-01

    High power semiconductor lasers have broad applications in the fields of military and industry. Recent advances in high power semiconductor lasers are reviewed mainly in two aspects: improvements of diode lasers performance and optimization of packaging architectures of diode laser bars. Factors which determine the performance of diode lasers, such as power conversion efficiency, temperature of operation, reliability, wavelength stabilization etc., result from a combination of new semiconductor materials, new diode structures, careful material processing of bars. The latest progress of today's high-power diode lasers at home and abroad is briefly discussed and typical data are presented. The packaging process is of decisive importance for the applicability of high-power diode laser bars, not only technically but also economically. The packaging techniques include the material choosing and the structure optimizing of heat-sinks, the bonding between the array and the heat-sink, the cooling and the fiber coupling, etc. The status of packaging techniques is stressed. There are basically three different diode package architectural options according to the integration grade. Since the package design is dominated by the cooling aspect, different effective cooling techniques are promoted by different package architectures and specific demands. The benefit and utility of each package are strongly dependent upon the fundamental optoelectronic properties of the individual diode laser bars. Factors which influence these properties are outlined and comparisons of packaging approaches for these materials are made. Modularity of package for special application requirements is an important developing tendency for high power diode lasers.

  6. Method and structure for passivating semiconductor material

    DOEpatents

    Pankove, Jacques I.

    1981-01-01

    A structure for passivating semiconductor material comprises a substrate of crystalline semiconductor material, a relatively thin film of carbon disposed on a surface of the crystalline material, and a layer of hydrogenated amorphous silicon deposited on the carbon film.

  7. Electrical Characterization of Semiconductor Materials and Devices

    NASA Astrophysics Data System (ADS)

    Deen, M.; Pascal, Fabien

    Semiconductor materials and devices continue to occupy a preeminent technological position due to their importance when building integrated electronic systems used in a wide range of applications from computers, cell-phones, personal digital assistants, digital cameras and electronic entertainment systems, to electronic instrumentation for medical diagnositics and environmental monitoring. Key ingredients of this technological dominance have been the rapid advances made in the quality and processing of materials - semiconductors, conductors and dielectrics - which have given metal oxide semiconductor device technology its important characteristics of negligible standby power dissipation, good input-output isolation, surface potential control and reliable operation. However, when assessing material quality and device reliability, it is important to have fast, nondestructive, accurate and easy-to-use electrical characterization techniques available, so that important parameters such as carrier doping density, type and mobility of carriers, interface quality, oxide trap density, semiconductor bulk defect density, contact and other parasitic resistances and oxide electrical integrity can be determined. This chapter describes some of the more widely employed and popular techniques that are used to determine these important parameters. The techniques presented in this chapter range in both complexity and test structure requirements from simple current-voltage measurements to more sophisticated low-frequency noise, charge pumping and deep-level transient spectroscopy techniques.

  8. Raman spectroscopy of advanced materials.

    PubMed

    Huong, P V

    1996-06-01

    Many micro-structural aspects of advanced materials and the incidence on the physical properties have been elucidated by Raman micro-spectroscopy. The potential of this technique is demonstrated with new materials interesting in both academic and industrial developments: new carbons and diamonds, superconductors, semiconductors, superhards.

  9. Advanced 3-V semiconductor technology assessment

    NASA Technical Reports Server (NTRS)

    Nowogrodzki, M.

    1983-01-01

    Components required for extensions of currently planned space communications systems are discussed for large antennas, crosslink systems, single sideband systems, Aerostat systems, and digital signal processing. Systems using advanced modulation concepts and new concepts in communications satellites are included. The current status and trends in materials technology are examined with emphasis on bulk growth of semi-insulating GaAs and InP, epitaxial growth, and ion implantation. Microwave solid state discrete active devices, multigigabit rate GaAs digital integrated circuits, microwave integrated circuits, and the exploratory development of GaInAs devices, heterojunction devices, and quasi-ballistic devices is considered. Competing technologies such as RF power generation, filter structures, and microwave circuit fabrication are discussed. The fundamental limits of semiconductor devices and problems in implementation are explored.

  10. Space Research Results Purify Semiconductor Materials

    NASA Technical Reports Server (NTRS)

    2010-01-01

    While President Obama's news that NASA would encourage private companies to develop vehicles to take NASA into space may have come as a surprise to some, NASA has always encouraged private companies to invest in space. More than two decades ago, NASA established Commercial Space Centers across the United States to encourage industry to use space as a place to conduct research and to apply NASA technology to Earth applications. Although the centers are no longer funded by NASA, the advances enabled by that previous funding are still impacting us all today. For example, the Space Vacuum Epitaxy Center (SVEC) at the University of Houston, one of the 17 Commercial Space Centers, had a mission to create advanced thin film semiconductor materials and devices through the use of vacuum growth technologies both on Earth and in space. Making thin film materials in a vacuum (low-pressure environment) is advantageous over making them in normal atmospheric pressures, because contamination floating in the air is lessened in a vacuum. To grow semiconductor crystals, researchers at SVEC utilized epitaxy the process of depositing a thin layer of material on top of another thin layer of material. On Earth, this process took place in a vacuum chamber in a clean room lab. For space, the researchers developed something called the Wake Shield Facility (WSF), a 12-foot-diameter disk-shaped platform designed to grow thin film materials using the low-pressure environment in the wake of the space shuttle. Behind an orbiting space shuttle, the vacuum levels are thousands of times better than in the best vacuum chambers on Earth. Throughout the 1990s, the WSF flew on three space shuttle missions as a series of proof-of-concept missions. These experiments are a lasting testament to the success of the shuttle program and resulted in the development of the first thin film materials made in the vacuum of space, helping to pave the way for better thin film development on Earth.

  11. Semiconductor device PN junction fabrication using optical processing of amorphous semiconductor material

    SciTech Connect

    Sopori, Bhushan; Rangappan, Anikara

    2014-11-25

    Systems and methods for semiconductor device PN junction fabrication are provided. In one embodiment, a method for fabricating an electrical device having a P-N junction comprises: depositing a layer of amorphous semiconductor material onto a crystalline semiconductor base, wherein the crystalline semiconductor base comprises a crystalline phase of a same semiconductor as the amorphous layer; and growing the layer of amorphous semiconductor material into a layer of crystalline semiconductor material that is epitaxially matched to the lattice structure of the crystalline semiconductor base by applying an optical energy that penetrates at least the amorphous semiconductor material.

  12. Advanced Infrared Photodetectors (Materials Review)

    DTIC Science & Technology

    1993-12-01

    rays by reducing the effective detector area (9]. The lens structure also offers a measure of mechanical protection. 2.3.2 Electronic non...ib.itio’ý I by Availability Codes Philip J. Picone Avail and/ornDist Special SUMMARY The present status of advanced infrared semiconductor detector materials... POSTAL ADDRESS: Director, Surveillance Research Laboratory, PO Box 1500, Salisbury, South Australia, 5108. SRL.0117-RR UNCLASSIFIED SRL - 0117 - RR

  13. Semiconductor materials and microelectronic circuits

    NASA Astrophysics Data System (ADS)

    Kolesar, Edward S.

    Microminiaturization developments in IC systems have dramatically increased the reliability and performance of electronic components while reducing their physical size and power requirements; these advancements have pervasively affected weapons systems design efforts. Built-in self-test circuitry has greatly reduced maintenance problems and improved overall systems reliability. Increasing circuit complexity has also led to a major expansion of key military operational capabilities for reconnaissance, surveillance, and target acquisition. It is expected that Si-based ICs will continue to dominate high power solid-state switches in hypervelocity projectiles and beam weapons, while GaAs will remain the most commonly employed material in microwave and mm-wave devices for EW, radars, smart weapons, and communications.

  14. Controlling the stoichiometry and doping of semiconductor materials

    DOEpatents

    Albin, David; Burst, James; Metzger, Wyatt; Duenow, Joel; Farrell, Stuart; Colegrove, Eric

    2016-08-16

    Methods for treating a semiconductor material are provided. According to an aspect of the invention, the method includes annealing the semiconductor material in the presence of a compound that includes a first element and a second element. The first element provides an overpressure to achieve a desired stoichiometry of the semiconductor material, and the second element provides a dopant to the semiconductor material.

  15. Measurements of radioactive contaminants in semiconductor materials

    NASA Astrophysics Data System (ADS)

    Gordon, Michael S.; Rodbell, Kenneth P.; Murray, Conal E.; McNally, Brendan D.

    2016-12-01

    The emission of alpha particles from materials used to manufacture semiconductors can contribute substantially to the single-event upset rate. The alpha particles originate from contamination in the materials, or from radioactive isotopes, themselves. In this review paper, we discuss the sources of the radioactivity and the measurement methods to detect the emitted particles.

  16. Advanced Ceramic Armor Materials

    DTIC Science & Technology

    1990-05-11

    materials, toughened alumina, fiber -reinforced glass matrix composites, and multilayer-gradient materials for ballistic testing. Fabrication and...material systems: Multilayer advanced armor materials consisting of a hard ceramic faceplate bonded to a graphite fiber -reinforced glass matrix...toughened alumina, and fiber - applied studies of advanced reinforced ceramic matrix glass and glass -ceramic composites for ballistic testing. technologies

  17. Advances in dental materials.

    PubMed

    Fleming, Garry J P

    2014-05-01

    The dental market is replete with new resorative materials marketed on the basis of novel technological advances in materials chemistry, bonding capability or reduced operator time and/or technique sensitivity. This paper aims to consider advances in current materials, with an emphasis on their role in supporting contemporary clinical practice.

  18. 75 FR 44015 - Certain Semiconductor Products Made by Advanced Lithography Techniques and Products Containing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... COMMISSION Certain Semiconductor Products Made by Advanced Lithography Techniques and Products Containing... importation of certain semiconductor products made by advanced lithography techniques and products containing... certain semiconductor products made by advanced lithography techniques or products containing same...

  19. ZnCdMgSe as a Materials Platform for Advanced Photonic Devices: Broadband Quantum Cascade Detectors and Green Semiconductor Disk Lasers

    NASA Astrophysics Data System (ADS)

    De Jesus, Joel

    The ZnCdMgSe family of II-VI materials has unique and promising characteristics that may be useful in practical applications. For example they can be grown lattice matched to InP substrates with lattice matched bandgaps that span from 2.1 to 3.5 eV, they can be successfully doped n-type, have a large conduction band offset (CBO) with no intervalley scattering present when strained, they have lower average phonon energies, and the InP lattice constant lies in the middle of the ZnSe and CdSe binaries compounds giving room to experiment with tensile and compressive stress. However they have not been studied in detail for use in practical devices. Here we have identified two types of devices that are being currently developed that benefit from the ZnCdMgSe-based material properties. These are the intersubband (ISB) quantum cascade (QC) detectors and optically pumped semiconductor lasers that emit in the visible range. The paucity for semiconductor lasers operating in the green-orange portion of the visible spectrum can be easily overcome with the ZnCdMgSe materials system developed in our research. The non-strain limited, large CBO available allows to expand the operating wavelength of ISB devices providing shorter and longer wavelengths than the currently commercially available devices. This property can also be exploited to develop broadband room temperature operation ISB detectors. The work presented here focused first on using the ZnCdMgSe-based material properties and parameter to understand and predict the interband and intersubband transitions of its heterostructures. We did this by studying an active region of a QC device by contactless electroreflectance, photoluminescence, FTIR transmittance and correlating the measurements to the quantum well structure by transfer matrix modeling. Then we worked on optimizing the ZnCdMgSe material heterostructures quality by studying the effects of growth interruptions on their optical and optoelectronic properties of

  20. Semiconductor bridge, SCB, ignition of energetic materials

    SciTech Connect

    Bickes, R.W.; Grubelich, M.D.; Harris, S.M.; Merson, J.A.; Tarbell, W.W.

    1997-04-01

    Sandia National Laboratories` semiconductor bridge, SCB, is now being used for the ignition or initiation of a wide variety of exeoergic materials. Applications of this new technology arose because of a need at the system level to provide light weight, small volume and low energy explosive assemblies. Conventional bridgewire devices could not meet the stringent size, weight and energy requirements of our customers. We present an overview of SCB technology and the ignition characteristics for a number of energetic materials including primary and secondary explosives, pyrotechnics, thermites and intermetallics. We provide examples of systems designed to meet the modern requirements that sophisticated systems must satisfy in today`s market environments.

  1. EDITORIAL: Focus on Advanced Semiconductor Heterostructures for Optoelectronics

    NASA Astrophysics Data System (ADS)

    Amann, Markus C.; Capasso, Federico; Larsson, Anders; Pessa, Markus

    2009-12-01

    Semiconductor heterostructures are the basic materials underlying optoelectronic devices, particularly lasers and light-emitting diodes (LEDs). Made from various III-V-, II-VI-, SiGe- and other compound semiconductors, modern semiconductor devices are available for the generation, detection and modulation of light covering the entire ultra-violet to far-infrared spectral region. Recent approaches that introduced multilayer heterostructures tailored on the lower nanometre scale made possible artificial semiconductors with new properties, such as extended wavelength coverage, that enabled new applications. Together with ongoing progress on wide-gap semiconductors, the optical wavelengths accessible by semiconductor devices are steadily expanding towards the short-wavelength ultra-violet regime, as well as further into the far-infrared and terahertz spectral regions. It is the aim of this focus issue to present cutting-edge research topics on the most recent optoelectronic material and device developments in this field using advanced semiconductor heterostructures. Focus on Advanced Semiconductor Heterostructures for Optoelectronics Contents Theoretical and experimental investigations of the limits to the maximum output power of laser diodes H Wenzel, P Crump, A Pietrzak, X Wang, G Erbert and G Tränkle GaN/AlGaN intersubband optoelectronic devices H Machhadani, P Kandaswamy, S Sakr, A Vardi, A Wirtmüller, L Nevou, F Guillot, G Pozzovivo, M Tchernycheva, A Lupu, L Vivien, P Crozat, E Warde, C Bougerol, S Schacham, G Strasser, G Bahir, E Monroy and F H Julien Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage Maria I Amanti, Giacomo Scalari, Romain Terazzi, Milan Fischer, Mattias Beck, Jérôme Faist, Alok Rudra, Pascal Gallo and Eli Kapon Structural and optical characteristics of GaN/ZnO coaxial nanotube heterostructure arrays for light-emitting device applications Young Joon Hong, Jong-Myeong Jeon, Miyoung

  2. Advanced Electrical Materials and Component Development

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.

    2003-01-01

    The primary means to develop advanced electrical components is to develop new and improved materials for magnetic components (transformers, inductors, etc.), capacitors, and semiconductor switches and diodes. This paper will give a description and status of the internal and external research sponsored by NASA Glenn Research Center on soft magnetic materials, dielectric materials and capacitors, and high quality silicon carbide (SiC) atomically smooth substrates. The rationale for and the benefits of developing advanced electrical materials and components for the PMAD subsystem and also for the total power system will be briefly discussed.

  3. n-Channel semiconductor materials design for organic complementary circuits.

    PubMed

    Usta, Hakan; Facchetti, Antonio; Marks, Tobin J

    2011-07-19

    Organic semiconductors have unique properties compared to traditional inorganic materials such as amorphous or crystalline silicon. Some important advantages include their adaptability to low-temperature processing on flexible substrates, low cost, amenability to high-speed fabrication, and tunable electronic properties. These features are essential for a variety of next-generation electronic products, including low-power flexible displays, inexpensive radio frequency identification (RFID) tags, and printable sensors, among many other applications. Accordingly, the preparation of new materials based on π-conjugated organic molecules or polymers has been a central scientific and technological research focus over the past decade. Currently, p-channel (hole-transporting) materials are the leading class of organic semiconductors. In contrast, high-performance n-channel (electron-transporting) semiconductors are relatively rare, but they are of great significance for the development of plastic electronic devices such as organic field-effect transistors (OFETs). In this Account, we highlight the advances our team has made toward realizing moderately and highly electron-deficient n-channel oligomers and polymers based on oligothiophene, arylenediimide, and (bis)indenofluorene skeletons. We have synthesized and characterized a "library" of structurally related semiconductors, and we have investigated detailed structure-property relationships through optical, electrochemical, thermal, microstructural (both single-crystal and thin-film), and electrical measurements. Our results reveal highly informative correlations between structural parameters at various length scales and charge transport properties. We first discuss oligothiophenes functionalized with perfluoroalkyl and perfluoroarene substituents, which represent the initial examples of high-performance n-channel semiconductors developed in this project. The OFET characteristics of these compounds are presented with an

  4. EDITORIAL: (Nano)characterization of semiconductor materials and structures (Nano)characterization of semiconductor materials and structures

    NASA Astrophysics Data System (ADS)

    Bonanni, Alberta

    2011-06-01

    The latest impressive advancements in the epitaxial fabrication of semiconductors and in the refinement of characterization techniques have the potential to allow insight into the deep relation between materials' structural properties and their physical and chemical functionalities. Furthermore, while the comprehensive (nano)characterization of semiconductor materials and structures is becoming more and more necessary, a compendium of the currently available techniques is lacking. We are positive that an overview of the hurdles related to the specific methods, often leading to deceptive interpretations, will be most informative for the broad community working on semiconductors, and will help in shining some light onto a plethora of controversial reports found in the literature. From this perspective, with this special issue we address and highlight the challenges and misinterpretations related to complementary local (nanoscale) and more global experimental methods for the characterization of semiconductors. The six topical reviews and the three invited papers by leading experts in the specific fields collected in here are intended to provide the required broad overview on the possibilities of actual (nano)characterization methods, from the microscopy of single quantum structures, over the synchrotron-based absorption and diffraction of nano-objects, to the contentious detection of tiny magnetic signals by quantum interference and resonance techniques. We are grateful to all the authors for their valuable contributions. Moreover, I would like to thank the Editorial Board of the journal for supporting the realization of this special issue and for inviting me to serve as Guest Editor. We greatly appreciate the work of the reviewers, of the editorial staff of Semiconductor Science and Technology and of IOP Publishing. In particular, the efforts of Alice Malhador in coordinating this special issue are acknowledged.

  5. Method for depositing high-quality microcrystalline semiconductor materials

    DOEpatents

    Guha, Subhendu; Yang, Chi C.; Yan, Baojie

    2011-03-08

    A process for the plasma deposition of a layer of a microcrystalline semiconductor material is carried out by energizing a process gas which includes a precursor of the semiconductor material and a diluent with electromagnetic energy so as to create a plasma therefrom. The plasma deposits a layer of the microcrystalline semiconductor material onto the substrate. The concentration of the diluent in the process gas is varied as a function of the thickness of the layer of microcrystalline semiconductor material which has been deposited. Also disclosed is the use of the process for the preparation of an N-I-P type photovoltaic device.

  6. Method of preparing nitrogen containing semiconductor material

    DOEpatents

    Barber, Greg D.; Kurtz, Sarah R.

    2004-09-07

    A method of combining group III elements with group V elements that incorporates at least nitrogen from a nitrogen halide for use in semiconductors and in particular semiconductors in photovoltaic cells.

  7. Automated S/TEM metrology on advanced semiconductor gate structures

    NASA Astrophysics Data System (ADS)

    Strauss, M.; Arjavac, J.; Horspool, D. N.; Nakahara, K.; Deeb, C.; Hobbs, C.

    2012-03-01

    Alternate techniques for obatining metrology data from advanced semiconductor device structures may be required. Automated STEM-based dimensional metrology (CD-STEM) was developed for complex 3D geometries in read/write head metrology in teh hard disk drive industry. It has been widely adopted, and is the process of record for metrology. Fully automated S/TEM metrology on advanced semiconductor gate structures is viable, with good repeatability and robustness. Consistent automated throughput of 10 samples per hour was achieved. Automated sample preparation was developed with sufficient throughput and quality to support the automated CD-STEM.

  8. Semiconductor CMP Process Control Predicting Degradation Effect of Consumed Materials

    NASA Astrophysics Data System (ADS)

    Tamaki, Kenji; Kaneko, Shun'ichi

    This paper describes a methodology to build a virtual metrology (VM) model for semiconductor chemical mechanical polishing (CMP) process control. The VM model predicts the polishing rate based on equipment-derived data as soon as allowed, and immediately applies the results to advanced process control (APC). The proposed methodology uses Markov chain Monte Carlo (MCMC) methods to build an analytical model with many parameters for individual consumed materials from historical data in small quantities. The mutual interference of two kinds of consumed materials: dresser and pad are modeled in a form of multilevel predictive model. The methodology uses MCMC methods again to identify the multilevel predictive model taking into account the assumed operation of an actual manufacturing line, for instance, using preliminary test result, learning a model parameter online, and being affected by metrology lag as disturbance. The simulation results show the APC with the proposed VM model is low sensitivity to metrology lag and high precision on polishing amount control.

  9. Composition/bandgap selective dry photochemical etching of semiconductor materials

    DOEpatents

    Ashby, C.I.H.; Dishman, J.L.

    1985-10-11

    Disclosed is a method of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap Eg/sub 1/ in the presence of a second semiconductor material of a different composition and direct bandgap Eg/sub 2/, wherein Eg/sub 2/ > Eg/sub 1/, said second semiconductor material substantially not being etched during said method. The method comprises subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said photons being of an energy greater than Eg/sub 1/ but less than Eg/sub 2/, whereby said first semiconductor material is photochemically etched and said second material is substantially not etched.

  10. Composition/bandgap selective dry photochemical etching of semiconductor materials

    DOEpatents

    Ashby, Carol I. H.; Dishman, James L.

    1987-01-01

    A method of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap Eg.sub.1 in the presence of a second semiconductor material of a different composition and direct bandgap Eg.sub.2, wherein Eg.sub.2 >Eg.sub.1, said second semiconductor material substantially not being etched during said method, comprises subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said photons being of an energy greater than Eg.sub.1 but less than Eg.sub.2, whereby said first semiconductor material is photochemically etched and said second material is substantially not etched.

  11. Accelerating advanced-materials commercialization

    NASA Astrophysics Data System (ADS)

    Maine, Elicia; Seegopaul, Purnesh

    2016-05-01

    Long commercialization times, high capital costs and sustained uncertainty deter investment in innovation for advanced materials. With appropriate strategies, technology and market uncertainties can be reduced, and the commercialization of advanced materials accelerated.

  12. Optical correlators with fast updating speed using photorefractive semiconductor materials

    NASA Technical Reports Server (NTRS)

    Gheen, Gregory; Cheng, Li-Jen

    1988-01-01

    The performance of an updatable optical correlator which uses a photorefractive semiconductor to generate real-time matched filters is discussed. The application of compound semiconductors makes possible high-speed operation and low optical input intensities. The Bragg diffraction is considered, along with the speed and power characteristics of these materials. Experimental results on photorefractive GaAs are presented.

  13. Materials science: Semiconductors that stretch and heal

    NASA Astrophysics Data System (ADS)

    Bauer, Siegfried; Kaltenbrunner, Martin

    2016-11-01

    Polymeric semiconductors have been prepared whose molecular properties make them stretchable and healable -- a milestone in the development of sophisticated organic electronic surfaces that mimic human skin. See Letter p.411

  14. Advanced materials nanocharacterization

    PubMed Central

    2011-01-01

    This special issue of Nanoscale Research Letters contains scientific contributions presented at the Symposium D "Multidimensional Electrical and Chemical Characterization at the Nanometer-scale of Organic and Inorganic Semiconductors" of the E-MRS Fall Meeting 2010, which was held in Warsaw, Poland from 13th to 17th September, 2010. PMID:21711622

  15. Advanced materials nanocharacterization

    NASA Astrophysics Data System (ADS)

    Giannazzo, Filippo; Eyben, Pierre; Baranowski, Jacek; Camassel, Jean; Lányi, Stefan

    2011-12-01

    This special issue of Nanoscale Research Letters contains scientific contributions presented at the Symposium D "Multidimensional Electrical and Chemical Characterization at the Nanometer-scale of Organic and Inorganic Semiconductors" of the E-MRS Fall Meeting 2010, which was held in Warsaw, Poland from 13th to 17th September, 2010.

  16. Advanced materials nanocharacterization.

    PubMed

    Giannazzo, Filippo; Eyben, Pierre; Baranowski, Jacek; Camassel, Jean; Lányi, Stefan

    2011-01-31

    This special issue of Nanoscale Research Letters contains scientific contributions presented at the Symposium D "Multidimensional Electrical and Chemical Characterization at the Nanometer-scale of Organic and Inorganic Semiconductors" of the E-MRS Fall Meeting 2010, which was held in Warsaw, Poland from 13th to 17th September, 2010.

  17. Linear semiconductor optical amplifiers for amplification of advanced modulation formats.

    PubMed

    Bonk, R; Huber, G; Vallaitis, T; Koenig, S; Schmogrow, R; Hillerkuss, D; Brenot, R; Lelarge, F; Duan, G-H; Sygletos, S; Koos, C; Freude, W; Leuthold, J

    2012-04-23

    The capability of semiconductor optical amplifiers (SOA) to amplify advanced optical modulation format signals is investigated. The input power dynamic range is studied and especially the impact of the SOA alpha factor is addressed. Our results show that the advantage of a lower alpha-factor SOA decreases for higher-order modulation formats. Experiments at 20 GBd BPSK, QPSK and 16QAM with two SOAs with different alpha factors are performed. Simulations for various modulation formats support the experimental findings.

  18. Advanced composite materials and processes

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.

    1991-01-01

    Composites are generally defined as two or more individual materials, which, when combined into a single material system, results in improved physical and/or mechanical properties. The freedom of choice of the starting components for composites allows the generation of materials that can be specifically tailored to meet a variety of applications. Advanced composites are described as a combination of high strength fibers and high performance polymer matrix materials. These advanced materials are required to permit future aircraft and spacecraft to perform in extended environments. Advanced composite precursor materials, processes for conversion of these materials to structures, and selected applications for composites are reviewed.

  19. Characterization of organic and inorganic optoelectronic semiconductor devices using advanced spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Schroeder, Raoul

    In this thesis, advanced spectroscopy methods are discussed and applied to gain understanding of the physical properties of organic conjugated molecules, II-VI thin film semiconductors, and vertical cavity surface emitting lasers (VCSEL). Experiments include single photon and two-photon excitation with lasers, with subsequent measurements of the absorption and photoluminescence, as well as photocurrent measurements using tungsten and xenon lamps, measuring the direct current and the alternating current of the devices. The materials are investigated in dissolved form (conjugated polymers), thin films (polymers, II-VI semiconductors), and complex layer structures (hybrid device, VCSEL). The experiments are analyzed and interpreted by newly developed or applied theories for two-photon saturation processes in semiconductors, bandgap shrinkage due to optically induced electron hole pairs, and the principle of detailed balance to describe the photoluminescence in thin film cadmium sulfide.

  20. Compound Semiconductor Materials, Devices and Circuits

    DTIC Science & Technology

    1988-06-01

    Semiconductors", L.A. Coldren, J.G. Mendoza - Alvarez and R.H. Yan, Aopl. Phys. Lett., 51, 792-794 (1987). JSEP PUBLICATIONS AND PRESENTATIONS 1. "Room...self-consistent Monte Carlo transport formulation and its applicat... to small graded heterostructure devices; (e) optical modulation based on the...L.F. Eastman 1 0 TASK 3 FUNDAMENTAL PHENOMENON IN ULTRASHORT DEVICES E.D. Wolf, L.F. Eastman and P.J. Tasker 1 9 TASK 4 ENSEMBLE MONTE CARLO

  1. Advanced neutron absorber materials

    DOEpatents

    Branagan, Daniel J.; Smolik, Galen R.

    2000-01-01

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  2. Advanced Materials Technology

    NASA Technical Reports Server (NTRS)

    Blankenship, C. P. (Compiler); Teichman, L. A. (Compiler)

    1982-01-01

    Composites, polymer science, metallic materials (aluminum, titanium, and superalloys), materials processing technology, materials durability in the aerospace environment, ceramics, fatigue and fracture mechanics, tribology, and nondestructive evaluation (NDE) are discussed. Research and development activities are introduced to the nonaerospace industry. In order to provide a convenient means to help transfer aerospace technology to the commercial mainstream in a systematic manner.

  3. Advanced Electrical Materials and Components Being Developed

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.

    2004-01-01

    All aerospace systems require power management and distribution (PMAD) between the energy and power source and the loads. The PMAD subsystem can be broadly described as the conditioning and control of unregulated power from the energy source and its transmission to a power bus for distribution to the intended loads. All power and control circuits for PMAD require electrical components for switching, energy storage, voltage-to-current transformation, filtering, regulation, protection, and isolation. Advanced electrical materials and component development technology is a key technology to increasing the power density, efficiency, reliability, and operating temperature of the PMAD. The primary means to develop advanced electrical components is to develop new and/or significantly improved electronic materials for capacitors, magnetic components, and semiconductor switches and diodes. The next important step is to develop the processing techniques to fabricate electrical and electronic components that exceed the specifications of presently available state-of-the-art components. The NASA Glenn Research Center's advanced electrical materials and component development technology task is focused on the following three areas: 1) New and/or improved dielectric materials for the development of power capacitors with increased capacitance volumetric efficiency, energy density, and operating temperature; 2) New and/or improved high-frequency, high-temperature soft magnetic materials for the development of transformers and inductors with increased power density, energy density, electrical efficiency, and operating temperature; 3) Packaged high-temperature, high-power density, high-voltage, and low-loss SiC diodes and switches.

  4. Recent advances in organic semiconducting materials

    NASA Astrophysics Data System (ADS)

    Ostroverkhova, Oksana

    2011-10-01

    Organic semiconductors have attracted attention due to their low cost, easy fabrication, and tunable properties. Applications of organic materials in thin-film transistors, solar cells, light-emitting diodes, sensors, and many other devices have been actively explored. Recent advances in organic synthesis, material processing, and device fabrication led to significant improvements in (opto)electronic device performance. However, a number of challenges remain. These range from lack of understanding of basic physics of intermolecular interactions that determine optical and electronic properties of organic materials to difficulties in controlling film morphology and stability. In this presentation, current state of the field will be reviewed and recent results related to charge carrier and exciton dynamics in organic thin films will be presented.[4pt] In collaboration with Whitney Shepherd, Mark Kendrick, Andrew Platt, Oregon State University; Marsha Loth and John Anthony, University of Kentucky.

  5. Conduit for high temperature transfer of molten semiconductor crystalline material

    NASA Technical Reports Server (NTRS)

    Fiegl, George (Inventor); Torbet, Walter (Inventor)

    1983-01-01

    A conduit for high temperature transfer of molten semiconductor crystalline material consists of a composite structure incorporating a quartz transfer tube as the innermost member, with an outer thermally insulating layer designed to serve the dual purposes of minimizing heat losses from the quartz tube and maintaining mechanical strength and rigidity of the conduit at the elevated temperatures encountered. The composite structure ensures that the molten semiconductor material only comes in contact with a material (quartz) with which it is compatible, while the outer layer structure reinforces the quartz tube, which becomes somewhat soft at molten semiconductor temperatures. To further aid in preventing cooling of the molten semiconductor, a distributed, electric resistance heater is in contact with the surface of the quartz tube over most of its length. The quartz tube has short end portions which extend through the surface of the semiconductor melt and which are lef bare of the thermal insulation. The heater is designed to provide an increased heat input per unit area in the region adjacent these end portions.

  6. Contributive research in compound semiconductor material and related devices

    NASA Astrophysics Data System (ADS)

    Twist, James R.

    1988-05-01

    The objective of this program was to provide the Electronic Device Branch (AFWAL/AADR) with the support needed to perform state of the art electronic device research. In the process of managing and performing on the project, UES has provided a wide variety of scientific and engineering talent who worked in-house for the Avionics Laboratory. These personnel worked on many different types of research programs from gas phase microwave driven lasers, CVD and MOCVD of electronic materials to Electronic Device Technology for new devices. The fields of research included MBE and theoretical research in this novel growth technique. Much of the work was slanted towards the rapidly developing technology of GaAs and the general thrust of the research that these tasks started has remained constant. This work was started because the Avionics Laboratory saw a chance to advance the knowledge and level of the current device technology by working in the compounds semiconductor field. UES is pleased to have had the opportunity to perform on this program and is looking forward to future efforts with the Avionics Laboratory.

  7. Development of advanced thermoelectric materials

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The development of an advanced thermoelectric material for radioisotope thermoelectric generator (RTG) applications is reported. A number of materials were explored. The bulk of the effort, however, was devoted to improving silicon germanium alloys by the addition of gallium phosphide, the synthesis and evaluation of lanthanum chrome sulfide and the formulation of various mixtures of lanthanum sulfide and chrome sulfide. It is found that each of these materials exhibits promise as a thermoelectric material.

  8. Advanced electron microscopy for advanced materials.

    PubMed

    Van Tendeloo, Gustaaf; Bals, Sara; Van Aert, Sandra; Verbeeck, Jo; Van Dyck, Dirk

    2012-11-08

    The idea of this Review is to introduce newly developed possibilities of advanced electron microscopy to the materials science community. Over the last decade, electron microscopy has evolved into a full analytical tool, able to provide atomic scale information on the position, nature, and even the valency atoms. This information is classically obtained in two dimensions (2D), but can now also be obtained in 3D. We show examples of applications in the field of nanoparticles and interfaces.

  9. Method of depositing wide bandgap amorphous semiconductor materials

    DOEpatents

    Ellis, Jr., Frank B.; Delahoy, Alan E.

    1987-09-29

    A method of depositing wide bandgap p type amorphous semiconductor materials on a substrate without photosensitization by the decomposition of one or more higher order gaseous silanes in the presence of a p-type catalytic dopant at a temperature of about 200.degree. C. and a pressure in the range from about 1-50 Torr.

  10. Method for depositing layers of high quality semiconductor material

    DOEpatents

    Guha, Subhendu; Yang, Chi C.

    2001-08-14

    Plasma deposition of substantially amorphous semiconductor materials is carried out under a set of deposition parameters which are selected so that the process operates near the amorphous/microcrystalline threshold. This threshold varies as a function of the thickness of the depositing semiconductor layer; and, deposition parameters, such as diluent gas concentrations, must be adjusted as a function of layer thickness. Also, this threshold varies as a function of the composition of the depositing layer, and in those instances where the layer composition is profiled throughout its thickness, deposition parameters must be adjusted accordingly so as to maintain the amorphous/microcrystalline threshold.

  11. Photoconductive terahertz generation from textured semiconductor materials

    PubMed Central

    Collier, Christopher M.; Stirling, Trevor J.; Hristovski, Ilija R.; Krupa, Jeffrey D. A.; Holzman, Jonathan F.

    2016-01-01

    Photoconductive (PC) terahertz (THz) emitters are often limited by ohmic loss and Joule heating—as these effects can lead to thermal runaway and premature device breakdown. To address this, the proposed work introduces PC THz emitters based on textured InP materials. The enhanced surface recombination and decreased charge-carrier lifetimes of the textured InP materials reduce residual photocurrents, following the picosecond THz waveform generation, and this diminishes Joule heating in the emitters. A non-textured InP material is used as a baseline for studies of fine- and coarse-textured InP materials. Ultrafast pump-probe and THz setups are used to measure the charge-carrier lifetimes and THz response/photocurrent consumption of the respective materials and emitters. It is found that similar temporal and spectral characteristics can be achieved with the THz emitters, but the level of photocurrent consumption (yielding Joule heating) is greatly reduced in the textured materials. PMID:26979292

  12. Advanced materials for space

    NASA Technical Reports Server (NTRS)

    Tenney, D. R.; Slemp, W. S.; Long, E. R., Jr.; Sykes, G. F.

    1980-01-01

    The principal thrust of the LSST program is to develop the materials technology required for confident design of large space systems such as antennas and platforms. Areas of research in the FY-79 program include evaluation of polysulfones, measurement of the coefficient of thermal expansion of low expansion composite laminates, thermal cycling effects, and cable technology. The development of new long thermal control coatings and adhesives for use in space is discussed. The determination of radiation damage mechanisms of resin matrix composites and the formulation of new polymer matrices that are inherently more stable in the space environment are examined.

  13. Anisotropy-based crystalline oxide-on-semiconductor material

    DOEpatents

    McKee, Rodney Allen; Walker, Frederick Joseph

    2000-01-01

    A semiconductor structure and device for use in a semiconductor application utilizes a substrate of semiconductor-based material, such as silicon, and a thin film of a crystalline oxide whose unit cells are capable of exhibiting anisotropic behavior overlying the substrate surface. Within the structure, the unit cells of the crystalline oxide are exposed to an in-plane stain which influences the geometric shape of the unit cells and thereby arranges a directional-dependent quality of the unit cells in a predisposed orientation relative to the substrate. This predisposition of the directional-dependent quality of the unit cells enables the device to take beneficial advantage of characteristics of the structure during operation. For example, in the instance in which the crystalline oxide of the structure is a perovskite, a spinel or an oxide of similarly-related cubic structure, the structure can, within an appropriate semiconductor device, exhibit ferroelectric, piezoelectric, pyroelectric, electro-optic, ferromagnetic, antiferromagnetic, magneto-optic or large dielectric properties that synergistically couple to the underlying semiconductor substrate.

  14. Extending lithography with advanced materials

    NASA Astrophysics Data System (ADS)

    Guerrero, Douglas J.

    2014-03-01

    Material evolution has been a key enabler of lithography nodes in the last 30 years. This paper explores the evolution of anti-reflective coatings and their transformation from materials that provide only reflection control to advanced multifunctional layers. It is expected that complementary processes that do not require a change in wavelength will continue to dominate the development of new devices and technology nodes. New device architecture, immersion lithography, negative-tone development, multiple patterning, and directed self-assembly have demonstrated the capabilities of extending lithography nodes beyond what anyone thought would be possible. New material advancements for future technology nodes are proposed.

  15. Advanced Aerospace Materials by Design

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Djomehri, Jahed; Wei, Chen-Yu

    2004-01-01

    The advances in the emerging field of nanophase thermal and structural composite materials; materials with embedded sensors and actuators for morphing structures; light-weight composite materials for energy and power storage; and large surface area materials for in-situ resource generation and waste recycling, are expected to :revolutionize the capabilities of virtually every system comprising of future robotic and :human moon and mars exploration missions. A high-performance multiscale simulation platform, including the computational capabilities and resources of Columbia - the new supercomputer, is being developed to discover, validate, and prototype next generation (of such advanced materials. This exhibit will describe the porting and scaling of multiscale 'physics based core computer simulation codes for discovering and designing carbon nanotube-polymer composite materials for light-weight load bearing structural and 'thermal protection applications.

  16. Future requirements for advanced materials

    NASA Technical Reports Server (NTRS)

    Olstad, W. B.

    1980-01-01

    Recent advances and future trends in aerospace materials technology are reviewed with reference to metal alloys, high-temperature composites and adhesives, tungsten fiber-reinforced superalloys, hybrid materials, ceramics, new ablative materials, such as carbon-carbon composite and silica tiles used in the Shuttle Orbiter. The technologies of powder metallurgy coupled with hot isostatic pressing, near net forging, complex large shape casting, chopped fiber molding, superplastic forming, and computer-aided design and manufacture are emphasized.

  17. Selective etchant for oxide sacrificial material in semiconductor device fabrication

    SciTech Connect

    Clews, Peggy J.; Mani, Seethambal S.

    2005-05-17

    An etching composition and method is disclosed for removing an oxide sacrificial material during manufacture of semiconductor devices including micromechanical, microelectromechanical or microfluidic devices. The etching composition and method are based on the combination of hydrofluoric acid (HF) and sulfuric acid (H.sub.2 SO.sub.4). These acids can be used in the ratio of 1:3 to 3:1 HF:H.sub.2 SO.sub.4 to remove all or part of the oxide sacrificial material while providing a high etch selectivity for non-oxide materials including polysilicon, silicon nitride and metals comprising aluminum. Both the HF and H.sub.2 SO.sub.4 can be provided as "semiconductor grade" acids in concentrations of generally 40-50% by weight HF, and at least 90% by weight H.sub.2 SO.sub.4.

  18. Hydrogen-bond Specific Materials Modification in Group IV Semiconductors

    SciTech Connect

    Tolk, Norman H.; Feldman, L. C.; Luepke, G.

    2015-09-14

    Executive summary Semiconductor dielectric crystals consist of two fundamental components: lattice atoms and electrons. The former component provides a crystalline structure that can be disrupted by various defects or the presence of an interface, or by transient oscillations known as phonons. The latter component produces an energetic structure that is responsible for the optical and electronic properties of the material, and can be perturbed by lattice defects or by photo-excitation. Over the period of this project, August 15, 1999 to March 31, 2015, a persistent theme has been the elucidation of the fundamental role of defects arising from the presence of radiation damage, impurities (in particular, hydrogen), localized strain or some combination of all three. As our research effort developed and evolved, we have experienced a few title changes, which reflected this evolution. Throughout the project, ultrafast lasers usually in a pump-probe configuration provided the ideal means to perturb and study semiconductor crystals by both forms of excitation, vibrational (phonon) and electronic (photon). Moreover, we have found in the course of this research that there are many interesting and relevant scientific questions that may be explored when phonon and photon excitations are controlled separately. Our early goals were to explore the dynamics of bond-selective vibrational excitation of hydrogen from point defects and impurities in crystalline and amorphous solids, initiating an investigation into the behavior of hydrogen isotopes utilizing a variety of ultrafast characterization techniques, principally transient bleaching spectroscopy to experimentally obtain vibrational lifetimes. The initiative could be divided into three related areas: (a) investigation of the change in electronic structure of solids due to the presence of hydrogen defect centers, (b) dynamical studies of hydrogen in materials and (c) characterization and stability of metastable hydrogen

  19. Advanced materials for energy storage.

    PubMed

    Liu, Chang; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming

    2010-02-23

    Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this Review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted.

  20. Optical band gaps of organic semiconductor materials

    NASA Astrophysics Data System (ADS)

    Costa, José C. S.; Taveira, Ricardo J. S.; Lima, Carlos F. R. A. C.; Mendes, Adélio; Santos, Luís M. N. B. F.

    2016-08-01

    UV-Vis can be used as an easy and forthright technique to accurately estimate the band gap energy of organic π-conjugated materials, widely used as thin films/composites in organic and hybrid electronic devices such as OLEDs, OPVs and OFETs. The electronic and optical properties, including HOMO-LUMO energy gaps of π-conjugated systems were evaluated by UV-Vis spectroscopy in CHCl3 solution for a large number of relevant π-conjugated systems: tris-8-hydroxyquinolinatos (Alq3, Gaq3, Inq3, Al(qNO2)3, Al(qCl)3, Al(qBr)3, In(qNO2)3, In(qCl)3 and In(qBr)3); triphenylamine derivatives (DDP, p-TTP, TPB, TPD, TDAB, m-MTDAB, NPB, α-NPD); oligoacenes (naphthalene, anthracene, tetracene and rubrene); oligothiophenes (α-2T, β-2T, α-3T, β-3T, α-4T and α-5T). Additionally, some electronic properties were also explored by quantum chemical calculations. The experimental UV-Vis data are in accordance with the DFT predictions and indicate that the band gap energies of the OSCs dissolved in CHCl3 solution are consistent with the values presented for thin films.

  1. Novel engineered compound semiconductor heterostructures for advanced electronics applications

    NASA Astrophysics Data System (ADS)

    Stillman, Gregory E.; Holonyak, Nick, Jr.; Coleman, James J.

    1992-06-01

    To provide the technology base that will enable SDIO capitalization on the performance advantages offered through novel engineered multiple-lavered compound semiconductor structures, this project has focussed on three specific areas: (1) carbon doping of AlGaAs/GaAs and InP/InGaAs materials for reliable high frequency heterojunction bipolar transistors; (2) impurity induced layer disordering and the environmental degradation of AlxGal-xAs-GaAs quantum-well heterostructures and the native oxide stabilization of AlxGal-xAs-GaAs quantum well heterostructure lasers; and (3) non-planar and strained-layer quantum well heterostructure lasers and laser arrays. The accomplishments in this three year research are reported in fifty-six publications and the abstracts included in this report.

  2. Advanced Microstructured Semiconductor Neutron Detectors: Design, Fabrication, and Performance

    NASA Astrophysics Data System (ADS)

    Bellinger, Steven Lawrence

    The microstructured semiconductor neutron detector (MSND) was investigated and previous designs were improved and optimized. In the present work, fabrication techniques have been refined and improved to produce three-dimensional microstructured semiconductor neutron detectors with reduced leakage current, reduced capacitance, highly anisotropic deep etched trenches, and increased signal-to-noise ratios. As a result of these improvements, new MSND detection systems function with better gamma-ray discrimination and are easier to fabricate than previous designs. In addition to the microstructured diode fabrication improvement, a superior batch processing backfill-method for 6LiF neutron reactive material, resulting in a nearly-solid backfill, was developed. This method incorporates a LiF nano-sizing process and a centrifugal batch process for backfilling the nanoparticle LiF material. To better transition the MSND detector to commercialization, the fabrication process was studied and enhanced to better facilitate low cost and batch process MSND production. The research and development of the MSND technology described in this work includes fabrication of variant microstructured diode designs, which have been simulated through MSND physics models to predict performance and neutron detection efficiency, and testing the operational performance of these designs in regards to neutron detection efficiency, gamma-ray rejection, and silicon fabrication methodology. The highest thermal-neutron detection efficiency reported to date for a solid-state semiconductor detector is presented in this work. MSNDs show excellent neutron to gamma-ray (n/γ) rejection ratios, which are on the order of 106, without significant loss in thermal-neutron detection efficiency. Individually, the MSND is intrinsically highly sensitive to thermal neutrons, but not extrinsically sensitive because of their small size. To improve upon this, individual MSNDs were tiled together into a 6x6-element array

  3. FTIR characterization of advanced materials

    NASA Technical Reports Server (NTRS)

    Young, P. R.; Chang, A. C.

    1986-01-01

    This paper surveys the application of Fourier transform infrared spectroscopy to the characterization of advanced materials. FTIR sampling techniques including internal and external reflectance and photoacoustic spectroscopy are discussed. Representative examples from the literature of the analysis of resins, fibers, prepregs and composites are reviewed. A discussion of several promising specialized FTIR techniques is also presented.

  4. Hybrid magnetic/semiconductor spintronic materials and devices

    NASA Astrophysics Data System (ADS)

    Xu, Y. B.; Ahmad, E.; Claydon, J. S.; Lu, Y. X.; Hassan, S. S. A.; Will, I. G.; Cantor, B.

    2006-09-01

    We report our experimental studies of different kinds of magnetic/semiconductor hybrid materials and devices highly promising for the next generation spintronics. The epitaxial Fe films on three III-V Semiconductor surfaces, In xGa 1-xAs(1 0 0), x=0, 1, 0.2, show a uniaxial magnetic anisotropy in the ultrathin region. This suggests that both interface bonding and the magnetoelastic effect control magnetic anisotropy. We demonstrate the epitaxial growth of new hybrid spintronic structures, namely, Fe 3O 4/GaAs and Fe 3O 4/MgO/GaAs, where the magnetic oxide has both high Curie temperature and high spin polarisation. Both the magnetisation loops and magneto-resistance curves of Fe 3O 4/GaAs were found to be dominated by a strong uniaxial magnetic anisotropy. We have also fabricated a novel vertical hybrid spin device, i.e. Co(15 ML)/GaAs(50 nm, n-type)/Al 0.3Ga 0.7As(200 nm, n-type)/FeNi(30 nm) and observed for the first time a change of the magneto-resistance up to 12% by direct transport measurements, which demonstrated large spin injection and the feasibility to fabricate the spin-transistors capable of operating at room temperatures by using magnetic/semiconductor hybrid materials.

  5. Neutron detection using boron gallium nitride semiconductor material

    SciTech Connect

    Atsumi, Katsuhiro; Inoue, Yoku; Nakano, Takayuki; Mimura, Hidenori; Aoki, Toru

    2014-03-01

    In this study, we developed a new neutron-detection device using a boron gallium nitride (BGaN) semiconductor in which the B atom acts as a neutron converter. BGaN and gallium nitride (GaN) samples were grown by metal organic vapor phase epitaxy, and their radiation detection properties were evaluated. GaN exhibited good sensitivity to α-rays but poor sensitivity to γ-rays. Moreover, we confirmed that electrons were generated in the depletion layer under neutron irradiation. This resulted in a neutron-detection signal after α-rays were generated by the capture of neutrons by the B atoms. These results prove that BGaN is useful as a neutron-detecting semiconductor material.

  6. Numerical algorithms for the atomistic dopant profiling of semiconductor materials

    NASA Astrophysics Data System (ADS)

    Aghaei Anvigh, Samira

    In this dissertation, we investigate the possibility to use scanning microscopy such as scanning capacitance microscopy (SCM) and scanning spreading resistance microscopy (SSRM) for the "atomistic" dopant profiling of semiconductor materials. For this purpose, we first analyze the discrete effects of random dopant fluctuations (RDF) on SCM and SSRM measurements with nanoscale probes and show that RDF significantly affects the differential capacitance and spreading resistance of the SCM and SSRM measurements if the dimension of the probe is below 50 nm. Then, we develop a mathematical algorithm to compute the spatial coordinates of the ionized impurities in the depletion region using a set of scanning microscopy measurements. The proposed numerical algorithm is then applied to extract the (x, y, z) coordinates of ionized impurities in the depletion region in the case of a few semiconductor materials with different doping configuration. The numerical algorithm developed to solve the above inverse problem is based on the evaluation of doping sensitivity functions of the differential capacitance, which show how sensitive the differential capacitance is to doping variations at different locations. To develop the numerical algorithm we first express the doping sensitivity functions in terms of the Gâteaux derivative of the differential capacitance, use Riesz representation theorem, and then apply a gradient optimization approach to compute the locations of the dopants. The algorithm is verified numerically using 2-D simulations, in which the C-V curves are measured at 3 different locations on the surface of the semiconductor. Although the cases studied in this dissertation are much idealized and, in reality, the C-V measurements are subject to noise and other experimental errors, it is shown that if the differential capacitance is measured precisely, SCM measurements can be potentially used for the "atomistic" profiling of ionized impurities in doped semiconductors.

  7. More Efficient Power Conversion for EVs: Gallium-Nitride Advanced Power Semiconductor and Packaging

    SciTech Connect

    2010-02-01

    Broad Funding Opportunity Announcement Project: Delphi is developing power converters that are smaller and more energy efficient, reliable, and cost-effective than current power converters. Power converters rely on power transistors which act like a very precisely controlled on-off switch, controlling the electrical energy flowing through an electrical circuit. Most power transistors today use silicon (Si) semiconductors. However, Delphi is using semiconductors made with a thin layer of gallium-nitride (GaN) applied on top of the more conventional Si material. The GaN layer increases the energy efficiency of the power transistor and also enables the transistor to operate at much higher temperatures, voltages, and power-density levels compared to its Si counterpart. Delphi is packaging these high-performance GaN semiconductors with advanced electrical connections and a cooling system that extracts waste heat from both sides of the device to further increase the device’s efficiency and allow more electrical current to flow through it. When combined with other electronic components on a circuit board, Delphi’s GaN power transistor package will help improve the overall performance and cost-effectiveness of HEVs and EVs.

  8. Graphene-based hybrid structures combined with functional materials of ferroelectrics and semiconductors

    NASA Astrophysics Data System (ADS)

    Jie, Wenjing; Hao, Jianhua

    2014-05-01

    Fundamental studies and applications of 2-dimensional (2D) graphene may be deepened and broadened via combining graphene sheets with various functional materials, which have been extended from the traditional insulator of SiO2 to a versatile range of dielectrics, semiconductors and metals, as well as organic compounds. Among them, ferroelectric materials have received much attention due to their unique ferroelectric polarization. As a result, many attractive characteristics can be shown in graphene/ferroelectric hybrid systems. On the other hand, graphene can be integrated with conventional semiconductors and some newly-discovered 2D layered materials to form distinct Schottky junctions, yielding fascinating behaviours and exhibiting the potential for various applications in future functional devices. This review article is an attempt to illustrate the most recent progress in the fabrication, operation principle, characterization, and promising applications of graphene-based hybrid structures combined with various functional materials, ranging from ferroelectrics to semiconductors. We focus on mechanically exfoliated and chemical-vapor-deposited graphene sheets integrated in numerous advanced devices. Some typical hybrid structures have been highlighted, aiming at potential applications in non-volatile memories, transparent flexible electrodes, solar cells, photodetectors, and so on.

  9. Ductile mode material removal of ceramics and semiconductors

    NASA Astrophysics Data System (ADS)

    Ravindra, Deepak

    Ceramics and semiconductors are hard, strong, inert and lightweight. They also have good optical properties, wide energy bandgap and high maximum current density. This combination of properties makes them ideal candidates for tribological, semiconductor, MEMS and optoelectronic applications respectively. Manufacturing these materials without causing surface and subsurface damage is extremely challenging due to their high hardness, brittle characteristics and poor machinability. However, ductile regime machining of these materials is possible due to the high-pressure phase transformation occurring in the material caused by the high compressive stresses induced by the single point diamond tool tip. In this study, to further augment the ductile response of the machined material, single point scratch tests are coupled with a micro-laser assisted machining (micro-LAM) technique. The high pressure phase is preferentially heated and thermally softened by using concentrated energy sources (i.e. laser beams) to enhance the ductile response of the material. The focus here is to develop an efficient manufacturing technique to improve the surface quality of ceramics and semiconductors to be used as optical devices (mirrors and windows). Machining parameters such as the depth of cut, feed, cutting speed and laser power are optimized in order to make the manufacturing process more time and cost effective. Also, the science behind the thermal softening effect during the formation of high-pressure phases is experimentally studied by isolating the temperature and pressure effect. Micro-laser assisted scratch tests successfully demonstrate the enhanced thermal softening in silicon (Si), silicon carbide (SiC) and sapphire resulting in greater depths of cuts (when compared to similar applied loads for cuts with no laser), greater ductile-to-brittle transition depths and smaller cutting forces. Imaging and characterization techniques such as optical microscopy, light interferometry

  10. Materials Science and Device Physics of 2-Dimensional Semiconductors

    NASA Astrophysics Data System (ADS)

    Fang, Hui

    Materials and device innovations are the keys to future technology revolution. For MOSFET scaling in particular, semiconductors with ultra-thin thickness on insulator platform is currently of great interest, due to the potential of integrating excellent channel materials with the industrially mature Si processing. Meanwhile, ultra-thin thickness also induces strong quantum confinement which in turn affect most of the material properties of these 2-dimensional (2-D) semiconductors, providing unprecedented opportunities for emerging technologies. In this thesis, multiple novel 2-D material systems are explored. Chapter one introduces the present challenges faced by MOSFET scaling. Chapter two covers the integration of ultrathin III V membranes with Si. Free standing ultrathin III-V is studied to enable high performance III-V on Si MOSFETs with strain engineering and alloying. Chapter three studies the light absorption in 2-D membranes. Experimental results and theoretical analysis reveal that light absorption in the 2-D quantum membranes is quantized into a fundamental physical constant, where we call it the quantum unit of light absorption, irrelevant of most of the material dependent parameters. Chapter four starts to focus on another 2-D system, atomic thin layered chalcogenides. Single and few layered chalcogenides are first explored as channel materials, with focuses in engineering the contacts for high performance MOSFETs. Contact treatment by molecular doping methods reveals that many layered chalcogenides other than MoS2 exhibit good transport properties at single layer limit. Finally, Chapter five investigated 2-D van der Waals heterostructures built from different single layer chalcogenides. The investigation in a WSe2/MoS2 hetero-bilayer shows a large Stokes like shift between photoluminescence peak and lowest absorption peak, as well as strong photoluminescence intensity, consistent with spatially indirect transition in a type II band alignment in this

  11. Methods for forming group III-arsenide-nitride semiconductor materials

    NASA Technical Reports Server (NTRS)

    Major, Jo S. (Inventor); Welch, David F. (Inventor); Scifres, Donald R. (Inventor)

    2002-01-01

    Methods are disclosed for forming Group III-arsenide-nitride semiconductor materials. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V crystals varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V crystals can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.

  12. An Assessment of Critical Dimension Small Angle X-ray Scattering Metrology for Advanced Semiconductor Manufacturing

    SciTech Connect

    Settens, Charles M.

    2015-01-01

    Simultaneous migration of planar transistors to FinFET architectures, the introduction of a plurality of materials to ensure suitable electrical characteristics, and the establishment of reliable multiple patterning lithography schemes to pattern sub-10 nm feature sizes imposes formidable challenges to current in-line dimensional metrologies. Because the shape of a FinFET channel cross-section immediately influences the electrical characteristics, the evaluation of 3D device structures requires measurement of parameters beyond traditional critical dimension (CD), including their sidewall angles, top corner rounding and footing, roughness, recesses and undercuts at single nanometer dimensions; thus, metrologies require sub-nm and approaching atomic level measurement uncertainty. Synchrotron critical dimension small angle X-ray scattering (CD-SAXS) has unique capabilities to non-destructively monitor the cross-section shape of surface structures with single nanometer uncertainty and can perform overlay metrology to sub-nm uncertainty. In this dissertation, we perform a systematic experimental investigation using CD-SAXS metrology on a hierarchy of semiconductor 3D device architectures including, high-aspect-ratio contact holes, H2 annealed Si fins, and a series of grating type samples at multiple points along a FinFET fabrication process increasing in structural intricacy and ending with fully fabricated FinFET. Comparative studies between CD-SAXS metrology and other relevant semiconductor dimensional metrologies, particularly CDSEM, CD-AFM and TEM are used to determine physical limits of CD-SAXS approach for advanced semiconductor samples. CD-SAXS experimental tradeoffs, advice for model-dependent analysis and thoughts on the compatibility with a semiconductor manufacturing environment are discussed.

  13. Plasma Processing of Advanced Materials

    SciTech Connect

    Heberlein, Joachim, V.R.; Pfender, Emil; Kortshagen, Uwe

    2005-02-28

    Plasma Processing of Advanced Materials The project had the overall objective of improving our understanding of the influences of process parameters on the properties of advanced superhard materials. The focus was on high rate deposition processes using thermal plasmas and atmospheric pressure glow discharges, and the emphasis on superhard materials was chosen because of the potential impact of such materials on industrial energy use and on the environment. In addition, the development of suitable diagnostic techniques was pursued. The project was divided into four tasks: (1) Deposition of superhard boron containing films using a supersonic plasma jet reactor (SPJR), and the characterization of the deposition process. (2) Deposition of superhard nanocomposite films in the silicon-nitrogen-carbon system using the triple torch plasma reactor (TTPR), and the characterization of the deposition process. (3) Deposition of films consisting of carbon nanotubes using an atmospheric pressure glow discharge reactor. (4) Adapting the Thomson scattering method for characterization of atmospheric pressure non-uniform plasmas with steep spatial gradients and temporal fluctuations. This report summarizes the results.

  14. Advanced aircraft engine materials trends

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.; Gray, H. R.; Levine, S. R.; Signorelli, R.

    1981-01-01

    Recent activities of the Lewis Research Center are reviewed which are directed toward developing materials for rotating hot section components for aircraft gas turbines. Turbine blade materials activities are directed at increasing metal temperatures approximately 100 C compared to current directionally solidified alloys by use of oxide dispersion strengthening or tungsten alloy wire reinforcement of nickel or iron base superalloys. The application of thermal barrier coatings offers a promise of increasing gas temperatures an additional 100 C with current cooling technology. For turbine disk alloys, activities are directed toward reducing the cost of turbine disks by 50 percent through near net shape fabrication of prealloyed powders as well as towards improved performance. In addition, advanced alloy concepts and fabrication methods for dual alloy disks are being studied as having potential for improving the life of future high performance disks and reducing the amount of strategic materials required in these components.

  15. Methods of measurement for semiconductor materials, process control, and devices

    NASA Technical Reports Server (NTRS)

    Bullis, W. M. (Editor)

    1972-01-01

    Activities directed toward the development of methods of measurement for semiconductor materials, process control, and devices are described. Topics investigated include: measurements of transistor delay time; application of the infrared response technique to the study of radiation-damaged, lithium-drifted silicon detectors; and identification of a condition that minimizes wire flexure and reduces the failure rate of wire bonds in transistors and integrated circuits under slow thermal cycling conditions. Supplementary data concerning staff, standards committee activities, technical services, and publications are included as appendixes.

  16. Methods of measurement for semiconductor materials, process control, and devices

    NASA Technical Reports Server (NTRS)

    Bullis, W. M. (Editor)

    1971-01-01

    The development of methods of measurement for semiconductor materials, process control, and devices is discussed. The following subjects are also presented: (1) demonstration of the high sensitivity of the infrared response technique by the identification of gold in a germanium diode, (2) verification that transient thermal response is significantly more sensitive to the presence of voids in die attachment than steady-state thermal resistance, and (3) development of equipment for determining susceptibility of transistors to hot spot formation by the current-gain technique.

  17. Methods for the additive manufacturing of semiconductor and crystal materials

    SciTech Connect

    Stowe, Ashley C.; Speight, Douglas

    2016-11-22

    A method for the additive manufacturing of inorganic crystalline materials, including: physically combining a plurality of starting materials that are used to form an inorganic crystalline compound to be used as one or more of a semiconductor, scintillator, laser crystal, and optical filter; heating or melting successive regions of the combined starting materials using a directed heat source having a predetermined energy characteristic, thereby facilitating the reaction of the combined starting materials; and allowing each region of the combined starting materials to cool in a controlled manner, such that the desired inorganic crystalline compound results. The method also includes, prior to heating or melting the successive regions of the combined starting materials using the directed heat source, heating the combined starting materials to facilitate initial reaction of the combined starting materials. The method further includes translating the combined starting materials and/or the directed heat source between successive locations. The method still further includes controlling the mechanical, electrical, photonic, and/or optical properties of the inorganic crystalline compound.

  18. Materials Science and Technology, Volume 4, Electronic Structure and Properties of Semiconductors

    NASA Astrophysics Data System (ADS)

    Schröter, Wolfgang

    1996-12-01

    This volume spans the field of semiconductor physics, with particular emphasis on concepts relevant to semiconductor technology. From the Contents: Lannoo: Band Theory Applied to Semiconductors. Ulbrich: Optical Properties and Charge Transport. Watkins: Intrinsic Point Defects in Semiconductors. Feichtinger: Deep Centers in Semiconductors. Gösele/Tan: Equilibria, Nonequilibria, Diffusion, and Precipitation. Alexander/Teichler: Dislocations. Thibault/Rouvière/Bourret: Grain Boundaries in Semiconductors. Ourmazd/Hull/Tung: Interfaces. Chang: The Hall Effect in Quantum Wires. Street/Winer: Material Properties of Hydrogenated Amorphous Silicon. Schröter/Seibt/Gilles: High-Temperature Properties of 3d Transition Elements in Silicon.

  19. System for characterizing semiconductor materials and photovoltaic devices through calibration

    DOEpatents

    Sopori, Bhushan L.; Allen, Larry C.; Marshall, Craig; Murphy, Robert C.; Marshall, Todd

    1998-01-01

    A method and apparatus for measuring characteristics of a piece of material, typically semiconductor materials including photovoltaic devices. The characteristics may include dislocation defect density, grain boundaries, reflectance, external LBIC, internal LBIC, and minority carrier diffusion length. The apparatus includes a light source, an integrating sphere, and a detector communicating with a computer. The measurement or calculation of the characteristics is calibrated to provide accurate, absolute values. The calibration is performed by substituting a standard sample for the piece of material, the sample having a known quantity of one or more of the relevant characteristics. The quantity measured by the system of the relevant characteristic is compared to the known quantity and a calibration constant is created thereby.

  20. System for characterizing semiconductor materials and photovoltaic devices through calibration

    DOEpatents

    Sopori, B.L.; Allen, L.C.; Marshall, C.; Murphy, R.C.; Marshall, T.

    1998-05-26

    A method and apparatus are disclosed for measuring characteristics of a piece of material, typically semiconductor materials including photovoltaic devices. The characteristics may include dislocation defect density, grain boundaries, reflectance, external LBIC, internal LBIC, and minority carrier diffusion length. The apparatus includes a light source, an integrating sphere, and a detector communicating with a computer. The measurement or calculation of the characteristics is calibrated to provide accurate, absolute values. The calibration is performed by substituting a standard sample for the piece of material, the sample having a known quantity of one or more of the relevant characteristics. The quantity measured by the system of the relevant characteristic is compared to the known quantity and a calibration constant is created thereby. 44 figs.

  1. Session: CSP Advanced Systems: Optical Materials (Presentation)

    SciTech Connect

    Kennedy, C.

    2008-04-01

    The Optical Materials project description is to characterize advanced reflector, perform accelerated and outdoor testing of commercial and experimental reflector materials, and provide industry support.

  2. Surface passivation process of compound semiconductor material using UV photosulfidation

    DOEpatents

    Ashby, Carol I. H.

    1995-01-01

    A method for passivating compound semiconductor surfaces by photolytically disrupting molecular sulfur vapor with ultraviolet radiation to form reactive sulfur which then reacts with and passivates the surface of compound semiconductors.

  3. Advanced Materials for Space Applications

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.; Curto, Paul A.

    2005-01-01

    Since NASA was created in 1958, over 6400 patents have been issued to the agency--nearly one in a thousand of all patents ever issued in the United States. A large number of these inventions have focused on new materials that have made space travel and exploration of the moon, Mars, and the outer planets possible. In the last few years, the materials developed by NASA Langley Research Center embody breakthroughs in performance and properties that will enable great achievements in space. The examples discussed below offer significant advantages for use in small satellites, i.e., those with payloads under a metric ton. These include patented products such as LaRC SI, LaRC RP 46, LaRC RP 50, PETI-5, TEEK, PETI-330, LaRC CP, TOR-LM and LaRC LCR (patent pending). These and other new advances in nanotechnology engineering, self-assembling nanostructures and multifunctional aerospace materials are presented and discussed below, and applications with significant technological and commercial advantages are proposed.

  4. Advanced materials for space applications

    NASA Astrophysics Data System (ADS)

    Pater, Ruth H.; Curto, Paul A.

    2007-12-01

    Since NASA was created in 1958, over 6400 patents have been issued to the agency—nearly one in a thousand of all patents ever issued in the United States. A large number of these inventions have focused on new materials that have made space travel and exploration of the moon, Mars, and the outer planets possible. In the last few years, the materials developed by NASA Langley Research Center embody breakthroughs in performance and properties that will enable great achievements in space. The examples discussed below offer significant advantages for use in small satellites, i.e., those with payloads under a metric ton. These include patented products such as LaRC SI, LaRC RP 46, LaRC RP 50, PETI-5, TEEK, PETI-330, LaRC CP, TOR-LM and LaRC LCR (patent pending). These and other new advances in nanotechnology engineering, self-assembling nanostructures and multifunctional aerospace materials are presented and discussed below, and applications with significant technological and commercial advantages are proposed.

  5. Materials Advance Chemical Propulsion Technology

    NASA Technical Reports Server (NTRS)

    2012-01-01

    In the future, the Planetary Science Division of NASA's Science Mission Directorate hopes to use better-performing and lower-cost propulsion systems to send rovers, probes, and observers to places like Mars, Jupiter, and Saturn. For such purposes, a new propulsion technology called the Advanced Materials Bipropellant Rocket (AMBR) was developed under NASA's In-Space Propulsion Technology (ISPT) project, located at Glenn Research Center. As an advanced chemical propulsion system, AMBR uses nitrogen tetroxide oxidizer and hydrazine fuel to propel a spacecraft. Based on current research and development efforts, the technology shows great promise for increasing engine operation and engine lifespan, as well as lowering manufacturing costs. In developing AMBR, ISPT has several goals: to decrease the time it takes for a spacecraft to travel to its destination, reduce the cost of making the propulsion system, and lessen the weight of the propulsion system. If goals like these are met, it could result in greater capabilities for in-space science investigations. For example, if the amount (and weight) of propellant required on a spacecraft is reduced, more scientific instruments (and weight) could be added to the spacecraft. To achieve AMBR s maximum potential performance, the engine needed to be capable of operating at extremely high temperatures and pressure. To this end, ISPT required engine chambers made of iridium-coated rhenium (strong, high-temperature metallic elements) that allowed operation at temperatures close to 4,000 F. In addition, ISPT needed an advanced manufacturing technique for better coating methods to increase the strength of the engine chamber without increasing the costs of fabricating the chamber.

  6. Methods of use of semiconductor nanocrystal probes for treating a material

    DOEpatents

    Weiss, Shimon; Bruchez, Marcel; Alivisatos, Paul

    2007-04-27

    A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with one or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.

  7. Advances in defect characterizations of semiconductors using positrons

    SciTech Connect

    Lynn, K.G.; Asoka-Kumar, P.

    1996-12-31

    Positron Annihilation Spectroscopy (PAS) is a sensitive probe for studying the electronic structure of defects in solids. The authors summarize recent developments in defect characterization of semiconductors using depth-resolved PAS. The progress achieved in extending the capabilities of the PAS method is also described.

  8. Apparatus for measuring minority carrier lifetimes in semiconductor materials

    DOEpatents

    Ahrenkiel, Richard K.

    1999-01-01

    An apparatus for determining the minority carrier lifetime of a semiconductor sample includes a positioner for moving the sample relative to a coil. The coil is connected to a bridge circuit such that the impedance of one arm of the bridge circuit is varied as sample is positioned relative to the coil. The sample is positioned relative to the coil such that any change in the photoconductance of the sample created by illumination of the sample creates a linearly related change in the input impedance of the bridge circuit. In addition, the apparatus is calibrated to work at a fixed frequency so that the apparatus maintains a consistently high sensitivity and high linearly for samples of different sizes, shapes, and material properties. When a light source illuminates the sample, the impedance of the bridge circuit is altered as excess carriers are generated in the sample, thereby producing a measurable signal indicative of the minority carrier lifetimes or recombination rates of the sample.

  9. Bipolar magnetic semiconductors: a new class of spintronics materials.

    PubMed

    Li, Xingxing; Wu, Xiaojun; Li, Zhenyu; Yang, Jinlong; Hou, J G

    2012-09-21

    Electrical control of spin polarization is very desirable in spintronics, since electric fields can be easily applied locally, in contrast to magnetic fields. Here, we propose a new concept of bipolar magnetic semiconductors (BMS) in which completely spin-polarized currents with reversible spin polarization can be created and controlled simply by applying a gate voltage. This is a result of the unique electronic structure of BMS, where the valence and conduction bands possess opposite spin polarization when approaching the Fermi level. BMS is thus expected to have potential for various applications. Our band structure and spin-polarized electronic transport calculations on semi-hydrogenated single-walled carbon nanotubes confirm the existence of BMS materials and demonstrate the electrical control of spin-polarization in them.

  10. III-V aresenide-nitride semiconductor materials and devices

    NASA Technical Reports Server (NTRS)

    Major, Jo S. (Inventor); Welch, David F. (Inventor); Scifres, Donald R. (Inventor)

    1997-01-01

    III-V arsenide-nitride semiconductor crystals, methods for producing such crystals and devices employing such crystals. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V crystals varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V crystals can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.

  11. Advanced materials: Information and analysis needs

    SciTech Connect

    Curlee, T.R.; Das, S.; Lee, R.; Trumble, D.

    1990-09-01

    This report presents the findings of a study to identify the types of information and analysis that are needed for advanced materials. The project was sponsored by the US Bureau of Mines (BOM). It includes a conceptual description of information needs for advanced materials and the development and implementation of a questionnaire on the same subject. This report identifies twelve fundamental differences between advanced and traditional materials and discusses the implications of these differences for data and analysis needs. Advanced and traditional materials differ significantly in terms of physical and chemical properties. Advanced material properties can be customized more easily. The production of advanced materials may differ from traditional materials in terms of inputs, the importance of by-products, the importance of different processing steps (especially fabrication), and scale economies. The potential for change in advanced materials characteristics and markets is greater and is derived from the marriage of radically different materials and processes. In addition to the conceptual study, a questionnaire was developed and implemented to assess the opinions of people who are likely users of BOM information on advanced materials. The results of the questionnaire, which was sent to about 1000 people, generally confirm the propositions set forth in the conceptual part of the study. The results also provide data on the categories of advanced materials and the types of information that are of greatest interest to potential users. 32 refs., 1 fig., 12 tabs.

  12. Neutron depth profiling measurements for implanted boron-10 characterization in semiconductor materials

    SciTech Connect

    Uenlue, K.; Saglam, M.; Wehring, B.W.

    1997-12-01

    The implantation of boron and other elements affects the physical and electrical properties of semiconductor materials. The quality of semiconductor devices is determined mainly by the dose and depth distribution of boron in the near-surface region and across interfacial boundaries. The capability to measure these quantities accurately is becoming more important with the production of {open_quotes}shallow junction{close_quotes} devices. A number of techniques are available to measure the boron doses and depth distribution in semiconductor materials, some of which have been developed in the past two decades. Traditionally, the semiconductor industry uses second ion mass spectroscopy (SIMS) for this purpose.

  13. Efficient kinetic Monte Carlo simulation of annealing in semiconductor materials

    NASA Astrophysics Data System (ADS)

    Hargrove, Paul Hamilton

    As the semiconductor manufacturing industry advances, the length scales of devices are shrinking rapidly, in accordance with the predictions of Moore's Law. As the device dimensions shrink the importance of predictive process modeling to the development of the production process is growing. Of particular importance are predictive models which can be applied to process conditions not easily accessible via experiment. Therefore the importance of models based on physical understanding are gaining importance versus models based on empirical fits alone. One promising research area in physical-based models is kinetic Monte Carlo (kMC) modeling of atomistic processes. This thesis explores kMC modeling of annealing and diffusion processes. After providing the necessary background to understand and motivate the research, a detailed review of simulation using this class of models is presented which exposes the motivation for using these models and establishes the state of the field. The author provides a user's manual for ANISRA ( ANnealIng Simulation libRAry), a computer code for on-lattice kMC simulations. This library is intended as a reusable tool for the development of simulation codes for atomistic models covering a wide variety of problems. Thus care has been taken to separate the core functionality of a simulation from the specification of the model. This thesis also compares the performance of data structures for the kMC simulation problem and recommends some novel approaches. These recommendations are applicable to a wider class of model than is ANISRA, and thus of potential interest even to researchers who implement their own simulators. Three example simulations are built from ANISRA and are presented to show the applicability of this class of model to problems of interest in semiconductor process modeling. The differences between the models simulated display the versatility of the code library. The small amount of code written to construct and modify these

  14. Nondestructive determination of boron doses in semiconductor materials using neutron depth profiling

    SciTech Connect

    Uenlue, K.; Saglam, M.; Wehring, B.W.

    1996-12-31

    The physical and electrical properties of semiconductor materials are greatly effected by implantation of boron and other elements. The dose and depth distribution of boron in the near surface region and across interfacial boundaries determine the quality of semiconductor devices. Therefore, a number of analytical techniques has been developed in the last two decades to measure boron doses and depth profiles in semiconductor materials. Neutron Depth Profiling (NDP) is one of the techniques which is capable of determining the boron dose as well as the concentration distribution in the near surface region of semiconductor materials. NDP is a nuclear technique which is based on the absorption reaction of thermal/cold neutrons by certain isotopes of low mass elements e.g., boron-10. In this study, boron doses in semiconductor materials were measured using NDP. The results will be used to complement the measurements done with other techniques and provide a basis for accurate dose calibration of commercial ion implant systems.

  15. Technological and organizational diversity and technical advance in the early history of the American semiconductor industry

    NASA Astrophysics Data System (ADS)

    Cohen, W.; Holbrook, D.; Klepper, S.

    1994-06-01

    This study examines the early years of the semiconductor industry and focuses on the roles played by different size firms in technologically innovative processes. A large and diverse pool of firms participated in the growth of the industry. Three related technological areas were chosen for in-depth analysis: integrated circuits, materials technology, and device packaging. Large business producing vacuum tubes dominated the early production of semiconductor devices. As the market for new devices grew during the 1950's, new firms were founded and existing firms from other industries, e.g. aircraft builders and instrument makers, began to pursue semiconductor electronics. Small firms began to cater to the emerging industry by supplying materials and equipment. These firms contributed to the development of certain aspects of one thousand firms that were playing some part in the semiconductor industry.

  16. Advanced Photon Source Upgrade Project - Materials

    ScienceCinema

    Gibbson, Murray

    2016-07-12

    An upgrade to Advanced Photon Source announced by DOE - http://go.usa.gov/ivZ -- will help scientists break through bottlenecks in materials design in order to develop materials with desirable functions.

  17. Advances in photonics thermal management and packaging materials

    NASA Astrophysics Data System (ADS)

    Zweben, Carl

    2008-02-01

    Heat dissipation, thermal stresses, and cost are key packaging design issues for virtually all semiconductors, including photonic applications such as diode lasers, light-emitting diodes (LEDs), solid state lighting, photovoltaics, displays, projectors, detectors, sensors and laser weapons. Heat dissipation and thermal stresses affect performance and reliability. Copper, aluminum and conventional polymeric printed circuit boards (PCBs) have high coefficients of thermal expansion, which can cause high thermal stresses. Most traditional low-coefficient-of-thermal-expansion (CTE) materials like tungsten/copper, which date from the mid 20 th century, have thermal conductivities that are no better than those of aluminum alloys, about 200 W/m-K. There are an increasing number of low-CTE materials with thermal conductivities ranging between that of copper (400 W/m-K) and 1700 W/m-K, and many other new low-CTE materials with lower thermal conductivities. An important benefit of low-CTE materials is that they allow use of hard solders. Some advanced materials are low cost. Others have the potential to be low cost in high-volume production. High-thermal-conductivity materials enable higher power levels, potentially reducing the number of required devices. Advanced thermal materials can constrain PCB CTE and greatly increase thermal conductivity. This paper reviews traditional packaging materials and advanced thermal management materials. The latter provide the packaging engineer with a greater range of options than in the past. Topics include properties, status, applications, cost, using advanced materials to fix manufacturing problems, and future directions, including composites reinforced with carbon nanotubes and other thermally conductive materials.

  18. Apparatus for measuring minority carrier lifetimes in semiconductor materials

    DOEpatents

    Ahrenkiel, R.K.

    1999-07-27

    An apparatus for determining the minority carrier lifetime of a semiconductor sample includes a positioner for moving the sample relative to a coil. The coil is connected to a bridge circuit such that the impedance of one arm of the bridge circuit is varied as sample is positioned relative to the coil. The sample is positioned relative to the coil such that any change in the photoconductance of the sample created by illumination of the sample creates a linearly related change in the input impedance of the bridge circuit. In addition, the apparatus is calibrated to work at a fixed frequency so that the apparatus maintains a consistently high sensitivity and high linearly for samples of different sizes, shapes, and material properties. When a light source illuminates the sample, the impedance of the bridge circuit is altered as excess carriers are generated in the sample, thereby producing a measurable signal indicative of the minority carrier lifetimes or recombination rates of the sample. 17 figs.

  19. Chemical vapour transport of III-V semiconductor materials

    NASA Astrophysics Data System (ADS)

    Davis, Mervyn Howard

    Over the temperature range 770 to 1310 K, however, two bromides compete for prominence, dependent upon temperature. In both instances, it is shown that vapour transport becomes rate limited at low temperature. Further to the chemical vapour transport of indium phosphide, the dissociative sublimation of the compound has also been investigated. Raman spectroscopy has been used to identify high temperature molecular species involved in vapour transport of III-V semiconductor materials. Supplementary work has been performed on the thermochemistry of indium monobromide. The heat of formation of indium bromide crystals has been determined using a solution calormetric technique. Differential scanning calorimetry was used to measure the heat capacity and heat of fusion, of the salt. An entrainment study of the evaporation of liquid indium monobromide was undertaken to yield a value for its heat of vaporisation. Using a statistical thermodynamic approach, the heat capacity of the vapour was calculated. Collating the information, a value for the heat of formation of indium monobromide gas at 1000 K has been calculated for use in other thermodynamic calculations.

  20. EDITORIAL: Semiconductor nanotechnology: novel materials and devices for electronics, photonics and renewable energy applications Semiconductor nanotechnology: novel materials and devices for electronics, photonics and renewable energy applications

    NASA Astrophysics Data System (ADS)

    Goodnick, Stephen; Korkin, Anatoli; Krstic, Predrag; Mascher, Peter; Preston, John; Zaslavsky, Alex

    2010-04-01

    Electronic and photonic information technology and renewable energy alternatives, such as solar energy, fuel cells and batteries, have now reached an advanced stage in their development. Cost-effective improvements to current technological approaches have made great progress, but certain challenges remain. As feature sizes of the latest generations of electronic devices are approaching atomic dimensions, circuit speeds are now being limited by interconnect bottlenecks. This has prompted innovations such as the introduction of new materials into microelectronics manufacturing at an unprecedented rate and alternative technologies to silicon CMOS architectures. Despite the environmental impact of conventional fossil fuel consumption, the low cost of these energy sources has been a long-standing economic barrier to the development of alternative and more efficient renewable energy sources, fuel cells and batteries. In the face of mounting environmental concerns, interest in such alternative energy sources has grown. It is now widely accepted that nanotechnology offers potential solutions for securing future progress in information and energy technologies. The Canadian Semiconductor Technology Conference (CSTC) forum was established 25 years ago in Ottawa as an important symbol of the intrinsic strength of the Canadian semiconductor research and development community, and the Canadian semiconductor industry as a whole. In 2007, the 13th CSTC was held in Montreal, moving for the first time outside the national capital region. The first three meetings in the series of 'Nano and Giga Challenges in Electronics and Photonics'— NGCM2002 in Moscow, NGCM2004 in Krakow, and NGC2007 in Phoenix— were focused on interdisciplinary research from the fundamentals of materials science to the development of new system architectures. In 2009 NGC2009 and the 14th Canadian Semiconductor Technology Conference (CSTC2009) were held as a joint event, hosted by McMaster University (10

  1. Video Fact Sheets: Everyday Advanced Materials

    SciTech Connect

    2015-10-06

    What are Advanced Materials? Ames Laboratory is behind some of the best advanced materials out there. Some of those include: Lead-Free Solder, Photonic Band-Gap Crystals, Terfenol-D, Aluminum-Calcium Power Cable and Nano Particles. Some of these are in products we use every day.

  2. Application of advanced materials to rotating machines

    NASA Technical Reports Server (NTRS)

    Triner, J. E.

    1983-01-01

    In discussing the application of advanced materials to rotating machinery, the following topics are covered: the torque speed characteristics of ac and dc machines, motor and transformer losses, the factors affecting core loss in motors, advanced magnetic materials and conductors, and design tradeoffs for samarium cobalt motors.

  3. Video Fact Sheets: Everyday Advanced Materials

    ScienceCinema

    None

    2016-07-12

    What are Advanced Materials? Ames Laboratory is behind some of the best advanced materials out there. Some of those include: Lead-Free Solder, Photonic Band-Gap Crystals, Terfenol-D, Aluminum-Calcium Power Cable and Nano Particles. Some of these are in products we use every day.

  4. Development of Specialized Advanced Materials Curriculum.

    ERIC Educational Resources Information Center

    Malmgren, Thomas; And Others

    This course is intended to give students a comprehensive experience in current and future manufacturing materials and processes. It familiarizes students with: (1) base of composite materials; (2) composites--a very light, strong material used in spacecraft and stealth aircraft; (3) laminates; (4) advanced materials--especially aluminum alloys;…

  5. Theoretical Studies of Excited State Dynamics in Semiconductor Materials

    NASA Astrophysics Data System (ADS)

    Liu, Jin

    The motivation of this research work is to investigate excited state dynamics of semiconductor systems using quantum computational techniques. The detailed ultrafast photoinduced processes, such as charge recombination, charge relaxation, energy/charge transfer, etc., sometimes cannot be fully addressed by spectroscopy experiments. The nonadiabatic molecular dynamics (NAMD), on the other hand, provides critical insights into the complex processes. In this thesis, we apply the NAMD simulation method to various semiconductor systems, ranging from bulk crystals, nanoparticles to clusters, to study the electronic and optical properties of semiconductors. The first chapter outlines important concepts in excited states dynamics and semiconductor disciplinary. The second chapter explains the theoretical methodology related to the research work, including approximations, computational methods and simulation details, etc. Starting from chapter three to chapter six, we present a comprehensive study focusing on silicon clusters, cadmium selenide quantum dots, cycloparaphenylenes and perovskites. Potential applications include solar harvesting, photoluminescence, energy transfer, etc.

  6. Recent Advances in Superhard Materials

    NASA Astrophysics Data System (ADS)

    Zhao, Zhisheng; Xu, Bo; Tian, Yongjun

    2016-07-01

    In superhard materials research, two topics are of central focus. One is to understand hardness microscopically and to establish hardness models with atomic parameters, which can be used to guide the design or prediction of novel superhard crystals. The other is to synthesize superhard materials with enhanced comprehensive performance (i.e., hardness, fracture toughness, and thermal stability), with the ambition of achieving materials harder than natural diamond. In this review, we present recent developments in both areas. The microscopic hardness models of covalent single crystals are introduced and further generalized to polycrystalline materials. Current research progress in novel superhard materials and nanostructuring approaches for high-performance superhard materials are discussed. We also clarify a long-standing controversy about the criterion for performing a reliable indentation hardness measurement.

  7. Advanced numerical methods and software approaches for semiconductor device simulation

    SciTech Connect

    CAREY,GRAHAM F.; PARDHANANI,A.L.; BOVA,STEVEN W.

    2000-03-23

    In this article the authors concisely present several modern strategies that are applicable to drift-dominated carrier transport in higher-order deterministic models such as the drift-diffusion, hydrodynamic, and quantum hydrodynamic systems. The approaches include extensions of upwind and artificial dissipation schemes, generalization of the traditional Scharfetter-Gummel approach, Petrov-Galerkin and streamline-upwind Petrov Galerkin (SUPG), entropy variables, transformations, least-squares mixed methods and other stabilized Galerkin schemes such as Galerkin least squares and discontinuous Galerkin schemes. The treatment is representative rather than an exhaustive review and several schemes are mentioned only briefly with appropriate reference to the literature. Some of the methods have been applied to the semiconductor device problem while others are still in the early stages of development for this class of applications. They have included numerical examples from the recent research tests with some of the methods. A second aspect of the work deals with algorithms that employ unstructured grids in conjunction with adaptive refinement strategies. The full benefits of such approaches have not yet been developed in this application area and they emphasize the need for further work on analysis, data structures and software to support adaptivity. Finally, they briefly consider some aspects of software frameworks. These include dial-an-operator approaches such as that used in the industrial simulator PROPHET, and object-oriented software support such as those in the SANDIA National Laboratory framework SIERRA.

  8. Advanced Numerical Methods and Software Approaches for Semiconductor Device Simulation

    DOE PAGES

    Carey, Graham F.; Pardhanani, A. L.; Bova, S. W.

    2000-01-01

    In this article we concisely present several modern strategies that are applicable to driftdominated carrier transport in higher-order deterministic models such as the driftdiffusion, hydrodynamic, and quantum hydrodynamic systems. The approaches include extensions of “upwind” and artificial dissipation schemes, generalization of the traditional Scharfetter – Gummel approach, Petrov – Galerkin and streamline-upwind Petrov Galerkin (SUPG), “entropy” variables, transformations, least-squares mixed methods and other stabilized Galerkin schemes such as Galerkin least squares and discontinuous Galerkin schemes. The treatment is representative rather than an exhaustive review and several schemes are mentioned only briefly with appropriate reference to the literature. Some of themore » methods have been applied to the semiconductor device problem while others are still in the early stages of development for this class of applications. We have included numerical examples from our recent research tests with some of the methods. A second aspect of the work deals with algorithms that employ unstructured grids in conjunction with adaptive refinement strategies. The full benefits of such approaches have not yet been developed in this application area and we emphasize the need for further work on analysis, data structures and software to support adaptivity. Finally, we briefly consider some aspects of software frameworks. These include dial-an-operator approaches such as that used in the industrial simulator PROPHET, and object-oriented software support such as those in the SANDIA National Laboratory framework SIERRA.« less

  9. Micromechanical modeling of advanced materials

    SciTech Connect

    Silling, S.A.; Taylor, P.A.; Wise, J.L.; Furnish, M.D.

    1994-04-01

    Funded as a laboratory-directed research and development (LDRD) project, the work reported here focuses on the development of a computational methodology to determine the dynamic response of heterogeneous solids on the basis of their composition and microstructural morphology. Using the solid dynamics wavecode CTH, material response is simulated on a scale sufficiently fine to explicitly represent the material`s microstructure. Conducting {open_quotes}numerical experiments{close_quotes} on this scale, the authors explore the influence that the microstructure exerts on the material`s overall response. These results are used in the development of constitutive models that take into account the effects of microstructure without explicit representation of its features. Applying this methodology to a glass-reinforced plastic (GRP) composite, the authors examined the influence of various aspects of the composite`s microstructure on its response in a loading regime typical of impact and penetration. As a prerequisite to the microscale modeling effort, they conducted extensive materials testing on the constituents, S-2 glass and epoxy resin (UF-3283), obtaining the first Hugoniot and spall data for these materials. The results of this work are used in the development of constitutive models for GRP materials in transient-dynamics computer wavecodes.

  10. 2D Crystal Semiconductors New Materials for GHz-THz Devices

    DTIC Science & Technology

    2015-10-02

    frequency operation. 4) Identify methods to improve carrier transport in 2D Crystal semiconductors. 5) Compare FETs made from naturally occuring and... chemically synthesized 2D Crystal semic???ductors. 6) Elucidate the effect of contact resistance, and gauge the challenges for GHz-THz electronics by... chemical doping, which involved replac- ing a small number of atoms of the 3-D semiconductor by those with higher or lower valence. The next advance

  11. Enthusiasms and realities in advanced materials

    SciTech Connect

    Gilman, J.J.

    1987-04-01

    This paper offers general comments on the past, present, and future of materials technology. The process by which a substance becomes an engineering material is lengthy. The following functional areas are likely to grow most in the foreseeable future: photonics, robotics, prosthetics, astronautics, and nanoelectronics. The trend in advanced materials is toward integration. (DLC)

  12. Advanced excimer laser technologies enable green semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Fukuda, Hitomi; Yoo, Youngsun; Minegishi, Yuji; Hisanaga, Naoto; Enami, Tatsuo

    2014-03-01

    "Green" has fast become an important and pervasive topic throughout many industries worldwide. Many companies, especially in the manufacturing industries, have taken steps to integrate green initiatives into their high-level corporate strategies. Governments have also been active in implementing various initiatives designed to increase corporate responsibility and accountability towards environmental issues. In the semiconductor manufacturing industry, there are growing concerns over future environmental impact as enormous fabs expand and new generation of equipments become larger and more powerful. To address these concerns, Gigaphoton has implemented various green initiatives for many years under the EcoPhoton™ program. The objective of this program is to drive innovations in technology and services that enable manufacturers to significantly reduce both the financial and environmental "green cost" of laser operations in high-volume manufacturing environment (HVM) - primarily focusing on electricity, gas and heat management costs. One example of such innovation is Gigaphoton's Injection-Lock system, which reduces electricity and gas utilization costs of the laser by up to 50%. Furthermore, to support the industry's transition from 300mm to the next generation 450mm wafers, technologies are being developed to create lasers that offer double the output power from 60W to 120W, but reducing electricity and gas consumption by another 50%. This means that the efficiency of lasers can be improve by up to 4 times in 450mm wafer production environments. Other future innovations include the introduction of totally Heliumfree Excimer lasers that utilize Nitrogen gas as its replacement for optical module purging. This paper discusses these and other innovations by Gigaphoton to enable green manufacturing.

  13. Advanced Electrical Materials and Components Development: An Update

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.

    2005-01-01

    The primary means to develop advanced electrical components is to develop new and improved materials for magnetic components (transformers, inductors, etc.), capacitors, and semiconductor switches and diodes. This paper will give an update of the Advanced Power Electronics and Components Technology being developed by the NASA Glenn Research Center for use in future Power Management and Distribution subsystems used in space power systems for spacecraft and lunar and planetary surface power. The initial description and status of this technology program was presented two years ago at the First International Energy Conversion Engineering Conference held at Portsmouth, Virginia, August 2003. The present paper will give a brief background of the previous work reported and a summary of research performed the past several years on soft magnetic materials characterization, dielectric materials and capacitor developments, high quality silicon carbide atomically smooth substrates, and SiC static and dynamic device characterization under elevated temperature conditions. The rationale for and the benefits of developing advanced electrical materials and components for the PMAD subsystem and also for the total power system will also be briefly discussed.

  14. Compositions of doped, co-doped and tri-doped semiconductor materials

    DOEpatents

    Lynn, Kelvin [Pullman, WA; Jones, Kelly [Colfax, WA; Ciampi, Guido [Watertown, MA

    2011-12-06

    Semiconductor materials suitable for being used in radiation detectors are disclosed. A particular example of the semiconductor materials includes tellurium, cadmium, and zinc. Tellurium is in molar excess of cadmium and zinc. The example also includes aluminum having a concentration of about 10 to about 20,000 atomic parts per billion and erbium having a concentration of at least 10,000 atomic parts per billion.

  15. Dopant type and/or concentration selective dry photochemical etching of semiconductor materials

    DOEpatents

    Ashby, Carol I. H.; Dishman, James L.

    1987-01-01

    A method of selectively photochemically dry etching a first semiconductor material of a given composition in the presence of a second semiconductor material which is of a composition different from said first material, said second material substantially not being etched during said method, comprises subjecting both materials to the same photon flux of an energy greater than their respective direct bandgaps and to the same gaseous chemical etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said conditions also being such that the resultant electronic structure of the first semiconductor material under said photon flux is sufficient for the first material to undergo substantial photochemical etching under said conditions and being such that the resultant electronic structure of the second semiconductor material under said photon flux is not sufficient for the second material to undergo substantial photochemical etching under said conditions. In a preferred mode, the materials are subjected to a bias voltage which suppresses etching in n- or p- type material but not in p- or n-type material, respectively; or suppresses etching in the more heavily doped of two n-type or two p-type materials.

  16. Dopant type and/or concentration selective dry photochemical etching of semiconductor materials

    DOEpatents

    Ashby, C.R.H.; Dishman, J.L.

    1985-10-11

    Disclosed is a method of selectively photochemically dry etching a first semiconductor material of a given composition in the presence of a second semiconductor material which is of a composition different from said first material, said second material substantially not being etched during said method. The method comprises subjecting both materials to the same photon flux of an energy greater than their respective direct bandgaps and to the same gaseous chemical etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said conditions also being such that the resultant electronic structure of the first semiconductor material under said photon flux is sufficient for the first material to undergo substantial photochemical etching under said conditions and being such that the resultant electronic structure of the second semiconductor material under said photon flux is not sufficient for the second material to undergo substantial photochemical etching under said conditions. In a preferred mode, the materials are subjected to a bias voltage which suppresses etching in n- or p-type material but not in p- or n-type material, respectively; or suppresses etching in the more heavily doped of two n-type or two p-type materials.

  17. Ion beam processing of advanced electronic materials

    SciTech Connect

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B.; International Business Machines Corp., Yorktown Heights, NY . Thomas J. Watson Research Center; Oak Ridge National Lab., TN )

    1989-01-01

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases. (CBS)

  18. Advanced baffle materials technology development

    NASA Astrophysics Data System (ADS)

    Johnson, E. A.; Vonbenken, C. J.; Halverson, W. D.; Evans, R. D.; Wollam, J. S.

    1991-10-01

    Optical sensors for strategic defense will require optical baffles to achieve adequate off-axis stray light rejection and pointing accuracy. Baffle materials must maintain their optical performance after exposure to both operational and threat environments. In addition, baffle materials must not introduce contamination which would compromise the system signal-to-noise performance or impair system mission readiness. Critical examination of failure mechanisms in current baffle materials are quite fragile and contribute to system contamination problems. Spire has developed technology to texture the substrate directly, thereby, removing minute, fragile interfaces subject to mechanical failure. This program has demonstrated that ion beam texturing produces extremely dark surfaces which are immune to damage from ordinary handling. This technology allows control of surface texture feature size and hence the optical wavelength at which the surface absorbs. The USAMTL/Spire program has produced dramatic improvements in the reflectance of ion beam textured aluminum without compromising mechanical hardness. In simulated launch vibration tests, this material produced no detectable contamination on adjacent catcher plates.

  19. Neutron activation for semiconductor materials characterization at Eastman Kodak Company

    SciTech Connect

    Hossain, T.Z.

    1988-01-01

    Several neutron activation analysis (NAA) procedures have been used to establish process parameters in the manufacture of semiconductor devices. In addition to instrumental NAA (INAA), techniques such as neutron depth profiling and neutron-activated accelerator mass spectrometry have been used to obtain depth distribution of elements of interest.

  20. Advanced Materials for Exploration Task Research Results

    NASA Technical Reports Server (NTRS)

    Cook, M. B. (Compiler); Murphy, K. L.; Schneider, T.

    2008-01-01

    The Advanced Materials for Exploration (AME) Activity in Marshall Space Flight Center s (MSFC s) Exploration Science and Technology Directorate coordinated activities from 2001 to 2006 to support in-space propulsion technologies for future missions. Working together, materials scientists and mission planners identified materials shortfalls that are limiting the performance of long-term missions. The goal of the AME project was to deliver improved materials in targeted areas to meet technology development milestones of NASA s exploration-dedicated activities. Materials research tasks were targeted in five areas: (1) Thermal management materials, (2) propulsion materials, (3) materials characterization, (4) vehicle health monitoring materials, and (5) structural materials. Selected tasks were scheduled for completion such that these new materials could be incorporated into customer development plans.

  1. Advanced Microelectronics and Materials Programs

    DTIC Science & Technology

    1991-12-01

    grain size have been fabricated using sol-gel processing. The process has also been used to produce composite fibers containing tetragonal zirconia ... tetragonal zirconia have also been produced. Microwave energy has been demonstrated as a viable method for ignition of self- propagating synthesis. A...have been produced on several Isubstrate materials. Yttria-stabilized tetragonal zirconia with dispersed alpha-alumina has been produced in short

  2. Advanced Materials for Neural Surface Electrodes

    PubMed Central

    Schendel, Amelia A.; Eliceiri, Kevin W.; Williams, Justin C.

    2015-01-01

    Designing electrodes for neural interfacing applications requires deep consideration of a multitude of materials factors. These factors include, but are not limited to, the stiffness, biocompatibility, biostability, dielectric, and conductivity properties of the materials involved. The combination of materials properties chosen not only determines the ability of the device to perform its intended function, but also the extent to which the body reacts to the presence of the device after implantation. Advances in the field of materials science continue to yield new and improved materials with properties well-suited for neural applications. Although many of these materials have been well-established for non-biological applications, their use in medical devices is still relatively novel. The intention of this review is to outline new material advances for neural electrode arrays, in particular those that interface with the surface of the nervous tissue, as well as to propose future directions for neural surface electrode development. PMID:26392802

  3. Advanced Materials for Neural Surface Electrodes.

    PubMed

    Schendel, Amelia A; Eliceiri, Kevin W; Williams, Justin C

    2014-12-01

    Designing electrodes for neural interfacing applications requires deep consideration of a multitude of materials factors. These factors include, but are not limited to, the stiffness, biocompatibility, biostability, dielectric, and conductivity properties of the materials involved. The combination of materials properties chosen not only determines the ability of the device to perform its intended function, but also the extent to which the body reacts to the presence of the device after implantation. Advances in the field of materials science continue to yield new and improved materials with properties well-suited for neural applications. Although many of these materials have been well-established for non-biological applications, their use in medical devices is still relatively novel. The intention of this review is to outline new material advances for neural electrode arrays, in particular those that interface with the surface of the nervous tissue, as well as to propose future directions for neural surface electrode development.

  4. Photophysical Properties of Novel Organic, Inorganic, and Hybrid Semiconductor Materials

    NASA Astrophysics Data System (ADS)

    Chang, Angela Yenchi

    For the past 200 years, novel materials have driven technological progress, and going forward these advanced materials will continue to deeply impact virtually all major industrial sectors. Therefore, it is vital to perform basic and applied research on novel materials in order to develop new technologies for the future. This dissertation describes the results of photophysical studies on three novel materials with electronic and optoelectronic applications, namely organic small molecules DTDCTB with C60 and C70, colloidal indium antimonide (InSb) nanocrystals, and an organic-inorganic hybrid perovskite with the composition CH3NH3PbI 3-xClx, using transient absorption (TA) and photoluminescence (PL) spectroscopy. In chapter 2, we characterize the timescale and efficiency of charge separation and recombination in thin film blends comprising DTDCTB, a narrow-band gap electron donor, and either C60 or C70 as an electron acceptor. TA and time-resolved PL studies show correlated, sub-picosecond charge separation times and multiple timescales of charge recombination. Our results indicate that some donors fail to charge separate in donor-acceptor mixed films, which suggests material manipulations may improve device efficiency. Chapter 3 describes electron-hole pair dynamics in strongly quantum-confined, colloidal InSb nanocrystal quantum dots. For all samples, TA shows a bleach feature that, for several picoseconds, dramatically red-shifts prior to reaching a time-independent position. We suggest this unusual red-shift relates transient population flow through two energetically comparable conduction band states. From pump-power-dependent measurements, we also determine biexciton lifetimes. In chapter 4, we examine carrier dynamics in polycrystalline methylammonium lead mixed halide perovskite (CH3NH3PbI3-xCl x) thin films as functions of temperature and photoexcitation wavelength. At room temperature, the long-lived TA signals stand in contrast to PL dynamics, where the

  5. Joining of advanced materials by superplastic deformation

    DOEpatents

    Goretta, Kenneth C.; Routbort, Jules L.; Gutierrez-Mora, Felipe

    2005-12-13

    A method for utilizing superplastic deformation with or without a novel joint compound that leads to the joining of advanced ceramic materials, intermetallics, and cermets. A joint formed by this approach is as strong as or stronger than the materials joined. The method does not require elaborate surface preparation or application techniques.

  6. Joining of advanced materials by superplastic deformation

    DOEpatents

    Goretta, Kenneth C.; Routbort, Jules L.; Gutierrez-Mora, Felipe

    2008-08-19

    A method for utilizing superplastic deformation with or without a novel joint compound that leads to the joining of advanced ceramic materials, intermetallics, and cermets. A joint formed by this approach is as strong as or stronger than the materials joined. The method does not require elaborate surface preparation or application techniques.

  7. Raman Imaging in Semiconductor Physics: Applications to Microelectronic Materials and Devices

    NASA Astrophysics Data System (ADS)

    Tiberj, Antoine; Camassel, Jean

    The unique versatility of micro-Raman spectroscopy (\\upmu RS) in semiconductor physics remains in Raman imaging. Numerous applications cover the whole development of modern electronic and optoelectronic devices: from semiconductor growth to advanced device inspection tools. In this chapter, a wide variety of semiconductors (SiC, graphene, GaN, GaAs, SiGe, strained Si, sSOI, SGOI) and devices (FETs, lasers, MEMS) are addressed. First, it will be shown how Raman mapping enables to check the crystalline quality, the composition, the doping, and the uniformity of as-grown semiconductors. Then, we will focus on the most popular application in microelectronics: strain measurements either at the device or at the full wafer scale. Finally, we will show how \\upmu RS imaging can be used for final device inspection through the temperature mapping of operating devices (FETs, lasers, actuators).

  8. Methane storage in advanced porous materials.

    PubMed

    Makal, Trevor A; Li, Jian-Rong; Lu, Weigang; Zhou, Hong-Cai

    2012-12-07

    The need for alternative fuels is greater now than ever before. With considerable sources available and low pollution factor, methane is a natural choice as petroleum replacement in cars and other mobile applications. However, efficient storage methods are still lacking to implement the application of methane in the automotive industry. Advanced porous materials, metal-organic frameworks and porous organic polymers, have received considerable attention in sorptive storage applications owing to their exceptionally high surface areas and chemically-tunable structures. In this critical review we provide an overview of the current status of the application of these two types of advanced porous materials in the storage of methane. Examples of materials exhibiting high methane storage capacities are analyzed and methods for increasing the applicability of these advanced porous materials in methane storage technologies described.

  9. Methods of measurement for semiconductor materials, process control, and devices

    NASA Technical Reports Server (NTRS)

    Bullis, W. M. (Editor)

    1972-01-01

    Significant accomplishments include development of a procedure to correct for the substantial differences of transistor delay time as measured with different instruments or with the same instrument at different frequencies; association of infrared response spectra of poor quality germanium gamma ray detectors with spectra of detectors fabricated from portions of a good crystal that had been degraded in known ways; and confirmation of the excellent quality and cosmetic appearance of ultrasonic bonds made with aluminum ribbon wire. Work is continuing on measurement of resistivity of semiconductor crystals; study of gold-doped silicon, development of the infrared response technique; evaluation of wire bonds and die attachment; and measurement of thermal properties of semiconductor devices, delay time and related carrier transport properties in junction devices, and noise properties of microwave diodes.

  10. New Advanced Dielectric Materials for Accelerator Applications

    SciTech Connect

    Kanareykin, A.

    2010-11-04

    We present our recent results on the development and experimental testing of advanced dielectric materials that are capable of supporting the high RF electric fields generated by electron beams or pulsed high power microwaves. These materials have been optimized or specially designed for accelerator applications. The materials discussed here include low loss microwave ceramics, quartz, Chemical Vapor Deposition diamonds and nonlinear Barium Strontium Titanate based ferroelectrics.

  11. Materials Requirements for Advanced Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Whitaker, Ann F.; Cook, Mary Beth; Clinton, R. G., Jr.

    2005-01-01

    NASA's mission to "reach the Moon and Mars" will be obtained only if research begins now to develop materials with expanded capabilities to reduce mass, cost and risk to the program. Current materials cannot function satisfactorily in the deep space environments and do not meet the requirements of long term space propulsion concepts for manned missions. Directed research is needed to better understand materials behavior for optimizing their processing. This research, generating a deeper understanding of material behavior, can lead to enhanced implementation of materials for future exploration vehicles. materials providing new approaches for manufacture and new options for In response to this need for more robust materials, NASA's Exploration Systems Mission Directorate (ESMD) has established a strategic research initiative dedicated to materials development supporting NASA's space propulsion needs. The Advanced Materials for Exploration (AME) element directs basic and applied research to understand material behavior and develop improved materials allowing propulsion systems to operate beyond their current limitations. This paper will discuss the approach used to direct the path of strategic research for advanced materials to ensure that the research is indeed supportive of NASA's future missions to the moon, Mars, and beyond.

  12. Advanced Materials and Processing 2010

    NASA Astrophysics Data System (ADS)

    Zhang, Yunfeng; Su, Chun Wei; Xia, Hui; Xiao, Pengfei

    2011-06-01

    Strain sensors made from MWNT/polymer nanocomposites / Gang Yin, Ning Hu and Yuan Li -- Shear band evolution and nanostructure formation in titanium by cold rolling / Dengke Yang, Peter D. Hodgson and Cuie Wen -- Biodegradable Mg-Zr-Ca alloys for bone implant materials / Yuncang Li ... [et al.] -- Hydroxyapatite synthesized from nanosized calcium carbonate via hydrothermal method / Yu-Shiang Wu, Wen-Ku Chang and Min Jou -- Modeling of the magnetization process and orthogonal fluxgate sensitivity of ferromagnetic micro-wire arrays / Fan Jie ... [et al.] -- Fabrication of silicon oxide nanowires on Ni coated silicon substrate by simple heating process / Bo Peng and Kwon-Koo Cho -- Deposition of TiOxNy thin films with various nitrogen flow rate: growth behavior and structural properties / S.-J. Cho ... [et al.] -- Observation on photoluminescence evolution in 300 KeV self-ion implanted and annealed silicon / Yu Yang ... [et al.] -- Facile synthesis of lithium niobate from a novel precursor H[symbol] / Meinan Liu ... [et al.] -- Effects of the buffer layers on the adhesion and antimicrobial properties of the amorphous ZrAlNiCuSi films / Pai-Tsung Chiang ... [et al.] -- Fabrication of ZnO nanorods by electrochemical deposition process and its photovoltaic properties / Jin-Hwa Kim ... [et al.] -- Cryogenic resistivities of NbTiAlVTaLax, CoCrFeNiCu and CoCrFeNiAl high entropy alloys / Xiao Yang and Yong Zhang -- Modeling of centrifugal force field and the effect on filling and solidification in centrifugal casting / Wenbin Sheng, Chunxue Ma and Wanli Gu -- Electrochemical properties of TiO[symbol] nanotube arrays film prepared by anodic oxidation / Young-Jin Choi ... [et al.] -- Effect of Ce additions on high temperature properties of Mg-5Sn-3Al-1Zn alloy / Byoung Soo Kang ... [et al.] -- Sono-electroless plating of Ni-Mo-P film / Atsushi Chiba, Masato Kanou and Wen-Chang Wu -- Diameter dependence of giant magneto-impedance effect in co-based melt extracted amorphous

  13. X-ray photoemission electron microscopy for the study of semiconductor materials

    SciTech Connect

    Anders, S.; Stammler, T.; Padmore, H.; Terminello, L.J.; Jankowski, A.F.; Stohr, J.; Diaz, J.; Cossy-Gantner, A.

    1998-03-01

    Photoemission Electron Microscopy (PEEM) using X-rays is a novel combination of two established materials analysis techniques--PEEM using UV light, and Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy. This combination allows the study of elemental composition and bonding structure of the sample by NEXAFS spectroscopy with a high spatial resolution given by the microscope. A simple, two lens, 10 kV operation voltage PEEM has been used at the Stanford Synchrotron Radiation Laboratory and at the Advanced Light Source (ALS) in Berkeley to study various problems including materials of interest for the semiconductor industry. In the present paper the authors give a short overview over the method and the instrument which was used, and describe in detail a number of applications. These applications include the study of the different phases of titanium disilicide, various phases of boron nitride, and the analysis of small particles. A brief outlook is given on possible new fields of application of the PEEM technique, and the development of new PEEM instruments.

  14. Materials as additives for advanced lubrication

    DOEpatents

    Pol, Vilas G.; Thackeray, Michael M.; Mistry, Kuldeep; Erdemir, Ali

    2016-09-13

    This invention relates to carbon-based materials as anti-friction and anti-wear additives for advanced lubrication purposes. The materials comprise carbon nanotubes suspended in a liquid hydrocarbon carrier. Optionally, the compositions further comprise a surfactant (e.g., to aid in dispersion of the carbon particles). Specifically, the novel lubricants have the ability to significantly lower friction and wear, which translates into improved fuel economies and longer durability of mechanical devices and engines.

  15. P and n-type microcrystalline semiconductor alloy material including band gap widening elements, devices utilizing same

    DOEpatents

    Guha, Subhendu; Ovshinsky, Stanford R.

    1988-10-04

    An n-type microcrystalline semiconductor alloy material including a band gap widening element; a method of fabricating p-type microcrystalline semiconductor alloy material including a band gap widening element; and electronic and photovoltaic devices incorporating said n-type and p-type materials.

  16. Advanced Materials Research with 3RD Generation Synchrotron Light

    NASA Astrophysics Data System (ADS)

    Soukiassian, P.; D'angelo, M.; Enriquez, H.; Aristov, V. Yu.

    H and D surface nanochemistry on an advanced wide band gap semiconductor, silicon carbide is investigated by synchrotron radiation-based core level and valence band photoemission, infrared absorption and scanning tunneling spectroscopy, showing the 1st example of H/D-induced semiconductor surface metallization, that also occurs on a pre-oxidized surface. These results are compared to recent state-of-the-art ab-initio total energy calculations. Most interestingly, an amazing isotopic behavior is observed with a smaller charge transfer from D atoms suggesting the role of dynamical effects. Such findings are especially exciting in semiconductor physics and in interface with biology.

  17. Property Data Summaries for Advanced Materials

    National Institute of Standards and Technology Data Gateway

    SRD 150 NIST Property Data Summaries for Advanced Materials (Web, free access)   Property Data Summaries are topical collections of property values derived from surveys of published data. Thermal, mechanical, structural, and chemical properties are included in the collections.

  18. Integrating Language Lab Materials into Advanced Russian.

    ERIC Educational Resources Information Center

    Allar, Gregory

    1986-01-01

    Describes the use of language lab materials supplied by the pedagogical journal "Russkij Jazyk Za Rubezom" in an advanced Russian-language class. Each week students were given a relevant picture and vocabulary list prior to listening to a taped story. The story was used as the basis for conversation. (LMO)

  19. Advanced Materials Deposition for Semiconductor Nanostructures Using Supercritical Fluids

    DTIC Science & Technology

    2007-04-01

    fine tuning of nanoparticle size synthesized by the microemulsion method. To make water-in-CO2 microemulsion, a fluorinated AOT surfactant, sodium bis...2,2,3,3,4,4,5,5- octafluoro- 1 -pentyl)-2-sulfosuccinate, was used in our experiments. Fluorine containing compounds are known to have high...metal sulfide nanoparticles were stabilized by the same fluorinated decanethiol compound used in the silver nanoparticle study for spectroscopic

  20. High-temperature MEMS Heater Platforms: Long-term Performance of Metal and Semiconductor Heater Materials

    PubMed Central

    Spannhake, Jan; Schulz, Olaf; Helwig, Andreas; Krenkow, Angelika; Müller, Gerhard; Doll, Theodor

    2006-01-01

    Micromachined thermal heater platforms offer low electrical power consumption and high modulation speed, i.e. properties which are advantageous for realizing non-dispersive infrared (NDIR) gas- and liquid monitoring systems. In this paper, we report on investigations on silicon-on-insulator (SOI) based infrared (IR) emitter devices heated by employing different kinds of metallic and semiconductor heater materials. Our results clearly reveal the superior high-temperature performance of semiconductor over metallic heater materials. Long-term stable emitter operation in the vicinity of 1300 K could be attained using heavily antimony-doped tin dioxide (SnO2:Sb) heater elements.

  1. Advanced Industrial Materials (AIM) fellowship program

    SciTech Connect

    McCleary, D.D.

    1997-04-01

    The Advanced Industrial Materials (AIM) Program administers a Graduate Fellowship Program focused toward helping students who are currently under represented in the nation`s pool of scientists and engineers, enter and complete advanced degree programs. The objectives of the program are to: (1) establish and maintain cooperative linkages between DOE and professors at universities with graduate programs leading toward degrees or with degree options in Materials Science, Materials Engineering, Metallurgical Engineering, and Ceramic Engineering, the disciplines most closely related to the AIM Program at Oak Ridge National Laboratory (ORNL); (2) strengthen the capabilities and increase the level of participation of currently under represented groups in master`s degree programs, and (3) offer graduate students an opportunity for practical research experience related to their thesis topic through the three-month research assignment or practicum at ORNL. The program is administered by the Oak Ridge Institute for Science and Education (ORISE).

  2. A Study on Photothermal Waves in a Semiconductor Material Photogenerated by a Focused Laser Beam

    NASA Astrophysics Data System (ADS)

    Abbas, Ibrahim A.; Aly, K. A.

    2016-11-01

    In this work, the theory of coupled plasma, thermal and elastic waves were used to investigate the wave propagation on semiconductor material during photo-thermo-elastic process. A thin slim strip (TSS) medium, elastic semiconductor with isotropic and homogeneous thermal and elastic properties have been considered. The plasma, thermal and elastic waves in a TSS photo generated by a focused and intensity modulated laser beam were analyzed. Laplace transform techniques and eigenvalue approach were used to obtain the analytical solutions for carrier density, displacement, temperature, and stress. Numerical computations have been carried out on silicon-like semiconductor material. The results are presented graphically to show the effect of the coupling between the plasma, thermal, and elastic waves.

  3. Center for Semiconductor Materials and Device Modeling: expanding collaborative research opportunities between government, academia, and industry

    NASA Astrophysics Data System (ADS)

    Perconti, Philip; Bedair, Sarah S.; Bajaj, Jagmohan; Schuster, Jonathan; Reed, Meredith

    2016-09-01

    To increase Soldier readiness and enhance situational understanding in ever-changing and complex environments, there is a need for rapid development and deployment of Army technologies utilizing sensors, photonics, and electronics. Fundamental aspects of these technologies include the research and development of semiconductor materials and devices which are ubiquitous in numerous applications. Since many Army technologies are considered niche, there is a lack of significant industry investment in the fundamental research and understanding of semiconductor technologies relevant to the Army. To address this issue, the US Army Research Laboratory is establishing a Center for Semiconductor Materials and Device Modeling and seeks to leverage expertise and resources across academia, government and industry. Several key research areas—highlighted and addressed in this paper—have been identified by ARL and external partners and will be pursued in a collaborative fashion by this Center. This paper will also address the mechanisms by which the Center is being established and will operate.

  4. Structural materials challenges for advanced reactor systems

    NASA Astrophysics Data System (ADS)

    Yvon, P.; Carré, F.

    2009-03-01

    Key technologies for advanced nuclear systems encompass high temperature structural materials, fast neutron resistant core materials, and specific reactor and power conversion technologies (intermediate heat exchanger, turbo-machinery, high temperature electrolytic or thermo-chemical water splitting processes, etc.). The main requirements for the materials to be used in these reactor systems are dimensional stability under irradiation, whether under stress (irradiation creep or relaxation) or without stress (swelling, growth), an acceptable evolution under ageing of the mechanical properties (tensile strength, ductility, creep resistance, fracture toughness, resilience) and a good behavior in corrosive environments (reactor coolant or process fluid). Other criteria for the materials are their cost to fabricate and to assemble, and their composition could be optimized in order for instance to present low-activation (or rapid desactivation) features which facilitate maintenance and disposal. These requirements have to be met under normal operating conditions, as well as in incidental and accidental conditions. These challenging requirements imply that in most cases, the use of conventional nuclear materials is excluded, even after optimization and a new range of materials has to be developed and qualified for nuclear use. This paper gives a brief overview of various materials that are essential to establish advanced systems feasibility and performance for in pile and out of pile applications, such as ferritic/martensitic steels (9-12% Cr), nickel based alloys (Haynes 230, Inconel 617, etc.), oxide dispersion strengthened ferritic/martensitic steels, and ceramics (SiC, TiC, etc.). This article gives also an insight into the various natures of R&D needed on advanced materials, including fundamental research to investigate basic physical and chemical phenomena occurring in normal and accidental operating conditions, lab-scale tests to characterize candidate materials

  5. NCD Diamond Semiconductor System for Advanced Power Electronics Systems Integration : CRADA report

    SciTech Connect

    Sumant, Anirudha

    2016-07-22

    The integration of 2D materials such as molybdenum disulphide (MoS2) with diamond (3D) was achieved by forming an heterojunction between these two materials and its electrical performance was studied experimentally. The device charactertics did show good rectifying nature when p-type single crystal diamond was integrated with n-type MoS2. These results are very encouraging indicating possible applications in semiconductor electronics, however further studies are required for a detailed understanding of the transport phenomena at the MoS2/diamond interface.

  6. Raman spectroscopy as an advanced structural nanoprobe for conjugated molecular semiconductors

    NASA Astrophysics Data System (ADS)

    Wood, Sebastian; Razzell Hollis, Joseph; Kim, Ji-Seon

    2017-02-01

    Raman spectroscopy has emerged as a powerful and important characterisation tool for probing molecular semiconducting materials. The useful optoelectronic properties of these materials arise from the delocalised π-electron density in the conjugated core of the molecule, which also results in large Raman scattering cross-sections and a strong coupling between its electronic states and vibrational modes. For this reason, Raman spectroscopy offers a unique insight into the properties of molecular semiconductors, including: chemical structure, molecular conformation, molecular orientation, and fundamental photo- and electro-chemical processes—all of which are critically important to the performance of a wide range of optical and electronic organic semiconductor devices. Experimentally, Raman spectroscopy is non-intrusive, non-destructive, and requires no special sample preparation, and so is suitable for a wide range of in situ measurements, which are particularly relevant to issues of thermal and photochemical stability. Here we review the development of the family of Raman spectroscopic techniques, which have been applied to the study of conjugated molecular semiconductors. We consider the suitability of each technique for particular circumstances, and the unique insights it can offer, with a particular focus on the significance of these measurements for the continuing development of stable, high performance organic electronic devices.

  7. Method of making macrocrystalline or single crystal semiconductor material

    NASA Technical Reports Server (NTRS)

    Shlichta, P. J. (Inventor); Holliday, R. J. (Inventor)

    1986-01-01

    A macrocrystalline or single crystal semiconductive material is formed from a primary substrate including a single crystal or several very large crystals of a relatively low melting material. This primary substrate is deposited on a base such as steel or ceramic, and it may be formed from such metals as zinc, cadmium, germanium, aluminum, tin, lead, copper, brass, magnesium silicide, or magnesium stannide. These materials generally have a melting point below about 1000 C and form on the base crystals the size of fingernails or greater. The primary substrate has an epitaxial relationship with a subsequently applied layer of material, and because of this epitaxial relationship, the material deposited on the primary substrate will have essentially the same crystal size as the crystals in the primary substrate. If required, successive layers are formed, each of a material which has an epitaxial relationship with the previously deposited layer, until a layer is formed which has an epitaxial relationship with the semiconductive material. This layer is referred to as the epitaxial substrate, and its crystals serve as sites for the growth of large crystals of semiconductive material. The primary substrate is passivated to remove or otherwise convert it into a stable or nonreactive state prior to deposition of the seconductive material.

  8. Advanced materials and methods for next generation spintronics

    NASA Astrophysics Data System (ADS)

    Siegel, Gene Phillip

    The modern age is filled with ever-advancing electronic devices. The contents of this dissertation continue the desire for faster, smaller, better electronics. Specifically, this dissertation addresses a field known as "spintronics", electronic devices based on an electron's spin, not just its charge. The field of spintronics originated in 1990 when Datta and Das first proposed a "spin transistor" that would function by passing a spin polarized current from a magnetic electrode into a semiconductor channel. The spins in the channel could then be manipulated by applying an electrical voltage across the gate of the device. However, it has since been found that a great amount of scattering occurs at the ferromagnet/semiconductor interface due to the large impedance mismatch that exists between the two materials. Because of this, there were three updated versions of the spintronic transistor that were proposed to improve spin injection: one that used a ferromagnetic semiconductor electrode, one that added a tunnel barrier between the ferromagnet and semiconductor, and one that utilized a ferromagnetic tunnel barrier which would act like a spin filter. It was next proposed that it may be possible to achieve a "pure spin current", or a spin current with no concurrent electric current (i.e., no net flow of electrons). One such method that was discovered is the spin Seebeck effect, which was discovered in 2008 by Uchida et al., in which a thermal gradient in a magnetic material generates a spin current which can be injected into adjacent material as a pure spin current. The first section of this dissertation addresses this spin Seebeck effect (SSE). The goal was to create such a device that both performs better than previously reported devices and is capable of operating without the aid of an external magnetic field. We were successful in this endeavor. The trick to achieving both of these goals was found to be in the roughness of the magnetic layer. A rougher magnetic

  9. Thermal Characterization of Nanostructures and Advanced Engineered Materials

    NASA Astrophysics Data System (ADS)

    Goyal, Vivek Kumar

    Continuous downscaling of Si complementary metal-oxide semiconductor (CMOS) technology and progress in high-power electronics demand more efficient heat removal techniques to handle the increasing power density and rising temperature of hot spots. For this reason, it is important to investigate thermal properties of materials at nanometer scale and identify materials with the extremely large or extremely low thermal conductivity for applications as heat spreaders or heat insulators in the next generation of integrated circuits. The thin films used in microelectronic and photonic devices need to have high thermal conductivity in order to transfer the dissipated power to heat sinks more effectively. On the other hand, thermoelectric devices call for materials or structures with low thermal conductivity because the performance of thermoelectric devices is determined by the figure of merit Z=S2sigma/K, where S is the Seebeck coefficient, K and sigma are the thermal and electrical conductivity, respectively. Nanostructured superlattices can have drastically reduced thermal conductivity as compared to their bulk counterparts making them promising candidates for high-efficiency thermoelectric materials. Other applications calling for thin films with low thermal conductivity value are high-temperature coatings for engines. Thus, materials with both high thermal conductivity and low thermal conductivity are technologically important. The increasing temperature of the hot spots in state-of-the-art chips stimulates the search for innovative methods for heat removal. One promising approach is to incorporate materials, which have high thermal conductivity into the chip design. Two suitable candidates for such applications are diamond and graphene. Another approach is to integrate the high-efficiency thermoelectric elements for on-spot cooling. In addition, there is strong motivation for improved thermal interface materials (TIMs) for heat transfer from the heat-generating chip

  10. Thermoelectric figure of merit of a material consisting of semiconductor or metal particles

    SciTech Connect

    Kharlamov, V. F.

    2013-07-15

    It is found that the dimensionless thermoelectric figure of merit of a material consisting of a large number of ball-shaped semiconductor or metal particles can be much more than unity. The introduction of an insulator into the space between the particles is shown to sharply increase the power of the converter of heat energy into electric current energy.

  11. Advanced fiber/matrix material systems

    NASA Technical Reports Server (NTRS)

    Hartness, J. Timothy

    1991-01-01

    Work completed in Phase 1 of the NASA Advanced Composite Technology program is discussed. Two towpreg forms (commingled yarns and fused powder towpregs) are being characterized under the program. These towpregs will be used to evaluate textile fabrication technologies for advanced aircraft composite structures. The unique characteristic of both of these material forms is that both fiber and matrix resin are handled in a single operation such as weaving, braiding, or fiber placement. The evaluation of both commingled and fused powder towpreg is described. Various polymer materials are considered for both subsonic and supersonic applications. Polymers initially being evaluated include thermoplastic polyimides such as Larc-TPI and New-TPI, thermoplastics such as PEEK and PEKEKK as well as some toughened crosslinked polyimides. Preliminary mechanical properties as well as tow handling are evaluated.

  12. Advanced Thermoelectric Materials for Radioisotope Thermoelectric Generators

    NASA Technical Reports Server (NTRS)

    Caillat, Thierry; Hunag, C.-K.; Cheng, S.; Chi, S. C.; Gogna, P.; Paik, J.; Ravi, V.; Firdosy, S.; Ewell, R.

    2008-01-01

    This slide presentation reviews the progress and processes involved in creating new and advanced thermoelectric materials to be used in the design of new radioiootope thermoelectric generators (RTGs). In a program with Department of Energy, NASA is working to develop the next generation of RTGs, that will provide significant benefits for deep space missions that NASA will perform. These RTG's are planned to be capable of delivering up to 17% system efficiency and over 12 W/kg specific power. The thermoelectric materials being developed are an important step in this process.

  13. Library of Advanced Materials for Engineering : LAME.

    SciTech Connect

    Hammerand, Daniel Carl; Scherzinger, William Mark

    2007-08-01

    Constitutive modeling is an important aspect of computational solid mechanics. Sandia National Laboratories has always had a considerable effort in the development of constitutive models for complex material behavior. However, for this development to be of use the models need to be implemented in our solid mechanics application codes. In support of this important role, the Library of Advanced Materials for Engineering (LAME) has been developed in Engineering Sciences. The library allows for simple implementation of constitutive models by model developers and access to these models by application codes. The library is written in C++ and has a very simple object oriented programming structure. This report summarizes the current status of LAME.

  14. Advanced Ceramic Materials for Future Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Misra, Ajay

    2015-01-01

    With growing trend toward higher temperature capabilities, lightweight, and multifunctionality, significant advances in ceramic matrix composites (CMCs) will be required for future aerospace applications. The presentation will provide an overview of material requirements for future aerospace missions, and the role of ceramics and CMCs in meeting those requirements. Aerospace applications will include gas turbine engines, aircraft structure, hypersonic and access to space vehicles, space power and propulsion, and space communication.

  15. Precision machining of advanced materials with waterjets

    NASA Astrophysics Data System (ADS)

    Liu, H. T.

    2017-01-01

    Recent advances in abrasive waterjet technology have elevated to the state that it often competes on equal footing with lasers and EDM for precision machining. Under the support of a National Science Foundation SBIR Phase II grant, OMAX has developed and commercialized micro abrasive water technology that is incorporated into a MicroMAX® JetMa- chining® Center. Waterjet technology, combined both abrasive waterjet and micro abrasive waterjet technology, is capable of machining most materials from macro to micro scales for a wide range of part size and thickness. Waterjet technology has technological and manufacturing merits that cannot be matched by most existing tools. As a cold cutting tool that creates no heat-affected zone, for example, waterjet cuts much faster than wire EDM and laser when measures to minimize a heat-affected zone are taken into account. In addition, waterjet is material independent; it cuts materials that cannot be cut or are difficult to cut otherwise. The versatility of waterjet has also demonstrated machining simulated nanomaterials with large gradients of material properties from metal, nonmetal, to anything in between. This paper presents waterjet-machined samples made of a wide range of advanced materials from macro to micro scales.

  16. Superatoms and Metal-Semiconductor Motifs for Cluster Materials

    SciTech Connect

    Castleman, A. W.

    2013-10-11

    A molecular understanding of catalysis and catalytically active materials is of fundamental importance in designing new substances for applications in energy and fuels. We have performed reactivity studies and ultrafast ionization and coulomb explosion studies on a variety of catalytically-relevant materials, including transition metal oxides of Fe, Co, Ni, Cu, Ti, V, Nb, and Ta. We demonstrate that differences in charge state, geometry, and elemental composition of clusters of such materials determine chemical reactivity and ionization behavior, crucial steps in improving performance of catalysts.

  17. Fundamental Understanding and Theoretical Design of Novel Nanostructured Semiconductor Materials

    DTIC Science & Technology

    2012-01-04

    approach, and transport properties including electrical conductivity and Seebeck coefficients using our newly developed transport codes. Specific...photovoltaic materials and transparent conducting oxides. Electronic structure and volume effect on thermoelectric transport in p-type Bi and Sb...technologies. The efficiency of TE materials is represented by the figure of merit, ZT=SlaT/ (Ke+K/.), where S is the Seebeck coefficient, a is the electrical

  18. System for characterizing semiconductor materials and photovoltaic device

    DOEpatents

    Sopori, B.L.

    1996-12-03

    Apparatus for detecting and mapping defects in the surfaces of polycrystalline material in a manner that distinguishes dislocation pits from grain boundaries includes a first laser of a first wavelength for illuminating a wide spot on the surface of the material, a second laser of a second relatively shorter wavelength for illuminating a relatively narrower spot on the surface of the material, a light integrating sphere with apertures for capturing light scattered by etched dislocation pits in an intermediate range away from specular reflection while allowing light scattered by etched grain boundaries in a near range from specular reflection to pass through, and optical detection devices for detecting and measuring intensities of the respective intermediate scattered light and near specular scattered light. A center blocking aperture or filter can be used to screen out specular reflected light, which would be reflected by nondefect portions of the polycrystalline material surface. An X-Y translation stage for mounting the polycrystalline material and signal processing and computer equipment accommodate raster mapping, recording, and displaying of respective dislocation and grain boundary defect densities. A special etch procedure is included, which prepares the polycrystalline material surface to produce distinguishable intermediate and near specular light scattering in patterns that have statistical relevance to the dislocation and grain boundary defect densities. A reflectance measurement of the piece of material is obtained by adding together the signals from the optical detection devices. In the case where the piece of material includes a photovoltaic device, the current induced in the device by the illuminating light can be measured with a current sensing amplifier after the light integrating sphere is moved away from the device. 22 figs.

  19. System for characterizing semiconductor materials and photovoltaic device

    DOEpatents

    Sopori, Bhushan L.

    1996-01-01

    Apparatus for detecting and mapping defects in the surfaces of polycrystalline material in a manner that distinguishes dislocation pits from grain boundaries includes a first laser of a first wavelength for illuminating a wide spot on the surface of the material, a second laser of a second relatively shorter wavelength for illuminating a relatively narrower spot on the surface of the material, a light integrating sphere with apertures for capturing light scattered by etched dislocation pits in an intermediate range away from specular reflection while allowing light scattered by etched grain boundaries in a near range from specular reflection to pass through, and optical detection devices for detecting and measuring intensities of the respective intermediate scattered light and near specular scattered light. A center blocking aperture or filter can be used to screen out specular reflected light, which would be reflected by nondefect portions of the polycrystalline material surface. An X-Y translation stage for mounting the polycrystalline material and signal processing and computer equipment accommodate raster mapping, recording, and displaying of respective dislocation and grain boundary defect densities. A special etch procedure is included, which prepares the polycrystalline material surface to produce distinguishable intermediate and near specular light scattering in patterns that have statistical relevance to the dislocation and grain boundary defect densities. A reflectance measurement of the piece of material is obtained by adding together the signals from the optical detection devices. In the case where the piece of material includes a photovoltaic device, the current induced in the device by the illuminating light can be measured with a current sensing amplifier after the light integrating sphere is moved away from the device.

  20. Hydrogenated bilayer wurtzite SiC nanofilms: a two-dimensional bipolar magnetic semiconductor material.

    PubMed

    Yuan, Long; Li, Zhenyu; Yang, Jinlong

    2013-01-14

    Recently, a new kind of spintronics material, bipolar magnetic semiconductors (BMS), has been proposed. The spin polarization of BMS can be conveniently controlled by a gate voltage, which makes it very attractive in device engineering. Now, the main challenge is finding more BMS materials. In this article, we propose that hydrogenated wurtzite SiC nanofilm is a two-dimensional BMS material. Its BMS character is very robust under the effect of strain, substrate or even a strong electric field. The proposed two-dimensional BMS material paves the way to use this promising new material in an integrated circuit.

  1. Rhombohedral cubic semiconductor materials on trigonal substrate with single crystal properties and devices based on such materials

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2012-01-01

    Growth conditions are developed, based on a temperature-dependent alignment model, to enable formation of cubic group IV, group II-V and group II-VI crystals in the [111] orientation on the basal (0001) plane of trigonal crystal substrates, controlled such that the volume percentage of primary twin crystal is reduced from about 40% to about 0.3%, compared to the majority single crystal. The control of stacking faults in this and other embodiments can yield single crystalline semiconductors based on these materials that are substantially without defects, or improved thermoelectric materials with twinned crystals for phonon scattering while maintaining electrical integrity. These methods can selectively yield a cubic-on-trigonal epitaxial semiconductor material in which the cubic layer is substantially either directly aligned, or 60 degrees-rotated from, the underlying trigonal material.

  2. The 1.7 kilogram microchip: energy and material use in the production of semiconductor devices.

    PubMed

    Williams, Eric D; Ayres, Robert U; Heller, Miriam

    2002-12-15

    The scale of environmental impacts associated with the manufacture of microchips is characterized through analysis of material and energy inputs into processes in the production chain. The total weight of secondary fossil fuel and chemical inputs to produce and use a single 2-gram 32MB DRAM chip are estimated at 1600 g and 72 g, respectively. Use of water and elemental gases (mainly N2) in the fabrication stage are 32,000 and 700 g per chip, respectively. The production chain yielding silicon wafers from quartz uses 160 times the energy required for typical silicon, indicating that purification to semiconductor grade materials is energy intensive. Due to its extremely low-entropy, organized structure, the materials intensity of a microchip is orders of magnitude higher than that of "traditional" goods. Future analysis of semiconductor and other low entropy high-tech goods needs to include the use of secondary materials, especially for purification.

  3. Density functional theory and beyond-opportunities for quantum methods in materials modeling semiconductor technology.

    PubMed

    Shankar, Sadasivan; Simka, Harsono; Haverty, Michael

    2008-02-13

    In the semiconductor industry, the use of new materials has been increasing with the advent of nanotechnology. As critical dimensions decrease, and the number of materials increases, the interactions between heterogeneous materials themselves and processing increase in complexity. Traditionally, applications of ab initio techniques are confined to electronic structure and band gap calculations of bulk materials, which are then used in coarse-grained models such as mesoscopic and continuum models. Density functional theory is the most widely used ab initio technique that was successfully extended to several applications. This paper illustrates applications of density functional theory to semiconductor processes and proposes further opportunities for use of such techniques in process development.

  4. Advanced research workshop: nuclear materials safety

    SciTech Connect

    Jardine, L J; Moshkov, M M

    1999-01-28

    The Advanced Research Workshop (ARW) on Nuclear Materials Safety held June 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 U.S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuclear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuclear material safety topics on the storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, including vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This ARW completed discussions by experts of the nuclear materials safety topics that were not covered in the previous, companion ARW on Nuclear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuclear material aspects of the storage and disposition operations required for excess HEU and plutonium. As a result, specific experts in nuclear materials safety have been identified, know each other from their participation in t he two ARW interactions, and have developed a partial consensus and dialogue on the most urgent nuclear materials safety topics to be addressed in a formal bilateral program on t he subject. A strong basis now exists for maintaining and developing a continuing dialogue between Russian, European, and U.S. experts in nuclear materials safety that will improve the safety of future nuclear materials operations in all the countries involved because of t he positive synergistic effects of focusing these diverse backgrounds of

  5. Advanced Electron Microscopy in Materials Physics

    SciTech Connect

    Zhu, Y.; Jarausch, K.

    2009-06-01

    Aberration correction has opened a new frontier in electron microscopy by overcoming the limitations of conventional round lenses, providing sub-angstrom-sized probes and extending information limits. The imaging and analytical performance of these corrector-equipped microscopes affords an unprecedented opportunity to study structure-property relationships of matter at the atomic scale. This new generation of microscopes is able to retrieve high-quality structural information comparable to neutron and synchrotron x-ray experiments, but with local atomic resolution. These advances in instrumentation are accelerating the research and development of various functional materials ranging from those for energy generation, conversion, transportation and storage to those for catalysis and nano-device applications. The dramatic improvements in electron-beam illumination and detection also present a host of new challenges for the interpretation and optimization of experiments. During 7-9 November 2007, a workshop, entitled 'Aberration Corrected Electron Microscopy in Material Physics', was convened at the Center for Functional Nanomaterials, Brookhaven National Laboratories (BNL) to address these opportunities and challenges. The workshop was co-sponsored by Hitachi High Technologies, a leader in electron microscopy instrumentation, and BNL's Institute of Advanced Electron Microscopy, a leader in materials physics research using electron microscopy. The workshop featured presentations by internationally prominent scientists working at the frontiers of electron microscopy, both on developing instrumentation and applying it in materials physics. The meeting, structured to stimulate scientific exchanges and explore new capabilities, brought together {approx}100 people from over 10 countries. This special issue complies many of the advances in instrument performance and materials physics reported by the invited speakers and attendees at the workshop.

  6. Oxide semiconductor thin-film transistors: a review of recent advances.

    PubMed

    Fortunato, E; Barquinha, P; Martins, R

    2012-06-12

    Transparent electronics is today one of the most advanced topics for a wide range of device applications. The key components are wide bandgap semiconductors, where oxides of different origins play an important role, not only as passive component but also as active component, similar to what is observed in conventional semiconductors like silicon. Transparent electronics has gained special attention during the last few years and is today established as one of the most promising technologies for leading the next generation of flat panel display due to its excellent electronic performance. In this paper the recent progress in n- and p-type oxide based thin-film transistors (TFT) is reviewed, with special emphasis on solution-processed and p-type, and the major milestones already achieved with this emerging and very promising technology are summarizeed. After a short introduction where the main advantages of these semiconductors are presented, as well as the industry expectations, the beautiful history of TFTs is revisited, including the main landmarks in the last 80 years, finishing by referring to some papers that have played an important role in shaping transparent electronics. Then, an overview is presented of state of the art n-type TFTs processed by physical vapour deposition methods, and finally one of the most exciting, promising, and low cost but powerful technologies is discussed: solution-processed oxide TFTs. Moreover, a more detailed focus analysis will be given concerning p-type oxide TFTs, mainly centred on two of the most promising semiconductor candidates: copper oxide and tin oxide. The most recent data related to the production of complementary metal oxide semiconductor (CMOS) devices based on n- and p-type oxide TFT is also be presented. The last topic of this review is devoted to some emerging applications, finalizing with the main conclusions. Related work that originated at CENIMAT|I3N during the last six years is included in more detail, which

  7. Theoretical discovery of stable structures of group III-V monolayers: The materials for semiconductor devices

    SciTech Connect

    Suzuki, Tatsuo

    2015-11-23

    Group III-V compounds are very important as the materials of semiconductor devices. Stable structures of the monolayers of group III-V binary compounds have been discovered by using first-principles calculations. The primitive unit cell of the discovered structures is a rectangle, which includes four group-III atoms and four group-V atoms. A group-III atom and its three nearest-neighbor group-V atoms are placed on the same plane; however, these connections are not the sp{sup 2} hybridization. The bond angles around the group-V atoms are less than the bond angle of sp{sup 3} hybridization. The discovered structure of GaP is an indirect transition semiconductor, while the discovered structures of GaAs, InP, and InAs are direct transition semiconductors. Therefore, the discovered structures of these compounds have the potential of the materials for semiconductor devices, for example, water splitting photocatalysts. The discovered structures may become the most stable structures of monolayers which consist of other materials.

  8. Implications of smart materials in advanced prosthetics

    NASA Astrophysics Data System (ADS)

    Lenoe, Edward M.; Radicic, William N.; Knapp, Michael S.

    1994-05-01

    This research reviews common implant materials and suggests smart materials that may be used as substitutes. Current prosthetic technology, including artificial limbs, joints, and soft and hard tissue, falls short in comprehensive characterization of the chemo-mechanics and materials relationships of the natural tissues and their prosthetic materials counterparts. Many of these unknown chemo-mechanical properties in natural tissue systems maintain cooperative function that allows for optimum efficiency in performance and healing. Traditional prosthetic devices have not taken into account the naturally occurring electro-chemo-mechanical stress- strain relationships that normally exist in a tissue system. Direct mechanical deformation of tissue and cell membrane as a possible use of smart materials may lead to improved prosthetic devices once the mechanosensory systems in living tissues are identified and understood. Smart materials may aid in avoiding interfacial atrophy which is a common cause of prosthetic failure. Finally, we note that advanced composite materials have not received sufficient attention, they should be more widely used in prosthetics. Their structural efficiency allows design and construction of truly efficient bionic devices.

  9. ZnO glass-ceramics: An alternative way to produce semiconductor materials

    SciTech Connect

    Masai, Hirokazu; Toda, Tatsuya; Ueno, Takahiro; Takahashi, Yoshihiro; Fujiwara, Takumi

    2009-04-13

    Fabrication of transparent glass-ceramics containing ZnO nanocrystallites has been reported. The obtained material shows UV-excited photoluminescence consisting of both broad emission in the visible region and the free exciton emission at 3.28 eV. Since the observed emission depends on the precipitated state of ZnO in the glass matrix, the glass-ceramics obtained by this way will give an alternative selection of semiconductor material with unique optical and electronic functions.

  10. Thin-film semiconductor perspective of organometal trihalide perovskite materials for high-efficiency solar cells

    DOE PAGES

    Xiao, Zhengguo; Yuan, Yongbo; Wang, Qi; ...

    2016-02-19

    Organolead trihalide perovskites (OTPs) are arising as a new generation of low-cost active materials for solar cells with efficiency rocketing from 3.5% to over 20% within only five years. From “dye” in dye sensitized solar cells to “hole conductors” and “electron conductors” in mesoscopic heterojunction solar cells, there has been a dramatic conceptual evolution on the function of OTPs in photovoltaic devices. OTPs were originally used as dyes in Gratzel cells, achieving a high efficiency above 15% which, however, did not manifest the excellent charge transport properties of OTPs. An analogy of OTPs to traditional semiconductors was drawn after themore » demonstration of highly efficient planar heterojunction structure OTP devices and the observation of their excellent bipolar transport properties with a large diffusion length exceeding 100 nm in CH3NH3PbI3 (MAPbI3) polycrystalline thin films. Here, this review aims to provide the most recent advances in the understanding of the origin of the high OTP device efficiency. Specifically we will focus on reviewing the progress in understanding 1) the characterization of fantastic optoelectronic property of OTPs, 2) the unusual defect physics that originate the optoelectronic property; 3) morphology control of the perovskite film from fabrication process and film post-treatment, and 4) device interface and charge transport layers that dramatically impact device efficiency in the OTP thin film devices; 5) photocurrent hysteresis; 6) tandem solar cells; 7) stability of the perovskite materials and solar cell devices.« less

  11. Thin-film semiconductor perspective of organometal trihalide perovskite materials for high-efficiency solar cells

    SciTech Connect

    Xiao, Zhengguo; Yuan, Yongbo; Wang, Qi; Shao, Yuchuan; Bai, Yang; Deng, Yehao; Dong, Qingfeng; Hu, Miao; Bi, Cheng; Huang, Jinsong

    2016-02-19

    Organolead trihalide perovskites (OTPs) are arising as a new generation of low-cost active materials for solar cells with efficiency rocketing from 3.5% to over 20% within only five years. From “dye” in dye sensitized solar cells to “hole conductors” and “electron conductors” in mesoscopic heterojunction solar cells, there has been a dramatic conceptual evolution on the function of OTPs in photovoltaic devices. OTPs were originally used as dyes in Gratzel cells, achieving a high efficiency above 15% which, however, did not manifest the excellent charge transport properties of OTPs. An analogy of OTPs to traditional semiconductors was drawn after the demonstration of highly efficient planar heterojunction structure OTP devices and the observation of their excellent bipolar transport properties with a large diffusion length exceeding 100 nm in CH3NH3PbI3 (MAPbI3) polycrystalline thin films. Here, this review aims to provide the most recent advances in the understanding of the origin of the high OTP device efficiency. Specifically we will focus on reviewing the progress in understanding 1) the characterization of fantastic optoelectronic property of OTPs, 2) the unusual defect physics that originate the optoelectronic property; 3) morphology control of the perovskite film from fabrication process and film post-treatment, and 4) device interface and charge transport layers that dramatically impact device efficiency in the OTP thin film devices; 5) photocurrent hysteresis; 6) tandem solar cells; 7) stability of the perovskite materials and solar cell devices.

  12. Automotive applications for advanced composite materials

    NASA Technical Reports Server (NTRS)

    Deutsch, G. C.

    1978-01-01

    A description is presented of nonaerospace applications for advanced composite materials with special emphasis on the automotive applications. The automotive industry has to satisfy exacting requirements to reduce the average fuel consumption of cars. A feasible approach to accomplish this involves the development of composites cars with a total weight of 2400 pounds and a fuel consumption of 33 miles per gallon. In connection with this possibility, the automotive companies have started to look seriously at composite materials. The aerospace industry has over the past decade accumulated a considerable data base on composite materials and this is being made available to the nonaerospace sector. However, the automotive companies will place prime emphasis on low cost resins which lend themselves to rapid fabrication techniques.

  13. Advanced reflector materials for solar concentrators

    SciTech Connect

    Jorgensen, G; Williams, T; Wendelin, T

    1994-10-01

    This paper describes the research and development program at the U.S. National Renewable Energy Laboratory (NREL) in advanced reflector materials for solar concentrators. NREL's research thrust is to develop solar reflector materials that maintain high specular reflectance for extended lifetimes under outdoor service conditions and whose cost is significantly lower than existing products. Much of this work has been in collaboration with private-sector companies that have extensive expertise in vacuum-coating and polymer-film technologies. Significant progress and other promising developments will be discussed. These are expected to lead to additional improvements needed to commercialize solar thermal concentration systems and make them economically attractive to the solar manufacturing industry. To explicitly demonstrate the optical durability of candidate reflector materials in real-world service conditions, a network of instrumented outdoor exposure sites has been activated.

  14. Advanced reflector materials for solar concentrators

    NASA Astrophysics Data System (ADS)

    Jorgensen, Gary; Williams, Tom; Wendelin, Tim

    1994-10-01

    This paper describes the research and development at the US National Renewable Energy Laboratory (NREL) in advanced reflector materials for solar concentrators. NREL's research thrust is to develop solar reflector materials that maintain high specular reflectance for extended lifetimes under outdoor service conditions and whose cost is significantly lower than existing products. Much of this work has been in collaboration with private-sector companies that have extensive expertise in vacuum-coating and polymer-film technologies. Significant progress and other promising developments will be discussed. These are expected to lead to additional improvements needed to commercialize solar thermal concentration systems and make them economically attractive to the solar manufacturing industry. To explicitly demonstrate the optical durability of candidate reflector materials in real-world service conditions, a network of instrumented outdoor exposure sites has been activated.

  15. International Symposium on Advanced Materials (ISAM 2013)

    NASA Astrophysics Data System (ADS)

    2014-06-01

    This proceeding is a compilation of peer reviewed papers presented at the 13th International Symposium on Advanced Materials (ISAM 2013) held from September 23-27, 2013, at Islamabad, Pakistan. In my capacity as ISAM-2013 Secretary, I feel honoured that the symposium has ended on a positive note. The ever increasing changes and intricacies that characterize modern industry necessitate a growing demand for technical information on advanced materials. ISAM and other similar forums serve to fulfill this need. The five day deliberations of ISAM 2013, consisted of 19 technical sessions and 2 poster sessions. In all, 277 papers were presented, inclusive of 80 contributory, invited and oral presentations. The symposium also hosted panel discussions led by renowned scientists and eminent researchers from foreign as well as local institutes. The ultimate aim of this proceeding is to record in writing the new findings in the field of advanced materials. I hope that the technical data available in this publication proves valuable to young scientists and researchers working in this area of science. At the same time, I wish to acknowledge Institute of Physics (IOP) Publishing UK, for accepting the research papers from ISAM-2013 for publication in the IOP Conference Series: Materials Science and Engineering. The proceeding will be available on the IOP website as an online open access document. I am profoundly thankful to the Symposium Chairman for his steadfast support and valuable guidance without which ISAM 2013 could not have been the mega event that it turned out to be. My gratitude to all our distinguished participants, session chairs/co-chairs, and reviewers for their active role in the symposium. I appreciate the entire organizing committee for the zest and ardor with which each committee fulfilled its obligations to ISAM. Last yet not the least, my thankfulness goes to all our sponsors for wilfully financing the event. Dr. Sara Qaisar Symposium Secretary Further

  16. Nondestructive evaluation of advanced ceramic composite materials

    SciTech Connect

    Lott, L.A.; Kunerth, D.C.; Walter, J.B.

    1991-09-01

    Nondestructive evaluation techniques were developed to characterize performance degrading conditions in continuous fiber-reinforced silicon carbide/silicon carbide composites. Porosity, fiber-matrix interface bond strength, and physical damage were among the conditions studied. The material studied is formed by chemical vapor infiltration (CVI) of the matrix material into a preform of woven reinforcing fibers. Acoustic, ultrasonic, and vibration response techniques were studied. Porosity was investigated because of its inherent presence in the CVI process and of the resultant degradation of material strength. Correlations between porosity and ultrasonic attenuation and velocity were clearly demonstrated. The ability of ultrasonic transmission scanning techniques to map variations in porosity in a single sample was also demonstrated. The fiber-matrix interface bond was studied because of its importance in determining the fracture toughness of the material. Correlations between interface bonding and acoustic and ultrasonic properties were observed. These results are presented along with those obtained form acoustic and vibration response measurements on material samples subjected to mechanical impact damage. This is the final report on research sponsored by the US Department of Energy, Fossil Energy Advanced Research and Technology Development Materials Program. 10 refs., 24 figs., 2 tabs.

  17. Innovative low temperature SOFCs and advanced materials

    NASA Astrophysics Data System (ADS)

    Zhu, B.; Yang, X. T.; Xu, J.; Zhu, Z. G.; Ji, S. J.; Sun, M. T.; Sun, J. C.

    High ionic conductivity, varying from 0.01 to 1 S cm -1 between 300 and 700 °C, has been achieved for the hybrid and nano-ceria-composite electrolyte materials, demonstrating a successful application for advanced low temperature solid oxide fuel cells (LTSOFCs). The LTSOFCs were constructed based on these new materials. The performance of 0.15-0.25 W cm -2 was obtained in temperature region of 320-400 °C for the ceria-carbonate composite electrolyte, and of 0.35-0.66 W cm -2 in temperature region of 500-600 °C for the ceria-lanthanum oxide composites. The cell could even function at as low as 200 °C. The cell has also undergone a life test for several months. A two-cell stack was studied, showing expected performance successfully. The excellent LTSOFC performance is resulted from both functional electrolyte and electrode materials. The electrolytes are two phase composite materials based on the oxygen ion and proton conducting phases, or two rare-earth oxides. The electrodes used were based on the same composite material system having excellent compatibility with the electrolyte. They are highly catalytic and conductive thus creating the excellent performances at low temperatures. These innovative LT materials and LTSOFC technologies would open the door for wide applications, not only for stationary but also for mobile power sources.

  18. Strain-based control of crystal anisotropy for perovskite oxides on semiconductor-based material

    DOEpatents

    McKee, Rodney Allen; Walker, Frederick Joseph

    2000-01-01

    A crystalline structure and a semiconductor device includes a substrate of a semiconductor-based material and a thin film of an anisotropic crystalline material epitaxially arranged upon the surface of the substrate so that the thin film couples to the underlying substrate and so that the geometries of substantially all of the unit cells of the thin film are arranged in a predisposed orientation relative to the substrate surface. The predisposition of the geometries of the unit cells of the thin film is responsible for a predisposed orientation of a directional-dependent quality, such as the dipole moment, of the unit cells. The predisposed orientation of the unit cell geometries are influenced by either a stressed or strained condition of the lattice at the interface between the thin film material and the substrate surface.

  19. ASME Material Challenges for Advanced Reactor Concepts

    SciTech Connect

    Piyush Sabharwall; Ali Siahpush

    2013-07-01

    This study presents the material Challenges associated with Advanced Reactor Concept (ARC) such as the Advanced High Temperature Reactor (AHTR). ACR are the next generation concepts focusing on power production and providing thermal energy for industrial applications. The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The heat exchanger required for AHTR is subjected to a unique set of conditions that bring with them several design challenges not encountered in standard heat exchangers. The corrosive molten salts, especially at higher temperatures, require materials throughout the system to avoid corrosion, and adverse high-temperature effects such as creep. Given the very high steam generator pressure of the supercritical steam cycle, it is anticipated that water tube and molten salt shell steam generators heat exchanger will be used. In this paper, the ASME Section III and the American Society of Mechanical Engineers (ASME) Section VIII requirements (acceptance criteria) are discussed. Also, the ASME material acceptance criteria (ASME Section II, Part D) for high temperature environment are presented. Finally, lack of ASME acceptance criteria for thermal design and analysis are discussed.

  20. Materials processing threshold report. 1: Semiconductor crystals for infrared detectors

    NASA Technical Reports Server (NTRS)

    Sager, E. V.; Thompson, T. R.; Nagler, R. G.

    1980-01-01

    An extensive search was performed of the open literature pertaining to infrared detectors to determine what constitutes a good detector and in what way performance is limited by specific material properties. Interviews were conducted with a number of experts in the field to assess their perceptions of the state of the art and of the utility of zero-gravity processing. Based on this information base and on a review of NASA programs in crystal growth and infrared sensors, NASA program goals were reassessed and suggestions are presented as to possible joint and divergent efforts between NASA and DOD.

  1. Recent Advances in Electron Tomography: TEM and HAADF-STEM Tomography for Materials Science and IC Applications

    SciTech Connect

    Kubel, C; Voigt, A; Schoenmakers, R; Otten, M; Su, D; Lee, T; Carlsson, A; Engelmann, H; Bradley, J

    2005-11-09

    Electron tomograph tomography is a well y well-established technique for three-dimensional structure determination of (almost) amorphous specimens in life science applications. With the recent advances in nanotechnology and the semiconductor industry, there is also an increasing need for high-resolution 3D structural information in physical sciences. In this paper, we evaluate the capabilities and limitations of TEM and HAADF-STEM tomography for the 3D structural characterization of partially crystalline to highly crystalline materials. Our analysis of catalysts, a hydrogen storage material, and different semiconductor devices shows that features with a diameter as small as 1-2 nm can be resolved in 3D by electron tomography. For partially crystalline materials with small single crystalline domains, TEM tomography provides reliable 3D structural information. HAADF-STEM tomography is more versatile and can also be used for high-resolution 3D imaging of highly crystalline materials such as semiconductor devices.

  2. Advanced Technology Composite Fuselage - Materials and Processes

    NASA Technical Reports Server (NTRS)

    Scholz, D. B.; Dost, E. F.; Flynn, B. W.; Ilcewicz, L. B.; Nelson, K. M.; Sawicki, A. J.; Walker, T. H.; Lakes, R. S.

    1997-01-01

    The goal of Boeing's Advanced Technology Composite Aircraft Structures (ATCAS) program was to develop the technology required for cost and weight efficient use of composite materials in transport fuselage structure. This contractor report describes results of material and process selection, development, and characterization activities. Carbon fiber reinforced epoxy was chosen for fuselage skins and stiffening elements and for passenger and cargo floor structures. The automated fiber placement (AFP) process was selected for fabrication of monolithic and sandwich skin panels. Circumferential frames and window frames were braided and resin transfer molded (RTM'd). Pultrusion was selected for fabrication of floor beams and constant section stiffening elements. Drape forming was chosen for stringers and other stiffening elements. Significant development efforts were expended on the AFP, braiding, and RTM processes. Sandwich core materials and core edge close-out design concepts were evaluated. Autoclave cure processes were developed for stiffened skin and sandwich structures. The stiffness, strength, notch sensitivity, and bearing/bypass properties of fiber-placed skin materials and braided/RTM'd circumferential frame materials were characterized. The strength and durability of cocured and cobonded joints were evaluated. Impact damage resistance of stiffened skin and sandwich structures typical of fuselage panels was investigated. Fluid penetration and migration mechanisms for sandwich panels were studied.

  3. Dense Plasma Focus-Based Nanofabrication of III–V Semiconductors: Unique Features and Recent Advances

    PubMed Central

    Mangla, Onkar; Roy, Savita; Ostrikov, Kostya (Ken)

    2015-01-01

    The hot and dense plasma formed in modified dense plasma focus (DPF) device has been used worldwide for the nanofabrication of several materials. In this paper, we summarize the fabrication of III–V semiconductor nanostructures using the high fluence material ions produced by hot, dense and extremely non-equilibrium plasma generated in a modified DPF device. In addition, we present the recent results on the fabrication of porous nano-gallium arsenide (GaAs). The details of morphological, structural and optical properties of the fabricated nano-GaAs are provided. The effect of rapid thermal annealing on the above properties of porous nano-GaAs is studied. The study reveals that it is possible to tailor the size of pores with annealing temperature. The optical properties of these porous nano-GaAs also confirm the possibility to tailor the pore sizes upon annealing. Possible applications of the fabricated and subsequently annealed porous nano-GaAs in transmission-type photo-cathodes and visible optoelectronic devices are discussed. These results suggest that the modified DPF is an effective tool for nanofabrication of continuous and porous III–V semiconductor nanomaterials. Further opportunities for using the modified DPF device for the fabrication of novel nanostructures are discussed as well.

  4. Advanced development of double-injection, deep-impurity semiconductor switches

    NASA Technical Reports Server (NTRS)

    Hanes, M. H.

    1987-01-01

    Deep-impurity, double-injection devices, commonly refered to as (DI) squared devices, represent a class of semiconductor switches possessing a very high degree of tolerance to electron and neutron irradiation and to elevated temperature operation. These properties have caused them to be considered as attractive candidates for space power applications. The design, fabrication, and testing of several varieties of (DI) squared devices intended for power switching are described. All of these designs were based upon gold-doped silicon material. Test results, along with results of computer simulations of device operation, other calculations based upon the assumed mode of operation of (DI) squared devices, and empirical information regarding power semiconductor device operation and limitations, have led to the conculsion that these devices are not well suited to high-power applications. When operated in power circuitry configurations, they exhibit high-power losses in both the off-state and on-state modes. These losses are caused by phenomena inherent to the physics and material of the devices and cannot be much reduced by device design optimizations. The (DI) squared technology may, however, find application in low-power functions such as sensing, logic, and memory, when tolerance to radiation and temperature are desirable (especially is device performance is improved by incorporation of deep-level impurities other than gold.

  5. Nanomembrane-based materials for Group IV semiconductor quantum electronics.

    PubMed

    Paskiewicz, D M; Savage, D E; Holt, M V; Evans, P G; Lagally, M G

    2014-02-27

    Strained-silicon/relaxed-silicon-germanium alloy (strained-Si/SiGe) heterostructures are the foundation of Group IV-element quantum electronics and quantum computation, but current materials quality limits the reliability and thus the achievable performance of devices. In comparison to conventional approaches, single-crystal SiGe nanomembranes are a promising alternative as substrates for the epitaxial growth of these heterostructures. Because the nanomembrane is truly a single crystal, in contrast to the conventional SiGe substrate made by compositionally grading SiGe grown on bulk Si, significant improvements in quantum electronic-device reliability may be expected with nanomembrane substrates. We compare lateral strain inhomogeneities and the local mosaic structure (crystalline tilt) in strained-Si/SiGe heterostructures that we grow on SiGe nanomembranes and on compositionally graded SiGe substrates, with micro-Raman mapping and nanodiffraction, respectively. Significant structural improvements are found using SiGe nanomembranes.

  6. NREL Advances Spillover Materials for Hydrogen Storage (Fact Sheet)

    SciTech Connect

    Not Available

    2010-12-01

    This fact sheet describes NREL's accomplishments in advancing spillover materials for hydrogen storage and improving the reproducible synthesis, long-term durability, and material costs of hydrogen storage materials. Work was performed by NREL's Chemical and Materials Science Center.

  7. Advancements in MEMS materials and processing technology

    NASA Astrophysics Data System (ADS)

    Olivas, John D.; Bolin, Stephen

    1998-01-01

    From achievements in display imaging to air bag deployment, microelectromechanical systems are becoming more commonplace in everyday life. With an abundance of opportunities for innovative R&D in the field, the research trends are not only directed toward novel sensor and actuator development, but also toward further miniaturization, specifically achieving micro- and nanoscaled integrated systems. R&D efforts in space, military, and commercial applications are directing specific research programs focused on the area of materials science as an enabling technology to be exploited by researchers and to further push the envelope of micrometerscaled device technology. These endeavors are making significant progress in bringing this aspect of the microelectro-mechanical field to maturation through advances in materials and processing technologies.

  8. Advanced Materials Laboratory User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Orndoff, Evelyne

    2012-01-01

    Test process, milestones and inputs are unknowns to first-time users of the Advanced Materials Laboratory. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  9. On the fracture toughness of advanced materials

    SciTech Connect

    Launey, Maximilien E.; Ritchie, Robert O.

    2008-11-24

    Few engineering materials are limited by their strength; rather they are limited by their resistance to fracture or fracture toughness. It is not by accident that most critical structures, such as bridges, ships, nuclear pressure vessels and so forth, are manufactured from materials that are comparatively low in strength but high in toughness. Indeed, in many classes of materials, strength and toughness are almost mutually exclusive. In the first instance, such resistance to fracture is a function of bonding and crystal structure (or lack thereof), but can be developed through the design of appropriate nano/microstructures. However, the creation of tough microstructures in structural materials, i.e., metals, polymers, ceramics and their composites, is invariably a compromise between resistance to intrinsic damage mechanisms ahead of the tip of a crack (intrinsic toughening) and the formation of crack-tip shielding mechanisms which principally act behind the tip to reduce the effective 'crack-driving force' (extrinsic toughening). Intrinsic toughening is essentially an inherent property of a specific microstructure; it is the dominant form of toughening in ductile (e.g., metallic) materials. However, for most brittle (e.g., ceramic) solids, and this includes many biological materials, it is largely ineffective and toughening conversely must be developed extrinsically, by such shielding mechanisms as crack bridging. From a fracture mechanics perspective, this results in toughening in the form of rising resistance-curve behavior where the fracture resistance actually increases with crack extension. The implication of this is that in many biological and high-strength advanced materials, toughness is developed primarily during crack growth and not for crack initiation. This is an important realization yet is still rarely reflected in the way that toughness is measured, which is invariably involves the use of single-value (crack-initiation) parameters such as the

  10. The search for new thermoelectric materials: Intermediate valent cerium intermetallics and multivalley semiconductors

    NASA Astrophysics Data System (ADS)

    Proctor, Kevin Joseph

    Two classes of materials were evaluated for their potential in thermoelectric cooling applications: intermediate valent cerium intermetallics and "multivalley" semiconductors. In evaluating these materials, we use the thermoelectric figure of merit, Z · T = S 2T/rhokappa where S is the thermopower, T is the temperature, rho is the electrical resistivity, and kappa is the thermal conductivity. As Z · T increases, the thermoelectric efficiency of the material in a cooling device also increases. The physical properties of intermediate valent materials display numerous anomalies, including large S. The observed combination of large S and low rho makes them a potentially attractive alternative to the small band gap semiconductors currently used for thermoelectric cooling applications. The systems investigated were Ce1--xRx Pd3 where R = Nd and Th; Ce2Ni3--xM vSi5 where M = Co, Cu, or Pd; Ce2Ni2In 1--xSnx; and polycrystalline and single crystalline Ce2CoSi3 and Ce5Cu19P12. The room temperature S was found to be between 20 and 80 muV/K for these materials. We attempted to improve S in some systems by substitutions, but the thermopowers were usually reduced. Even in the cases where S was increased, the magnitude remained below 80 muV/K. All measured S were too low to produce significant Z · T so we began researching semiconductors. We have coined the term "multivalley" to describe semiconductors that have a large number, NV, of extrema (valleys) in the electronic band structure at the band gap. The maximum possible NV increases with increasing crystal symmetry and thermoelectric theory predicts that Z · T will increase with increasing NV. We are trying to find multivalley materials by incorporating tetrahedral, polyatomic anions into semiconducting networks. The synthesis of A4[SnTe4] where A = Na and K was indicated by the color of methanolic; solutions but could not be verified by diffraction techniques. The previously reported phases M2[SiS4] where M = Fe and Mn

  11. Transport Imaging: Developing an Optical Technique to Characterize Bulk Semiconductor Materials for Next Generation Radiation Detectors

    DTIC Science & Technology

    2009-06-01

    OF PAGES 79 14. SUBJECT TERMS Cathodoluminescence, Diffusion , Drift, Mobility, Lifetime, Bismuth Ferrite , BiFeO3 , Semiconductor, Transport...migrate or diffuse from a region of high concentration to low concentration. The diffusion coefficient (D) quantifies the diffusivity of a material...The diffusion coefficient is found using the Einstein relation kTD e μ = where k is Boltzmann’s constant, T is the temperature, e is the charge

  12. Static sublimation purification process and characterization of LiZnAs semiconductor material

    NASA Astrophysics Data System (ADS)

    Montag, Benjamin W.; Reichenberger, Michael A.; Edwards, Nathaniel S.; Ugorowski, Philip B.; Sunder, Madhana; Weeks, Joseph; McGregor, Douglas S.

    2016-03-01

    Refinement of the class AIBIICV materials continue as a candidate for solid-state neutron detectors. Such a device would have greater efficiency, in a compact form, than present day gas-filled 3He and 10BF3 detectors. The 6Li(n,t)4He reaction yields a total Q value of 4.78 MeV, larger than 10B, and easily identified above background radiations. Hence, devices composed of either natural Li (nominally 7.5% 6Li) or enriched 6Li (usually 95% 6Li) may provide a semiconductor material for compact high efficiency neutron detectors. A sub-branch of the III-V semiconductors, the filled tetrahedral compounds, AIBIICV, known as Nowotny-Juza compounds, are known for their desirable cubic crystal structure. Starting material was synthesized by equimolar portions of Li, Zn, and As sealed under vacuum (10-6 Torr) in quartz ampoules with a boron nitride lining, and reacted in a compounding furnace [1]. The synthesized material showed signs of high impurity levels from material and electrical property characterization. In the present work, a static vacuum sublimation of synthesized LiZnAs loaded in a quartz vessel was performed to help purify the synthesized material. The chemical composition of the sublimed material and remains material was confirmed by Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Lithium was not detected in the sublimed material, however, near stoichiometric amounts of each constituent element were found in the remains material for LiZnAs. X-ray diffraction phase identification scans of the remains material and sublimed material were compared, and further indicated the impurity materials were removed from the synthesized materials. The remaining powder post the sublimation process showed characteristics of a higher purity ternary compound.

  13. Conjugated polymers/semiconductor nanocrystals hybrid materials--preparation, electrical transport properties and applications.

    PubMed

    Reiss, Peter; Couderc, Elsa; De Girolamo, Julia; Pron, Adam

    2011-02-01

    This critical review discusses specific preparation and characterization methods applied to hybrid materials consisting of π-conjugated polymers (or oligomers) and semiconductor nanocrystals. These materials are of great importance in the quickly growing field of hybrid organic/inorganic electronics since they can serve as active components of photovoltaic cells, light emitting diodes, photodetectors and other devices. The electronic energy levels of the organic and inorganic components of the hybrid can be tuned individually and thin hybrid films can be processed using low cost solution based techniques. However, the interface between the hybrid components and the morphology of the hybrid directly influences the generation, separation and transport of charge carriers and those parameters are not easy to control. Therefore a large variety of different approaches for assembling the building blocks--conjugated polymers and semiconductor nanocrystals--has been developed. They range from their simple blending through various grafting procedures to methods exploiting specific non-covalent interactions between both components, induced by their tailor-made functionalization. In the first part of this review, we discuss the preparation of the building blocks (nanocrystals and polymers) and the strategies for their assembly into hybrid materials' thin films. In the second part, we focus on the charge carriers' generation and their transport within the hybrids. Finally, we summarize the performances of solar cells using conjugated polymer/semiconductor nanocrystals hybrids and give perspectives for future developments.

  14. Static sublimation purification process and characterization of LiZnP semiconductor material

    NASA Astrophysics Data System (ADS)

    Montag, Benjamin W.; Reichenberger, Michael A.; Edwards, Nathan; Ugorowski, Philip B.; Sunder, Madhana; Weeks, Joseph; McGregor, Douglas S.

    2015-06-01

    Refinement of the class AIBIICV materials continue as a candidate for solid-state neutron detectors. Such a device would have greater efficiency, in a compact form, than present day gas-filled 3He and 10BF3 detectors. The 6Li(n,t)4He reaction yields a total Q value of 4.78 MeV, larger than 10B, and easily identified above background radiations. Hence, devices composed of either natural Li (nominally 7.5% 6Li) or enriched 6Li (usually 95% 6Li) may provide a semiconductor material for compact high efficiency neutron detectors. A sub-branch of the III-V semiconductors, the filled tetrahedral compounds, AIBIICV, known as Nowotny-Juza compounds, are known for their desirable cubic crystal structure. Starting material was synthesized by combining equimolar portions of Li, Zn, and P sealed under vacuum (10-6 Torr) in quartz ampoules, having boron nitride liners, and subsequently reacted in a compounding furnace (Montag et al., 2015, J. of Cryst. Growth). A static vacuum sublimation in quartz was performed to help purify the synthesized material. The chemical composition of the sublimed material and remaining material was confirmed by Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Lithium was not detected in the sublimed material, however, approximately stoichiometric concentrations of each constituent element were found in the remaining LiZnP material. X-ray diffraction phase identification scans of the remains material and sublimed material were compared, and further indicated the impurity materials were sublimed away from the synthesized materials. The resulting material from the sublimation process showed characteristics of a higher purity ternary compound.

  15. Materials for advanced ultrasupercritical steam turbines

    SciTech Connect

    Purgert, Robert; Shingledecker, John; Saha, Deepak; Thangirala, Mani; Booras, George; Powers, John; Riley, Colin; Hendrix, Howard

    2015-12-01

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have sponsored a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired power plants capable of operating at much higher efficiencies than the current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of advanced ultrasupercritical (A-USC) steam conditions. A limiting factor in this can be the materials of construction for boilers and for steam turbines. The overall project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760°C (1400°F)/35MPa (5000 psi). This final technical report covers the research completed by the General Electric Company (GE) and Electric Power Research Institute (EPRI), with support from Oak Ridge National Laboratory (ORNL) and the National Energy Technology Laboratory (NETL) – Albany Research Center, to develop the A-USC steam turbine materials technology to meet the overall project goals. Specifically, this report summarizes the industrial scale-up and materials property database development for non-welded rotors (disc forgings), buckets (blades), bolting, castings (needed for casing and valve bodies), casting weld repair, and casting to pipe welding. Additionally, the report provides an engineering and economic assessment of an A-USC power plant without and with partial carbon capture and storage. This research project successfully demonstrated the materials technology at a sufficient scale and with corresponding materials property data to enable the design of an A-USC steam turbine. The key accomplishments included the development of a triple-melt and forged Haynes 282 disc for bolted rotor construction, long-term property development for Nimonic 105 for blading and bolting, successful scale-up of Haynes 282 and Nimonic 263 castings using

  16. Visible Light Enabled Photocatalytic Splitting of Water over Spatially Isolated Semiconductors Supported Mesoporous Materials

    NASA Astrophysics Data System (ADS)

    Peng, Rui

    Hydrogen generation from photocatalytic splitting of water is an ideal scenario that possesses promise for the sustainable development of human society and the establishment of the ultimate "green," infinitely renewable energy system. This work contains a series of novel photocatalytic systems in which the photoactive chromophores and/or the co-catalysts were incorporated into highly periodically cubic-phased MCM-48 mesoporous materials to achieve significantly higher photocatalytic efficiencies compared with conventional semiconductor photocatalysts. Cubic-phased MCM-48 mesoporous materials were chosen as supports to accommodate the photoactive species throughout the entire work. Several unique and iconic properties of these materials, such as large surface area, highly uniform mesoscale pores arrayed in a long-range periodicity, and an interconnected network of three-dimensional sets of pores that were recognized as positive parameters facilitated the photogenerated charge transfer and promoted the photocatalytic performance of the encapsulated photoactive species. It was validated that in the CdS/TiO2-incorporated MCM-48 photocatalytic system, the solar hydrogen conversion efficiency was prevalently governed by the photogenerated electron injection efficiency from the CdS conduction band to that of TiO2. The use of MCM-48 mesoporous host materials enabled the high and even dispersion of both CdS and TiO 2 so that the intimate and sufficient contact between CdS and TiO 2 was realized. In addition, with the presence of both TiO2 and MCM-48 mesoporous support, the photostability of CdS species was dramatically enhanced compared with that of bare CdS or CdS-incorporated MCM-48 photocatalysts. In advance, by loading the RuO2 co-catalyst into the CdS/TiO 2-incorporated MCM-48 photocatalytic system, the photocatalytic splitting of pure water to generate both hydrogen and oxygen under visible light illumination was achieved. In the various Pd-assisted, TiO2-incorporated

  17. Development of advanced electron holographic techniques and application to industrial materials and devices.

    PubMed

    Yamamoto, Kazuo; Hirayama, Tsukasa; Tanji, Takayoshi

    2013-06-01

    The development of a transmission electron microscope equipped with a field emission gun paved the way for electron holography to be put to practical use in various fields. In this paper, we review three advanced electron holography techniques: on-line real-time electron holography, three-dimensional (3D) tomographic holography and phase-shifting electron holography, which are becoming important techniques for materials science and device engineering. We also describe some applications of electron holography to the analysis of industrial materials and devices: GaAs compound semiconductors, solid oxide fuel cells and all-solid-state lithium ion batteries.

  18. Fabrication of porous materials (metal, metal oxide and semiconductor) through an aerosol-assisted route

    NASA Astrophysics Data System (ADS)

    Sohn, Hiesang

    Porous materials have gained attraction owing to their vast applications in catalysts, sensors, energy storage devices, bio-devices and other areas. To date, various porous materials were synthesized through soft and hard templating approaches. However, a general synthesis method for porous non-oxide materials, metal alloys and semiconductors with tunable structure, composition and morphology has not been developed yet. To address this challenge, this thesis presents an aerosol method towards the synthesis of such materials and their applications for catalysis, hydrogen storage, Li-batteries and photo-catalysis. The first part of this thesis presents the synthesis of porous metals, metal oxides, and semiconductors with controlled pore structure, crystalline structure and morphology. In these synthesis processes, metal salts and organic ligands were employed as precursors to create porous metal-carbon frameworks. During the aerosol process, primary metal clusters and nanoparticles were formed, which were coagulated/ aggregated forming the porous particles. Various porous particles, such as those of metals (e.g., Ni, Pt, Co, Fe, and Ni xPt(1-x)), metal oxides (e.g., Fe3O4 and SnO2) and semiconductors (e.g., CdS, CuInS2, CuInS 2x-ZnS(1-x), and CuInS2x-TiO2(1-x)) were synthesized. The morphology, porous structure and crystalline structure of the particles were regulated through both templating and non-templating methods. The second part of this thesis explores the applications of these materials, including propylene hydrogenation and H2 uptake capacity of porous Ni, NiPt alloys and Ni-Pt composites, Li-storage of Fe3O4 and SnO2, photodegradation of CuInS2-based semiconductors. The effects of morphology, compositions, and porous structure on the device performance were systematically investigated. Overall, this dissertation work unveiled a simple synthesis approach for porous particles of metals, metal alloys, metal oxides, and semiconductors with controlled

  19. Thermal fatigue durability for advanced propulsion materials

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.

    1989-01-01

    A review is presented of thermal and thermomechanical fatigue (TMF) crack initiation life prediction and cyclic constitutive modeling efforts sponsored recently by the NASA Lewis Research Center in support of advanced aeronautical propulsion research. A brief description is provided of the more significant material durability models that were created to describe TMF fatigue resistance of both isotropic and anisotropic superalloys, with and without oxidation resistant coatings. The two most significant crack initiation models are the cyclic damage accumulation model and the total strain version of strainrange partitioning. Unified viscoplastic cyclic constitutive models are also described. A troika of industry, university, and government research organizations contributed to the generation of these analytic models. Based upon current capabilities and established requirements, an attempt is made to project which TMF research activities most likely will impact future generation propulsion systems.

  20. Advanced neutron source materials surveillance program

    SciTech Connect

    Heavilin, S.M.

    1995-01-01

    The Advanced Neutron Source (ANS) will be composed of several different materials, one of which is 6061-T6 aluminum. Among other components, the reflector vessel and the core pressure boundary tube (CPBT), are to be made of 6061-T6 aluminum. These components will be subjected to high thermal neutron fluences and will require a surveillance program to monitor the strength and fracture toughness of the 6061-T6 aluminum over their lifetimes. The purpose of this paper is to explain the steps that were taken in the summer of 1994 toward developing the surveillance program. The first goal was to decide upon standard specimens to use in the fracture toughness and tensile testing. Second, facilities had to be chosen for specimens representing the CPBT and the reflector vessel base, weld, and heat-affected-zone (HAZ) metals. Third, a timetable had to be defined to determine when to remove the specimens for testing.

  1. Improvement of process control using wafer geometry for enhanced manufacturability of advanced semiconductor devices

    NASA Astrophysics Data System (ADS)

    Lee, Honggoo; Lee, Jongsu; Kim, Sang Min; Lee, Changhwan; Han, Sangjun; Kim, Myoungsoo; Kwon, Wontaik; Park, Sung-Ki; Vukkadala, Pradeep; Awasthi, Amartya; Kim, J. H.; Veeraraghavan, Sathish; Choi, DongSub; Huang, Kevin; Dighe, Prasanna; Lee, Cheouljung; Byeon, Jungho; Dey, Soham; Sinha, Jaydeep

    2015-03-01

    Aggressive advancements in semiconductor technology have resulted in integrated chip (IC) manufacturing capability at sub-20nm half-pitch nodes. With this, lithography overlay error budgets are becoming increasingly stringent. The delay in EUV lithography readiness for high volume manufacturing (HVM) and the need for multiple-patterning lithography with 193i technology has further amplified the overlay issue. Thus there exists a need for technologies that can improve overlay errors in HVM. The traditional method for reducing overlay errors predominantly focused on improving lithography scanner printability performance. However, processes outside of the lithography sector known as processinduced overlay errors can contribute significantly to the total overlay at the current requirements. Monitoring and characterizing process-induced overlay has become critical for advanced node patterning. Recently a relatively new technique for overlay control that uses high-resolution wafer geometry measurements has gained significance. In this work we present the implementation of this technique in an IC fabrication environment to monitor wafer geometry changes induced across several points in the process flow, of multiple product layers with critical overlay performance requirement. Several production wafer lots were measured and analyzed on a patterned wafer geometry tool. Changes induced in wafer geometry as a result of wafer processing were related to down-stream overlay error contribution using the analytical in-plane distortion (IPD) calculation model. Through this segmentation, process steps that are major contributors to down-stream overlay were identified. Subsequent process optimization was then isolated to those process steps where maximum benefit might be realized. Root-cause for the within-wafer, wafer-to-wafer, tool-to-tool, and station-to-station variations observed were further investigated using local shape curvature changes - which is directly related to

  2. Advanced Pattern Material for Investment Casting Applications

    SciTech Connect

    F. Douglas Neece Neil Chaudhry

    2006-02-08

    Cleveland Tool and Machine (CTM) of Cleveland, Ohio in conjunction with Harrington Product Development Center (HPDC) of Cincinnati, Ohio have developed an advanced, dimensionally accurate, temperature-stable, energy-efficient and cost-effective material and process to manufacture patterns for the investment casting industry. In the proposed technology, FOPAT (aFOam PATtern material) has been developed which is especially compatible with the investment casting process and offers the following advantages: increased dimensional accuracy; increased temperature stability; lower cost per pattern; less energy consumption per pattern; decreased cost of pattern making equipment; decreased tooling cost; increased casting yield. The present method for investment casting is "the lost wax" process, which is exactly that, the use of wax as a pattern material, which is then melted out or "lost" from the ceramic shell. The molten metal is then poured into the ceramic shell to produce a metal casting. This process goes back thousands of years and while there have been improvements in the wax and processing technology, the material is basically the same, wax. The proposed technology is based upon an established industrial process of "Reaction Injection Molding" (RIM) where two components react when mixed and then "molded" to form a part. The proposed technology has been modified and improved with the needs of investment casting in mind. A proprietary mix of components has been formulated which react and expand to form a foam-like product. The result is an investment casting pattern with smooth surface finish and excellent dimensional predictability along with the other key benefits listed above.

  3. Growth and applications of GeSn-related group-IV semiconductor materials

    PubMed Central

    Zaima, Shigeaki; Nakatsuka, Osamu; Taoka, Noriyuki; Kurosawa, Masashi; Takeuchi, Wakana; Sakashita, Mitsuo

    2015-01-01

    We review the technology of Ge1−xSnx-related group-IV semiconductor materials for developing Si-based nanoelectronics. Ge1−xSnx-related materials provide novel engineering of the crystal growth, strain structure, and energy band alignment for realising various applications not only in electronics, but also in optoelectronics. We introduce our recent achievements in the crystal growth of Ge1−xSnx-related material thin films and the studies of the electronic properties of thin films, metals/Ge1−xSnx, and insulators/Ge1−xSnx interfaces. We also review recent studies related to the crystal growth, energy band engineering, and device applications of Ge1−xSnx-related materials, as well as the reported performances of electronic devices using Ge1−xSnx related materials. PMID:27877818

  4. Hybrid bandgap engineering for super-hetero-epitaxial semiconductor materials, and products thereof

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2012-01-01

    "Super-hetero-epitaxial" combinations comprise epitaxial growth of one material on a different material with different crystal structure. Compatible crystal structures may be identified using a "Tri-Unity" system. New bandgap engineering diagrams are provided for each class of combination, based on determination of hybrid lattice constants for the constituent materials in accordance with lattice-matching equations. Using known bandgap figures for previously tested materials, new materials with lattice constants that match desired substrates and have the desired bandgap properties may be formulated by reference to the diagrams and lattice matching equations. In one embodiment, this analysis makes it possible to formulate new super-hetero-epitaxial semiconductor systems, such as systems based on group IV alloys on c-plane LaF.sub.3; group IV alloys on c-plane langasite; Group III-V alloys on c-plane langasite; and group II-VI alloys on c-plane sapphire.

  5. Indentation Methods in Advanced Materials Research Introduction

    SciTech Connect

    Pharr, George Mathews; Cheng, Yang-Tse; Hutchings, Ian; Sakai, Mototsugu; Moody, Neville; Sundararajan, G.; Swain, Michael V.

    2009-01-01

    Since its commercialization early in the 20th century, indentation testing has played a key role in the development of new materials and understanding their mechanical behavior. Progr3ess in the field has relied on a close marriage between research in the mechanical behavior of materials and contact mechanics. The seminal work of Hertz laid the foundations for bringing these two together, with his contributions still widely utilized today in examining elastic behavior and the physics of fracture. Later, the pioneering work of Tabor, as published in his classic text 'The Hardness of Metals', exapdned this understanding to address the complexities of plasticity. Enormous progress in the field has been achieved in the last decade, made possible both by advances in instrumentation, for example, load and depth-sensing indentation and scanning electron microscopy (SEM) and transmission electron microscopy (TEM) based in situ testing, as well as improved modeling capabilities that use computationally intensive techniques such as finite element analysis and molecular dynamics simulation. The purpose of this special focus issue is to present recent state of the art developments in the field.

  6. Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation

    SciTech Connect

    Liby, Alan L; Rogers, Hiram

    2013-10-01

    The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work on advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.

  7. Advanced composite materials for optomechanical systems

    NASA Astrophysics Data System (ADS)

    Zweben, Carl

    2013-09-01

    Polymer matrix composites (PMCs) have been well established in optomechanical systems for several decades. The other three classes of composites; metal matrix composites (MMCs), ceramic matrix composites (CMCs), and carbon matrix composites (CAMCs) are making significant inroads. The latter include carbon/carbon (C/C) composites (CCCs). The success of composites has resulted in increasing use in consumer, industrial, scientific, and aerospace/defense optomechanical applications. Composites offer significant advantages over traditional materials, including high stiffnesses and strengths, near-zero and tailorable coefficients of thermal expansion (CTEs), tailorable thermal conductivities (from very low to over twice that of copper), and low densities. In addition, they lack beryllium's toxicity problems. Some manufacturing processes allow parts consolidation, reducing machining and joining operations. At present, PMCs are the most widely used composites. Optomechanical applications date from the 1970s. The second High Energy Astrophysical Observatory spacecraft, placed in orbit in 1978, had an ultrahigh-modulus carbon fiber-reinforced epoxy (carbon/epoxy) optical bench metering structure. Since then, fibers and matrix materials have advanced significantly, and use of carbon fiber-reinforced polymers (CFRPs) has increased steadily. Space system examples include the Hubble Space Telescope metering truss and instrument benches, Upper Atmosphere Research Satellite (UARS), James Webb Space Telescope and many others. Use has spread to airborne applications, such as SOFIA. Perhaps the most impressive CFRP applications are the fifty-four 12m and twelve 7m moveable ground-based ALMA antennas. The other three classes of composites have a number of significant advantages over PMCs, including no moisture absorption or outgassing of organic compounds. CCC and CMC components have flown on a variety of spacecraft. MMCs have been used in space, aircraft, military and industrial

  8. Ferroelectricity in Covalently functionalized Two-dimensional Materials: Integration of High-mobility Semiconductors and Nonvolatile Memory.

    PubMed

    Wu, Menghao; Dong, Shuai; Yao, Kailun; Liu, Junming; Zeng, Xiao Cheng

    2016-11-09

    Realization of ferroelectric semiconductors by conjoining ferroelectricity with semiconductors remains a challenging task because most present-day ferroelectric materials are unsuitable for such a combination due to their wide bandgaps. Herein, we show first-principles evidence toward the realization of a new class of two-dimensional (2D) ferroelectric semiconductors through covalent functionalization of many prevailing 2D materials. Members in this new class of 2D ferroelectric semiconductors include covalently functionalized germanene, and stanene (Nat. Commun. 2014, 5, 3389), as well as MoS2 monolayer (Nat. Chem. 2015, 7, 45), covalent functionalization of the surface of bulk semiconductors such as silicon (111) (J. Phys. Chem. B 2006, 110 , 23898), and the substrates of oxides such as silica with self-assembly monolayers (Nano Lett. 2014, 14, 1354). The newly predicted 2D ferroelectric semiconductors possess high mobility, modest bandgaps, and distinct ferroelectricity that can be exploited for developing various heterostructural devices with desired functionalities. For example, we propose applications of the 2D materials as 2D ferroelectric field-effect transistors with ultrahigh on/off ratio, topological transistors with Dirac Fermions switchable between holes and electrons, ferroelectric junctions with ultrahigh electro-resistance, and multiferroic junctions for controlling spin by electric fields. All these heterostructural devices take advantage of the combination of high-mobility semiconductors with fast writing and nondestructive reading capability of nonvolatile memory, thereby holding great potential for the development of future multifunctional devices.

  9. Methods for forming group III-V arsenide-nitride semiconductor materials

    NASA Technical Reports Server (NTRS)

    Major, Jo S. (Inventor); Welch, David F. (Inventor); Scifres, Donald R. (Inventor)

    2000-01-01

    Methods are disclosed for forming Group III--arsenide-nitride semiconductor materials. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V crystals varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V crystals can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.

  10. Advanced materials systems as commercial opportunities

    SciTech Connect

    Gilman, J.J.

    1987-04-01

    This paper shows that commercial opportunities in the materials area lie principally in materials systems, and much less in components made from differentiated individual materials. Examples are given.

  11. Advanced materials for high-temperature thermoelectric energy conversion

    NASA Technical Reports Server (NTRS)

    Vining, Cronin B.; Vandersande, Jan W.; Wood, Charles

    1992-01-01

    A number of refractory semiconductors are under study at the Jet Propulsion Laboratory for application in thermal to electric energy conversion for space power. The main thrust of the program is to improve or develop materials of high figure of merit and, therefore, high conversion efficiencies over a broad temperature range. Materials currently under investigation are represented by silicon-germanium alloys, lanthanum telluride, and boron carbide. The thermoelectric properties of each of these materials, and prospects for their further improvements, are discussed. Continued progress in thermoelectric materials technology can be expected to yield reliable space power systems with double to triple the efficiency of current state of the art systems.

  12. Advanced materials and nanotechnology for drug delivery.

    PubMed

    Yan, Li; Yang, Yang; Zhang, Wenjun; Chen, Xianfeng

    2014-08-20

    Many biological barriers are of great importance. For example, stratum corneum, the outmost layer of skin, effectively protects people from being invaded by external microorganisms such as bacteria and viruses. Cell membranes help organisms maintain homeostasis by controlling substances to enter and leave cells. However, on the other hand, these biological barriers seriously restrict drug delivery. For instance, stratum corneum has a very dense structure and only allows very small molecules with a molecular weight of below 500 Da to permeate whereas most drug molecules are much larger than that. A wide variety of drugs including genes needs to enter cells for proper functioning but cell membranes are not permeable to them. To overcome these biological barriers, many drug-delivery routes are being actively researched and developed. In this research news, we will focus on two advanced materials and nanotechnology approaches for delivering vaccines through the skin for painless and efficient immunization and transporting drug molecules to cross cell membranes for high-throughput intracellular delivery.

  13. Advanced High-Temperature Engine Materials Technology Progresses

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The objective of the Advanced High Temperature Engine Materials Technology Program (HITEMP) at the NASA Lewis Research Center is to generate technology for advanced materials and structural analysis that will increase fuel economy, improve reliability, extend life, and reduce operating costs for 21st century civil propulsion systems. The primary focus is on fan and compressor materials (polymer-matrix composites - PMC's), compressor and turbine materials (superalloys, and metal-matrix and intermetallic-matrix composites - MMC's and IMC's), and turbine materials (ceramic-matrix composites - CMC's). These advanced materials are being developed in-house by Lewis researchers and on grants and contracts.

  14. Compact environmental spectroscopy using advanced semiconductor light-emitting diodes and lasers

    SciTech Connect

    Fritz, I.J.; Klem, J.F.; Hafich, M.J.

    1997-04-01

    This report summarizes research completed under a Laboratory Directed Research and Development program funded for part of FY94, FY95 and FY96. The main goals were (1) to develop novel, compound-semiconductor based optical sources to enable field-based detection of environmentally important chemical species using miniaturized, low-power, rugged, moderate cost spectroscopic equipment, and (2) to demonstrate the utility of near-infrared spectroscopy to quantitatively measure contaminants. Potential applications would include monitoring process and effluent streams for volatile organic compound detection and sensing head-space gasses in storage vessels for waste management. Sensing is based on absorption in the 1.3-1.9 {mu}m band from overtones of the C-H, N-H and O-H stretch resonances. We describe work in developing novel broadband light-emitting diodes emitting over the entire 1.4-1.9 {mu}m wavelength range, first using InGaAs quantum wells, and second using a novel technique for growing digital-alloy materials in the InAlGaAs material system. Next we demonstrate the utility of near-infrared spectroscopy for quantitatively determining contamination of soil by motor oil. Finally we discuss the separability of different classes of organic compounds using near-infrared spectroscopic techniques.

  15. Charge recombination in distributed heterostructures of semiconductor discotic and polymeric materials.

    NASA Astrophysics Data System (ADS)

    Clark, Jenny; Archer, Robert; Redding, Tim; Foden, Clare; Tant, Julien; Geerts, Yves; Friend, Richard H.; Silva, Carlos

    2008-06-01

    Control of microstructure and energetics at heterojunctions in organic semiconductors is central to achieve high light-emitting or photovoltaic device efficiency. We report the observation of an emissive exciplex formed between an electron-accepting discotic material (hexaazatrinaphthylene or HATNA-SC12) and a hole accepting conjugated polymer {poly[9,9- dioctylfluorene-co-N-(4-butylphenyl)diphenylamine] or TFB}. In contrast to polymer-polymer systems, we find here that the exciplex is strongly localized at the interface, acting as an energy bottleneck with inefficient transfer to bulk exciton states and with low yield of charge separation.

  16. Material degradation of liquid organic semiconductors analyzed by nuclear magnetic resonance spectroscopy

    SciTech Connect

    Fukushima, Tatsuya; Yamamoto, Junichi; Fukuchi, Masashi; Kaji, Hironori; Hirata, Shuzo; Jung, Heo Hyo; Adachi, Chihaya; Hirata, Osamu; Shibano, Yuki

    2015-08-15

    Liquid organic light-emitting diodes (liquid OLEDs) are unique devices consisting only of liquid organic semiconductors in the active layer, and the device performances have been investigated recently. However, the device degradation, especially, the origin has been unknown. In this study, we show that material degradation occurs in liquid OLEDs, whose active layer is composed of carbazole with an ethylene glycol chain. Nuclear magnetic resonance (NMR) experiments clearly exhibit that the dimerization reaction of carbazole moiety occurs in the liquid OLEDs during driving the devices. In contrast, cleavages of the ethylene glycol chain are not detected within experimental error. The dimerization reaction is considered to be related to the device degradation.

  17. Studies of noise transmission in advanced composite material structures

    NASA Technical Reports Server (NTRS)

    Roussos, L. A.; Mcgary, M. C.; Powell, C. A.

    1983-01-01

    Noise characteristics of advanced composite material fuselages were discussed from the standpoints of applicable research programs and noise transmission theory. Experimental verification of the theory was also included.

  18. High mobility amorphous zinc oxynitride semiconductor material for thin film transistors

    SciTech Connect

    Ye Yan; Lim, Rodney; White, John M.

    2009-10-01

    Zinc oxynitride semiconductor material is produced through a reactive sputtering process in which competition between reactions responsible for the growth of hexagonal zinc oxide (ZnO) and for the growth of cubic zinc nitride (Zn{sub 3}N{sub 2}) is promoted. In contrast to processes in which the reaction for either the oxide or the nitride is dominant, the multireaction process yields a substantially amorphous or a highly disordered nanocrystalline film with higher Hall mobility, 47 cm{sup 2} V{sup -1} s{sup -1} for the as-deposited film produced at 50 deg. C and 110 cm{sup 2} V{sup -1} s{sup -1} after annealing at 400 deg. C. In addition, it has been observed that the Hall mobility of the material increases as the carrier concentration decreases in a carrier concentration range where a multicomponent metal oxide semiconductor, indium-gallium-zinc oxide, follows the opposite trend. This indicates that the carrier transports in the single-metal compound and the multimetal compound are probably dominated by different mechanisms. Film stability and thin film transistor performance of the material have also been tested, and results are presented herein.

  19. Indentation-induced structural phase transformations of semiconductor materials and applications

    NASA Astrophysics Data System (ADS)

    Khayyat, Maha; Sosa, Norma; Chaudhri, M. Munawar; Cavendish laboratory, University of Cambridge Team; T. J. Watson Research Center, IBM Collaboration

    During hardness indentation materials are subjected to highly localized pressures. These pressures may cause a complete change of the crystal structure of the material within the indented zone. Such structural phase transformations were observed within Vickers indentations made at room temperature in single crystals and amorphous films of Si and Ge. However, when indentations were made at 77 K in Si and Ge, no phase transitions were observed in either. Measurements were also taken from indentations made in silicon single crystals at different temperatures namely 263, 243, 235 and 206 K, and they showed a strong correlation of phase transformation with temperature. It was suggested that during room temperature indentations there is a significant temperature rise approximately to 760 K, which may assist phase transformation. Raman spectroscopy was used as an ex-situ tool monitoring phase transformations in semiconductor materials. In-situ electrical characterizations of indentation-induced metallization in single crystals of silicon were performed using two- and four-contact measurements. The previous work has led to a technique relates to semiconductor device manufacturing, including solar cells, which is a method for controlling the removal of a surface layer from a base substrate utilizing low-temperature. KACST is acknowledged for support.

  20. X-ray studies of microstructures in semiconductors and superconducting materials

    SciTech Connect

    Kao, Y.H.

    1992-04-01

    Objective is to use synchrotron x rays to probe short-range-order (SRO) structures in these materials. These SRO structures, with a scale of a few angstroms, include these around interfaces in multilayers, strain and local environs around impurity or constituent atoms, as well as lattice mismatch, intermixing of atoms across interfaces, annealing, etc. A new soft x-ray detector has been built and was used to measure x-ray fluorescence from O and F in bulk materials. The research on microstructure in both semiconductors and high-T{sub c} superconductors is being continued with emphasis on multilayer materials. X-ray absorption fine structure spectroscopy is being used in many of the studies, as is grazing incidence x-ray fluorescence and scattering. Total electron yield is used with fluorescence to probe surfaces and interfaces. Effects of doping on superconducting properties, especially these related to microstructures around impurities or constituent atoms, were studied. Resulting papers are listed.

  1. Advanced Technology for Improved Quantum Device Properties Using Highly Strained Materials

    DTIC Science & Technology

    1991-03-01

    Improved Quantum PE 61153N Device Properties Using Highly Strained Materials PE 1401N~R&T 414s 001-02 IN G. AUTHOR(S) (William J. Schaff , S.D. Offsey and...DECEMBER 15, 1989 CORNELL UNIVERSITY.......................... ITHACA, NY 14853-5401 PREPARED BY: WJ. Schaff ........ S.D. Offsey I - L.F. Eastman D ’’. i...Mandeville, R. Saito, P.J. Tasker, W.J. Schaff and L.F. Eastman, 12th IEEE/Comell Conference on’Advanced Concepts in High Speed Semiconductor Devices

  2. Semiconductor Nanocrystals for Biological Imaging

    SciTech Connect

    Fu, Aihua; Gu, Weiwei; Larabell, Carolyn; Alivisatos, A. Paul

    2005-06-28

    Conventional organic fluorophores suffer from poor photo stability, narrow absorption spectra and broad emission feature. Semiconductor nanocrystals, on the other hand, are highly photo-stable with broad absorption spectra and narrow size-tunable emission spectra. Recent advances in the synthesis of these materials have resulted in bright, sensitive, extremely photo-stable and biocompatible semiconductor fluorophores. Commercial availability facilitates their application in a variety of unprecedented biological experiments, including multiplexed cellular imaging, long-term in vitro and in vivo labeling, deep tissue structure mapping and single particle investigation of dynamic cellular processes. Semiconductor nanocrystals are one of the first examples of nanotechnology enabling a new class of biomedical applications.

  3. Non-Traditional Spectroscopy for Analysis of Semiconductor and Photovoltaic Thin Film Materials

    NASA Astrophysics Data System (ADS)

    Li, Fuhe; Anderson, Scott

    2009-09-01

    Characterization of semiconductor thin films has long been determined by a number of traditional surface analysis techniques; Auger, ESCA/XPS, SEM-EDS and SIMS to name only a few. Depth profiles, contamination in the thin film or quantitative stoichiometry are specific application examples that predicate the technique best suited for the analysis need. The evolution of photovoltaic (PV) thin film compositions with new chemistries and growing importance of atomic layer deposition (ALD) for semiconductor and nanoscale applications provide a sustaining need for thin film analyses along with an avenue for new analytical tools. In this paper we will discuss the applications of two non-traditional material analysis techniques for the semiconductor and PV applications, glow discharge optical emission spectroscopy (RF GD-OES) and laser ablation inductively coupled plasma mass spectrometry (LA ICP-MS). Depth profiles are available via both techniques with the ability to analyze monolayers (single nm) as well as analysis in the bulk (μm thickness). Depth resolution capabilities allow analysis without surface equilibrium issues seen with other techniques. In addition, the charging effect that can cause issues with electron and ion beam techniques is avoided with RF GD-OES and LA ICP-MS, and thus analysis of both conductive and non-conductive materials is very straight-forward. Contaminant analysis in thin films is very straight-forward and elements across the periodic table are analyzed in a simultaneous mode with both techniques. Detection limits to part-per-billion levels can be achieved and quantitation at low concentrations up to 99% achieved with LA ICP-MS. Lastly, t will be discussed that for some thin film applications, LA ICP-MS and RF GD-OES provide advantages over more traditional techniques, and these aspects as well as complementary features will be discussed.

  4. Solid State Cooling with Advanced Oxide Materials

    DTIC Science & Technology

    2014-06-03

    Properties and Response of Epitaxial Oxide Thin Films for Advanced Devices, Workshop on Oxide Electronics (Sept. 2011, Napa , CA) [Invited] 19. L. W. Martin...Properties and Response of Epitaxial Oxide Thin Films for Advanced Devices, Workshop on Oxide Electronics (Sept. 2011, Napa , CA) [Invited] 19. L. W

  5. III-antimonide/nitride based semiconductors for optoelectronic materials and device studies : LDRD 26518 final report.

    SciTech Connect

    Kurtz, Steven Ross; Hargett, Terry W.; Serkland, Darwin Keith; Waldrip, Karen Elizabeth; Modine, Normand Arthur; Klem, John Frederick; Jones, Eric Daniel; Cich, Michael Joseph; Allerman, Andrew Alan; Peake, Gregory Merwin

    2003-12-01

    The goal of this LDRD was to investigate III-antimonide/nitride based materials for unique semiconductor properties and applications. Previous to this study, lack of basic information concerning these alloys restricted their use in semiconductor devices. Long wavelength emission on GaAs substrates is of critical importance to telecommunication applications for cost reduction and integration into microsystems. Currently InGaAsN, on a GaAs substrate, is being commercially pursued for the important 1.3 micrometer dispersion minima of silica-glass optical fiber; due, in large part, to previous research at Sandia National Laboratories. However, InGaAsN has not shown great promise for 1.55 micrometer emission which is the low-loss window of single mode optical fiber used in transatlantic fiber. Other important applications for the antimonide/nitride based materials include the base junction of an HBT to reduce the operating voltage which is important for wireless communication links, and for improving the efficiency of a multijunction solar cell. We have undertaken the first comprehensive theoretical, experimental and device study of this material with promising results. Theoretical modeling has identified GaAsSbN to be a similar or potentially superior candidate to InGaAsN for long wavelength emission on GaAs. We have confirmed these predictions by producing emission out to 1.66 micrometers and have achieved edge emitting and VCSEL electroluminescence at 1.3 micrometers. We have also done the first study of the transport properties of this material including mobility, electron/hole mass, and exciton reduced mass. This study has increased the understanding of the III-antimonide/nitride materials enough to warrant consideration for all of the target device applications.

  6. Spectrophotometric method for optical band gap and electronic transitions determination of semiconductor materials

    NASA Astrophysics Data System (ADS)

    Sangiorgi, Nicola; Aversa, Lucrezia; Tatti, Roberta; Verucchi, Roberto; Sanson, Alessandra

    2017-02-01

    The optical band gap energy and the electronic processes involved are important parameters of a semiconductor material and it is therefore important to determine their correct values. Among the possible methods, the spectrophotometric is one of the most common. Several methods can be applied to determine the optical band gap energy and still now a defined consensus on the most suitable one has not been established. A highly diffused and accurate optical method is based on Tauc relationship, however to apply this equation is necessary to know the nature of the electronic transitions involved commonly related to the coefficient n. For this purpose, a spectrophotometric technique was used and we developed a graphical method for electronic transitions and band gap energy determination for samples in powder form. In particular, the n coefficient of Tauc equation was determined thorough mathematical elaboration of experimental results on TiO2 (anatase), ZnO, and SnO2. The results were used to calculate the band gap energy values and then compared with the information obtained by Ultraviolet Photoelectron Spectroscopy (UPS). This approach provides a quick and accurate method for band gap determination through n coefficient calculation. Moreover, this simple but reliable method can be used to evaluate the nature of electronic transition that occurs in a semiconductor material in powder form.

  7. Advanced insider threat mitigation workshop instructional materials

    SciTech Connect

    Gibbs, Philip; Larsen, Robert; O Brien, Mike; Edmunds, Tom

    2008-11-01

    Insiders represent a formidable threat to nuclear facilities. This set of workshop materials covers methodologies to analyze and approaches to mitigate the threat of an insider attempting abrupt and protracted theft of nuclear materials. This particular set of materials is a n update of a January 2008 version to add increased emphasis on Material Control and Accounting and its role with respect to protracted insider nuclear material theft scenarios.

  8. Synthesis and characterization of LiZnP and LiZnAs semiconductor material

    NASA Astrophysics Data System (ADS)

    Montag, Benjamin W.; Reichenberger, Michael A.; Arpin, Kevin R.; Sunder, Madhana; Nelson, Kyle A.; Ugorowski, Philip B.; McGregor, Douglas S.

    2015-02-01

    Research for a reliable solid-state semiconductor neutron detector continues because such a device has not been developed, and would have greater efficiency, than present-day gas-filled 3He and 10BF3 neutron detectors. Further, a semiconductor neutron detector would be more compact and rugged than most gas-filled or scintillator neutron detectors. The 6Li(n,t)4He reaction yields a total Q value of 4.78 MeV, a larger yield than the 10B(n,α)7Li, and is easily identified above background radiation interactions. Hence, devices composed of either natural Li (naturally 7.5% 6Li) or enriched 6Li (approximately 95% 6Li) may provide a semiconductor material for compact high-efficiency neutron detectors. A sub-branch of the III-V semiconductors, the filled tetrahedral compounds, known as Nowotny-Juza compounds (AIBIICV), are desirable for their cubic crystal structure and semiconducting electrical properties. These compounds were originally studied for photonic applications. In the present work, Equimolar portions of Li, Zn, and P or As were sealed under vacuum (10-6 Torr) in quartz ampoules with a boron nitride lining, and loaded into a compounding furnace. The ampoule was heated to 200 °C to form the Li-Zn alloy, subsequently heated to 560 °C to form the ternary compound, LiZnP or LiZnAs, and finally annealed to promote crystallization. The chemical composition of the synthesized starting material was confirmed at Galbraith Laboratories, Inc. by Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), which showed the compounds can be reacted in equal ratios, 1-1-1, to form ternary compounds. Recent additions to the procedure have produced higher yields, and greater synthesis reliability. Synthesized powders were also characterized by x-ray diffraction, where lattice constants of 5.751±.001 Å and 5.939±.002 Å for LiZnP and LiZnAs, respectively, were determined.

  9. Photoconduction efficiencies of metal oxide semiconductor nanowires: The material's inherent properties

    NASA Astrophysics Data System (ADS)

    Chen, R. S.; Wang, W. C.; Chan, C. H.; Lu, M. L.; Chen, Y. F.; Lin, H. C.; Chen, K. H.; Chen, L. C.

    2013-11-01

    The photoconduction (PC) efficiencies of various single-crystalline metal oxide semiconductor nanowires (NWs) have been investigated and compared based on the materials' inherent properties. The defined PC efficiency (normalized gain) of SnO2 NWs is over one to five orders of magnitude higher than that of its highly efficient counterparts such as ZnO, TiO2, WO3, and GaN. The inherent property of the material allowed the photoconductive gain of an SnO2 single-NW photodetector to easily reach 8 × 108 at a low bias of 3.0 V and a low light intensity of 0.05 Wm-2, which is the optimal reported value so far for the single-NW photodetectors. The probable physical origins, such as charged surface state density and surface band bending, that caused the differences in PC efficiencies and carrier lifetimes are also discussed.

  10. Magnetism in alkali-metal-doped wurtzite semiconductor materials controlled by strain engineering

    NASA Astrophysics Data System (ADS)

    Guo, J. H.; Li, T. H.; Liu, L. Z.; Hu, F. R.

    2016-09-01

    The study of the magnetism and optical properties of semiconductor materials by defect engineering has attracted much attention because of their potential uses in spintronic and optoelectronic devices. In this paper, first-principle calculations discloses that cationic vacancy formation energy of the doped wurtzite materials can be sharply decreased due to alkali metal dopants and shows that their magnetic properties strongly depend on defect and doping concentration. This effect can be ascribed to the volume change induced by foreign elements doped into the host system and atomic population's difference. The symmetric deformation induced by biaxial strain can further regulate this behavior. Our results suggest that the formation of cationic vacancy can be tailored by strain engineering and dopants incorporation.

  11. Advanced Materials and Multifunctional Structures for Aerospace Vehicles

    DTIC Science & Technology

    2006-10-01

    through covalent integration of functional nanotubes ”, Advanced Functional Materials, 14(7) (2004) 643-648. 185 R.Z. Ma, J. Wu, B.Q. Wei, J. Liang, and...on Advanced Materials for Multi Functional Structures in Aerospace Vehicles. The advanced synthesis, processing and the characterization techniques...when more than one primary function is performed either simultaneously or sequentially in time. These systems are based on metallic, ceramic and

  12. Analysis of an advanced technology subsonic turbofan incorporating revolutionary materials

    NASA Technical Reports Server (NTRS)

    Knip, Gerald, Jr.

    1987-01-01

    Successful implementation of revolutionary composite materials in an advanced turbofan offers the possibility of further improvements in engine performance and thrust-to-weight ratio relative to current metallic materials. The present analysis determines the approximate engine cycle and configuration for an early 21st century subsonic turbofan incorporating all composite materials. The advanced engine is evaluated relative to a current technology baseline engine in terms of its potential fuel savings for an intercontinental quadjet having a design range of 5500 nmi and a payload of 500 passengers. The resultant near optimum, uncooled, two-spool, advanced engine has an overall pressure ratio of 87, a bypass ratio of 18, a geared fan, and a turbine rotor inlet temperature of 3085 R. Improvements result in a 33-percent fuel saving for the specified misssion. Various advanced composite materials are used throughout the engine. For example, advanced polymer composite materials are used for the fan and the low pressure compressor (LPC).

  13. Fundamental Characterization Studies of Advanced Photocatalytic Materials

    NASA Astrophysics Data System (ADS)

    Phivilay, Somphonh Peter

    Solar powered photocatalytic water splitting has been proposed as a method for the production of sustainable, non-carbon hydrogen fuel. Although much technological progress has been achieved in recent years in the discovery of advanced photocatalytic materials, the progress in the fundamental scientific understanding of such novel, complex mixed oxide and oxynitride photocatalysts has significantly lagged. One of the major reasons for this slow scientific progress is the limited number of reported surface characterization studies of the complex bulk mixed oxide and oxynitride photocatalyst systems. Although photocatalytic splitting of water by bulk mixed oxide and oxynitride materials involves both bulk (generation of excited electrons and holes) and surface phenomena (reaction of H2O with excited electrons and holes at the surface), the photocatalysis community has almost completely ignored the surface characteristics of such complex bulk photocatalysts and correlates the photocatalytic properties with bulk properties. Some of the most promising photocatalyst systems (NaTaO3, GaN, (Ga1-xZnx)(N1-xOx) and TaON) were investigated to establish fundamental bulk/surface structure photoactivity relationships. The bulk molecular and electronic structures of the photocatalysts were determined with Raman and UV-vis spectroscopy. Photoluminescence (PL) and transient PL spectroscopy were provided insight into how recombination of photogenerated electrons is related to the photocatalysis activity. The chemical states and atomic compositions of the surface region of the photocatalysts were determined with high resolution X-ray photoelectron spectroscopy (˜1-3 nm) and high sensitivity-low energy ion scattering spectroscopy (˜0.3 nm). The new insights obtained from surface characterization clarified the role of La and Ni promoters species for the NaTaO3 photocatalyst system. The La2O3 additive was found to be a structural promoter that stabilizes small NaTaO3 nanoparticles (NPs

  14. New Advances in SuperConducting Materials

    ScienceCinema

    None

    2016-07-12

    Superconducting materials will transform the world's electrical infrastructure, saving billions of dollars once the technical details and installation are in place. At Los Alamos National Laboratory, new materials science concepts are bringing this essential technology closer to widespread industrial use.

  15. Development of advanced thermoelectric materials, phase A

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Work performed on the chemical system characterized by chrome sulfide, chrome selenide, lanthanum selenide, and lanthanum sulfide is described. Most materials within the chemical systems possess the requisites for attractive thermoelectric materials. The preparation of the alloys is discussed. Graphs show the Seebeck coefficient, electrical resistivity, and thermal conductivity of various materials within the chemical systems. The results of selected doping are included.

  16. Advanced processing and properties of superhard materials

    SciTech Connect

    Narayan, J.

    1995-06-01

    The author reviews fundamental aspects of Superhard Materials with hardness close to that of diamond. These materials include cubic boron nitride (c-BN), carbon nitride ({beta}-C{sub 3}N{sub 4}) and diamondlike carbon. Since these materials are metastable at normal temperatures and pressures, novel methods of synthesis and processing of these materials are required. This review focuses on synthesis and processing, detailed materials characterization and properties of c-BN and {beta}C{sub 3}N{sub 4} and diamondlike carbon films.

  17. Advanced materials for solid oxide fuel cells

    SciTech Connect

    Armstrong, T.R.; Stevenson, J.

    1995-08-01

    The purpose of this research is to improve the properties of the current state-of-the-art materials used for solid oxide fuel cells (SOFCs). The objectives are to: (1) develop materials based on modifications of the state-of-the-art materials; (2) minimize or eliminate stability problems in the cathode, anode, and interconnect; (3) Electrochemically evaluate (in reproducible and controlled laboratory tests) the current state-of-the-art air electrode materials and cathode/electrolyte interfacial properties; (4) Develop accelerated electrochemical test methods to evaluate the performance of SOFCs under controlled and reproducible conditions; and (5) Develop and test materials for use in low-temperature SOFCs. The goal is to modify and improve the current state-of-the-art materials and minimize the total number of cations in each material to avoid negative effects on the materials properties. Materials to reduce potential deleterious interactions, (3) improve thermal, electrical, and electrochemical properties, (4) develop methods to synthesize both state-of-the-art and alternative materials for the simultaneous fabricatoin and consolidation in air of the interconnections and electrodes with the solid electrolyte, and (5) understand electrochemical reactions at materials interfaces and the effects of component composition and processing on those reactions.

  18. Advanced Insider Threat Mitigation Workshop Instructional Materials

    SciTech Connect

    Gibbs, Philip; Larsen, Robert; O'Brien, Mike; Edmunds, Tom

    2009-02-01

    Insiders represent a formidable threat to nuclear facilities. This set of workshop materials covers methodologies to analyze and approaches to mitigate the threat of an insider attempting abrupt and protracted theft of nuclear materials. This particular set of materials is an update of a January 2008 version to add increased emphasis on Material Control and Accounting and its role with respect to protracted insider nuclear material theft scenarios. This report is a compilation of workshop materials consisting of lectures on technical and administrative measures used in Physical Protection (PP) and Material Control and Accounting (MC&A) and methods for analyzing their effectiveness against a postulated insider threat. The postulated threat includes both abrupt and protracted theft scenarios. Presentation is envisioned to be through classroom instruction and discussion. Several practical and group exercises are included for demonstration and application of the analysis approach contained in the lecture/discussion sessions as applied to a hypothetical nuclear facility.

  19. Computational nano-materials design of high efficiency photovoltaic materials by spinodal nano-decomposition in Chalcopyrite-type semiconductors

    NASA Astrophysics Data System (ADS)

    Asahina, Hideo; Tani, Yoshimasa; Sato, Kazunori; Katayama-Yoshida, Hiroshi

    2014-03-01

    Chalcopyrite-type semiconductor CuInSe2 (CIS) is one of the most promising materials for low cost photovoltaic solar-cells due to its self-regeneration mechanism. However, from the point of resource security, high concentration of In in CIS is serious disadvantage. Recently, Cu2ZnSnS4 (CZTS) attracts much attention to overcome this disadvantage of CIS. This material has already been investigated as a photovoltaic material but the efficiency is not high enough. Based on the first-principles calculations by the KKR-CPA method, we propose how we can enhance the efficiency of CZTS by utilizing the self-organization phenomena caused by spinodal nano-decomposition of Cu & Cu-vacancy, S & Se, and Se & Oxygen. We will compare our design with the available experimental data of STEM-EDX, EELS, Atom Probe Tomography and Raman Scattering data. In addition to the above materials design, we also discuss intermediate band type solar-cells caused by the spinodal nano-decomposition, and propose Fe-doped CuFeS2-CuAlS2 (CFS-CAS), CuFeS2-CuGaS2 (CFS-CGS) and CuFeS2-CuInS2 (CFS-CIS) as promising materials with enhanced conversion efficiency up to 50%.

  20. Abatement kinetics of 30 sulfonylurea herbicide residues in water by photocatalytic treatment with semiconductor materials.

    PubMed

    Fenoll, José; Sabater, Paula; Navarro, Ginés; Vela, Nuria; Pérez-Lucas, Gabriel; Navarro, Simón

    2013-11-30

    Sulfonylurea herbicides (SUHs) are a family of environmentally compatible herbicides but their high water solubility, moderate to high mobility through the soil profile, and slow degradation rate make them potential contaminants of groundwater as demonstrated in this paper. The photodegradation of a mixture of 30 SUHs in aqueous suspensions of semiconductor materials (ZnO and TiO2 in tandem with Na2S2O8 as electron acceptor) under artificial light (300-460 nm) irradiation was investigated. As expected, the influence of both semiconductors on the degradation of SUHs was very significant in all cases. Photocatalytic experiments show that the addition of photocatalyst, especially for the ZnO/Na2S2O8 system, greatly improves the removal of SUHs compared with photolytic tests, significantly increasing the reaction rates. The first-order equation (monophasic model) satisfactorily explained the disappearance process although it overlooked small residues remaining late in the process. These residues are important from an environmental point of view and the Hoerl function (biphasic model), was a better predicter of the results obtained. In our conditions, the average time required for 90% degradation was about 3 and 30 min for ZnO/Na2S2O8 and TiO2/Na2S2O8 systems, respectively.

  1. Advanced materials for space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Titran, Robert H.; Grobstein, Toni L.; Ellis, David L.

    1991-01-01

    The overall philosophy of the research was to develop and characterize new high temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites for heat rejection fins, and tungsten fiber reinforced niobium matrix composites for fuel containment and structural supports) considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications.

  2. New Advance in SuperConducting Materials

    SciTech Connect

    2009-03-02

    Superconducting materials will transform the world's electrical infrastructure, saving billions of dollars once the technical details and installation are in place. At Los Alamos National Laborator...  

  3. Advanced materials for space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Titran, Robert H.; Grobstein, Toni L.; Ellis, David L.

    1991-01-01

    The overall philosophy of the research was to develop and characterize new high temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites for heat rejection fins, and tungsten fiber reinforced niobium matrix composites for fuel containment and structural supports considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications.

  4. Correlation of nanoscale structure with electronic and magnetic properties in semiconductor materials

    NASA Astrophysics Data System (ADS)

    He, Li

    The goal of this research is to correlate individual nanostructures with their electronic and magnetic properties. Three classes of semiconductor materials and nanostructures were investigated: nanowires, dilute magnetic semiconductors, and quantum dots. First, we fabricated electrical contact to free-standing nanowires using focused ion beam (FIB)-induced deposition and achieved ohmic contact between GaP nanowires and FIB-deposited Pt. Ion irradiation was found to change the nanowire resistance, presumably through the generation of electrical active defects. Based on the finding that ion beam induces deposition outside the direct impact area, a new fabrication method for nanowire core-shell structures was developed by creating an annular direct deposition pattern around the nanowire. We also developed a new nanowire transmission electron microscopy (TEM) sample preparation method that enabled the free-standing nanowires to be individually studied in the TEM. Distribution of Pt and Si elements in the deposited layers was confirmed by x-ray energy dispersive spectroscopy and electron energy filtered imaging (elemental mapping). The indirect deposition mechanism is attributed to the interaction of secondary electrons generated from the primary ion impact area with the deposition precursor absorbed at the nanowire surface. The calculated secondary electron flux distribution matched well with the variation of deposition thickness along the nanowire length and with the pattern radius. The second part of this work employed Mn implantation in Ge with subsequent rapid thermal annealing or TEM in-situ annealing to study the correlation between structure and magnetic properties in Ge:Mn magnetic semiconductor materials. Implantation at 75°C with dual Mn doses (2.4x10 15/cm2 at 170 keV, followed by 5.6x10 15/cm2 at 60 keV) produced an amorphous Ge film containing Mn-rich clusters. Its magnetic properties indicated dispersion of ferromagnetic regions in a non-magnetic matrix

  5. Rapid Set Materials for Advanced Spall Repair

    DTIC Science & Technology

    2010-08-01

    for compressive strength , flexural strength , and slant shear bond strength . Table 2 and Table 3 provide the material performance matrix details and... Shear Bond Strength Flexural Strength A High High High B Moderate High Moderate C Moderate Low Moderate D Low Low Low Table 3. Material Ranking

  6. Progress in advanced high temperature materials technology

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Ault, G. M.

    1976-01-01

    Significant progress has recently been made in many high temperature material categories pertinent to such applications by the industrial community. These include metal matrix composites, superalloys, directionally solidified eutectics, coatings, and ceramics. Each of these material categories is reviewed and the current state-of-the-art identified, including some assessment, when appropriate, of progress, problems, and future directions.

  7. Apparatus and method for measuring minority carrier lifetimes in semiconductor materials

    DOEpatents

    Ahrenkiel, Richard K.; Johnston, Steven W.

    2001-01-01

    An apparatus for determining the minority carrier lifetime of a semiconductor sample includes a positioner for moving the sample relative to a coil. The coil is connected to a bridge circuit such that the impedance of one arm of the bridge circuit is varied as sample is positioned relative to the coil. The sample is positioned relative to the coil such that any change in the photoconductance of the sample created by illumination of the sample creates a linearly related change in the input impedance of the bridge circuit. In addition, the apparatus is calibrated to work at a fixed frequency so that the apparatus maintains a consistently high sensitivity and high linearity for samples of different sizes, shapes, and material properties. When a light source illuminates the sample, the impedance of the bridge circuit is altered as excess carriers are generated in the sample, thereby producing a measurable signal indicative of the minority carrier lifetimes or recombination rates of the sample.

  8. Detection of fast neutrons from shielded nuclear materials using a semiconductor alpha detector.

    PubMed

    Pöllänen, R; Siiskonen, T

    2014-08-01

    The response of a semiconductor alpha detector to fast (>1 MeV) neutrons was investigated by using measurements and simulations. A polyethylene converter was placed in front of the detector to register recoil protons generated by elastic collisions between neutrons and hydrogen nuclei of the converter. The developed prototype equipment was tested with shielded radiation sources. The low background of the detector and insensitivity to high-energy gamma rays above 1 MeV are advantages when the detection of neutron-emitting nuclear materials is of importance. In the case of a (252)Cf neutron spectrum, the intrinsic efficiency of fast neutron detection was determined to be 2.5×10(-4), whereas three-fold greater efficiency was obtained for a (241)AmBe neutron spectrum.

  9. Challenge to advanced materials processing with lasers in Japan

    NASA Astrophysics Data System (ADS)

    Miyamoto, Isamu

    2003-02-01

    Japan is one of the most advanced countries in manufacturing technology, and lasers have been playing an important role for advancement of manufacturing technology in a variety of industrial fields. Contribution of laser materials processing to Japanese industry is significant for both macroprocessing and microprocessing. The present paper describes recent trend and topics of industrial applications in terms of the hardware and the software to show how Japanese industry challenges to advanced materials processing using lasers, and national products related to laser materials processing are also briefly introduced.

  10. Advanced Materials and Cell Components for NASA's Exploration Missions

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.

    2009-01-01

    This is an introductory paper for the focused session "Advanced Materials and Cell Components for NASA's Exploration Missions". This session will concentrate on electrochemical advances in materials and components that have been achieved through efforts sponsored under NASA's Exploration Systems Mission Directorate (ESMD). This paper will discuss the performance goals for components and for High Energy and Ultra High Energy cells, advanced lithium-ion cells that will offer a combination of higher specific energy and improved safety over state-of-the-art. Papers in this session will span a broad range of materials and components that are under development to enable these cell development efforts.

  11. Measurement of Radiation Induced Damages in Semiconductor Materials Useful as Photovoltaic and Nuclear Detection Devices

    NASA Astrophysics Data System (ADS)

    Gul, Rubi; Keeter, Kara; Rodriguez, Rene

    2007-05-01

    Radiation interactions with materials cause a change in electronic and physical properties of the material, which affect the performance of the devices. It is a key issue in the employment of these materials in medical, space, security and other scientific applications. In our research we have determined the defects and their generation rate induced by gamma rays of energy 0.11-22 MeV, in CuInS2. We have used a simple model consisting of classical physics principles and Monte Carlo simulation software. The simulation results are in agreement with other published results done for other semiconductor materials. Our collaborators at INL will investigate different techniques for fabrication of thin films of CdZnTe and CuInS2 by using Radiofrequency Pulsed Plasma Enhanced Chemical Vapor Deposition and Pressurized Solvent techniques. Next, defects will be induced in the thin-film samples by exposure to a bremsstrahlung gamma-ray beam. The radiation dose will range from 5 to 25 kGy. Qualitative and quantitative measurements of the defects in the crystals will be done by gamma-ray spectroscopy and PICTS (Photo induced current transient spectroscopy). To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.NWS07.C1.5

  12. Advanced materials research for long-haul aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Signorelli, R. A.; Blankenship, C. P.

    1978-01-01

    The status of research efforts to apply low to intermediate temperature composite materials and advanced high temperature materials to engine components is reviewed. Emerging materials technologies and their potential benefits to aircraft gas turbines were emphasized. The problems were identified, and the general state of the technology for near term use was assessed.

  13. Advanced Hybrid Materials for Aerospace Propulsion Applications (Briefing Charts)

    DTIC Science & Technology

    2013-02-01

    Viewgraph 3. DATES COVERED (From - To) February 2013- April 2013 4. TITLE AND SUBTITLE Advanced hybrid materials for aerospace propulsion applications ...Many material improvements are needed for specific aerospace propulsion applications . Because the industrial community in extremely risk-averse, the...activities focused on inert materials for solid rocket propulsion applications , including the development of alternative high-temperature thermosetting

  14. Advanced materials for radiation-cooled rockets

    NASA Astrophysics Data System (ADS)

    Reed, Brian; Biaglow, James; Schneider, Steven

    1993-11-01

    The most common material system currently used for low thrust, radiation-cooled rockets is a niobium alloy (C-103) with a fused silica coating (R-512A or R-512E) for oxidation protection. However, significant amounts of fuel film cooling are usually required to keep the material below its maximum operating temperature of 1370 C, degrading engine performance. Also the R-512 coating is subject to cracking and eventual spalling after repeated thermal cycling. A new class of high-temperature, oxidation-resistant materials are being developed for radiation-cooled rockets, with the thermal margin to reduce or eliminate fuel film cooling, while still exceeding the life of silicide-coated niobium. Rhenium coated with iridium is the most developed of these high-temperature materials. Efforts are on-going to develop 22 N, 62 N, and 440 N engines composed of these materials for apogee insertion, attitude control, and other functions. There is also a complimentary NASA and industry effort to determine the life limiting mechanisms and characterize the thermomechanical properties of these materials. Other material systems are also being studied which may offer more thermal margin and/or oxidation resistance, such as hafnium carbide/tantalum carbide matrix composites and ceramic oxide-coated iridium/rhenium chambers.

  15. Advanced materials for radiation-cooled rockets

    NASA Technical Reports Server (NTRS)

    Reed, Brian; Biaglow, James; Schneider, Steven

    1993-01-01

    The most common material system currently used for low thrust, radiation-cooled rockets is a niobium alloy (C-103) with a fused silica coating (R-512A or R-512E) for oxidation protection. However, significant amounts of fuel film cooling are usually required to keep the material below its maximum operating temperature of 1370 C, degrading engine performance. Also the R-512 coating is subject to cracking and eventual spalling after repeated thermal cycling. A new class of high-temperature, oxidation-resistant materials are being developed for radiation-cooled rockets, with the thermal margin to reduce or eliminate fuel film cooling, while still exceeding the life of silicide-coated niobium. Rhenium coated with iridium is the most developed of these high-temperature materials. Efforts are on-going to develop 22 N, 62 N, and 440 N engines composed of these materials for apogee insertion, attitude control, and other functions. There is also a complimentary NASA and industry effort to determine the life limiting mechanisms and characterize the thermomechanical properties of these materials. Other material systems are also being studied which may offer more thermal margin and/or oxidation resistance, such as hafnium carbide/tantalum carbide matrix composites and ceramic oxide-coated iridium/rhenium chambers.

  16. Comprehensive Characterization of Extended Defects in Semiconductor Materials by a Scanning Electron Microscope

    PubMed Central

    Hieckmann, Ellen; Nacke, Markus; Allardt, Matthias; Bodrov, Yury; Chekhonin, Paul; Skrotzki, Werner; Weber, Jörg

    2016-01-01

    Extended defects such as dislocations and grain boundaries have a strong influence on the performance of microelectronic devices and on other applications of semiconductor materials. However, it is still under debate how the defect structure determines the band structure, and therefore, the recombination behavior of electron-hole pairs responsible for the optical and electrical properties of the extended defects. The present paper is a survey of procedures for the spatially resolved investigation of structural and of physical properties of extended defects in semiconductor materials with a scanning electron microscope (SEM). Representative examples are given for crystalline silicon. The luminescence behavior of extended defects can be investigated by cathodoluminescence (CL) measurements. They are particularly valuable because spectrally and spatially resolved information can be obtained simultaneously. For silicon, with an indirect electronic band structure, CL measurements should be carried out at low temperatures down to 5 K due to the low fraction of radiative recombination processes in comparison to non-radiative transitions at room temperature. For the study of the electrical properties of extended defects, the electron beam induced current (EBIC) technique can be applied. The EBIC image reflects the local distribution of defects due to the increased charge-carrier recombination in their vicinity. The procedure for EBIC investigations is described for measurements at room temperature and at low temperatures. Internal strain fields arising from extended defects can be determined quantitatively by cross-correlation electron backscatter diffraction (ccEBSD). This method is challenging because of the necessary preparation of the sample surface and because of the quality of the diffraction patterns which are recorded during the mapping of the sample. The spatial resolution of the three experimental techniques is compared. PMID:27285177

  17. Lignin-Derived Advanced Carbon Materials

    SciTech Connect

    Chatterjee, Sabornie; Saito, Tomonori

    2015-11-16

    Lignin is a highly abundant source of renewable carbon that can be considered as a valuable sustainable source of biobased materials. By applying specific pretreatments and manufacturing methods, it has been found that lignin can be converted into a variety of value-added carbon materials. However, the physical and chemical heterogeneities of lignin complicate its use as a feedstock. Herein, we discuss the lignin manufacturing process, the effects of pretreatments and manufacturing methods on the properties of product lignin, and structure–property relationships in various applications of lignin-derived carbon materials, such as carbon fibers, carbon mats, activated carbons, carbon films, and templated carbon.

  18. Lignin-Derived Advanced Carbon Materials.

    PubMed

    Chatterjee, Sabornie; Saito, Tomonori

    2015-12-07

    Lignin is a highly abundant source of renewable carbon that can be considered as a valuable sustainable source of biobased materials. By applying specific pretreatments and manufacturing methods, lignin can be converted into a variety of value-added carbon materials. However, the physical and chemical heterogeneities of lignin complicate its use as a feedstock. Herein lignin manufacturing process, the effects of pretreatments and manufacturing methods on the properties of product lignin, and structure-property relationships in various applications of lignin-derived carbon materials, such as carbon fibers, carbon mats, activated carbons, carbon films, and templated carbon, are discussed.

  19. Advances in nonlinear optical materials and devices

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1991-01-01

    The recent progress in the application of nonlinear techniques to extend the frequency of laser sources has come from the joint progress in laser sources and in nonlinear materials. A brief summary of the progress in diode pumped solid state lasers is followed by an overview of progress in nonlinear frequency extension by harmonic generation and parametric processes. Improved nonlinear materials including bulk crystals, quasiphasematched interactions, guided wave devices, and quantum well intersubband studies are discussed with the idea of identifying areas of future progress in nonlinear materials and devices.

  20. Development of Advanced Ill-Nitride Materials

    DTIC Science & Technology

    2008-09-24

    doping, p-n junctions, and InGaN/InN quantum well structures for terahertz emitters; and (iii) develop AlInN materials lattice-matched to GaN for... GaN and InN- based materials by molecular beam epitaxy (MBE). Work is focused on three areas: (i) extend on our pioneering work on high...temperature nitrogen-rich growth of GaN , where we have demonstrated a new growth space for realizing high quality GaN materials and devices including world

  1. Cumulative Damage Model for Advanced Composite Materials.

    DTIC Science & Technology

    1982-09-01

    conditions of static loads; various theories have been advanced to predict the onset and progress of these individual damage events. • The approach taken in...composite laminates, one common approach is the well-known "first ply failure" theory (see e.g. Tsai and Hahn [l]). The basic assumption in the theory ...edge interlaminar stresses provides a physical x tai,-ntion of the edge delamination phenomenon; a suitable theory defining t he conditions for its

  2. Advanced lubrication systems and materials. Final report

    SciTech Connect

    Hsu, S.

    1998-05-07

    This report described the work conducted at the National Institute of Standards and Technology under an interagency agreement signed in September 1992 between DOE and NIST for 5 years. The interagency agreement envisions continual funding from DOE to support the development of fuel efficient, low emission engine technologies in terms of lubrication, friction, and wear control encountered in the development of advanced transportation technologies. However, in 1994, the DOE office of transportation technologies was reorganized and the tribology program was dissolved. The work at NIST therefore continued at a low level without further funding from DOE. The work continued to support transportation technologies in the development of fuel efficient, low emission engine development. Under this program, significant progress has been made in advancing the state of the art of lubrication technology for advanced engine research and development. Some of the highlights are: (1) developed an advanced high temperature liquid lubricant capable of sustaining high temperatures in a prototype heat engine; (2) developed a novel liquid lubricant which potentially could lower the emission of heavy duty diesel engines; (3) developed lubricant chemistries for ceramics used in the heat engines; (4) developed application maps for ceramic lubricant chemistry combinations for design purpose; and (5) developed novel test methods to screen lubricant chemistries for automotive air-conditioning compressors lubricated by R-134a (Freon substitute). Most of these findings have been reported to the DOE program office through Argonne National Laboratory who manages the overall program. A list of those reports and a copy of the report submitted to the Argonne National Laboratory is attached in Appendix A. Additional reports have also been submitted separately to DOE program managers. These are attached in Appendix B.

  3. New Advance in SuperConducting Materials

    ScienceCinema

    None

    2016-07-12

    Superconducting materials will transform the world's electrical infrastructure, saving billions of dollars once the technical details and installation are in place. At Los Alamos National Laborator...  

  4. Advanced composite materials for precision segmented reflectors

    NASA Technical Reports Server (NTRS)

    Stein, Bland A.; Bowles, David E.

    1988-01-01

    The objective in the NASA Precision Segmented Reflector (PSR) project is to develop new composite material concepts for highly stable and durable reflectors with precision surfaces. The project focuses on alternate material concepts such as the development of new low coefficient of thermal expansion resins as matrices for graphite fiber reinforced composites, quartz fiber reinforced epoxies, and graphite reinforced glass. Low residual stress fabrication methods will be developed. When coupon specimens of these new material concepts have demonstrated the required surface accuracies and resistance to thermal distortion and microcracking, reflector panels will be fabricated and tested in simulated space environments. An important part of the program is the analytical modeling of environmental stability of these new composite materials concepts through constitutive equation development, modeling of microdamage in the composite matrix, and prediction of long term stability (including viscoelasticity). These analyses include both closed form and finite element solutions at the micro and macro levels.

  5. Advances in Anisotropic Materials for Optical Switching

    DTIC Science & Technology

    2010-09-16

    large change in the effective refractive index of the material , comparable to that obtained at transformation of a liquid into vapor. Liquid...crystall ine materials (LCs), both low·molecular weight as well as polymeric, make feasible such large changes of effective refractive index without a...frequencies and thus are uniqucly suitable for designing opt ical struc tures that maXimize the effect of changing birefringence/orientation on

  6. Flow chemistry meets advanced functional materials.

    PubMed

    Myers, Rebecca M; Fitzpatrick, Daniel E; Turner, Richard M; Ley, Steven V

    2014-09-22

    Flow chemistry and continuous processing techniques are beginning to have a profound impact on the production of functional materials ranging from quantum dots, nanoparticles and metal organic frameworks to polymers and dyes. These techniques provide robust procedures which not only enable accurate control of the product material's properties but they are also ideally suited to conducting experiments on scale. The modular nature of flow and continuous processing equipment rapidly facilitates reaction optimisation and variation in function of the products.

  7. Materials of construction for advanced coal conversion systems

    SciTech Connect

    Nangia, V.K.

    1982-01-01

    This book describes materials of construction, and materials problems for equipment used in advanced coal conversion systems. The need for cost effective industrial operation is always a prime concern, particularly in this age of energy consciousness. Industry is continually seeking improved materials for more efficient systems. The information presented here is intended to be of use in the design and planning of these systems. Coal conversion and utilization impose severe demands on construction materials because of high temperature, high pressure, corrosive/erosive, and other hostile environmental factors. Successful economic development of these processes can be achieved only to the extent that working materials can withstand increasingly more aggressive operating conditions. The book, which reviews present and past work on the behavior of materials in the environments of advanced coal conversion systems, is divided into three parts: atmospheric fluidized bed combustion, coal gasification and liquefaction, and advanced power systems.

  8. Scalable Iterative Solvers Applied to 3D Parallel Simulation of Advanced Semiconductor Devices

    NASA Astrophysics Data System (ADS)

    García-Loureiro, A. J.; Aldegunde, M.; Seoane, N.

    2009-08-01

    We have studied the performance of a preconditioned iterative solver to speed up a 3D semiconductor device simulator. Since 3D simulations necessitate large computing resources, the choice of algorithms and their parameters become of utmost importance. This code uses a density gradient drift-diffusion semiconductor transport model based on the finite element method which is one of the most general and complex discretisation techniques. It has been implemented for a distributed memory multiprocessor environment using the Message Passing Interface (MPI) library. We have applied this simulator to a 67 nm effective gate length Si MOSFET.

  9. Advanced Materials and Solids Analysis Research Core (AMSARC)

    EPA Science Inventory

    The Advanced Materials and Solids Analysis Research Core (AMSARC), centered at the U.S. Environmental Protection Agency's (EPA) Andrew W. Breidenbach Environmental Research Center in Cincinnati, Ohio, is the foundation for the Agency's solids and surfaces analysis capabilities. ...

  10. Advancing Sustainable Materials Management: Facts and Figures Report

    EPA Pesticide Factsheets

    Each year EPA releases the Advancing Sustainable Materials Management: Facts and Figures report, formerly called Municipal Solid Waste in the United States: Facts and Figures. It includes information on Municipal Solid Waste generation, recycling, an

  11. Advanced organic composite materials for aircraft structures: Future program

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Revolutionary advances in structural materials have been responsible for revolutionary changes in all fields of engineering. These advances have had and are still having a significant impact on aircraft design and performance. Composites are engineered materials. Their properties are tailored through the use of a mix or blend of different constituents to maximize selected properties of strength and/or stiffness at reduced weights. More than 20 years have passed since the potentials of filamentary composite materials were identified. During the 1970s much lower cost carbon filaments became a reality and gradually designers turned from boron to carbon composites. Despite progress in this field, filamentary composites still have significant unfulfilled potential for increasing aircraft productivity; the rendering of advanced organic composite materials into production aircraft structures was disappointingly slow. Why this is and research and technology development actions that will assist in accelerating the application of advanced organic composites to production aircraft is discussed.

  12. Advanced Engineering Materials: Products from Super Stuff. Resources in Technology.

    ERIC Educational Resources Information Center

    Jacobs, James A.

    1993-01-01

    Discusses the development of "smart" or advanced materials such as ceramics, metals, composites, and polymers. Provides a design brief, a student learning activity with outcomes, quiz, and resources. (SK)

  13. Advances in glazing materials for windows

    SciTech Connect

    Not Available

    1994-11-01

    No one type of glazing is suitable for every application. Many materials are available that serve different purposes. Moreover, consumers may discover that they need two types of glazing for a home because of the directions that the windows face and the local climate. To make wise purchases, consumers should first examine their heating and cooling needs and prioritize desired features such as daylighting, solar heating, shading, ventilation, and aesthetic value. Research and development into types of glazing have created a new generation of materials that offer improved window efficiency and performance for consumers. While this new generation of glazing materials quickly gains acceptance in the marketplace, the research and development of even more efficient technology continues.

  14. Lignin-Derived Advanced Carbon Materials

    DOE PAGES

    Chatterjee, Sabornie; Saito, Tomonori

    2015-11-16

    Lignin is a highly abundant source of renewable carbon that can be considered as a valuable sustainable source of biobased materials. By applying specific pretreatments and manufacturing methods, it has been found that lignin can be converted into a variety of value-added carbon materials. However, the physical and chemical heterogeneities of lignin complicate its use as a feedstock. Herein, we discuss the lignin manufacturing process, the effects of pretreatments and manufacturing methods on the properties of product lignin, and structure–property relationships in various applications of lignin-derived carbon materials, such as carbon fibers, carbon mats, activated carbons, carbon films, and templatedmore » carbon.« less

  15. Fabrication of Advanced Thermoelectric Materials by Hierarchical Nanovoid Generation

    NASA Technical Reports Server (NTRS)

    Choi, Sang Hyouk (Inventor); Park, Yeonjoon (Inventor); Chu, Sang-Hyon (Inventor); Elliott, James R. (Inventor); King, Glen C. (Inventor); Kim, Jae-Woo (Inventor); Lillehei, Peter T. (Inventor); Stoakley, Diane M. (Inventor)

    2011-01-01

    A novel method to prepare an advanced thermoelectric material has hierarchical structures embedded with nanometer-sized voids which are key to enhancement of the thermoelectric performance. Solution-based thin film deposition technique enables preparation of stable film of thermoelectric material and void generator (voigen). A subsequent thermal process creates hierarchical nanovoid structure inside the thermoelectric material. Potential application areas of this advanced thermoelectric material with nanovoid structure are commercial applications (electronics cooling), medical and scientific applications (biological analysis device, medical imaging systems), telecommunications, and defense and military applications (night vision equipments).

  16. Method of fabricating n-type and p-type microcrystalline semiconductor alloy material including band gap widening elements

    DOEpatents

    Guha, Subhendu; Ovshinsky, Stanford R.

    1990-02-02

    A method of fabricating doped microcrystalline semiconductor alloy material which includes a band gap widening element through a glow discharge deposition process by subjecting a precursor mixture which includes a diluent gas to an a.c. glow discharge in the absence of a magnetic field of sufficient strength to induce electron cyclotron resonance.

  17. Ferrite Materials for Advanced Multifunction Microwave Systems Applications

    DTIC Science & Technology

    2006-07-05

    TITLE AND SUBTITLE 5. FUNDING NUMBERS Ferrite Materials for Advanced Multifunction Microwave Systems Applications Award No. (Grant) N00014-03-1-0070 PR...were also used in this work. (200 words) 14. SUBJECT TERMS 15. NUMBER OF PAGES Microwave ferrites , yttrium iron garnet, lithium ferrites , hexagonal...Unlimited COVER PAGE FINAL REPORT to the UNITED STATES OFFICE OF NAVAL RESEARCH Ferrite Materials for Advanced Multifunction Microwave Systems

  18. Advance Abrasion Resistant Materials for Mining

    SciTech Connect

    Mackiewicz-Ludtka, G.

    2004-06-01

    The high-density infrared (HDI) transient-liquid coating (TLC) process was successfully developed and demonstrated excellent, enhanced (5 times higher than the current material and process) wear performance for the selected functionally graded material (FGM) coatings under laboratory simulated, in-service conditions. The mating steel component exhibited a wear rate improvement of approximately one and a half (1.5) times. After 8000 cycles of. wear testing, the full-scale component testing demonstrated that the coating integrity was still excellent. Little or no spalling was observed to occur.

  19. ADVANCED ABRASION RESISTANT MATERIALS FOR MINING

    SciTech Connect

    Ludtka, G.M.

    2004-04-08

    The high-density infrared (HDI) transient-liquid coating (TLC) process was successfully developed and demonstrated excellent, enhanced (5 times higher than the current material and process) wear performance for the selected functionally graded material (FGM) coatings under laboratory simulated, in-service conditions. The mating steel component exhibited a wear rate improvement of approximately one and a half (1.5) times. After 8000 cycles of wear testing, the full-scale component testing demonstrated that the coating integrity was still excellent. Little or no spalling was observed to occur.

  20. Composite Materials for Advanced Global Mobility Concepts

    DTIC Science & Technology

    2000-10-01

    materials: examples include impregnation with phenolic or other resins, lamination with Kevlar tape, and lamination with a phenolic-resin skin... nanofibers or nanotubes, and crushed calcined cokes can add significantly to the strength and tailorability of the foams; unidirectional expansion

  1. Evaluation of advanced materials. Final report

    SciTech Connect

    Wright, I.G.; Clauer, A.H.; Shetty, D.K.; Tucker, T.R.; Stropki, J.T.

    1982-11-18

    Cemented tungsten carbides with a binder level in the range of 5 to 6 percent exhibited the best resistance to erosion for this class of materials. Other practical cermet meterials were diamond - Si/SiC, Al/sub 2/O/sub 3/-B/sub 4/C-Cr, and B/sub 4/C-Co. SiAlON exhibited erosion resistance equivalent to the best WC-cermet. The only coating system to show promise of improved erosion resistance was CVD TiB/sub 2/ on cemented TiB/sub 2/-Ni. Cracking and/or spalling of a TiC coating and a proprietary TMT coating occurred in the standard slurry erosion test. Ranking of cemented tungsten carbide materials in the laboratory erosion test was the same as that found in service in the Wilsonville pilot plant. Specimens from the Fort Lewis pilot plant which performed well in service exhibited low erosion in the laboratory test. A substitute slurry, was found to be 2 to 4 times more erosive than the coal-derived slurry 8 wt% solids. Ranking of materials in the substitute slurry was nearly identical to that in the coal-derived slurry. Three modes of erosion were: ductile cutting; elastic-plastic indentation and fracture; and intergranular fracture. Erosion of a given material was closely related to its microstructure. In the substitute slurry, the angle-dependence of erosion of two forms of SiC, hot-pressed and sintered, were similar, but the sintered material eroded slower. Laser fusing of preplaced powder mixtures can produce cermet-like structures with potential for erosive and sliding wear resistance. TiC particles in Stellite 6 matrix proved less prone to cracking than WC particles in the same matrix. 74 figures, 14 tables.

  2. PREFACE: Advanced Materials for Demanding Applications

    NASA Astrophysics Data System (ADS)

    McMillan, Alison; Schofield, Stephen; Kelly, Michael

    2015-02-01

    This was a special conference. It was small enough (60+ delegates) but covering a wide range of topics, under a broad end-use focussed heading. Most conferences today either have hundreds or thousands of delegates or are small and very focussed. The topics ranged over composite materials, the testing of durability aspects of materials, and an eclectic set of papers on radar screening using weak ionized plasmas, composites for microvascular applications, composites in space rockets, and materials for spallation neutron sources etc. There were several papers of new characterisation techniques and, very importantly, several papers that started with the end-user requirements leading back into materials selection. In my own area, there were three talks about the technology for the ultra-precise positioning of individual atoms, donors, and complete monolayers to take modern electronics and optoelectronics ideas closer to the market place. The President of the Institute opened with an experience-based talk on translating innovative technology into business. Everyone gave a generous introduction to bring all-comers up to speed with the burning contemporary issues. Indeed, I wish that a larger cohort of first-year engineering PhD students were present to see the full gamut of what takes a physics idea to a success in the market place. I would urge groups to learn from Prof Alison McMillan (a Vice President of the Institute of Physics) and Steven Schofield, to set up conferences of similar scale and breadth. I took in more than I do from mega-meetings, and in greater depth. Professor Michael Kelly Department of Engineering University of Cambridge

  3. Cumulative Damage Model for Advanced Composite Materials.

    DTIC Science & Technology

    1982-07-01

    ultimately used an exponential in the present example for added simplicity) and we norma - lize the function so that it becomes the modifier that determines...Testing and Design (Second Conference), ASTM STP 497, ASTM (1972) pp. 170-188. 5. Halpin, J. C., et al., "Characterization of Composites for the...Graphite Epoxy Composites," Proc. Symposium on Composite Materials: Testing and Design, ASTM , (Ma’rch 20, 1978) New Orleans, LA. 18. Hashin, Z. and Rotem

  4. Polymers Advance Heat Management Materials for Vehicles

    NASA Technical Reports Server (NTRS)

    2013-01-01

    For 6 years prior to the retirement of the Space Shuttle Program, the shuttles carried an onboard repair kit with a tool for emergency use: two tubes of NOAX, or "good goo," as some people called it. NOAX flew on all 22 flights following the Columbia accident, and was designed to repair damage that occurred on the exterior of the shuttle. Bill McMahon, a structural materials engineer at Marshall Space Flight Center says NASA needed a solution for the widest range of possible damage to the shuttle s exterior thermal protection system. "NASA looked at several options in early 2004 and decided on a sealant. Ultimately, NOAX performed the best and was selected," he says. To prove NOAX would work effectively required hundreds of samples manufactured at Marshall and Johnson, and a concerted effort from various NASA field centers. Johnson Space Center provided programmatic leadership, testing, tools, and crew training; Glenn Research Center provided materials analysis; Langley Research Center provided test support and led an effort to perform large patch repairs; Ames Research Center provided additional testing; and Marshall provided further testing and the site of NOAX manufacturing. Although the sealant never had to be used in an emergency situation, it was tested by astronauts on samples of reinforced carbon-carbon (RCC) during two shuttle missions. (RCC is the thermal material on areas of the shuttle that experience the most heat, such as the nose cone and wing leading edges.) The material handled well on orbit, and tests showed the NOAX patch held up well on RCC.

  5. Advanced Materials and Coatings for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    2004-01-01

    In the application area of aerospace tribology, researchers and developers must guarantee the highest degree of reliability for materials, components, and systems. Even a small tribological failure can lead to catastrophic results. The absence of the required knowledge of tribology, as Professor H.P. Jost has said, can act as a severe brake in aerospace vehicle systems-and indeed has already done so. Materials and coatings must be able to withstand the aerospace environments that they encounter, such as vacuum terrestrial, ascent, and descent environments; be resistant to the degrading effects of air, water vapor, sand, foreign substances, and radiation during a lengthy service; be able to withstand the loads, stresses, and temperatures encountered form acceleration and vibration during operation; and be able to support reliable tribological operations in harsh environments throughout the mission of the vehicle. This presentation id divided into two sections: surface properties and technology practice related to aerospace tribology. The first section is concerned with the fundamental properties of the surfaces of solid-film lubricants and related materials and coatings, including carbon nanotubes. The second is devoted to applications. Case studies are used to review some aspects of real problems related to aerospace systems to help engineers and scientists to understand the tribological issues and failures. The nature of each problem is analyzed, and the tribological properties are examined. All the fundamental studies and case studies were conducted at the NASA Glenn Research Center.

  6. Advanced Functional Materials for Energy Related Applications

    NASA Astrophysics Data System (ADS)

    Sasan, Koroush

    The current global heavy dependency on fossil fuels gives rise to two critical problems: I) fossil fuels will be depleted in the near future; II) the release of green house gas CO2 generated by the combustion of fossil fuels contributes to global warming. To potentially address both problems, this dissertation documents three primary areas of investigation related to the development of alternative energy sources: electrocatalysts for fuel cells, photocatalysts for hydrogen generation, and photoreduction catalysts for converting CO2 to CH4. Fuel cells could be a promising source of alternative energy. Decreasing the cost and improving the durability and power density of Pt/C as a catalyst for reducing oxygen are major challenges for developing fuel cells. To address these concerns, we have synthesized a Nitrogen-Sulfur-Iron-doped porous carbon material. Our results indicate that the synthesized catalyst exhibits not only higher current density and stability but also higher tolerance to crossover chemicals than the commercial Pt/C catalyst. More importantly, the synthetic method is simple and inexpensive. Using photocatalysts and solar energy is another potential alternative solution for energy demand. We have synthesized a new biomimetic heterogeneous photocatalyst through the incorporation of homogeneous complex 1 [(i-SCH 2)2NC(O)C5H4N]-Fe2(CO) 6] into the highly robust zirconium-porphyrin based metal-organic framework (ZrPF). As photosensitizer ZrPF absorbs the visible light and produces photoexcited electrons that can be transferred through axial covalent bond to di-nuclear complex 1 for hydrogen generation. Additionally, we have studied the photoreduction of CO2 to CH4 using self-doped TiO2 (Ti+3@TiO 2) as photocatalytic materials. The incorporation of Ti3+ into TiO2 structures narrows the band gap, leading to significantly increased photocatalytic activity for the reduction of CO2 into renewable hydrocarbon fuel in the presence of water vapor under visible

  7. Advanced STEM Characterization of Nanoscale Materials

    NASA Astrophysics Data System (ADS)

    Dey, Sanchita

    Nanoscale materials are the key structures in determining the properties of many technologically-important materials. Two such important nanoscale materials for different technological applications are investigated in this dissertation. They are: Fischer-Tropsch (FT) catalysts and irradiated metallic bi-layers. Catalytic activity depends on the structural parameters such as size, shape, and distribution on support. On the other hand, the radiation resistance of the model metallic multi-layers is influenced by the presence of interphase, phase-boundaries, and grain-boundaries. The focus of this dissertation is to use different TEM and STEM techniques to understand the structure of these materials. This dissertation begins with a review of the microscopy techniques used in the experiments. Then, in the next two chapters, literature review followed by results and discussions on the two above-mentioned nano materials are presented. Future research directions are included in the concluding chapter. To obtain three-dimensional morphological information of the FT catalysts during reduced/active state, STEM tomography is used. The oxidized state and reduced state is clarified by using STEM-EELS (in the form of spectrum imaging). We used a special vacuum transfer tomography holder and ex-situ gas assembly for reduction, and the reduction parameters are optimized for complete reduction. It was observed that the particle was reduced with 99.99% H2, and at 400°C for 15 minutes. The tomographic results in before-reduction condition depict that the Co-oxide particles are distributed randomly inside the alumina support. After reduction, the tomogram reveals that metallic Co nucleated and sintered towards the surface of the alumina support. The overall metallic Co distribution shows an outward segregation by subsurface diffusion mechanism. In the study of metallic bi-layer, He-irradiated gold twist grain boundary (AuTGB) was chosen as it is one of the least-studied systems in the

  8. Advances in LED packaging and thermal management materials

    NASA Astrophysics Data System (ADS)

    Zweben, Carl

    2008-02-01

    Heat dissipation, thermal stresses and cost are key light-emitting diode (LED) packaging issues. Heat dissipation limits power levels. Thermal stresses affect performance and reliability. Copper, aluminum and conventional polymeric printed circuit boards (PCBs) have high coefficients of thermal expansion, which can cause high thermal stresses. Most traditional low-coefficient-of-thermal-expansion (CTE) materials like tungsten/copper, which date from the mid 20th century, have thermal conductivities that are no better than those of aluminum alloys, about 200 W/m-K. An OIDA LED workshop cited a need for better thermal materials. There are an increasing number of low-CTE materials with thermal conductivities ranging between that of copper (400 W/m-K) and 1700 W/m-K, and many other low-CTE materials with lower thermal conductivities. Some of these materials are low cost. Others have the potential to be low cost in high-volume production. High-thermal-conductivity materials enable higher power levels, potentially reducing the number of required LEDs. Advanced thermal materials can constrain PCB CTE and greatly increase thermal conductivity. This paper reviews traditional packaging materials and advanced thermal management materials. The latter provide the packaging engineer with a greater range of options than in the past. Topics include properties, status, applications, cost, using advanced materials to fix manufacturing problems, and future directions, including composites reinforced with carbon nanotubes and other thermally conductive materials.

  9. Semiconductor sensors

    NASA Technical Reports Server (NTRS)

    Gatos, Harry C. (Inventor); Lagowski, Jacek (Inventor)

    1977-01-01

    A semiconductor sensor adapted to detect with a high degree of sensitivity small magnitudes of a mechanical force, presence of traces of a gas or light. The sensor includes a high energy gap (i.e., .about. 1.0 electron volts) semiconductor wafer. Mechanical force is measured by employing a non-centrosymmetric material for the semiconductor. Distortion of the semiconductor by the force creates a contact potential difference (cpd) at the semiconductor surface, and this cpd is determined to give a measure of the force. When such a semiconductor is subjected to illumination with an energy less than the energy gap of the semiconductors, such illumination also creates a cpd at the surface. Detection of this cpd is employed to sense the illumination itself or, in a variation of the system, to detect a gas. When either a gas or light is to be detected and a crystal of a non-centrosymmetric material is employed, the presence of gas or light, in appropriate circumstances, results in a strain within the crystal which distorts the same and the distortion provides a mechanism for qualitative and quantitative evaluation of the gas or the light, as the case may be.

  10. Economic benefits of advanced materials in nuclear power systems

    NASA Astrophysics Data System (ADS)

    Busby, J. T.

    2009-07-01

    A key obstacle to the commercial deployment of advanced fast reactors is the capital cost. There is a perception of higher capital cost for fast reactor systems than advanced light water reactors. However, cost estimates come with a large uncertainty since far fewer fast reactors have been built than light water reactor facilities. Furthermore, the large variability of industrial cost estimates complicates accurate comparisons. Reductions in capital cost can result from design simplifications, new technologies that allow reduced capital costs, and simulation techniques that help optimize system design. It is plausible that improved materials will provide opportunities for both simplified design and reduced capital cost. Advanced materials may also allow improved safety and longer component lifetimes. This work examines the potential impact of advanced materials on the capital investment cost of fast nuclear reactors.

  11. The Preemptive Stocker Dispatching Rule of Automatic Material Handling System in 300 mm Semiconductor Manufacturing Factories

    NASA Astrophysics Data System (ADS)

    Wang, C. N.; Lin, H. S.; Hsu, H. P.; Wang, Yen-Hui; Chang, Y. P.

    2016-04-01

    The integrated circuit (IC) manufacturing industry is one of the biggest output industries in this century. The 300mm wafer fabs is the major fab size of this industry. The automatic material handling system (AMHS) has become one of the most concerned issues among semiconductor manufacturers. The major lot delivery of 300mm fabs is used overhead hoist transport (OHT). The traffic jams are happened frequently due to the wide variety of products and big amount of OHTs moving in the fabs. The purpose of this study is to enhance the delivery performance of automatic material handling and reduce the delay and waiting time of product transportation for both hot lots and normal lots. Therefore, this study proposes an effective OHT dispatching rule: preemptive stocker dispatching (PSD). Simulation experiments are conducted and one of the best differentiated preemptive rule, differentiated preemptive dispatching (DPD), is used for comparison. Compared with DPD, The results indicated that PSD rule can reduce average variable delivery time of normal lots by 13.15%, decreasing average variable delivery time of hot lots by 17.67%. Thus, the PSD rule can effectively reduce the delivery time and enhance productivity in 300 mm wafer fabs.

  12. Development of ethenetetrathiolate hybrid thermoelectric materials consisting of cellulose acetate and semiconductor nanomaterials

    NASA Astrophysics Data System (ADS)

    Asano, Hitoshi; Sakura, Naoko; Oshima, Keisuke; Shiraishi, Yukihide; Toshima, Naoki

    2016-02-01

    We investigated novel organic/inorganic hybrid thermoelectric materials prepared using several metal-polymer complexes, binders (insulating polymers), and inorganic semiconductor nanomaterials. It was found that the three-component hybrid thermoelectric materials, which consisted of nanodispersed poly(nickel 1,1,2,2-ethenetetrathiolate) (Ni-PETT), cellulose acetate (CA), and carbon nanotubes (CNTs), showed high thermoelectric performance. Ni-PETT had a large negative Seebeck coefficient of -42 µV K-1 and was an n-type semiconducting polymer complex. Ni-PETT sufficiently dispersed p-type CNTs in N-methyl-2-pyrrolidone. The charge transfer interaction between Ni-PETT and CNTs could provide a strong contact. Good films could be obtained by using CA as a binder. In addition, the electrical conductivity of the three-component hybrid films was increased by methanol treatment. The Seebeck coefficient, electrical conductivity, and power factor of Ni-PETT/CA/CNT films normalized on the basis of the CNT mass were 1.9, 5.2, and 2.8 times higher than those of the CNT sheets.

  13. Spin-orbit assisted chiral-tunneling at semiconductor tunnel junctions: study with advanced 30-band k • p methods

    NASA Astrophysics Data System (ADS)

    Dang, Huong T.; Erina, E.; L. Nguyen, Hoai T.; Jaffrès, H.; Drouhin, H.-J.

    2016-10-01

    In this paper, we report on theoretical investigations and advanced k • p calculations of carrier forward scattering asymmetry (or transmission asymmetry in tunnel junction) vs. their incidence through magnetic tunnel junctions (MTJ) made of semiconductors involving spin-orbit interactions (SOI). This study represents an extension to our previous contribution1 dealing with the role, on the electronic forward and backward transmission-reflection asymmetry, of the Dresselhaus interaction in the conduction band (CB) of MTJs with antiparallel magnetized electrodes. The role of the atomic-SOI in the p-type valence band (VB) of semiconductors is investigated in a second step. We first developed a perturbative scattering method based on Green's function formalism and applied to both the orbitally non-degenerated CB and degenerated VB to explain the calculated asymmetry in terms of orbital-moment tunneling branching and chirality arguments. This particular asymmetry features are perfectly reproduced by advanced k • p tunneling approaches (30-band) in rather close agreement with the Green's function methods at the first perturbation order in the SOI strength parameter. This forward scattering asymmetry leads to skew-tunneling effects involving the branching of evanescent states within the barrier. Recent experiments involving non-linear resistance variations vs. the transverse magnetization direction or current direction in the in-plane current geometry may be invoked by the phenomenon we discuss.

  14. Synthesis and characterization of advanced materials for Navy applications

    NASA Technical Reports Server (NTRS)

    Covino, J.; Lee, I.

    1994-01-01

    The synthesis of ceramics and ceramic coatings through the sol-gel process has extensive application with the United States Navy and a broad range of potential commercial applications as well. This paper surveys seven specific applications for which the Navy is investigating these advanced materials. For each area, the synthetic process is described and the characteristics of the materials are discussed.

  15. Combustion synthesis of advanced composite materials

    NASA Technical Reports Server (NTRS)

    Moore, John J.

    1993-01-01

    Self-propagating high temperature (combustion) synthesis (SHS), has been investigated as a means of producing both dense and expanded (foamed) ceramic and ceramic-metal composites, ceramic powders and whiskers. Several model exothermic combustion synthesis reactions were used to establish the importance of certain reaction parameters, e.g., stoichiometry, green density, combustion mode, particle size, etc. on the control of the synthesis reaction, product morphology and properties. The use of an in situ liquid infiltration technique and the effect of varying the reactants and their stoichiometry to provide a range of reactant and product species i.e., solids, liquids and gases, with varying physical properties e.g., volatility and thermal conductivity, on the microstructure and morphology of synthesized composite materials is discussed. Conducting the combustion synthesis reaction in a reactive gas environment to take advantage of the synergistic effects of combustion synthesis and vapor phase transport is also examined.

  16. Characterization of advanced preprocessed materials (Hydrothermal)

    SciTech Connect

    Rachel Emerson; Garold Gresham

    2012-09-01

    The initial hydrothermal treatment parameters did not achieve the proposed objective of this effort; the reduction of intrinsic ash in the corn stover. However, liquid fractions from the 170°C treatments was indicative that some of the elements routinely found in the ash that negatively impact the biochemical conversion processes had been removed. After reviewing other options for facilitating ash removal, sodium-citrate (chelating agent) was included in the hydrothermal treatment process, resulting in a 69% reduction in the physiological ash. These results indicated that chelation –hydrothermal treatment is one possible approach that can be utilized to reduce the overall ash content of feedstock materials and having a positive impact on conversion performance.

  17. Experiments investigating advanced materials under thermomechanical loading

    NASA Technical Reports Server (NTRS)

    Bartolotta, Paul A.

    1988-01-01

    Many high temperature aircraft and rocket engine components experience large mechanical loads as well as severe thermal gradients and transients. These nonisothermal conditions are often large enough to cause inelastic deformations, which are the ultimate cause for failure in those parts. A way to alleviate this problem is through improved engine designs based on better predictions of thermomechanical material behavior. To address this concern, an experimental effort was recently initiated within the Hot Section Technology (HOST) program at Lewis. As part of this effort, two new test systems were added to the Fatigue and Structures Lab., which allowed thermomechanical tests to be conducted under closely controlled conditions. These systems are now being used for thermomechanical testing for the Space Station Receiver program, and will be used to support development of metal matrix composites.

  18. Materials for advanced rocket engine turbopump turbine blades

    NASA Technical Reports Server (NTRS)

    Chandler, W. T.

    1985-01-01

    A study program was conducted to identify those materials that will provide the greatest benefits as turbine blades for advanced liquid propellant rocket engine turbines and to prepare technology plans for the development of those materials for use in the 1990 through 1995 period. The candidate materials were selected from six classes of materials: single-crystal (SC) superalloys, oxide dispersion-strengthened (ODS) superalloys, rapid solidification processed (RSP) superalloys, directionally solidified eutectic (DSE) superalloys, fiber-reinforced superalloy (FRS) composites, and ceramics. Properties of materials from the six classes were compiled and evaluated and property improvements were projected approximately 5 years into the future for advanced versions of materials in each of the six classes.

  19. Challenges of Electrical Measurements of Advanced Gate Dielectrics in Metal-Oxide-Semiconductor Devices

    NASA Astrophysics Data System (ADS)

    Vogel, Eric M.; Brown, George A.

    2003-09-01

    Experimental measurements and simulations are used to provide an overview of key issues with the electrical characterization of metal-oxide-semiconductor (MOS) devices with ultra-thin oxide and alternate gate dielectrics. Experimental issues associated with the most common electrical characterization method, capacitance-voltage (C-V), are first described. Issues associated with equivalent oxide thickness extraction and comparison, interface state measurement, extrinsic defects, and defect generation are then overviewed.

  20. Simulation Toolkit for Renewable Energy Advanced Materials Modeling

    SciTech Connect

    Sides, Scott; Kemper, Travis; Larsen, Ross; Graf, Peter

    2013-11-13

    STREAMM is a collection of python classes and scripts that enables and eases the setup of input files and configuration files for simulations of advanced energy materials. The core STREAMM python classes provide a general framework for storing, manipulating and analyzing atomic/molecular coordinates to be used in quantum chemistry and classical molecular dynamics simulations of soft materials systems. The design focuses on enabling the interoperability of materials simulation codes such as GROMACS, LAMMPS and Gaussian.

  1. Fossil Energy Advanced Research and Technology Development Materials Program

    SciTech Connect

    Cole, N.C.; Judkins, R.R.

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  2. Surface chemical deposition of advanced electronic materials

    NASA Astrophysics Data System (ADS)

    Bjelkevig, Cameron

    The focus of this work was to examine the direct plating of Cu on Ru diffusion barriers for use in interconnect technology and the substrate mediated growth of graphene on boron nitride for use in advanced electronic applications. The electrodeposition of Cu on Ru(0001) and polycrystalline substrates (with and without pretreatment in an iodine containing solution) has been studied by cyclic voltammetry (CV), current--time transient measurements (CTT), in situ electrochemical atomic force microscopy (EC-AFM), and X-ray photoelectron spectroscopy (XPS). The EC-AFM data show that at potentials near the OPD/UPD threshold, Cu crystallites exhibit pronounced growth anisotropy, with lateral dimensions greatly exceeding vertical dimensions. XPS measurements confirmed the presence and stability of adsorbed I on the Ru surface following pre-treatment in a KI/H2SO4 solution and following polarization to at least -200 mV vs. Ag/AgCl. CV data of samples pre-reduced in I-containing electrolyte exhibited a narrow Cu deposition peak in the overpotential region and a UPD peak. The kinetics of the electrodeposited Cu films was investigated by CTT measurements and applied to theoretical models of nucleation. The data indicated that a protective I adlayer may be deposited on an airexposed Ru electrode as the oxide surface is electrochemically reduced, and that this layer will inhibit reformation of an oxide during the Cu electroplating process. A novel method for epitaxial graphene growth directly on a dielectric substrate of systematically variable thickness was studied. Mono/multilayers of BN(111) were grown on Ru(0001) by atomic layer deposition (ALD), exhibiting a flat (non-nanomesh) R30(✓3x✓3) structure. BN(111) was used as a template for growth of graphene by chemical vapor deposition (CVD) of C2H4 at 1000 K. Characterization by LEED, Auger, STM/STS and Raman indicate the graphene is in registry with the BN substrate, and exhibits a HOPG-like 0 eV bandgap density

  3. Thermal Processing of Semiconductor Materials Using Soft-Vacuum Electron Beams.

    NASA Astrophysics Data System (ADS)

    Moore, Cameron Alden

    Electron beams generated in gaseous discharges have been used to perform a variety of thermal treatments germane to semiconductor fabrication. The unique beams employed in these studies are typified by high continuous power (>100 watts per cm^2 of cathode surface), operation in relatively high pressures (0.05-25 Torr), and a wide variety of beam configurations. The ability to extract and direct high power densities lends itself to the heat treatment of silicon-based semiconductor materials. Initial studies examined the rapid thermal processing of various materials and structures using a 7.5 cm. diameter electron beam. Using this source both the annealing of ion implanted single crystal silicon and the formation of titanium disilicide were performed. The repair of damage in single-crystal silicon wafers induced by ions of boron, phosphorus, and arsenic was repaired with minimum redistribution of the dopant profile. The same apparatus was also used to form titanium silicide from both co-deposited and sequentially deposited constituent materials. While low resistivity phases of both materials were obtained, each would exhibit high resistivity behavior as well. Excessive heating of co-deposited films on silicon dioxide induces reactions between the two films, causing oxygen to be incorporated in the silicide. Ti-on-Si structures self-cleanse oxygen from the silicide during formation, in contradiction to known Si-O and Ti-O thermodynamics. A line-source (150 mm x 2 mm) electron beam was used to recrystallize silicon films deposited on oxidized silicon wafers up to 100 mm in diameter. Agglomeration of the silicon while molten was prevented via the use of (i) an encapsulating silicon dioxide film, and (ii) the introduction of appropriate wetting agents into the deposited silicon during wafer preparation. A limiting constraint to the recrystallization of full wafers was the construction of a background heater which can heat the wafer to 1200 ^circC with a uniformity of

  4. SYNTHESIS AND CHARACTERIZATION OF ADVANCED MAGNETIC MATERIALS

    SciTech Connect

    Monica Sorescu

    2004-09-22

    The work described in this grant report was focused mainly on the properties of novel magnetic intermetallics. In the first project, we synthesized several 2:17 intermetallic compounds, namely Nd{sub 2}Fe{sub 15}Si{sub 2}, Nd{sub 2}Fe{sub 15}Al{sub 2}, Nd{sub 2}Fe{sub 15}SiAl and Nd{sub 2}Fe{sub 15}SiMn, as well as several 1:12 intermetallic compounds, such as NdFe{sub 10}Si{sub 2}, NdFe{sub 10}Al{sub 2}, NdFe{sub 10}SiAl and NdFe{sub 10}MnAl. In the second project, seven compositions of Nd{sub x}Fe{sub 100-x-y}B{sub y} ribbons were prepared by a melt spinning method with Nd and B content increasing from 7.3 and 3.6 to 11 and 6, respectively. The alloys were annealed under optimized conditions to obtain a composite material consisting of the hard magnetic Nd{sub 2}Fe{sub 14}B and soft magnetic {alpha}-Fe phases, typical of a spring magnet structure. In the third project, intermetallic compounds of the type Zr{sub 1}Cr{sub 1}Fe{sub 1}T{sub 0.8} with T = Al, Co and Fe were subjected to hydrogenation. In the fourth project, we performed three crucial experiments. In the first experiment, we subjected a mixture of Fe{sub 3}O{sub 4} and Fe (80-20 wt %) to mechanochemical activation by high-energy ball milling, for time periods ranging from 0.5 to 14 hours. In the second experiment, we ball-milled Fe{sub 3}O{sub 4}:Co{sup 2+} (x = 0.1) for time intervals between 2.5 and 17.5 hours. Finally, we exposed a mixture of Fe{sub 3}O{sub 4} and Co (80-20 wt %) to mechanochemical activation for time periods ranging from 0.5 to 10 hours. In all cases, the structural and magnetic properties of the systems involved were elucidated by X-ray diffraction (XRD), Moessbauer spectroscopy and hysteresis loop measurements. The four projects resulted in four papers, which were published in Intermetallics, IEEE Transactions on Magnetics, Journal of Materials Science Letters and Materials Chemistry and Physics. The contributions reveal for the first time in literature the effect of

  5. Advanced Industrial Materials (AIM) Program: Annual progress report FY 1995

    SciTech Connect

    1996-04-01

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven ``Vision Industries`` that use about 80% of industrial energy and generated about 90% of industrial wastes. The mission of AIM has, therefore, changed to ``Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`` Though AIM remains essentially a National Laboratory Program, it is essential that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains reasonably healthy and productive, thanks to the superb investigators and Laboratory Program Managers. This Annual Report for FY 1995 contains the technical details of some very remarkable work by the best materials scientists and engineers in the world. Areas covered here are: advanced metals and composites; advanced ceramics and composites; polymers and biobased materials; and new materials and processes.

  6. JOINING OF ADVANCED HIGH-TEMPERATURE MATERIALS

    SciTech Connect

    Weil, K. Scott; Darsell, Jens T.

    2009-05-14

    Various compositions in the Ag-CuOx system are being investigated as potential filler metals for use in air brazing high-temperature electrochemical devices such as solid oxide fuel cells and gas concentrators. Prior work has shown that the melting temperature, and therefore the potential operational temperature, of these materials can be increased by alloying with palladium. The current study examines the effects of palladium addition on the joint strength of specimens prepared from yttria stabilized zirconia (YSZ) bars brazed with three different families of filler metals: Ag-CuO, 5Pd-Ag-CuO, and 15Pd-Ag-CuO. In general it was found that palladium leads to a small-to-moderate decrease in joint strength, particularly in low copper oxide compositions filler metals. However the effect is likely acceptable if a higher temperature air braze filler metal is desired. In addition, a composition was found for each filler metal series in which the joint failure mechanism undergoes a transition, typically from ductile to brittle failure. In each case, this composition corresponds approximately to the silver-rich boundary composition of the liquid miscibility gap in each system at the temperature of brazing.

  7. Stress-induced Effects Caused by 3D IC TSV Packaging in Advanced Semiconductor Device Performance

    NASA Astrophysics Data System (ADS)

    Sukharev, V.; Kteyan, A.; Choy, J.-H.; Hovsepyan, H.; Markosian, A.; Zschech, E.; Huebner, R.

    2011-11-01

    Potential challenges with managing mechanical stress and the consequent effects on device performance for advanced 3D through-silicon-via (TSV) based technologies are outlined. The paper addresses the growing need in a simulation-based design verification flow capable to analyze a design of 3D IC stacks and to determine across-die out-of-spec variations in device electrical characteristics caused by the layout and through-silicon-via (TSV)/package-induced mechanical stress. The limited characterization/measurement capabilities for 3D IC stacks and a strict "good die" requirement make this type of analysis critical for the achievement of an acceptable level of functional and parametric yield and reliability. The paper focuses on the development of a design-for-manufacturability (DFM) type of methodology for managing mechanical stresses during a sequence of designs of 3D TSV-based dies, stacks and packages. A set of physics-based compact models for a multi-scale simulation to assess the mechanical stress across the device layers in silicon chips stacked and packaged with the 3D TSV technology is proposed. A calibration technique based on fitting to measured stress components and electrical characteristics of the test-chip devices is presented. A strategy for generation of a simulation feeding data and respective materials characterization approach are proposed, with the goal to generate a database for multi-scale material parameters of wafer-level and package-level structures. For model validation, high-resolution strain measurements in Si channels of the test-chip devices are needed. At the nanoscale, the transmission electron microscopy (TEM) is the only technique available for sub-10 nm strain measurements so far.

  8. A Theoretical Study of Bulk and Surface Diffusion Processes for Semiconductor Materials Using First Principles Calculations

    NASA Astrophysics Data System (ADS)

    Roehl, Jason L.

    Diffusion of point defects on crystalline surfaces and in their bulk is an important and ubiquitous phenomenon affecting film quality, electronic properties and device functionality. A complete understanding of these diffusion processes enables one to predict and then control those processes. Such understanding includes knowledge of the structural, energetic and electronic properties of these native and non-native point defect diffusion processes. Direct experimental observation of the phenomenon is difficult and microscopic theories of diffusion mechanisms and pathways abound. Thus, knowing the nature of diffusion processes, of specific point defects in given materials, has been a challenging task for analytical theory as well as experiment. The recent advances in computing technology have been a catalyst for the rise of a third mode of investigation. The advent of tremendous computing power, breakthroughs in algorithmic development in computational applications of electronic density functional theory now enables direct computation of the diffusion process. This thesis demonstrates such a method applied to several different examples of point defect diffusion on the (001) surface of gallium arsenide (GaAs) and the bulk of cadmium telluride (CdTe) and cadmium sulfide (CdS). All results presented in this work are ab initio, total-energy pseudopotential calculations within the local density approximation to density-functional theory. Single particle wavefunctions were expanded in a plane-wave basis and reciprocal space k-point sampling was achieved by Monkhorst-Pack generated k-point grids. Both surface and bulk computations employed a supercell approach using periodic boundary conditions. Ga adatom adsorption and diffusion processes were studied on two reconstructions of the GaAs(001) surface including the c(4x4) and c(4x4)-heterodimer surface reconstructions. On the GaAs(001)- c(4x4) surface reconstruction, two distinct sets of minima and transition sites were

  9. Analysis of Interface Charge Densities for High-k Dielectric Materials based Metal Oxide Semiconductor Devices

    NASA Astrophysics Data System (ADS)

    Maity, N. P.; Thakur, R. R.; Maity, Reshmi; Thapa, R. K.; Baishya, S.

    2016-10-01

    In this paper, the interface charge densities (Dit) are studied and analyzed for ultra thin dielectric metal oxide semiconductor (MOS) devices using different high-k dielectric materials such as Al2O3, ZrO2 and HfO2. The Dit have been calculated by a new approach using conductance method and it indicates that by reducing the thickness of the oxide, the Dit increases and similar increase is also found by replacing SiO2 with high-k. For the same oxide thickness, SiO2 has the lowest Dit and found to be the order of 1011cm-2eV-1. Linear increase in Dit has been observed as the dielectric constant of the oxide increases. The Dit is found to be in good agreement with published fabrication results at p-type doping level of 1×1017cm-3. Numerical calculations and solutions are performed by MATLAB and device simulation is done by ATLAS.

  10. Alpha-particle emissivity screening of materials used for semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Gordon, Michael; Rodbell, Kenneth

    2015-03-01

    Single-Event Upsets (SEU's) in semiconductor memory and logic devices continue to be a reliability issue in modern CMOS devices. SEU's result from deposited charge in the Si devices caused by the passage of ionizing radiation. With technology scaling, the device area decreases, but the critical charge required to flip bits decreases as well. The interplay between both determines how the SEU rate scales with shrinking device geometries and dimensions. In order to minimize the alpha-particle component of SEU, the radiation in the device environment has to be at the Ultra-Low Alpha (ULA) activity levels, e.g. less than 2 α/khr-cm2. Most detectors have background levels that are significantly larger than that level which makes making these measurements difficult and time consuming. A new class of alpha particle detector, utilizing pulse shape discrimination, is now available which allows one to make measurements quickly with ultra-low detector background. This talk will discuss what is involved in making alpha particle measurements of materials in the ULA activity levels, in terms of calibration, radon adsorption mitigation, the time required for obtaining reasonable statistics and comparisons to other detectors.

  11. Determination of tellurium in indium antimonide semiconductor material by electrothermal atomic absorption spectrometry.

    PubMed

    Shiue, M Y; Sun, Y C; Yang, M H

    2001-08-01

    A method for the determination of the dopant concentration of tellurium in dissolved indium antimonide semiconductor material by electrothermal atomic absorption spectrometry (ETAAS) was developed. Efforts were made to investigate the optimal conditions of the furnace heating program and the effect of palladium modifier on the variation of tellurium and the background absorbance. According to the results obtained, the presence of palladium chemical modifier in the analysis of indium antimonide allowed the successful retention of tellurium in the graphite tube, and the optimum mass of palladium modifier was found to be dependent on the sample matrix concentration. The absorbance profile of tellurium and the background level were significantly improved when a pyrolysis temperature of 1100 degrees C and an atomization temperature of 2200 degrees C were employed in the optimized heating program. With the use of this method, a detection limit of 0.8 microg g(-1) tellurium in indium antimonide could be achieved. The applicability of the proposed method was evaluated by comparison with two independent methods, i.e. slurry sampling-ETAAS and ICP-MS. From the good agreement between the results, it was demonstrated that the proposed method is suitable for the determination of typical dopant concentrations of tellurium in indium antimonide.

  12. Deformation and Damage Studies for Advanced Structural Materials

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Advancements made in understanding deformation and damage of advanced structural materials have enabled the development of new technologies including the attainment of a nationally significant NASA Level 1 Milestone and the provision of expertise to the Shuttle Return to Flight effort. During this collaborative agreement multiple theoretical and experimental research programs, facilitating safe durable high temperature structures using advanced materials, have been conceived, planned, executed. Over 26 publications, independent assessments of structures and materials in hostile environments, were published within this agreement. This attainment has been recognized by 2002 Space Flight Awareness Team Award, 2004 NASA Group Achievement Award and 2003 and 2004 OAI Service Awards. Accomplishments in the individual research efforts are described as follows.

  13. Mechanisms of fatigue damage and crack growth in advanced materials

    NASA Astrophysics Data System (ADS)

    Ritchie, Robert O.

    2001-03-01

    In terms of in-service failures, cyclic fatigue is the most prevalent form of fracture. Despite the wealth of information on fatigue failures in traditional structural materials such as (ductile) metals and alloys, far less is understood about the susceptibility of the newer advanced materials, such as (brittle) intermetallics, ceramics and their composites. In this presentation, the mechanics and mechanisms of fatigue damage and crack propagation are examined with particular emphasis on the similarities and differences between cyclic crack growth in ductile metallic materials, and corresponding behavior in the more brittle advanced materials. This is achieved by considering the process of subcritical crack growth as a mutual competition between intrinsic mechanisms of microstructural damage ahead of the crack tip, which promote crack growth, and extrinsic mechanisms of crack-tip shielding behind the tip, which impede it. This approach is shown to be important for the understanding of the structural fatigue properties of advanced materials, such as monolithic and composite ceramics, and a range of intermetallics (e.g., TiAl, MoSi2, Nb3Al), as the mechanisms of fatigue in these brittle materials are conceptually distinct from that associated with the well known metal fatigue. Examples of the application and life-prediction methodologies for such materials in fatigue-critical situations will be given from the aerospace and bioengineering industries.

  14. Space processing of crystalline materials: A study of known methods of electrical characterization of semiconductors: Bibliography

    NASA Technical Reports Server (NTRS)

    Castle, J. G.

    1976-01-01

    A selective bibliography is given on electrical characterization techniques for semiconductors. Emphasis is placed on noncontacting techniques for the standard electrical parameters for monitoring crystal growth in space, preferably in real time with high resolution.

  15. Soft computing in design and manufacturing of advanced materials

    NASA Technical Reports Server (NTRS)

    Cios, Krzysztof J.; Baaklini, George Y; Vary, Alex

    1993-01-01

    The potential of fuzzy sets and neural networks, often referred to as soft computing, for aiding in all aspects of manufacturing of advanced materials like ceramics is addressed. In design and manufacturing of advanced materials, it is desirable to find which of the many processing variables contribute most to the desired properties of the material. There is also interest in real time quality control of parameters that govern material properties during processing stages. The concepts of fuzzy sets and neural networks are briefly introduced and it is shown how they can be used in the design and manufacturing processes. These two computational methods are alternatives to other methods such as the Taguchi method. The two methods are demonstrated by using data collected at NASA Lewis Research Center. Future research directions are also discussed.

  16. Progress in advanced high temperature turbine materials, coatings, and technology

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Ault, G. M.

    1978-01-01

    Advanced materials, coatings, and cooling technology is assessed in terms of improved aircraft turbine engine performance. High cycle operating temperatures, lighter structural components, and adequate resistance to the various environmental factors associated with aircraft gas turbine engines are among the factors considered. Emphasis is placed on progress in development of high temperature materials for coating protection against oxidation, hot corrosion and erosion, and in turbine cooling technology. Specific topics discussed include metal matrix composites, superalloys, directionally solidified eutectics, and ceramics.

  17. Analysis of trace impurities in organometallic semiconductor grade reagent materials using electrothermal vaporization - inductively coupled plasma spectrometry

    SciTech Connect

    Argentine, M.D.

    1993-12-31

    Trace impurity determinations in volatile, pyrophoric organometallic materials is complicated owing to its chemical nature. Furthermore, trends toward high semiconductor circuit density demand that impurity determinations are performed at increasingly low levels. Volatility of the impurities is also desired as it plays a significant role in impurity incorporation in semiconductor products. Determination of both volatile and nonvolatile impurities in semiconductor-grade organometallic reagent materials has been accomplished using electrothermal vaporization-inductively coupled plasma spectrometry. Solid or liquid materials can be dispensed directly onto a graphite microboat, and application of an appropriate time-temperature ramp allows separation of impurities based on volatility. Temporal separation allows quantitative capabilities on both volatile and nonvolatile signals in a single ETV run. Calibration efforts for volatile impurities have been compared with results from exponential dilution and direct vapor sampling techniques. Nonvolatile impurity determinations can be reasonably performed with aqueous external standard calibration. Inductively coupled plasma-mass spectrometry provides an alternate and more sensitive, multielement detection method. Several spectroscopic and non-spectroscopic difficulties with volatile impurity detection remain. Nonetheless, qualitative and semiquantitative (<50% RSD) determination of most impurities may be performed in a single ETV run.

  18. ADVANCED HOT SECTION MATERIALS AND COATINGS TEST RIG

    SciTech Connect

    Scott Reome; Dan Davies

    2004-04-30

    The Hyperbaric Advanced Hot Section Materials & Coating Test Rig program provides design and implementation of a laboratory rig capable of simulating the hot gas path conditions of coal-gas fired industrial gas turbine engines. The principal activity during this reporting period were the evaluation of syngas combustor concepts, the evaluation of test section concepts and the selection of the preferred rig configuration.

  19. Nondestructive testing of advanced materials using sensors with metamaterials

    NASA Astrophysics Data System (ADS)

    Rozina, Steigmann; Narcis Andrei, Danila; Nicoleta, Iftimie; Catalin-Andrei, Tugui; Frantisek, Novy; Stanislava, Fintova; Petrica, Vizureanu; Adriana, Savin

    2016-11-01

    This work presents a method for nondestructive evaluation (NDE) of advanced materials that makes use of the images in near field and the concentration of flux using the phenomenon of spatial resolution. The method allows the detection of flaws as crack, nonadhesion of coating, degradation or presence delamination stresses correlated with the response of electromagnetic sensor.

  20. Interfacial Materials for Organic Solar Cells: Recent Advances and Perspectives.

    PubMed

    Yin, Zhigang; Wei, Jiajun; Zheng, Qingdong

    2016-08-01

    Organic solar cells (OSCs) have shown great promise as low-cost photovoltaic devices for solar energy conversion over the past decade. Interfacial engineering provides a powerful strategy to enhance efficiency and stability of OSCs. With the rapid advances of interface layer materials and active layer materials, power conversion efficiencies (PCEs) of both single-junction and tandem OSCs have exceeded a landmark value of 10%. This review summarizes the latest advances in interfacial layers for single-junction and tandem OSCs. Electron or hole transporting materials, including metal oxides, polymers/small-molecules, metals and metal salts/complexes, carbon-based materials, organic-inorganic hybrids/composites, and other emerging materials, are systemically presented as cathode and anode interface layers for high performance OSCs. Meanwhile, incorporating these electron-transporting and hole-transporting layer materials as building blocks, a variety of interconnecting layers for conventional or inverted tandem OSCs are comprehensively discussed, along with their functions to bridge the difference between adjacent subcells. By analyzing the structure-property relationships of various interfacial materials, the important design rules for such materials towards high efficiency and stable OSCs are highlighted. Finally, we present a brief summary as well as some perspectives to help researchers understand the current challenges and opportunities in this emerging area of research.

  1. Interfacial Materials for Organic Solar Cells: Recent Advances and Perspectives

    PubMed Central

    Yin, Zhigang; Wei, Jiajun

    2016-01-01

    Organic solar cells (OSCs) have shown great promise as low‐cost photovoltaic devices for solar energy conversion over the past decade. Interfacial engineering provides a powerful strategy to enhance efficiency and stability of OSCs. With the rapid advances of interface layer materials and active layer materials, power conversion efficiencies (PCEs) of both single‐junction and tandem OSCs have exceeded a landmark value of 10%. This review summarizes the latest advances in interfacial layers for single‐junction and tandem OSCs. Electron or hole transporting materials, including metal oxides, polymers/small‐molecules, metals and metal salts/complexes, carbon‐based materials, organic‐inorganic hybrids/composites, and other emerging materials, are systemically presented as cathode and anode interface layers for high performance OSCs. Meanwhile, incorporating these electron‐transporting and hole‐transporting layer materials as building blocks, a variety of interconnecting layers for conventional or inverted tandem OSCs are comprehensively discussed, along with their functions to bridge the difference between adjacent subcells. By analyzing the structure–property relationships of various interfacial materials, the important design rules for such materials towards high efficiency and stable OSCs are highlighted. Finally, we present a brief summary as well as some perspectives to help researchers understand the current challenges and opportunities in this emerging area of research. PMID:27812480

  2. Materials/manufacturing element of the Advanced Turbine Systems Program

    SciTech Connect

    Karnitz, M.A.; Holcomb, R.S.; Wright, I.G.

    1995-10-01

    The technology based portion of the Advanced Turbine Systems Program (ATS) contains several subelements which address generic technology issues for land-based gas-turbine systems. One subelement is the Materials/Manufacturing Technology Program which is coordinated by DOE-Oak Ridge Operations and Oak Ridge National Laboratory (ORNL). The work in this subelement is being performed predominantly by industry with assistance from universities and the national laboratories. Projects in this subelement are aimed toward hastening the incorporation of new materials and components in gas turbines. A materials/manufacturing plan was developed in FY 1994 with input from gas turbine manufacturers, materials suppliers, universities, and government laboratories. The plan outlines seven major subelements which focus on materials issues and manufacturing processes. Work is currently under way in four of the seven major subelements. There are now major projects on coatings and process development, scale-up of single crystal airfoil manufacturing technology, materials characterization, and technology information exchange.

  3. Advanced Packaging Materials and Techniques for High Power TR Module: Standard Flight vs. Advanced Packaging

    NASA Technical Reports Server (NTRS)

    Hoffman, James Patrick; Del Castillo, Linda; Miller, Jennifer; Jenabi, Masud; Hunter, Donald; Birur, Gajanana

    2011-01-01

    The higher output power densities required of modern radar architectures, such as the proposed DESDynI [Deformation, Ecosystem Structure, and Dynamics of Ice] SAR [Synthetic Aperture Radar] Instrument (or DSI) require increasingly dense high power electronics. To enable these higher power densities, while maintaining or even improving hardware reliability, requires advances in integrating advanced thermal packaging technologies into radar transmit/receive (TR) modules. New materials and techniques have been studied and compared to standard technologies.

  4. The viability and performance characterization of nano scale energetic materials on a semiconductor bridge (SCB)

    NASA Astrophysics Data System (ADS)

    Strohm, Gianna Sophia

    The move from conventional energetic composites to nano scale energetic mixtures (nano energetics) has shown dramatic improvement in energy release rate and sensitivity to ignition. A possible application of nano energetics is on a semiconductor bridge (SCB). An SCB typically requires a tenth of the energy input as compared to a bridge wire design with the same no-fire and is capable of igniting in tens of microseconds. For very low energy applications, SCBs can be manufactured to extremely small sizes and it is necessary to find materials with particle sizes that are even smaller to function. Reactive particles of comparable size to the bridge can lead to problems with ignition reliability for small bridges. Nano-energetic composites and the use of SCBs have been significantly studied individually, however, the process of combining nano energetics with an SCB has not been investigated extensively and is the focus of this work. Goals of this study are to determine if nano energetics can be used with SCBs to further reduce the minimum energy required and improve reliability. The performance of nano-scale aluminum (nAl) and bismuth oxide (Bi2O3) with nitrocellulose (NC), Fluorel(TM) FC 2175 (chemically equivalent to VitonRTM) and Glycidyl Azide Polymer (GAP) as binders where quantified initially using the SenTest(TM) algorithm at three weight fractions (5, 7, and 9%) of binder. The threshold energy was calculated and compared to previous data using conventional materials such as zirconium potassium chlorate (ZPC), mercuric 5-Nitrotetrazol (DXN-1) and titanium sub-hydride potassium per-chlorate (TSPP). It was found that even though there where only slight differences in performance between the binders with nAl/Bi2O 3 at any of the three binder weight fractions, the results show that these nano energetic materials require about half of the threshold energy compared to conventional materials using an SCB with an 84x42 mum bridge. Binder limit testing was conducted to

  5. Semiconductor systems utilizing materials that form rectifying junctions in both N and P-type doping regions, whether metallurgically or field induced, and methods of use

    DOEpatents

    Welch, James D.

    2000-01-01

    Disclosed are semiconductor systems, such as integrated circuits utilizing Schotky barrier and/or diffused junction technology, which semiconductor systems incorporate material(s) that form rectifying junctions in both metallurgically and/or field induced N and P-type doping regions, and methods of their use. Disclosed are Schottky barrier based inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems and which can be operated as modulators, N and P-channel MOSFETS and CMOS formed therefrom, and (MOS) gate voltage controlled rectification direction and gate voltage controlled switching devices, and use of such material(s) to block parasitic current flow pathways. Simple demonstrative five mask fabrication procedures for inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems are also presented.

  6. Full-band structure modeling of the radiative and non-radiative properties of semiconductor materials and devices (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Bellotti, Enrico; Wen, Hanqing; Pinkie, Benjamin; Matsubara, Masahiko; Bertazzi, Francesco

    2015-08-01

    Understanding the radiative and non-radiative properties of semiconductor materials is a prerequisite for optimizing the performance of existing light emitters and detectors and for developing new device architectures based on novel materials. Due to the ever increasing complexity of novel semiconductor systems and their relative technological immaturity, it is essential to have design tools and simulation strategies that include the details of the microscopic physics and their dependence on the macroscopic (continuum) variables in the macroscopic device models. Towards this end, we have developed a robust full-band structure based approach that can be used to study the intrinsic material radiative and non-radiative properties and evaluate the same characteristics of low-dimensional device structures. A parallel effort is being carried out to model the effect of substrate driven stress/strain and material quality (dislocations and defects) on microscopic quantities such as non-radiative recombination rate. Using this modeling approach, we have extensively studied the radiative and non-radiative properties of both elemental (Si and Ge) and compound semiconductors (HgCdTe, InGaAs, InAsSb and InGaN). In this work we outline the details of the modelling approach, specifically the challenges and advantages related to the use of the full-band description of the material electronic structure. We will present a detailed comparison of the radiative and Auger recombination rates as a function of temperature and doping for HgCdTe and InAsSb that are two important materials for infrared detectors and emitters. Furthermore we will discuss the role of non-radiatiave Auger recombination processes in explaining the performance of light emitter diodes. Finally we will present the extension of the model to low dimensional structures employed in a number of light emitter and detector structures.

  7. Synthesis and characterization of polymer matrix composite material with combination of ZnO filler and nata de coco fiber as a candidate of semiconductor material

    NASA Astrophysics Data System (ADS)

    Saputra, Asep Handaya; Anindita, Hana Nabila

    2015-12-01

    Synthesis of semiconductor composite using acrylic matrix filled with ZnO and nata de coco fiber has been conducted in this research. The purpose of this research is to obtain semiconductor composite material that has a good mechanical strength and thermal resistance. In situ polymerization method is used in this research and the composites are ready to be characterized after 12 hours. The main parameter that is characterized is the electric conductivity of the composite. Additional parameters are also characterized such as composite's elastic modulus and glass transition temperature. The composites that has been made in this research can be classified as semiconductor material because the conductivity is in the range of 10-8-103 S/cm. In general the addition of ZnO and nata de coco filler can increase the conductivity of the composite. The highest semiconductor characteristic in acrylic/ZnO composite is obtained from 30% volume filler that reach 3.4 x 10-7 S/cm. Similar with acrylic/ZnO composite, in acrylic/nata de coco fiber composite the highest semiconductor characteristic is also obtained from 30% volume filler that reach 1.15 x 10-7 S/cm. Combination of 20% volume of ZnO, 10% volume of nata de coco, and 70% volume of acrylic resulting in composite with electric conductivity of 1.92 x 10-7 S/cm. In addition, combination of ZnO and nata de coco fiber as filler in composite can also improve the characteristic of composite where composite with 20% volume of ZnO filler and 10% volume of nata de coco fiber resulting in composite with elastic modulus of 1.79 GPa and glass transition temperature of 175.73°C which is higher than those in acrylic/ZnO composite.

  8. High resolution computed tomography of advanced composite and ceramic materials

    NASA Technical Reports Server (NTRS)

    Yancey, R. N.; Klima, S. J.

    1991-01-01

    Advanced composite and ceramic materials are being developed for use in many new defense and commercial applications. In order to achieve the desired mechanical properties of these materials, the structural elements must be carefully analyzed and engineered. A study was conducted to evaluate the use of high resolution computed tomography (CT) as a macrostructural analysis tool for advanced composite and ceramic materials. Several samples were scanned using a laboratory high resolution CT scanner. Samples were also destructively analyzed at the locations of the scans and the nondestructive and destructive results were compared. The study provides useful information outlining the strengths and limitations of this technique and the prospects for further research in this area.

  9. Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials

    NASA Technical Reports Server (NTRS)

    Keith, Theo G.

    2005-01-01

    The purpose of this report is to provide a final report for the period of 12/1/03 through 11/30/04 for NASA Cooperative Agreement NCC3-776, entitled "Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials." During this final period, major efforts were focused on both the determination of mechanical properties of advanced ceramic materials and the development of mechanical test methodologies under several different programs of the NASA-Glenn. The important research activities made during this period are: 1. Mechanical properties evaluation of two gas-turbine grade silicon nitrides. 2) Mechanical testing for fuel-cell seal materials. 3) Mechanical properties evaluation of thermal barrier coatings and CFCCs and 4) Foreign object damage (FOD) testing.

  10. Advanced ceramic materials for next-generation nuclear applications

    NASA Astrophysics Data System (ADS)

    Marra, John

    2011-10-01

    The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme environments of high

  11. Recent Advances in Two-Dimensional Materials beyond Graphene.

    PubMed

    Bhimanapati, Ganesh R; Lin, Zhong; Meunier, Vincent; Jung, Yeonwoong; Cha, Judy; Das, Saptarshi; Xiao, Di; Son, Youngwoo; Strano, Michael S; Cooper, Valentino R; Liang, Liangbo; Louie, Steven G; Ringe, Emilie; Zhou, Wu; Kim, Steve S; Naik, Rajesh R; Sumpter, Bobby G; Terrones, Humberto; Xia, Fengnian; Wang, Yeliang; Zhu, Jun; Akinwande, Deji; Alem, Nasim; Schuller, Jon A; Schaak, Raymond E; Terrones, Mauricio; Robinson, Joshua A

    2015-12-22

    The isolation of graphene in 2004 from graphite was a defining moment for the "birth" of a field: two-dimensional (2D) materials. In recent years, there has been a rapidly increasing number of papers focusing on non-graphene layered materials, including transition-metal dichalcogenides (TMDs), because of the new properties and applications that emerge upon 2D confinement. Here, we review significant recent advances and important new developments in 2D materials "beyond graphene". We provide insight into the theoretical modeling and understanding of the van der Waals (vdW) forces that hold together the 2D layers in bulk solids, as well as their excitonic properties and growth morphologies. Additionally, we highlight recent breakthroughs in TMD synthesis and characterization and discuss the newest families of 2D materials, including monoelement 2D materials (i.e., silicene, phosphorene, etc.) and transition metal carbide- and carbon nitride-based MXenes. We then discuss the doping and functionalization of 2D materials beyond graphene that enable device applications, followed by advances in electronic, optoelectronic, and magnetic devices and theory. Finally, we provide perspectives on the future of 2D materials beyond graphene.

  12. Interface-driven phase separation in multifunctional materials: The case of the ferromagnetic semiconductor GeMn

    NASA Astrophysics Data System (ADS)

    Arras, Emmanuel; Lançon, Frédéric; Slipukhina, Ivetta; Prestat, Éric; Rovezzi, Mauro; Tardif, Samuel; Titov, Andrey; Bayle-Guillemaud, Pascale; D'Acapito, Francesco; Barski, André; Favre-Nicolin, Vincent; Jamet, Matthieu; Cibert, Joël; Pochet, Pascal

    2012-03-01

    We use extensive first-principles simulations to show the major role played by interfaces in the mechanism of phase separation observed in semiconductor multifunctional materials. We make an analogy with the precipitation sequence observed in oversaturated AlCu alloys, and replace the Guinier-Preston zones in this new context. A class of materials, the α phases, is proposed to understand the formation of the coherent precipitates observed in the GeMn system. The interplay between formation and interface energies is analyzed for these phases and for the structures usually considered in the literature. The existence of the α phases is assessed with both theoretical and experimental arguments.

  13. PREFACE: 7th EEIGM International Conference on Advanced Materials Research

    NASA Astrophysics Data System (ADS)

    Joffe, Roberts

    2013-12-01

    The 7th EEIGM Conference on Advanced Materials Research (AMR 2013) was held at Luleå University of Technology on the 21-22 March 2013 in Luleå, SWEDEN. This conference is intended as a meeting place for researchers involved in the EEIGM programme, in the 'Erasmus Mundus' Advanced Materials Science and Engineering Master programme (AMASE) and the 'Erasmus Mundus' Doctoral Programme in Materials Science and Engineering (DocMASE). This is great opportunity to present their on-going research in the various fields of Materials Science and Engineering, exchange ideas, strengthen co-operation as well as establish new contacts. More than 60 participants representing six countries attended the meeting, in total 26 oral talks and 19 posters were presented during two days. This issue of IOP Conference Series: Materials Science and Engineering presents a selection of articles from EEIGM-7 conference. Following tradition from previous EEIGM conferences, it represents the interdisciplinary nature of Materials Science and Engineering. The papers presented in this issue deal not only with basic research but also with applied problems of materials science. The presented topics include theoretical and experimental investigations on polymer composite materials (synthetic and bio-based), metallic materials and ceramics, as well as nano-materials of different kind. Special thanks should be directed to the senior staff of Division of Materials Science at LTU who agreed to review submitted papers and thus ensured high scientific level of content of this collection of papers. The following colleagues participated in the review process: Professor Lennart Walström, Professor Roberts Joffe, Professor Janis Varna, Associate Professor Marta-Lena Antti, Dr Esa Vuorinen, Professor Aji Mathew, Professor Alexander Soldatov, Dr Andrejs Purpurs, Dr Yvonne Aitomäki, Dr Robert Pederson. Roberts Joffe October 2013, Luleå Conference photograph EEIGM7 conference participants, 22 March 2013 The PDF

  14. Institute for Advanced Materials at University of Louisville

    SciTech Connect

    Sunkara, Mahendra; Sumaneskara, Gamini; Starr, Thomas L; Willing, G A; Robert W, Cohn

    2009-10-29

    In this project, a university-wide, academic center has been established entitled Institute for Advanced Materials and Renewable Energy. In this institute, a comprehensive materials characterization facility has been established by co-locating several existing characterization equipment and acquiring several state of the art instrumentation such as field emission transmission electron microscope, scanning electron microscope, high resolution X-ray diffractometer, Particle Size Distribution/Zeta Potential measurement system, and Ultra-microtome for TEM specimen. In addition, a renewable energy conversion and storage research facility was also established by acquiring instrumentation such as UV-Vis absorption spectroscopy, Atomic Layer Deposition reactor, Solar light simulator, oxygen-free glove box, potentiostat/galvanostats and other miscellaneous items. The institute is staffed with three full-time staff members (one senior research technologist, a senior PhD level research scientist and a junior research scientist) to enable proper use of the techniques. About thirty faculty, fifty graduate students and several researchers access the facilities on a routine basis. Several industry R&D organizations (SudChemie, Optical Dynamics and Hexion) utilize the facility. The established Institute for Advanced Materials at UofL has three main objectives: (a) enable a focused research effort leading to the rapid discovery of new materials and processes for advancing alternate energy conversion and storage technologies; (b) enable offering of several laboratory courses on advanced materials science and engineering; and (c) develop university-industry partnerships based on the advanced materials research. The Institute's efforts were guided by an advisory board comprising eminent researchers from outside KY. Initial research efforts were focused on the discovery of new materials and processes for solar cells and Li ion battery electrodes. Initial sets of results helped PIs to

  15. Advanced High-Temperature Engine Materials Technology Progresses

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The objective of the Advanced High Temperature Engine Materials Technology Program (HITEMP) is to generate technology for advanced materials and structural analysis that will increase fuel economy, improve reliability, extend life, and reduce operating costs for 21st century civil propulsion systems. The primary focus is on fan and compressor materials (polymer-matrix composites--PMC's), compressor and turbine materials (superalloys, and metal-matrix and intermetallic-matrix composites--MMC's and IMC's) and turbine materials (ceramic-matrix composites--CMC's). These advanced materials are being developed by in-house researchers and on grants and contracts. NASA considers this program to be a focused materials and structures research effort that builds on our base research programs and supports component-development projects. HITEMP is coordinated with the Advanced Subsonic Technology (AST) Program and the Department of Defense/NASA Integrated High-Performance Turbine Engine Technology (IHPTET) Program. Advanced materials and structures technologies from HITEMP may be used in these future applications. Recent technical accomplishments have not only improved the state-of-the-art but have wideranging applications to industry. A high-temperature thin-film strain gage was developed to measure both dynamic and static strain up to 1100 C (2000 F). The gage's unique feature is that it is minimally intrusive. This technology, which received a 1995 R&D 100 Award, has been transferred to AlliedSignal Engines, General Electric Company, and Ford Motor Company. Analytical models developed at the NASA Lewis Research Center were used to study Textron Specialty Materials' manufacturing process for titanium-matrix composite rings. Implementation of our recommendations on tooling and processing conditions resulted in the production of defect free rings. In the Lincoln Composites/AlliedSignal/Lewis cooperative program, a composite compressor case is being manufactured with a Lewis

  16. Materials and Component Development for Advanced Turbine Systems

    SciTech Connect

    Alvin, M.A.; Pettit, F.; Meier, G.; Yanar, N.; Chyu, M.; Mazzotta, D.; Slaughter, W.; Karaivanov, V.; Kang, B.; Feng, C.; Chen, R.; Fu, T-C.

    2008-10-01

    In order to meet the 2010-2020 DOE Fossil Energy goals for Advanced Power Systems, future oxy-fuel and hydrogen-fired turbines will need to be operated at higher temperatures for extended periods of time, in environments that contain substantially higher moisture concentrations in comparison to current commercial natural gas-fired turbines. Development of modified or advanced material systems, combined with aerothermal concepts are currently being addressed in order to achieve successful operation of these land-based engines. To support the advanced turbine technology development, the National Energy Technology Laboratory (NETL) has initiated a research program effort in collaboration with the University of Pittsburgh (UPitt), and West Virginia University (WVU), working in conjunction with commercial material and coating suppliers as Howmet International and Coatings for Industry (CFI), and test facilities as Westinghouse Plasma Corporation (WPC) and Praxair, to develop advanced material and aerothermal technologies for use in future oxy-fuel and hydrogen-fired turbine applications. Our program efforts and recent results are presented.

  17. Space processing of crystalline materials: A study of known methods of electrical characterization of semiconductors

    NASA Technical Reports Server (NTRS)

    Castle, J. G.

    1976-01-01

    A literature survey is presented covering nondestructive methods of electrical characterization of semiconductors. A synopsis of each technique deals with the applicability of the techniques to various device parameters and to potential in-flight use before, during, and after growth experiments on space flights. It is concluded that the very recent surge in the commercial production of large scale integrated circuitry and other semiconductor arrays requiring uniformity on the scale of a few microns, involves nondestructive test procedures which could well be useful to NASA for in-flight use in space processing.

  18. Assembling non-ferromagnetic materials to ferromagnetic architectures using metal-semiconductor interfaces

    NASA Astrophysics Data System (ADS)

    Ma, Ji; Liu, Chunting; Chen, Kezheng

    2016-09-01

    In this work, a facile and versatile solution route was used to fabricate room-temperature ferromagnetic fish bone-like, pteridophyte-like, poplar flower-like, cotton-like Cu@Cu2O architectures and golfball-like Cu@ZnO architecture. The ferromagnetic origins in these architectures were found to be around metal-semiconductor interfaces and defects, and the root cause for their ferromagnetism lay in charge transfer processes from metal Cu to semiconductors Cu2O and ZnO. Owing to different metallization at their interfaces, these architectures exhibited different ferromagnetic behaviors, including coercivity, saturation magnetization as well as magnetic interactions.

  19. Assembling non-ferromagnetic materials to ferromagnetic architectures using metal-semiconductor interfaces

    PubMed Central

    Ma, Ji; Liu, Chunting; Chen, Kezheng

    2016-01-01

    In this work, a facile and versatile solution route was used to fabricate room-temperature ferromagnetic fish bone-like, pteridophyte-like, poplar flower-like, cotton-like Cu@Cu2O architectures and golfball-like Cu@ZnO architecture. The ferromagnetic origins in these architectures were found to be around metal-semiconductor interfaces and defects, and the root cause for their ferromagnetism lay in charge transfer processes from metal Cu to semiconductors Cu2O and ZnO. Owing to different metallization at their interfaces, these architectures exhibited different ferromagnetic behaviors, including coercivity, saturation magnetization as well as magnetic interactions. PMID:27680286

  20. PREFACE: 6th EEIGM International Conference on Advanced Materials Research

    NASA Astrophysics Data System (ADS)

    Horwat, David; Ayadi, Zoubir; Jamart, Brigitte

    2012-02-01

    The 6th EEIGM Conference on Advanced Materials Research (AMR 2011) was held at the European School of Materials Engineering (EEIGM) on the 7-8 November 2011 in Nancy, France. This biennial conference organized by the EEIGM is a wonderful opportunity for all scientists involved in the EEIGM programme, in the 'Erasmus Mundus' Advanced Materials Science and Engineering Master programme (AMASE) and the 'Erasmus Mundus' Doctoral Programme in Materials Science and Engineering (DocMASE), to present their research in the various fields of Materials Science and Engineering. This conference is also open to other universities who have strong links with the EEIGM and provides a forum for the exchange of ideas, co-operation and future orientations by means of regular presentations, posters and a round-table discussion. This edition of the conference included a round-table discussion on composite materials within the Interreg IVA project '+Composite'. Following the publication of the proceedings of AMR 2009 in Volume 5 of this journal, it is with great pleasure that we present this selection of articles to the readers of IOP Conference Series: Materials Science and Engineering. Once again it represents the interdisciplinary nature of Materials Science and Engineering, covering basic and applicative research on organic and composite materials, metallic materials and ceramics, and characterization methods. The editors are indebted to all the reviewers for reviewing the papers at very short notice. Special thanks are offered to the sponsors of the conference including EEIGM-Université de Lorraine, AMASE, DocMASE, Grand Nancy, Ville de Nancy, Region Lorraine, Fédération Jacques Villermaux, Conseil Général de Meurthe et Moselle, Casden and '+Composite'. Zoubir Ayadi, David Horwat and Brigitte Jamart

  1. Photoelectrosynthesis at semiconductor electrodes

    SciTech Connect

    Nozik, A. J.

    1980-12-01

    The general principles of photoelectrochemistry and photoelectrosynthesis are reviewed and some new developments in photoelectrosynthesis are discussed. Topics include energetics of semiconductor-electrolyte interfaces(band-edge unpinning); hot carrier injection at illuminated semiconductor-electrolyte junctions; derivatized semiconductor electrodes; particulate photoelectrochemical systems; layered compounds and other new materials; and dye sensitization. (WHK)

  2. Optimization of the thermoelectric figure of merit of fine-grained semiconductor materials based upon lead telluride

    NASA Astrophysics Data System (ADS)

    Rowe, D. M.

    1986-02-01

    Lead telluride type semiconductors are used in the fabrication of thermoelectric modules. This report covers the programme to produce materials based upon lead telluride with improved figures of merit and hence greater thermoelectric conversion efficiency. One way of improving the figure of merit is by reducing the lattice thermal conductivity of the material. This can be achieved by increasing phonon grain boundary scattering. A realistic theoretical model has been developed for lead telluride and used to investigate the lattice thermal conductivity as a function of grain size and level of doping. In optimally doped material with a grain size of 1 micrometer, the reduction in lattice thermal conductivity was predicted to be 4-6 percent compared with equivalent single crystal. Thermal diffusivity measurements on small grained compacts supported this prediction. Phonon grain boundary scattering is enhanced in semiconductor alloys because of the presence of disorder scattering and the theoretical model was extended to take this factor into account. PbSnTe and PbGeTe were identified as alloys whose lattice thermal conductivity could be significantly decreased by a reduction in grain size and in optimally doped compacted material with a grain size of 0.5 micrometer the reduction compared to equivalent single crystal material was estimated to be 11 and 14 percent respectively.

  3. Behaviour of advanced materials impacted by high energy particle beams

    NASA Astrophysics Data System (ADS)

    Bertarelli, A.; Carra, F.; Cerutti, F.; Dallocchio, A.; Garlasché, M.; Guinchard, M.; Mariani, N.; Marques dos Santos, S. D.; Peroni, L.; Scapin, M.; Boccone, V.

    2013-07-01

    Beam Intercepting Devices (BID) are designed to operate in a harsh radioactive environment and are highly loaded from a thermo-structural point of view. Moreover, modern particle accelerators, storing unprecedented energy, may be exposed to severe accidental events triggered by direct beam impacts. In this context, impulse has been given to the development of novel materials for advanced thermal management with high thermal shock resistance like metal-diamond and metal-graphite composites on top of refractory metals such as molybdenum, tungsten and copper alloys. This paper presents the results of a first-of-its-kind experiment which exploited 440 GeV proton beams at different intensities to impact samples of the aforementioned materials. Effects of thermally induced shockwaves were acquired via high speed acquisition system including strain gauges, laser Doppler vibrometer and high speed camera. Preliminary information of beam induced damages on materials were also collected. State-of-the-art hydrodynamic codes (like Autodyn®), relying on complex material models including equation of state (EOS), strength and failure models, have been used for the simulation of the experiment. Preliminary results confirm the effectiveness and reliability of these numerical methods when material constitutive models are completely available (W and Cu alloys). For novel composite materials a reverse engineering approach will be used to build appropriate constitutive models, thus allowing a realistic representation of these complex phenomena. These results are of paramount importance for understanding and predicting the response of novel advanced composites to beam impacts in modern particle accelerators.

  4. Analysis of Advanced Thermoelectric Materials and Their Functional Limits

    NASA Technical Reports Server (NTRS)

    Kim, Hyun Jung

    2015-01-01

    The world's demand for energy is increasing dramatically, but the best energy conversion systems operate at approximately 30% efficiency. One way to decrease energy loss is in the recovery of waste heat using thermoelectric (TE) generators. A TE generator is device that generates electricity by exploiting heat flow across a thermal gradient. The efficiency of a TE material for power generation and cooling is determined by the dimensionless Figure of Merit (ZT): ZT = S(exp. 2)sigmaT/?: where S is the Seebeck coefficient, sigma is the electrical conductivity, T is the absolute temperature, and ? is the thermal conductivity. The parameters are not physically independent, but intrinsically coupled since they are a function of the transport properties of electrons. Traditional research on TE materials has focused on synthesizing bulk semiconductor-type materials that have low thermal conductivity and high electrical conductivity affording ZT values of 1. The optimization of the s/? ratio is difficult to achieve using current material formats, as these material constants are complementary. Recent areas of research are focusing on using nanostructural artifacts that introduce specific dislocations and boundary conditions that scatter the phonons. This disrupts the physical link between thermal (phonon) and electrical (electron) transport. The result is that ? is decreased without decreasing s. These material formats give ZT values of up to 2 which represent approximately 18% energy gain from waste heat recovery. The next challenge in developing the next generation of TE materials with superior performance is to tailor the interconnected thermoelectric physical parameters of the material system. In order to approach this problem, the fundamental physics of each parameter S, sigma, and ? need to be physically understood in their context of electron/phonon interaction for the construction of new high ZT thermoelectric devices. Is it possible to overcome the physical limit

  5. A review of recent advances in the spherical harmonics expansion method for semiconductor device simulation.

    PubMed

    Rupp, K; Jungemann, C; Hong, S-M; Bina, M; Grasser, T; Jüngel, A

    The Boltzmann transport equation is commonly considered to be the best semi-classical description of carrier transport in semiconductors, providing precise information about the distribution of carriers with respect to time (one dimension), location (three dimensions), and momentum (three dimensions). However, numerical solutions for the seven-dimensional carrier distribution functions are very demanding. The most common solution approach is the stochastic Monte Carlo method, because the gigabytes of memory requirements of deterministic direct solution approaches has not been available until recently. As a remedy, the higher accuracy provided by solutions of the Boltzmann transport equation is often exchanged for lower computational expense by using simpler models based on macroscopic quantities such as carrier density and mean carrier velocity. Recent developments for the deterministic spherical harmonics expansion method have reduced the computational cost for solving the Boltzmann transport equation, enabling the computation of carrier distribution functions even for spatially three-dimensional device simulations within minutes to hours. We summarize recent progress for the spherical harmonics expansion method and show that small currents, reasonable execution times, and rare events such as low-frequency noise, which are all hard or even impossible to simulate with the established Monte Carlo method, can be handled in a straight-forward manner. The applicability of the method for important practical applications is demonstrated for noise simulation, small-signal analysis, hot-carrier degradation, and avalanche breakdown.

  6. Recent Advances in Inorganic Nanoparticle-Based NIR Luminescence Imaging: Semiconductor Nanoparticles and Lanthanide Nanoparticles.

    PubMed

    Kim, Dokyoon; Lee, Nohyun; Park, Yong Il; Hyeon, Taeghwan

    2017-01-18

    Several types of nanoparticle-based imaging probes have been developed to replace conventional luminescent probes. For luminescence imaging, near-infrared (NIR) probes are useful in that they allow deep tissue penetration and high spatial resolution as a result of reduced light absorption/scattering and negligible autofluorescence in biological media. They rely on either an anti-Stokes or a Stokes shift process to generate luminescence. For example, transition metal-doped semiconductor nanoparticles and lanthanide-doped inorganic nanoparticles have been demonstrated as anti-Stokes shift-based agents that absorb NIR light through two- or three-photon absorption process and upconversion process, respectively. On the other hand, quantum dots (QDs) and lanthanide-doped nanoparticles that emit in NIR-II range (∼1000 to ∼1350 nm) were suggested as promising Stokes shift-based imaging agents. In this topical review, we summarize and discuss the recent progress in the development of inorganic nanoparticle-based luminescence imaging probes working in NIR range.

  7. Synthesis and characterization by solid-state impedance spectroscopy of semiconductor Cu2ZnSnS4 material for photovoltaic technologies

    NASA Astrophysics Data System (ADS)

    Muñoz, M.; Vera-López, E.; Gómez-Cuaspud, J. A.; Pineda-Triana, Y.

    2017-01-01

    Current work is focused on the synthesis and characterization of a Cu2ZnSnS4 material (Abbreviated CZTS), identified as a potential candidate for the manufacture of photovoltaic cells. The material was obtained by means of a hydrothermal route which permits a simple and economical alternative to synthesize advanced materials for photovoltaic applications. The synthesis of a solid started from corresponding metal nitrates of Cu(NO3)2.6H2O, Zn(NO3)2, Sn(NO3)4.6H2O and thiourea as S source, which were dissolved in deionized water until complete a 1.0mol L-1 concentration. The solution was kept in a Teflon lined steel vessel with magnetic stirring (150 rpm) and treated at 300°C for 12 hours to form the crystalline phase. The initial characterization of solid was done using UV spectroscopy to validate the chemical process and identify the corresponding Band-gap around (1.43eV). The structural characterization by X-ray diffraction, confirmed the presence of nanometric solids (140-260nm). The morphological characterization by SEM analysis evidenced a homogeneous material in the form of micrometric aggregates, by a related synthesis method. Finally, the electrical characterization by means of solid state impedance spectroscopy demonstrated a semiconductor behaviour which evidenced the transport phenomena associated with a Warburg resistance.

  8. Report on sodium compatibility of advanced structural materials.

    SciTech Connect

    Li, M.; Natesan, K.; Momozaki, Y.; Rink, D.L.; Soppet, W.K.; Listwan, J.T.

    2012-07-09

    This report provides an update on the evaluation of sodium compatibility of advanced structural materials. The report is a deliverable (level 3) in FY11 (M3A11AN04030403), under the Work Package A-11AN040304, 'Sodium Compatibility of Advanced Structural Materials' performed by Argonne National Laboratory (ANL), as part of Advanced Structural Materials Program for the Advanced Reactor Concepts. This work package supports the advanced structural materials development by providing corrosion and tensile data from the standpoint of sodium compatibility of advanced structural alloys. The scope of work involves exposure of advanced structural alloys such as G92, mod.9Cr-1Mo (G91) ferritic-martensitic steels and HT-UPS austenitic stainless steels to a flowing sodium environment with controlled impurity concentrations. The exposed specimens are analyzed for their corrosion performance, microstructural changes, and tensile behavior. Previous reports examined the thermodynamic and kinetic factors involved in the purity of liquid sodium coolant for sodium reactor applications as well as the design, fabrication, and construction of a forced convection sodium loop for sodium compatibility studies of advanced materials. This report presents the results on corrosion performance, microstructure, and tensile properties of advanced ferritic-martensitic and austenitic alloys exposed to liquid sodium at 550 C for up to 2700 h and at 650 C for up to 5064 h in the forced convection sodium loop. The oxygen content of sodium was controlled by the cold-trapping method to achieve {approx}1 wppm oxygen level. Four alloys were examined, G92 in the normalized and tempered condition (H1 G92), G92 in the cold-rolled condition (H2 G92), G91 in the normalized and tempered condition, and hot-rolled HT-UPS. G91 was included as a reference to compare with advanced alloy, G92. It was found that all four alloys showed weight loss after sodium exposures at 550 and 650 C. The weight loss of the four

  9. Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development

    SciTech Connect

    Jon Carmack

    2014-01-01

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

  10. Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap

    SciTech Connect

    Durkee, Joe W.; Cipiti, Ben; Demuth, Scott Francis; Fallgren, Andrew James; Jarman, Ken; Li, Shelly; Meier, Dave; Miller, Mike; Osburn, Laura Ann; Pereira, Candido; Dasari, Venkateswara Rao; Ticknor, Lawrence O.; Yoo, Tae-Sic

    2016-09-30

    The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. These tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.

  11. Advanced Bioinks for 3D Printing: A Materials Science Perspective.

    PubMed

    Chimene, David; Lennox, Kimberly K; Kaunas, Roland R; Gaharwar, Akhilesh K

    2016-06-01

    Advanced bioinks for 3D printing are rationally designed materials intended to improve the functionality of printed scaffolds outside the traditional paradigm of the "biofabrication window". While the biofabrication window paradigm necessitates compromise between suitability for fabrication and ability to accommodate encapsulated cells, recent developments in advanced bioinks have resulted in improved designs for a range of biofabrication platforms without this tradeoff. This has resulted in a new generation of bioinks with high print fidelity, shear-thinning characteristics, and crosslinked scaffolds with high mechanical strength, high cytocompatibility, and the ability to modulate cellular functions. In this review, we describe some of the promising strategies being pursued to achieve these goals, including multimaterial, interpenetrating network, nanocomposite, and supramolecular bioinks. We also provide an overview of current and emerging trends in advanced bioink synthesis and biofabrication, and evaluate the potential applications of these novel biomaterials to clinical use.

  12. Semiconductor nanowire thermoelectric materials and devices, and processes for producing same

    DOEpatents

    Lagally, Max G.; Evans, Paul G.; Ritz, Clark S.

    2015-11-17

    The present invention provides nanowires and nanoribbons that are well suited for use in thermoelectric applications. The nanowires and nanoribbons are characterized by a periodic compositional longitudinal modulation. The nanowires are constructed using lithographic techniques from thin semiconductor membranes, or "nanomembranes."

  13. Semiconductor nanowire thermoelectric materials and devices, and processes for producing same

    DOEpatents

    Lagally, Max G [Madison, WI; Evans, Paul G [Madison, WI; Ritz, Clark S [Middleton, WI

    2011-02-15

    The present invention provides nanowires and nanoribbons that are well suited for use in thermoelectric applications. The nanowires and nanoribbons are characterized by a periodic longitudinal modulation, which may be a compositional modulation or a strain-induced modulation. The nanowires are constructed using lithographic techniques from thin semiconductor membranes, or "nanomembranes."

  14. Semiconductor nanowire thermoelectric materials and devices, and processes for producing same

    DOEpatents

    Lagally, Max G; Evans, Paul G; Ritz, Clark S

    2013-09-17

    The present invention provides nanowires and nanoribbons that are well suited for use in thermoelectric applications. The nanowires and nanoribbons are characterized by a periodic compositional longitudinal modulation. The nanowires are constructed using lithographic techniques from thin semiconductor membranes, or "nanomembranes."

  15. Code qualification of structural materials for AFCI advanced recycling reactors.

    SciTech Connect

    Natesan, K.; Li, M.; Majumdar, S.; Nanstad, R.K.; Sham, T.-L.

    2012-05-31

    This report summarizes the further findings from the assessments of current status and future needs in code qualification and licensing of reference structural materials and new advanced alloys for advanced recycling reactors (ARRs) in support of Advanced Fuel Cycle Initiative (AFCI). The work is a combined effort between Argonne National Laboratory (ANL) and Oak Ridge National Laboratory (ORNL) with ANL as the technical lead, as part of Advanced Structural Materials Program for AFCI Reactor Campaign. The report is the second deliverable in FY08 (M505011401) under the work package 'Advanced Materials Code Qualification'. The overall objective of the Advanced Materials Code Qualification project is to evaluate key requirements for the ASME Code qualification and the Nuclear Regulatory Commission (NRC) approval of structural materials in support of the design and licensing of the ARR. Advanced materials are a critical element in the development of sodium reactor technologies. Enhanced materials performance not only improves safety margins and provides design flexibility, but also is essential for the economics of future advanced sodium reactors. Code qualification and licensing of advanced materials are prominent needs for developing and implementing advanced sodium reactor technologies. Nuclear structural component design in the U.S. must comply with the ASME Boiler and Pressure Vessel Code Section III (Rules for Construction of Nuclear Facility Components) and the NRC grants the operational license. As the ARR will operate at higher temperatures than the current light water reactors (LWRs), the design of elevated-temperature components must comply with ASME Subsection NH (Class 1 Components in Elevated Temperature Service). However, the NRC has not approved the use of Subsection NH for reactor components, and this puts additional burdens on materials qualification of the ARR. In the past licensing review for the Clinch River Breeder Reactor Project (CRBRP) and the

  16. Time-resolved THz studies of carrier dynamics in semiconductors, superconductors, and strongly-correlated electron materials

    SciTech Connect

    Kaindl, Robert A.; Averitt, Richard D.

    2006-11-14

    Perhaps the most important aspect of contemporary condensed matter physics involves understanding strong Coulomb interactions between the large number of electrons in a solid. Electronic correlations lead to the emergence of new system properties, such as metal-insulator transitions, superconductivity, magneto-resistance, Bose-Einstein condensation, the formation of excitonic gases, or the integer and fractional Quantum Hall effects. The discovery of high-Tc superconductivity in particular was a watershed event, leading to dramatic experimental and theoretical advances in the field of correlated-electron systems. Such materials often exhibit competition between the charge, lattice, spin, and orbital degrees of freedom, whose cause-effect relationships are difficult to ascertain. Experimental insight into the properties of solids is traditionally obtained by time-averaged probes, which measure e.g., linear optical spectra, electrical conduction properties, or the occupied band structure in thermal equilibrium. Many novel physical properties arise from excitations out of the ground state into energetically higher states by thermal, optical, or electrical means. This leads to fundamental interactions between the system's constituents, such as electron-phonon and electron-electron interactions, which occur on ultrafast timescales. While these interactions underlie the physical properties of solids, they are often only indirectly inferred from time-averaged measurements. Time-resolved spectroscopy, consequently, is playing an ever increasing role to provide insight into light-matter interaction, microscopic processes, or cause-effect relationships that determine the physics of complex materials. In the past, experiments using visible and near-infrared femtosecond pulses have been extensively employed, e.g. to follow relaxation and dephasing processes in metals and semiconductors. However, many basic excitations in strongly-correlated electron systems and nanoscale

  17. Mishap risk control for advanced aerospace/composite materials

    NASA Technical Reports Server (NTRS)

    Olson, John M.

    1994-01-01

    Although advanced aerospace materials and advanced composites provide outstanding performance, they also present several unique post-mishap environmental, safety, and health concerns. The purpose of this paper is to provide information on some of the unique hazards and concerns associated with these materials when damaged by fire, explosion, or high-energy impact. Additionally, recommended procedures and precautions are addressed as they pertain to all phases of a composite aircraft mishap response, including fire-fighting, investigation, recovery, clean-up, and guidelines are general in nature and not application-specific. The goal of this project is to provide factual and realistic information which can be used to develop consistent and effective procedures and policies to minimize the potential environmental, safety, and health impacts of a composite aircraft mishap response effort.

  18. ADVANCED ELECTRIC AND MAGNETIC MATERIAL MODELS FOR FDTD ELECTROMAGNETIC CODES

    SciTech Connect

    Poole, B R; Nelson, S D; Langdon, S

    2005-05-05

    The modeling of dielectric and magnetic materials in the time domain is required for pulse power applications, pulsed induction accelerators, and advanced transmission lines. For example, most induction accelerator modules require the use of magnetic materials to provide adequate Volt-sec during the acceleration pulse. These models require hysteresis and saturation to simulate the saturation wavefront in a multipulse environment. In high voltage transmission line applications such as shock or soliton lines the dielectric is operating in a highly nonlinear regime, which require nonlinear models. Simple 1-D models are developed for fast parameterization of transmission line structures. In the case of nonlinear dielectrics, a simple analytic model describing the permittivity in terms of electric field is used in a 3-D finite difference time domain code (FDTD). In the case of magnetic materials, both rate independent and rate dependent Hodgdon magnetic material models have been implemented into 3-D FDTD codes and 1-D codes.

  19. Materials Advances to Enhance Development of Geothermal Power

    SciTech Connect

    Kukacka, Lawrence E.

    1989-03-21

    In order to assure the continued development of geothermal resources, many advances in materials technology are required so that high costs resulting from the severe environments encountered during drilling, well completion and energy extraction can be reduced. These needs will become more acute as higher temperature and chemically aggressive fluids are encountered. High priority needs are for lost circulation control and lightweight well completion materials, and tools such as drill pipe protectors, rotating head seals, blow-out preventers, and downhole drill motors. The lack of suitable hydrolytically stable chemical systems that can bond previously developed elastomers to metal reinforcement is a critical but as yet unaddressed impediment to the development of these tools. In addition, the availability of low cost corrosion and scale-resistant tubular lining materials would greatly enhance transport and energy extraction processes utilizing hypersaline brines. Work to address these materials needs is underway at Brookhaven National Laboratory (BNL), and recent accomplishments are summarized in the paper.

  20. Materials advances to enhance development of geothermal power

    SciTech Connect

    Kukacka, L.E.

    1989-03-01

    In order to assure the continued development of geothermal resources, many advances in materials technology are required so that high costs resulting from the severe environments encountered during drilling, well completion and energy extraction can be reduced. These needs will become more acute as higher temperature and chemically aggressive fluids are encountered. High priority needs are for lost circulation control and lightweight well completion materials, and tools such as drill pipe protectors, rotating head seals, blow-out preventers, and downhole drill motors. The lack of suitable hydrolytically stable chemical systems that can bond previously developed elastomers to metal reinforcement is a critical but as yet unaddressed impediment to the development of these tools. In addition, the availability of low cost corrosion and scale-resistant tubular lining materials would greatly enhance transport and energy extraction processes utilizing hypersaline brines. Work to address these materials needs is underway at Brookhaven National Laboratory (BNL), and recent accomplishments are summarized in the paper. 15 refs.

  1. Ultrasonic and radiographic evaluation of advanced aerospace materials: Ceramic composites

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    1990-01-01

    Two conventional nondestructive evaluation techniques were used to evaluate advanced ceramic composite materials. It was shown that neither ultrasonic C-scan nor radiographic imaging can individually provide sufficient data for an accurate nondestructive evaluation. Both ultrasonic C-scan and conventional radiographic imaging are required for preliminary evaluation of these complex systems. The material variations that were identified by these two techniques are porosity, delaminations, bond quality between laminae, fiber alignment, fiber registration, fiber parallelism, and processing density flaws. The degree of bonding between fiber and matrix cannot be determined by either of these methods. An alternative ultrasonic technique, angular power spectrum scanning (APSS) is recommended for quantification of this interfacial bond.

  2. Advanced Multifunctional Materials for High Speed Combatant Hulls

    DTIC Science & Technology

    2015-11-25

    3D hybrid fabrics Figure 1. General technical approach for integrated optimized design methodology that leverages recent advances in materials...strain rate dependent urethanes Reinforcement ■ UHPE fibers ■ High performance fibers ■ 2D/ 3D hybrid fabrics Additives ■ Conductive particles (e.g...Plastisol Ink. These mixed inks were determined to be too viscous to be used for screen printer . We also evaluated multiple commercial inks. These were

  3. Advanced materials and biochemical processes for geothermal applications

    SciTech Connect

    Kukacka, L.E.; van Rooyen, D.; Premuzic, E.T.

    1987-04-01

    Two Geothermal Technology Division (GTD)-sponsored programs: (1) Geothermal Materials Development, and (2) Advanced Biochemical Processes for Geothermal Brines, are described. In the former, work in the following tasks is in progress: (1) high temperature elastomeric materials for dynamic sealing applications, (2) advanced high temperature (300/sup 0/C) lightweight (1.1 g/cc) well cementing materials, (3) thermally conductive composites for heat exchanger tubing, (4) corrosion rates for metals in brine-contaminated binary plant working fluids, and (5) elastomeric liners for well casing. Methods for the utilization and/or the low cost environmentally acceptable disposal of toxic geothermal residues are being developed in the second program. This work is performed in two tasks. In one, microorganisms that can interact with toxic metals found in geothermal residues to convert them into soluble species for subsequent reinjection back into the reservoir or to concentrate them for removal by conventional processes are being identified. In the second task, process conditions are being defined for the encapsulation of untreated or partially biochemically treated residues in Portland cement-based formulations and the subsequent utilization of the waste fractions in building materials. Both processing methods yield materials which appear to meet disposal criteria for non-toxic solid waste, and their technical and economic feasibilities have been established.

  4. Two-dimensional oxides: multifunctional materials for advanced technologies.

    PubMed

    Pacchioni, Gianfranco

    2012-08-13

    The last decade has seen spectacular progress in the design, preparation, and characterization down to the atomic scale of oxide ultrathin films of few nanometers thickness grown on a different material. This has paved the way towards several sophisticated applications in advanced technologies. By playing around with the low-dimensionality of the oxide layer, which sometimes leads to truly two-dimensional systems, one can exploit new properties and functionalities that are not present in the corresponding bulk materials or thick films. In this review we provide some clues about the most recent advances in the design of these systems based on modern electronic structure theory and on their preparation and characterization with specifically developed growth techniques and analytical methods. We show how two-dimensional oxides can be used in mature technologies by providing added value to existing materials, or in new technologies based on completely new paradigms. The fields in which two-dimensional oxides are used are classified based on the properties that are exploited, chemical or physical. With respect to chemical properties we discuss use of oxide ultrathin films in catalysis, solid oxide fuel cells, gas sensors, corrosion protection, and biocompatible materials; regarding the physical properties we discuss metal-oxide field effect transistors and memristors, spintronic devices, ferroelectrics and thermoelectrics, and solar energy materials.

  5. Sol-gel Technology and Advanced Electrochemical Energy Storage Materials

    NASA Technical Reports Server (NTRS)

    Chu, Chung-tse; Zheng, Haixing

    1996-01-01

    Advanced materials play an important role in the development of electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. The sol-gel process is a versatile solution for use in the fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. This processing technique is particularly useful in producing porous materials with high surface area and low density, two of the most desirable characteristics for electrode materials. In addition,the porous surface of gels can be modified chemically to create tailored surface properties, and inorganic/organic micro-composites can be prepared for improved material performance device fabrication. Applications of several sol-gel derived electrode materials in different energy storage devices are illustrated in this paper. V2O5 gels are shown to be a promising cathode material for solid state lithium batteries. Carbon aerogels, amorphous RuO2 gels and sol-gel derived hafnium compounds have been studied as electrode materials for high energy density and high power density electrochemical capacitors.

  6. Comparison of Wide-Bandgap Semiconductors for Power Electronics Applications

    SciTech Connect

    Ozpineci, B.

    2004-01-02

    Recent developmental advances have allowed silicon (Si) semiconductor technology to approach the theoretical limits of the Si material; however, power device requirements for many applications are at a point that the present Si-based power devices cannot handle. The requirements include higher blocking voltages, switching frequencies, efficiency, and reliability. To overcome these limitations, new semiconductor materials for power device applications are needed. For high power requirements, wide-bandgap semiconductors like silicon carbide (SiC), gallium nitride (GaN), and diamond, with their superior electrical properties, are likely candidates to replace Si in the near future. This report compares wide-bandgap semiconductors with respect to their promise and applicability for power applications and predicts the future of power device semiconductor materials.

  7. New Semiconductor Devices

    NASA Astrophysics Data System (ADS)

    Balestra, F.

    2008-11-01

    A review of recently emerging semiconductor devices for nanoelectronic applications is given. For the end of the international technology roadmap for semiconductors, very innovative materials, technologies and nanodevice architectures will be needed. Silicon on insulator-based devices seem to be the best candidates for the ultimate integration of integrated circuits on silicon. The flexibility of the silicon on insulator-based structure and the possibility to realize new device architectures allow to obtain optimum electrical properties for low power and high performance circuits. These transistors are also very interesting for high frequency and memory applications. The performance and physical mechanisms are addressed in single- and multi-gate thin film Si, SiGe and Ge metal-oxide-semiconductor field-effect-transistors. The impact of tensile or compressive uniaxial and biaxial strains in the channel, of high k materials and metal gates as well as metallic Schottky source-drain architectures are discussed. Finally, the interest of advanced beyond-CMOS (complementary MOS) nanodevices for long term applications, based on nanowires, carbon electronics or small slope switch structures are presented.

  8. Advanced Materials for Mercury 50 Gas Turbine Combustion System

    SciTech Connect

    Price, Jeffrey

    2008-09-30

    Solar Turbines Incorporated (Solar), under cooperative agreement number DE-FC26-0CH11049, has conducted development activities to improve the durability of the Mercury 50 combustion system to 30,000 hours life and reduced life cycle costs. This project is part of Advanced Materials in the Advanced Industrial Gas Turbines program in DOE's Office of Distributed Energy. The targeted development engine was the Mercury{trademark} 50 gas turbine, which was developed by Solar under the DOE Advanced Turbine Systems program (DOE contract number DE-FC21-95MC31173). As a generator set, the Mercury 50 is used for distributed power and combined heat and power generation and is designed to achieve 38.5% electrical efficiency, reduced cost of electricity, and single digit emissions. The original program goal was 20,000 hours life, however, this goal was increased to be consistent with Solar's standard 30,000 hour time before overhaul for production engines. Through changes to the combustor design to incorporate effusion cooling in the Generation 3 Mercury 50 engine, which resulted in a drop in the combustor wall temperature, the current standard thermal barrier coated liner was predicted to have 18,000 hours life. With the addition of the advanced materials technology being evaluated under this program, the combustor life is predicted to be over 30,000 hours. The ultimate goal of the program was to demonstrate a fully integrated Mercury 50 combustion system, modified with advanced materials technologies, at a host site for a minimum of 4,000 hours. Solar was the Prime Contractor on the program team, which includes participation of other gas turbine manufacturers, various advanced material and coating suppliers, nationally recognized test laboratories, and multiple industrial end-user field demonstration sites. The program focused on a dual path development route to define an optimum mix of technologies for the Mercury 50 and future gas turbine products. For liner and injector

  9. Design of hybrid conjugated polymer materials: 1) Novel inorganic/organic hybrid semiconductors and 2) Surface modification via grafting approaches

    NASA Astrophysics Data System (ADS)

    Peterson, Joseph J.

    The research presented in this dissertation focuses on the design and synthesis of novel hybrid conjugated polymer materials using two different approaches: (1) inorganic/organic hybrid semiconductors through the incorporation of carboranes into the polymer structure and (2) the modification of surfaces with conjugated polymers via grafting approaches. Hybrid conjugated polymeric materials, which are materials or systems in which conjugated polymers are chemically integrated with non-traditional structures or surfaces, have the potential to harness useful properties from both components of the material to help overcome hurdles in their practical realization in polymer-based devices. This work is centered around the synthetic challenges of creating new hybrid conjugated systems and their potential for advancing the field of polymer-based electronics through both greater understanding of the behavior of hybrid systems, and access to improved performance and new applications. Chapter 1 highlights the potential applications and advantages for these hybrid systems, and provides some historical perspective, along with relevant background materials, to illustrate the rationale behind this work. Chapter 2 explores the synthesis of poly(fluorene)s with pendant carborane cages. The Ni(0) dehalogenative polymerization of a dibromofluorene with pendant carborane cages tethered to the bridging 9-position produced hybrid polymers produced polymers which combined the useful emissive characteristics of poly(fluorene) with the thermal and chemical stability of carborane cages. The materials were found to display increased glass transition temperatures and showed improved emission color stability after annealing at high temperatures relative to the non-hybrid polymer. The design and synthesis of a poly(fluorene)-based hybrid material with carborane cages in the backbone, rather than as pendant groups, begins in chapter 3. Poly(fluorene) with p-carborane in the backbone is

  10. Advanced thermoplastic materials for district heating piping systems

    SciTech Connect

    Raske, D.T.; Karvelas, D.E.

    1988-04-01

    The work described in this report represents research conducted in the first year of a three-year program to assess, characterize, and design thermoplastic piping for use in elevated-temperature district heating (DH) systems. The present report describes the results of a program to assess the potential usefulness of advanced thermoplastics as piping materials for use in DH systems. This includes the review of design rules for thermoplastic materials used as pipes, a survey of candidate materials and available mechanical properties data, and mechanical properties testing to obtain baseline data on a candidate thermoplastic material extruded as pipe. The candidate material studied in this phase of the research was a polyetherimide resin, Ultem 1000, which has a UL continuous service temperature rating of 338/degree/F (170/degree/C). The results of experiments to determine the mechanical properties between 68 and 350/degree/F (20 and 177/degree/C) were used to establish preliminary design values for this material. Because these prototypic pipes were extruded under less than optimal conditions, the mechanical properties obtained are inferior to those expected from typical production pipes. Nevertheless, the present material in the form of 2-in. SDR 11 pipe (2.375-in. O. D. by 0.216-in. wall) would have a saturated water design pressure rating of /approximately/34 psig at 280/degree/F. 16 refs., 6 figs., 8 tabs.

  11. Solution-phase synthesis of metal and/or semiconductor homojunction/heterojunction nanomaterials.

    PubMed

    Feng, Xiumei; Hu, Guanqi; Hu, Jianqiang

    2011-05-01

    The design and architecture of programmable metal-semiconductor nanostructures with excellent optoelectronic properties from metal and semiconductor building blocks with nanoscale dimensions have been a key aim of material scientists due to their central roles in the fabrication of electronic, optical, and optoelectronic nanodevices. This review focuses on the latest advances in the solution-phase synthesis of metal and/or semiconductor homojunction/heterojunction nanomaterials. It begins with the simplest construction of metal/metal and semiconductor/semiconductor homojunctions, and then highlights the synthetic design of metal/metal and semiconductor/semiconductor heterojunction nanostructures with different building blocks. Special emphasis is placed on metal/semiconductor heterojunction nanomaterials, which are the most challenging and promising nanomaterials for future applications in optoelectronic nanodevices. Finally, this review concludes with personal perspectives on the directions for future research in this field.

  12. Characterization and Application of Colloidal Nanocrystalline Materials for Advanced Photovoltaics

    NASA Astrophysics Data System (ADS)

    Bhandari, Khagendra P.

    Solar energy is Earth's primary source of renewable energy and photovoltaic solar cells enable the direct conversion of sunlight into electricity. Crystalline silicon solar cells and modules have dominated photovoltaic technology from the beginning and they now constitute more than 90% of the PV market. Thin film (CdTe and CIGS) solar cells and modules come in second position in market share. Some organic, dye-sensitized and perovskite solar cells are emerging in the market but are not yet in full commercial scale. Solar cells made from colloidal nanocrystalline materials may eventually provide both low cost and high efficiency because of their promising properties such as high absorption coefficient, size tunable band gap, and quantum confinement effect. It is also expected that the greenhouse gas emission and energy payback time from nanocrystalline solar PV systems will also be least compared to all other types of PV systems mainly due to the least embodied energy throughout their life time. The two well-known junction architectures for the fabrication of quantum dot based photovoltaic devices are the Schottky junction and heterojunction. In Schottky junction cells, a heteropartner semiconducting material is not required. A low work function metal is used as the back contact, a transparent conducting layer is used as the front contact, and the layer of electronically-coupled quantum dots is placed between these two materials. Schottky junction solar cells explain the usefulness of nanocrystalline materials for high efficiency heterojunction solar cells. For heterojunction devices, n-type semiconducting materials such as ZnO , CdS or TiO2 have been used as suitable heteropartners. Here, PbS quantum dot solar cells were fabricated using ZnO and CdS semiconductor films as window layers. Both of the heteropartners are sputter-deposited onto TCO coated glass substrates; ZnO was deposited with the substrate held at room temperature and for CdS the substrate was at 250

  13. Toward High Performance Integrated Semiconductor Micro and Nano Lasers Enabled by Transparent Conducting Materials: from Thick Structure to Thin Film

    NASA Astrophysics Data System (ADS)

    Ou, Fang

    Integrated semiconductor lasers working at the wavelength around 1.3 microm and 1.55 microm are of great interest for the research of photonic integrated circuit (PIC) since they are the crucial components for optical communications and many other applications. To satisfy the requirement of the next generation optical communication and computing systems, integrated semiconductor lasers are expected to have high device performance like very low lasing threshold, high output powers, high speed and possibility of being integrated with electronics. This dissertation focuses on the design and realization of InP based high performance electrically pumped integrated semiconductor lasers. In the dissertation, we first design the tall structure based electrically pumped integrated micro-lasers. Those lasers are capable of giving >10 mW output power with a moderate low threshold current density (0.5--5 kA/cm 2). Besides, a new enhanced radiation loss based coupler design is demonstrated to realize single directional output for curvilinear cavities. Second, the thin film structure based integrated semiconductor laser designs are proposed. Both structures use the side conduction geometry to enable the electrical injection into the thin film laser cavity. The performance enhancement of the thin film structure based lasers is analyzed compared to the tall structure. Third, we investigate the TCO materials. CdO deposited by PLD and In 2O3 deposited by IAD are studied from aspects of their physical, optical and electrical properties. Those materials can give a wide range of tunability in their conductivity (1--5000 S/cm) and optical transparency (loss 200--5000 cm-1), which is of great interest in realizing novel nanophotonic devices. In addition, the electrical contact properties of those materials to InP are also studied. Experiment result shows that both CdO and In2O3 can achieve good ohmic contact to n-InP with contact resistance as low as 10-6O·cm 2. At last, we investigate

  14. Advances in Subcritical Hydro-/Solvothermal Processing of Graphene Materials.

    PubMed

    Sasikala, Suchithra Padmajan; Poulin, Philippe; Aymonier, Cyril

    2017-02-28

    Many promising graphene-based materials are kept away from mainstream applications due to problems of scalability and environmental concerns in their processing. Hydro-/solvothermal techniques overwhelmingly satisfy both the aforementioned criteria, and have matured as alternatives to wet-chemical methods with advances made over the past few decades. The insolubility of graphene in many solvents poses considerable difficulties in their processing. In this context hydro-/solvothermal techniques present an ideal opportunity for processing of graphenic materials with their versatility in manipulating the physical and thermodynamic properties of the solvent. The flexibility in hydro-/solvothermal techniques for manipulation of solvent composition, temperature and pressure provides numerous handles to manipulate graphene-based materials during synthesis. This review provides a comprehensive look at the subcritical hydro-/solvothermal synthesis of graphene-based functional materials and their applications. Several key synthetic strategies governing the morphology and properties of the products such as temperature, pressure, and solvent effects are elaborated. Advances in the synthesis, doping, and functionalization of graphene in hydro-/solvothermal media are highlighted together with our perspectives in the field.

  15. Elastico-mechanoluminescence and crystal-structure relationships in persistent luminescent materials and II-VI semiconductor phosphors

    NASA Astrophysics Data System (ADS)

    Chandra, B. P.; Chandra, V. K.; Jha, Piyush

    2015-04-01

    Elastico-mechanoluminescence (EML) has recently attracted the attention of a large number of researchers because of its potential in different types of mechano-optical devices. For understanding the mechanism of EML the relationships between elastico-mechanoluminescence (EML) and crystal-structure of a large number of persistent luminescent materials and II-VI semiconductor phosphors known to date are investigated. It is found that, although most of the non-centrosymmetric crystals exhibit EML, certain non-centrosymmetric crystals do not show EML. Whereas, many centrosymmetric crystals do not exhibit EML, certain centrosymmetric crystals exhibit EML. Piezoelectric ZnS:Cu,Cl single crystals do not show EML, but piezoelectric ZnS:Cu,Cl microcrystalline phosphors show very intense EML. Piezoelectric single crystals of undoped ZnS do not show EML. It seems that EML is related to local piezoelectrification near the impurities in crystals where piezoelectric constant is high. Suitable piezoelectric field near the local piezoelectric region and stable charge carriers in traps are required for appearance of EML. The EML of persistent luminescent materials and II-VI semiconductor phosphors can be understood on the basis of piezoelectrically-induced trap-depth reduction model of EML. Using suitable dopants both in non-centrosymmetric and centrosymmetric crystals intense elastico-mechanoluminescent materials emitting desired colours can be tailored, which may find applications in several mechano-optical devices.

  16. Area Reports. Advanced materials and devices research area. Silicon materials research task, and advanced silicon sheet task

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The objectives of the Silicon Materials Task and the Advanced Silicon Sheet Task are to identify the critical technical barriers to low-cost silicon purification and sheet growth that must be overcome to produce a PV cell substrate material at a price consistent with Flat-plate Solar Array (FSA) Project objectives and to overcome these barriers by performing and supporting appropriate R&D. Progress reports are given on silicon refinement using silane, a chemical vapor transport process for purifying metallurgical grade silicon, silicon particle growth research, and modeling of silane pyrolysis in fluidized-bed reactors.

  17. Advanced composite structural concepts and materials technologies for primary aircraft structures: Advanced material concepts

    NASA Technical Reports Server (NTRS)

    Lau, Kreisler S. Y.; Landis, Abraham L.; Chow, Andrea W.; Hamlin, Richard D.

    1993-01-01

    To achieve acceptable performance and long-term durability at elevated temperatures (350 to 600 F) for high-speed transport systems, further improvements of the high-performance matrix materials will be necessary to achieve very long-term (60,000-120,000 service hours) retention of mechanical properties and damage tolerance. This report emphasizes isoimide modification as a complementary technique to semi-interpenetrating polymer networks (SIPN's) to achieve greater processibility, better curing dynamics, and possibly enhanced thermo-mechanical properties in composites. A key result is the demonstration of enhanced processibility of isoimide-modified linear and thermo-setting polyimide systems.

  18. Method and apparatus for electron-only radiation detectors from semiconductor materials

    SciTech Connect

    2000-05-30

    A system is disclosed for obtaining improved resolution in room temperature semiconductor radiation detectors such as CdZnTe and HgI{sub 2}, which exhibit significant hole-trapping. A electrical reference plane is established about the perimeter of a semiconductor crystal and disposed intermediately between two oppositely biased end electrodes. The intermediate reference plane comprises a narrow strip of wire in electrical contact with the surface of the crystal, biased at a potential between the end electrode potentials and serving as an auxiliary electrical reference for a chosen electrode--typically the collector electrode for the more mobile charge carrier. This arrangement eliminates the interfering effects of the less mobile carriers as these are gathered by their electrode collector.

  19. Expanding the Scope of Thiophene Based Semiconductors: Perfluoroalkylated Materials and Fused Thienoacenes

    NASA Astrophysics Data System (ADS)

    Black, Hayden Thompson

    Thiophene based semiconductors with new molecular and macromolecular structures were explored for applications in field effect transistors. Perfluoroalkylation was studied both as a means for controlling the self-assembly properties of polythiophenes, as well as modifying the molecular orbital energies of a series of oligothiophenes. End-perfluoroalkylation of poly(3-hexylthiophene) resulted in interesting self-assembly of the polymer into a bilayer vesicle. Similar fluorophilic assembly may be useful for controlling blend morphologies in heterojunction based devices. On the other hand, perfluoroalkylation of small molecule thiophene semiconductors leads to low lying LUMO levels, and can be used to promote electron injection for n-type transistor devices. This strategy was employed in combination with a pi-electron deficient benzothiadiazole to afford a new n-type semiconductor with an exceptionally low LUMO. Monoperfluoroalkylated oligothiophenes were also synthesized and studied in field effect transistors for the first time. In addition, two new fused thienoacene compounds were synthesized and their crystal structures were analyzed. The fused compounds showed exceptional pi-pi stacking and assembled into well defined one-dimensional microcrystals from the vapor phase. Field effect transistors were fabricated employing the new thienoacenes, showing p-type conductivity with equivalent charge carrier mobilities.

  20. Testing of Alternative Materials for Advanced Suit Bladders

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Orndoff, Evelyne; Makinen, Janice; Tang, Henry

    2011-01-01

    Several candidate advanced pressure bladder membrane materials have been developed for NASA Johnson Space Center by DSM Biomedical for selective permeability of carbon dioxide and water vapor. These materials were elasthane and two other formulations of thermoplastic polyether polyurethane. Each material was tested in two thicknesses for permeability to carbon dioxide, oxygen and water vapor. Although oxygen leaks through the suit bladder would amount to only about 60 cc/hr in a full size suit, significant amounts of carbon dioxide would not be rejected by the system to justify its use. While the ratio of carbon dioxide to oxygen permeability is about 48 to 1, this is offset by the small partial pressure of carbon dioxide in acceptable breathing atmospheres of the suit. Humidity management remains a possible use of the membranes depending on the degree to which the water permeability is inhibited by cations in the sweat. Tests are underway to explore cation fouling from sweat.

  1. Development of processing techniques for advanced thermal protection materials

    NASA Technical Reports Server (NTRS)

    Selvaduray, Guna S.

    1994-01-01

    The effort, which was focused on the research and development of advanced materials for use in Thermal Protection Systems (TPS), has involved chemical and physical testing of refractory ceramic tiles, fabrics, threads and fibers. This testing has included determination of the optical properties, thermal shock resistance, high temperature dimensional stability, and tolerance to environmental stresses. Materials have also been tested in the Arc Jet 2 x 9 Turbulent Duct Facility (TDF), the 1 atmosphere Radiant Heat Cycler, and the Mini-Wind Tunnel Facility (MWTF). A significant part of the effort hitherto has gone towards modifying and upgrading the test facilities so that meaningful tests can be carried out. Another important effort during this period has been the creation of a materials database. Computer systems administration and support have also been provided. These are described in greater detail below.

  2. Materials Advances for Next-Generation Ingestible Electronic Medical Devices.

    PubMed

    Bettinger, Christopher J

    2015-10-01

    Electronic medical implants have collectively transformed the diagnosis and treatment of many diseases, but have many inherent limitations. Electronic implants require invasive surgeries, operate in challenging microenvironments, and are susceptible to bacterial infection and persistent inflammation. Novel materials and nonconventional device fabrication strategies may revolutionize the way electronic devices are integrated with the body. Ingestible electronic devices offer many advantages compared with implantable counterparts that may improve the diagnosis and treatment of pathologies ranging from gastrointestinal infections to diabetes. This review summarizes current technologies and highlights recent materials advances. Specific focus is dedicated to next-generation materials for packaging, circuit design, and on-board power supplies that are benign, nontoxic, and even biodegradable. Future challenges and opportunities are also highlighted.

  3. Progress in advanced high temperature turbine materials, coatings, and technology

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Ault, G. M.

    1977-01-01

    Several NASA-sponsored benefit-cost studies have shown that very substantial benefits can be obtained by increasing material capability for aircraft gas turbines. Prealloyed powder processing holds promise for providing superalloys with increased strength for turbine disk applications. The developement of advanced powder metallurgy disk alloys must be based on a design of optimum processing and heat treating procedures. Materials considered for high temperature application include oxide dispersion strengthened (ODS) alloys, directionally solidified superalloys, ceramics, directionally solidified eutectics, materials combining the high strength of a gamma prime strengthened alloy with the elevated temperature strength of an ODS, and composites. Attention is also given to the use of high pressure turbine seals, approaches for promoting environmental protection, and turbine cooling technology.

  4. Review on advanced composite materials boring mechanism and tools

    NASA Astrophysics Data System (ADS)

    Shi, Runping; Wang, Chengyong

    2011-05-01

    With the rapid development of aviation and aerospace manufacturing technology, advanced composite materials represented by carbon fibre reinforced plastics (CFRP) and super hybrid composites (fibre/metal plates) are more and more widely applied. The fibres are mainly carbon fibre, boron fibre, Aramid fiber and Sic fibre. The matrixes are resin matrix, metal matrix and ceramic matrix. Advanced composite materials have higher specific strength and higher specific modulus than glass fibre reinforced resin composites of the 1st generation. They are widely used in aviation and aerospace industry due to their high specific strength, high specific modulus, excellent ductility, anticorrosion, heat-insulation, sound-insulation, shock absorption and high&low temperature resistance. They are used for radomes, inlets, airfoils(fuel tank included), flap, aileron, vertical tail, horizontal tail, air brake, skin, baseboards and tails, etc. Its hardness is up to 62~65HRC. The holes are greatly affected by the fibre laminates direction of carbon fibre reinforced composite material due to its anisotropy when drilling in unidirectional laminates. There are burrs, splits at the exit because of stress concentration. Besides there is delamination and the hole is prone to be smaller. Burrs are caused by poor sharpness of cutting edge, delamination, tearing, splitting are caused by the great stress caused by high thrust force. Poorer sharpness of cutting edge leads to lower cutting performance and higher drilling force at the same time. The present research focuses on the interrelation between rotation speed, feed, drill's geometry, drill life, cutting mode, tools material etc. and thrust force. At the same time, holes quantity and holes making difficulty of composites have also increased. It requires high performance drills which won't bring out defects and have long tool life. It has become a trend to develop super hard material tools and tools with special geometry for drilling

  5. Review on advanced composite materials boring mechanism and tools

    NASA Astrophysics Data System (ADS)

    Shi, Runping; Wang, Chengyong

    2010-12-01

    With the rapid development of aviation and aerospace manufacturing technology, advanced composite materials represented by carbon fibre reinforced plastics (CFRP) and super hybrid composites (fibre/metal plates) are more and more widely applied. The fibres are mainly carbon fibre, boron fibre, Aramid fiber and Sic fibre. The matrixes are resin matrix, metal matrix and ceramic matrix. Advanced composite materials have higher specific strength and higher specific modulus than glass fibre reinforced resin composites of the 1st generation. They are widely used in aviation and aerospace industry due to their high specific strength, high specific modulus, excellent ductility, anticorrosion, heat-insulation, sound-insulation, shock absorption and high&low temperature resistance. They are used for radomes, inlets, airfoils(fuel tank included), flap, aileron, vertical tail, horizontal tail, air brake, skin, baseboards and tails, etc. Its hardness is up to 62~65HRC. The holes are greatly affected by the fibre laminates direction of carbon fibre reinforced composite material due to its anisotropy when drilling in unidirectional laminates. There are burrs, splits at the exit because of stress concentration. Besides there is delamination and the hole is prone to be smaller. Burrs are caused by poor sharpness of cutting edge, delamination, tearing, splitting are caused by the great stress caused by high thrust force. Poorer sharpness of cutting edge leads to lower cutting performance and higher drilling force at the same time. The present research focuses on the interrelation between rotation speed, feed, drill's geometry, drill life, cutting mode, tools material etc. and thrust force. At the same time, holes quantity and holes making difficulty of composites have also increased. It requires high performance drills which won't bring out defects and have long tool life. It has become a trend to develop super hard material tools and tools with special geometry for drilling

  6. Test model designs for advanced refractory ceramic materials

    NASA Technical Reports Server (NTRS)

    Tran, Huy Kim

    1993-01-01

    The next generation of space vehicles will be subjected to severe aerothermal loads and will require an improved thermal protection system (TPS) and other advanced vehicle components. In order to ensure the satisfactory performance system (TPS) and other advanced vehicle materials and components, testing is to be performed in environments similar to space flight. The design and fabrication of the test models should be fairly simple but still accomplish test objectives. In the Advanced Refractory Ceramic Materials test series, the models and model holders will need to withstand the required heat fluxes of 340 to 817 W/sq cm or surface temperatures in the range of 2700 K to 3000 K. The model holders should provide one dimensional (1-D) heat transfer to the samples and the appropriate flow field without compromising the primary test objectives. The optical properties such as the effective emissivity, catalytic efficiency coefficients, thermal properties, and mass loss measurements are also taken into consideration in the design process. Therefore, it is the intent of this paper to demonstrate the design schemes for different models and model holders that would accommodate these test requirements and ensure the safe operation in a typical arc jet facility.

  7. Corrosion performance of advanced structural materials in sodium.

    SciTech Connect

    Natesan, K.; Momozaki, Y.; Li, M.; Rink, D.L.

    2012-05-16

    This report gives a description of the activities in design, fabrication, construction, and assembling of a pumped sodium loop for the sodium compatibility studies on advanced structural materials. The work is the Argonne National Laboratory (ANL) portion of the effort on the work project entitled, 'Sodium Compatibility of Advanced Fast Reactor Materials,' and is a part of Advanced Materials Development within the Reactor Campaign. The objective of this project is to develop information on sodium corrosion compatibility of advanced materials being considered for sodium reactor applications. This report gives the status of the sodium pumped loop at Argonne National Laboratory, the specimen details, and the technical approach to evaluate the sodium compatibility of advanced structural alloys. This report is a deliverable from ANL in FY2010 (M2GAN10SF050302) under the work package G-AN10SF0503 'Sodium Compatibility of Advanced Fast Reactor Materials.' Two reports were issued in 2009 (Natesan and Meimei Li 2009, Natesan et al. 2009) which examined the thermodynamic and kinetic factors involved in the purity of liquid sodium coolant for sodium reactor applications as well as the design specifications for the ANL pumped loop for testing advanced structural materials. Available information was presented on solubility of several metallic and nonmetallic elements along with a discussion of the possible mechanisms for the accumulation of impurities in sodium. That report concluded that the solubility of many metals in sodium is low (<1 part per million) in the temperature range of interest in sodium reactors and such trace amounts would not impact the mechanical integrity of structural materials and components. The earlier report also analyzed the solubility and transport mechanisms of nonmetallic elements such as oxygen, nitrogen, carbon, and hydrogen in laboratory sodium loops and in reactor systems such as Experimental Breeder Reactor-II, Fast Flux Test Facility, and

  8. A manufacturing database of advanced materials used in spacecraft structures

    NASA Technical Reports Server (NTRS)

    Bao, Han P.

    1994-01-01

    Cost savings opportunities over the life cycle of a product are highest in the early exploratory phase when different design alternatives are evaluated not only for their performance characteristics but also their methods of fabrication which really control the ultimate manufacturing costs of the product. In the past, Design-To-Cost methodologies for spacecraft design concentrated on the sizing and weight issues more than anything else at the early so-called 'Vehicle Level' (Ref: DOD/NASA Advanced Composites Design Guide). Given the impact of manufacturing cost, the objective of this study is to identify the principal cost drivers for each materials technology and propose a quantitative approach to incorporating these cost drivers into the family of optimization tools used by the Vehicle Analysis Branch of NASA LaRC to assess various conceptual vehicle designs. The advanced materials being considered include aluminum-lithium alloys, thermoplastic graphite-polyether etherketone composites, graphite-bismaleimide composites, graphite- polyimide composites, and carbon-carbon composites. Two conventional materials are added to the study to serve as baseline materials against which the other materials are compared. These two conventional materials are aircraft aluminum alloys series 2000 and series 7000, and graphite-epoxy composites T-300/934. The following information is available in the database. For each material type, the mechanical, physical, thermal, and environmental properties are first listed. Next the principal manufacturing processes are described. Whenever possible, guidelines for optimum processing conditions for specific applications are provided. Finally, six categories of cost drivers are discussed. They include, design features affecting processing, tooling, materials, fabrication, joining/assembly, and quality assurance issues. It should be emphasized that this database is not an exhaustive database. Its primary use is to make the vehicle designer

  9. Crashworthiness analysis using advanced material models in DYNA3D

    SciTech Connect

    Logan, R.W.; Burger, M.J.; McMichael, L.D.; Parkinson, R.D.

    1993-10-22

    As part of an electric vehicle consortium, LLNL and Kaiser Aluminum are conducting experimental and numerical studies on crashworthy aluminum spaceframe designs. They have jointly explored the effect of heat treat on crush behavior and duplicated the experimental behavior with finite-element simulations. The major technical contributions to the state of the art in numerical simulation arise from the development and use of advanced material model descriptions for LLNL`s DYNA3D code. Constitutive model enhancements in both flow and failure have been employed for conventional materials such as low-carbon steels, and also for lighter weight materials such as aluminum and fiber composites being considered for future vehicles. The constitutive model enhancements are developed as extensions from LLNL`s work in anisotropic flow and multiaxial failure modeling. Analysis quality as a function of level of simplification of material behavior and mesh is explored, as well as the penalty in computation cost that must be paid for using more complex models and meshes. The lightweight material modeling technology is being used at the vehicle component level to explore the safety implications of small neighborhood electric vehicles manufactured almost exclusively from these materials.

  10. Supramolecular polymer adhesives: advanced materials inspired by nature.

    PubMed

    Heinzmann, Christian; Weder, Christoph; de Espinosa, Lucas Montero

    2016-01-21

    Due to their dynamic, stimuli-responsive nature, non-covalent interactions represent versatile design elements that can be found in nature in many molecular processes or materials, where adaptive behavior or reversible connectivity is required. Examples include molecular recognition processes, which trigger biological responses or cell-adhesion to surfaces, and a broad range of animal secreted adhesives with environment-dependent properties. Such advanced functionalities have inspired researchers to employ similar design approaches for the development of synthetic polymers with stimuli-responsive properties. The utilization of non-covalent interactions for the design of adhesives with advanced functionalities such as stimuli responsiveness, bonding and debonding on demand capability, surface selectivity or recyclability is a rapidly emerging subset of this field, which is summarized in this review.

  11. Advanced Materials Development Program: Ceramic Technology for Advanced Heat Engines program plan, 1983--1993

    SciTech Connect

    Not Available

    1990-07-01

    The purpose of the Ceramic Technology for Advanced Heat Engines (CTAHE) Project is the development of an industrial technology base capable of providing reliable and cost-effective high temperature ceramic components for application in advanced heat engines. There is a deliberate emphasis on industrial'' in the purpose statement. The project is intended to support the US ceramic and engine industries by providing the needed ceramic materials technology. The heat engine programs have goals of component development and proof-of-concept. The CTAHE Project is aimed at developing generic basic ceramic technology and does not involve specific engine designs and components. The materials research and development efforts in the CTAHE Project are focused on the needs and general requirements of the advanced gas turbine and low heat rejection diesel engines. The CTAHE Project supports the DOE Office of Transportation Systems' heat engine programs, Advanced Turbine Technology Applications (ATTAP) and Heavy Duty Transport (HDT) by providing the basic technology required for development of reliable and cost-effective ceramic components. The heat engine programs provide the iterative component design, fabrication, and test development logic. 103 refs., 18 figs., 11 tabs.

  12. Impurity-Induced Layer Disordering and Hydrogenation in the Indium Aluminum Gallium Phosphide Material System: Visible-Spectrum Semiconductor Lasers.

    NASA Astrophysics Data System (ADS)

    Dallesasse, John Michael

    1991-02-01

    The development of visible-spectrum semiconductor lasers is of immense economic and practical importance. Because of the extremely high efficiency of semiconductor lasers, coherent visible light sources can be made with extremely low power requirements. Applications for such sources include high-density optical storage units and optical communications. Additionally, the use of multiple-stripe arrays makes high-power (gg200 mW per facet) coherent semiconductor light sources a possibility. In this work, various aspects of the problems involved in constructing visible-spectrum semiconductor lazers are discussed. First, the difficulties in obtaining reliable devices near the direct-indirect crossover of the rm Al_{x}Ga_ {1-x}As-GaAs material system are discussed. Hydrolysis of high Al-content buried layers via interaction of water vapor in the air with the crystal at pinholes and cleaved edges is found to result in slow decomposition of QWH material. Next, the rm In_{1-y}(Al_ {x} Ga_{1-x})_{y }P material system is put forth as the material system of choice for the construction of visible-spectrum semiconductor lasers. Data are shown on the continuous -wave (cw) room-temperture operation of oxide-stripe lasers. Two important techniques for the realization of high performance device operation are next described. The first of these, impurity-induced layer disordering (IILD), is useful for the construction of low-threshold single -stripe lasers, high-power multistripe lasers, and high beam-quality devices. The disordering of rm In_{1-y} (Al_{x} Ga_ {1-x})_{y}P heterolayers via Si and Ge diffusion is first examined via shallow-angle slant cross-sectioning, transmission electron microscopy (TEM), secondary ion mass spectroscopy (SIMS), and photoluminescence (PL) on as-grown and disordered InAlP-InGaP superlattice (SL) crystals. Disordering via Si diffusion is then applied to the fabrication of buried heterostructure visible-spectrum lasers. These devices operate at room

  13. Mechanical assembly of complex, 3D mesostructures from releasable multilayers of advanced materials

    PubMed Central

    Yan, Zheng; Zhang, Fan; Liu, Fei; Han, Mengdi; Ou, Dapeng; Liu, Yuhao; Lin, Qing; Guo, Xuelin; Fu, Haoran; Xie, Zhaoqian; Gao, Mingye; Huang, Yuming; Kim, JungHwan; Qiu, Yitao; Nan, Kewang; Kim, Jeonghyun; Gutruf, Philipp; Luo, Hongying; Zhao, An; Hwang, Keh-Chih; Huang, Yonggang; Zhang, Yihui; Rogers, John A.

    2016-01-01

    Capabilities for assembly of three-dimensional (3D) micro/nanostructures in advanced materials have important implications across a broad range of application areas, reaching nearly every class of microsystem technology. Approaches that rely on the controlled, compressive buckling of 2D precursors are promising because of their demonstrated compatibility with the most sophisticated planar technologies, where materials include inorganic semiconductors, polymers, metals, and various heterogeneous combinations, spanning length scales from submicrometer to centimeter dimensions. We introduce a set of fabrication techniques and design concepts that bypass certain constraints set by the underlying physics and geometrical properties of the assembly processes associated with the original versions of these methods. In particular, the use of releasable, multilayer 2D precursors provides access to complex 3D topologies, including dense architectures with nested layouts, controlled points of entanglement, and other previously unobtainable layouts. Furthermore, the simultaneous, coordinated assembly of additional structures can enhance the structural stability and drive the motion of extended features in these systems. The resulting 3D mesostructures, demonstrated in a diverse set of more than 40 different examples with feature sizes from micrometers to centimeters, offer unique possibilities in device design. A 3D spiral inductor for near-field communication represents an example where these ideas enable enhanced quality (Q) factors and broader working angles compared to those of conventional 2D counterparts. PMID:27679820

  14. Mechanical assembly of complex, 3D mesostructures from releasable multilayers of advanced materials.

    PubMed

    Yan, Zheng; Zhang, Fan; Liu, Fei; Han, Mengdi; Ou, Dapeng; Liu, Yuhao; Lin, Qing; Guo, Xuelin; Fu, Haoran; Xie, Zhaoqian; Gao, Mingye; Huang, Yuming; Kim, JungHwan; Qiu, Yitao; Nan, Kewang; Kim, Jeonghyun; Gutruf, Philipp; Luo, Hongying; Zhao, An; Hwang, Keh-Chih; Huang, Yonggang; Zhang, Yihui; Rogers, John A

    2016-09-01

    Capabilities for assembly of three-dimensional (3D) micro/nanostructures in advanced materials have important implications across a broad range of application areas, reaching nearly every class of microsystem technology. Approaches that rely on the controlled, compressive buckling of 2D precursors are promising because of their demonstrated compatibility with the most sophisticated planar technologies, where materials include inorganic semiconductors, polymers, metals, and various heterogeneous combinations, spanning length scales from submicrometer to centimeter dimensions. We introduce a set of fabrication techniques and design concepts that bypass certain constraints set by the underlying physics and geometrical properties of the assembly processes associated with the original versions of these methods. In particular, the use of releasable, multilayer 2D precursors provides access to complex 3D topologies, including dense architectures with nested layouts, controlled points of entanglement, and other previously unobtainable layouts. Furthermore, the simultaneous, coordinated assembly of additional structures can enhance the structural stability and drive the motion of extended features in these systems. The resulting 3D mesostructures, demonstrated in a diverse set of more than 40 different examples with feature sizes from micrometers to centimeters, offer unique possibilities in device design. A 3D spiral inductor for near-field communication represents an example where these ideas enable enhanced quality (Q) factors and broader working angles compared to those of conventional 2D counterparts.

  15. Four advances in carbon-carbon materials technology

    NASA Technical Reports Server (NTRS)

    Maahs, Howard G.; Vaughn, Wallace L.; Kowbel, Witold

    1994-01-01

    Carbon-carbon composites are a specialty class of materials having many unique properties making these composites attractive for a variety of demanding engineering applications. Chief among these properties are exceptional retention of mechanical properties at temperatures as high as 4000 F, excellent creep resistance, and low density (1.6 to 1.8 g/cu cm). Although carbon-carbon composites are currently in service in a variety of applications, much development work remains to be accomplished before these materials can be considered to be fully mature, realizing their full potential. Four recent technology advances holding particular promise for overcoming current barriers to the wide-spread commercialization of carbon-carbon composites are described. These advances are: markedly improved interlaminar strengths (more than doubled) of two dimensional composites achieved by whiskerization of the fabric reinforcing plies, simultaneously improved oxidation resistance and mechanical properties achieved by the incorporation of matrix-phase oxidation inhibitors based on carborane chemistry, improved oxidation resistance achieved by compositionally graded oxidation protective coatings, and markedly reduced processing times (hours as opposed to weeks or months) accomplished through a novel process of carbon infiltration and coatings deposition based on the use of liquid-phase precursor materials.

  16. Semiconductor bridge (SCB) detonator

    DOEpatents

    Bickes, Jr., Robert W.; Grubelich, Mark C.

    1999-01-01

    The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length.

  17. Semiconductor bridge (SCB) detonator

    DOEpatents

    Bickes, R.W. Jr.; Grubelich, M.C.

    1999-01-19

    The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge (SCB) igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length. 3 figs.

  18. 3D-profile measurement of advanced semiconductor features by reference metrology

    NASA Astrophysics Data System (ADS)

    Takamasu, Kiyoshi; Iwaki, Yuuki; Takahashi, Satoru; Kawada, Hiroki; Ikota, Masami; Lorusso, Gian F.; Horiguchi, Naoto

    2016-03-01

    A method of sub-nanometer uncertainty for the 3D-profile measurement using TEM (Transmission Electron Microscope) images is proposed to standardize 3D-profile measurement through reference metrology. The proposed method has been validated for profiles of Si lines, photoresist features and advanced-FinFET (Fin-shaped Field-Effect Transistor) features in our previous investigations. However, efficiency of 3D-profile measurement using TEM is limited by measurement time including processing of the sample. In this article, we demonstrate a novel on-wafer 3D-profile metrology as "FIB-to-CDSEM method" with FIB (Focused Ion Beam) slope cut and CD-SEM (Critical Dimension Secondary Electron Microscope) measuring. Using the method, a few micrometer wide on a wafer is coated and cut by 45 degree slope using FIB tool. Then, the wafer is transferred to CD-SEM to measure the cross section image by top down CD-SEM measurement. We apply FIB-to-CDSEM method to CMOS sensor device. 3D-profile and 3D-profile parameters such as top line width and side wall angles of CMOS sensor device are evaluated. The 3D-profile parameters also are measured by TEM images as reference metrology. We compare the 3D-profile parameters by TEM method and FIB-to-CDSEM method. The average values and correlations on the wafer are agreed well between TEM and FIB-to- CDSEM methods.

  19. Microstructural and mechanical characterization of laser deposited advanced materials

    NASA Astrophysics Data System (ADS)

    Sistla, Harihar Rakshit

    Additive manufacturing in the form of laser deposition is a unique way to manufacture near net shape metallic components from advanced materials. Rapid solidification facilitates the extension of solid solubility, compositional flexibility and decrease in micro-segregation in the melt among other advantages. The current work investigates the employment of laser deposition to fabricate the following: 1. Functionally gradient materials: This allows grading dissimilar materials compositionally to tailor specific properties of both these materials into a single component. Specific compositions of the candidate materials (SS 316, Inconel 625 and Ti64) were blended and deposited to study the brittle intermetallics reported in these systems. 2. High entropy alloys: These are multi- component alloys with equiatomic compositions of 5 or more elements. The ratio of Al to Ni was decreased to observe the transition of solid solution from a BCC to an FCC crystal structure in the AlFeCoCrNi system. 3. Structurally amorphous alloys: Zr-based metallic glasses have been reported to have high glass forming ability. These alloys have been laser deposited so as to rapidly cool them from the melt into an amorphous state. Microstructural analysis and X-ray diffraction were used to study the phase formation, and hardness was measured to estimate the mechanical properties.

  20. Materials and Component Development for Advanced Turbine Systems

    SciTech Connect

    Alvin, M A; Pettit, F; Meier, G H; Yanar, M; Helminiak, M; Chyu, M; Siw, S; Slaughter, W S; Karaivanov, V; Kang, B S; Feng, C; Tannebaum, J M; Chen, R; Zhang, B; Fu, T; Richards, G A; Sidwell, T G; Straub, D; Casleton, K H; Dogan, O M

    2008-07-01

    Hydrogen-fired and oxy-fueled land-based gas turbines currently target inlet operating temperatures of ~1425-1760°C (~2600-3200°F). In view of natural gas or syngas-fired engines, advancements in both materials, as well as aerothermal cooling configurations are anticipated prior to commercial operation. This paper reviews recent technical accomplishments resulting from NETL’s collaborative research efforts with the University of Pittsburgh and West Virginia University for future land-based gas turbine applications.

  1. Application of advanced polymeric materials for controlled release pesticides

    NASA Astrophysics Data System (ADS)

    Rahim, M.; Hakim, M. R.; Haris, H. M.

    2016-08-01

    The objective of this work was to study the capability of advanced polymeric material constituted by chitosan and natural rubber matrices for controlled release of pesticides (1-hydroxynaphthalene and 2-hydroxynaphthalene) in aqueous solution. The released amount of pesticides was measured spectrophotometrically from the absorbance spectra applying a standardized curve. The release of the pesticides was studied into refreshing and non-refreshing neutral aqueous media. Interestingly, formulation successfully indicated a consistent, controlled and prolonged release of pesticides over a period of 35 days.

  2. Integrated materials design of organic semiconductors for field-effect transistors.

    PubMed

    Mei, Jianguo; Diao, Ying; Appleton, Anthony L; Fang, Lei; Bao, Zhenan

    2013-05-08

    The past couple of years have witnessed a remarkable burst in the development of organic field-effect transistors (OFETs), with a number of organic semiconductors surpassing the benchmark mobility of 10 cm(2)/(V s). In this perspective, we highlight some of the major milestones along the way to provide a historical view of OFET development, introduce the integrated molecular design concepts and process engineering approaches that lead to the current success, and identify the challenges ahead to make OFETs applicable in real applications.

  3. Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research

    SciTech Connect

    John Jackson; Todd Allen; Frances Marshall; Jim Cole

    2013-03-01

    The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials

  4. Measurements on semiconductor and scintillator detectors at the Advanced Light Source (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Camarda, Giuseppe S.; Bolotnikov, Aleksey E.; Cui, Yonggang; Gul, Rubi; Hossain, Anwar; Roy, Utpal N.; Yang, Ge; James, Ralph B.; Vanier, Peter E.

    2016-09-01

    During the transition period between closure of Beamline X27B at BNL's NSLS and the opening of Beamline MID at NSLS-II, we began operation of LBNL's ALS Beamline 3.3.2 to carry out our radiation detection materials RD. Measurements performed at this Beamline include, X-ray Detector Response Mapping and White Beam X-ray Diffraction Topography (WBXDT), among others. We will introduce the capabilities of the Beamline and present the most recent results obtained on CdZnTe and scintillators. The goal of the studies on CdZnTe is to understand the origin and effects of subgrain boundaries and help to visualize the presence of a higher concentration of impurities, which might be responsible for the deterioration of the energy resolution and response uniformity in the vicinity of the sub-grain boundaries. The results obtained in the second year of measurements will be presented.

  5. IN SITU Analysis Of The Growth Of Semiconductor Materials By Phase Modulated Ellipsometry From UV To IR

    NASA Astrophysics Data System (ADS)

    Drevillon, Bernard

    1990-02-01

    Examples of applications of in situ spectroscopic polarization techniques (from UV to IR) to the study of the growth of semiconductor materials are presented. The high sensitivity of these in situ diagnostics is emphasized. In particular, the ability of kinetic ellipsometry in the UV range, to study interfaces involving reactive processes like plasma deposition, with submonolayer resolution, is described. In the UV-visible range, it is shown that reflectance-difference spectroscopy (RDS) allows the real-time characterization of crystalline III-V materials and heterojunctions. In the infrared, ellipsometry appears particularly well adapted for performing detailed analysis of the vibrational properties and the growth processes of amorphous thin films. Such sensitivity to film deposition mechanisms illustrates the capacity of real-time optical diagnostics for fundamental studies and in situ control process.

  6. Advanced Hot Section Materials and Coatings Test Rig

    SciTech Connect

    Dan Davis

    2006-09-30

    Phase I of the Hyperbaric Advanced Hot Section Materials & Coating Test Rig Program has been successfully completed. Florida Turbine Technologies has designed and planned the implementation of a laboratory rig capable of simulating the hot gas path conditions of coal gas fired industrial gas turbine engines. Potential uses of this rig include investigations into environmental attack of turbine materials and coatings exposed to syngas, erosion, and thermal-mechanical fatigue. The principle activities during Phase 1 of this project included providing several conceptual designs for the test section, evaluating various syngas-fueled rig combustor concepts, comparing the various test section concepts and then selecting a configuration for detail design. Conceptual definition and requirements of auxiliary systems and facilities were also prepared. Implementation planning also progressed, with schedules prepared and future project milestones defined. The results of these tasks continue to show rig feasibility, both technically and economically.

  7. High-Pressure Design of Advanced BN-Based Materials.

    PubMed

    Kurakevych, Oleksandr O; Solozhenko, Vladimir L

    2016-10-20

    The aim of the present review is to highlight the state of the art in high-pressure design of new advanced materials based on boron nitride. Recent experimental achievements on the governing phase transformation, nanostructuring and chemical synthesis in the systems containing boron nitride at high pressures and high temperatures are presented. All these developments allowed discovering new materials, e.g., ultrahard nanocrystalline cubic boron nitride (nano-cBN) with hardness comparable to diamond, and superhard boron subnitride B13N₂. Thermodynamic and kinetic aspects of high-pressure synthesis are described based on the data obtained by in situ and ex situ methods. Mechanical and thermal properties (hardness, thermoelastic equations of state, etc.) are discussed. New synthetic perspectives, combining both soft chemistry and extreme pressure-temperature conditions are considered.

  8. Cost/benefit studies of advanced materials technologies for future aircraft turbine engines: Materials for advanced turbine engines

    NASA Technical Reports Server (NTRS)

    Stearns, M.; Wilbers, L.

    1982-01-01

    Cost benefit studies were conducted on six advanced materials and processes technologies applicable to commercial engines planned for production in the 1985 to 1990 time frame. These technologies consisted of thermal barrier coatings for combustor and high pressure turbine airfoils, directionally solidified eutectic high pressure turbine blades, (both cast and fabricated), and mixers, tail cones, and piping made of titanium-aluminum alloys. A fabricated titanium fan blisk, an advanced turbine disk alloy with improved low cycle fatigue life, and a long-life high pressure turbine blade abrasive tip and ceramic shroud system were also analyzed. Technologies showing considerable promise as to benefits, low development costs, and high probability of success were thermal barrier coating, directionally solidified eutectic turbine blades, and abrasive-tip blades/ceramic-shroud turbine systems.

  9. Neutron and X-Ray Diffraction Studies of Advanced Materials

    SciTech Connect

    Barabash, Rozaliya; Tiley, Jaimie; Wang, Yandong; Liaw, Peter K

    2010-01-01

    The selection of articles in the special topic 'Neutron and X-Ray Studies of Advanced Materials' is based on the materials presented during the TMS 2009 annual meeting in San Francisco, CA, February 15-19, 2009. The development of ultrabrilliant third-generation synchrotron X-ray sources, together with advances in X-ray optics, has created intense X-ray microbeams, which provide the best opportunities for in-depth understanding of mechanical behavior in a broad spectrum of materials. Important applications include ultrasensitive elemental detection by X-ray fluorescence/absorption and microdiffraction to identify phase and strain with submicrometer spatial resolution. X-ray microdiffraction is a particularly exciting application compared with alternative probes of crystalline structure, orientation, and strain. X-ray microdiffraction is nondestructive with good strain resolution, competitive or superior spatial resolution in thick samples, and with the ability to probe below the sample surface. Moreover, the high-energy X-ray diffraction technique provides an effective tool for characterizing the mechanical and functional behavior in various environments (temperature, stress, and magnetic field). At the same time, some neutron diffraction instruments constructed mainly for the purpose of engineering applications can be found at nearly all neutron facilities. The first generation-dedicated instruments designed for studying in-situ mechanical behavior have been commissioned and used, and industrial standards for reliable and repeatable measurements have been developed. Furthermore, higher penetration of neutron beams into most engineering materials provides direct measurements on the distribution of various stresses (i.e., types I, II, and III) beneath the surface up to several millimeters, even tens of millimeters for important industrial components. With X-ray and neutron measurements, it is possible to characterize material behavior at different length scales. It

  10. 2012 DEFECTS IN SEMICONDUCTORS GORDON RESEARCH CONFERENCE, AUGUST 12-17, 2012

    SciTech Connect

    GLASER, EVAN

    2012-08-17

    The meeting shall strive to develop and further the fundamental understanding of defects and their roles in the structural, electronic, optical, and magnetic properties of bulk, thin film, and nanoscale semiconductors and device structures. Point and extended defects will be addressed in a broad range of electronic materials of particular current interest, including wide bandgap semiconductors, metal-oxides, carbon-based semiconductors (e.g., diamond, graphene, etc.), organic semiconductors, photovoltaic/solar cell materials, and others of similar interest. This interest includes novel defect detection/imaging techniques and advanced defect computational methods.

  11. Radio frequency coupling apparatus and method for measuring minority carrier lifetimes in semiconductor materials

    DOEpatents

    Johnston, Steven W.; Ahrenkiel, Richard K.

    2002-01-01

    An apparatus for measuring the minority carrier lifetime of a semiconductor sample using radio-frequency coupling. The measuring apparatus includes an antenna that is positioned a coupling distance from a semiconductor sample which is exposed to light pulses from a laser during sampling operations. A signal generator is included to generate high frequency, such as 900 MHz or higher, sinusoidal waveform signals that are split into a reference signal and a sample signal. The sample signal is transmitted into a sample branch circuit where it passes through a tuning capacitor and a coaxial cable prior to reaching the antenna. The antenna is radio-frequency coupled with the adjacent sample and transmits the sample signal, or electromagnetic radiation corresponding to the sample signal, to the sample and receives reflected power or a sample-coupled-photoconductivity signal back. To lower impedance and speed system response, the impedance is controlled by limiting impedance in the coaxial cable and the antenna reactance. In one embodiment, the antenna is a waveguide/aperture hybrid antenna having a central transmission line and an adjacent ground flange. The sample-coupled-photoconductivity signal is then transmitted to a mixer which also receives the reference signal. To enhance the sensitivity of the measuring apparatus, the mixer is operated to phase match the reference signal and the sample-coupled-photoconductivity signal.

  12. Ternary Cd(Se,Te) alloy semiconductors - Synthesis, material characterization, and high-efficiency photoelectrochemical cells

    NASA Astrophysics Data System (ADS)

    Levy-Clement, C.; Triboulet, R.; Rioux, J.; Etcheberry, A.; Licht, S.

    1985-12-01

    High-quality Cd(Se,Te) in two compositions was synthesized using the modified Bridgman technique. The Se-rich crystals had the hexagonal structure, while the Te-rich phase consisted of crystals with cubic packing. Their quality could be gauged from high-electron mobility and low resistivity, which suited the purpose of their synthesis, i.e., for high-efficiency photoelectrochemical cells. Photoelectrochemical etching was employed, which resulted in a heavily pitted surface with the density of the etch pits exceeding 10 to the 9th/sq cm. Quantum efficiency of the semiconductor/aqueous polysulfide interface increased considerably after photoetching. Solar-to-electrical conversion efficiencies in excess of 12 percent were obtained. Photoluminenscence spectrum was measured for the two crystals prior to and after photoetching. The emission maximum is near the calculated band gap. The decline in the luminescence intensity, after photoetching, is attributed to the corrugation of the surface and the reduced density of the donor state near the semiconductor surface, which increases the thickness of the space-charge layer (dead layer model).

  13. Cladding and Structural Materials for Advanced Nuclear Energy Systems

    SciTech Connect

    Was, G S; Allen, T R; Ila, D; C,; Levi,; Morgan, D; Motta, A; Wang, L; Wirth, B

    2011-06-30

    The goal of this consortium is to address key materials issues in the most promising advanced reactor concepts that have yet to be resolved or that are beyond the existing experience base of dose or burnup. The research program consists of three major thrusts: 1) high-dose radiation stability of advanced fast reactor fuel cladding alloys, 2) irradiation creep at high temperature, and 3) innovative cladding concepts embodying functionally-graded barrier materials. This NERI-Consortium final report represents the collective efforts of a large number of individuals over a period of three and a half years and included 9 PIs, 4 scientists, 3 post-docs and 12 students from the seven participating institutions and 8 partners from 5 national laboratories and 3 industrial institutions (see table). University participants met semi-annually and participants and partners met annually for meetings lasting 2-3 days and designed to disseminate and discuss results, update partners, address outstanding issues and maintain focus and direction toward achieving the objectives of the program. The participants felt that this was a highly successful program to address broader issues that can only be done by the assembly of a range of talent and capabilities at a more substantial funding level than the traditional NERI or NEUP grant. As evidence of the success, this group, collectively, has published 20 articles in archival journals and made 57 presentations at international conferences on the results of this consortium.

  14. NASA's Advanced Space Transportation Program: A Materials Overview

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.

    1999-01-01

    The realization of low-cost assess to space is one of NASA's three principal goals or "pillars" under the Office of Aero-Space Technology. In accordance with the goals of this pillar, NASA's primary space transportation technology role is to develop and demonstrate next-generation technologies to enable the commercial launch industry to develop full-scale, low cost, highly reliable space launchers. The approach involves both ground-based technology demonstrations and flight demonstrators, including the X-33, X-34, Bantam, Reusable Launch Vehicle (RLV), and future experimental vehicles. Next generation space transportation vehicles and propulsion systems will require the development and implementation of advanced materials and processes. This presentation will provide an overview of advanced materials efforts which are focused on the needs of next generation space transportation systems. Applications described will include ceramic matrix composite (CMC) integrally bladed turbine disk (blisk); actively cooled CMC nozzle ramp for the aerospike engine; ablative thrust chamber/nozzle; and metal matrix composite turbomachinery housings.

  15. Combustion Synthesis of Advanced Porous Materials in Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Zhang, X.; Moore, J. J.; Schowengerdt, F. D.; Johnson, D. P.

    1999-01-01

    Combustion synthesis, otherwise known as self-propagating high temperature synthesis (SHS), can be used to produce engineered advanced porous material implants which offer the possibility for bone ingrowth as well as a permanent structure framework for the long-term replacement of bone defects. The primary advantage of SHS is based on its rapid kinetics and favorable energetics. The structure and properties of materials produced by SHS are strongly dependent on the combustion reaction conditions. Combustion reaction conditions such as reaction stoichiometry, particle size, green density, the presence and use of diluents or inert reactants, and pre-heating of the reactants, will affect the exothermicity of the reaction. A number of conditions must be satisfied in order to obtain high porosity materials: an optimal amount of liquid, gas and solid phases must be present in the combustion front. Therefore, a balance among these phases at the combustion front must be created by the SHS reaction to successfully engineer a bone replacement material system. Microgravity testing has extended the ability to form porous products. The convective heat transfer mechanisms which operate in normal gravity, 1 g, constrain the combustion synthesis reactions. Gravity also acts to limit the porosity which may be formed as the force of gravity serves to restrict the gas expansion and the liquid movement during reaction. Infiltration of the porous product with other phases can modify both the extent of porosity and the mechanical properties.

  16. Advanced Industrial Materials (AIM) Program annual progress report, FY 1997

    SciTech Connect

    1998-05-01

    The Advanced Industrial Materials (AIM) Program is a part of the Office of Industrial Technologies (OIT), Energy Efficiency and Renewable Energy, US Department of Energy (DOE). The mission of AIM is to support development and commercialization of new or improved materials to improve energy efficiency, productivity, product quality, and reduced waste in the major process industries. OIT has embarked on a fundamentally new way of working with industries--the Industries of the Future (IOF) strategy--concentrating on the major process industries that consume about 90% of the energy and generate about 90% of the waste in the industrial sector. These are the aluminum, chemical, forest products, glass, metalcasting, and steel industries. OIT has encouraged and assisted these industries in developing visions of what they will be like 20 or 30 years into the future, defining the drivers, technology needs, and barriers to realization of their visions. These visions provide a framework for development of technology roadmaps and implementation plans, some of which have been completed. The AIM Program supports IOF by conducting research and development on materials to solve problems identified in the roadmaps. This is done by National Laboratory/industry/university teams with the facilities and expertise needed to develop new and improved materials. Each project in the AIM Program has active industrial participation and support.

  17. Advanced Materials Research Status and Requirements. Volume 2. Appendix: Material Properties Data Review

    DTIC Science & Technology

    1986-03-01

    APPENDIX: MATERIAL PROPERTIES DATA REVIEW FINAL REPORT CONTRACT DASG60-85-C-0087 SPONSORED BY: U.S. ARMY STRATEGIC DEFENSE COMMAND DTIC c. ELECTE... properties of general interest advanced metal matrix and polymer matrix systems. qa .1 ./’r ;) 20. ;is,-icI.rON/AIAiLAS16iT’fr. ASSTRACT 1.AaSTRAZT "C...thermal, and physical properties of general interest advanced metal matrix and polymer matrix composites. 4. .Accession For r., ~~NTIS ... I By-4

  18. Semiconductor devices incorporating multilayer interference regions

    DOEpatents

    Biefeld, R.M.; Drummond, T.J.; Gourley, P.L.; Zipperian, T.E.

    1987-08-31

    A semiconductor high reflector comprising a number of thin alternating layers of semiconductor materials is electrically tunable and may be used as a temperature insensitive semiconductor laser in a Fabry-Perot configuration. 8 figs.

  19. Semiconductor devices incorporating multilayer interference regions

    DOEpatents

    Biefeld, Robert M.; Drummond, Timothy J.; Gourley, Paul L.; Zipperian, Thomas E.

    1990-01-01

    A semiconductor high reflector comprising a number of thin alternating layers of semiconductor materials is electrically tunable and may be used as a temperature insensitive semiconductor laser in a Fabry-Perot configuration.

  20. Fabrication and application of advanced functional materials from lignincellulosic biomass

    NASA Astrophysics Data System (ADS)

    Hu, Sixiao

    This dissertation explored the conversion of lignocellulosic biomass into advanced functional materials and their potential applications. Lignocellulosic biomass represents an as-of-yet underutilized renewable source for not only biofuel production but also functional materials fabrication. This renewable source is a great alternative for fossil fuel based chemicals, which could be one of the solutions to energy crisis. In this work, it was demonstrated a variety of advanced materials including functional carbons, metal and silica nanoparticles could be derived from lignocellulosic biomass. Chapter 1 provided overall reviewed of the lignin structures, productions and its utilizations as plastics, absorbents and carbons, as well as the preparation of nano-structured silver, silica and silicon carbide/nitride from biomass. Chapter 2, 3 and 4 discussed the fabrication of highly porous carbons from isolated lignin, and their applications as electric supercapacitors for energy storage. In chapter 2, ultrafine porous carbon fibers were prepared via electrospinning followed by simultaneous carbonization and activation. Chapter 3 covered the fabrication of supercapacitor based on the porous carbon fibers and the investigation of their electrochemical performances. In chapter 4, porous carbon particulates with layered carbon nano plates structures were produced by simple oven-drying followed by simultaneous carbonization and activation. The effects of heat processing parameters on the resulting carbon structures and their electrochemical properties were discussed in details. Chapter 5 and 6 addressed the preparation of silver nanoparticles using lignin. Chapter 5 reported the synthesis, underlying kinetics and mechanism of monodispersed silver nanospheres with diameter less than 25 nm in aqueous solutions using lignin as dual reducing and capping agents. Chapter 6 covered the preparation of silver nanoparticles on electrospun celluloses ultrafine fibers using lignin as both

  1. PREFACE Conference on Advanced Materials and Nanotechnology (CAMAN 2009)

    NASA Astrophysics Data System (ADS)

    Ali, Aidy

    2011-02-01

    This special issue of IOP Conference Series: Materials science and Engineering contains papers contributed to the Conference on Advanced Materials and Nanotechnology (CAMAN 2009) held on 3-5 November 2009 in Putra World Trade Centre (PWTC), Kuala Lumpur, Malaysia. The objective of the congress is to provide a platform for professionals, academicians and researchers to exchange views, findings, ideas and experiences on advanced science and technology. After careful refereeing of all manuscripts, 50 papers were selected for publications in this issue. The policy of editing was the content of the material and its rapid dissemination was more important than its form. In 2009, the conference received close to 120 papers from leading researchers and participants from countries such as Iran, India, Switzerland, Myanmar, Nigeria, Canada, Yemen and Malaysia. We strongly hope the new ideas and results presented will stimulate and enhance the progress of research on the above conference theme. We are grateful to all the authors for their papers and presentations in this conference. They are also the ones who help make this conference possible through their hard work in the preparation of the manuscripts. We would also like to offer our sincere thanks to all the invited speakers who came to share their knowledge with us. We would also like to acknowledge the untiring efforts of the reviewers, research assistants and students in meeting deadlines and for their patience and perseverance. We wish to thank all the authors who contributed papers to the conference and all reviewers for their efforts to review the papers as well as the sponsors. We would also like to thank the members of the CAMAN 2009 Organising Committee and the International Advisory Committee for their efforts in making the conference a success. Thank you very much indeed. Guest Editor Aidy Ali

  2. Molecular beam epitaxy for advanced gate stack materials and processes

    NASA Astrophysics Data System (ADS)

    Locquet, Jean-Pierre

    2005-03-01

    The material requirements for future CMOS generations - as given by the ITRS roadmap - are very challenging. This includes a high K dielectric without a low K interfacial layer, a high mobility channel and the appropriate metal gate. With the help of two projects INVEST and ET4US, we are building up a molecular beam epitaxy (MBE) infrastructure to grow this material set on large area wafers that can be further processed into small scale devices. In the INVEST project, we have developed an MBE system for the growth of complex oxides on semiconductors. The system follows the overall design of a production tool and is equipped with an RF atomic oxygen source, effusion cells, e-beam evaporators and a differential pumping stage. The oxide growth process starts with desorbing the initial surface oxide on the Si wafers in ultra-high vacuum and high temperature to create a clean reconstructed 2x1 surface. Using the atomic oxygen it is possible to oxidize the surface in a well controlled manner at low temperature and to grow very thin and dense SiOx layers, followed by the growth of 2-6 nm amorphous high K dielectrics. The process parameters permit to tune the interface layer from a SiOx rich to a silicide rich interface with a significant impact on the capacitance and the leakage. Initial focus is on developing an optimized growth recipe for high quality amorphous HfO2 and LaHfO3.5 films. This recipe was subsequently used to make wafers for a transistor batch that gave us the first N short channel MBE MOSFET's (100 nm) using an etched gate process flow. Some highlights of the first batch for 3nm HfO2 MOSFET are a high mobility (> 270 cm^2/Vs) with a corresponding low leakage current of 2 mA/cm^2). While there were some process issues for LaHfO3.5, the 3 nm MOSFET showed very low leakage currents below 10-6 A/cm^2. Interestingly all the LaHFO3.5 MOSFETs showed very low threshold voltage instabilities. In collaboration with C. Marchiori, M. Sousa, A.Guiller, H. Siegwart, D

  3. Advanced materials from natural materials: synthesis of aligned carbon nanotubes on wollastonites.

    PubMed

    Zhao, Meng-Qiang; Zhang, Qiang; Huang, Jia-Qi; Nie, Jing-Qi; Wei, Fei

    2010-04-26

    The growth of carbon nanotubes (CNTs) on natural materials is a low-cost, environmentally benign, and materials-saving method for the large-scale production of CNTs. Directly building 3D CNT architectures on natural materials is a key issue for obtaining advanced materials with high added value. We report the fabrication of aligned CNT arrays on fibrous natural wollastonite. Strongly dispersed iron particles with small sizes were produced on a planar surface of soaked fibrous wollastonite by a reduction process. These particles then catalyzed the decomposition of ethylene, leading to the synchronous growth of CNTs to form leaf- and brush-like wollastonite/CNT hybrids. The as-obtained hybrids could be further transformed into porous SiO(2)/CNT hybrids by reaction with hydrochloric acid. Further treatment with hydrofluoric acid resulted in aligned CNT arrays, with purities as high as 98.7 %. The presented work is very promising for the fabrication of advanced materials with unique structures and properties that can be used as fillers, catalyst supports, or energy-absorbing materials.

  4. Advanced Standard Arabic through Authentic Texts and Audiovisual Materials. Part One: Textual Materials. Part Two: Audiovisual Materials.

    ERIC Educational Resources Information Center

    Rammuny, Raji M.

    Instructional materials for use in advanced Arabic second language instruction are presented in two separately-bound parts. The first contains 28 lessons on a wide variety of subjects using a series of authentic texts, all in Arabic. These texts include personal and formal correspondence, short stories, essays, plays, poems, proverbs, and excerpts…

  5. Quality Assurance Protocol for AFCI Advanced Structural Materials Testing

    SciTech Connect

    Busby, Jeremy T

    2009-05-01

    The objective of this letter is to inform you of recent progress on the development of advanced structural materials in support of advanced fast reactors and AFCI. As you know, the alloy development effort has been initiated in recent months with the procurement of adequate quantities of the NF616 and HT-UPS alloys. As the test alloys become available in the coming days, mechanical testing, evaluation of optimizing treatments, and screening of environmental effects will be possible at a larger scale. It is therefore important to establish proper quality assurance protocols for this testing effort in a timely manner to ensure high technical quality throughout testing. A properly implemented quality assurance effort will also enable preliminary data taken in this effort to be qualified as NQA-1 during any subsequent licensing discussions for an advanced design or actual prototype. The objective of this report is to describe the quality assurance protocols that will be used for this effort. An essential first step in evaluating quality protocols is assessing the end use of the data. Currently, the advanced structural materials effort is part of a long-range, basic research and development effort and not, as yet, involved in licensing discussions for a specific reactor design. After consultation with Mark Vance (an ORNL QA expert) and based on the recently-issued AFCI QA requirements, the application of NQA-1 quality requirements will follow the guidance provided in Part IV, Subpart 4.2 of the NQA-1 standard (Guidance on Graded Application of QA for Nuclear-Related Research and Development). This guidance mandates the application of sound scientific methodology and a robust peer review process in all phases, allowing for the data to be qualified for use even if the programmatic mission changes to include licensing discussions of a specific design or prototype. ORNL has previously implemented a QA program dedicated to GNEP activities and based on an appropriately graded

  6. Use of a laser for the spectral analysis of semiconductor materials

    NASA Technical Reports Server (NTRS)

    Karyakin, A. V.; Akhmanova, M. V.; Kaygorodov, V. A.

    1978-01-01

    Conventional applications of lasers for emission spectroscopy involving direct recording of light pulses of an evaporated substance emitted from the sample under the action of the laser light (direct method) were examined. Use of the laser light for conversion of the substance to a vapor and feeding the vapors into the conventional source of emission such as arc, sparks, etc. (the so called 2 stage excitation) were studied for use in the spectral analysis, of semiconductors. The direct method has a high reproducibility (5-7%); the 2 stage excitation method, characterized by the same intensity as obtained with the conventional constant, current arc, has better reproducibility than the direct method (15-20%). Both methods can be used for the analysis of samples without prior preparation. Advantages of these methods are the elimination of impurities picked up during trituration of the samples into powders and shortening of the analytical procedures.

  7. The Power of Materials Science Tools for Gaining Insights into Organic Semiconductors

    NASA Astrophysics Data System (ADS)

    Treat, Neil D.; Westacott, Paul; Stingelin, Natalie

    2015-07-01

    The structure of organic semiconductors can be complex because features from the molecular level (such as molecular conformation) to the micrometer scale (such as the volume fraction and composition of phases, phase distribution, and domain size) contribute to the definition of the optoelectronic landscape of the final architectures and, hence, to device performance. As a consequence, a detailed understanding of how to manipulate molecular ordering, e.g., through knowledge of relevant phase transitions, of the solidification process, of relevant solidification mechanisms, and of kinetic factors, is required to induce the desired optoelectronic response. In this review, we discuss relevant structural features of single-component and multicomponent systems; provide a case study of the multifaceted structure that polymer:fullerene systems can adopt; and highlight relevant solidification mechanisms such as nucleation and growth, liquid-liquid phase separation, and spinodal decomposition. In addition, cocrystal formation, solid solutions, and eutectic systems are treated and their relevance within the optoelectronic area emphasized.

  8. Semiconductor heterostructure

    NASA Technical Reports Server (NTRS)

    Hovel, Harold John (Inventor); Woodall, Jerry MacPherson (Inventor)

    1978-01-01

    A technique for fabricating a semiconductor heterostructure by growth of a ternary semiconductor on a binary semiconductor substrate from a melt of the ternary semiconductor containing less than saturation of at least one common ingredient of both the binary and ternary semiconductors wherein in a single temperature step the binary semiconductor substrate is etched, a p-n junction with specific device characteristics is produced in the binary semiconductor substrate by diffusion of a dopant from the melt and a region of the ternary semiconductor of precise conductivity type and thickness is grown by virtue of a change in the melt characteristics when the etched binary semiconductor enters the melt.

  9. Semiconductor structure

    NASA Technical Reports Server (NTRS)

    Hovel, Harold J. (Inventor); Woodall, Jerry M. (Inventor)

    1979-01-01

    A technique for fabricating a semiconductor heterostructure by growth of a ternary semiconductor on a binary semiconductor substrate from a melt of the ternary semiconductor containing less than saturation of at least one common ingredient of both the binary and ternary semiconductors wherein in a single temperature step the binary semiconductor substrate is etched, a p-n junction with specific device characteristics is produced in the binary semiconductor substrate by diffusion of a dopant from the melt and a region of the ternary semiconductor of precise conductivity type and thickness is grown by virtue of a change in the melt characteristics when the etched binary semiconductor enters the melt.

  10. Advances in design and modeling of porous materials

    NASA Astrophysics Data System (ADS)

    Ayral, André; Calas-Etienne, Sylvie; Coasne, Benoit; Deratani, André; Evstratov, Alexis; Galarneau, Anne; Grande, Daniel; Hureau, Matthieu; Jobic, Hervé; Morlay, Catherine; Parmentier, Julien; Prelot, Bénédicte; Rossignol, Sylvie; Simon-Masseron, Angélique; Thibault-Starzyk, Frédéric

    2015-07-01

    This special issue of the European Physical Journal Special Topics is dedicated to selected papers from the symposium "High surface area porous and granular materials" organized in the frame of the conference "Matériaux 2014", held on November 24-28, 2014 in Montpellier, France. Porous materials and granular materials gather a wide variety of heterogeneous, isotropic or anisotropic media made of inorganic, organic or hybrid solid skeletons, with open or closed porosity, and pore sizes ranging from the centimeter scale to the sub-nanometer scale. Their technological and industrial applications cover numerous areas from building and civil engineering to microelectronics, including also metallurgy, chemistry, health, waste water and gas effluent treatment. Many emerging processes related to environmental protection and sustainable development also rely on this class of materials. Their functional properties are related to specific transfer mechanisms (matter, heat, radiation, electrical charge), to pore surface chemistry (exchange, adsorption, heterogeneous catalysis) and to retention inside confined volumes (storage, separation, exchange, controlled release). The development of innovative synthesis, shaping, characterization and modeling approaches enables the design of advanced materials with enhanced functional performance. The papers collected in this special issue offer a good overview of the state-of-the-art and science of these complex media. We would like to thank all the speakers and participants for their contribution to the success of the symposium. We also express our gratitude to the organization committee of "Matériaux 2014". We finally thank the reviewers and the staff of the European Physical Journal Special Topics who made the publication of this special issue possible.

  11. Advanced proton-exchange materials for energy efficient fuel cells.

    SciTech Connect

    Fujimoto, Cy H.; Grest, Gary Stephen; Hickner, Michael A.; Cornelius, Christopher James; Staiger, Chad Lynn; Hibbs, Michael R.

    2005-12-01

    The ''Advanced Proton-Exchange Materials for Energy Efficient Fuel Cells'' Laboratory Directed Research and Development (LDRD) project began in October 2002 and ended in September 2005. This LDRD was funded by the Energy Efficiency and Renewable Energy strategic business unit. The purpose of this LDRD was to initiate the fundamental research necessary for the development of a novel proton-exchange membranes (PEM) to overcome the material and performance limitations of the ''state of the art'' Nafion that is used in both hydrogen and methanol fuel cells. An atomistic modeling effort was added to this LDRD in order to establish a frame work between predicted morphology and observed PEM morphology in order to relate it to fuel cell performance. Significant progress was made in the area of PEM material design, development, and demonstration during this LDRD. A fundamental understanding involving the role of the structure of the PEM material as a function of sulfonic acid content, polymer topology, chemical composition, molecular weight, and electrode electrolyte ink development was demonstrated during this LDRD. PEM materials based upon random and block polyimides, polybenzimidazoles, and polyphenylenes were created and evaluated for improvements in proton conductivity, reduced swelling, reduced O{sub 2} and H{sub 2} permeability, and increased thermal stability. Results from this work reveal that the family of polyphenylenes potentially solves several technical challenges associated with obtaining a high temperature PEM membrane. Fuel cell relevant properties such as high proton conductivity (>120 mS/cm), good thermal stability, and mechanical robustness were demonstrated during this LDRD. This report summarizes the technical accomplishments and results of this LDRD.

  12. Nanocrystalline materials: recent advances in crystallographic characterization techniques

    PubMed Central

    Ringe, Emilie

    2014-01-01

    Most properties of nanocrystalline materials are shape-dependent, providing their exquisite tunability in optical, mechanical, electronic and catalytic properties. An example of the former is localized surface plasmon resonance (LSPR), the coherent oscillation of conduction electrons in metals that can be excited by the electric field of light; this resonance frequency is highly dependent on both the size and shape of a nanocrystal. An example of the latter is the marked difference in catalytic activity observed for different Pd nanoparticles. Such examples highlight the importance of particle shape in nanocrystalline materials and their practical applications. However, one may ask ‘how are nanoshapes created?’, ‘how does the shape relate to the atomic packing and crystallography of the material?’, ‘how can we control and characterize the external shape and crystal structure of such small nanocrystals?’. This feature article aims to give the reader an overview of important techniques, concepts and recent advances related to these questions. Nucleation, growth and how seed crystallography influences the final synthesis product are discussed, followed by shape prediction models based on seed crystallography and thermodynamic or kinetic parameters. The crystallographic implications of epitaxy and orientation in multilayered, core-shell nanoparticles are overviewed, and, finally, the development and implications of novel, spatially resolved analysis tools are discussed. PMID:25485133

  13. On the Mechanical Behavior of Advanced Composite Material Structures

    NASA Astrophysics Data System (ADS)

    Vinson, Jack

    During the period between 1993 and 2004, the author, as well as some colleagues and graduate students, had the honor to be supported by the Office of Naval Research to conduct research in several aspects of the behavior of structures composed of composite materials. The topics involved in this research program were numerous, but all contributed to increasing the understanding of how various structures that are useful for marine applications behaved. More specifically, the research topics focused on the reaction of structures that were made of fiber reinforced polymer matrix composites when subjected to various loads and environmental conditions. This included the behavior of beam, plate/panel and shell structures. It involved studies that are applicable to fiberglass, graphite/carbon and Kevlar fibers imbedded in epoxy, polyester and other polymeric matrices. Unidirectional, cross-ply, angle ply, and woven composites were involved, both in laminated, monocoque as well as in sandwich constructions. Mid-plane symmetric as well as asymmetric laminates were studied, the latter involving bending-stretching coupling and other couplings that only can be achieved with advanced composite materials. The composite structures studied involved static loads, dynamic loading, shock loading as well as thermal and hygrothermal environments. One major consideration was determining the mechanical properties of composite materials subjected to high strain rates because the mechanical properties vary so significantly as the strain rate increases. A considerable number of references are cited for further reading and study for those interested.

  14. Temperature controlled material irradiation in the advanced test reactor

    NASA Astrophysics Data System (ADS)

    Ingram, F. W.; Palmer, A. J.; Stites, D. J.

    1998-10-01

    The United States Department of Energy (US DOE) has initiated the development of an Irradiation Test Vehicle (ITV) for fusion materials irradiation at the Advanced Test Reactor (ATR) in Idaho Falls, Idaho, USA. The ITV is capable of providing neutron spectral tailoring and individual temperature control for up to 15 experiment capsules simultaneously. The test vehicle consists of three In-Pile Tubes (IPTs) running the length of the reactor vessel. These IPTs are kept dry and test trains with integral instrumentation are inserted and removed through a transfer shield plate above the reactor vessel head. The test vehicle is designed to irradiate specimens as large as 2.2 cm in diameter, at temperatures of 250-800°C, achieving neutron damage rates as high as 10 displacements per atom per year. The high fast to thermal neutron flux ratio required for fusion materials testing is accomplished by using an aluminum filler to displace as much water as possible from the flux trap and surrounding the filler piece with a ring of replaceable neutron absorbing material. The gas blend temperature control system remains in place from test to test, thus hardware costs for new tests are limited to the experiment capsule train and integral instrumentation.

  15. Nanocrystalline materials: recent advances in crystallographic characterization techniques.

    PubMed

    Ringe, Emilie

    2014-11-01

    Most properties of nanocrystalline materials are shape-dependent, providing their exquisite tunability in optical, mechanical, electronic and catalytic properties. An example of the former is localized surface plasmon resonance (LSPR), the coherent oscillation of conduction electrons in metals that can be excited by the electric field of light; this resonance frequency is highly dependent on both the size and shape of a nanocrystal. An example of the latter is the marked difference in catalytic activity observed for different Pd nanoparticles. Such examples highlight the importance of particle shape in nanocrystalline materials and their practical applications. However, one may ask 'how are nanoshapes created?', 'how does the shape relate to the atomic packing and crystallography of the material?', 'how can we control and characterize the external shape and crystal structure of such small nanocrystals?'. This feature article aims to give the reader an overview of important techniques, concepts and recent advances related to these questions. Nucleation, growth and how seed crystallography influences the final synthesis product are discussed, followed by shape prediction models based on seed crystallography and thermodynamic or kinetic parameters. The crystallographic implications of epitaxy and orientation in multilayered, core-shell nanoparticles are overviewed, and, finally, the development and implications of novel, spatially resolved analysis tools are discussed.

  16. Semiconductor nanowire lasers

    NASA Astrophysics Data System (ADS)

    Eaton, Samuel W.; Fu, Anthony; Wong, Andrew B.; Ning, Cun-Zheng; Yang, Peidong

    2016-06-01

    The discovery and continued development of the laser has revolutionized both science and industry. The advent of miniaturized, semiconductor lasers has made this technology an integral part of everyday life. Exciting research continues with a new focus on nanowire lasers because of their great potential in the field of optoelectronics. In this Review, we explore the latest advancements in the development of nanowire lasers and offer our perspective on future improvements and trends. We discuss fundamental material considerations and the latest, most effective materials for nanowire lasers. A discussion of novel cavity designs and amplification methods is followed by some of the latest work on surface plasmon polariton nanowire lasers. Finally, exciting new reports of electrically pumped nanowire lasers with the potential for integrated optoelectronic applications are described.

  17. Method of doping a semiconductor

    DOEpatents

    Yang, Chiang Y.; Rapp, Robert A.

    1983-01-01

    A method for doping semiconductor material. An interface is established between a solid electrolyte and a semiconductor to be doped. The electrolyte is chosen to be an ionic conductor of the selected impurity and the semiconductor material and electrolyte are jointly chosen so that any compound formed from the impurity and the semiconductor will have a free energy no lower than the electrolyte. A potential is then established across the interface so as to allow the impurity ions to diffuse into the semiconductor. In one embodiment the semiconductor and electrolyte may be heated so as to increase the diffusion coefficient.

  18. Special Issue featuring invited articles arising from UK Semiconductors 2012

    NASA Astrophysics Data System (ADS)

    Clarke, Edmund; Wada, Osamu

    2013-07-01

    Semiconductor research has formed the basis of many technological advances over the past 50 years, and the field is still highly active, as new material systems and device concepts are developed to address new applications or operating conditions. In addition to the development of traditional semiconductor devices, the wealth of experience with these materials also allows their use as an ideal environment for testing new physics, leading to new classes of devices exploiting quantum mechanical effects that can also benefit from the advantages of existing semiconductor technology in scalability, compactness and ease of mass production. This special issue features papers arising from the UK Semiconductors 2012 Conference, held at the University of Sheffield. The annual conference covers all aspects of semiconductor research, from crystal growth, through investigations of the physics of semiconductor structures to realization of semiconductor devices and their application in emerging technologies. The 2012 conference featured over 150 presentations, including plenary sessions on interband cascade lasers for the 3-6 µm spectral band, efficient single photon sources based on InAs quantum dots embedded in GaAs photonic nanowires, nitride-based quantum dot visible lasers and single photon sources, and engineering of organic light-emitting diodes. The seven papers collected here highlight current research advances, taken from across the scope of the conference. The papers feature growth of novel nitride-antimonide material systems for mid-infrared sources and detectors, use of semiconductor nanostructures for charge-based memory and visible lasers, optimization of device structures either to reduce losses in solar cells or achieve low noise amplification in transistors, design considerations for surface-emitting lasers incorporating photonic crystals and an assessment of laser power convertors for power transfer. The editors of this special issue and the conference

  19. PREFACE: International Conference on Advanced Materials (ICAM 2015)

    NASA Astrophysics Data System (ADS)

    El-Khateeb, Mohammad Y.

    2015-10-01

    It is with great pleasure to welcome you to the "International Conference of Advanced Materials ICAM 2015" that will take place at Jordan University of Science and Technology (JUST), Irbid, Jordan. This year, the conference coincides with the coming of spring in Jordan; we hope the participants will enjoy the colors and fragrance of April in Jordan. The call for papers attracted submissions of over a hundred abstracts from twenty one different countries. These papers are going to be classified under four plenary lectures, fifteen invited papers, thirty five oral presentations and more than sixty posters covering the different research areas of the conference. The ICAM conference focuses on new advances in research in the field of materials covering chemical, physical and biological aspects. ICAM includes representatives from academia, industry, governmental and private sectors. The plenary and invited speakers will present, discuss, promote and disseminate research in all fields of advanced materials. Topics range from synthesis, applications, and solid state to nano-materials. In addition, talented junior investigators will present their best ongoing research at a poster session. We have also organized several workshops contiguous to the main conference, such as the one-day workshop on "Particle Surface Modification for Improved Applications". The purpose of this short course was to introduce interested materials technologists to several methodologies that have been developed to modify the surfaces of particulate matter. Moreover, a pre-conference workshop on "Communication in Science" was conducted for young scientists. The main goal of this workshop was to train young scientists in matters of interdisciplinary scientific communications. In addition to the scientific program, the attendees will have a chance to discover the beauty of Jordan, a land of rich history and varied culture. Numerous social events that will provide opportunities to renew old contacts and

  20. Adhesiveless Transfer Printing of Ultrathin Microscale Semiconductor Materials by Controlling the Bending Radius of an Elastomeric Stamp.

    PubMed

    Cho, Sungbum; Kim, Namyun; Song, Kwangsun; Lee, Jongho

    2016-08-09

    High-performance electronic devices integrated onto unconventional substrates provide opportunities for use in diverse applications, such as wearable or implantable forms of electronic devices. However, the interlayer adhesives between the electronic devices and substrates often limit processing temperature or cause electrical or thermal resistance at the interface. This paper introduces a very simple but effective transfer printing method that does not require an interlayer adhesive. Controlling the bending radius of a simple flat stamp enables picking up or printing of microscale semiconductor materials onto rigid, curvilinear, or flexible surfaces without the aid of a liquid adhesive. Theoretical and experimental studies reveal the underlying mechanism of the suggested approach. Adhesiveless printing of thin Si plates onto diverse substrates demonstrates the capability of this method.

  1. Challenges in microstructural metrology for advanced engineered materials

    NASA Astrophysics Data System (ADS)

    Mingard, K. P.; Roebuck, B.; Quested, P.; Bennett, E. G.

    2010-04-01

    Measurement of microstructural parameters is essential for both controlling and modelling properties of and production processes for advanced materials. In the past decade new techniques such as electron backscatter diffraction have enabled a considerable increase in the amount of data and degree of detail in microstructural measurements of, for example, the extent of recrystallization in a metal deformed at high temperatures. However, the many parameters involved and automated nature of the methods can lead to artefacts and bias in calculated values, and increased resolution will lead to disagreement with more conventional methods. Examples are given of the range of microstructural measurements possible by new techniques and how different results can be obtained from the same underlying data. The need is stressed for interlaboratory comparisons to enable underpinning data to be derived on the validity, repeatability and reproducibility of measurements of key microstructural parameters.

  2. Ionic and electronic behaviors of earth-abundant semiconductor materials and their applications toward solar energy harvesting

    NASA Astrophysics Data System (ADS)

    Mayer, Matthew T.

    Semiconductor devices offer promise for efficient conversion of sunlight into other useful forms of energy, in either photovoltaic or photoelectrochemical cell configurations to produce electrical power or chemical energy, respectively. This dissertation examines ionic and electronic phenomena in some candidate semiconductors and seeks to understand their implications toward solar energy conversion applications. First, copper sulfide (Cu2S) was examined as a candidate photovoltaic material. It was discovered that its unique property of cation diffusion allows the room-temperature synthesis of vertically-aligned nanowire arrays, a morphology which facilitates study of the diffusion processes. This diffusivity was found to induce hysteresis in the electronic behavior, leading to the phenomena of resistive switching and negative differential resistance. The Cu2S were then demonstrated as morphological templates for solid-state conversion into different types of heterostructures, including segmented and rod-in-tube morphologies. Near-complete conversion to ZnS, enabled by the out-diffusion of Cu back into the substrate, was also achieved. While the ion diffusion property likely hinders the reliability of Cu 2S in photovoltaic applications, it was shown to enable useful electronic and ionic behaviors. Secondly, iron oxide (Fe2O3, hematite) was examined as a photoanode for photoelectrochemical water splitting. Its energetic limitations toward the water electrolysis reactions were addressed using two approaches aimed at achieving greater photovoltages and thereby improved water splitting efficiencies. In the first, a built-in n-p junction produced an internal field to drive charge separation and generate photovoltage. In the second, Fe 2O3 was deposited onto a smaller band gap material, silicon, to form a device capable of producing enhanced total photovoltage by a dual-absorber Z-scheme mechanism. Both approaches resulted in a cathodic shift of the photocurrent onset

  3. Novel particle and radiation sources and advanced materials

    NASA Astrophysics Data System (ADS)

    Mako, Frederick

    2016-03-01

    The influence Norman Rostoker had on the lives of those who had the pleasure of knowing him is profound. The skills and knowledge I gained as a graduate student researching collective ion acceleration has fueled a career that has evolved from particle beam physics to include particle and radiation source development and advanced materials research, among many other exciting projects. The graduate research performed on collective ion acceleration was extended by others to form the backbone for laser driven plasma ion acceleration. Several years after graduate school I formed FM Technologies, Inc., (FMT), and later Electron Technologies, Inc. (ETI). Currently, as the founder and president of both FMT and ETI, the Rostoker influence can still be felt. One technology that we developed is a self-bunching RF fed electron gun, called the Micro-Pulse Gun (MPG). The MPG has important applications for RF accelerators and microwave tube technology, specifically clinically improved medical linacs and "green" klystrons. In addition to electron beam and RF source research, knowledge of materials and material interactions gained indirectly in graduate school has blossomed into breakthroughs in materials joining technologies. Most recently, silicon carbide joining technology has been developed that gives robust helium leak tight, high temperature and high strength joints between ceramic-to-ceramic and ceramic-to-metal. This joining technology has the potential to revolutionize the ethylene production, nuclear fuel and solar receiver industries by finally allowing for the practical use of silicon carbide as furnace coils, fuel rods and solar receptors, respectively, which are applications that have been needed for decades.

  4. Semiconductor microcavity lasers

    SciTech Connect

    Gourley, P.L.; Wendt, J.R.; Vawter, G.A.; Warren, M.E.; Brennan, T.M.; Hammons, B.E.

    1994-02-01

    New kinds of semiconductor microcavity lasers are being created by modern semiconductor technologies like molecular beam epitaxy and electron beam lithography. These new microcavities exploit 3-dimensional architectures possible with epitaxial layering and surface patterning. The physical properties of these microcavities are intimately related to the geometry imposed on the semiconductor materials. Among these microcavities are surface-emitting structures which have many useful properties for commercial purposes. This paper reviews the basic physics of these microstructured lasers.

  5. Advanced thermoelectric materials with enhanced crystal lattice structure and methods of preparation

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre (Inventor); Caillat, Thierry F. (Inventor); Borshchevsky, Alexander (Inventor)

    1998-01-01

    New skutterudite phases including Ru.sub.0.5 Pd.sub.0.5 Sb.sub.3, RuSb.sub.2 Te, and FeSb.sub.2 Te, have been prepared having desirable thermoelectric properties. In addition, a novel thermoelectric device has been prepared using skutterudite phase Fe.sub.0.5 Ni.sub.0.5 Sb.sub.3. The skutterudite-type crystal lattice structure of these semiconductor compounds and their enhanced thermoelectric properties results in semiconductor materials which may be used in the fabrication of thermoelectric elements to substantially improve the efficiency of the resulting thermoelectric device. Semiconductor materials having the desired skutterudite-type crystal lattice structure may be prepared in accordance with the present invention by using powder metallurgy techniques. Measurements of electrical and thermal transport properties of selected semiconductor materials prepared in accordance with the present invention, demonstrated high Hall mobilities and good Seebeck coefficients. These materials have low thermal conductivity and relatively low electrical resistivity, and are good candidates for low temperature thermoelectric applications.

  6. Multiscale and Multiphysics Modeling of Additive Manufacturing of Advanced Materials

    NASA Technical Reports Server (NTRS)

    Liou, Frank; Newkirk, Joseph; Fan, Zhiqiang; Sparks, Todd; Chen, Xueyang; Fletcher, Kenneth; Zhang, Jingwei; Zhang, Yunlu; Kumar, Kannan Suresh; Karnati, Sreekar

    2015-01-01

    The objective of this proposed project is to research and develop a prediction tool for advanced additive manufacturing (AAM) processes for advanced materials and develop experimental methods to provide fundamental properties and establish validation data. Aircraft structures and engines demand materials that are stronger, useable at much higher temperatures, provide less acoustic transmission, and enable more aeroelastic tailoring than those currently used. Significant improvements in properties can only be achieved by processing the materials under nonequilibrium conditions, such as AAM processes. AAM processes encompass a class of processes that use a focused heat source to create a melt pool on a substrate. Examples include Electron Beam Freeform Fabrication and Direct Metal Deposition. These types of additive processes enable fabrication of parts directly from CAD drawings. To achieve the desired material properties and geometries of the final structure, assessing the impact of process parameters and predicting optimized conditions with numerical modeling as an effective prediction tool is necessary. The targets for the processing are multiple and at different spatial scales, and the physical phenomena associated occur in multiphysics and multiscale. In this project, the research work has been developed to model AAM processes in a multiscale and multiphysics approach. A macroscale model was developed to investigate the residual stresses and distortion in AAM processes. A sequentially coupled, thermomechanical, finite element model was developed and validated experimentally. The results showed the temperature distribution, residual stress, and deformation within the formed deposits and substrates. A mesoscale model was developed to include heat transfer, phase change with mushy zone, incompressible free surface flow, solute redistribution, and surface tension. Because of excessive computing time needed, a parallel computing approach was also tested. In addition

  7. Advanced Density Functional Theory Methods for Materials Science

    NASA Astrophysics Data System (ADS)

    Demers, Steven

    In this work we chiefly deal with two broad classes of problems in computational materials science, determining the doping mechanism in a semiconductor and developing an extreme condition equation of state. While solving certain aspects of these questions is well-trodden ground, both require extending the reach of existing methods to fully answer them. Here we choose to build upon the framework of density functional theory (DFT) which provides an efficient means to investigate a system from a quantum mechanics description. Zinc Phosphide (Zn3P2) could be the basis for cheap and highly efficient solar cells. Its use in this regard is limited by the difficulty in n-type doping the material. In an effort to understand the mechanism behind this, the energetics and electronic structure of intrinsic point defects in zinc phosphide are studied using generalized Kohn-Sham theory and utilizing the Heyd, Scuseria, and Ernzerhof (HSE) hybrid functional for exchange and correlation. Novel 'perturbation extrapolation' is utilized to extend the use of the computationally expensive HSE functional to this large-scale defect system. According to calculations, the formation energy of charged phosphorus interstitial defects are very low in n-type Zn3P2 and act as 'electron sinks', nullifying the desired doping and lowering the fermi-level back towards the p-type regime. Going forward, this insight provides clues to fabricating useful zinc phosphide based devices. In addition, the methodology developed for this work can be applied to further doping studies in other systems. Accurate determination of high pressure and temperature equations of state is fundamental in a variety of fields. However, it is often very difficult to cover a wide range of temperatures and pressures in an laboratory setting. Here we develop methods to determine a multi-phase equation of state for Ta through computation. The typical means of investigating thermodynamic properties is via 'classical' molecular

  8. Semiconductor Solar Superabsorbers

    PubMed Central

    Yu, Yiling; Huang, Lujun; Cao, Linyou

    2014-01-01

    Understanding the maximal enhancement of solar absorption in semiconductor materials by light trapping promises the development of affordable solar cells. However, the conventional Lambertian limit is only valid for idealized material systems with weak absorption, and cannot hold for the typical semiconductor materials used in solar cells due to the substantial absorption of these materials. Herein we theoretically demonstrate the maximal solar absorption enhancement for semiconductor materials and elucidate the general design principle for light trapping structures to approach the theoretical maximum. By following the principles, we design a practical light trapping structure that can enable an ultrathin layer of semiconductor materials, for instance, 10 nm thick a-Si, absorb > 90% sunlight above the bandgap. The design has active materials with one order of magnitude less volume than any of the existing solar light trapping designs in literature. This work points towards the development of ultimate solar light trapping techniques. PMID:24531211

  9. New organic semiconductors with imide/amide-containing molecular systems.

    PubMed

    Liu, Zitong; Zhang, Guanxin; Cai, Zhengxu; Chen, Xin; Luo, Hewei; Li, Yonghai; Wang, Jianguo; Zhang, Deqing

    2014-10-29

    Due to their high electron affinities, chemical and thermal stabilities, π-conjugated molecules with imide/amide frameworks have received considerable attentions as promising candidates for high-performance optoelectronic materials, particularly for organic semiconductors with high carrier mobilities. The purpose of this Research News is to give an overview of recent advances in development of high performance imide/amide based organic semiconductors for field-effect transistors. It covers naphthalene diimide-, perylene diimide- and amide-based conjugated molecules and polymers for organic semiconductors.

  10. Physics and Applications of Defects in Advanced Semiconductors. Materials Research Society Symposium Proceedings. Volume 325

    DTIC Science & Technology

    1994-01-01

    interdiffusion (Si, Ge, S, and Se) for various ambient conditions, As- and Ga-rich. Thes identifications involves the study of the temperature and composition...T +0 atmosphere was a phosphorous I 35- a Oo* ap+alp+ + overpe r ina flowing argon ambient . Implants discussed here •0 0 o +.g+q- on various as...HIP6LITO’, SALVIANO A. LEAO" AND A. FERREIRA DA SILVA-- * Departamento de Fisica e Ci6ncia dos Materiais, Instituto de Fisica e Quimica de Sio Carlos

  11. Resolved-sideband Raman cooling of an optical phonon in semiconductor materials

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Zhang, Qing; Wang, Xingzhi; Kwek, Leong Chuan; Xiong, Qihua

    2016-09-01

    The radiation pressure of light has been widely used to cool trapped atoms or the mechanical vibrational modes of optomechanical systems. Recently, by using the electrostrictive forces of light, spontaneous Brillouin cooling and stimulated Brillouin excitation of acoustic modes of the whispering-gallery-type resonator have been demonstrated. The laser cooling of specific lattice vibrations in solids (that is, phonons) proposed by Dykman in the late 1970s, however, still remains sparsely investigated. Here, we demonstrate the first strong spontaneous Raman cooling and heating of a longitudinal optical phonon (LOP) with a 6.23 THz frequency in polar semiconductor zinc telluride nanobelts. We use the exciton to resonate and assist photoelastic Raman scattering from the LOPs caused by a strong exciton-LOP coupling. By detuning the laser pump to a lower (higher) energy-resolved sideband to make a spontaneous scattering photon resonate with an exciton at an anti-Stokes (Stokes) frequency, the dipole oscillation of the LOPs is photoelastically attenuated (enhanced) to a colder (hotter) state.

  12. Kelvin Force Microscopy and corona charging for semiconductor material and device characterization

    NASA Astrophysics Data System (ADS)

    Marinskiy, Dmitriy; Edelman, Piotr; Lagowski, Jacek; Loy, Thye Chong; Almeida, Carlos; Savtchouk, Alexandre

    2016-11-01

    Novel developments in this review relate to μcorona-Kelvin, realized by miniaturization of corona charging spot and adaptation of Kelvin Force Microscopy, KFM. Resolution improvement has opened possibilities of non-contact characterization of miniature scribe line test sites on processed semiconductor wafers. Surface diffusion of corona ions can be quantified with μcorona-KFM leading to the development of the kinetic C-V method. The quantified decrease of charge due to diffusion creates a "charge-bias sweep". Application examples illustrate the determination of dielectric capacitance; flatband voltage; and effective gate metal work function indicators. Applications to SiC demonstrate doping density determination with kinetic CV. Non-Visible Defect, NVD, inspection benefits from micro-resolution characterization in two ways: 1) defects revealed by whole wafer mapping can now be examined in high resolution; illustrated using an example of Na contamination; and 2) detailed characterization can be performed within small defective areas providing a means for better understanding of a specific NVD.

  13. Recipient luminophoric mediums having narrow spectrum luminescent materials and related semiconductor light emitting devices and methods

    DOEpatents

    LeToquin, Ronan P; Tong, Tao; Glass, Robert C

    2014-12-30

    Light emitting devices include a light emitting diode ("LED") and a recipient luminophoric medium that is configured to down-convert at least some of the light emitted by the LED. In some embodiments, the recipient luminophoric medium includes a first broad-spectrum luminescent material and a narrow-spectrum luminescent material. The broad-spectrum luminescent material may down-convert radiation emitted by the LED to radiation having a peak wavelength in the red color range. The narrow-spectrum luminescent material may also down-convert radiation emitted by the LED into the cyan, green or red color range.

  14. Experimental and computing strategies in advanced material characterization problems

    SciTech Connect

    Bolzon, G.

    2015-10-28

    The mechanical characterization of materials relies more and more often on sophisticated experimental methods that permit to acquire a large amount of data and, contemporarily, to reduce the invasiveness of the tests. This evolution accompanies the growing demand of non-destructive diagnostic tools that assess the safety level of components in use in structures and infrastructures, for instance in the strategic energy sector. Advanced material systems and properties that are not amenable to traditional techniques, for instance thin layered structures and their adhesion on the relevant substrates, can be also characterized by means of combined experimental-numerical tools elaborating data acquired by full-field measurement techniques. In this context, parameter identification procedures involve the repeated simulation of the laboratory or in situ tests by sophisticated and usually expensive non-linear analyses while, in some situation, reliable and accurate results would be required in real time. The effectiveness and the filtering capabilities of reduced models based on decomposition and interpolation techniques can be profitably used to meet these conflicting requirements. This communication intends to summarize some results recently achieved in this field by the author and her co-workers. The aim is to foster further interaction between engineering and mathematical communities.

  15. The use of advanced materials in space structure applications

    NASA Astrophysics Data System (ADS)

    Eaton, D. C. G.; Slachmuylders, E. J.

    The last decade has seen the Space applications of composite materials become almost commonplace in the construction of configurations requiring high stiffness and/or dimensional stability, particularly in the field of antennas. As experience has been accumulated, applications for load carrying structures utilizing the inherent high specific strength/stiffness of carbon fibres have become more frequent. Some typical examples of these and their design development criteria are reviewed. As these structures and the use of new plastic matrices emerge, considerable attention has to be given to establishing essential integrity control requirements from both safety and cost aspects. The advent of manned European space flight places greater emphasis on such requirements. Attention is given to developments in the fields of metallic structures with discussion of the advantages and disadvantages of their application. The design and development of hot structures, thermal protection systems and air-breathing engines for future launch vehicles necessitates the use of the emerging metal/matrix and other advanced materials. Some of their important features are outlined. Means of achieving such objectives by greater harmonization within Europe are emphasized. Typical examples of on-going activities to promote such collaboration are described.

  16. Bulk crystal growth, and high-resolution x-ray diffraction results of LiZnP semiconductor material

    NASA Astrophysics Data System (ADS)

    Montag, Benjamin W.; Reichenberger, Michael A.; Sunder, Madhana; Ugorowski, Philip B.; Nelson, Kyle A.; McGregor, Douglas S.

    2015-06-01

    Nowotny-Juza compounds continue to be explored as a candidate for solid-state neutron detectors. Such a device would have greater efficiency, in a compact form, than present day gas-filled 3He and 10BF3 detectors. The 6Li(n,t)4He reaction yields a total Q-value of 4.78 MeV, larger than 10B, an energy easily identified above background radiations. Hence, devices fabricated from semiconducting compounds containing either natural Li (nominally 7.5% 6Li) or enriched 6Li (usually 95% 6Li) may provide a semiconductor material for compact high efficiency neutron detectors. Starting material was synthesized by preparing equimolar portions of Li, Zn, and P sealed under vacuum (10-6 Torr) in quartz ampoules lined with boron nitride and subsequently reacted in a compounding furnace [1]. The synthesized material showed signs of high impurity levels from material and electrical property characterizations. A static vacuum sublimation in quartz was performed to help purify the synthesized material [2]. Bulk crystalline samples were grown from the purified material. An ingot 9.6 mm in diameter and 4.0 mm in length was harvested. Individual samples were characterized for crystallinity on a Bruker AXS Inc. D2 CRYSO, energy dispersive x-ray diffractometer, and a Bruker AXS D8 DISCOVER, high-resolution x-ray diffractometer with a 0.004° beam divergence. The (220) orientation was characterized as the main orientation with the D2 CRYSO, and confirmed with the D8 DISCOVER. An out-of-plane high-resolution rocking curve yielded a 0.417° full width at half maximum (FWHM) for the (220) LiZnP. In-plane ordering was confirmed by observation of the (311) orientation, where a rocking curve was collected with a FWHM of 0.294°.

  17. ASTM E 1559 method for measuring material outgassing/deposition kinetics has applications to aerospace, electronics, and semiconductor industries

    NASA Technical Reports Server (NTRS)

    Garrett, J. W.; Glassford, A. P. M.; Steakley, J. M.

    1994-01-01

    The American Society for Testing and Materials has published a new standard test method for characterizing time and temperature-dependence of material outgassing kinetics and the deposition kinetics of outgassed species on surfaces at various temperatures. This new ASTM standard, E 1559(1), uses the quartz crystal microbalance (QCM) collection measurement approach. The test method was originally developed under a program sponsored by the United States Air Force Materials Laboratory (AFML) to create a standard test method for obtaining outgassing and deposition kinetics data for spacecraft materials. Standardization by ASTM recognizes that the method has applications beyond aerospace. In particular, the method will provide data of use to the electronics, semiconductor, and high vacuum industries. In ASTM E 1559 the material sample is held in vacuum in a temperature-controlled effusion cell, while its outgassing flux impinges on several QCM's which view the orifice of the effusion cell. Sample isothermal total mass loss (TML) is measured as a function of time from the mass collected on one of the QCM's which is cooled by liquid nitrogen, and the view factor from this QCM to the cell. The amount of outgassed volatile condensable material (VCM) on surfaces at higher temperatures is measured as a function of time during the isothermal outgassing test by controlling the temperatures of the remaining QCM's to selected values. The VCM on surfaces at temperatures in between those of the collector QCM's is determined at the end of the isothermal test by heating the QCM's at a controlled rate and measuring the mass loss from the end of the QCM's as a function of time and temperature. This reevaporation of the deposit collected on the QCM's is referred to as QCM thermogravimetric analysis. Isothermal outgassing and deposition rates can be determined by differentiating the isothermal TML and VCM data, respectively, while the evaporation rates of the species can be obtained as a

  18. CaTiO.sub.3 Interfacial template structure on semiconductor-based material and the growth of electroceramic thin-films in the perovskite class

    DOEpatents

    McKee, Rodney Allen; Walker, Frederick Joseph

    1998-01-01

    A structure including a film of a desired perovskite oxide which overlies and is fully commensurate with the material surface of a semiconductor-based substrate and an associated process for constructing the structure involves the build up of an interfacial template film of perovskite between the material surface and the desired perovskite film. The lattice parameters of the material surface and the perovskite of the template film are taken into account so that during the growth of the perovskite template film upon the material surface, the orientation of the perovskite of the template is rotated 45.degree. with respect to the orientation of the underlying material surface and thereby effects a transition in the lattice structure from fcc (of the semiconductor-based material) to the simple cubic lattice structure of perovskite while the fully commensurate periodicity between the perovskite template film and the underlying material surface is maintained. The film-growth techniques of the invention can be used to fabricate solid state electrical components wherein a perovskite film is built up upon a semiconductor-based material and the perovskite film is adapted to exhibit ferroelectric, piezoelectric, pyroelectric, electro-optic or large dielectric properties during use of the component.

  19. Advanced materials characterization based on full field deformation measurements

    NASA Astrophysics Data System (ADS)

    Carpentier, A. Paige

    Accurate stress-strain constitutive properties are essential for understanding the complex deformation and failure mechanisms for materials with highly anisotropic mechanical properties. Among such materials, glass-fiber- and carbon-fiber-reinforced polymer--matrix composites play a critical role in advanced structural designs. The large number of different methods and specimen types currently required to generate three-dimensional allowables for structural design slows down the material characterization. Also, some of the material constitutive properties are never measured due to the prohibitive cost of the specimens needed. This work shows that simple short-beam shear (SBS) specimens are well-suited for measurement of multiple constitutive properties for composite materials and that can enable a major shift toward accurate material characterization. The material characterization is based on the digital image correlation (DIC) full-field deformation measurement. The full-field-deformation measurement enables additional flexibility for assessment of stress--strain relations, compared to the conventional strain gages. Complex strain distributions, including strong gradients, can be captured. Such flexibility enables simpler test-specimen design and reduces the number of different specimen types required for assessment of stress--strain constitutive behavior. Two key elements show advantage of using DIC in the SBS tests. First, tensile, compressive, and shear stress--strain relations are measured in a single experiment. Second, a counter-intuitive feasibility of closed-form stress and modulus models, normally applicable to long beams, is demonstrated for short-beam specimens. The modulus and stress--strain data are presented for glass/epoxy and carbon/epoxy material systems. The applicability of the developed method to static, fatigue, and impact load rates is also demonstrated. In a practical method to determine stress-strain constitutive relations, the stress

  20. Materials advances required to reduce energy consumption through the application of heavy duty diesel engines

    SciTech Connect

    Patten, J.W.

    1984-09-01

    Several key materials advances are required to reduce energy consumption through application of heavy duty diesel engines. Heavy duty diesel engines are viewed as effecting energy use both directly through fuel consumption, and indirectly through their durability with large energy expenditures required to replace worn-out engines. Materials advances that would improve fuel consumption include materials related to hot gas-path insulation, and materials related to design advances (other than insulation). Most design advances that are focused on fuel consumption or other performance factors also directly influence durability through materials properties. Several major engine components and many conventional (and advanced) materials are examined. If materials development is integrated with design and manufacturing advances, then fuel economy higher than 0.28 BSFC (50 pct thermal efficiency), and durability beyond 750,000 miles may be achievable.

  1. Tunable High Brightness Semiconductor Sources

    DTIC Science & Technology

    2015-05-01

    AFRL-RY-WP-TR-2015-0066 TUNABLE HIGH BRIGHTNESS SEMICONDUCTOR SOURCES Robert Bedford, Saima Husaini, Charles Reyner, and Tuoc Dang...3. DATES COVERED (From - To) May 2015 Final 5 November 2010 – 1 February 2015 4. TITLE AND SUBTITLE TUNABLE HIGH BRIGHTNESS SEMICONDUCTOR SOURCES 5a...included within the Tunable High Brightness Semiconductor Sources work unit includes several technology advancements. First, theoretical advances in mid

  2. Recent developments in semiconductor gamma-ray detectors

    SciTech Connect

    Luke, Paul N.; Amman, Mark; Tindall, Craig; Lee, Julie S.

    2003-10-28

    The successful development of lithium-drifted Ge detectors in the 1960's marked the beginning of the significant use of semiconductor crystals for direct detection and spectroscopy of gamma rays. In the 1970's, high-purity Ge became available, which enabled the production of complex detectors and multi-detector systems. In the following decades, the technology of semiconductor gamma-ray detectors continued to advance, with significant developments not only in Ge detectors but also in Si detectors and room-temperature compound-semiconductor detectors. In recent years, our group at Lawrence Berkeley National Laboratory has developed a variety of gamma ray detectors based on these semiconductor materials. Examples include Ge strip detectors, lithium-drifted Si strip detectors, and coplanar-grid CdZnTe detectors. These advances provide new capabilities in the measurement of gamma rays, such as the ability to perform imaging and the realization of highly compact spectroscopy systems.

  3. Designing small molecule polyaromatic p- and n-type semiconductor materials for organic electronics

    NASA Astrophysics Data System (ADS)

    Collis, Gavin E.

    2015-12-01

    By combining computational aided design with synthetic chemistry, we are able to identify core 2D polyaromatic small molecule templates with the necessary optoelectronic properties for p- and n-type materials. By judicious selection of the functional groups, we can tune the physical properties of the material making them amenable to solution and vacuum deposition. In addition to solubility, we observe that the functional group can influence the thin film molecular packing. By developing structure-property relationships (SPRs) for these families of compounds we observe that some compounds are better suited for use in organic solar cells, while others, varying only slightly in structure, are favoured in organic field effect transistor devices. We also find that the processing conditions can have a dramatic impact on molecular packing (i.e. 1D vs 2D polymorphism) and charge mobility; this has implications for material and device long term stability. We have developed small molecule p- and n-type materials for organic solar cells with efficiencies exceeding 2%. Subtle variations in the functional groups of these materials produces p- and ntype materials with mobilities higher than 0.3 cm2/Vs. We are also interested in using our SPR approach to develop materials for sensor and bioelectronic applications.

  4. Molecular Semiconductors: An Introduction

    NASA Astrophysics Data System (ADS)

    de Mello, John; Halls, Jonathan James Michael

    2005-10-01

    Introducing the fundamental ideas and concepts behind organic semiconductors, this book provides a clear impression of the broad range of research activities currently underway. Aimed specifically at new entrant doctoral students from a wide variety of backgrounds, including chemistry, physics, electrical engineering and materials science, it also represents an ideal companion text to undergraduate courses in organic semiconductors.

  5. AMN-2: Second International Conference on Advanced Materials and Nanotechnology

    DTIC Science & Technology

    2005-02-11

    semiconductors 10:55 Indium nitride: towards an understanding of the bandgap 11:10 Zinc oxide for optoelectronic device applications: opportunities and...barrier layer forming directly from the metal and the outer layers forming via the hydrolysis and precipitation of oxides , hydroxides, and/or...transitions induced by electric fields and doping W.G. Schmidt, K. Seino and F. Bechstedt POSTER GROUP 4 NANOFIBRES AND NANOTUBES PG4.1 Growth and

  6. Polymeric and Molecular Materials for Advanced Organic Electronics

    DTIC Science & Technology

    2011-07-25

    this strategy, the Diels - Alder reaction of anthracene-functionalized perylenes with dienophiles was employed to synthesize the soluble precursor...which can then be converted to the active semiconductor via a retro Diels - Alder process. Soluble precursors II can then be converted to the... TYPE 3. DATES COVERED (From- To) 25/07/2011 Final Performance Report 15/06/2008 - 30/11/2010 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Polymeric and

  7. Control method and system for use when growing thin-films on semiconductor-based materials

    DOEpatents

    McKee, Rodney A.; Walker, Frederick J.

    2001-01-01

    A process and system for use during the growth of a thin film upon the surface of a substrate by exposing the substrate surface to vaporized material in a high vacuum (HV) facility involves the directing of an electron beam generally toward the surface of the substrate as the substrate is exposed to vaporized material so that electrons are diffracted from the substrate surface by the beam and the monitoring of the pattern of electrons diffracted from the substrate surface as vaporized material settles upon the substrate surface. When the monitored pattern achieves a condition indicative of the desired condition of the thin film being grown upon the substrate, the exposure of the substrate to the vaporized materials is shut off or otherwise adjusted. To facilitate the adjustment of the crystallographic orientation of the film relative to the electron beam, the system includes a mechanism for altering the orientation of the surface of the substrate relative to the electron beam.

  8. Skylab experiments. Volume 3: Materials science. [Skylab experiments on metallurgy, crystal growth, semiconductors, and combustion physics in weightless environment for high school level education

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The materials science and technology investigation conducted on the Skylab vehicle are discussed. The thirteen experiments that support these investigations have been planned to evaluate the effect of a weightless environment on melting and resolidification of a variety of metals and semiconductor crystals, and on combustion of solid flammable materials. A glossary of terms which define the space activities and a bibliography of related data are presented.

  9. Recent Advances in Conjugated Polymer Materials for Disease Diagnosis.

    PubMed

    Lv, Fengting; Qiu, Tian; Liu, Libing; Ying, Jianming; Wang, Shu

    2016-02-10

    The extraordinary optical amplification and light-harvesting properties of conjugated polymers impart sensing systems with higher sensitivity, which meets the primary demands of early cancer diagnosis. Recent advances in the detection of DNA methylation and mutation with polyfluorene derivatives based fluorescence resonance energy transfer (FRET) as a means to modulate fluorescent responses attest to the great promise of conjugated polymers as powerful tools for the clinical diagnosis of diseases. To facilitate the ever-changing needs of diagnosis, the development of detection approaches and FRET signal analysis are highlighted in this review. Due to their exceptional brightness, excellent photostability, and low or absent toxicity, conjugated polymers are verified as superior materials for in-vivo imaging, and provide feasibility for future clinical molecular-imaging applications. The integration of conjugated polymers with clinical research has shown profound effects on diagnosis for the early detection of disease-related biomarkers, as well as in-vivo imaging, which leads to a multidisciplinary scientific field with perspectives in both basic research and application issues.

  10. SEMICONDUCTOR TECHNOLOGY: Material removal rate in chemical-mechanical polishing of wafers based on particle trajectories

    NASA Astrophysics Data System (ADS)

    Jianxiu, Su; Xiqu, Chen; Jiaxi, Du; Renke, Kang

    2010-05-01

    Distribution forms of abrasives in the chemical mechanical polishing (CMP) process are analyzed based on experimental results. Then the relationships between the wafer, the abrasive and the polishing pad are analyzed based on kinematics and contact mechanics. According to the track length of abrasives on the wafer surface, the relationships between the material removal rate and the polishing velocity are obtained. The analysis results are in accord with the experimental results. The conclusion provides a theoretical guide for further understanding the material removal mechanism of wafers in CMP.

  11. FOREWORD: Focus on Superconductivity in Semiconductors Focus on Superconductivity in Semiconductors

    NASA Astrophysics Data System (ADS)

    Takano, Yoshihiko

    2008-12-01

    Since the discovery of superconductivity in diamond, much attention has been given to the issue of superconductivity in semiconductors. Because diamond has a large band gap of 5.5 eV, it is called a wide-gap semiconductor. Upon heavy boron doping over 3×1020 cm-3, diamond becomes metallic and demonstrates superconductivity at temperatures below 11.4 K. This discovery implies that a semiconductor can become a superconductor upon carrier doping. Recently, superconductivity was also discovered in boron-doped silicon and SiC semiconductors. The number of superconducting semiconductors has increased. In 2008 an Fe-based superconductor was discovered in a research project on carrier doping in a LaCuSeO wide-gap semiconductor. This discovery enhanced research activities in the field of superconductivity, where many scientists place particular importance on superconductivity in semiconductors. This focus issue features a variety of topics on superconductivity in semiconductors selected from the 2nd International Workshop on Superconductivity in Diamond and Related Materials (IWSDRM2008), which was held at the National Institute for Materials Science (NIMS), Tsukuba, Japan in July 2008. The 1st workshop was held in 2005 and was published as a special issue in Science and Technology of Advanced Materials (STAM) in 2006 (Takano 2006 Sci. Technol. Adv. Mater. 7 S1). The selection of papers describe many important experimental and theoretical studies on superconductivity in semiconductors. Topics on boron-doped diamond include isotope effects (Ekimov et al) and the detailed structure of boron sites, and the relation between superconductivity and disorder induced by boron doping. Regarding other semiconductors, the superconducting properties of silicon and SiC (Kriener et al, Muranaka et al and Yanase et al) are discussed, and In2O3 (Makise et al) is presented as a new superconducting semiconductor. Iron-based superconductors are presented as a new series of high

  12. Photovoltaic semiconductor materials based on alloys of tin sulfide, and methods of production

    DOEpatents

    Lany, Stephan

    2016-06-07

    Photovoltaic thin-film materials comprising crystalline tin sulfide alloys of the general formula Sn.sub.1-x(R).sub.xS, where R is selected from magnesium, calcium and strontium, as well as methods of producing the same, are disclosed.

  13. Method of passivating semiconductor surfaces

    DOEpatents

    Wanlass, M.W.

    1990-06-19

    A method is described for passivating Group III-V or II-VI semiconductor compound surfaces. The method includes selecting a passivating material having a lattice constant substantially mismatched to the lattice constant of the semiconductor compound. The passivating material is then grown as an ultrathin layer of passivating material on the surface of the Group III-V or II-VI semiconductor compound. The passivating material is grown to a thickness sufficient to maintain a coherent interface between the ultrathin passivating material and the semiconductor compound. In addition, a device formed from such method is also disclosed.

  14. Method of passivating semiconductor surfaces

    DOEpatents

    Wanlass, Mark W.

    1990-01-01

    A method of passivating Group III-V or II-VI semiconductor compound surfaces. The method includes selecting a passivating material having a lattice constant substantially mismatched to the lattice constant of the semiconductor compound. The passivating material is then grown as an ultrathin layer of passivating material on the surface of the Group III-V or II-VI semiconductor compound. The passivating material is grown to a thickness sufficient to maintain a coherent interface between the ultrathin passivating material and the semiconductor compound. In addition, a device formed from such method is also disclosed.

  15. Electric Materials in advance of Technologies for CO2 Emission Mitigation

    NASA Astrophysics Data System (ADS)

    Tanaka, Yasuzo

    Electric materials for the CO2 emission reduction and the climate changes mitigation are reviewed for this special issue. In the diversified society and the climate changes in the global environment, the advanced electric materials and their effective application technologies are a significant and argent field. Proceedings of superconducting materials, fuel cell materials, solar cell materials etc. are spectacular.

  16. 32nd International Conference on the Physics of Semiconductors

    SciTech Connect

    Chelikowsky, James

    2016-10-17

    The International Conference on the Physics of Semiconductors (ICPS) continues a series of biennial conferences that began in the 1950's. ICPS is the premier meeting for reporting all aspects of semiconductor physics including electronic, structural, optical, magnetic and transport properties with an emphasis on new materials and their applications. The meeting will reflect the state of art in the semiconductor physics field and will serve as a forum where scholars, researchers, and specialists can interact to discuss future research directions and technological advancements. The conference typically draws 1,000 international physicists, scientists, and students. This is one of the largest science meetings on semiconductors and related materials to be held in the United States.

  17. Advanced Laser Processing of Materials--Fundamentals and Applications

    NASA Technical Reports Server (NTRS)

    Jacobsohn, E.; Ryan, M.

    1995-01-01

    Preparation of amorphous thin films in semiconductors and their transition to the crystalline phase may apply to switching devices. Surfaces of single crystal samples of bulk In2Se3 and thin films of InSe were treated using an excimer laser, and microscopic examination showed the treated portions of the surface had become amorphous. Film samples of InSe were laser-treated like the bulk samples. Examination of these treated flims showed shifts in the optical transmittance spectra as well as surface morphology changes.

  18. Ultrathin coatings of nanoporous materials as property enhancements for advanced functional materials.

    SciTech Connect

    Coker, Eric Nicholas

    2010-11-01

    This report summarizes the findings of a five-month LDRD project funded through Sandia's NTM Investment Area. The project was aimed at providing the foundation for the development of advanced functional materials through the application of ultrathin coatings of microporous or mesoporous materials onto the surface of substrates such as silicon wafers. Prior art teaches that layers of microporous materials such as zeolites may be applied as, e.g., sensor platforms or gas separation membranes. These layers, however, are typically several microns to several hundred microns thick. For many potential applications, vast improvements in the response of a device could be realized if the thickness of the porous layer were reduced to tens of nanometers. However, a basic understanding of how to synthesize or fabricate such ultra-thin layers is lacking. This report describes traditional and novel approaches to the growth of layers of microporous materials on silicon wafers. The novel approaches include reduction of the quantity of nutrients available to grow the zeolite layer through minimization of solution volume, and reaction of organic base (template) with thermally-oxidized silicon wafers under a steam atmosphere to generate ultra-thin layers of zeolite MFI.

  19. Synthesis and Characterization of Novel Magnetic Heusler Semiconductors for Device and Materials Applications

    NASA Astrophysics Data System (ADS)

    Jamer, Michelle E.

    Spintronic devices for magnetic memory applications control the magnetic properties of the materials by manipulating the spin and magnetic moment of the electrons. Present devices use ferromagnetic materials that have magnetic fringing fields that interfere with other components of the device. The main focus of this research is investigating low-moment ferrimagnetic inverse Heusler materials that could be used in spintronic devices thereby eliminating the external fringing magnetic field. The challenge of this research is that while hundreds of inverse Heusler materials have been predicted for possible uses in devices, many of these compounds have a positive formation energy indicating that they are not likely to form and will decompose into other compounds. The magnetic and structural properties of several inverse Heusler systems were studied. X-ray diffraction was used to determine the phase and ordering of the crystal structure. SQUID magnetometry and X-ray magnetic circular dichroism determined the bulk magnetic properties and the atom-specific magnetic moments. This thesis outlines the first synthesis of Heusler-type V3Al, which was discovered to be an antiferromagnet. Cr2CoAl was found to exist in a Heusler phase with antiferromagnetically coupled Cr and Co atomic moments. In addition, Mn2CoAl, Cr2CoGa, and Mn3Al were grown as thin films on desorbed GaAs substrates by molecular beam epitaxy. This thesis demonstrated the successful synthesis and characterization of several Heusler compounds that could be used in future devices. These are the seminal results of inverse Heusler synthesis, which are proposed in devices such as spin-FETs and nonvolatile magnetic memory.

  20. Depleted uranium hexafluoride: The source material for advanced shielding systems

    SciTech Connect

    Quapp, W.J.; Lessing, P.A.; Cooley, C.R.

    1997-02-01

    The U.S. Department of Energy (DOE) has a management challenge and financial liability problem in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF{sub 6}) that are stored at the gaseous diffusion plants. DOE is evaluating several options for the disposition of this UF{sub 6}, including continued storage, disposal, and recycle into a product. Based on studies conducted to date, the most feasible recycle option for the depleted uranium is shielding in low-level waste, spent nuclear fuel, or vitrified high-level waste containers. Estimates for the cost of disposal, using existing technologies, range between $3.8 and $11.3 billion depending on factors such as the disposal site and the applicability of the Resource Conservation and Recovery Act (RCRA). Advanced technologies can reduce these costs, but UF{sub 6} disposal still represents large future costs. This paper describes an application for depleted uranium in which depleted uranium hexafluoride is converted into an oxide and then into a heavy aggregate. The heavy uranium aggregate is combined with conventional concrete materials to form an ultra high density concrete, DUCRETE, weighing more than 400 lb/ft{sup 3}. DUCRETE can be used as shielding in spent nuclear fuel/high-level waste casks at a cost comparable to the lower of the disposal cost estimates. Consequently, the case can be made that DUCRETE shielded casks are an alternative to disposal. In this case, a beneficial long term solution is attained for much less than the combined cost of independently providing shielded casks and disposing of the depleted uranium. Furthermore, if disposal is avoided, the political problems associated with selection of a disposal location are also avoided. Other studies have also shown cost benefits for low level waste shielded disposal containers.

  1. SILICON CARBIDE FOR SEMICONDUCTORS

    DTIC Science & Technology

    This state-of-the-art survey on silicon carbide for semiconductors includes a bibliography of the most important references published as of the end...of 1964. The various methods used for growing silicon carbide single crystals are reviewed, as well as their properties and devices fabricated from...them. The fact that the state of-the-art of silicon carbide semiconductors is not further advanced may be attributed to the difficulties of growing

  2. Using advanced electron microscopy for the characterization of catalytic materials

    NASA Astrophysics Data System (ADS)

    Pyrz, William D.

    Catalysis will continue to be vitally important to the advancement and sustainability of industrialized societies. Unfortunately, the petroleum-based resources that currently fuel the energy and consumer product needs of an advancing society are becoming increasingly difficult and expensive to extract as supplies diminish and the quality of sources degrade. Therefore, the development of sustainable energy sources and the improvement of the carbon efficiency of existing chemical processes are critical. Further challenges require that these initiatives are accomplished in an environmentally friendly fashion since the effects of carbon-based emissions are proving to be a serious threat to global climate stability. In this dissertation, materials being developed for sustainable energy and process improvement initiatives are studied. Our approach is to use materials characterization, namely advanced electron microscopy, to analyze the targeted systems at the nano- or Angstrom-scale with the goal of developing useful relationships between structure, composition, crystalline order, morphology, and catalytic performance. One area of interest is the complex Mo-V-M-O (M=Te, Sb, Ta, Nb) oxide system currently being developed for the selective oxidation/ammoxidation of propane to acrylic acid or acrylonitrile, respectively. Currently, the production of acrylic acid and acrylonitrile rely on propylene-based processes, yet significant cost savings could be realized if the olefin-based feeds could be replaced by paraffin-based ones. The major challenge preventing this feedstock replacement is the development of a suitable paraffin-activating catalyst. Currently, the best candidate is the Mo-V-Nb-Te-O complex oxide catalyst that is composed of two majority phases that are commonly referred to as M1 and M2. However, there is a limited understanding of the roles of each component with respect to how they contribute to catalyst stability and the reaction mechanism. Aberration

  3. Growth and Defect Characterization of Quantum Dot-Embedded III-V Semiconductors for Advanced Space Photovoltaics

    DTIC Science & Technology

    2014-05-15

    provide, which could be useful in the future development of intermediate band solar cell (IBSC) devices. Defect spectroscopy was also performed on OMVPE...grown InAs/GaAs QD-embedded solar cells . A large increase in mid-gap trap density surrounding the embedded QDs was found and points to a potentially... cell calibration, high altitude solar cell calibration, high altitude balloon solar cell calibration, III-V compound semiconductors, solar cells

  4. Fabrication of Smart Chemical Sensors Based on Transition-Doped-Semiconductor Nanostructure Materials with µ-Chips

    PubMed Central

    Rahman, Mohammed M.; Khan, Sher Bahadar; Asiri, Abdullah M.

    2014-01-01

    Transition metal doped semiconductor nanostructure materials (Sb2O3 doped ZnO microflowers, MFs) are deposited onto tiny µ-chip (surface area, ∼0.02217 cm2) to fabricate a smart chemical sensor for toxic ethanol in phosphate buffer solution (0.1 M PBS). The fabricated chemi-sensor is also exhibited higher sensitivity, large-dynamic concentration ranges, long-term stability, and improved electrochemical performances towards ethanol. The calibration plot is linear (r2 = 0.9989) over the large ethanol concentration ranges (0.17 mM to 0.85 M). The sensitivity and detection limit is ∼5.845 µAcm−2mM−1 and ∼0.11±0.02 mM (signal-to-noise ratio, at a SNR of 3) respectively. Here, doped MFs are prepared by a wet-chemical process using reducing agents in alkaline medium, which characterized by UV/vis., FT-IR, Raman, X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), and field-emission scanning electron microscopy (FE-SEM) etc. The fabricated ethanol chemical sensor using Sb2O3-ZnO MFs is simple, reliable, low-sample volume (<70.0 µL), easy of integration, high sensitivity, and excellent stability for the fabrication of efficient I–V sensors on μ-chips. PMID:24454785

  5. Materials and Area of Study for Advanced Placement Program in American History.

    ERIC Educational Resources Information Center

    Santos, Peter A.

    This paper describes and evaluates benefits of advanced placement programs and identifies materials which can help high school history classroom teachers develop effective advanced placement programs. An advanced placement program is defined as a program which requires a student to do extensive research and writing throughout the school year.…

  6. Materials Design via Optimized Intramolecular Noncovalent Interactions for High-Performance Organic Semiconductors

    SciTech Connect

    Guo, Xiaojie; Liao, Qiaogan; Manley, Eric F.; Wu, Zishan; Wang, Yulun; Wang, Weida; Yang, Tingbin; Shin, Young-Eun; Cheng, Xing; Liang, Yongye; Chen, Lin X.; Baeg, Kang-Jun; Marks, Tobin J.; Guo, Xugang

    2016-03-15

    We report the design, synthesis, and implemention in semiconducting polymers of a novel head-to-head linkage containing the TRTOR (3-alkyl-3'-alkoxy-2,2'-bithiophene) donor subunit having a single strategically optimized, planarizing noncovalent S···O interaction. Diverse complementary thermal, optical, electrochemical, X-ray scattering, electrical, photovoltaic, and electron microscopic characterization techniques are applied to establish structure-property correlations in a TRTOR-based polymer series. In comparison to monomers having double S···O interactions, replacing one alkoxy substituent with a less electron-donating alkyl one yields TRTOR-based polymers with significantly depressed (0.2-0.3 eV) HOMOs. Furthermore, the weaker single S···O interaction and greater TRTOR steric encumberance enhances materials processability without sacrificing backbone planarity. From another perspective, TRTOR has comparable electronic properties to ring-fused 5Hdithieno[ 3,2-b:2',3'-d]pyran (DTP) subunits, but a centrosymmetric geometry which promotes a more compact and ordered structure than bulkier, axisymmetric DTP. Compared to monosubstituted TTOR (3-alkoxy-2,2'-bithiophene), alkylation at the TRTOR bithiophene 3-position enhances conjugation and polymer crystallinity with contracted π-π stacking. Grazing incidence wide-angle X-ray scattering (GIWAXS) data reveal that the greater steric hindrance and the weaker single S···O interaction are not detrimental to close packing and high crystallinity. As a proof of materials design, copolymerizing TRTOR with phthalimides yields copolymers with promising thin-film transistor mobility as high as 0.42 cm2/(V·s) and 6.3% power conversion efficiency in polymer solar cells, the highest of any phthalimide copolymers reported to date. The depressed TRTOR HOMOs imbue these polymers with substantially increased Ion/Ioff ratios and Voc’s versus analogous subunits with multiple electron donating, planarizing alkoxy

  7. Pushing the material limit and physics novelty in high κ's/high carrier mobility semiconductors for post Si CMOS

    NASA Astrophysics Data System (ADS)

    Hong, Minghwei

    2012-02-01

    The semiconductor industry is now facing unprecedented materials/physics challenges due to the scaling-limitation of Si CMOS transistor arising from non-scaling of matters, namely gate dielectrics and channel mobility. The new technology using high-κ plus metal gate on high carrier mobility semiconductors of InGaAs and Ge will lead to faster speed at lower power. The tasks for realizing the new devices equivalent oxide thickness (EOT) < 1 nm, interfacial density of state (Dit) <= 10^11 eV-1cm-2, self-aligned process, low parasitic, and integration with Si, have been solved or are being feverishly studied. The key of achieving the above goals is to understand/tailor interfaces of the high κ's/InGaAs (Ge). Tremendous progress has been made using molecular beam epitaxy (MBE) and atomic layer deposition (ALD) high κ's of Ga2O3(Gd2O3), Al2O3, and HfO2, and the novel ALD/MBE dual dielectrics in attaining an EOT of 0.5 nm, Dit of low 10^11 eV-1cm-2 (with a flat Dit distribution versus energy), and thermal stability at high temperatures higher than 800 C of the MOS structures. Electronic/electrical characteristics of the hetero-structures have been studied using in-situ synchrotron radiation photo-emission, cross-sectional scanning tunneling spectroscopy, capacitance (conductance)-voltage under various temperatures, and charge pumping methods. Device performance in world-record drain currents, transconductances, sub-threshold swings, etc. in self-aligned inversion-channel high κ's/InGaAs and /Ge MOSFET's will also be presented. This work has been supported by Nano National Program (NSC 100-2120-M-007-010) of the NSC of Taiwan, and the AOARD of the US Air Force. [4pt] In collaboration with J. Kwo, W. C. Lee, M. L. Huang, T. D. Lin, Y. C. Chang, Y. H. Chang, C. A. Lin, Y. M. Chang (NTHU and NTU in Taiwan), T. W. Pi, C. H. Hsu (NSRRC in Taiwan), Y. P. Chiu (NSYSU in Taiwan), C. Merckling (IMEC in Belgium), J. I. Chyi (NCU, Taiwan), and G. J. Brown (AFRL, USA).

  8. Experiment requirements and implementation plan (Erip) for semiconductor materials growth in low-G environment

    NASA Technical Reports Server (NTRS)

    Crouch, R. K.; Fripp, A. L.; Debnam, W. J.; Clark, I. O.

    1983-01-01

    The MEA-2 A facility was used to test the effect of the low gravity environment on suppressing convective mixing in the growth of Pb(1-x)Sn(x)Te crystals. The need to eliminate convection, the furnace characteristics and operation that will be required for successful experimental implementation, and to the level that is presently known, the measured physical properties of the Pb(1-x)Sn(x)Te system were discussed. In addition, a brief background of the present and potential utilization of Pb(1-x)Sn(x)Te is given. Additional experiments are anticipated in future MEA-A, improved MEA and other dedicated materials processing in space flight apparatus.

  9. 25th anniversary article: materials for high-performance biodegradable semiconductor devices.

    PubMed

    Hwang, Suk-Won; Park, Gayoung; Cheng, Huanyu; Song, Jun-Kyul; Kang, Seung-Kyun; Yin, Lan; Kim, Jae-Hwan; Omenetto, Fiorenzo G; Huang, Yonggang; Lee, Kyung-Mi; Rogers, John A

    2014-04-02

    We review recent progress in a class of silicon-based electronics that is capable of complete, controlled dissolution when immersed in water or bio-fluids. This type of technology, referred to in a broader sense as transient electronics, has potential applications in resorbable biomedical devices, eco-friendly electronics, environmental sensors, secure hardware systems and others. New results reported here include studies of the kinetics of hydrolysis of nanomembranes of single crystalline silicon in bio-fluids and aqueous solutions at various pH levels and temperatures. Evaluations of toxicity using live animal models and test coupons of transient electronic materials provide some evidence of their biocompatibility, thereby suggesting potential for use in bioresorbable electronic implants.

  10. Growth of High Material Quality Group III-Antimonide Semiconductor Nanowires by a Naturally Cooling Process

    NASA Astrophysics Data System (ADS)

    Li, Kan; Pan, Wei; Wang, Jingyun; Pan, Huayong; Huang, Shaoyun; Xing, Yingjie; Xu, H. Q.

    2016-04-01

    We report on a simple but powerful approach to grow high material quality InSb and GaSb nanowires in a commonly used tube furnace setup. The approach employs a process of stable heating at a high temperature and then cooling down naturally to room temperature with the nanowire growth occurred effectively during the naturally cooling step. As-grown nanowires are analyzed using a scanning electron microscope and a transmission electron microscope equipped with an energy-dispersive X-ray spectroscopy setup. It is shown that the grown nanowires are several micrometers in lengths and are zincblende InSb and GaSb crystals. The FET devices are also fabricated with the grown nanowires and investigated. It is shown that the grown nanowires show good, desired electrical properties and should have potential applications in the future nanoelectronics and infrared optoelectronics.

  11. The Materials Data Facility: Data Services to Advance Materials Science Research

    NASA Astrophysics Data System (ADS)

    Blaiszik, B.; Chard, K.; Pruyne, J.; Ananthakrishnan, R.; Tuecke, S.; Foster, I.

    2016-08-01

    With increasingly strict data management requirements from funding agencies and institutions, expanding focus on the challenges of research replicability, and growing data sizes and heterogeneity, new data needs are emerging in the materials community. The materials data facility (MDF) operates two cloud-hosted services, data publication and data discovery, with features to promote open data sharing, self-service data publication and curation, and encourage data reuse, layered with powerful data discovery tools. The data publication service simplifies the process of copying data to a secure storage location, assigning data a citable persistent identifier, and recording custom (e.g., material, technique, or instrument specific) and automatically-extracted metadata in a registry while the data discovery service will provide advanced search capabilities (e.g., faceting, free text range querying, and full text search) against the registered data and metadata. The MDF services empower individual researchers, research projects, and institutions to (I) publish research datasets, regardless of size, from local storage, institutional data stores, or cloud storage, without involvement of third-party publishers; (II) build, share, and enforce extensible domain-specific custom metadata schemas; (III) interact with published data and metadata via representational state transfer (REST) application program interfaces (APIs) to facilitate automation, analysis, and feedback; and (IV) access a data discovery model that allows researchers to search, interrogate, and eventually build on existing published data. We describe MDF's design, current status, and future plans.

  12. Advanced Materials Research Status and Requirements. Volume 1. Technical Summary.

    DTIC Science & Technology

    1986-03-01

    systems. 1.2 Applications. This document provides a review of several of the mast prominent metal matrix and polymer matrix composite materials. The...Candidate Materials. This document provides a review of some of the most prominent metal matrix and polymer matrix composite materials. The material...of the most prominent metal matrix and polymer matrix composite materials. * As seen in Figures 3-2 and 3-3, the polymer matrix composites such as

  13. Mechanochemical synthesis of maghemite/silica nanocomposites: advanced materials for aqueous room-temperature catalysis.

    PubMed

    Ojeda, Manuel; Pineda, Antonio; Romero, Antonio A; Barrón, Vidal; Luque, Rafael

    2014-07-01

    A simple, environmentally friendly, and highly reproducible protocol has been developed for the mechanochemical preparation of advanced nanocatalytic materials in a one-pot process. The materials proved to have unprecedented activities in aqueous Suzuki couplings at room temperature, paving the way for a new generation of highly active and stable advanced nanocatalysts.

  14. Analysis of the influence of advanced materials for aerospace products R&D and manufacturing cost

    NASA Astrophysics Data System (ADS)

    Shen, A. W.; Guo, J. L.; Wang, Z. J.

    2015-12-01

    In this paper, we pointed out the deficiency of traditional cost estimation model about aerospace products Research & Development (R&D) and manufacturing based on analyzing the widely use of advanced materials in aviation products. Then we put up with the estimating formulas of cost factor, which representing the influences of advanced materials on the labor cost rate and manufacturing materials cost rate. The values ranges of the common advanced materials such as composite materials, titanium alloy are present in the labor and materials two aspects. Finally, we estimate the R&D and manufacturing cost of F/A-18, F/A- 22, B-1B and B-2 aircraft based on the common DAPCA IV model and the modified model proposed by this paper. The calculation results show that the calculation precision improved greatly by the proposed method which considering advanced materials. So we can know the proposed method is scientific and reasonable.

  15. Semiconductor diode laser material and devices with emission in visible region of the spectrum

    NASA Technical Reports Server (NTRS)

    Ladany, I.; Kressel, H.

    1975-01-01

    Two alloy systems, (AlGa)As and (InGa)P, were studied for their properties relevant to obtaining laser diode operation in the visible region of the spectrum. (AlGa)As was prepared by liquid-phase epitaxy (LPE) and (InGa)P was prepared both by vapor-phase epitaxy and by liquid-phase epitaxy. Various schemes for LPE growth were applied to (InGa)P, one of which was found to be capable of producing device material. All the InGaP device work was done using vapor-phase epitaxy. The most successful devices were fabricated in (AlGa)As using heterojunction structures. At room temperature, the large optical cavity design yielded devices lasing in the red (7000 A). Because of the relatively high threshold due to the basic band structure limitation in this alloy, practical laser diode operation is presently limited to about 7300 A. At liquid-nitrogen temperature, practical continuous-wave operation was obtained at a wavelength of 6500 to 6600 A, with power emission in excess of 50 mW. The lowest pulsed lasing wavelength is 6280 A. At 223 K, lasing was obtained at 6770 A, but with high threshold currents. The work dealing with CW operation at room temperature was successful with practical operation having been achieved to about 7800 A.

  16. Processing method for forming dislocation-free SOI and other materials for semiconductor use

    DOEpatents

    Holland, Orin Wayne; Thomas, Darrell Keith; Zhou, Dashun

    1997-01-01

    A method for preparing a silicon-on-insulator material having a relatively defect-free Si overlayer involves the implanting of oxygen ions within a silicon body and the interruption of the oxygen-implanting step to implant Si ions within the silicon body. The implanting of the oxygen ions develops an oxide layer beneath the surface of the silicon body, and the Si ions introduced by the Si ion-implanting step relieves strain which is developed in the Si overlayer during the implanting step without the need for any intervening annealing step. By relieving the strain in this manner, the likelihood of the formation of strain-induced defects in the Si overlayer is reduced. In addition, the method can be carried out at lower processing temperatures than have heretofore been used with SIMOX processes of the prior art. The principles of the invention can also be used to relieve negative strain which has been induced in a silicon body of relatively ordered lattice structure.

  17. Cost/benefit analysis of advanced materials technologies for future aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Bisset, J. W.

    1976-01-01

    The cost/benefits of advance commercial gas turbine materials are described. Development costs, estimated payoffs and probabilities of success are discussed. The materials technologies investigated are: (1) single crystal turbine blades, (2) high strength hot isostatic pressed turbine disk, (3) advanced oxide dispersion strengthened burner liner, (4) bore entry cooled hot isostatic pressed turbine disk, (5) turbine blade tip - outer airseal system, and (6) advance turbine blade alloys.

  18. ADVANCED CERAMIC MATERIALS FOR NEXT-GENERATION NUCLEAR APPLICATIONS

    SciTech Connect

    Marra, J.

    2010-09-29

    proliferation), the worldwide community is working to develop and deploy new nuclear energy systems and advanced fuel cycles. These new nuclear systems address the key challenges and include: (1) extracting the full energy value of the nuclear fuel; (2) creating waste solutions with improved long term safety; (3) minimizing the potential for the misuse of the technology and materials for weapons; (4) continually improving the safety of nuclear energy systems; and (5) keeping the cost of energy affordable.

  19. Implications of the Differential Toxicological Effects of III-V Ionic and Particulate Materials for Hazard Assessment of Semiconductor Slurries.

    PubMed

    Jiang, Wen; Lin, Sijie; Chang, Chong Hyun; Ji, Zhaoxia; Sun, Bingbing; Wang, Xiang; Li, Ruibin; Pon, Nanetta; Xia, Tian; Nel, André E

    2015-12-22

    Because of tunable band gaps, high carrier mobility, and low-energy consumption rates, III-V materials are attractive for use in semiconductor wafers. However, these wafers require chemical mechanical planarization (CMP) for polishing, which leads to the generation of large quantities of hazardous waste including particulate and ionic III-V debris. Although the toxic effects of micron-sized III-V materials have been studied in vivo, no comprehensive assessment has been undertaken to elucidate the hazardous effects of submicron particulates and released III-V ionic components. Since III-V materials may contribute disproportionately to the hazard of CMP slurries, we obtained GaP, InP, GaAs, and InAs as micron- (0.2-3 μm) and nanoscale (<100 nm) particles for comparative studies of their cytotoxic potential in macrophage (THP-1) and lung epithelial (BEAS-2B) cell lines. We found that nanosized III-V arsenides, including GaAs and InAs, could induce significantly more cytotoxicity over a 24-72 h observation period. In contrast, GaP and InP particulates of all sizes as well as ionic GaCl3 and InCl3 were substantially less hazardous. The principal mechanism of III-V arsenide nanoparticle toxicity is dissolution and shedding of toxic As(III) and, to a lesser extent, As(V) ions. GaAs dissolves in the cell culture medium as well as in acidifying intracellular compartments, while InAs dissolves (more slowly) inside cells. Chelation of released As by 2,3-dimercapto-1-propanesulfonic acid interfered in GaAs toxicity. Collectively, these results demonstrate that III-V arsenides, GaAs and InAs nanoparticles, contribute in a major way to the toxicity of III-V materials that could appear in slurries. This finding is of importance for considering how to deal with the hazard potential of CMP slurries.

  20. Prediction of Corrosion of Advanced Materials and Fabricated Components

    SciTech Connect

    A. Anderko; G. Engelhardt; M.M. Lencka; M.A. Jakab; G. Tormoen; N. Sridhar

    2007-09-29

    The goal of this project is to provide materials engineers, chemical engineers and plant operators with a software tool that will enable them to predict localized corrosion of process equipment including fabricated components as well as base alloys. For design and revamp purposes, the software predicts the occurrence of localized corrosion as a function of environment chemistry and assists the user in selecting the optimum alloy for a given environment. For the operation of existing plants, the software enables the users to predict the remaining life of equipment and help in scheduling maintenance activities. This project combined fundamental understanding of mechanisms of corrosion with focused experimental results to predict the corrosion of advanced, base or fabricated, alloys in real-world environments encountered in the chemical industry. At the heart of this approach is the development of models that predict the fundamental parameters that control the occurrence of localized corrosion as a function of environmental conditions and alloy composition. The fundamental parameters that dictate the occurrence of localized corrosion are the corrosion and repassivation potentials. The program team, OLI Systems and Southwest Research Institute, has developed theoretical models for these parameters. These theoretical models have been applied to predict the occurrence of localized corrosion of base materials and heat-treated components in a variety of environments containing aggressive and non-aggressive species. As a result of this project, a comprehensive model has been established and extensively verified for predicting the occurrence of localized corrosion as a function of environment chemistry and temperature by calculating the corrosion and repassivation potentials.To support and calibrate the model, an experimental database has been developed to elucidate (1) the effects of various inhibiting species as well as aggressive species on localized corrosion of nickel